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Abstract

Due to the high cost of building a physical GPU cluster infrastructure for

AI model training, the demand for training on “pay-as-you-go” public cloud

clusters has increased rapidly. In particular, training AI models using pre-

emptible(i.e., spot) VMs provided at steep price discounts has attracted the

attention of many researchers. However, since cloud providers can unilaterally

revoke preemptible VMs at any time, it may result in the loss of underway train-

ing states. Due to the trade-off between cost and reliability, researchers are dis-

inclined to actively adopt preemptible VMs for their experiments. In this paper,

we discuss the major challenges of AI model training on preemptible VMs and

propose Spotify, an AI model training job orchestrator, which automatically

deals with the challenges and enables reliable training on preemptible cloud

clusters. Researchers can run training jobs on low-price preemptible clusters

under the illusion of using reliable on-demand clusters. Our evaluations show

that Spotify reduces the 62% of end-to-end training cost with only sacrific-

ing 2.86% additional latency overhead compared to the training on on-demand

clusters.

Keywords: Machine Learning, Cloud, Preemption Handling

Student Number: 2020-27792
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Chapter 1

Introduction

As the size of deep learning models has increased rapidly, GPU becomes the

necessary resource for the compute-intensive model training job. Since the speed

of model training depends on the performance and the number of GPUs, AI

researchers need to build well-configured GPU clusters for their model develop-

ment. However, the cost of building and maintaining physical clusters is very

high, and next-generation GPUs that outperform previous models come to the

market every year.

For such reasons, rather than managing expensive physical GPU clusters,

many researchers shift to public cloud services that provide unlimited VM re-

source capacity with various types of GPU and pay only the amount of money

they spent during leasing the VMs. More interestingly, many cloud providers of-

fer preemptible VMs (e.g., Amazon spot instances, Azure spot VMs and Google

Cloud spot VM) at a 60∼90% discount [1, 2, 3], but with the risk of resource

revocation.

Despite the advantage of price, the unreliability due to unsuspected preemp-
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tion makes it hard to use preemptible VM for AI model training. Simply using

the preemptible VMs for model training without a proper interruption han-

dling mechanism may result in a loss of training states. Checkpointing model

parameters is a commonly-used fault tolerance technique to reduce the effect

of preemption. However, too frequent checkpointing brings longer training time

since checkpointing makes additional overhead to serialize and write the data to

disk. Therefore, it is important to find a sweet spot for checkpointing intervals to

minimize the overall training time, but it is difficult for developers to configure

a suitable checkpointing interval for each training job by hand. Furthermore,

manually reallocating VMs per every preemption time is also time-consuming

and cumbersome.

To address the problems, three principal challenges need to be addressed: (1)

automatizing the entire training process on a preemptible VM, (2) minimizing

the end-to-end execution time of training jobs, and (3) supporting arbitrary

training jobs in a non-invasive manner. In this paper, we propose Spotify, a

system that solves these challenges to enable reliable AI model training on

preemptible VMs.

First, when users submit training jobs, Spotify automatically allocates cloud

VMs according to the request configuration. When the preemption occurs, Spo-

tify detects the event via pre-delivered preemption notice and executes appro-

priate handling routines to minimize the impact of the interruption. At the

same time, Spotify reallocates new VMs as quickly as possible to seamlessly

migrate the ongoing training job.

Second, Spotify configures the optimum checkpointing policy to minimize

the end-to-end training time. The system adaptively adjusts checkpointing in-

tervals during the job runtime to reflect the inconsistent preemption probabil-

ity. Exploiting the on-the-fly profiling results from the running training job and
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system-widely collected preemption-related metrics, Spotify finds and applies

the optimal checkpointing strategy to minimize the training time.

Third, users of Spotify can easily train their AI models on preemptible VMs

by making a few lines of code addition. We design user APIs which are generally

applicable for model training scripts with minimal code changes.

This paper makes the following primary contributions.

• We propose Spotify, an AI model training job orchestrator that automates

cloud resource management and checkpoint migration to enable reliable

training for arbitrary training workloads on low-price preemptible VMs.

• We propose an adaptive checkpointing policy that takes into account both

real-time job metrics and pre-delivered preemption notice. By applying

the auto-configured checkpointing policy, we enable the spot training at

38% of the price of the on-demand training with sacrificing only 2.86% of

latency overhead.

• We analyze the trade-off between checkpointing interval and rework time

caused by preemption and evaluate the efficiency of adaptive checkpoint-

ing policy using real-world applications.
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Chapter 2

Background

2.1 Preemptible Virtual Machines

Cloud providers offer “on-demand” virtual machines, which are charged at a

price per second. Customers have complete control over the on-demand VM

lifecycle; they can start, stop, reboot, or terminate VMs when needed. In or-

der to stably satisfy the demand for VMs, cloud providers typically maintain

resource capacity on a peak request rate basis, so the VMs usually tend to be

underutilized.

To leverage the spare capacity, cloud vendors offer preemptible VMs from

a spare resource pool at a significantly lower price (60∼90%) than on-demand

VMs of the same type. Unlike on-demand VMs, if cloud providers cannot meet

on-demand VM requests from the spare resource pool, preemptable VMs can be

interrupted and the capacity returns to the provider at any time. For example,

the most popular cloud computing services such as Amazon EC2, Azure Virtual

Machines, and Google Cloud Compute Engine commonly offer “spot” VMs.
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Although each cloud provider has a different preemption policy in detail,

preemption occurs based on the following conditions in general. First, VMs

can be evicted when cloud providers need the capacity back to handle on-

demand requests. The capacity is different by the type of VM and availability

region, thus how frequently VMs get evicted depends on them. Second, when

the market price for the VM exceeds the max price (the bid price the customer

is willing to pay to acquire the VM), the VM gets evicted [4, 5]. Since the max

price is an important factor not only for the cost but also for the probability

of preemption and resource acquirement, efficient bidding strategies have been

studied [6, 7, 8]. However, the concept of bidding exists only for certain cloud

providers (e.g., Amazon EC2 and Azure VM), and several cloud providers, such

as Google Cloud, provide preemptible VMs without bidding. In addition, the

high bidding price does not prevent the preemption caused by capacity issues.

To alleviate the effect of preemption, cloud providers give prior notification

for the scheduled preemption. For example, Azure Metadata Service offers an

endpoint to poll scheduled events which comes 30-second before the preemption

scheduling [9]. In the same manner, AWS and Google Cloud also give a pre-

delivered preemption notice, which is delivered at least 1 hour and 2 minutes

in advance respectively [10, 11]. For this grace period, user applications can

prepare for the upcoming interruption by storing stateful data or gracefully

shutting down running programs.

2.2 Model Training and Checkpointing

One of the widely-used fault tolerance techniques to mitigate the effect of

resource interruption is checkpoint-and-restart, which writes the intermediate

states of a process from memory to disk and restarts the process from the
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saved states. There are many pieces of research modeling the optimal check-

point strategy [12, 13, 14, 15, 16, 17] in the context of HPC workloads. In the

context of ML model training, checkpointing is not only used for the purpose

of fault-tolerance for resource failure like VM preemption, and it is also used

for the purpose of transferring the learned model states to another training job

such as fine-tuning, or inference.

Figure 2.1 Training process on a preemptible VM. The green, blue, and orange

color in the box represents preparation time, iteration time, and checkpoint

time respectively. The yellow lightning symbols denote preemption events.

Figure 2.1 visualizes the normal AI model training process from iteration i =

0 to i = N using preemptible VMs. The training process starts with preparation

time (green bar), which includes the latency of VM allocation, initialization,

and training dataset loading. After the preparation stage, training iterations

(blue bar) start. Per certain iteration periods, intermediate model parameters

residing in memory space are serialized and dumped to the disk (orange bar).

In the middle of the training process, preemption (yellow lightning symbol)
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can occur, and the training halts until a new VM is allocated to continue the

training. After the VM reallocation, the training process can be resumed from

the latest checkpoint.

Since the iterations after the last checkpointing are lost and the wasted it-

erations should be recomputed, model checkpoints should be created as close

as possible to preemption events. The most naive and simple way to reduce the

amount of wasted work is frequent checkpointing. However, as each synchronous

checkpointing entails overhead of serialization and disk write, excessive check-

pointing increases the entire training time. Therefore, it is important to figure

out the optimal checkpointing point on a sweet spot that reduces the entire

training time.
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Chapter 3

Challenges

3.1 Unpredictability of Preemptions

Cloud providers unilaterally evict running preemptible VMs when they need the

capacity back. Figure 3.1 shows the real-world preemption trace of the Azure

Standard NC24s v3 spot instance with 4 V100 GPUs. The preemption rate is

not consistent during the day and there are peak times when the demand for

VM increases rapidly. A similar preemption pattern is also reported by many

existing works studying cloud VM preemptions regardless of cloud providers [18,

19, 14]. According to those researches, the preemption probability is not only

affected by the time of a day, but also affected by other various factors such

as the geographical region, days of the week, and instance size. For some cases,

even the running workload characteristics and VM lifetime are also related to

the preemption frequency [14].

As explained in Section 2.2, it is important to consider the preemption pat-

tern to checkpointing policy to reduce the latency overhead which comes from

12



Figure 3.1 24-hour real-world preemption trace collected from the 6 Azure Stan-

dard NC24s v3 VM instances. The time zone is the East US region (Virginia).

both file-write and recomputing the wasted works—excessive checkpointing in-

creases the entire job latency due to the high file write overhead and check-

pointing too sparsely also slows down the progress of training due to the high

recomputation overhead. Unfortunately, the pattern of preemption is affected

by so many factors in the real world and changes from moment to moment,

thus it is challenging to reflect the cloud VM availability when determining the

checkpointing policy.

This challenge motivates our system to monitor and manage the metrics

required to determine the optimum checkpointing strategy. Spotify collects the

runtime training information and preemption-related metrics such as the VM

allocation time and the average preemption interval and determines the check-

pointing interval based on them.
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3.2 Resource Management

Since preemptible VMs can be revoked at any time, it is bothersome for AI

model developers to reallocate new VMs by themselves. According to our real-

world preemption trace from Azure Standard NC12s v3 instance equipped with

2 V100 GPUs, the preemption occurs 3.95 times per 12 hours on average of 20

samples. That is, without automatizing the preemption recovery process, users

have to restart the stopped VMs by hand every 3 hours. In addition, as it

is impossible to exactly predict the preemption time and preemptions usually

occur in irregular intervals, users need to keep monitoring the VM status until

the end of training.

To resolve this issue, Spotify automatizes the preemption detection and

recovery process—it detects the preemption with the pre-delivered preemption

notice and keepalive heartbeat signals, and reallocates a new VM to seamlessly

continue the training job. The training can be resumed on any VM because the

model checkpoint files generated before the preemption are uploaded to remote

cloud storage. When reallocation is rejected by cloud providers due to the low

availability, the system continuously retries the allocation.
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Chapter 4

Modeling Checkpointing Policy

4.1 Approximating Optimal Checkpointing Interval

There are some studies trying to quantify the optimal checkpointing interval

that minimizes the application wall time latency on a system with the possibil-

ity of failure [20, 21, 17, 14]. One of the most simple and general checkpointing

model is proposed by Daly [21], which calculates the optimal chechpointing

time interval as
√

2 · δ · (MTTP + R), where δ, MTTP , and R denotes check-

point dump time, mean time to preemption, and restart time respectively. This

checkpointing policy assumes that the occurrence of a preemption event follows

a Poisson distribution. In this section, we explain the details of this approxi-

mation briefly and propose a way to apply the approximation systematically.

The entire job latency for AI model training on interruptable resources

consists of process time, checkpoint time, restart time, and rework time as

described in Figure 2.1, and it can be formulated as the following objective

function T (τ).
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T (τ) = Tp + Tp

τ
· δ + ϕ · (τ + δ) · p(τ) + R · p(τ) (4.1)

The entire process time that includes computation and communication time

for model training is defined as Tp. Then, the total latency of checkpointing is
Tp

τ · δ, where τ is the time interval between each checkpointing, and δ is the

time for model parameter serialization and writing the data to a disk. The total

amount of rework time is ϕ · (τ + δ) ·p(τ), which is the product of τ + δ (process

time for a segment), ϕ (progress rate of the segment), and p(τ) (the number

of preemptions). Note that a segment consists of the computation for several

iterations between two checkpointing points and the following checkpointing for

the computed iterations. The total amount of restart time after each preemp-

tion, which includes time for VM reallocation, process initialization, and data

loading, is R · p(τ), where R is the one-time restart latency.

When we assume that the preemptions occur according to a Poisson distri-

bution whose probability density function is f(t) = 1
λe−t/λ, then the expected

number of preemption p(τ) is approximated as follows:

p(τ) ≈ Tp

τ
· (τ + δ

λ
) (4.2)

According to Eq. 4.2, the objective function in Eq. 4.1 can be rewritten as:

T (τ) = Tp + Tp

τ
· δ + [ϕ · (τ + δ) + R] · Tp

τ
· (τ + δ

λ
) (4.3)

If we assume that preemption normally occurs in the middle of a segment,

then ϕ can be set to 1
2 . The scale parameter λ is parameterized with the value

of MTTP .

T (τ) = Tp + Tp

τ
· δ +

[
1
2 · (τ + δ) + R

]
· Tp

τ
· ( τ + δ

MTTP
) (4.4)
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Finally, by differentiating Eq. 4.4 for τ , we can find the value of τ that

minimizes the end-to-end job latency T (τ) as:

τopt =
√

2 · δ · (MTTP + R) (4.5)

Although the policy suggested by Daly [21] is simple and easy to compute,

it is hard to set the value of MTTP and R properly in real-world applications,

and the value of δ can be known after running the job. Furthermore, since AI

model training usually takes from a few days to months, the proper value of

MTTP and R can be changed during the training job. To solve this problem,

Spotify collects the wall time latency of VM lifetime (i.e., the period between

VM start time and the preemption time) and VM allocation time and uses the

information to determine the next checkpointing interval.

4.2 Emergency Save

Cloud providers issue VM interruption notice before they terminate running

VMs. How early they deliver the notice is different by vendors. Amazon EC2,

Azure VM, and Google Cloud Compute Engine give the preemption warning

2 minutes, 30 seconds, and 1 hour before the actual event scheduling respec-

tively [10, 9, 11]. The preemption notice can be polled by sending an HTTP

request to a REST endpoint from running preemption VMs managed by cloud

VM services.

Spotify continuously polls the preemption notice and check whether there

is enough time for a emergency save. The emergency save writes checkpoint

files to the local file system and transfers the files to the remote cloud storage

(e.g., Amazon S3, Azure Blob Storage, and Google Cloud storage) as soon as

the ongoing iteration is computed. By leveraging preemption notice for the
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fault-tolerance mechanism, the rework time becomes zero since the job can be

resumed from the latest step before the preemption. When the emergency save

is available, the only wasted time due to preemption is VM reallocation time

and training preparation time such as data loading.

4.3 Insurance Save

The best handling routine for preemption is the emergency save as it makes

zero overhead for the rework time and intermediate checkpointing. However,

since the grace period before the preemption is limited, it is not an always-

available solution. If there is not enough time to store and back up checkpoints

after receiving preemption notice, checkpoints should be saved in the middle

of the training job to minimize the rework time after preemption. We call this

intermediate checkpointing as an insurance save as it is the insurance for the

catastrophic state loss. It is important to determine the appropriate checkpoint

interval because too frequent checkpointing is rather disadvantageous.

Spotify uses the simple checkpointing policy described in Section 4.1, which

is proposed by Daly [21], and the value of the next checkpointing iteration is pa-

rameterized based on the collected preemption-related metrics such as average

VM lifespan, average checkpointing time, and average VM allocation latency.

Spotify collects every preemption event time and allocation time for every sup-

ported cloud VM type from all training jobs submitted to the system. That is,

the values of MTTP and R are not fixed during the execution of a job and are

changed by the cloud VM availability. The more jobs are submitted to Spotify,

the more likely it is to determine better checkpoint iterations that minimize

end-to-end job latency.
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4.4 Adaptive Checkpointing

To reduce the job execution time, Spotify exploits both emergency save and in-

surance save together for model checkpointing. Algorithm 1 describes how the

adaptive checkpointing of Spotify works. For each training iteration i among

the entire iterations I, the step process time Ti is measured and the average

step time Tstep is updated (See (2) in Algorithm 1). When the current step i

reaches one of the periodic checkpointing step Isave, which is given by a user

who submits the job, the trained model states are dumped into a VM local

disk. Then, the checkpoint files in the local file system are uploaded to remote

cloud storage (e.g., S3, Azure Blob, Google Cloud Storage) to make them per-

sistent and accessible on any other VM. This backup routine is executed in the

background, so it does not block the training process. When the checkpointing

is done, the next insurance save step is scheduled to prepare in advance for the

preemption that may occur at any time (See (3) in Algorithm 1). The optimal

checkpointing time interval τopt is calculated by
√

2 · δ · (MTTP + R) as ex-

plained in Section 4.3. According to τopt, the next insurance save step number

iins is determined as i + τ
Tstep

, where i denotes the current step number (See

(1) in Algorithm 1). Note that if the periodic checkpointing is scheduled in a

shorter period of interval than iins, the insurance save does not occur.

When the preemption notice containing the preemption scheduling time

arrives, the remaining time to preemption Tgrace is determined. How early the

notice arrives in advance of the actual preemption scheduling varies to cloud

providers as described in Section 4.2. If there is enough time for emergency save,

which computes the ongoing training step and save-then-backup checkpoint

files, in the time range of Tgrace, Spotify can capture the latest training states

before the revocation and resume the training from the checkpoint without a
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waste of time to recompute the lost states (See (4) in Algorithm 1). Otherwise,

Spotify does insurance save at the iins-th step to minimize the rework time due

to the preemption (See (5) in Algorithm 1).
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Algorithm 1: Adaptive checkpointing policy
Data: δ, β, MTTP, R, I, Isave, Tgrace

function calcInsuranceSaveStep(δ, MTTP, R, Tstep, i):

τopt ←−
√

2 · δ · (MTTP + R)

iins ←− i + τopt

Tstep
# (1) Next insurance save step

return iins
end

foreach i ∈ I do

Tstep ←−
∑i

k=1 Tk

i # (2) Average step time

if i ∈ Isave then

# (3) Periodic save step

do SaveAndBackup

iins ←− calcInsuranceSaveStep(δ, MTTP, R, Tstep, i)

end

if Tstep + δ + β < Tgrace then

# (4) Enough time for emergency save

if preemption notice arrives then

do EmergencySave

end

else

# (5) Otherwise, do insurance save

if i = iins then

do InsuranceSave

iins ←− calcInsuranceSaveStep(δ, MTTP, R, Tstep, i)

end

end

end
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Chapter 5

System Design

5.1 System Architecture and Workflow

In this section, we describe details of Spotify including its system architecture

and overall workflow to enable preemption-tolerant training. Figure 5.1 depicts

the system architecture and workflow of Spotify. Users who want to train AI

models with Spotify submit jobs to Spotify Master. The job is defined in YAML

format, which includes configurations for model training source code, dataset,

input checkpoint, package dependencies, and VM specifications. When Spotify

Master receives a job, it tries to allocate VMs according to the job configuration.

The wall time latency for VM allocation is recorded to a database and the

collected data is used to calculate insurance save step numbers.

After a cloud VM is allocated, Remote Launcher launches the process for

model training and Preemption Manager on the remote cloud VM. The train-

ing process is executed in an environment described in the job configuration.

While training the model, the training process sends latency metrics to Pre-
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Figure 5.1 Spotify system architecture and workflow

emption Manager through named pipes between them. The metrics include

latency of initialization, data loading, checkpointing, and iteration computa-

tion. When Preemption Manager receives the metrics, it delivers the metrics

to Event Manager in Spotify Master. The metrics are used to determine when

to generate checkpoints based on adaptive checkpointing policy described in

Section 4.4. The next insurance save iteration number is calculated at Event

Manager according to the training info, allocation time and MTTP stored in
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the database, and Preemption Manager polls the calculated iteration number

from Event Manager. When the training process reaches the iteration that is

equal to the scheduled insurance save iteration, Preemption Manager sends a

insurance save request, which enforces immediate checkpointing, to the training

process. If the profiled metrics satisfy the availability condition of emergency

save, Tstep + δ + β < Tgrace, then the insurance save is not executed.

Preemption Manager continuously polls a preemption notice once per sec-

ond. When the preemption notice arrives, Preemption Manager first checks

whether emergency save is available before the scheduled preemption occurs.

If it is possible to save-then-backup checkpoint files during the grace period,

Preemption Manager sends an emergency save request, which orders immediate

checkpoint saving, to the training process through the connected named PIPE

channel. At the same time, Preemption Manager also sends a message that no-

tifies preemption scheduling to Event Manager. Then Event Manager tries to

reallocate a new replacement VM in advance of actual preemption scheduling,

and it updates the average VM lifespan, which corresponds to MTTP , to the

database. Note that the database manages MTTP per combination of VM type

and region.

All checkpoint files, which are generated from insurance save, emergency

save, and user-provided periodic save, are uploaded to cloud storage to make

them downloadable from the other machines. Preemption Manager uploads the

files to the closest cloud storage to the VM region to reduce upload latency.

When the checkpoint files are successfully committed to the cloud storage, the

files in the VM local disk are deleted to secure the free space on the disk. To save

the storage cost, the checkpoint files created by insurance save and emergency

save are deleted from the cloud storage when a new checkpoint is committed

to the cloud storage.
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Name Description

sp.enter step() Mark the start of training step.

sp.exit step() Mark the end of training step.

sp.step context() Context manager wrapping a training step loop.

sp.backup(path) Backup checkpoint to cloud storage in background.

sp.check save() Check insurance/emergency save request arrival.

Table 5.1 Spotify user APIs

Spotify Manager detects that the preemption actually occurs when Event

Manager does not send a heartbeat signal anymore. At this point, Remote

Launcher launches the process to the newly allocated VM again, and Preemp-

tion Manager restores the latest checkpoint from the cloud storage to continue

training from the most recent states. After restoring the latest checkpoint, the

model training is resumed, and the aforementioned workflow is repeated until

the end of the job.

5.2 API Design

This section describes Spotify user APIs to enjoy the benefits of preemption-

tolerant training. The APIs are designed under the principle to support an

arbitrary training job with minimum code changes.

Table 5.1 enumerates a list of Spotify user APIs and their functionalities, and

Listing 5.1 shows an example that applies the APIs to a simple training code.

The highlighted lines in the Listing are the only required changes to use Spotify.

First, there are APIs for marking the range of a training step; sp.enter step()

is called at the start of a training step, and sp.exit step() is called at the

end of the step. For ease of use, a context manager API, sp.step context(),

which wraps sp.enter step() and sp.exit step(), is also provided (line 5).
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When checkpoint files are saved, users can upload the files to cloud storage by

calling sp.backup() (line 13). To save and upload checkpoint files for either

emergency save or insurance save, users can use sp.check save() that returns

true when the save request arrives (line 11). By adding only 4 lines of code,

users can reliably train their AI models on preemptible VMs at a low cost.

1 import spotify as sp

2

3 for i, inputs in enumerate ( data_loader ):

4 ...

5 with sp. step_context ():

6 output = model( inputs )

7 optimizer . zero_grad ()

8 loss. backward ()

9 optimizer .step ()

10 ...

11 if i % save_interval == 0 or sp. check_save ():

12 save_checkpoint ()

13 sp. backup ( checkpoint_path )

Listing 5.1 Example training script using Spotify APIs
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Chapter 6

Evaluation

6.1 Environment

6.1.1 Cloud VM

For evaluation, we use Azure VM instances of Standard NC12s v3 type, which

is $6.2/hour for an on-demand and $2.3/hour for a spot. The VM instance is

equipped with two NVIDIA V100 GPUs with 16GB GPU memory, 12 vCPUs,

and 240GB CPU memory. To simplify experiments, We only evaluate the la-

tency and costs of single-node training jobs which use just one VM instance, and

the VMs are allocated in the East US region. Although we limit the evaluation

environment to a single Azure VM instance type, Spotify also supports other

VM types from various cloud providers, and multi-node distributed training is

available as well.

Spotify utilizes the pre-delivered preemption notice for emergency save.

Azure delivers 30 seconds ahead preemption notice to eviction target VMs, and

it is the shortest grace period length among the other popular cloud providers
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such as AWS and Google Cloud. The longer the grace period, the more loaded

jobs benefit from emergency save.

6.1.2 Job Specification

For all experiments, jobs submitted to Spotify pretrains a GPT [22] model with

1.2TB The Pile [23] dataset. To evaluate the efficiency of adaptive checkpointing

by workload size, we use GPT-117M with 117 million parameters as a light

workload and GPT-1.3B with 1.3 billion parameters as a heavy workload. We

don’t use many different models for experiments because the characteristics of

the ML model training job are not different by model type. In general, ML

model training starts with model initialization and data-loading, followed by

multiple training loops and intermediate checkpointing.

6.2 Evaluation Tools

To evaluate the efficiency of Spotify in terms of cost and latency, we develop

a preemption injector and offline job simulator. This section describes details

of the evaluation tools and evaluates the accuracy of the simulator to ensure

that the simulation results are trustworthy and close to real-world experiment

results.

6.2.1 Preemption Injector

Since we cannot control the occurrence of preemption, we build a preemp-

tion injector by using interruption simulating tools officially provided by cloud

providers [24, 25]. The injector gets (1) the name of the victim VM and (2) a

list of MTTP values as inputs and forces to interrupt the corresponding VM

according to the preemption intervals, which are sampled from an exponential
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Adaptive Static

Model MTTP
Processed

Steps (12h)

Simulated

Latency

Processed

Steps (12h)

Simulated

Latency

117M 1500 7310 12:00:51 (0:07:15) 6910 12:06:22 (0:06:30)

2700 8390 12:07:16 (0:04:22) 8090 12:10:58 (0:05:18)

5400 8910 12:05:11 (0:02:44) 8420 11:54:10 (0:04:56)

1.3B 1500 1070 12:06:08 (0:15:25) 1000 11:56:20 (0:13:41)

2400 1400 12:00:57 (0:11:43) 1380 11:54:44 (0:11:00)

4500 1860 12:12:39 (0:09:57) 1770 12:12:32 (0:09:10)

Table 6.1 Accuracy of Simulator. The values in parentheses of the simulated

latency column are standard deviations. The simulated latency close to 12:00:00

corresponds to the accurate estimation.

distribution whose probability density function is Eq. 6.1 and parameterized by

the given MTTP .

f(x; 1
MTTP

) = 1
MTTP

e− x
MT T P (6.1)

When the preemption is injected, the target VM is evicted after getting a

preemption notice like the real preemption.

6.2.2 Training Simulator

To efficiently evaluate Spotify and its checkpointing policy, we develop an offline

training simulation framework. The simulator takes (1) a list of MTTP values,

(2) total training iterations, (3) per-step computation latency, (4) checkpointing

latency, (5) backup latency, (6) VM allocation latency, (7) preparation latency,

(8) grace period, (9) VM type and (10) checkpointing policy as inputs, and

calculates the estimated job latency and cost. Note that all latency values are
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provided with a lower and upper bound, and the simulator samples the latency

from a uniform distribution over the half-open interval every time.

Before using the simulator to evaluate Spotify, we first need to verify the

estimates by the simulator are sufficiently accurate. Table 6.1 shows the pro-

cessed iterations for 12 hours when preemptions are injected by the MTTP

values and simulated latency to process the same iterations with the same

MTTP values. We submit multiple jobs training GPT-117M and GPT-1.3B to

Spotifyand inject preemptions using the simulator introduced in Section 6.2.1.

For both adaptive checkpointing and static period checkpointing, which saves

the checkpoint for a fixed interval, the simulator calculates the latency with

negligible errors.

6.3 Training Performance and Cost

In this section, we evaluate the efficiency of Spotify in two aspects: (1) how

much latency can be saved by adaptive checkpointing of Spotify, and (2) how

much cost can be saved by Spotify compared to the on-demand training and

the spot training without adaptive checkpointing All experiment results in this

section are reported with an average of 100 simulations.

6.3.1 Efficiency of Emergency Save

Figure 6.1 shows the additional latency overhead of training GPT-117M on a

spot VM relative to the on-demand training latency, where the red bar is a

recomputation latency, the green bar is a checkpointing latency, the blue bar is

a VM allocation latency, and purple bar is a preparation latency including the

time for checkpoint downloading, model initialization, and data-loading. We

evaluate the latency of adaptive checkpointing and static checkpointing with
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Figure 6.1 GPT-117M spot training latency overhead for 0.1M iterations. We

use 10800 (3 hours) for the MTTP value because the real preemption occurs 4

times per 12 hours on average according to the 20 real-world preemption traces.

the interval of 10, 51, and 100 steps. Note that 51 is the approximated optimal

checkpointing interval calculated by Eq. 4.5.

Checkpointing per 51 steps makes 5.34% additional latency and is located

at the sweet spot between frequent checkpointing (per-10 with 8.96% over-

head) and sparse checkpointing (per-100 with 6.04% overhead). According to

Table 6.2, which shows the latency breakdown for Figure 6.1, the inefficiency

of the frequent checkpointing per 10 steps comes from the excessive file write

overhead which occupies 5.08% of the entire running time. Although frequent

checkpointing can save time for recomputation, the file-write overhead exceeds

the advantage. In contrast, the sparse checkpointing per 100 steps makes a high

recomputation overhead, which cannot be redeemed by the short checkpointing
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Adaptive Per-10 Per-51 Per-100
On-demand

(Per-10000)

Comp.
5d, 7:46:48

(97.15%)

5d, 8:21:00

(92.13%)

5d, 9:30:24

(96.15%)

5d, 15:35:35

(96.67%)

5d, 7:46:41

(99.93%)

Recomp.
0:00:00

(0.00%)

0:34:11

(0.41%)

1:43:37

(1.28%)

3:17:31

(2.43%)

0:00:00

(0.00%)

Save
0:11:47

(0.15%)

7:04:57

(5.08%)

1:23:18

(1.03%)

0:42:29

(0.52%)

0:00:25

(0.01%)

Alloc.
1:38:22

(1.25%)

1:47:29

(1.29%)

1:45:07

(1.30%)

1:46:02

(1.30%)

0:02:07

(0.03%)

Prep.
1:54:30

(1.45%)

2:05:31

(1.50%)

2:02:45

(1.52%)

2:02:43

(1.51%)

0:02:40

(0.03%)

Total 5d, 11:31:28 5d, 19:18:59 5d, 14:41:34 5d, 15:35:35 5d, 7:51:54

Cost ($) 303.1 321.1 310.3 312.5 793.4

Table 6.2 GPT-117M Spot training result breakdown.

time.

For GPT-117M, since Spotify can save a checkpoint and upload it to cloud

storage in the 30-second grace period, emergency save is available. Therefore,

Spotify can reduce much more time by adaptive checkpointing than the optimal

static checkpointing per 51 steps. Table 6.2 shows that Spotify saves 62% of the

VM cost with only sacrificing 2.86% latency relative to the on-demand training

by leveraging the advantage of adaptive checkpointing. The total latency for VM

allocation and preparation is almost constant under all checkpointing policies.

6.3.2 Efficiency of Insurance Save

We evaluate the checkpointing policies for the heavier-loaded job which trains

GPT-1.3B for 10K steps. Unlike the GPT-117M training job, emergency save is
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Figure 6.2 GPT-117M spot training latency overhead for 0.1M iterations. The

MTTP value is 10800 (3 hours).

unavailable since the sum of computation time, checkpointing time, and backup

time is larger than the 30-second grace period. According to the adaptive check-

pointing, Spotify automatically configures the optimal checkpointing interval at

every checkpointing time based on the profiled job runtime information and

system-widely collected MTTP and VM allocation latency.

Figure 6.2 shows the additional latency overhead of training GPT-1.3B on

a spot VM relative to the on-demand training latency. Checkpointing per 33

steps is the optimal checkpointing interval calculated by hand, and it is at

the optimum sweet spot that minimizes the entire job latency with 12.44%

of overhead. Spotify systematically configures the optimum according to the

profiling information, and users do not need to struggle to find out the proper
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Adaptive Per-10 Per-33 Per-100
On-demand

(Per-10000)

Comp.
23d, 21:52:08

(93.07%)

23d, 9:25:01

(87.29%)

23d, 22:07:45

(93.07%)

25d, 15:00:42

(94.84%)

22d, 20:37:09

(99.88%)

Recomp.
1d, 1:14:57

(4.09%)

12:47:49

(1.99%)

1d, 1:31:20

(4.14%)

2d, 18:23:41

(10.24%)

0:00:00

(0.00%)

Save
16:22:29

(2.66%)

2d, 6:10:03

(8.42%)

16:24:42

(2.66%)

5:24:58

(0.84%)

0:32:30

(0.10%)

Alloc.
7:49:17

(1.27%)

8:12:37

(1.28%)

7:49:07

(1.27%)

8:19:56

(1.28%)

0:02:16

(0.01%)

Prep.
18:31:32

(3.00%)

19:23:12

(3.01%)

18:30:19

(3.00%)

19:41:20

(3.04%)

0:05:25

(0.02%)

Total 25d, 16:35:27 26d, 19:10:54 25d, 16:51:55 27d, 0:26:57 22d, 21:17:22

Cost ($) 1421.1 1482.4 1421.7 1494.5 3408.3

Table 6.3 GPT-1.3B Spot training result breakdown.

checkpointing interval. Moreover, Spotify can flexibly adjust the checkpointing

interval during the job runtime. Because the probability of preemption can

be changed during the job runtime according to the cloud VM availability,

without Spotify, users have to stop-and-restart the job with a newly configured

checkpointing interval when the preemption rate is drastically changed.

Table 6.3 shows the cost and latency breakdown of GPT-1.3B training jobs

with different checkpointing policies. The adaptive checkpointing and the per-

31-step checkpointing, which are optimum, enable the spot training for a 58%

cheaper price than the on-demand training with about 12% latency overhead.

Similar to the GPT-117M training job, per-10-step checkpointing and per-100-

step checkpointing increase the latency and cost due to the high checkpointing

and recomputation overhead respectively.
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6.4 Effect of Preemption Frequency

In this section, we evaluate how the preemption frequency affects the spot

training latency. Figure 6.3 shows the latency overhead of GPT-1.3B training

job for different preemption rates, where MTTP values are from 3,600 (1 hour)

to 43,200 (12 hours). When preemption occurs very frequently like 1 or 2 hours,

the latency overhead is not negligible due to the high recovery cost. However,

as the preemption rate gets lower, the overhead also decreases exponentially.

That is, when the preemption frequency is at a moderate level, Spotify enables

the spot training at a reasonable latency overhead while getting a huge price

discount.

Figure 6.3 GPT-1.3M spot training latency overhead for 0.1M iterations for

different MTTP values when the adaptive checkpointing is used.
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Chapter 7

Conclusion

By leveraging the runtime profiling information, Spotify enables reliable and

cost-efficient AI model training on preemptible cloud clusters. Our system adap-

tively schedules checkpointing intervals during the job runtime based on the

real-time profiling metrics. The evaluation conducted with our offline simula-

tion framework shows that the adaptive checkpointing policy can find out the

optimal checkpointing strategy for both small and large-size deep learning mod-

els, and it reduces the end-to-end training cost up to 62% with only 2.86% of

latency overhead.
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초록

인공지능 모델 학습을 위해 물리적으로 GPU 클러스터를 구축 및 관리하는 데에

는 많은 비용이 투자되어야 한다. 이에 따라 인공지능 모델 개발자들 사이에서는

사용한 만큼의 비용만을 지불하여 사용이 가능한 클라우드 클러스터를 사용하여

모델 학습을 하려는 수요가 점차 증가하고 있다. 특히 큰 폭의 할인된 가격으로

제공되는 선점가능형 가상머신을 사용하여 모델 학습을 하는 방식이 큰 주목을

받고 있다. 하지만 선점가능형 가상머신은 클라우드 제공사에 의해 언제든지 일

방적으로 선점을 당할 수 있기 때문에 진행 중이던 학습 상태의 손실이 야기될

수 있다. 비용과 안전성 면에서 교환이 발생하기 때문에 개발자들은 선점가능형

가상머신을 모델 학습 및 실험에 적극적으로 사용하는 데 어려움을 겪고 있다.

본 연구에서는 선점가능형 가상머신에서 인공지능 모델 학습을 진행하는 데 있어

존재하는 주요한 어려움들에 대해 논의하고, 자동화된 방식을 통해 그러한 어려

움을 해결함으로써 선점가능형 클라우드 클러스터에서 안정적인 학습을 가능하게

하는 인공지능 모델 학습 작업 관리 시스템인 Spotify를 제안한다. 우리의 실험

결과는 Spotify가 선점가능형 클라우드 클러스터에서 학습을 수행할 때 온디맨드

클라우드클러스터에서학습을진행하는것대비 2.86%의지연시간오버헤드만을

희생하여 최대 62%에 달하는 비용을 절약할 수 있음을 보인다.

주요어: 기계학습, 클라우드, 선점 핸들링

학번: 2020-27792
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