
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학박사학위논문

Data Management and Prefetching

Techniques for CUDA Unified Memory

CUDA Unified Memory를 위한 데이터 관리 및 프리페칭

기법

2022 년 8 월

서울대학교 대학원

컴퓨터 공학부

정 재 훈





공학박사학위논문

Data Management and Prefetching

Techniques for CUDA Unified Memory

CUDA Unified Memory를 위한 데이터 관리 및 프리페칭

기법

2022 년 8 월

서울대학교 대학원

컴퓨터 공학부

정 재 훈



Data Management and Prefetching Techniques for

CUDA Unified Memory

CUDA Unified Memory를 위한 데이터 관리 및

프리페칭 기법

지도교수 이 재 진

이 논문을 공학박사학위논문으로 제출함

2022 년 3 월

서울대학교 대학원

컴퓨터 공학부

정 재 훈

정재훈의 공학박사 학위논문을 인준함

2022 년 6 월

위 원 장 김 진 수 (인)

부위원장 이 재 진 (인)

위 원 문 수 묵 (인)

위 원 정 창 희 (인)

위 원 조 형 민 (인)



Abstract

Unified Memory (UM) is a component of CUDA programming model which

provides a memory pool that has a single address space and can be accessed

by both the host and the GPU. When UM is used, a CUDA program does

not need to explicitly move data between the host and the device. It also al-

lows GPU memory oversubscription by using CPU memory as a backing store.

UM significantly lessens the burden of a programmer and provides great pro-

grammability. However, using UM solely does not guarantee good performance.

To fully exploit UM and improve performance, the programmer needs to add

user hints to the source code to prefetch pages that are going to be accessed

during the CUDA kernel execution.

In this thesis, we propose three frameworks that exploits UM to improve the

ease-of-programming while maximizing the application performance. The first

framework is HUM, which hides host-to-device memory copy time of traditional

CUDA program without any code modification. It overlaps the host-to-device

memory copy with host computation or CUDA kernel computation by exploit-

ing Unified Memory and fault mechanisms. The evaluation result shows that

executing the applications under HUM is, on average, 1.21 times faster than ex-

ecuting them under original CUDA. The speedup is comparable to the average

speedup 1.22 of the hand-optimized implementations for Unified Memory.

The second framework is DeepUM which exploits UM to allow GPUmemory

oversubscription for deep neural networks. While UM allows memory oversub-

scription using a page fault mechanism, page fault handling introduces enor-

mous overhead. We use a correlation prefetching technique to solve the problem

i



and hide the overhead. The evaluation result shows that DeepUM achieves com-

parable performance to the other state-of-the-art approaches. At the same time,

our framework can run larger batch size that other methods fail to run.

The last framework is SnuRHAC that provides an illusion of a single GPU

for the multiple GPUs in a cluster. Under SnuRHAC, a CUDA program de-

signed to use a single GPU can utilize multiple GPUs in a cluster without

any source code modification. SnuRHAC automatically distributes workload to

multiple GPUs in a cluster and manages data across the nodes. To manage

data efficiently, SnuRHAC extends Unified Memory and exploits its page fault

mechanism. We also propose two prefetching techniques to fully exploit UM and

to maximize performance. The evaluation result shows that while SnuRHAC

significantly improves ease-of-programming, it shows scalable performance for

the cluster environment depending on the application characteristics.

Keywords: GPU, CUDA, Unified Memory, Prefetching, Memory Latency Hid-

ing, Large-scale DNN, Cluster

Student Number: 2014-21775

ii



Contents

Abstract i

1 Introduction 1

2 Related Work 7

3 CUDA Unified Memory 12

4 Framework for Maximizing the Performance of Traditional CUDA

Program 17

4.1 Overall Structure of HUM . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Overlapping H2Dmemcpy and Computation . . . . . . . . . . . . 19

4.3 Data Consistency and Correctness . . . . . . . . . . . . . . . . . 23

4.4 HUM Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 HUM H2Dmemcpy Mechanism . . . . . . . . . . . . . . . . . . . 26

4.6 Parallelizing Memory Copy Commands . . . . . . . . . . . . . . . 29

4.7 Scheduling Memory Copy Commands . . . . . . . . . . . . . . . 31

5 Framework for Running Large-scale DNNs on a Single GPU 33

5.1 Structure of DeepUM . . . . . . . . . . . . . . . . . . . . . . . . 33

iii



5.1.1 DeepUM Runtime . . . . . . . . . . . . . . . . . . . . . . 34

5.1.2 DeepUM Driver . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Correlation Prefetching for GPU Pages . . . . . . . . . . . . . . . 36

5.2.1 Pair-based Correlation Prefetching . . . . . . . . . . . . . 37

5.2.2 Correlation Prefetching in DeepUM . . . . . . . . . . . . 38

5.3 Optimizations for GPU Page Fault Handling . . . . . . . . . . . 42

5.3.1 Page Pre-eviction . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.2 Invalidating UM Blocks of Inactive PyTorch Blocks . . . 43

6 Framework for Virtualizing a Single Device Image for a GPU

Cluster 45

6.1 Overall Structure of SnuRHAC . . . . . . . . . . . . . . . . . . . 45

6.2 Workload Distribution . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Cluster Unified Memory . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Additional Optimizations . . . . . . . . . . . . . . . . . . . . . . 57

6.5 Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5.1 Static Prefetching . . . . . . . . . . . . . . . . . . . . . . 58

6.5.2 Dynamic Prefetching . . . . . . . . . . . . . . . . . . . . . 61

7 Evaluation 62

7.1 Framework for Maximizing the Performance of Traditional CUDA

Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Framework for Running Large-scale DNNs on a Single GPU . . . 70

7.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2.2 Comparison with Näıve UM and IBM LMS . . . . . . . . 72

7.2.3 Parameters of the UM Block Correlation Table . . . . . . 78

iv



7.2.4 Comparison with TensorFlow-based Approaches . . . . . 79

7.3 Framework for Virtualizing Single Device Image for a GPU Cluster 81

7.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 Discussions and Future Work 91

9 Conclusion 93

초록 111

v



List of Figures

3.1 CUDA unified memory. . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 The behavior of NVIDIA page fault handler. . . . . . . . . . . . 15

4.1 Components of HUM. . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Example 1 of overlapping H2Dmemcpy and computation. . . . . 20

4.3 Example 2 of overlapping H2Dmemcpy and computation. . . . . 22

4.4 A problematic scenario. . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Actions of the HUM interrupt handler. . . . . . . . . . . . . . . . 26

4.6 How the HUM H2Dmemcpy function works. . . . . . . . . . . . . 27

4.7 Vector addition CUDA program. . . . . . . . . . . . . . . . . . . 30

4.8 Executing the vector addition program in Figure 4.7. . . . . . . . 32

5.1 Overall structure of DeepUM. . . . . . . . . . . . . . . . . . . . . 34

5.2 Pair-based correlation prefetching. . . . . . . . . . . . . . . . . . 37

5.3 An execution ID correlation table. . . . . . . . . . . . . . . . . . 38

5.4 UM block correlation tables. . . . . . . . . . . . . . . . . . . . . . 39

5.5 Page eviction scenario. . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Overview of SnuRHAC architecture. . . . . . . . . . . . . . . . . 46

vi



6.2 Partitioning a two-dimensional grid for four GPUs. . . . . . . . . 48

6.3 Page-fault handling. . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Checking overlapping access ranges. . . . . . . . . . . . . . . . . 57

6.5 How static prefetching works. . . . . . . . . . . . . . . . . . . . . 60

7.1 Characteristics of applications. . . . . . . . . . . . . . . . . . . . 63

7.2 Speedup of each application with a single V100 GPU. . . . . . . 65

7.3 Average speedup obtained by varying the number of memory-

copy threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4 Speedup on multiple V100 GPUs. . . . . . . . . . . . . . . . . . . 69

7.5 The speedup of IBM LMS and DeepUM over a näıve UM imple-

mentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.6 Effect of prefetching and optimizations. . . . . . . . . . . . . . . 77

7.7 Performance when varying the parameters of UM block correla-

tion table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.8 Comparison with TensorFlow-based approaches. . . . . . . . . . 80

7.9 Speedup over a single GPU. . . . . . . . . . . . . . . . . . . . . . 85

7.10 Breakdown of kernel execution time and memory copy time on

a single GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.11 Varying the parameters of dynamic prefetching. . . . . . . . . . . 90

7.12 Speedup using multi-GPU applications. . . . . . . . . . . . . . . 90

vii



List of Tables

3.1 Representative CUDA commands used in this thesis. . . . . . . . 16

6.1 Structure of Block Descriptor. . . . . . . . . . . . . . . . . . . . . 51

7.1 System configuration. . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 System configuration for evaluation of DeepUM. . . . . . . . . . 71

7.3 DNN models and dataset used for evaluation. . . . . . . . . . . . 71

7.4 Maximum possible batch sizes. . . . . . . . . . . . . . . . . . . . 74

7.5 Correlation table size. . . . . . . . . . . . . . . . . . . . . . . . . 75

7.6 Average number of page faults per training iteration. . . . . . . . 76

7.7 Effect of parameters of the UM block correlation table. . . . . . . 78

7.8 Maximum possible batch sizes of TensorFlow-based approaches

and DeepUM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.9 System configuration for evaluation of SnuRHAC. . . . . . . . . . 82

7.10 Applications used for evaluation. . . . . . . . . . . . . . . . . . . 83

7.11 Single GPU Performance . . . . . . . . . . . . . . . . . . . . . . . 88

7.12 Configurations for sensitivity analysis . . . . . . . . . . . . . . . 89

viii



Chapter 1

Introduction

Over the past decade, heterogeneous computing has become a de-facto stan-

dard for high-performance computing. It incorporates different types of proces-

sors, such as CPUs, GPUs, FPGAs, and DSPs. Among many different types

of processors, GPU is one of the most popular processors to accelerate system

performance. According to the latest Top500[1] list, five out of the top ten sys-

tems use GPUs. Many programming models have been proposed for general-

purpose computing on GPUs (GPGPU): CUDA[2], oneAPI[3], OpenACC[4],

OpenCL[5], SYCL[6], etc. Among others, CUDA is one of the popular pro-

gramming models for GPUs.

CUDA provides Unified Memory (UM) which is a memory pool that has

a single address space and can be accessed by both the host and the GPU[7].

When UM is used, a CUDA program does not need to explicitly move data

between the host and the device. The UM system exploits the page fault engine

in the GPU[8], and it automatically migrates accessed pages between the host

and the GPU. UM significantly lessens the burden of a programmer to manage

1



data distribution across the host and the GPU. However, using UM solely does

not guarantee good performance. To fully exploit UM and improve performance,

the programmer needs to add user hints to the source code to prefetch pages

that are going to be accessed during the kernel execution.

By exploiting CUDA UM and fault mechanisms we try to solve several

problems in high-performance computing area.

First, one of the major challenges in high-performance computing is hiding

the memory transfer time between the host and the device as much as pos-

sible. By exploiting CUDA UM and fault mechanisms in both the CPU and

the GPU, overlapping data transfers and computation can be well controlled.

We propose a framework, called HUM (Hidden Unified Memory), as a solu-

tion of this problem. It automatically hides the host-to-device memory copy

(in short, H2Dmemcpy hereafter) time by overlapping it with host computa-

tion or kernel computation. Here, the host computation is the execution of the

host code that does not depend on H2Dmemcpy commands. It includes CPU

computation, host memory allocation/deallocation, file I/O, etc. Moreover, we

propose runtime techniques to maximize the overlapping of the H2Dmemcpy

command with kernel execution. HUM is the first work that automatically hides

the H2Dmemcpy time by overlapping it with host computation or kernel com-

putation without any explicit UM command and any modification of the source

code.

Second, the current trend in deep learning requires a tremendous amount

of GPU memory and computation power because deeper and wider layers gen-

erally provide better accuracy[9, 10, 11]. To meet these conditions, hundreds

to thousands of GPUs that have a large amount of GPU memory are used for

training. Since public users are hard to utilize these amount of expensive high-

end GPUs, most of the research and model training is led by big companies.

2



Fortunately, training a model from scratch in a large system (pre-train) and

then fine-tuning the model in a relatively small system based on the individ-

ual purpose provides good accuracy. Therefore, it is a common approach to

get a pre-trained model and fine-tune it individually in a small system. How-

ever, the problem is that the current state-of-the-art models are so big that

even fine-tuning the models is hard to be performed in a small system, es-

pecially in a single GPU system. Many studies have been performed to solve

memory capacity problem such as data compression[12, 13, 14, 15, 16], mixed-

precision[17, 18, 19], data recomputation[20, 21, 22], and memory swapping[15,

22, 23, 24, 25, 26, 27, 28, 29]. Among others, we focus on memory swapping to

overcome the memory capacity problem of deep neural networks (DNNs).

We propose a framework called DeepUM that exploits UM to allow over-

subscribing GPU memory and implements several techniques to minimize the

overhead caused by UM. While previous approaches tend to prefetch data in

tensor level or layer level, DeepUM prefetches data in UM block (2MB) level

with correlation prefetching. Since page fault addresses can be easily tracked

in the Linux kernel module, we use these addresses for correlation prefetching.

Correlation prefetching is synergetic with Unified Memory because the page

fault mechanism requests data in a page level. While the previous approaches

profile memory accesses in tensor level or layer level we can profile memory ac-

cesses in a more fine-grained manner. Moreover, the kernel execution patterns

and the memory access patterns within the kernels are fixed and repeated in

the training phase of a DNN. Thus, it is desirable to memorize the repeated

patterns and exploit the information through correlation prefetching. We in-

troduce the correlation prefetching specialized to DNN workload and a new

page-eviction policy coupled with correlation prefetching. DeepUM is the first

work that uses UM to target large-scale DNN workload.

3



Third, early GPU applications focused on fully exploiting the computing

power of a single GPU. As data size gets bigger and the complexity of appli-

cations increases, programmers start to use multiple GPUs. To use multiple

GPUs, programmers need to rewrite their GPU code for multiple GPUs. Some-

times, this requires much more effort than just rewriting. They need to fully

understand the characteristics of an application and how to use a program-

ming model to orchestrate multiple GPUs. The problem gets worse if they

use multiple GPUs spread out over multiple nodes of a heterogeneous cluster.

Communication libraries, such as MPI, are required to distribute workloads and

manage data across the nodes.

To overcome this problem, we propose a framework called SnuRHAC (Run-

time for Heterogeneous Accelerator Cluster) that provides an illusion of a sin-

gle GPU for the multiple GPUs spread out over multiple nodes of a cluster.

SnuRHAC provides wrapper functions of CUDA commands so that all CUDA

commands are handled by the SnuRHAC runtime system. When a program-

mer writes a CUDA program for a single GPU and runs it under SnuRHAC,

SnuRHAC can automatically distribute workloads to multiple GPUs in the

cluster and manages data across the nodes. No code modification is required.

This significantly lessens the burden of a programmer to rewrite their code

for multiple GPUs. One key componet of the SnuRHAC is Cluster Unified

Memory which is an extended version of a CUDA Unified Memory to work

across multiple nodes. In addition, SnuRHAC uses two page prefetching tech-

niques: static prefetching and dynamic prefetching. Static prefetching uses a

static memory access pattern analyzer to analyze the access range of memory

operations in CUDA kernels. To handle memory access patterns that cannot

be analyzed statically, SnuRHAC uses the dynamic prefetching technique. For

dynamic prefetching, SnuRHAC uses the adjacent page prefetching technique

4



and correlation prefetching technique. SnuRHAC is the first work that auto-

matically distributes and manages workloads across the multiple GPUs in a

cluster.

Major contributions of this thesis are as follows:

• We propose a framework called HUM, which exploits CUDA UM and fault

mechanisms of both the host and the GPU. It automatically hides the

H2Dmemcpy time by overlapping it with the host or kernel computation.

• We propose a framework called DeepUM, which exploits CUDA UM to al-

low GPU memory oversubscription for DNNs. It automatically prefetches

data using correlation prefetching specialized for DNNs. Correlation ta-

bles record the history of the kernel executions and the page access pat-

terns during the training phase of DNNs.

• In addition, DeepUM uses several optimization techniques to hide or elim-

inate the time consumed for handling GPU faults when memory is over-

subscribed.

• We propose a framework called SnuRHAC, which provides an illusion of

a single GPU for the multiple GPUs in a cluster. It distributes workloads

to multiple GPUs and manages data across the nodes. It also is fully

automatic and transparent to users.

• SnuRHAC uses static and dynamic prefetching techniques to exploit UM

fully and improve its performance. The static prefetching allows SnuRHAC

to prefetch data using information from a static memory access pattern

analyzer MAPA[30]. The dynamic prefetching complements the static

prefetching technique when MAPA cannot statically analyze memory ac-

cess patterns in CUDA kernels.

• We evaluate HUM using 51 CUDA benchmark applications from Parboil[31],

5



Rodinia[32], and CUDA Code Samples[33]. The evaluation result shows

that executing the applications under HUM is, on average, 1.21x faster

than executing them under original CUDA. The speedup is comparable

to the average speedup of 1.22 that is obtained by manually porting and

optimizing the applications with Unified Memory.

• We evaluate DeepUM using various large-scale DNNs in MLPerf[34], Py-

Torch examples[35], and Hugging Face[36]. The evaluation result shows

that DeepUM achieves comparable performance to the other memory

swapping approaches. Moreover, DeepUM can run larger batch size con-

figurations that other methods fail to run.

• We evaluate SnuRHAC using 18 CUDA benchmark applications from

CUDA Code Samples[33], Parboil[31], PolyBench[37], and Rodinia[32].

The evaluation result shows that SnuRHAC achieves scalable performance

for cluster environments while significantly reducing a programmer’s bur-

den.

6



Chapter 2

Related Work

Many techniques for overlapping host-to-GPU data transfers and GPU ker-

nel computation have been proposed[38, 39, 40, 41, 42, 43]. While they re-

quire a user to manually overlap the data transfers and the kernel computa-

tions, HUM automatically does it without any code modification. Overlapping

communication and CPU/GPU computation in a cluster has also been widely

studied[44, 45, 46, 47, 48]. White III and Dongarra[44] show the effect of over-

lapping CPU/GPU computation, inter-node communication, and CPU-GPU

communication. Danalis et al.[45], Fishgold et al.[46], and Danalis et al.[47]

introduce compiler techniques that transform MPI code to overlap inter-node

communication and CPU computation. Gysi et al.[48] propose a framework

that automatically overlaps inter-node communication and GPU computation.

Compared to previous approaches, HUM focuses on automatic overlapping of

data transfers and GPU computation in a node by exploiting Unified Memory.

There are two categories of studies that have been performed to overcome

the memory capacity problem through the memory swapping technique. The

7



first category is using pure GPU memory with swapping-in/swapping-out mem-

ory objects to CPU memory or NVMe device[15, 22, 23, 25, 26, 27, 28, 49].

vDNN[23] is the first paper that introduces the GPU memory swapping for

deep learning workloads. However, the DNN models should be designed using

vDNN API and it only supports convolutional neural network (CNN) models.

TFLMS[25] is an open-source project developed by IBM. It schedules swap-

in/swap-out commands by modifying computational graphs of TensorFlow. It

requires modifying the TensorFlow framework code and TensorFlow user script.

Both Superneurons[22] and FlashNeuron[15] take a DNN model as input

and derive an optimal tensor offloading schedule. While Superneurons offloads

memory to the CPU memory, FlashNeuron[15] utilizes NVMe SSD to offload

the memory.

AutoTM[27] and SwapAdvisor[28] also take a DNN model as input to sched-

ule the memory operations. However, AutoTM uses integer linear programming

not only to schedule data movement but also to reduce device memory fragmen-

tation. On the other hand, SwapAdvisor[28] uses a genetic algorithm to schedule

operators, memory allocations, and swap decisions. Capuchin[26] identifies the

tensor access patterns in runtime and schedules tensor eviction/prefetching and

recomputation.

Sentinel[29] is based on TensorFlow and dynamically gathers tensor access

information from both the TensorFlow runtime and the operating system. It

is similar to DeepUM because it exploits the page fault mechanism to profile

and obtain the memory access patterns. However, the Sentinel uses the CPU

page fault mechanism while DeepUM uses the GPU page fault mechanism of

the GPU. In the profiling phase of the Sentinel, tensors are allocated in pinned

memory of the CPU, and the GPU accesses it. Another difference between the

Sentinel and DeepUM is that the Sentinel requires modifying TensorFlow and

8



TensorFlow user scripts to insert Sentinel profiling API functions calls. The

evaluation result of Sentinel shows that it outperforms vDNN, SwapAdvisor,

AutoTM, and Capuchin in training throughput.

DeepSpeed[49] is a highly optimized deep learning framework that is widely

used for multiple GPU environments. It keeps track of the sequence of DNN

operations by hooking PyTorch APIs. Then, it provides memory offloading

to the main memory or NVMe SSD. However, DeepSpeed supports offloading

model parameters, gradients, and optimizer states only. Activation memory and

temporary buffers should be managed manually by the programmer.

The other category of the swapping approach exploits CUDA UM with

prefetching[24, 50]. OC-DNN[24] manually inserts prefetch commands in front

of each DNN operation. DRAGON[50] uses an NVMe SSD as a backing store

for UM. It targets general applications and uses a DNN workload as a showcase.

It also requires user code modification and device driver modification.

DeepUM differs from the previous approaches in that we exploit UM to al-

low oversubscribing GPU memory and use the correlation prefetching technique

to predict future memory accesses. We also propose various optimization tech-

niques to reduce the GPU page fault handling time. While DeepUM needs very

few code modifications in the PyTorch framework, it neither requires any user

python code modification nor modifications to OS kernel or NVIDIA device

driver.

Many studies have been performed to provide a framework that automati-

cally distributes workloads to multiple devices in a single node[51, 52, 53, 54,

55, 56, 57, 58, 59, 60, 61]. Most of these previous approaches perform static

analysis on kernels to determine memory access patterns. If memory access

patterns can be analyzed statically, they transfer only necessary data to each

device. Otherwise, they transfer entire data to devices. SnuRHAC is similar

9



to the previous approaches in that it prefetches data based on static informa-

tion. However, SnuRHAC does not prefetch the entire input data when memory

access patterns cannot be analyzed statically. Instead, it uses dynamic prefetch-

ing techniques so that useless memory traffic can be minimized. Also, previous

approaches require merging output data at the end of the kernel. However,

SnuRHAC does not need this stage because pages are automatically migrated

between devices when there are page sharing between devices.

Some studies focus on exploiting multiple devices in a cluster[62, 63, 64].

Both DS-CUDA[64] and rCUDA[63] enable access to remote GPUs by virtu-

alizing the GPUs to the users. Moreover, DS-CUDA provides a fault tolerance

mechanism. CUDASA[62] propose an extension to the CUDA programming

model to support GPU-cluster environments. Similar approaches have been

made to the OpenCL[5] programming model[65, 66, 67, 68, 69, 70, 71, 72].

SnuCL[69] is an OpenCL framework called SnuCL. It has a central node that

executes the OpenCL host program and other compute nodes that execute com-

mands from the host. DistCL[70] distributes OpenCL kernel workload across

multiple devices in a cluster. However, a programmer must provide information

to DistCL on how to partition the workload, resulting in source code modifica-

tion. dOpenCL[68] and clOpenCL[67] provide wrapper functions for OpenCL

host API functions for remote services.

Previous approaches in the above allow the programmer to utilize devices

in a cluster as if they were in a single node. As a result, a programmer does

not need to use an additional communication library to manage remote de-

vices or transfer data between nodes. However, it still requires a programmer

to distribute workloads and manage data between multiple devices. While it is

similar that these approaches and SnuRHAC target clusters, SnuRHAC pro-

vides a more abstract view to a programmer because the programmer does not

10



need to consider multiple devices available.

There exist some previous studies related to using CUDAUnified Memory[24,

50, 73, 74, 75, 76, 77, 78, 79]. Balhaf et al.[73], Awan et al.[24], and Gera et

al.[79] exploit UM to accelerate a specific application. Garg et al.[74] proposes

checkpointing for UM. Ganguly et al.[75] and Yu et al.[76] propose a new page

eviction policy for UM. Kim et al.[78] propose a technique for reducing GPU

page fault handling time of UM. DRAGON[50] and GAIA[77] exploit the page

fault mechanism of UM to allow NVM storage to be directly accessible from

the GPU. While it is common that these approaches and SnuRHAC use UM,

none of the previous approaches extend UM to work for a cluster environment.

11



Chapter 3

CUDA Unified Memory

CUDA Unified Memory (UM) is a key component in this thesis. Therefore,

before introducing the frameworks for UM, we introduce the details of UM in

this chapter.

UM provides ease-of-programming by enabling CUDA programs to access

the host memory and the GPU memory without the need to manually copy data

from one to the other. UM behaves like the programmer has a single address

space between the host and the GPU[80]. It allows a CUDA application to

allocate memory objects that can be read or written from both the host and

the GPU.

As shown in Figure 3.1(a), physical memory spaces are allocated to UM

in both the host side and the GPU side. Pages in the host side space are

pinned. UM page tables in the host side and the GPU side are managed by

the CUDA runtime. To allocate a UM object, the CUDA program invokes

cudaMallocManaged(), an allocation function that returns a pointer to the

memory object. The pointer is accessible from both the host and the GPU.

12



CPU side GPU side

PC
I-E

Page 
table

for UM

Page 1
Page 2

0x3900d0000
0x3900d1000

0x3900d0000
0x3900d1000

Physical memory for UM

GPU UM 
space

Page 
table

for UM

Physical memory for UM

Host UM 
space

UM space

(a) After the host has accessed page 1 and page 2.

CPU side GPU side

PC
I-E

Page 
table

for UM

Page 10x3900d0000
0x3900d1000

0x3900d0000
0x3900d1000

Physical memory for UM

GPU UM 
space

Page 
table

for UM

Physical memory for UM

Host UM 
space

UM space

Page 2

(b) After the GPU has accessed page 2.

Figure 3.1: CUDA unified memory.

13



However, the memory object may not be physically allocated when the call to

cudaMallocManaged() returns. In other words, the pages and page table entries

of the memory object may not be created until it is accessed by the GPU or

the CPU.

Pages in a UM object are automatically migrated between the host and the

GPU on demand. This automatic page migration exploits page faults. The host

reads and writes pages in the host memory and the GPU reads and writes pages

in the device memory. The CUDA runtime takes care of the page migration,

hence there is no need to call cudaMemcpy() or cudaMemcpyAsync() at all.

For example, suppose that a UM object has been allocated by cudaMallocManaged()

and that the host has accessed two pages of the object, page 1 (at virtual ad-

dress 0x3900d0000) and page 2 (at virtual address 0x3900d1000). Figure 3.1(a)

shows the current status of page tables and physical memory spaces of UM.

Now, suppose that the GPU accesses page 2 at virtual address 0x3900d1000.

Since page 2 is not residing in the GPU side, a page fault occurs and a page

fault interrupt signal is raised. The page fault is handled by the NVIDIA dis-

play driver. It catches the signal and migrates the faulted page, page 2, between

the host UM space and the GPU UM space as shown in Figure 3.1(b). Then, it

makes the GPU replay the access. To avoid excessive page faults, the NVIDIA

driver uses some heuristics for the page migration[80].

Figure 3.2 shows the diagram of page fault handling. When an NVIDIA GPU

raises a page fault interrupt signal, the NVIDIA driver catches the interrupt

signal and handles it. A fault buffer is a circular queue in the NVIDIA GPU.

It stores faulted access information. The GPU can generate multiple faults

concurrently, and there can be multiple fault entries for the same page in the

fault buffer[80]. A UM block is a group of maximum 512 contiguous pages and a

unit of management by the NVIDIA driver. The maximum size of a UM block is

14



4KB×512 = 2MB, and all pages in the same UM block are processed together

by the NVIDIA driver. Each UM block object contains the information of all

pages in the UM block, such as which processor has the pages and whether

the pages are mapped with read protection or write protection. If a UM block

contains a faulted page, we call the UM block the faulted UM block hereafter.

In Figure 3.2, the NVIDIA driver fetches the page addresses and access

types of the faulted accesses from the fault buffer in the GPU ( 1 ). Then, the

NVIDIA driver preprocesses the faults ( 2 ). It removes the duplicate addresses

and groups them according to their UM blocks. Next, the NVIDIA driver checks

the available GPU memory space for each faulted UM block ( 3 ). If no GPU

memory space is available for the faulted UM block, it evicts some pages from

Preprocesses the faults 
from the fault buffer 

The GPU raises an 
interrupt signal

Fetches the information
for the faults from the

fault buffer 

Makes the GPU replay 
the faulted accesses 

Populates faulted pages 


Transfers the pages to 
the GPU 

Evicts pages 

Maps the faulted pages 
to the GPU 

Enough GPU 
memory space ?



Handled all faulted 
UM blocks?



No Yes

Yes No

Figure 3.2: The behavior of NVIDIA page fault handler.

15



the GPU to the CPU ( 4 ). Then, it populates faulted pages in the GPU ( 5 )

(i.e., it allocates GPU memory space to the faulted pages), and it transfers the

pages to the GPU ( 6 ). When the transfer is done, the faulted pages of the UM

block are mapped to the GPU ( 7 ). This process repeats until all faulted UM

blocks are handled ( 8 ). Finally, the NVIDIA driver sends a replay signal to the

GPU, and the fault handler finishes ( 9 ).

In addition, representative CUDA commands[81] used in this thesis are sum-

marized in Table 3.1.

Table 3.1: Representative CUDA commands used in this thesis.

cudaError t cudaMalloc(void** devPtr, size t size) allocates size bytes on the de-

vice and then returns in *devPtr a pointer to the allocated memory. It is a synchronous

function.

cudaError t cudaMemcpy(void* dst, const void* src, size t count,

cudaMemcpyKind kind) copies count bytes from the memory area pointed to by

src to the memory area pointed to by dst, where kind specifies the direction of the

copy. We are interested in cudaMemcpyHostToDevice as the value of kind in this paper.

cudaError t cudaMemcpyAsync(void* dst, const void* src, size t count,

cudaMemcpyKind kind, ...) behaves the same as cudaMemcpy() except that it is

asynchronous with respect to the host.

cudaError t cudaMallocManaged(void** devPtr, size t size, ...) allocates size

bytes on the device and returns in *devPtr a pointer to the allocated memory that

is automatically managed by the UM system.

cudaError t cudaMemPrefetchAsync(const void* devPtr, size t count, int

dstDevice, ...) prefetches UM memory to the specified destination device. devPtr

is the base pointer of the UM memory space to be prefetched and dstDevice is the

destination device. count specifies the number of bytes to prefetch. It is asynchronous

with respect to the host.

16



Chapter 4

Framework for Maximizing the
Performance of Traditional CUDA
Program

In this chapter, we present the design and implementation of HUM. HUM

exploits the page fault mechanism of UM to automatically overlaps host-to-

device memory copy (H2Dmemcpy) and host computation or H2Dmemcpy and

kernel computation without any code modification.

4.1 Overall Structure of HUM

As shown in Figure 4.1, HUM consists of two components: HUM runtime and

HUM driver. The NVIDIA driver[82] is a part of the CUDA framework that

bridges the CUDA runtime and NVIDIA GPUs. It resides in the kernel address

space. Similar to the NVIDIA driver, the HUM driver resides in the kernel

address space. It intercepts signals going into the NVIDIA driver and takes

some actions. Then, it calls appropriate NVIDIA driver functions for the signals

17



CUDA Program

NVIDIA driver HUM driver

User space

Kernel space

CUDA runtime

HUM Runtime

Figure 4.1: Components of HUM.

if needed. The HUM runtime is a thin layer that schedules CUDA commands

and offloads command execution to the original CUDA runtime. It provides

wrapper functions of CUDA API functions and interacts with the HUM driver

and the CUDA runtime.

In CUDA, a stream is a sequence of commands that execute in issue-order

on the GPU[83]. Commands in different streams may execute out of order with

respect to one another or concurrently. When a CUDA program generates a

request to create a new stream, the HUM runtime creates a stream object that

is a wrapper of a new CUDA stream and provides it to the CUDA program.

The HUM stream object is managed by HUM, and a host thread in the HUM

runtime, called the command scheduler, periodically visits all existing streams in

a round-robin manner. The HUM runtime also has several worker threads. When

the command at the front of each stream is ready to execute, the command

scheduler takes it from the stream and dispatches it to a worker thread. The

worker thread executes the command (note that the command is actually the

wrapper function of a CUDA command) and enqueues the CUDA command to

the CUDA stream managed by the CUDA runtime. Finally, the CUDA runtime

executes the command.

Basically, a wrapper in the HUM runtime for a CUDA API function calls

18



the original CUDA API function. For example, when the host program calls

cudaGetDeviceCount(), which is a wrapper in the HUM runtime and returns

the number of available devices, the wrapper calls original CUDA cudaGetDeviceCount().

Exceptions are the cases when the host program calls cudaMalloc() or cudaMemcpy().

When the host program calls cudaMalloc(), the HUM runtime allocates a

memory space in the UM region by invoking CUDA cudaMallocManaged() to

exploit the page fault mechanism of UM. This is why our framework is called

HUM (Hidden Unified Memory). When the host program calls cudaMemcpy()

for host-to-device memory copy, the wrapper in the HUM runtime invokes a

custom memory copy function implemented in the HUM driver. Details are

discussed in Section 4.5.

4.2 Overlapping H2Dmemcpy and Computation

Synchronous H2Dmemcpy. Figure 4.2 shows some examples of the memory

copy commands. In Figure 4.2(a), the CUDA program allocates a host memory

space, say hA, pointed to by hostA using malloc() in line 2 and a device

memory space, say dA, pointed to by devA in line 3. It writes some data to

hA in line 4. Then, it copies the contents of hA to dA by invoking synchronous

cudaMemcpy() in line 5. After the memory copy has completed and some host

computation has been performed in line 6, a kernel MyKernel that accesses dA

is launched in line 7. Figure 4.2(b) shows the timeline of executing the code in

Figure 4.2(a) under CUDA.

When the same code is executed under HUM, cudaMemcpy() returns im-

mediately after initiating the memory copy even though the copy has not com-

pleted. This enables overlapping the memory copy in line 5 and the host com-

putation in line 6. It may further overlaps the memory copy in line 5 and the

19



1: ...

2: hostA = malloc(size);

3: cudaMalloc(&devA, size);

4: ... // write to hostA

5: cudaMemcpy(devA, hostA, size, cudaMemcpyHostToDevice);

6: ... // some CPU computation

7: MyKernel<<<...>>>(devA);

8: ...

(a) Overlapping H2Dmemcpy and CPU computation and overlapping

H2Dmemcpy and kernel computation.

MyKernel
in line 7

Time

cudaMemcpy() 
in line 5

CPU computation
in line 6

(b) Executing the code in (a) under CUDA.

MyKernel
in line 7

Time

cudaMemcpy() 
in line 5

CPU computation
in line 6

(c) Executing the code in (a) under HUM.

Figure 4.2: Example 1 of overlapping H2Dmemcpy and computation.

20



kernel execution in line 7. Figure 4.2(c) shows the timeline of executing the

code in Figure 4.2(a) under HUM. Compared to the timeline under CUDA in

Figure 4.2(b), cudaMemcpy() in line 5 is fully overlapped with the CPU com-

putation in line 6 and partially overlapped with the kernel computation in line

7. As a result, the total execution time is significantly reduced.

Even though the kernel starts its execution before the memory copy in line

5 completes, the kernel correctly executes under HUM. The reason is that a

page fault is raised at the device side when the kernel accesses a page that

has not been copied yet to the device side. The page fault is handled by the

HUM driver and it makes the kernel waits until the faulted page is copied to

the device side. Then the page access request from the kernel is replayed.

However, if the host computation in line 6 modifies hA, the memory copy in

line 5 and the host computation in line 6 may not be overlapped to guarantee

data consistency and correctness. In this case, the timeline of executing the code

in Figure 4.2(a) under HUM is the same as that under CUDA in Figure 4.2(b).

The HUM runtime detects such a case using a simple runtime technique. The

technique will be described later in Section 4.3.

Asynchronous H2Dmemcpy. In Figure 4.3(a), the CUDA program calls

asynchronous cudaMemcpyAsync() in line 5, hence the memory copy is per-

formed in the background. As a result, the host side computation in line 6 can

be overlapped with the memory copy in line 5. However, the kernel launched at

line 7 cannot be overlapped with the memory copy in line 5 because all tasks

placed in one stream are executed sequentially (the default behavior of CUDA).

Figure 4.3(b) shows the timeline of executing the code in Figure 4.3(c) under

CUDA.

When the same code is executed under HUM, even if the asynchronous mem-

21



1: ...

2: hostA = malloc(size);

3: cudaMalloc(&devA, size);

4: ... // write to hostA

5: cudaMemcpyAsync(devA, hostA, size, cudaMemcpyHostToDevice);

6: ... // some CPU computation

7: MyKernel<<<...>>>(devA);

8: ...

(a) Overlapping H2Dmemcpy and kernel computation.

MyKernel
in line 7

Time

cudaMemcpyAsync() 
in line 5

CPU computation
in line 6

(b) Executing the code in (d) under CUDA.

MyKernel
in line 7

Time

cudaMemcpyAsync() 
in line 5

CPU computation
in line 6

(c) Executing the code in (d) under HUM.

Figure 4.3: Example 2 of overlapping H2Dmemcpy and computation.

22



ory copy in line 5 has not finished yet, the GPU may start executing the kernel

in line 7. This enables overlapping the H2Dmemcpy and the kernel computation

for the same reason as the case of overlapping the synchronous H2Dmemcpy

and computation mentioned above. Figure 4.3(c) shows the timeline of execut-

ing the code in Figure 4.3(a) under HUM. As a result, we see that the total

execution time is significantly reduced.

Note that even though the HUM runtime overlaps the H2Dmemcpy and the

host or kernel computation, it preserves the CUDA semantics of synchronization

commands, such as cudaDeviceSynchronize(). cudaDeviceSynchronize() in

the HUM runtime is also a wrapper function and invokes the original CUDA

command.

01: ...

02: host_A = malloc(size);

03: cudaMalloc(&dev_A, size);

04: ... // write to host_A

05: cudaMemcpy(dev_A, host_A, size, cudaMemcpyHostToDevice);

06: ...

07: ... // write to host_A or free host_A

08: ...

09: MyKernel<<<...>>>(dev_A);

10: ...

Figure 4.4: A problematic scenario.

4.3 Data Consistency and Correctness

Consider the CUDA program in Figure 4.4. After performing cudaMemcpy() to

copy the contents of the memory object, say hA, pointed to by host A to the

device memory object, say dA, pointed to by dev A in line 5, the program mod-

23



ifies the contents of hA or frees hA in line 7. Under the CUDA semantics, this

program has no problem at all. However, it may cause a problem under HUM.

The data transfer caused by cudaMemcpy() to the device may still continue

when the contents of hA is modified in line 7. Thus, the device may receive

some pages that contain the modified contents. As a result, the kernel may

access inconsistent and incorrect data.

To solve this problem, the HUM runtime exploits the access protection of

pages using a POSIX function mprotect()[84] that changes the access pro-

tection of the memory pages of the calling process. When the H2Dmemcpy

caused by cudaMemcpy() or cudaMemcpyAsync() is initiated, the HUM runtime

changes the protection of pages in the source host memory object to read-only.

For example, the protection of the pages in the object pointed to by host A in

Figure 4.4 is changed to read-only when the H2Dmemcpy of cudaMemcpy() is

initiated.

After copying all pages in the source host memory object finishes, the HUM

runtime tries to restore the protection. To do this, the HUM runtime first looks

up all scheduled host-to-device memory copy commands and checks if there

are commands that have an overlapping range of source addresses. If not, the

HUM runtime restores the protection. Otherwise, the HUM runtime restores

the protection of non-overlapping source memory regions only. The protection

of overlapping source memory regions will be restored later when the following

scheduled memory copy command finishes.

When the CUDA program in Figure 4.4 modifies a page in hA in line 7 in

a manner (e.g., write) that violates the protection, the linux kernel generates a

SIGSEGV signal. The signal handler installed by the HUM runtime handles the

signal. When it receives the signal, it waits until all H2Dmemcpy commands

for the page complete and the protection is restored. This method allows the

24



HUM runtime to execute H2Dmemcpy commands in an asynchronous manner

without any data consistency violation or any segmentation fault.

4.4 HUM Driver

Intercepting interrupts. To overlap H2Dmemcpy and kernel execution, HUM

makes the GPU pend when the page accessed by the GPU has not been trans-

ferred to the GPU yet. In this case, a GPU page fault occurs in HUM. The HUM

driver handles the page fault. The HUM driver hooks the interrupt handler of

the NVIDIA display driver and intercepts the page fault signal. In Linux for

the x86 architecture, the interrupt descriptor table (IDT) contains all informa-

tion about interrupts, such as interrupt number, interrupt name, address of the

interrupt handler, interrupt flags, etc. When the HUM driver is installed, HUM

looks up the existing IDT entries and finds the entry for the NVIDIA inter-

rupt handler. HUM replaces the entry with the information of its own interrupt

handler.

Handling page faults. Figure 4.5 shows the actions occurring when the HUM

interrupt handler handles a page fault in the GPU side. When the HUM in-

terrupt handler receives an interrupt signal, it checks the fault buffer in the

GPU if there is a pending GPU page fault. The fault buffer is a circular queue

implemented in the GPU by NVIDIA. It stores page faults information from

the GPU. If there is no pending fault in the fault buffer, the HUM interrupt

handler invokes the original NVIDIA interrupt handler because the interrupt

is not a page fault and there is nothing to do for the HUM interrupt handler.

Otherwise, it checks whether faulted pages are allocated through cudaMalloc()

call or cudaMallocManaged() call in the host program.

For pages that are allocated through cudaMalloc() call, the HUM driver

25



Call the NVIDIA 
interrupt handler

An interrupt signal raised 
from the GPU

No

Check the fault buffer 
in the GPU

Make the GPU replay the 
faulted accesses

Yes

Are the faulted 
pages in the GPU 

side?

Are there 
pending faults?

Yes

No

Are the faulted pages 
allocated through 

cudaMalloc()?

Call the NVIDIA fault 
handling routine

Yes

No

Figure 4.5: Actions of the HUM interrupt handler.

handles the fault. The HUM interrupt handler waits until all the faulted pages

arrive and are mapped to the GPU. Then, the HUM driver sends a replay signal

to the GPU so that the GPU replays the faulted memory accesses. For pages

that are allocated through cudaMallocManaged() call, the HUM driver calls the

fault handling routine in the CUDA display driver. Thus, the programmer can

use both cudaMalloc() and cudaMallocManaged() in their host program with-

out causing any problem. However, HUM does not optimize the memory trans-

fers for the memory regions that are allocated through cudaMallocManaged()

calls in the host program.

4.5 HUM H2Dmemcpy Mechanism

When the GPU accesses a page that has not been copied from the host side to

the GPU side, the HUM runtime makes the GPU waits until the page arrives.

As a result, a kernel can be executed even the transfer of the data to be accessed

26



PCI-E

GPU side

CPU side

…SM SM SM

Host memory 
space allocated 
by malloc

GPU UM space 
(page table + 
physical memory)
Host UM space 
(page table + 
physical memory)

UM
space

Figure 4.6: How the HUM H2Dmemcpy function works.

by the kernel is still ongoing. However, to implement the H2Dmemcpy in HUM,

we may not use cudaMemcpy() and cudaMemcpyAsync() because they cause a

serious interrupt handling problem.

Problems of CUDA memory copy commands. For example, suppose that

the HUM runtime uses cudaMemcpy() to copy data from the host to the device

and that the GPU is trying to read a page that has not been yet copied to the

GPU side. Then, a read page fault is raised and the HUM driver catches it. The

HUM driver waits until the page comes to the GPU side. Calling cudaMemcpy()

triggers write page fault when the page arrives at the GPU because the page

has not been mapped to the GPU yet. The HUM driver catches the write page

fault and maps a blank page to the GPU UM space. Then, it sends a replay

signal to the GPU. This makes the GPU reads stale data in the blank page. In

turn, the page arrived updates the GPU UM space. Since interrupts caused by

memory requests are processed sequentially one by one in the GPU, the kernel

reads the stale data in the blank page first, and the page update by the memory

copy follows this read. To get the correct result, the memory copy should have

completed before the kernel reads the stale page. However, changing the order

of interrupt processing is not supported by the current NVIDIA driver.

27



HUM H2Dmemcpy functions. To solve this problem, the HUM driver has

its own H2Dmemcpy function. Figure 4.6 shows how the HUM H2Dmemcpy

function works. A CUDA program first writes data to the host memory space

that is generally allocated through malloc() ( 1 ). Suppose that the program

uses cudaMemcpy() or cudaMemcpyAsync() to perform the H2Dmemcpy. As

mentioned before, the HUM runtime implements wrappers of cudaMemcpy()

and cudaMemcpyAsync(). In the wrappers, the HUM runtime calls the HUM

driver rather than calling the original CUDA cudaMemcpy() or cudaMemcpyAsync().

The HUM driver first copies the data from the host memory space to the

host UM space ( 2 in Figure 4.6). This makes pages and page table entries of

the memory object to be created on the host side, effectively increasing the

required memory space on the host side as much as the size of the host UM

space. Then, it invokes the page migration function provided by the NVIDIA

driver to migrate the pages in the host UM space to the GPU UM space ( 3 ).

To use the migration function, source pages of the migration must reside in

the host UM space. The page migration function is synchronous and migrates

maximum 512 pages at a time, i.e., maximum 2 MB at a time. When the

migration completes, the pages are mapped to the GPU, and the GPU can

access the pages without any page fault ( 4 ).

When there is a H2Dmemcpy request of size M MB (M > 2), the HUM

driver divides the request into multiple requests of size 2 MB. We take the max-

imum size because frequent memory-copy requests cause heavy copy initiation

overhead.

28



4.6 Parallelizing Memory Copy Commands

Consider a vector addition CUDA program in Figure 4.7. It adds two vectors

A and B, and the result is stored in vector C. Figure 4.7 shows timelines

of executing the program. Since the memory copy command and the kernel

execution command are issued in the same stream to guarantee correctness, they

are sequentially executed as shown in Figure 4.7(a) under CUDA semantics.

The timeline of executing the vector addition program under the HUM

design discussed so far is shown in Figure 4.7(b). HUM may execute the kernel

as early as possible when the memory copy for vector B has initiated. As a

result, the time when the kernel completes under HUM maybe much earlier

than that under normal CUDA. Since the page migration function provided

by NVIDIA driver used in the HUM H2Dmemcpy function is synchronous, the

memory copy for vector B has to be initiated after the memory copy for vector

A has completed.

Using the HUM H2Dmemcpy function, the time spent on memory copying is

much larger than using cudaMemcpy() or cudaMemcpyAsync(). This is because

HUM copies the data twice: from the host memory space to the host UM space,

and then to the GPU UM space.

To reduce the copy time from the host memory to the host UM space ( 2

in Figure 4.6), HUM exploits multiple host threads for the memory copy. The

multiple threads simultaneously copy different parts of the source host memory

to the host UM space. HUM divides the source host memory object into multiple

2MB chunks and each thread takes care of copying a 2MB memory chunk to

the host UM space at a time. While this approach reduces the copy time from

the host memory to the host UM space, it may result in interference with other

CPU threads depending on the application.

29



01: ...

02: host_A = malloc(size);

03: host_B = malloc(size);

04: host_C = malloc(size);

05: ... // write to host_A and host_B

06: cudaMalloc(&dev_A, size);

07: cudaMalloc(&dev_B, size);

08: cudaMalloc(&dev_C, size);

09: ...

10: cudaMemcpyAsync(dev_A, host_A, size,

11: cudaMemcpyHostToDevice);

12: cudaMemcpyAsync(dev_B, host_B, size,

13: cudaMemcpyHostToDevice);

14: ...

15: vec_add<<<...>>>(dev_A, dev_B, dev_C);

16: ...

Figure 4.7: Vector addition CUDA program.

30



4.7 Scheduling Memory Copy Commands

When more than one CUDA H2Dmemcpy commands are issued consecutively

from a CUDA program, the HUM runtime copies their divided 2MB chunks

from the host UM space to the device UM space in a round-robin manner. In

the HUM runtime, there is a pool of page migration queues (PMQs) to queue

the page migration requests of 2MB chunks. Moreover, there exists a different

PMQ for each CUDA H2Dmemcpy command issued.

For a H2Dmemcpy command from the CUDA program, after dividing the

source host memory object into 2MB chunks and copying them to the host UM

space with multiple threads, the page migration request of each chunk from the

host UM space to the GPU UM space is inserted in the associated PMQ. A

host thread called the page migration thread (PMT) is taking care of visiting

non-empty PMQs in the pool in a round-robin manner. The PMT processes the

page migration request at the head of each PMQ by calling the page migration

function provided by the NVIDIA driver.

In this case, there must not exist any dependence between destination lo-

cations of the consecutively issued CUDA H2Dmemcpy commands. Since the

HUM runtime has all information about the CUDA H2Dmemcpy commands

issued from a CUDA program, it performs a simple and conservative address

range overlapping check between the destinations of memory copy commands.

Note that at run time, the real addresses are known. When CUDA H2Dmemcpy

is enqueued to the HUM runtime, the runtime checks if there is an in-flight mem-

ory copy command that has an overlapping range of destination addresses with

the enqueued command. If there is no overlapping, the HUM runtime schedules

the memory copy command normally. Otherwise, it pends scheduling the mem-

ory copy command until the in-flight memory copy command finishes. However,

31



such dependences are hardly found in real applications (none in our benchmark

applications).

Kernel
Time

Memcpy A Memcpy B
(a)

Kernel

Memcpy A Memcpy B

Time
(b)

Kernel
Time

(c)

Figure 4.8: Executing the vector addition program in Figure 4.7.

By doing so, we can schedule the kernel launch as early as possible. As

a result, the kernel may access required pages sooner and its execution may

finish earlier. This case is illustrated in Figure 4.8(c). The kernel execution can

be initiated after the execution of the H2Dmemcpy command of the vector B

has been initiated. In general, with regards to H2Dmemcpy commands, the

execution of a kernel command K under HUM can be initiated as early as

possible at the time point that satisfies all of the following conditions:

• The last command precedingK in the same stream is a CUDAH2Dmemcpy

command, say C, on which K’s arguments depend.

• The execution of C has been initiated.

• All target pages of C in the device UM space have been unmapped once

to the GPU after the initiation of executing C.

32



Chapter 5

Framework for Running
Large-scale DNNs on a Single
GPU

In this chapter, we present the design and implementation of DeepUM. DeepUM

allows GPU memory oversubscription for deep neural networks by exploiting

Unified Memory and using CPU memory as a backing store.

5.1 Structure of DeepUM

Figure 5.1 shows the overall structure of DeepUM. It consists of the DeepUM

runtime and the DeepUM driver. The driver is a Linux kernel module. DeepUM

targets PyTorch, one of the most popular deep learning frameworks, and Py-

Torch runs on top of the DeepUM runtime.

33



PyTorch

NVIDIA 
Driver

DeepUM
Driver

User space
CUDA 

Runtime

DeepUM Runtime

OS
kernel space

CUDA Runtime

Streams

cudaLaunchKernel(…)
cuDNN APIs
cuBLAS APIs

DeepUM Runtime

Wrapper
functions

Fetch fault buffer

Lookup correlation 
tables

Page
fault

fault queue

prefetch queue

Migrate to 
GPUFault handling thread

Migration thread

Prefetching thread

Update correlation 
tablesCorrelator thread

Execution 
ID Table

CUDA callback functions

CUDA kernel launch commands

Figure 5.1: Overall structure of DeepUM.

5.1.1 DeepUM Runtime

The DeepUM runtime provides wrapper functions for CUDA memory allocation

API functions to switch all GPU memory allocation requests to UM space

allocation requests. It easily accomplishes GPU memory oversubscription by

allocating all GPU memory objects in the UM space. Moreover, the DeepUM

runtime provides wrapper functions for CUDA kernel launch commands and

other CUDA library functions, such as those in cuDNN and cuBLAS. Note

that CUDA library functions also launch CUDA kernels.

The DeepUM runtime manages a table called the execution ID table. The ta-

ble holds kernel launch history and contains the hash value of each kernel’s name

and arguments. When a new kernel launch command comes to the DeepUM run-

time, it computes the hash value of the kernel name and arguments. Then, it

looks up the execution ID table to find the command of the same hash value.

If it finds a matching command, it gives the same execution ID to the kernel.

34



Otherwise, it assigns a new execution ID to the kernel and saves the information

in the table. Finally, the DeepUM runtime enqueues a CUDA callback function

to the CUDA runtime just before enqueueing the kernel launch command. The

callback function passes the execution ID of the following kernel launch com-

mand to the DeepUM driver through the Linux ioctl command. The DeepUM

driver uses the passed execution ID for correlation prefetching.

5.1.2 DeepUM Driver

The DeepUM driver handles GPU page faults and prefetches pages to the GPUs.

We observe that the kernel execution patterns and the memory access patterns

within the kernels are fixed and repeated in the training phase of a DNN.

Thus, memorizing the repeated patterns and exploiting the information for

prefetching is desirable. Correlation tables managed by the DeepUM driver

record the history of the kernel executions and their page accesses during the

training phase of a DNN. The DeepUM driver prefetches pages based on the

information in the correlation tables by predicting which kernel will execute

next. In Section 5.2.2, we will describe the correlation prefetching mechanism

used by the DeepUM driver.

There are four kernel threads in the DeepUM driver: fault handling thread,

correlator thread, prefetching thread, and migration thread. The fault handling

thread handles GPU page faults using the functions implemented in the NVIDIA

driver, such as accessing the fault buffer and sending replay signals to the GPU.

The NVIDIA GPU has a hardware fault buffer that is a circular queue. It

accumulates the information for faulted accesses. The DeepUM driver inter-

cepts page fault interrupt signals to the NVIDIA driver, and the fault handling

thread reads the fault buffer. The fault handling thread passes the information

of faulted accesses to the other three threads.

35



The fault queue is a single-producer/single-consumer queue that stores the

UM block addresses of the faulted pages. It holds the highest priority items to

be handled in the driver to make the GPU replay the faulted accesses as soon

as possible.

The correlator thread manages correlation tables. It updates the correlation

tables based on the fault information from the fault handling thread. We will

discuss the structure of the correlation tables and how the correlator thread

updates them in Section 5.2.2.

The prefetching thread looks up the correlation tables and calculates the UM

block addresses for prefetching with the faulted block address. Then, it enqueues

the prefetch commands to the prefetch queue, a single-producer/single-consumer

queue. A prefetch command consists of a UM block address to prefetch and the

execution ID for which the corresponding UM block is predicted to be used.

Finally, the migration thread migrates the UM blocks between the CPU and

the GPU. The fault queue has a higher priority than the prefetch queue. It first

handles commands from the fault queue managed by the fault handling thread.

When the fault queue is empty, it handles commands from the prefetch queue

managed by the prefetching thread.

5.2 Correlation Prefetching for GPU Pages

Correlation prefetching[85, 86, 87, 88, 89] was originally developed for cache-

line prefetching. DeepUM modifies the original correlation prefetching to adapt

it to prefetching pages for DNN workloads. There are two methods in the

original correlation prefetching: stride-based and pair-based. The stride-based

correlation prefetching[87] finds stride patterns in the sequence of missed ad-

dresses, while the pair-based correlation prefetching[85, 86, 88, 89] finds a corre-

36



a b c

b c

c

NumLevels=2

NumSuccs=2

Last

SecondLast

Miss Sequence

a,b,c,a,…

current
miss address

a b c

b c a

c a

NumLevels=2

NumSuccs=2

Last

SecondLast

a,b,c,a,…

current
miss address

All addresses that are correlated to 
the miss address are prefetched

Correlation Table Miss Sequence Correlation Table

(a)

a b c

b c

c

NumLevels=2

NumSuccs=2

Last

SecondLast

Miss Sequence

a,b,c,a,…

current
miss address

a b c

b c a

c a

NumLevels=2

NumSuccs=2

Last

SecondLast

a,b,c,a,…

current
miss address

All addresses that are correlated to 
the miss address are prefetched

Correlation Table Miss Sequence Correlation Table

(b)

Figure 5.2: Pair-based correlation prefetching.

lation between missed addresses. DeepUM is based on the pair-based correlation

prefetching technique.

5.2.1 Pair-based Correlation Prefetching

The pair-based correlation prefetching records past sequences of missed ad-

dresses in a correlation table. When a cache miss occurs, it looks up the corre-

lation table and prefetches all the addresses correlated with the missed address.

Figure 5.2 shows an example of pair-based correlation prefetching for cache

lines. In Figure 5.2(a), we suppose that cache misses have occurred for addresses

a and b. Following them, accessing address c causes a cache miss. A different

missed address has a different row in the table. Each row of the correlation table

has N -way associativity (Assoc) to reduce address conflict between UM blocks

that map to the same row. In Figure 5.2, we assume associativity is one for

easy understanding. For each set, there are NumLevels levels of successor miss

addresses. In each level, NumSucc entries are MRU ordered from left to right.

Last (points to c) and SecondLast (points to b) are pointers to the entries for

the last and second last misses, respectively. The entry for a has b in the first

37



level because the miss for b occurred right after a. It also has c in the second

level because the miss for c indirectly follows the miss for a after the miss for

b.

In Figure 5.2(b), we suppose that the cache miss for a occurrs again after

the miss for c. The entries for b, c, and the Last and SecondLast pointers are

updated. At this point, since there exist successor entries recorded for a, all the

entries in the row of a (b and c) are prefetched from the memory in addition

to accessing a in the memory.

5.2.2 Correlation Prefetching in DeepUM

Correlation prefetching in the DeepUM aims to reduce page faults by prefetch-

ing pages expected to be accessed by CUDA kernels. Unlike the original cor-

relation prefetching, DeepUM uses two types of correlation tables: execution

ID and UM block. Both types of tables have a single level (NumLevels = 1)

because the prefetching thread does chaining. Moreover, there is no reason to

maintain multiple levels because of the characteristics of the DNN workloads.

Note that DeepUM’s correlation prefetching works at the UM block level rather

than cache-line or page level.

Execution
ID Record 0 Record 1 Record 2 …

0

1

2

…

(7, 9, 92, 75)

(89, 53, 24, 10) (34, 52, 22, 99) (4, 3, 939, 2)

(3, 53, 4, 8) (33, 588, 34, 1)

Figure 5.3: An execution ID correlation table.

38



Block Successor
Block 0

Successor 
Block 1

a b p

b e q

c d

…

Correlation table for execution ID 0

Block Successor
Block 0

Successor 
Block 1

f e u

g t i

k g n

…

Correlation table for execution ID 1

…

Start: a
End: q

Start: k
End: u

Figure 5.4: UM block correlation tables.

Execution ID correlation table. The execution ID correlation table (the

execution table in short) records the execution history of the execution IDs of

CUDA kernels, and only a single table exists. Execution IDs come from the

DeepUM runtime. Figure 5.3 shows an example of an execution table. Each

entry of the execution table holds sets of correlated execution IDs. Each set

consists of four execution IDs. The first three IDs represent the previously

executed kernels right before the last kernel (currently executing kernel when

updating the table). Thus, the last ID represents the next kernel to execute

when prefetching occurs. For example, the entry for the execution ID 0 has a

record of (7, 9, 92, 75 ). This record in the entry for the execution ID 0 implies

that the kernels with execution IDs 7, 9, and 92 have been executed, and the

kernel with execution ID 0 is currently executing. It predicts the execution ID

of the kernel to be executed next as 75.

39



The number of records each entry contains is variable, i.e., the number of

the successor kernels of a kernel is variable. Thus, each entry can hold all history

of successor kernels’ execution IDs. DeepUM chooses this scheme to predict the

next kernel to be executed as accurately as possible. Even though the incorrect

result of predicting the next UM block to be accessed is not that costly, the

inaccurate result of predicting the next kernel to be executed is expensive.

UM block correlation table. The NVIDIA driver manages the pages in

the CUDA UM space by grouping them into multiple UM blocks. A maximum

of 512 contiguous pages are grouped into a UM block. Rather than recording

the history of faulted page addresses, a UM block correlation table (a block

table in short) records the history at the UM block level. There are two reasons

for choosing this granularity. One is that there are too many page addresses to

manage for large-scale DNNs. The other is that making DeepUM has the same

page management granularity as the NVIDIA driver is more efficient. Note that

the NVIDIA driver manages the pages in the granularity of a UM block.

Figure 5.4 shows an example of block tables. A block table exists for each ex-

ecution ID and records a history of UM block accesses within the corresponding

CUDA kernel. It is similar to the table used in the original correlation prefetch-

ing. However, a block table contains the address of the end UM block that

points to the last UM block prefetched, and the start UM block that points

to the first faulted UM block in the corresponding kernel execution. These two

pointers are used to implement chaining. Both the start UM block and end

UM block are captured during the transition of the currently executing kernel.

End UM block is the UM block where the page resides that lastly faulted right

before execution ID transition. Start UM block is the UM block where the first

faulted page resides that occurred right after the execution ID transition.

40



Prefetching mechanisms and chaining. When a page fault occurs, the

DeepUM driver prefetches all pages in the UM blocks correlated to the faulted

UM block by looking up the UM block correlation table of the currently exe-

cuting kernel.

When the prefetching thread in DeepUM meets the UM block that is the

same as the end block in the UM block correlation table, it ends prefetching

for the kernel and predicts the kernel that will execute next by looking up

the execution ID table. Then, it starts prefetching for the predicted kernel,

beginning with the start UM block in the UM block correlation table of the

predicted kernel.

Consider the block tables in Figure 5.4, suppose that DeepUM is prefetching

the UM block b for the kernel with execution ID 0. Also suppose that the kernel

with execution ID 1 will be executed right after the kernel with execution ID

0. The successor UM blocks for b are e and q. Since block q is the same as the

end UM block for execution ID 0, the prefetching thread stops prefetching for

the kernel with execution ID 0. Then it starts prefetching block k (the start

UM block of the block table for execution ID 1 ).

This process is called chaining. It is the process of continuously calculating

UM block addresses for prefetching after a page fault has occurred. The chain-

ing ends when a new page fault interrupt signal is raised, or the prefetching

thread fails to predict the next kernel to execute. The chaining pauses when

the prefetching thread has enqueued all prefetch commands for the next N

kernels. The prefetching thread resumes after the currently executing kernel

finishes.

41



5.3 Optimizations for GPU Page Fault Handling

In this section, we describe the optimization techniques for GPU page fault

handling.

5.3.1 Page Pre-eviction

Page eviction occurs when the driver fails to allocate GPU memory space for

migrating faulted pages. Figure 5.5 shows a scenario when page eviction occurs.

Page eviction occurs when there is no GPU memory space available for the

faulted pages to handle the faulted pages. Page eviction takes significant time,

implying that the page eviction logic lies on the critical path of page fault

handling. Thus, fault handling time increases when no more space is available

on the GPU.

Page faults for 
pages A and B

Time
Evict

page X
Evict

page Y
Handle 
Page A

Handle 
Page B

Replay
the GPU

Evict
page Z

Prefetch 
Page C

Figure 5.5: Page eviction scenario.

To minimize the fault handling time, the DeepUM driver pre-evicts pages

when no free GPU memory space is left. A similar idea is proposed by Kim et

al.[78]. The major difference is that DeepUM uses a different policy to select

victim pages. The policy used by Kim et al.[78] is the same as the policy imple-

mented in the NVIDIA driver. It evicts pages that are least recently migrated

to the GPU. The DeepUM driver evicts pages that satisfy the following two

conditions:

• Least recently migrated.

42



• Not expected to be accessed by the currently executing kernel and the

next N kernels predicted to execute.

Since the NVIDIA driver tracks the free spaces on the GPU side, the DeepUM

obtains the available space information from the NVIDIA driver. It obtains the

next executing kernel information from the execution ID correlation table.

5.3.2 Invalidating UM Blocks of Inactive PyTorch Blocks

PyTorch has different memory allocators for CPUs and GPUs. PyTorch’s GPU

memory allocator manages device memory pools to minimize memory alloca-

tion/free time and to reduce memory fragmentation. Two types of memory

pools are managed by the GPU memory allocator: large and small.

A memory object in PyTorch is called a block. In this thesis, we call it the

PT block to distinguish it from a UM block. The large pool consists of PT blocks

larger than 1MB, and the small pool consists of PT blocks less than or equal

to 1MB. When a memory allocation request comes in, and the requested size is

larger than 1MB, the memory allocator finds a PT block from the large pool.

Otherwise, it finds a PT block from the small pool. When multiple PT blocks in

the pool match the requested size, the allocator returns the smallest available

PT block. In addition, the PT block is split when its size is much larger than

the requested size. The selected PT block is removed from the memory pool and

marked active. However, when no PT block is available in the memory pool,

the GPU memory allocator allocates a new PT block by requesting a device

memory space to the CUDA runtime.

After the PT block has been used by the DNN model and returned to the

GPU memory allocator, the allocator inserts the PT block into an appropriate

memory pool and marks it inactive. Inactive PT blocks, i.e., PT blocks in the

memory pools, are freed to produce a new memory space only when no available

43



memory space is left in the pool.

The problem arises when we use the PyTorch memory allocator with UM.

When inactive PT blocks on the GPU memory are evicted to the CPU memory,

unnecessary heavy data traffic occurs. In addition, they occupy CPU memory

space. The problem worsens when the inactive PT blocks are marked as ac-

tive and used by DNN models again. Since the pages in the PT blocks have

been evicted to the CPU memory, they should be migrated to the GPU again,

resulting in heavy data traffic.

To solve this problem, we add a few lines of code to the PyTorch memory

allocator to tell the DeepUM driver when a PT block is marked inactive. If

a victim page belongs to an inactive PT block, the DeepUM driver simply

invalidates the corresponding UM block in the GPU memory.

44



Chapter 6

Framework for Virtualizing a
Single Device Image for a GPU
Cluster

In this chapter, we describe the design and implementation of SnuRHAC.

6.1 Overall Structure of SnuRHAC

Figure 6.1 shows the overview of SnuRHAC architecture. SnuRHAC targets a

cluster where each node is equipped with multiple NVIDIA GPUs. Also, each

node is connected with a network that supports remote direct memory access

(RDMA)[90]. The operating system kernel has the NVIDIA device driver[82]

and the SnuRHAC driver. The NVIDIA driver allows CUDA runtime to control

GPUs. It also handles various interrupt signals from GPUs, including page-

fault interrupt signals. The SnuRHAC driver extends CUDA UM to the cluster

by hooking the NVIDIA driver’s page fault handler. The SnuRHAC driver is

installed in every node and communicates with each other through RDMA. In

45



Node 0
(Host Node)

SnuRHAC Runtime …

NVIDIA Driver

CUDA Runtime

NVIDIA 
GPU

NVIDIA 
GPU

…

SnuRHAC Driver

NIC

Node 1

SnuRHAC Runtime

NVIDIA Driver

CUDA Runtime

NVIDIA 
GPU

NVIDIA 
GPU

…

SnuRHAC Driver

NIC

Node 2

SnuRHAC Runtime

NVIDIA Driver

CUDA Runtime

NVIDIA 
GPU

NVIDIA 
GPU

…

SnuRHAC Driver

NIC

Node N

SnuRHAC Runtime

NVIDIA Driver

CUDA Runtime

NVIDIA 
GPU

NVIDIA 
GPU

…

SnuRHAC Driver

NIC

Cluster Unified Memory

Figure 6.1: Overview of SnuRHAC architecture.

the user space, the CUDA runtime and the SnuRHAC runtime run. In node

0, the host node, a CUDA program runs on top of the SnuRHAC runtime.

SnuRHAC runtime provides wrapper functions of CUDA API functions, and

the CUDA program calls these wrapper functions.

To run a CUDA program using SnuRHAC, the user needs two steps. First,

install the SnuRHAC driver in each node of the cluster. Second, run the CUDA

program through mpirun command with LD PRELOAD environment variable set.

The mpirun command runs the SnuRHAC runtime in each node. Every MPI

library provides this command. Setting LD PRELOAD environment variable loads

the SnuRHAC runtime library before loading the CUDA runtime library. This

makes all CUDA API function calls from the user CUDA program directed

to the SnuRHAC runtime, not the CUDA runtime. As a result, no user code

modification is required, and very minimum effort is required to run the CUDA

program using SnuRHAC.

When a user runs a CUDA program under SnuRHAC, the SnuRHAC run-

46



time shows a single virtual GPU to the program. The program calls wrapper

functions provided by the SnuRHAC runtime. When the program calls a wrap-

per function in the host node, the SnuRHAC runtime in the host node sends

appropriate commands to the other nodes. The SnuRHAC runtime in the other

nodes receives the commands and handles them. Notable wrapper functions

are the function that allocates device memory(e.g., cudaMalloc()), the func-

tion that copies to/from device memory(e.g., cudaMemcpy()) and the function

that launches CUDA kernels(e.g., <<<...>>>()).

cudaMalloc(). When the host program calls cudaMalloc() to allocate a device

memory space, the SnuRHAC runtime in every node allocates a UM space by

calling cudaMallocManaged(). With SnuRHAC driver, multiple GPUs in the

cluster see the same address space and share data through UM. Details are

discussed in Section 6.3.

cudaMemcpy(). When the host program calls cudaMemcpy(), the SnuRHAC

runtime copies data to/from the host UM space at the host node. To copy

data, the SnuRHAC runtime exploits a maximum of eight host threads. The

multiple host threads simultaneously copy different parts of the source host

memory to the host UM space. When the program requests to copy data from

the device memory to the host memory, the SnuRHAC runtime in the host

node copies data from the host UM space to the host memory space. Pages

that do not reside on the host UM space will be automatically migrated by the

page fault mechanism. On the other hand, when the program requests to copy

data from the host memory to the device memory, the SnuRHAC runtime in

the host node copies data from the host memory space to the host UM space.

When each GPU in the cluster executes the CUDA kernel and if a page accessed

is not resident on the GPU, the SnuRHAC UM system automatically migrates

47



faulted pages from the host UM space to the UM space of the faulted GPU.

The details are discussed in Section 6.3.

Kernel launches. Finally, when the host program request to launch a CUDA

kernel, the SnuRHAC runtime in the host node partitions the workloads and

sends kernel launch commands to all nodes. It also issues prefetch commands

before each kernel executes. The details are discussed in Section 6.2 and Sec-

tion 6.5.

6.2 Workload Distribution

Partitioning the workload. The SnuRHAC runtime automatically partitions

the workload and distributes it to multiple GPUs in a cluster. In other words,

it partitions the CUDA grid specified in the execution configuration of the

kernel launch command and obtains multiple chunks of thread blocks. Then, it

distributes the chunks to multiple GPUs. There are many ways to partition the

grid in the unit of a thread block. Figure 6.2 shows many ways of partitioning

a two-dimensional grid for four GPUs.x

y

(a) (b) (c) (d)

x

y

(a) (b) (c) (d)

x

y

(a) (b) (c) (d)

x

y

(a) (b) (c) (d)(a) (b) (c) (d)

Figure 6.2: Partitioning a two-dimensional grid for four GPUs.

Each CUDA thread has its unique thread ID. The GPU groups consecutive

32 threads in a block based on their thread IDs and execute the threads in

48



this group simultaneously. This group of threads is called a warp. To maximize

DRAM bandwidth utilization, the GPU coalesces global memory loads and

stores issued by the threads in a warp into as few transactions as possible.

Most of the CUDA program is designed to coalesce global memory access in

the x-dimension of the thread block because of the thread ID calculation rule

in CUDA. Moreover, adjacent blocks have a high possibility to access the same

page. Thus, it is desirable to have contiguous thread blocks in x-dimension in

a partitioned chunk of blocks.

Based on the above observation, SnuRHAC has the following grid partition-

ing algorithm:

1. If the number of blocks in z-dimension is greater than or equal to the

number of GPUs in the cluster, partition the grid in z-dimension.

2. Otherwise, if the number of blocks in y-dimension is greater than or equal

to the number of GPUs in the cluster, partition the grid in y-dimension.

3. Otherwise, partition the grid in x-dimension.

When the grid of a kernel does not have enough blocks in a certain dimen-

sion, SnuRHAC looks for other dimensions with lower priority. Here, ”enough

blocks” means that the number of blocks is greater than or equal to the number

of GPUs in the cluster. Also, we assume that the computing power of GPUs is

all the same. Thus, it is best to distribute the workload on the GPUs equally.

Distributing the workload to the GPUs with different computing powers is be-

yond the scope of this paper.

In Figure 6.2, the SnuRHAC runtime will choose (a) as a final partition for

the two-dimensional grid. Since the grid is two-dimensional, the first step of the

partitioning algorithm does not apply. Since there are enough blocks in the y-

dimension of Figure 6.2(a), the SnuRHAC runtime will partition the grid in the

49



y dimension in the second step of the partitioning algorithm. The SnuRHAC

runtime will partition the grid in Figure 6.2(b) in the x dimension even though

there are enough blocks in the y dimension. The partitions in Figure 6.2(c)

and Figure 6.2(d) cannot happen by following the partitioning algorithm. The

SnuRHAC runtime partitions the grid in only one dimension.

Kernels for the distributed workload. SnuRHAC generates a kernel to

make each GPU execute the partitioned grid, not the original grid. To create

the kernel, it modifies the original kernel at the PTX level. PTX is a low-

level intermediate code of CUDA kernels. It is compiled to the machine code

at run time and runs on NVIDIA GPUs. Unless the programmer specifies not

to embed the PTX code, the NVIDIA CUDA compiler always embeds the

PTX code to the output CUDA executable. SnuRHAC extracts the PTX code

from the CUDA executable and modifies the kernels to receive additional kernel

arguments from the SnuRHAC runtime. The kernel filters out the thread blocks

that will be executed on other GPUs.

6.3 Cluster Unified Memory

SnuRHAC provides an additional Linux kernel module called the SnuRHAC

driver to support UM for a cluster. It keeps track of the location and status of

all pages in the UM space. Also, it transfers the pages across the nodes through

RDMA if necessary.

Managing pages across the nodes. The NVIDIA driver manages the pages

in the CUDA UM space by grouping them into multiple UM blocks. Maximum

512 contiguous pages are grouped into a UM block. The maximum size of a UM

block is 2MB because the page size is 4KB. Each UM block object contains all

50



Table 6.1: Structure of Block Descriptor.

Type Entry Description

uint512 t[NUM NODES] read masks Read protection status of pages

uint512 t[NUM NODES] write masks Write protection status of pages

uint32 t flags

Bit 0: Lock flag

Bit 1: read-only flag

Bit 2-31: Reserved

struct list head lock waitlist List of nodes waiting for lock

information of pages in the UM block, such as which processor has the pages

and whether the pages are mapped with read protection or write protection.

To record the location and status of UM pages across the nodes, the SnuRHAC

driver manages an additional data structure called block descriptor for each

UM block. A block descriptor manages the pages’ location and protection status

across the nodes for the corresponding UM block. Table 6.1 shows the structure

of the block descriptor.

The first entry of the block descriptor is an array of 512-bit bitmaps. The

size of the array is equal to the number of nodes in the cluster. The Mth bit of

the Nth element of the array represents whether the Mth page in the UM block

is mapped to processors in the Nth node with read protection. The second entry

is the same as the first entry except that it represents write protection status.

When any processor in the Nth node of the cluster has the Mth page with write

protection, the Mth bit of the Nth element of the array is set. The third entry

of the block descriptor represents the flag status of the UM block object. The

first bit is set when a node is modifying the block descriptor. The second bit

is set when the SnuRHAC runtime sets a read-only flag for the corresponding

UM block. The last entry is used to list the ID of nodes waiting to modify the

51



block descriptor.

Distributed block descriptors. The SnuRHAC runtime allocates a UM space

in every node when the CUDA program requests device memory allocation.

It passes the information of the allocated UM space to the SnuRHAC driver.

Then, SnuRHAC driver creates a block descriptor for each UM block in the UM

space. To minimize interconnection network contention, the SnuRHAC driver

distributes block descriptors across the nodes in the cluster. It distributes every

32 block descriptors in a round-robin manner to each node. For example, node

0 manages block descriptors for UM blocks 0 to 31. Node 1 manages block

descriptors for UM blocks 32 to 63, and so on.

Handling page faults. The SnuRHAC driver’s page fault handler hooks the

NVIDIA driver’s page fault handler. That is, the SnuRHAC’s handler handles

the page fault interrupt signal. However, it calls some functions implemented

in the NVIDIA driver’s page fault handler, such as functions for fault buffer

accesses and sending replay signals to the GPU. The NVIDIA GPU has a

hardware fault buffer that is a circular queue. It accumulates the information

for faulted accesses. Suppose that a GPU page fault has occurred in a node P .

The page fault handler in the SnuRHAC driver of P services the fault in the

following manner (please, see Figure 6.3):

1. The SnuRHAC page fault handler fetches the page addresses and ac-

cess type of the faulted accesses from the fault buffer in the GPU. (Fig-

ure 6.3(a))

2. The handler sorts faulted accesses by page addresses and groups them by

UM blocks.

3. For each faulted UM block UMB, The handler finds the node that owns

52



Node 0
(BD Owner Node)

GPU 1

SnuRHAC Driver

GPU 0

Node 1
(Faulted Node)

GPU 1

SnuRHAC Driver

GPU 0

Node 2

GPU 1

SnuRHAC Driver

GPU 0

(1), (2), (3)

fault

(4) Requests lock

(5) Responses to lock request

(a) Steps (1) to (5) of GPU page-fault

handling.

Node 0
(BD Owner Node)

GPU 1

SnuRHAC Driver

GPU 0

Node 1
(Faulted Node)

GPU 1

SnuRHAC Driver

GPU 0

Node 2

GPU 1

SnuRHAC Driver

GPU 0

(7) Updates block 
descriptor

(6) Sends fault list

(7) Sends page owner node ID

(b) Steps (6) to (7) of GPU fault handling.

Node 0
(BD Owner Node)

GPU 1

SnuRHAC Driver

GPU 0

Node 1
(Faulted Node)

GPU 1

SnuRHAC Driver

GPU 0

Node 2
(Page Owner Node)

GPU 1

SnuRHAC Driver

GPU 0

(8) Requests pages

(9-2) Sends pinned address

(9-1) Copies pages to main 
memory and pin them

(c) Steps (8) to (9) of GPU page-fault

handling.

Node 0
(BD Owner Node)

GPU 1

SnuRHAC Driver

GPU 0

Node 1
(Faulted Node)

GPU 1

SnuRHAC Driver

GPU 0

Node 2
(Page Owner Node)

GPU 1

SnuRHAC Driver

GPU 0

(10-1) RDMA read(11) Requests unlock

(10-2) Copies pages and 
map to faulted processor

(d) Steps (10) to (11) of GPU page-fault

handling.

Figure 6.3: Page-fault handling.
53



the corresponding block descriptor. We call this node BD owner node.

4. It sends a lock request message for UMB to the BD owner node and waits

for the response.

5. The BD owner node sends a response to P if no other node has locked

UMB. This checking is done by looking at the lock flag of the block de-

scriptor of UMB. If another node has already locked the block descriptor,

the BD owner node adds P to the waitlist in the block descriptor.

6. If P receives the response from the BD owner node, P sends the list

of faulted accesses obtained from step 1 to the BD owner node. (Fig-

ure 6.3(b))

7. When the BD owner node receives the faulted access list, it looks up the

list and finds the nodes where the faulted pages are resident. We call these

nodes page owner nodes. Then, it sends the IDs of the discovered nodes

to P . Simultaneously, the BD owner node updates the read masks and

write masks of the block descriptor based on the information from the

faulted access list.

8. P receives the list of nodes that have faulted pages. It requests pages to

the page owner nodes. (Figure 6.3(c))

9. The page owner nodes receive the page requests from P . They copy the

faulted pages to their main memory. After copying, they pin the memory

space and send the pinned pages to P . They update the page mappings

if necessary.

10. P reads the faulted pages through RDMA and copies the pages to the

UM space of the faulted GPU and maps the pages to the faulted GPU.

(Figure 6.3(d))

54



11. When P finishes copying and mapping all the faulted pages, it sends an

unlock request of UMB to the BD owner node.

12. The SnuRHAC driver in P sends a replay signal to the faulted GPU so

that the GPU can replay the faulted page accesses.

A similar fault handling process is followed for the CPU page fault. When

a page fault occurs in the CPU, it raises a page fault interrupt signal and the

SnuRHAC page fault handler services the fault.

SnuRHAC pipelines the page fault handling mechanism so that multiple

faulted UM blocks can be serviced simultaneously. It increases the throughput

of page fault handling.

Managing page mappings. Page mapping determines which page is mapped

to which processors with read or write protection. The SnuRHAC driver in each

node maintains this information. For intra-node page mapping, the SnuRHAC

driver follows the page mapping rule of the NVIDIA driver. For inter-node

page mapping, the SnuRHAC driver allows multiple nodes to have the same

page simultaneously with read protection. However, only one node can have

the page with write protection. When a read page fault occurs from a processor

(e.g., a CPU or GPU) in the Nth node for the Mth page in a UM block:

• The SnuRHAC driver sets the Mth bit of the Nth element in the read masks

of the block descriptor.

• The SnuRHAC driver maps the faulted page to the faulted processor with

read protection.

Even though there exists a processor to which the faulted page is mapped

with write protection, mapping the faulted page to the faulted processor with

read protection does not cause any data consistency problem during the kernel

55



execution. According to the CUDA documentation, updates to global memory

by a thread block does not need to be visible to other thread blocks in the

same kernel grid during the kernel execution[91]. Since different GPUs always

execute different thread blocks for the same kernel, it is safe. The SnuRHAC

driver synchronizes the page mappings after the kernel execution has finished

in all GPUs in the cluster to ensure data consistency.

When a write page fault occurs from a processor in the Nth node for the

Mth page in a UM block:

• The SnuRHAC driver sets the Mth bit of the Nth element in the read masks

and the write masks of the block descriptor.

• The SnuRHAC driver clears the Mth bit of all the other elements in the

write masks.

• The SnuRHAC driver degrades the write protection of the faulted page to

read protection in the processor to which the faulted page was previously

mapped.

• The SnuRHAC driver maps the faulted page to the faulted processor with

write protection.

When a write page fault occurs, the SnuRHAC driver does not unmap the

faulted page to the processor to which the faulted page was previously mapped

with write protection or read protection. Instead, it just degrades the write

protection to read protection. This implies that a processor may have an out-

dated page. However, similar to the read page fault, it does not cause any data

consistency problem during the kernel execution.

Synchronization across the nodes. When all GPUs in the cluster finish a

kernel execution, the SnuRHAC driver performs synchronization for the kernel

56



Address space of memory object A

Access range 
of GPU0

Access range 
of GPU1

Overlapping ranges

Access range 
of GPU2

Figure 6.4: Checking overlapping access ranges.

to maintain data consistency. At this point, a page may be mapped to many

processors (e.g., CPUs or GPUs) in the cluster. However, only one GPU can

have the page with write protection, and the others have it with read protection

if there is any. If a page is mapped to any processor with write protection, the

SnuRHAC driver unmaps the page from the processors who have the page with

read protection. Also, it clears the bit of the page in the read masks in the block

descriptor. Thus, the processors who have the page with read protection will

fetch the most up-to-data page later when it executes a kernel that accesses the

page.

6.4 Additional Optimizations

Handling read-only pages. Basically, a page cannot be mapped to multiple

processors (e.g., GPUs) at the same time. However, SnuRHAC allows some

pages in the UM space to be mapped to multiple processors. When a CUDA

program launches a kernel, if all memory operations for a memory object are

read-only, SnuRHAC sets the read-only flag for the UM blocks that belong

to the memory object. Then the pages in the UM blocks can be mapped to

multiple processors. It significantly reduces frequent page faults due to page

sharing.

Avoiding multiple GPUs. Some applications are not suitable for multiple

57



GPUs. An example is that uses atomic operations. The SnuRHAC runtime

inspects kernel code if there is an atomic operation. If so, it executes the kernel

using only a single GPU. Another example is an application that has many

pages shared between GPUs. When a read-only flag is set for the memory

object, it does not cause any performance degradation because its pages do not

move once they are copied to the target GPUs. However, the problem occurs

when write sharing occurs. When writes to the shared pages are frequent, it

introduces significant performance degradation because write-shared pages are

migrated frequently. To avoid this, SnuRHAC runtime calculates the access

range of write operations from each GPU. Then, it calculates the amount of

overlapping in the access ranges. If the ratio of the overlapping amount to

the total amount of access ranges exceeds a predefined threshold, SnuRHAC

executes the CUDA kernel using only a single GPU. Figure 6.4 shows how to

check the overlapping access ranges.

6.5 Prefetching

Since processing page faults is costly and it is desirable to reduce page faults

as much as possible. As a solution to this problem, SnuRHAC exploits page

prefetching techniques. In this section, we describe the two prefetching tech-

niques used in SnuRHAC: static and dynamic.

6.5.1 Static Prefetching

MAPA. To prefetch pages to GPUs when a kernel executes, SnuRHAC needs

to know the kernel’s memory access patterns. SnuRHAC’s static prefetching

technique is based on MAPA[30]. MAPA is a static memory access pattern an-

alyzer for OpenCL. SnuRHAC extends it to CUDA kernels. MAPA relies on

58



both a source-level compiler analysis technique derived from traditional sym-

bolic analyses and run-time information (e.g., kernel arguments). It extracts

memory access patterns of a kernel in symbolic expressions and classifies the

access patterns into ten categories: constant, affine, indirect, complex, etc. Each

variable in the symbolic expressions represents a determined value at run time,

either before or during the kernel execution.

For example, for memory access patterns that fall in the affine category,

MAPA provides affine function f(x1, x2, ..., xk) = a1x1+a2x2+...+akxk+c that

represents memory access locations within a memory object, where ai ̸= 0 and

0 ≤ xi < Ni for all 1 ≤ i ≤ k. Ni indicates the constant upper bound of variable

xi. For example, if xi indicates the thread index variable in x-dimension, Ni

becomes the size of a thread block in x-dimension. If xi indicates the induction

variable i in for(i=0;i<1000;i++), then Ni becomes 1000.

SnuRHAC exploits memory access patterns that fall in the affine and con-

stant categories from MAPA. If possible, MAPA outputs every memory access

expressions in the affine function of block index variables (blockIdx.x, blockIdx.y, blockIdx.z),

thread index variables (threadIdx.x, threadIdx.y, threadIdx.z) and induction

variables (if the memory operations is contained in a loop).

Figure 6.5 shows how SnuRHAC’s static prefetching works. When a CUDA

program launches a kernel ((1) in Figure 6.5), the SnuRHAC runtime in the

host node loads memory access patterns from MAPA ((2) in Figure 6.5). Then,

it partitions the workload and distributes the workload with the access patterns

((3) in Figure 6.5). The SnuRHAC runtime in each node calculates each thread

block’s memory access ranges using the symbolic access patterns and run-time

information.

The most simple way to calculate the memory access range is calculating

the lower bound and upper bound of addresses accessed by each thread in the

59



Node 0

SnuRHAC Driver

Node 1

SnuRHAC Driver

Node 2

SnuRHAC Driver

(3)

SnuRHAC Runtime

CUDA Runtime

CUDA Program

SnuRHAC Runtime

CUDA Runtime

SnuRHAC Runtime

CUDA Runtime

MAPA

Kernel code

(1)

(2)

𝐴𝐴0𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.𝑦𝑦 + 𝐴𝐴1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 𝑥𝑥 + ⋯
𝐵𝐵0𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.𝑦𝑦 + 𝐵𝐵1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 𝑥𝑥 + ⋯

Prefetch queues
(4)

(6) (6) (6)

(5) (5) (5)

Prefetch queues Prefetch queues
(4)(4)

Figure 6.5: How static prefetching works.

thread block. However, calculating the addresses accessed by all threads can be

very time-consuming. Instead, SnuRHAC selects some representative threads

in the thread block and calculates the lower bound and the upper bound of

addresses accessed by the thread block. For a one-dimensional block of size (Bx),

SnuRHAC selects thread indices (0) and (Bx−1) as representative threads. For

a two-dimensional block of size (Bx, By), SnuRHAC selects thread indices (0, 0),

(0, By−1), (Bx−1, 0), and (Bx−1, By−1) as representative threads. For a three-

dimensional block of size (Bx, By, Bz), SnuRHAC selects thread indices (0, 0, 0),

(Bx−1, 0, 0), (0, By−1, 0), (Bx−1, By−1, 0), (0, 0, Bz−1), (Bx−1, 0, Bz−1),

(0, By − 1, Bz − 1), and (Bx− 1, By − 1, Bz − 1) as representative threads. After

obtaining the access ranges for each GPU, the SnuRHAC runtime enqueues

prefetch commands to appropriate prefetch queues ((4) in Figure 6.5).

The SnuRHAC runtime maintains a prefetch queue for each GPU. Also,

there is a CPU thread called prefetch scheduler for each GPU in the SnuRHAC

60



runtime. The prefetch scheduler thread dequeues the prefetch commands and

issues them to the SnuRHAC driver ((5) in Figure 6.5). While the SnuRHAC

driver in a node prefetches the requested pages, the SnuRHAC runtime in the

same node executes the partitioned kernel ((6) in Figure 6.5). The way the

SnuRHAC driver prefetches pages is very similar to how it handles page faults

because the SnuRHAC driver treats a prefetch command as page faults.

6.5.2 Dynamic Prefetching

It is impossible to analyze all different types of memory access patterns stati-

cally. One example of this is the indirect memory access pattern. To complement

static prefetching, SnuRHAC uses dynamic prefetching techniques: adjacent

page prefetching and correlation prefetching[89].

Adjacent page prefetching. When the read-only flag is set for a UM block,

the SnuRHAC driver uses adjacent page prefetching. It is similar to the adjacent

cache line prefetching in a CPU. When a page fault occurs in the GPU, the

SnuRHAC driver prefetches all pages in the faulted page’s UM block.

Correlation prefetching. When the read-only flag is not set for a UM block,

the SnuRHAC driver uses correlation prefetching described in Section 5.2.

SnuRHAC applies the correlation prefetching technique to the page level and

implements a pair-based scheme[89]. The SnuRHAC driver in a node has a cor-

relation table for each GPU in the node and keeps track of faulted pages from

each GPU with the correlation table. When a page fault occurs in the GPU,

all pages that are correlated to the faulted page (according to the correlation

table) are prefetched.

61



Chapter 7

Evaluation

7.1 Framework for Maximizing the Performance of

Traditional CUDA Program

In this section, we evaluate HUM with various GPU applications and analyze

the results. We compare the performance of HUM with that of manual opti-

mizations.

Table 7.1: System configuration.

CPU 2 × Intel 2.10 Ghz 16-core Xeon Gold 6130

Main memory 256GB DDR4

OS CentOS 7.6.1810 (kernel 3.10.0-957)

GPU
4 × NVIDIA Tesla V100 PCIe

(16GB device memory for a GPU)

GPU driver NVIDIA display driver 410.48

CUDA version 10.0

62



771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

PPoPP’20, February 22–26, 2020, San Diego, California, USA Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Table 3. Characteristics of applications.
Su

it
e

N
o.

Name Sy
nc

or
as
yn

c

C
P
U
/H

2D
ov

er
la
p

C
P
U
/H

2D
ov

er
la
p
(H

U
M
)

Pa
rb

oi
l

1 bfs S N Y
2 cutcp S N Y
3 histo S N Y
4 lbm S N N
5 mri-gridding S N Y
6 mri-q S N Y
7 sad S N Y
8 sgemm S N Y
9 spmv S N Y
10 stencil S N Y
11 tpacf S N N

12 backprop S N Y
13 b+tree S N Y
14 cfd S N N
15 dwt2d S N Y
16 gaussian S N Y
17 heartwall S N Y

Su
it
e

N
o.

Name Sy
nc

or
as
yn

c

C
P
U
/H

2D
ov

er
la
p

C
P
U
/H

2D
ov

er
la
p
(H

U
M
)

R
od

in
ia

18 hotspot S N Y
19 hotspot3D S N Y
20 huffman S and A N Y
21 hybridsort S N Y
22 kmeans S N Y
23 lavaMD S N Y
24 leukocyte S N N
25 lud S N Y
26 mummergpu S N Y
27 myocyte S N Y
28 nn S N Y
29 nw S N Y
30 particlefilter S N Y
31 pathfinder S N Y
32 srad S N Y
33 streamcluster S N Y

34 alignedTypes S N Y

Su
it
e

N
o.

Name Sy
nc

or
as
yn

c

C
P
U
/H

2D
ov

er
la
p

C
P
U
/H

2D
ov

er
la
p
(H

U
M
)

C
U
D
A
C
od

e
Sa

m
pl
es

35 BlackScholes S N Y
36 eigenvalues S N Y
37 fastWalshTransform S N Y
38 matrixMul S N Y
39 MC_SingleAsianOptionP S N Y
40 mergeSort S N Y
41 MonteCarloMultiGPU A Y Y
42 nbody S N Y
43 reduction S N Y
44 scalarProd S N Y
45 scan S N Y
46 SobolQRNG S N Y
47 sortingNetworks S N Y
48 threadFenceReduction S N Y
49 transpose S N Y
50 vectorAdd S N Y
51 warpAggregatedAtomicsCG S N Y

Benchmark applications. We use 51 applications from var-
ious sources: 11 applications from Parboil[34], 22 applica-
tions from Rodinia[3], and 18 applications from CUDA Code
Samples[23]. While we use all the applications from Parboil
and Rodinia, we choose only 18 out of 170 applications in
CUDA Code Samples. We exclude 152 applications in CUDA
Code Samples because of the following reasons:
• They use CUDA graphics or driver API,
• They have neither CUDA kernel execution nor
H2Dmemcpy,

• They use additional CUDA libraries (cuBLAS, cuFFT,
cuSPARSE, cuSOLVER, nvGRAPH),

• They appear in Parboil or Rodinia, or
• Their kernel execution times are too small (less than
1ms) to see the effect of overlapping H2Dmemcpy and
CUDA kernel computation.

Table 3 shows the characteristics of applications in each
benchmark suites. The column Sync or async shows the type
of H2Dmemcpy commands each application uses. The col-
umn CPU/H2D overlap shows if the application is designed
to overlap CPU computation and H2Dmemcpy. The column
CPU/H2D overlap (HUM) shows if HUM can overlap the
CPU computation and the H2Dmemcpy.
Most of the applications use synchronous H2Dmemcpy

and hence, they are unable to overlap CPU computation and
H2Dmemcpy when running under normal CUDA. On the
other hand, HUM can overlap the CPU computation and the
H2Dmemcpy in most of the cases except some applications
that modify the contents of the source host memory object
of the H2Dmemcpy or frees it after the H2Dmemcpy (lbm
and tpacf in Parboil, cfd and leukocyte in Rodinia).
We use the largest dataset that fits in the GPU memory

for each application, hence, most of the datasets used for the
experiment are hundreds of megabytes to a few gigabytes.

As the goal of HUM is performance improvement without
any code modification, no source code of the applications is
modified.

5.2 Results
Speedup. Figure 9 shows the speedup of each application
with various optimization schemes on a single V100 GPU.
The speedup is obtained over running the original version of
each application (this setup is called CUDA hereafter). The
optimization schemes are described as follows:
• CUDA-async is a manually optimized version where
synchronous memory copy functions in the original ap-
plication is transformed to corresponding asynchronous
ones when the transformation is safe.

• CUDA-UM is a naive UM implementation of each ap-
plication. We change all cudaMalloc() functions to
cudaMallocManaged(). Then, we remove all CUDA
memory copy functions, such as cudaMemcpy() and
cudaMemcpyAsync(), because datawill be automatically
transferred between the host and the device by CUDA
UM.

• CUDA-UM-opt is a manually optimized ver-
sion of CUDA-UM using user hints (e.g.,
cudaMemPrefetchAsync() and cudaMemAdvise()).
We add cudaMemPrefetchAsync() as early as possible
before the CUDA kernel launch so that memory
copy and kernel computation can be overlapped.
cudaMemPrefetchAsync() is also used to map blank
pages to the GPU if the pages are first accessed for
write by the GPU. This prevents excessive write page
faults in the GPU side. We add cudaMemAdvise() to
avoid page migration if the pages are read by both the
CPU and the GPU without any write (i.e., read-only
accesses).

8

Figure 7.1: Characteristics of applications.

7.1.1 Methodology

System configuration. We use NVIDIA Tesla V100 (Volta architecture[92])

GPU for our experiment. Detailed system configuration is summarized in Ta-

ble 7.9.

Benchmark applications. We use 51 applications from various sources: 11

applications from Parboil[31], 22 applications from Rodinia[32], and 18 appli-

cations from CUDA Code Samples[33]. While we use all the applications from

Parboil and Rodinia, we choose only 18 out of 170 applications in CUDA Code

Samples. We exclude 152 applications in CUDA Code Samples because of the

following reasons:

• They use CUDA graphics or driver API,

• They have neither CUDA kernel execution nor H2Dmemcpy,

• They use additional CUDA libraries (cuBLAS, cuFFT, cuSPARSE, cu-

SOLVER, nvGRAPH),

• They appear in Parboil or Rodinia, or

63



• Their kernel execution times are too small (less than 1ms) to see the effect

of overlapping H2Dmemcpy and CUDA kernel computation.

We exclude applications that use additional CUDA libraries because the

HUM runtime has to provide wrapper functions for all library functions used in

the applications. These applications mainly focus on showing the functionality

of the libraries. While there is no technical difficulty to implement the wrapper

functions, we decide not to include those applications because it is too time-

consuming.

Figure 7.1 shows the characteristics of applications in each benchmark suites.

The column Sync or async shows the type of H2Dmemcpy commands each appli-

cation uses. The column CPU/H2D overlap shows if the application is designed

to overlap CPU computation and H2Dmemcpy. The column CPU/H2D overlap

(HUM) shows if HUM can overlap the CPU computation and the H2Dmemcpy.

Most of the applications use synchronous H2Dmemcpy and hence, they are

unable to overlap CPU computation and H2Dmemcpy when running under

normal CUDA. On the other hand, HUM can overlap the CPU computation

and the H2Dmemcpy in most of the cases except some applications that modify

the contents of the source host memory object of the H2Dmemcpy or frees it

after the H2Dmemcpy (lbm and tpacf in Parboil, cfd and leukocyte in Rodinia).

We use the largest dataset that fits in the GPU memory for each application,

hence, most of the datasets used for the experiment are hundreds of megabytes

to a few gigabytes. As the goal of HUM is performance improvement without

any code modification, no source code of the applications is modified.

7.1.2 Results

Speedup on V100. Figure 7.2 shows the speedup of each application with

various optimization schemes on a single V100 GPU. The speedup is obtained

64



V100

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

b
fs

c
u

tc
p

h
is

to

lb
m

m
ri
-g

ri
d

d
in

g

m
ri
-q

s
a

d

s
g

e
m

m

s
p

m
v

s
te

n
c
il

tp
a

c
f

G
E

O
M

E
A

N

a
lig

n
e
d

T
y
p

e
s

B
la

c
k
S

c
h

o
le

s

e
ig

e
n

v
a
lu

e
s

fa
s
tW

a
ls

h
T

ra
n

s
fo

rm

m
a

tr
ix

M
u

l

M
C
_
S
in
g
le
A
s
ia
n
…

m
e

rg
e

S
o

rt

M
o

n
te

C
a

rl
o

M
u

lt
iG

P
U

n
b

o
d

y

re
d

u
c
ti
o

n

s
c
a

la
rP

ro
d

s
c
a

n

S
o

b
o
lQ

R
N

G

s
o

rt
in

g
N

e
tw

o
rk

s

th
re
a
d
F
e
n
c
e
…

tr
a

n
s
p

o
s
e

v
e

c
to

rA
d

d

w
a
rp
A
g
g
re
g
a
te
d
…

G
E

O
M

E
A

N

Parboil CUDA Code Samples

S
P

E
E

D
U

P

CUDA-async CUDA-UM CUDA-UM-opt HUM-no-sched HUM

V100

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

b
a

c
k
p

ro
p

b
+

tr
e

e

c
fd

d
w

t2
d

g
a

u
s
s
ia

n

h
e

a
rt

w
a

ll

h
o

ts
p

o
t

h
o

ts
p

o
t3

D

h
u

ff
m

a
n

h
y
b

ri
d

s
o

rt

k
m

e
a

n
s

la
v
a

M
D

le
u

k
o

c
y
te

lu
d

m
u

m
m

e
rg

p
u

m
y
o

c
y
te n
n

n
w

p
a

rt
ic

le
fi
lt
e

r

p
a

th
fi
n
d

e
r

s
ra

d

s
tr

e
a
m

c
lu

s
te

r

G
E

O
M

E
A

N

Rodinia

S
P

E
E

D
U

P

CUDA-async CUDA-UM CUDA-UM-opt HUM-no-sched HUM

Figure 7.2: Speedup of each application with a single V100 GPU.

over running the original version of each application (this setup is called CUDA

hereafter). The optimization schemes are described as follows:

• CUDA-async is a manually optimized version where synchronous memory

copy functions in the original application is transformed to corresponding

asynchronous ones when the transformation is safe.

• CUDA-UM is a naive UM implementation of each application. We change

all cudaMalloc() functions to cudaMallocManaged(). Then, we remove

all CUDAmemory copy functions, such as cudaMemcpy() and cudaMemcpyAsync(),

because data will be automatically transferred between the host and the

device by CUDA UM.

• CUDA-UM-opt is a manually optimized version of CUDA-UM using user

hints (e.g., cudaMemPrefetchAsync() and cudaMemAdvise()).

We add cudaMemPrefetchAsync() as early as possible before the CUDA

65



kernel launch so that memory copy and kernel computation can be over-

lapped. cudaMemPrefetchAsync() is also used to map blank pages to the

GPU if the pages are first accessed for write by the GPU. This prevents

excessive write page faults in the GPU side. We add cudaMemAdvise()

to avoid page migration if the pages are read by both the CPU and the

GPU without any write (i.e., read-only accesses).

• HUM-no-sched runs the applications under HUMwithout any H2Dmemcpy

command scheduling described in Section 4.7.

• HUM runs the applications under HUM with all the HUM techniques

described in Chapter 4.

The number of memory-copy threads mentioned in Section 4.7 is set to eight

in both HUM-no-sched and HUM. For execution time measurement, we use

the timing routines that are already placed in the original benchmark source

code. These routines exclude data initialization and result verification from the

execution time measurement. In addition, we exclude file I/O from the time

measurement to clearly see the effect of overlapping.

For all applications, CUDA-UM-opt and HUM outperform CUDA, CUDA-

async, and CUDA-UM. Some applications show marginal speedup under HUM

and CUDA-UM-opt. This happens when the H2Dmemcpy time takes a very lit-

tle portion of the total execution time. For example, the host computation time

dominates the total execution time of cutcp in Parboil. The kernel execution

time dominates the total execution time of mri-q in Parboil, gaussian and parti-

clefilter in Rodinia, MonteCarloMultiGPU, nbody, scan, and transpose in CUDA

Code Samples. The D2Hmemcpy time dominates the total execution time of

sad in Parboil, SobolQRNG in CUDA Code Samples.

On the other hand, some applications show very good speedup under HUM

66



and CUDA-UM-opt. The applications sgemm and spmv in Parboil, b+tree, hy-

bridsort, and leukocyte in Rodinia have enough kernel computation time to hide

the H2Dmemcpy time. The application huffman in Rodinia mainly benefits from

overlapping the H2Dmemcpy and the host computation.

On average, CUDA-UM-opt achieves the speedup of 1.22x for all applications

and HUM achieves the speedup of 1.21x (1.20x for Parboil, 1.26x for Rodinia,

and 1.13x for CUDA Code Samples). While CUDA-UM-opt does not use any

H2Dmemcpy command scheduling like HUM, it shows comparable performance

to HUM. This is because HUM spends more time on memory copying than

CUDA-UM-opt.

CUDA-UM-opt is much better than HUM in BlackScholes, vectorAdd, and

warpAggergatedgAtomicsCG in CUDA Code Samples. This happens when the

kernel computation time is much shorter than H2Dmemcpy time. Since the

memory transfer time dominates the entire application execution time, CUDA-

UM-opt shows better performance.

This is due to the prefetching heuristics used in the NVIDIA driver for

page migration. When a GPU page fault occurs, the NVIDIA driver actively

prefetches some pages around the faulted page from the host UM space to the

GPU UM space according to the prefetching heuristics (note that the heuristics

are not publicly known).

CUDA-async is a little bit better than CUDA for Parboil on average, but there

is no difference between CUDA-async and CUDA for Rodinia and CUDA Code

Samples on average. This is because few applications in Rodinia and CUDA

Code Samples have some host computation to hide between the H2Dmemcpy

command and the kernel launch command.

CUDA-UM is a little bit better, on average, than CUDA-async for Par-

boil and Rodinia because of the prefetching heuristics used in the NVIDIA

67



driver for the Unified Memory. CUDA-UM is much worse than CUDA-async

for CUDA Code Samples on average because of SobolQRNG. In SobolQRNG,

CUDA-UM is 88 times slower than CUDA-async. The 4GB write-only data ac-

cessed by the kernel in SobolQRNG incur a lot of page faults in the GPU

side for CUDA-UM. This does not happen for CUDA-UM-opt because to avoid

the write page faults, CUDA-UM-opt maps the data pages to the GPU using

cudaMemPrefetchAsync() before the kernel execution is initiated.

Effect of H2Dmemcpy command scheduling. HUM-no-sched is slower than

HUM consistently. Even HUM-no-sched is slower than CUDA for some applica-

tions. One such a case is when the memory-copy time dominates the execution

time. When the kernel computation time is not large enough, overlapping the

H2Dmemcpy and the kernel computation cannot fully amortize the slowdown

in H2Dmemcpy due to copying the memory object twice from the source host

memory space to the host UM space, and then from the host UM space to the

device UM space. tpacf in Parboil, nn, pathfinder, and srad in Rodinia, BlackSc-

holes, mergeSort, scalarProd, and threadFenceReduction in CUDA Code Samples

fall in this category.

Another case is when the CUDA kernel launch is not scheduled as early as

possible. spmv in Parboil, b+tree in Rodinia, matrixMul and vectorAdd in CUDA

Code Samples fall in this category. For example, as mentioned in Section 4.7, in

vectorAdd, there are two memory objects to transfer from the host to the device

(vector A and vector B). Without the memory-copy command scheduling, the

kernel execution cannot be scheduled until the entire vector A has been copied

to the device.

The number of memory-copy threads. As mentioned in Section 4.6, HUM

uses multiple threads to copy the source host memory object to the host UM

68



0.95

1

1.05

1.1

1.15

1.2

1.25

Parboil Rodinia CUDA Code
Samples

Total

S
P

E
E

D
U

P

2 threads 4 threads 8 threads

12 threads 16 threads

Figure 7.3: Average speedup obtained by varying the number of memory-copy

threads.

0

0.5

1

1.5

2

2.5

3

3.5

4

CUDA HUM CUDA HUM CUDA HUM CUDA HUM CUDA HUM

sgemm matrixMul MC_Single… MonteCarlo… vectorAdd

S
P

E
E

D
U

P

1 GPU 2 GPUs 4 GPUs

Figure 7.4: Speedup on multiple V100 GPUs.

space to execute a H2Dmemcpy command. To find the optimal number of

threads, we vary the number of memory-copy threads from 1 to 16 and mea-

sure the overall performance. Here, we divide the source host memory object

in N chunks when there are N memory-copy threads. Each thread takes care

of a chunk of the source host memory object and copies the chunk simulta-

neously. Figure 7.3 shows the average speedup obtained over one thread for

each benchmark suite. We see that, on average, eight is the optimal number of

memory-copy threads.

Multi-GPU environments. To show that HUM works well with multi-GPU

environments, we choose the applications whose speedup under HUM with a

single GPU is greater than 1.10 and whose workload can be easily distributed

69



across multiple GPUs. These applications include sgemm in Parboil, and ma-

trixMul, MC SingleAsianOptionP, and vectorAdd in CUDA Code Samples. We

implement the multi-GPU version of them. In addition, we choose MonteCarlo-

MultiGPU in CUDA Code Samples because it is originally designed to support

multiple GPUs.

Figure 7.4 shows the speedup obtained by varying the number of GPUs

for these applications. We do not vary the workload for multiple GPUs, hence

Figure 7.4 shows the result of strong scaling for both CUDA and HUM. The

speedup is obtained over the case of a single GPU for each of CUDA and HUM.

The result indicates that HUM achieves scalable performance in the multi-

GPU environment. The major reason for this strong scaling is that page faults

occurred in different GPUs are handled by different host threads.

7.2 Framework for Running Large-scale DNNs on a

Single GPU

In this section, we compare the performance of DeepUM with previous ap-

proaches: LMS[25], vDNN[23], AutoTM[27], SwapAdvisor[28], Capuchin[26],

and Sentinel[29].

7.2.1 Methodology

LMS (Large Model Support)[25] is an open-source project developed by IBM.

It supports the PyTorch framework and automatic GPU memory swapping. We

directly compare the performance of DeepUM and LMS by actually executing

LMS. Since the other five approaches are based on TensorFlow[93] or other

frameworks and are mostly closed-source, we indirectly compare their perfor-

mance with DeepUM. Ren et al.[29] implement these approaches and measure

70



the speedup of their training throughput over NVIDIA UM. Thus, we take the

number from Ren et al. and compare them with the speedup of DeepUM over

UM. We also obtain these approaches’ maximum available batch sizes from the

same paper. We use the same models, datasets, and GPU for a fair comparison.

System configuration. We use NVIDIA Tesla V100 GPUs[92] with different

device memory sizes. Table 7.2 shows the detailed system configuration.

Table 7.2: System configuration for evaluation of DeepUM.

CPU 2 × AMD 1.5Ghz 32-core EPYC 7452

Main memory 512GB DDR4 for each node

OS Ubuntu 18.04.4 LTS (kernel 4.15.0-72)

GPU
NVIDIA Tesla V100 PCIe 32GB

NVIDIA Tesla V100 PCIe 16GB

GPU driver NVIDIA display driver 460.32

CUDA version 11.2

Table 7.3: DNN models and dataset used for evaluation.

Model Source Dataset

GPT-2 XL[94] Hugging Face[36] Wikitext

GPT-2 L[94] Hugging Face[36] Wikitext

BERT Large[95] Hugging Face[36] Wikitext, GLUE CoLA

BERT Base[95] Hugging Face[36] Wikitext

DLRM[96] MLPerf[34] Cirteo Kaggle

ResNet200[97] PyTorch examples[35] ImageNet, CIFAR-10

ResNet152[97] PyTorch examples[35] ImageNet

DCGAN[98] PyTorch examples[35] celebA

MobileNet[99] PyTorch examples[35] CIFAR-100

71



DNN models and datasets. We use six DNN models from various sources:

Hugging Face[36], MLPerf[34], and PyTorch examples[35]. BERT and ResNet

in Hugging Face and PyTorch examples are also included in MLPerf. The list

of models and datasets are summarized in Table 7.3.

7.2.2 Comparison with Näıve UM and IBM LMS

Speedup. Figure 7.5 shows the speedup of training throughput for each DNN

model with various batch sizes. We use a single V100 32GB GPU. The speedup

is obtained over UM that runs each DNN model using NVIDIA UM without

prefetching. LMS shows the performance of the original LMS, and LMS-mod

shows the performance of LMS that is modified to periodically free cached PT

blocks in the PyTorch memory pool. By cleaning up cached memory objects

periodically, we can reduce the occurrence of out-of-memory (OOM) errors

caused by memory fragmentation. DeepUM uses UM block correlation tables,

each containing 2048 rows, two-way associative, and four successors. Also, we

select the batch sizes close to the maximum batch size of LMS to enable the

maximum GPU memory oversubscription. Some numbers of LMS and LMS-mod

are missing because they fail to run the model in some batch sizes because of

the OOM error.

Like other memory prefetching strategies, the performance depends on the

application’s memory access patterns and the ratio between the memory trans-

fer time and the computation time. For example, DLRM shows almost no

speedup over UM for both LMS and DeepUM. DLRM is a recommendation

model introduced by Facebook, and its input data consist of users’ preferences,

buy lists, etc. The model looks up the embedding table for each input data

item and transforms the input data item with an appropriate embedding vec-

tor. In DLRM, most of the memory space is used to store embedding tables. In

72



addition, its memory access pattern is irregular because the embedding table

lookups highly depend on the input data. This is why prefetching strategies of

both LMS and DeepUM do not work well. On the other hand, ResNet consists

of multiple building blocks called residual blocks. Once a memory object is

prefetched for a residual block, the computation time dominates the processing

of a residual block.

Note that LMS moves data at the whole tensor level while DeepUM moves

data at the UM block level. While LMS is faster than LMS-mod on average, it

fails to run with batch size that LMS-mod can run. DeepUM can run a larger

batch size than LMS and LMS-mod because of the virtual memory system sup-

ported by DeepUM runtime.

On average, DeepUM shows the best performance. DeepUM is 3.06× faster

than UM and 1.11× faster than LMS.

0
1
2
3
4
5
6
7
8
9

3 5 7 3 5 7 14 16 18 29 30 31 96K 128K 160K 192K 224K 1280 1536 1792 1024 1280 1536

GPT-2 XL GPT-2 L BERT Large BERT Base DLRM ResNet152 ResNet200 GMEAN

Sp
ee

du
p 

ov
er

 U
M

Model and Batch Size

UM LMS LMS-mod DeepUM

Figure 7.5: The speedup of IBM LMS and DeepUM over a näıve UM imple-

mentation.

Maximum possible batch sizes. Table 7.4 shows the maximum possible

batch sizes of IBM LMS and DeepUM. DeepUM can run the models with the

batch size that requires the peak memory usage to be almost the same as the

73



Table 7.4: Maximum possible batch sizes.

Model Dataset LMS DeepUM

GPT-2 XL Wikitext 3 16

GPT-2 L Wikitext 3 24

BERT Large Wikitext 14 192

BERT Base Wikitext 29 256

DLRM Criteo Kaggle 128k 512k

ResNet200 ImageNet 1536 2304

ResNet152 ImageNet 1536 1792

total CPU memory size. The numbers in the table indicate that exploiting UM

in DeepUM suffers fewer memory fragmentation issues and has a higher chance

of running large DNN models without any memory problems.

Correlation table size. Table 7.5 shows the size of memory space used for

storing correlation tables. Since DeepUM dynamically allocates a UM block

correlation table when it finds a kernel with a new execution ID, the memory

size for storing correlation tables differs for each DNN model and batch size.

Note that the correlation tables are stored on the CPU side.

Number of page faults. Original correlation prefetching is one method of

cache-line prefetching for CPUs. In this case, the cache hit rate is typically

used to show the effectiveness of a prefetching technique. However, the GPU

we used does not have such a performance counter, and it is very hard to know

whether the GPU has accessed the prefetched pages or not at a certain point.

Even though there is an instrumentation tool, such as NVBit[100], it causes

lots of instrumentation overhead, resulting in the prefetch timing difference.

74



Table 7.5: Correlation table size.

Model Batch size Table size (MB)

GPT-2 XL

3 308

5 344

7 348

GPT-2 L

3 169

5 213

7 232

BERT Large

3 78

5 75

7 74

BERT Base

3 19

5 27

7 33

DLRM

96k 13

128k 19

160k 30

192k 31

224k 35

ResNet152

1280 115

1536 128

1792 130

ResNet200

1024 144

1280 151

1536 169

75



Table 7.6: Average number of page faults per training iteration.

Model
Batch Fault count Fault count

Ratio
size of UM of DeepUM

GPT-2 XL

3 7437122 687 < 0.1%

5 12395173 7612 < 0.1%

7 17210705 2549 < 0.1%

GPT-2 L

3 2948920 235 < 0.1%

5 6055304 476 < 0.1%

7 8974631 884 < 0.1%

BERT Large

3 1171717 2913 0.2%

5 1777710 84 < 0.1%

7 1834746 1355 < 0.1%

BERT Base

3 88459 1595 1.8%

5 349106 4536 1.3%

7 1077223 5531 0.5%

DLRM

96k 1263865 3706 0.2%

128k 1712886 6912 0.4%

160k 2583610 22624 0.8%

192k 3471958 32139 0.9%

224k 4278593 38437 0.9%

ResNet152

1280 121380940 34323 < 0.1%

1536 144893625 72598 < 0.1%

1792 182230994 144455 < 0.1%

ResNet200

1024 126734315 107093 < 0.1%

1280 173517031 68039 < 0.1%

1536 207933814 118472 < 0.1%

76



Therefore, we use the number of page faults to measure the accuracy of DeepUM

prefetching technique.

Table 7.6 shows the average number of page faults per training iteration

for each model and different batch sizes. The result indicates that DeepUM

prefetches pages quite accurately and can significantly reduce page faults.

Effects of prefetching and optimizations. Figure 7.6 shows the effects

of prefetching and optimizations. Prefetching shows the effect of the correla-

tion prefetching only. Prefetching+Preeviction shows the effect of correlation

prefetching and page pre-eviction described in Section 5.3.1. Finally, Prefetch-

ing+Preeviction+Invalidate shows the effect of all the optimization techniques

mentioned in Section 5.3.1 and Section 5.3.2. Prefetching, Prefetching+Preeviction,

and Prefetching+Preeviction+Invalidate reduce 45.6%, 63.7%, and 66.7% of the

execution time on average.

0

0.2

0.4

0.6

0.8

1

1.2

3 5 7 3 5 7 14 16 18 29 30 31 96K 128K 160K 192K 224K 1280 1536 1792 1024 1280 1536

GPT-2 XL GPT-2 L BERT Large BERT base DLRM ResNet152 ResNet200 GMEAN

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

UM Prefetching Prefetching+Preeviction Prefetching+Preeviction+Invalidate

Figure 7.6: Effect of prefetching and optimizations.

As mentioned before, DLRM gets no benefit from prefetching due to its

irregular memory access patterns. When the batch size is 29 in BERT-base, the

effect of prefetching is very small. This is because a tiny portion of the total

memory usage is oversubscribed (approximately 3% of the total memory usage).

77



Overall, the result indicates that the prefetching and optimization techniques

in DeepUM are very effective.

7.2.3 Parameters of the UM Block Correlation Table

There are several configuration parameters of the UM block correlation table:

the number of immediate successor blocks (NumSuccs), the number of rows in

the table (NumRows), and the associativity of the table (Assoc). To find the

optimal configuration, we perform a sensitivity analysis.

Table 7.7: Effect of parameters of the UM block correlation table.

Name Assoc NumSuccs NumRows

Config0 2 4 128

Config1 2 8 128

Config2 4 4 128

Config3 2 4 512

Config4 2 8 512

Config5 4 4 512

Config6 2 4 1024

Config7 2 8 1024

Config8 4 4 1024

Config9 2 4 2048

Config10 2 8 2048

Config11 4 4 2048

Config12 2 4 4096

Table 7.7 shows different configurations for the UM block correlation table,

and Figure 7.7 shows the speedups of the different configurations over Con-

78



0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Av
er

ag
e 

So
ee

dU
p

Config0 Config1 Config2 Config3 Config4
Config5 Config6 Config7 Config8 Config9
Config10 Config11 Config12

Figure 7.7: Performance when varying the parameters of UM block correlation

table.

fig0 using V100 32GB GPU for each configuration. We see that, on average,

configuration 9 shows the best performance.

7.2.4 Comparison with TensorFlow-based Approaches

We compare the performance of DeepUM with TensorFlow-based approaches:

vDNN[23], AutoTM[27], SwapAdvisor[28], Capuchin[26], and Sentinel[29]. Fig-

ure 7.8 shows the speedup for each DNN model. The speedup is obtained on

a V100 16GB GPU. Note that the numbers are obtained from Ren et al.[29],

and they measure the speedup of the training throughput over NVIDIA UM

without prefetching.

Table 7.8 shows the maximum possible batch size of the TensorFlow-based

approaches and DeepUM. To measure the maximum possible batch sizes, we

limit the total CPU memory usage of DeepUM to 128GB to match the system

configuration with the TensorFlow-based approaches.

79



0
1
2
3
4
5
6
7
8
9

1216 1408 1600 6 8 10 768 1024 1280 1024 1216 1408

ResNet200 BERT Large DCGAN MobileNet GMEAN

Sp
ee

du
p 

ov
er

 U
M

Model and Batch Size

UM vDNN AutoTM SwapAdvisor Capuchin Sentinel DeepUM

Figure 7.8: Comparison with TensorFlow-based approaches.

Table 7.8: Maximum possible batch sizes of TensorFlow-based approaches and

DeepUM.

Model ResNet200
BERT

DCGAN MobileNet
Large

(Dataset) (CIFAR-10) (CoLA) (celebA) (CIFAR-100)

vDNN 4.2K not work 1.4K 1.2K

AutoTM 5.6K 27 2.5K 3.2K

SwapAdvisor 5.4K 25 2.4K 3.1K

Capuchin 5.9K 27 2.7K 3.2K

Sentinel 5.7K 28 2.5K 3.2K

DeepUM 6.4K 64 3.5K 5.1K

80



Overall, DeepUM is faster than IBM LMS and other TensorFlow-based ap-

proaches than Sentinel. DeepUM shows comparable performance to Sentinel.

Note that Sentinel’s swapping mechanism is not transparent to the user while

DeepUM’s is fully automatic. Moreover, DeepUM allows a much larger batch

size than other previous approaches.

Note that previous approaches manage data at the DNN layer or tensor

level. It implies that all data accessed in a layer or a tensor are moved together.

The performance difference comes from the more fine-grained data movement

of DeepUM, where memory objects are prefetched and evicted in a more fine-

grained manner with accurate prediction through the correlation tables.

7.3 Framework for Virtualizing Single Device Image

for a GPU Cluster

In this section, we evaluate SnuRHAC with various GPU applications and an-

alyze the result. We also compare the performance of SnuRHAC with that of

hand-written multi-GPU applications.

7.3.1 Methodology

System configuration. A total of eight nodes are used for the evaluation. Each

node has four NVIDIA Tesla V100 GPUs[92]. The interconnection network is

Mellanox InfiniBand EDR. Table 7.9 shows the detailed system configuration.

Benchmark applications. We use 18 applications from various sources:

three applications from CUDA Code Samples[33], three applications from Parboil[31],

eight applications from PolyBench[37] and four applications from Rodinia[32].

These applications are summarized in Table 7.10. We select these applications

from the benchmark suites based on the following criteria:

81



Table 7.9: System configuration for evaluation of SnuRHAC.

Number of nodes 8

CPU
2 × Intel 2.10 Ghz 20-core Xeon Gold 6230

for each node

Main memory 768GB DDR4 for each node

OS Ubuntu 18.04.4 LTS (kernel 4.15.0-101)

GPU

4 × NVIDIA Tesla V100 PCIe

(32GB device memory for a GPU)

for each node

GPU driver NVIDIA display driver 440.64

CUDA version 10.1

Interconnect Mellanox InfiniBand EDR

MPI version OpenMPI 4.0.3

• The longest kernel’s execution time on a single GPU should be longer

than 0.1 seconds when the largest dataset that fits in the device memory

is used. Kernels that have too short execution time are not suitable to

run them using multiple GPUs. Kernel launch overhead may be more

significant than the actual kernel execution time. We conclude that a

kernel execution time should be at least a few milliseconds when using 32

GPUs. This leads to the 0.1-second limit for a single GPU.

• The application should not use CUDA graphics API or additional CUDA

libraries (cuBLAS, cuFFT, cuSPARSE, cuSOLVER, nvGRAPH). There

are two reasons for this: One is that our goal is to show how to provide an

illusion of a single GPU on top of multiple GPU devices, not to implement

wrappers for every possible case. The other is that CUDA kernel source

code for each API function in those libraries is not available. In this case,

82



Table 7.10: Applications used for evaluation.

Suite No. Name Device memory size

CUDA Code Samples

1 binomialOptions 1536MB

2 MonteCarloMultiGPU 312MB

3 Nbody 576MB

Parboil

4 mri-q 502MB

5 sgemm 3224MB

6 tpacf 609MB

PolyBench

7 2mm 1280MB

8 3mm 1792MB

9 correlation 128MB

10 covariance 128MB

11 gemm 3072MB

12 gesummv 8192MB

13 syr2k 768MB

14 syrk 512MB

Rodinia

15 hotspot 12288MB

16 lavaMD 7492MB

17 myocyte 1MB

18 particlefilter 3360MB

83



SnuRHAC cannot perform static prefetching. If the kernel source code of

each API function is available, implementing wrappers for those libraries

is trivial and does not take much time.

• The CUDA kernel should not use atomic operations that access the global

memory. We exclude applications that use atomic operations because they

are not suitable for multiple GPUs. Those applications will also be de-

tected by the SnuRHAC runtime and will be directed to run using only

a single GPU.

Before running each application using SnuRHAC, we run MAPA to perform

static analysis on every kernel source code. MAPA writes the result to a file,

and the SnuRHAC runtime reads the file at run time. Thus, the time taken to

run MAPA is not included in the application execution time.

7.3.2 Results

Speedup. Figure 7.9 shows the speedup of each application by varying the

number of GPUs from 1 to 32. As each node has 4 GPUs, the results of 1

GPU, 2GPUs, and 4GPUs use only a single node of the cluster. The speedup is

obtained on a single GPU, which runs each application using the original CUDA

runtime only. Note that the original CUDA runtime does not use UM. We

measure the performance of SnuRHAC with three different schemes. SnuRHAC

shows the performance of SnuRHAC without the static prefetching and dynamic

prefetching techniques. SnuRHAC-SP shows the performance of SnuRHAC with

the static prefetching technique and without the dynamic prefetching technique.

SnuRHAC-SP-DP shows the performance of SnuRHAC using both techniques.

We use a correlation table with 64k rows, 4-way associative, 3 levels, and

4 successors for dynamic prefetching. Therefore, the size of a table is approxi-

84



0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

binomialOptionsMonteCarloMultiGPU Nbody mri-q sgemm tpacf hotspot lavaMD myocyte particlefilter

CUDA Code Samples Parboil Rodinia

Sp
ee

dU
p

SnuRHAC SnuRHAC-SP SnuRHAC-SP-DP

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

2mm 3mm correlation covariance gemm gesummv syr2k syrk

PolyBench

Sp
ee

dU
p

SnuRHAC SnuRHAC-SP SnuRHAC-SP-DP

Figure 7.9: Speedup over a single GPU.

mately 12MB. We perform sensitivity analysis for the parameters of the corre-

lation table later in this section. The threshold value for checking overlapping

access ranges mentioned in Section 6.4 is set to 0.5. We empirically found that

applications that show frequent page faults due to the page sharing between

GPUs have a high ratio of the overlapping access ranges between GPUs. These

applications include corrleation, covariance in PolyBench and myocyte in Ro-

dinia. We also found that 0.5 is the proper value to enforce these applications

to use a single GPU.

We use the timing routines that are already placed in the original bench-

mark source code for execution time measurement. Also, we exclude file I/O

time, input data initialization time, and result verification time from the exe-

cution time measurement. These times are always the same in each application

regardless of how many GPUs are used. We exclude them from the execution

time measurement to clearly see how well the performance scales when the

85



number of GPUs is increased.

SnuRHAC-SP-DP shows the best performance for all applications. SnuRHAC-

SP shows similar performance to SnuRHAC-SP-DP but shows notable differences

for tpacf in Parboil and lavaMD in Rodinia. This is because MAPA cannot an-

alyze most of the memory operations in the kernels, and thus static prefetching

does not work well for these applications. SnuRHAC shows the poorest per-

formance for most of the applications because pages are migrated on-demand.

myocyte in Rodinia, correlation, and covariance in PolyBench show the result for

a single GPU only because they are enforced to use a single GPU by SnuRHAC

runtime because of the overlapping access ranges check.

99.3% 97.8% 99.7% 98.4%
59.8%

99.8%

2.4%
47.7%

99.7% 99.6% 87.8% 89.1% 99.0% 99.0% 90.1%

4.2%

99.7% 99.5%

0%
20%
40%
60%
80%

100%

bi
no

m
ia

lO
pt

io
n

s

M
on

te
C

ar
lo

M
ul

tiG
PU N

bo
dy

m
ri-

q

sg
em

m

tp
ac

f

ho
ts

po
t

la
va

M
D

m
yo

cy
te

pa
rti

cl
ef

ilt
er

2m
m

3m
m

co
rre

la
tio

n

co
va

ria
nc

e

ge
m

m

ge
su

m
m

v

sy
r2

k

sy
rk

CUDA Code Samples Parboil Rodinia PolyBench

Kernel Memory Copy

Figure 7.10: Breakdown of kernel execution time and memory copy time on a

single GPU.

The scalability of the applications is significantly affected by the character-

istics of the applications. Figure 7.10 shows the ratio of the kernel execution

time to memory copy time measured on a single GPU using the CUDA runtime

only. In general, applications that have a high ratio of the kernel execution time

scale well in Figure 7.9. hotspot, lavaMD in Rodinia, and gesummv in PolyBench

have very high ratio of memory copy time. They show poor scalability because

they spend most of the execution time on copying data.

sgemm in Parboil, 2mm, 3mm, and gemm in PolyBench show relatively low

memory copy time compared to the kernel execution time. However, they show

86



poor scalability because of the memory access patterns in the kernel. They all

perform 2-D matrix multiplication. Suppose that we multiply matrix A with

matrix B and then store the result to matrix C. To compute each row of matrix

C, we need the corresponding row of matrix A and the entire matrix B. Each

GPU in the cluster needs the full matrix B to compute some rows of matrix C.

Thus, memory traffic over the network increases as the number of GPUs that

participate in the computation increases.

mri-q in Parboil and particlefilter in Rodinia launches multiple kernels. Each

kernel has different memory access patterns to the same memory object. It

causes frequent data movement between GPUs on every kernel launch and

degrades the performance.

Single GPU Performance. Table 7.11 shows the speedup of each applica-

tion over the original CUDA runtime (CUDA) on a single GPU. Note that the

original CUDA runtime does not use UM. SnuRHAC is much slower (0.628)

than CUDA on average. SnuRHAC-SP and SnuRHAC-SP-DP are, on aver-

age, 1.023X and 1.059X faster than CUDA, respectively. Especially for hotspot

and gesummv, SnuRHAC-SP-DP is 1.875X and 1.671X faster than CUDA.

These two applications require relatively big device memory size (hotspot: 12GB

and gesummv: 8GB in Table 7.10) and spend most of their execution time on

memory copying (Figure 7.10). Thus prefetching is quite effective. The multi-

threaded-copying mechanism in the SnuRHAC runtime from the host memory

space to the host UM space boosts their performance, too.

Parameters for dynamic prefetching. As mentioned in Section 6.5.2, SnuRHAC

uses correlation table for dynamic prefetching. There are several configuration

parameters of the correlation table: the number of immediate successor pages

87



Table 7.11: Single GPU Performance

Application SnuRHAC SnuRHAC-SP SnuRHAC-SP-DP

binomialOptions 1.005 1.002 1.002

MonteCarloMultiGPU 1.001 1.004 1.004

Nbody 1.002 1.002 1.003

mri-q 0.515 0.985 0.984

sgemm 0.114 1.095 1.080

tpacf 0.994 0.993 1.000

hotspot 0.260 1.856 1.875

lavaMD 0.483 0.511 0.920

myocyte 1.001 1.002 1.001

particlefilter 0.921 0.992 0.991

2mm 0.643 0.972 0.972

3mm 0.665 0.971 0.971

correlation 0.951 0.975 0.984

covariance 0.958 0.979 0.978

gemm 0.807 1.030 1.029

gesummv 0.117 1.635 1.671

syr2k 0.937 0.977 0.991

syrk 0.995 1.000 1.003

Geomean 0.628 1.023 1.059

88



per page fault (NumSuccs), the number of levels of successors to prefetch (Num-

Levels), the number of rows in the table (NumRows), and the associativity of the

table (Assoc). To find the optimal configuration, we perform sensitivity anal-

ysis. Table 7.12 shows configurations for the correlation table and Figure 7.11

shows the speedup of SnuRHAC using 32 GPUs for each configuration. In Fig-

ure 7.11, we measure the geometric mean of speedup over the case that does

not use dynamic prefetching. We see that, on average, configuration 5 shows

the best performance.

Table 7.12: Configurations for sensitivity analysis

Name Assoc NumRows NumSucc NumLevels

Config1 2 32k 4 3

Config2 4 32k 4 3

Config3 8 32k 4 3

Config4 2 64k 4 3

Config5 4 64k 4 3

Config6 8 64k 4 3

Config7 2 128k 4 3

Config8 4 128k 4 3

Config9 8 128k 4 3

Multi-GPU applications. Some applications in CUDA Code Samples are de-

signed to support multiple GPUs under a single operating system instance. We

compare the performance of SnuRHAC with hand-written multi-GPU applica-

tions to show the effectiveness of SnuRHAC. Figure 7.12 shows the speedup

obtained by varying the number of GPUs for these applications. CUDA is the

89



1.06

1.07

1.08

1.09

1.10

Config1 Config2 Config3 Config4 Config5 Config6 Config7 Config8 Config9

G
eo

m
ea

n 
of

 
Sp

ee
dU

p

Figure 7.11: Varying the parameters of dynamic prefetching.

0
1
2
3
4

1 2 4 1 2 4

MonteCarloMultiGPU Nbody

Sp
ee

dU
p

CUDA SnuRHAC

Figure 7.12: Speedup using multi-GPU applications.

result when running the applications under the original CUDA runtime, and

SnuRHAC is the result when running them under SnuRHAC. The speedup is

obtained over the case of a single GPU for CUDA. We do not vary the workload

for multiple GPUs. Hence Figure 7.12 shows the result of strong scaling for both

CUDA and SnuRHAC. The result indicates that SnuRHAC achieves almost the

same scalability and performance as the hand-written multi-GPU applications.

90



Chapter 8

Discussions and Future Work

Supporting GPU clusters for large-scale DNNs. DeepUM mainly focuses

on running large-scale DNNs on a single GPU. However, it can be extended to

clusters easily. Since most of the DNN workloads do not need communication

between GPUs except for all-reduce operation which occurs when calculating

the average of the gradients, we can manage correlation tables for each GPU

and prefetch pages for each GPU independently.

Enhance the workload distribution algorithm. SnuRHAC partitions the

workload and distributes it to multiple GPUs using a simple algorithm. The al-

gorithm tries to divide the CUDA grid in z-dimension first and then y-dimension

second and then x-dimension last. However, we cannot guarantee that this is

always the best way to partition the grid. We need to think about page mi-

gration between GPUs when there are multiple different CUDA kernel calls.

To do this, the SnuRHAC runtime should carefully partition the grid using the

memory access range information from MAPA to minimize the page migration

91



between different CUDA kernel calls.

Supporting multiple GPU architectures Frameworks introduced in this

thesis supports CUDA-capable GPUs only. However, OpenCL also has a similar

concept to Unified Memory which is called Shared Virtual Memory (SVM). We

expect that the overall idea proposed in this thesis can be applied well for

OpenCL-capable GPUs which support Shared Virtual Memory.

92



Chapter 9

Conclusion

In this thesis, we propose three frameworks that exploits UM to improve the

ease-of-programming while maximizing the application performance.

HUM hides the host-to-device memory copy time by automatically over-

lapping it with the host computation or the kernel computation. It exploits

Unified Memory and fault mechanisms of both the host and the GPU. HUM’s

Unified Memory is hidden to the programmer and there is no need to mod-

ify the source code. With 51 applications from Parboil, Rodinia, and CUDA

Code Samples benchmark suites, we evaluate HUM. We compare their perfor-

mance under HUM with that of their hand-optimized implementations. The

evaluation result shows that HUM is quite effective and practical. On average,

HUM achieves 1.20x for applications in Parboil, 1.26x for Rodinia, and 1.13x

for CUDA Code Samples. The average speedup of all applications under HUM

is 1.21, which is comparable to the average speedup 1.22 of the hand-optimized

implementations for Unified Memory.

DeepUM allows GPU memory oversubscription for deep neural networks by

93



exploiting Unified Memory and using CPU memory as a backing store. While

UM allows memory oversubscription using a page fault mechanism, it intro-

duces enormous overhead. We use a correlation prefetching technique to hide

its overhead. We also introduce several optimization techniques to minimize the

GPU fault handling time. We use popular DNN models from various sources for

evaluation. The evaluation result shows that DeepUM achieves comparable per-

formance to the other state-of-the-art approaches. At the same time, DeepUM

can handle larger models that other methods fail to run.

SnuRHAC extends Unified Memory across multiple nodes in a cluster. It

is implemented with an additional Linux kernel module. It automatically dis-

tributes workload across multiple GPUs in a cluster, manages data across the

nodes, and exploits static and dynamic page prefetching techniques to improve

performance. These are all transparent to users, and no source code modifica-

tion is required. Avoiding atomic operations and avoiding excessive write shar-

ing optimizations filter applications that are not suitable for multiple GPUs and

enforces those applications run on a single GPU only. The evaluation result of

SnuRHAC with 18 applications from various sources indicates that SnuRHAC

achieves scalable performance for the cluster environment depending on the ap-

plication characteristics while significantly reducing the programmer’s burden.

94



Bibliography

[1] J. Dongarra and P. Luszczek, TOP500, pp. 2055–2057. Boston, MA:

Springer US, 2011.

[2] NVIDIA, “CUDA parallel computing platform.” Website, 2021.

[3] Intel, “oneAPI programming model.” Website, 2021.

[4] OpenACC-standard.org, “OpenACC.” Website, 2021.

[5] K. group, “OpenCL overview - The Khronos Group Inc.” Website, 2021.

[6] K. group, “SYCL overview - The Khronos Group Inc.” Website, 2021.

[7] NVIDIA, “Unified Memory programming.” Website, 2019.

[8] NVIDIA, “Pascal GPU architecture.” Website, 2019.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 770–778, 2016.

[10] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training

of deep bidirectional transformers for language understanding,” in Pro-

ceedings of the 2019 Conference of the North American Chapter of the

95



Association for Computational Linguistics: Human Language Technolo-

gies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume

1 (Long and Short Papers) (J. Burstein, C. Doran, and T. Solorio, eds.),

pp. 4171–4186, Association for Computational Linguistics, 2019.

[11] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models

are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[12] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and

connections for efficient neural networks,” in Proceedings of the 28th Inter-

national Conference on Neural Information Processing Systems - Volume

1, NIPS’15, (Cambridge, MA, USA), p. 1135–1143, MIT Press, 2015.

[13] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko, “Gist:

Efficient data encoding for deep neural network training,” in Proceedings

of the 45th Annual International Symposium on Computer Architecture,

ISCA ’18, p. 776–789, IEEE Press, 2018.

[14] E. Choukse, M. B. Sullivan, M. O’Connor, M. Erez, J. Pool, D. Nellans,

and S. W. Keckler, “Buddy compression: Enabling larger memory for deep

learning and hpc workloads on gpus,” in 2020 ACM/IEEE 47th Annual

International Symposium on Computer Architecture (ISCA), pp. 926–939,

2020.

[15] J. Bae, J. Lee, Y. Jin, S. Son, S. Kim, H. Jang, T. J. Ham, and J. W. Lee,

“FlashNeuron: SSD-Enabled Large-Batch training of very deep neural

networks,” in 19th USENIX Conference on File and Storage Technologies

(FAST 21), pp. 387–401, USENIX Association, Feb. 2021.

96



[16] C. Li, R. Ausavarungnirun, C. J. Rossbach, Y. Zhang, O. Mutlu, Y. Guo,

and J. Yang, “A framework for memory oversubscription management in

graphics processing units,” in Proceedings of the Twenty-Fourth Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’19, (New York, NY, USA), p. 49–63,

Association for Computing Machinery, 2019.

[17] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Train-

ing deep neural networks with binary weights during propagations,” in

Proceedings of the 28th International Conference on Neural Informa-

tion Processing Systems - Volume 2, NIPS’15, (Cambridge, MA, USA),

p. 3123–3131, MIT Press, 2015.

[18] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep

learning with limited numerical precision,” in Proceedings of the 32nd In-

ternational Conference on International Conference on Machine Learning

- Volume 37, ICML’15, p. 1737–1746, JMLR.org, 2015.

[19] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, N. E. Jerger, and

A. Moshovos, “Proteus: Exploiting numerical precision variability in deep

neural networks,” in Proceedings of the 2016 International Conference on

Supercomputing, ICS ’16, (New York, NY, USA), Association for Com-

puting Machinery, 2016.

[20] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with

sublinear memory cost,” arXiv preprint arXiv:1604.06174, 2016.

[21] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves,

“Memory-efficient backpropagation through time,” in Proceedings of the

30th International Conference on Neural Information Processing Systems,

97



NIPS’16, (Red Hook, NY, USA), p. 4132–4140, Curran Associates Inc.,

2016.

[22] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and T. Kraska,

“Superneurons: Dynamic gpu memory management for training deep neu-

ral networks,” in Proceedings of the 23rd ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’18, (New York,

NY, USA), p. 41–53, Association for Computing Machinery, 2018.

[23] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,

“vDNN: Virtualized deep neural networks for scalable, memory-efficient

neural network design,” in The 49th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO-49, IEEE Press, 2016.

[24] A. A. Awan, C.-H. Chu, H. Subramoni, X. Lu, and D. K. Panda, “OC-

DNN: Exploiting advanced Unified Memory capabilities in CUDA 9 and

Volta GPUs for out-of-core DNN training,” in 2018 IEEE 25th Interna-

tional Conference on High Performance Computing (HiPC), pp. 143–152,

2018.

[25] T. D. Le, H. Imai, Y. Negishi, and K. Kawachiya, “TFLMS: Large model

support in tensorflow by graph rewriting,” ArXiv, vol. abs/1807.02037,

2018.

[26] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong, F. Yang, and X. Qian,

“Capuchin: Tensor-based GPU memory management for deep learning,”

in Proceedings of the Twenty-Fifth International Conference on Architec-

tural Support for Programming Languages and Operating Systems, ASP-

LOS ’20, (New York, NY, USA), p. 891–905, Association for Computing

Machinery, 2020.

98



[27] M. Hildebrand, J. Khan, S. Trika, J. Lowe-Power, and V. Akella, “Au-

toTM: Automatic tensor movement in heterogeneous memory systems us-

ing integer linear programming,” in Proceedings of the Twenty-Fifth Inter-

national Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’20, (New York, NY, USA), p. 875–890,

Association for Computing Machinery, 2020.

[28] C.-C. Huang, G. Jin, and J. Li, “SwapAdvisor: Pushing deep learning be-

yond the GPU memory limit via smart swapping,” in Proceedings of the

Twenty-Fifth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS ’20, (New York,

NY, USA), p. 1341–1355, Association for Computing Machinery, 2020.

[29] J. Ren, J. Luo, K. Wu, M. Zhang, H. Jeon, and D. Li, “Sentinel: Ef-

ficient tensor migration and allocation on heterogeneous memory sys-

tems for deep learning,” in 2021 IEEE International Symposium on High-

Performance Computer Architecture (HPCA), pp. 598–611, 2021.

[30] G. Jo, J. Jung, J. Park, and J. Lee, “Memory-access-pattern analysis

techniques for OpenCL kernels,” in Languages and Compilers for Par-

allel Computing (L. Rauchwerger, ed.), (Cham), pp. 109–126, Springer

International Publishing, 2019.

[31] J. A. Stratton, C. Rodrigrues, I.-J. Sung, N. Obeid, L. Chang, G. Liu, and

W.-M. W. Hwu, “Parboil: A revised benchmark suite for scientific and

commercial throughput computing,” Tech. Rep. IMPACT-12-01, Univer-

sity of Illinois at Urbana-Champaign, Urbana, Mar. 2012.

[32] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and

K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”

99



in 2009 IEEE International Symposium on Workload Characterization

(IISWC), pp. 44–54, Oct 2009.

[33] NVIDIA, “CUDA code samples.” Website, 2019.

[34] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius, D. Pat-

terson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen,

D. Dutta, U. Gupta, K. Hazelwood, A. Hock, X. Huang, D. Kang, D. Kan-

ter, N. Kumar, J. Liao, D. Narayanan, T. Oguntebi, G. Pekhimenko,

L. Pentecost, V. Janapa Reddi, T. Robie, T. St John, C.-J. Wu, L. Xu,

C. Young, and M. Zaharia, “MLPerf training benchmark,” in Proceed-

ings of Machine Learning and Systems (I. Dhillon, D. Papailiopoulos,

and V. Sze, eds.), vol. 2, pp. 336–349, 2020.

[35] PyTorch, “PyTorch examples.” Website, 2022.

[36] T. Wolf, J. Chaumond, L. Debut, V. Sanh, C. Delangue, A. Moi, P. Cistac,

M. Funtowicz, J. Davison, S. Shleifer, et al., “Transformers: State-of-the-

art natural language processing,” in Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing: System Demon-

strations, pp. 38–45, 2020.

[37] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,

“Auto-tuning a high-level language targeted to GPU codes,” in 2012 In-

novative Parallel Computing (InPar), pp. 1–10, 2012.

[38] K.-H. Kim and Q.-H. Park, “Overlapping computation and communica-

tion of three-dimensional FDTD on a GPU cluster,” Computer Physics

Communications, vol. 183, no. 11, pp. 2364 – 2369, 2012.

100



[39] A. Khajeh-Saeed and J. B. Perot, “Computational fluid dynamics simu-

lations using many graphics processors,” Computing in Science Engineer-

ing, vol. 14, pp. 10–19, May 2012.

[40] S. Georgescu and H. Okuda, “Conjugate gradients on multiple GPUs,”

International Journal for Numerical Methods in Fluids, vol. 64, no. 10-12,

pp. 1254–1273, 2010.

[41] M. Bernaschi, M. Bisson, and D. Rossetti, “Benchmarking of communi-

cation techniques for GPUs,” Journal of Parallel and Distributed Com-

puting, vol. 73, no. 2, pp. 250 – 255, 2013.

[42] J. C. Phillips, J. E. Stone, and K. Schulten, “Adapting a message-driven

parallel application to GPU-accelerated clusters,” in SC ’08: Proceedings

of the 2008 ACM/IEEE Conference on Supercomputing, pp. 1–9, Nov

2008.

[43] E. H. Phillips and M. Fatica, “Implementing the Himeno benchmark with

CUDA on GPU clusters,” in 2010 IEEE International Symposium on

Parallel Distributed Processing (IPDPS), pp. 1–10, April 2010.

[44] J. B. White III and J. J. Dongarra, “Overlapping computation and com-

munication for advection on hybrid parallel computers,” in 2011 IEEE

International Parallel Distributed Processing Symposium, pp. 59–67, May

2011.

[45] A. Danalis, K.-Y. Kim, L. Pollock, and M. Swany, “Transformations to

parallel codes for communication-computation overlap,” in SC ’05: Pro-

ceedings of the 2005 ACM/IEEE Conference on Supercomputing, pp. 58–

58, Nov 2005.

101



[46] L. Fishgold, A. Danalis, L. Pollock, and M. Swany, “An automated ap-

proach to improve communication-computation overlap in clusters,” in

Proceedings 20th IEEE International Parallel Distributed Processing Sym-

posium, pp. 7 pp.–, April 2006.

[47] A. Danalis, L. Pollock, M. Swany, and J. Cavazos, “MPI-aware com-

piler optimizations for improving communication-computation overlap,”

in Proceedings of the 23rd International Conference on Supercomputing,

ICS ’09, (New York, NY, USA), pp. 316–325, ACM, 2009.

[48] T. Gysi, J. Bär, and T. Hoefler, “dCUDA: Hardware supported overlap

of computation and communication,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’16, (Piscataway, NJ, USA), pp. 52:1–52:12, IEEE Press,

2016.

[49] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “DeepSpeed: System

optimizations enable training deep learning models with over 100 bil-

lion parameters,” in Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’20, (New

York, NY, USA), p. 3505–3506, Association for Computing Machinery,

2020.

[50] P. Markthub, M. E. Belviranli, S. Lee, J. S. Vetter, and S. Matsuoka,

“DRAGON: Breaking GPU memory capacity limits with direct NVM

access,” in SC18: International Conference for High Performance Com-

puting, Networking, Storage and Analysis, pp. 414–426, 2018.

[51] C. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on hetero-

geneous multiprocessors with adaptive mapping,” in 2009 42nd Annual

102



IEEE/ACM International Symposium on Microarchitecture (MICRO),

pp. 45–55, 2009.

[52] K. Spafford, J. Meredith, and J. Vetter, “Maestro: Data orchestration and

tuning for OpenCL devices,” pp. 275–286, 08 2010.

[53] J. Kim, H. Kim, J. H. Lee, and J. Lee, “Achieving a single compute device

image in OpenCL for multiple GPUs,” in Proceedings of the 16th ACM

Symposium on Principles and Practice of Parallel Programming, PPoPP

’11, (New York, NY, USA), p. 277–288, Association for Computing Ma-

chinery, 2011.

[54] C. S. de la Lama, P. Toharia, J. L. Bosque, and O. D. Robles, “Static

multi-device load balancing for OpenCL,” in 2012 IEEE 10th Interna-

tional Symposium on Parallel and Distributed Processing with Applica-

tions, pp. 675–682, 2012.

[55] J. Lee, M. Samadi, Y. Park, and S. Mahlke, “Transparent CPU-GPU

collaboration for data-parallel kernels on heterogeneous systems,” in Pro-

ceedings of the 22nd International Conference on Parallel Architectures

and Compilation Techniques, PACT ’13, p. 245–256, IEEE Press, 2013.

[56] T. Lutz, C. Fensch, and M. Cole, “Partans: An autotuning framework for

stencil computation on multi-GPU systems,” ACM Trans. Archit. Code

Optim., vol. 9, Jan. 2013.

[57] K. Kofler, I. Grasso, B. Cosenza, and T. Fahringer, “An automatic input-

sensitive approach for heterogeneous task partitioning,” ICS ’13, (New

York, NY, USA), p. 149–160, Association for Computing Machinery, 2013.

103



[58] R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu, and K. Pingali,

“Adaptive heterogeneous scheduling for integrated GPUs,” in Proceedings

of the 23rd International Conference on Parallel Architectures and Com-

pilation, PACT ’14, (New York, NY, USA), p. 151–162, Association for

Computing Machinery, 2014.

[59] P. Pandit and R. Govindarajan, “Fluidic Kernels: Cooperative execution

of OpenCL programs on multiple heterogeneous devices,” in Proceedings

of Annual IEEE/ACM International Symposium on Code Generation and

Optimization, CGO ’14, (New York, NY, USA), p. 273–283, Association

for Computing Machinery, 2014.

[60] J. Lee, M. Samadi, and S. Mahlke, “Orchestrating multiple data-parallel

kernels on multiple devices,” in 2015 International Conference on Parallel

Architecture and Compilation (PACT), pp. 355–366, 2015.

[61] R. Nozal, J. L. Bosque, and R. Beivide, “EngineCL: Usability and per-

formance in heterogeneous computing,” Future Gener. Comput. Syst.,

vol. 107, p. 522–537, June 2020.

[62] M. Strengert, C. Müller, C. Dachsbacher, and T. Ertl, “CUDASA: Com-

pute unified device and systems architecture,” in Proceedings of the 8th

Eurographics Conference on Parallel Graphics and Visualization, EGPGV

’08, (Goslar, DEU), p. 49–56, Eurographics Association, 2008.

[63] J. Duato, A. J. Peña, F. Silla, R. Mayo, and E. S. Quintana-Ort́ı,

“rCUDA: Reducing the number of GPU-based accelerators in high perfor-

mance clusters,” in 2010 International Conference on High Performance

Computing Simulation, pp. 224–231, 2010.

104



[64] M. Oikawa, A. Kawai, K. Nomura, K. Yasuoka, K. Yoshikawa, and

T. Narumi, “DS-CUDA: A middleware to use many GPUs in the cloud

environment,” in 2012 SC Companion: High Performance Computing,

Networking Storage and Analysis, pp. 1207–1214, 2012.

[65] R. Aoki, S. Oikawa, T. Nakamura, and S. Miki, “Hybrid OpenCL: En-

hancing OpenCL for distributed processing,” in 2011 IEEE Ninth Inter-

national Symposium on Parallel and Distributed Processing with Applica-

tions, pp. 149–154, 2011.

[66] J. Kim, S. Seo, J. Lee, J. Nah, and G. Jo, “OpenCL as a programming

model for GPU clusters,” vol. 7146, pp. 76–90, 01 2013.

[67] A. Alves, J. Rufino, A. Pina, and L. P. Santos, “ClOpenCL: Support-

ing distributed heterogeneous computing in HPC clusters,” Euro-Par’12,

(Berlin, Heidelberg), p. 112–122, Springer-Verlag, 2012.

[68] P. Kegel, M. Steuwer, and S. Gorlatch, “DOpenCL: Towards a uniform

programming approach for distributed heterogeneous multi-/many-core

systems,” in Proceedings of the 2012 IEEE 26th International Parallel and

Distributed Processing Symposium Workshops & PhD Forum, IPDPSW

’12, (USA), p. 174–186, IEEE Computer Society, 2012.

[69] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “SnuCL: An OpenCL

framework for heterogeneous CPU/GPU clusters,” in Proceedings of the

26th ACM International Conference on Supercomputing, ICS ’12, (New

York, NY, USA), p. 341–352, Association for Computing Machinery, 2012.

[70] T. Diop, S. Gurfinkel, J. Anderson, and N. E. Jerger, “DistCL: A frame-

work for the distributed execution of OpenCL kernels,” in 2013 IEEE

105



21st International Symposium on Modelling, Analysis and Simulation of

Computer and Telecommunication Systems, pp. 556–566, 2013.

[71] J. Kim, G. Jo, J. Jung, J. Kim, and J. Lee, “A distributed OpenCL frame-

work using redundant computation and data replication,” in Proceedings

of the 37th ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, PLDI ’16, (New York, NY, USA), p. 553–569,

Association for Computing Machinery, 2016.

[72] L. Liao, K. Li, K. Li, C. Yang, and Q. Tian, “UHCL-Darknet: An

OpenCL-based deep neural network framework for heterogeneous multi-

/many-core clusters,” in Proceedings of the 47th International Conference

on Parallel Processing, ICPP 2018, (New York, NY, USA), Association

for Computing Machinery, 2018.

[73] K. Balhaf, M. A. Alsmirat, M. Al-Ayyoub, Y. Jararweh, and M. A. She-

hab, “Accelerating Levenshtein and Damerau edit distance algorithms

using GPU with unified memory,” in 2017 8th International Conference

on Information and Communication Systems (ICICS), pp. 7–11, 2017.

[74] R. Garg, A. Mohan, M. Sullivan, and G. Cooperman, “CRUM:

Checkpoint-restart support for CUDA’s Unified Memory,” in 2018 IEEE

International Conference on Cluster Computing (CLUSTER), pp. 302–

313, 2018.

[75] D. Ganguly, Z. Zhang, J. Yang, and R. Melhem, “Interplay between hard-

ware prefetcher and page eviction policy in CPU-GPU unified virtual

memory,” in Proceedings of the 46th International Symposium on Com-

puter Architecture, ISCA ’19, (New York, NY, USA), p. 224–235, Associ-

ation for Computing Machinery, 2019.

106



[76] Q. Yu, B. Childers, L. Huang, C. Qian, and Z. Wang, “HPE: Hierarchical

page eviction policy for Unified Memory in GPUs,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 39,

no. 10, pp. 2461–2474, 2020.

[77] T. Brokhman, P. Lifshits, and M. Silberstein, “GAIA: An os page cache

for heterogeneous systems,” in Proceedings of the 2019 USENIX Confer-

ence on Usenix Annual Technical Conference, USENIX ATC ’19, (USA),

p. 661–674, USENIX Association, 2019.

[78] H. Kim, J. Sim, P. Gera, R. Hadidi, and H. Kim, “Batch-aware unified

memory management in GPUs for irregular workloads,” in Proceedings

of the Twenty-Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS ’20, (New

York, NY, USA), p. 1357–1370, Association for Computing Machinery,

2020.

[79] P. Gera, H. Kim, P. Sao, H. Kim, and D. Bader, “Traversing large

graphs on GPUs with Unified Memory,” Proc. VLDB Endow., vol. 13,

p. 1119–1133, Mar. 2020.

[80] M. Harris, “Unified Memory for CUDA beginners.” Website, 2017.

[81] NVIDIA, “CUDA runtime API: Memory management.” Website, 2019.

[82] NVIDIA, “NVIDIA driver downloads.” Website, 2021.

[83] M. Harris, “How to overlap data transfers in CUDA C/C++.” Website,

2012.

[84] F. S. Foundation, “mprotect(2) - Linux manual page.” Website, 2019.

107



[85] T. Alexander and G. Kedem, “Distributed prefetch-buffer/cache design

for high performance memory systems,” in Proceedings. Second Interna-

tional Symposium on High-Performance Computer Architecture, pp. 254–

263, 1996.

[86] An-Chow Lai, C. Fide, and B. Falsafi, “Dead-block prediction dead-block

correlating prefetchers,” in Proceedings 28th Annual International Sym-

posium on Computer Architecture, pp. 144–154, 2001.

[87] T.-F. Chen and J.-L. Baer, “Reducing memory latency via non-blocking

and prefetching caches,” in Proceedings of the Fifth International Confer-

ence on Architectural Support for Programming Languages and Operating

Systems, ASPLOS V, (New York, NY, USA), p. 51–61, Association for

Computing Machinery, 1992.

[88] D. Joseph and D. Grunwald, “Prefetching using Markov predictors,”

IEEE Transactions on Computers, vol. 48, no. 2, pp. 121–133, 1999.

[89] Y. Solihin, Jaejin Lee, and J. Torrellas, “Using a user-level memory thread

for correlation prefetching,” in Proceedings 29th Annual International

Symposium on Computer Architecture, pp. 171–182, 2002.

[90] R. Consortium, “RDMA consortium.” Website, 2021.

[91] NVIDIA, “CUDA toolkit documentation.” Website, 2021.

[92] NVIDIA, “Artificial intelligence architecture — NVIDIA Volta.” Website,

2019.

[93] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

108



A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-

lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,

M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-

tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale ma-

chine learning on heterogeneous systems,” 2015. Software available from

tensorflow.org.

[94] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,

“Language models are unsupervised multitask learners,” 2019.

[95] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training

of deep bidirectional transformers for language understanding,” ArXiv,

vol. abs/1810.04805, 2019.

[96] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,

J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini, D. Dzhulgakov,

A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu, V. Kon-

dratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong, and

M. Smelyanskiy, “Deep learning recommendation model for personaliza-

tion and recommendation systems,” ArXiv, vol. abs/1906.00091, 2019.

[97] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 770–778, 2016.

[98] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation

learning with deep convolutional generative adversarial networks,” in 4th

International Conference on Learning Representations, ICLR 2016, San

109



Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (Y. Ben-

gio and Y. LeCun, eds.), 2016.

[99] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “MobileNets: Efficient convolutional neu-

ral networks for mobile vision applications,” ArXiv, vol. abs/1704.04861,

2017.

[100] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “NVBit: A dy-

namic binary instrumentation framework for NVIDIA GPUs,” in Pro-

ceedings of the 52nd Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO ’52, (New York, NY, USA), p. 372–383, Asso-

ciation for Computing Machinery, 2019.

110



초록

Unified Memory (UM)는 CUDA 프로그래밍 모델에서 제공하는 기능 중 하나로

단일메모리주소공간에 CPU와 GPU가동시에접근할수있도록해준다.이에따

라, UM을 사용할 경우 CUDA 프로그램에서 명시적으로 프로세서간에 데이터를

이동시켜주지 않아도 된다. 또한, CPU 메모리를 backing store로 사용하여 GPU

의 메모리 크기 보다 더 많은 양의 메모리를 필요로 하는 프로그램을 실행할 수

있도록 해준다. 결과적으로, UM은 프로그래머의 부담을 크게 덜어주고 쉽게 프

로그래밍 할 수 있도록 도와준다. 하지만, UM을 있는 그대로 사용하는 것은 성능

측면에서 좋지 않다. UM은 page fault mechanism을 통해 동작하는데 page fault

를 처리하기 위해서는 많은 오버헤드가 발생하기 때문이다. UM을 사용하면서 최

대의성능을얻기위해서는프로그래머가소스코드에여러힌트나앞으로 CUDA

커널에서 사용될 메모리 영역에 대한 프리페치 명령을 삽입해주어야 한다.

본 논문은 UM을 사용하면서도 쉬운 프로그래밍과 최대의 성능이라는 두마리

토끼를 동시에 잡기 위한 방법들을 소개한다. 첫째로, HUM은 기존 CUDA 프로

그램의 소스 코드를 수정하지 않고 호스트와 디바이스 간에 메모리 전송 시간을

최소화한다. 이를 위해, UM과 fault mechanism을 사용하여 호스트-디바이스 간

메모리 전송을 호스트 계산 혹은 CUDA 커널 실행과 중첩시킨다. 실험 결과를 통

해 HUM을통해애플리케이션을실행하는것이그렇지않고 CUDA만을사용하는

것에 비해 평균 1.21배 빠른 것을 확인하였다. 또한, Unified Memory를 기반으로

프로그래머가 소스 코드를 최적화한 것과 유사한 성능을 내는 것을 확인하였다.

두번째로, DeepUM은 UM을 활용하여 GPU의 메모리 크기 보다 더 많은 양의

메모리를필요로하는딥러닝모델을실행할수있게한다. UM을통해 GPU메모

리를초과해서사용할경우 CPU와GPU간에페이지가매우빈번하게이동하는데,

이때 많은 오버헤드가 발생한다. 두번째 방법에서는 correlation 프리페칭 기법을

111



통해 이 오버헤드를 최소화한다. 실험 결과를 통해 DeepUM은 기존에 연구된 결

과들과 비슷한 성능을 보이면서 더 큰 배치 사이즈 혹은 더 큰 하이퍼파라미터를

사용하는 모델을 실행할 수 있음을 확인하였다.

마지막으로, SnuRHAC은 클러스터에 장착된 여러 GPU를 마치 하나의 통합

된 GPU처럼 보여준다. 따라서, 프로그래머는 여러 GPU를 대상으로 프로그래밍

하지 않고 하나의 가상 GPU를 대상으로 프로그래밍하면 클러스터에 장착된 모든

GPU를활용할수있다.이는 SnuRHAC이 Unified Memory를클러스터환경에서

동작하도록 확장하고, 필요한 데이터를 자동으로 GPU간에 전송하고 관리해주기

때문이다. 또한, UM을 사용하면서 발생할 수 있는 오버헤드를 최소화하기 위해

다양한프리페칭기법을소개한다.실험결과를통해 SnuRHAC이쉽게 GPU클러

스터를위한프로그래밍을할수있도록도와줄뿐만아니라,애플리케이션특성에

따라 최적의 성능을 낼 수 있음을 보인다.

주요어: GPU, CUDA, Unified Memory, 프리페칭, 계산-통신 중첩, 거대 딥러닝

모델, 클러스터

학번: 2014-21775

112


	1 Introduction
	2 Related Work
	3 CUDA Unified Memory
	4 Framework for Maximizing the Performance of Traditional CUDA Program
	4.1 Overall Structure of HUM
	4.2 Overlapping H2Dmemcpy and Computation
	4.3 Data Consistency and Correctness
	4.4 HUM Driver
	4.5 HUM H2Dmemcpy Mechanism
	4.6 Parallelizing Memory Copy Commands
	4.7 Scheduling Memory Copy Commands

	5 Framework for Running Large-scale DNNs on a Single GPU
	5.1 Structure of DeepUM
	5.1.1 DeepUM Runtime
	5.1.2 DeepUM Driver

	5.2 Correlation Prefetching for GPU Pages
	5.2.1 Pair-based Correlation Prefetching
	5.2.2 Correlation Prefetching in DeepUM

	5.3 Optimizations for GPU Page Fault Handling
	5.3.1 Page Pre-eviction
	5.3.2 Invalidating UM Blocks of Inactive PyTorch Blocks


	6 Framework for Virtualizing a Single Device Image for a GPU Cluster
	6.1 Overall Structure of SnuRHAC
	6.2 Workload Distribution
	6.3 Cluster Unified Memory
	6.4 Additional Optimizations
	6.5 Prefetching
	6.5.1 Static Prefetching
	6.5.2 Dynamic Prefetching


	7 Evaluation
	7.1 Framework for Maximizing the Performance of Traditional CUDA Program
	7.1.1 Methodology
	7.1.2 Results

	7.2 Framework for Running Large-scale DNNs on a Single GPU
	7.2.1 Methodology
	7.2.2 Comparison with Naive UM and IBM LMS
	7.2.3 Parameters of the UM Block Correlation Table
	7.2.4 Comparison with TensorFlow-based Approaches

	7.3 Framework for Virtualizing Single Device Image for a GPU Cluster
	7.3.1 Methodology
	7.3.2 Results


	8 Discussions and Future Work
	9 Conclusion
	초록


<startpage>14
1 Introduction 1
2 Related Work 7
3 CUDA Unified Memory 12
4 Framework for Maximizing the Performance of Traditional CUDA Program 17
 4.1 Overall Structure of HUM 17
 4.2 Overlapping H2Dmemcpy and Computation 19
 4.3 Data Consistency and Correctness 23
 4.4 HUM Driver 25
 4.5 HUM H2Dmemcpy Mechanism 26
 4.6 Parallelizing Memory Copy Commands 29
 4.7 Scheduling Memory Copy Commands 31
5 Framework for Running Large-scale DNNs on a Single GPU 33
 5.1 Structure of DeepUM 33
  5.1.1 DeepUM Runtime 34
  5.1.2 DeepUM Driver 35
 5.2 Correlation Prefetching for GPU Pages 36
  5.2.1 Pair-based Correlation Prefetching 37
  5.2.2 Correlation Prefetching in DeepUM 38
 5.3 Optimizations for GPU Page Fault Handling 42
  5.3.1 Page Pre-eviction 42
  5.3.2 Invalidating UM Blocks of Inactive PyTorch Blocks 43
6 Framework for Virtualizing a Single Device Image for a GPU Cluster 45
 6.1 Overall Structure of SnuRHAC 45
 6.2 Workload Distribution 48
 6.3 Cluster Unified Memory 50
 6.4 Additional Optimizations 57
 6.5 Prefetching 58
  6.5.1 Static Prefetching 58
  6.5.2 Dynamic Prefetching 61
7 Evaluation 62
 7.1 Framework for Maximizing the Performance of Traditional CUDA Program 62
  7.1.1 Methodology 63
  7.1.2 Results 64
 7.2 Framework for Running Large-scale DNNs on a Single GPU 70
  7.2.1 Methodology 70
  7.2.2 Comparison with Naive UM and IBM LMS 72
  7.2.3 Parameters of the UM Block Correlation Table 78
  7.2.4 Comparison with TensorFlow-based Approaches 79
 7.3 Framework for Virtualizing Single Device Image for a GPU Cluster 81
  7.3.1 Methodology 81
  7.3.2 Results 84
8 Discussions and Future Work 91
9 Conclusion 93
초록 111
</body>

