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Abstract

A human motion-based interface fuses operator intuitions with the motor capabil-

ities of robots, enabling adaptable robot operations in dangerous environments. How-

ever, the challenge of designing a motion interface for non-humanoid robots, such as

quadrupeds or hexapods, is emerged from the different morphology and dynamics of

a human controller, leading to an ambiguity of control strategy. We propose a novel

control framework that allows human operators to execute various motor skills on a

quadrupedal robot by their motion. Our system first retargets the captured human mo-

tion into the corresponding robot motion with the operator’s intended semantics. The

supervised learning and post-processing techniques allow this retargeting skill which

is ambiguity-free and suitable for control policy training. To enable a robot to track a

given retargeted motion, we then obtain the control policy from reinforcement learning

that imitates the given reference motion with designed curriculums. We additionally

enhance the system’s performance by introducing a set of experts. Finally, we random-

ize the domain parameters to adapt the physically simulated motor skills to real-world

tasks. We demonstrate that a human operator can perform various motor tasks using

our system including standing, tilting, manipulating, sitting, walking, and steering on

both physically simulated and real quadruped robots. We also analyze the performance

of each system component ablation study.

keywords: Reinforcement Learning, Computer Graphics, Robotics, Human Robot

Interaction

student number: 2019-25917
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Chapter 1

Introduction

A legged robot worker that is secure for entering hazardous environments has long

been a pursuit in the robotics field. To achieve this goal, many research teams have

developed various approaches to designing autonomous robotic systems from classi-

cal model-based control to learning-based controllers. However, current autonomous

agents struggle with unexpected dangerous scenarios where the workers lack the infor-

mation as disasters. To overcome the limitation, the demand for a more flexible control

system that is applicable to black-box scenarios has emerged in a few years.

We present a human motion control system that allows operators to flexibly control

quadrupedal robots using reflexive motions. In the conventional approach, the human

motion control system has been designed with a model-based algorithm. As shown in

the work of Ramos and Kim [5], the traditional interface projects human centroidal

dynamics to the robot’s space. In the contrast, our approach carries great potential to

overcome completely novel scenarios by obtaining the novel idea using motion imita-

tion learning [6, 7, 8]. This approach has proved to perform natural motion control on

simulated creatures or real robots. Especially, we target the interface to the quadrupedal

robots inspired by emerging success of demonstrations [9, 7, 10, 11].

We conduct our motion control systems into two main parts: the motion retargeting

module and the motion imitation control policy. The motion retargeting module cap-
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tures a live human motion and decodes it into the dynamically plausible robot motion

that carries the intention of the input human motion. The imitation policy tracks the

retargeted robot motion based on the detected sensor data. We design the motion re-

targeting module similar to the supervised learning style while designing an imitation

control policy with deep reinforcement learning.

There are a few notable challenges to attaining our system and developing a general

motion control interface. The first challenge generates retargeting and control difficul-

ties caused by the intention ambiguity from human motion. We mitigate this issue by

embracing a hierarchical model with a set of experts for motion retargeting networks

and control policies. The second key challenge is the retargeted motion may show

the implausible traits. We adjust the motion with a couple of post-processing methods

by guaranteeing contact and temporal consistencies of the retargeted motion. Another

key challenge is the lack of accessing the future reference trajectory when imitating

the target motion. We adopt curriculum learning in the training step which gradually

increases the difficulty of multiple tasks.

We demonstrate the execution of various motor tasks seamlessly on both simu-

lated and real quadrupedal robots by our system. We use a consumer-grade motion

capture system, Microsoft Kinect [12] to perform such a control interface. We show

the individual tasks of the operator controlling an A1 robot to approach the target and

manipulate the object with both standing and sitting postures. Also, the operator can tilt

the robot’s body to reach out to a distant object or avoid incoming objects that possibly

damage the robot. Furthermore, we composite those tasks to achieve multiple goals in

a novel scenario. We analyze our system by ablation studies of essential components

such as consistency corrections, curriculum learning, and domain randomization. Our

technical contributions are as following list:

• We develop a novel human motion interface system for a quadrupedal robot that

requires minimal information about the task or the model.
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• We create an adequate motion retargeting algorithm with contact and temporal

consistency corrections.

• We enhance the performance of motion imitation by adopting curriculum learn-

ing and a hierarchical formulation of a set of experts.

• We demonstrate that an operator can execute various motor tasks seamlessly on

simulated and real robots.
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Figure 1.1: Novel control system that allows an operator to control a quadrupedal robot
on various tasks.

4



Chapter 2

Related Work

2.1 Legged Robot Control

Legged robot control. For decades, roboticists have strived for the advance of ro-

bust and dynamic robotic systems in both hardware and software of the legged robots.

Under these advancements, legged robots can demonstrate diverse, robust, and dy-

namic motor skills. The legged robots now can traverse challenging terrains or ex-

hibit high agility in their motion. The robot hardware development has allowed ag-

ile motor skills along with high stability of quadrupedal robots [13, 14, 15]. Be-

sides, the research on bipedal robot hardware has developed the robustness of loco-

motion [16, 17, 18]. Conventional software techniques for effective motion controllers

have involved numerous manual engineering and domain expertise. The mathemati-

cal approaches such as trajectory optimization [19, 20] and model predictive control

(MPC) [21, 22, 23, 24], bring the optimization techniques to forging robot motions

while relieving the human-powered struggles in controller design process. The devel-

opment of optimization methods has enabled legged robots to conduct the challenging

control goals such as locomoting on a slippery floor [25, 26], traversing the rough ter-

rain [27], recovering from the slip [28] and even keeping the balance on a large ball

in a physics simulation [29]. However, the real-legged robot obtains high complexity
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dynamics formulation which usually leads the algorithms to either operate with a sim-

plified robot model or design a task-specific controller. Our system allows the robot to

learn a wide range of motor skills without any task-specific dynamics modeling.

Learning-based control.The control of physically simulated characters using Rein-

forcement learning (RL) has shown a great performance in sophisticated motor skills

such as walking, jumping, cart-wheel, and skating [6, 30, 31, 32]. However, control

strategies learned in idealized simulation environments often struggle when transferred

to the real world. When this control policy is applied to the real-world environment,

the motor controller exhibits infeasible behaviors due to the simulation and real-world

difference, which is often referred to as the sim-to-real gap or shortly reality gap. To

address the reality gap, some research groups attempt to solve it by combining the pol-

icy with conventional optimization methods such as MPC, allowing it to adjust on the

real-robot [33, 34, 35, 36]. Another groups have investigated approaches that leverage

real-world data, such as learning on real robots [37, 38, 39], identifying system pa-

rameters [9], or adapting policy behaviors [7, 40, 11]. Instead, we employ a Domain

Randomization (DR) technique [41, 42, 43, 44, 45, 46, 8], which randomizes domain

parameters such as mass, friction, or PD gain during training in simulation to obtain

more robust control policies while training only in simulation.

2.2 Motion Imitation

Data-driven motion controllers have shown effective motion generation for a wide

range of physically plausible motions by leveraging motion capture data. This meth-

ods have been developed to obtain interactive motion control [47, 48, 49, 50, 51, 52].

However, the kinematic approach cannot be transferred to real-world directly, since

the motions lack dynamics information. On the other hand, physics-based motion con-

trollers [53, 54] let us convey physically feasible motions in simulation, but their con-

trol design requires extra manual efforts, such as feature selection and motion pro-
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cessing. The recent RL-based formulation [6] provides an automated pipeline for gen-

erating motion imitation control policies from simple reward descriptions containing

imitation components. This scheme shows novel capability of learning various mo-

tions on simulated characters [55, 56, 57, 6, 58, 30, 59, 31, 32, 60, 61], or even on a

real quadrupedal robot [7]. We adopt the concept of reinforcement learning with an

imitation objective to gain both physically correct motion and interactive control.

2.3 Motion-based Control

Controlling robots using human motion provides an intuitive interface by giving the

command directly from the human body motion to the robot body. Human motion

control schemes liberate the human operator from commonly used control mecha-

nisms such as joysticks, keyboards, or mouses. Furthermore, they allow the operator

to convey the user’s intention to the robot control much better than conventional con-

trol interfaces. Because of these benefits the control schemes obtain, human posture-

based control has been widely studied by computer animation researchers and roboti-

cists. [62, 63, 64, 3, 65, 4, 66, 67, 68, 69, 70, 5, 1, 71, 72].

Human motion control for humanoid robots. Humanoid robots inherit many fea-

tures of human morphology therefore, they provide a suitable platform for mimicking

human motions. Application of such anthropomorphic creatures ranges from human

interaction [67] to housekeeping teleoperation [73] or even hazardous disaster res-

cue [68]. The expansion of application to small-scaled humanoid by motion imita-

tion [70] emphasize the challenges of casting the human posture to a new morphology.

Research groups [62, 63, 65] have offered the methods dealing with the morphol-

ogy differences in the configuration space as joint limits, link length, and degrees of

freedom. Timing is an additional factor to consider when expanding the controller

from simple posture mapping to more dynamic motions like maintaining a balance.

Zheng and Yamane [66] suggest the method of integrating a time-warping objective
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to obtain a smoother motion-to-motion mapping control. Specifically, many research

groups have dedicated solving the balancing issues by many means such as Linear

Inverted Pendulum (LIP) model safety constraints [69] or the balance feedback to the

human [5]. Aside from these issues, teleoperation schemes have to overcome the safety

challenge to protect the manipulating robots. Choi et al. [72] proposed a shared-latent

embedding retargeting algorithm to avoid self-collisions which can potentially cause

severe damage. Arduengo et al. [74] demonstrated a technique of the end-effector to

switch between stiffness and compliance to convey sounder safety.

Motion retargeting to non-humanoid characters. The non-human-like characters

have different configurations from humans, therefore, conveying challenges of con-

trolling using human motion. However, several groups have succeeded to overcome

this issue, obtaining the semantics of the human postures to characters as animals or

alphabet shape creatures [64, 3, 4] with proper motion retargeting skills. The pose-to-

pose motion retargeting algorithms have been studied by various approaches as proba-

bilistic pose-to-pose mapping [3], semantic deformation transfer as mapping [64], or a

feature selecting method [4]. These mappings show highly interactive posture mapping

but are not being extended for robot control in the physics world. In 2D physics sim-

ulation, Kim et al. [1] presented the embedding of cyclic motion on the shared latent

space, which can control the ostrich character. In this work, we propose a new control

framework that allows a user to control a quadrupedal robot with body motions, which

allows a different morphology control. We achieve real-time motion control for vari-

ous tasks, including walking, tilting, manipulation, and sitting, with a minimal amount

of information about each task.
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Chapter 3

Overview

Figure 3.1: Overview diagram of our system. It takes a human motion as inputs and
controls the robot via motion retargeting and motion imitation.

Our system demonstrates the control framework for controlling a quadrupedal

robot with a human operator’s motion. Our framework receives human motion data

as input from any motion capture methods. We use Microsoft Azure Kinect [12] in

our case which serves simple access to the captured data. Then, the motion retargeting

module in our system (Chapter 4) transforms the captured human motion into the cor-

responding robot motion that is physically plausible and obtains proper semantics. We
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adopt a hierarchical structure of learning a set of experts to build mappers while apply-

ing post-processing techniques to correct the motion. To generate a control policy that

can be adaptable to the physics environment, we learn a control policy that imitates

the given retargeted robot motion using deep reinforcement learning (Chapter 5). For

more robust and flexible control, we develop expert policies using curriculum learn-

ing and combine them as a state machine in operating time with additional transition

algorithms. We illustrate the system overview in Figure 3.1.
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Chapter 4

Motion Retargeting Module

A motion retargeting module converts the captured operator’s motion into the corre-

sponding robot motion. Although numerous prior works have demonstrated success in

human-to-humanoid motion mapping [62, 63, 65, 66, 67, 70, 68, 69, 5, 73, 72], our

goal carries the unique problem to find a mapping function between two very different

morphologies. This problem usually obtains complex calculations, leveraging man-

crafted engineerings such as contact physics or centroidal dynamics. Even worse, we

have to handle additional issues, such as the sparsity of the data and the necessity of

interactivity.

We dive into this issue by leveraging the concept of the deep neural network to

create a motion retargeting function. Thus, we propose the idea of learning a set of

expert networks and applying post-processing to consist of the retargeting module.

Traditional techniques [2, 64, 3] commonly retarget the motion by solving optimiza-

tion. However, they exhibit a slow turnaround time that is unsuitable for interactive

applications. Furthermore, they often require task-specific formulation [4], which af-

fect the system to be complicated when handling a wide variety of motions. On the

other hand, learning-based approaches [72] demonstrate impressive inference capabil-

ities at interactive rates, but we might suffer the data-hungry problem. Furthermore,

they can generate inconsistent or unexpected motions that cause hardware damage to
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the robot. We propose a motion retargeting module that first infers robot motion in a

supervised learning fashion from a sparse dataset. Then, it corrects the inconsistency

of motion using simple optimization by post-processing. We generate a set of experts

to manage the various motion as an additional selector. Therefore, our system enables

the user to build a fast and robust motion retargeting scheme that is applicable to a

wide range of tasks.

4.1 Motion Retargeting Network

In this section, we will illustrate how to learn a motion retargeting network for a single

task. We develop a motion mapping function f that takes a human pose q as inputs and

then outputs the mapped corresponding robot pose p. A simple pose-to-pose mapping

module may produce ambiguous motions when retargeting periodic motions because a

single pose does not contain any temporal information. For example, when expressing

an in-place marching human motion, the two different phases swing up or swing down

are interpreted as the same pose which must be retargeted to different quadruped poses.

Therefore, we construct the retargeting network to take a triplet of the human pose,

velocity, and acceleration (q, q̇, q̈) to retarget those of robots (p, ṗ, p̈). We omit the

derivatives in some figures and equations for brevity.

Data preparation. To prepare a dataset D for learning the single mapping network, we

collect matching pairs of human and robot motion. First, we generate robot motions for

sampled tasks. For instance, we generate tilting task motions by giving a random task

goal and solving inverse kinematics to obtain robot motion. For locomotion tasks, we

generate a set of walking motions with various gait parameters such as body heights,

foot clearance heights, and swing angles using a trajectory generator [33]. Note that

these motion data are reused for training imitation policy in Section 5.

After generating robot motion datasets, we collect the matching human motion se-

quences. We ask a human operator to act the “corresponding motions” while showing

12



the robot motions based on the operator’s intuition. We capture the human motion of

this act. Then, we manually process the motions to clean up noisy features and fix

asynchronous actions. For both robot and human motion, we pair the triplets of the

pose and their derivatives with finite differences with ∆t = 0.1.

Figure 4.1: The illustration of the motion retargeting module. The motion retargeting
networks converts the given human motion q into the robot motion p. The contact and
temporal consistencies are corrected based on the inferred contact flags and previous
retargeted motion.

Learning process. We use a multi-layer perceptron (MLP) as a retargeting network

from the given dataset D (Figure 4.1). Our MLP consists of three leaky ReLU layers

and one final hyperbolic tangent layer to make the output value between [-1, 1]. We

then shift and scale the outputs using the robot joint limit vector to finalize the joint

angle of the robot. We define our loss function as follows:

Lmap = woriLori + wjntLjnt + wdxLdx + wddxLddx. (4.1)

We bypass the function arguments p, ṗ, p̈, p̄, ¯̇p, and ¯̈p for brevity, where the former
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three are the outputs from the networks and the latter three are the target values from

the datasets. The orientation loss Lori = d(proot, p̄root) is designed to compare the

root orietation proot in quaternion and its target value p̄root via a quaternion distance

function d. The joint angle loss Ljnt = ∥pjnt − p̄jnt∥2 matches the joint angles pjnt

and their target joint angles p̄jnt. These two loss term mainly drives the loss function.

The rest two end-effector terms are auxiliary that drives the end-effectors to settle for

target positions which are expressed as Ldx = ∥ẋ− ¯̇x∥2 and Lddx = ∥ẍ− ¯̈x∥2. They

compare the end effector velocities ẋ and accelerations ẍ against their target values,

¯̇x and ¯̈x, respectively. Note that these these values can be derived from ṗ and p̈. As

mentioned above, we set the weights wori, wjnt, wdx, and wddx as 0.3, 1, 0.001, and

0.001 for all the experiments, respectively to reflect our intentions to each term.

4.2 Post-processing for Consistency

The problem with the learned retargeting function is that they often yield physically

inconsistent motions in practice. This inconsistency slows the learning of a control pol-

icy and degrades the final motion control quality. To overcome this issue, we clean up

the motion at the post-processing stage to maintain contact and temporal consistency.

Contact consistency correction. Motion without contact consistency shows the foot

skating that is crucial to obtaining physical plausibility. The contact consistency vio-

lation destabilizes the robot balancing, hence leading to learning failure. To solve this

issue, we estimate four-dimensional contact flag vector ct. Then undesirable motions

are fixed when the flags are supposed to be in contact phases.

One simple possible approach to estimate ct is to compare the robot’s foot heights

to a certain threshold height. However, we found that this approach yields undesirable

discontinuous motions when manipulating a foot near the ground level. Therefore,

we learn an auxiliary network called the“contact prediction network” that predicts

smooth contact probabilities directly from human motion input. We train this contact
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consistent network from the same training data using the following loss function:

Lcp = ∥c̄t(q̄, ¯̇q)− ct(q, q̇)∥2, (4.2)

here, the contact probability c̄t is continuously estimated from the foot height and ve-

locity. We define the probability as 1.0 if the height is 0cm and the velocity is 0.0cm/s,

while 0.0 if the height is above 2cm and the velocity is more than 60.0cm/s. This func-

tion both considers the motion and the height as a probability so that the flag reflects

the movement features better. We apply inverse kinematics when the contact probabil-

ity is greater than 0.5 to correct the contact feet to the previous frame’s positions.

Temporal consistency correction. We also design a procedure to guarantee the tem-

poral consistency of the retargeted motions over continuous frames not to be in a dan-

gerous motion caused by abrupt movements. Since deploying the proposed system in

the real world is critical in our research, we need to stable these sudden moves. To this

end, we clip the joint angles concerning the manually set velocity limits, which are set

to 120◦/s.

4.3 A Set of Experts for Multi-task Support

In our experiments, obtaining an accurate motion mapping when the human operator

tries to demonstrate multiple tasks which are close to each other. To manage this issue,

we propose building a hierarchy of the network learning that manages a set of expert

networks [75, 76, 77, 78]. We primary learn each different motion retargeting networks

for three robot states, stand, walk, and sit (Figure 4.2). Each network can handle multi-

ple tasks within the state. For instance, manipulation-at-stand, tilting-at-stand or doing

both on stand state.

We query k-Nearest neighbors (kNN) over the human input motion to identify the

state expert associated with the closest data set. We switch the corresponding expert

only when the transition signal motion is detected. We discovered that this results
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in an accurate mapping function while reducing the time and resources for manual

engineerings, such as hyperparameter tuning and data curation.

Figure 4.2: We learn a set of expert motion retargeting networks for better controlla-
bility in multi-task scenarios.
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Chapter 5

Motion Imitation Module

The second step of our system is to develop a control policy to imitate the given ref-

erence motion generated from the first module. We employ the reinforcement learning

with the imitation reward framework of Peng et al. [6] that enables natural and di-

verse motions in physics simulation, which has also been applied to a real quadrupedal

robot [7].

Our ambitious goal aims to track a wide range of motions on real robots so that

it differs from other quadrupedal research. Furthermore, to achieve our goal, we face

additional unique challenges, especially in the learning process. The first issue to ad-

dress is dealing with noisier references in imitation learning. Since we capture the

input from live human movements, the retargeted reference motion involves noises

that are not observed in other works. Thus, our controller must obtain the capability to

imitate a wide range of motion with spatial and temporal noises because a human can-

not reproduce the exact same motion. The second difficulty comes that our controller

can’t access the “future” reference motions. Clearly, the absence of future information

frequently set a control policy to be conservative states rather than actively tracking

the reference motion.

To overcome the problems and maximize the performance of motion imitation, we

present the following techniques. First, our system provides a hierarchical model of
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control that learns three expert controllers for robot states stand, sit, and walk. The

transition between states is manually designed. Second, to obtain an effective expert

controller, we introduce curriculum learning which is organized over difficulties and

tasks. Our novel ideas demonstrate a practical controller that is capable of handling a

wide range of motion data on simulation and real robots.

5.1 Background: Reinforcement Learning

Our problem is formulated as Partially Observable Markov Decision Processes (PoMDP)

to employ the reinforcement learning [79]. On an each time step, an agent observes

an observation ot ∼ O(st) emitted from the current state st and takes an action

at ∼ π(at|ot) from its policy π. This results in the trajectory of the states and ac-

tions τ = {(s0,a0), (s1,a1), · · · (sT ,aT )} where T is the episode length. Our goal is

to find the optimal policy that maximizes the expected return:

J(π) = Eτ∼p(τ |π)[

T−1∑
t=0

γtr(st,at, st+1)], (5.1)

where p(τ |π) is a probability of the given trajectory τ .

5.2 Formulation of Motion Imitation

We formulate the problem of imitating the given reference motion as PoMDP.

Reference Motions. To provide the reference motions for imitation learning, we take

the robot trajectories that are generated for training a retargeting function in the pre-

vious section. We also injected a noise vector into reference motions to improve the

robustness of the control policy.

Observation. We set the observation vector ot = [zt−3:t,at−3:t−1, p̄t−3:t] consisting

of three components: robot sensor data, previous actions, and reference poses, with

their corresponding histories. Each robot sensor data zt represents a 16 dimensional
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vector from 12 joint motor encoders and 4 IMU orientation readings in quaternions.

A history vector of previous actions at−3:t−1 is also stored to make the problem more

Markovian in the real world. The policy also takes the previous reference poses p̄t−3:t.

Please note that we do not have future reference motions due to the nature of our

problem therefore, it is more difficult to solve tracking tasks.

Action. The action at defines as the PD target for the twelve joint motors of a robot.

We apply the Butterworth low-pass filter with the cut-off frequency at 5Hz to actions

to generate smoother motions.

Reward function. We design reward functions for the learning to encourage the agent

to imitate the given reference motion while adapting to the physics environment of

simulation:

rt = wmainrpt · ret · r
rp
t · rrot · rspt + waccracct , (5.2)

which embraces the multiplicative form to drive all the component to obtain certain

level of reward by previous works [30, 31]. The term rpt refers to a joint imitation

reward:

rpt = exp (sp
∑
j

∥p̄j
t − pj

t∥2), (5.3)

where p̄ and p are the target and sensor-read joint angles. The end-effector reward ret

induces the robot to track the end-effector of the reference:

ret = exp (se
∑
e

∥x̄e
t − xe

t∥2), (5.4)

where x̄e
t and xe

t denotes the target and current end-effector positions in 3D cartesian

coordinate relative to the root position. In the same way, the root position reward rrpt

and the root orientation reward rrot drives the robot to minimize the differences in root
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position and orientation:

rrpt = exp(srp∥x̄root
t − xroot

t ∥2)

rrot = exp(srod(p̄
root
t ,proot

t )2)
(5.5)

by comparing the current root position xroot and orientation and proot with respect

to their target values, x̄root
t and p̄root

t . Finally, we penalize the deviation from support

polygon

rspt = exp (sspdsp(x
root,proot,p)2), (5.6)

where dsp is the minimal distance to the support polygon. We only calculate dsp when

the robot is required to make at least three contacts: otherwise, dsp is defined as zero

so that rspt = 1. In auxiliary term, we penalize excessive motions with the acceleration

penalty term:

racct = exp (sacc
∑
j

∥p̈t∥2). (5.7)

To reflect our intention to emphasize the main mimicking term, we set weight terms

wmain = 0.9, wacc = 0.1 for all learning stage. The scaling coefficients are set to

sp = 1.0, se = 20.0, srp = 20.0, sro = 5.0 and ssp = 10.0 respectively.

Early termination. As proved in many works s [6, 80, 57, 81], the early termination

during policy training accelerates the learning speed incredibly. We trigger the early

termination when the robot trunk touches the ground and self-collision happens.

Learning process. We utilize Proximal Policy Optimization(PPO) [82] to optimize our

control policies. Each policy is consist of feedforward networks of two hidden layers

with 256 ReLu neurons. Our PPO formulation has a clipping range of 0.2, learning

rate of 0.00005, the discount factor is γ = 0.95, and the GAE parameter is λ = 0.95.

The minibatch size is 128 for the policy and value network. The max gradient norm is

set to 0.5.
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5.3 Curriculum Learning over Tasks and Difficulties

While the policy learned from the above formulation works skillfully for a single mo-

tion task, our aim of learning a versatile policy seemingly for multiple tasks remains a

challenge. We observe that naive learning will result in a policy that generates conser-

vative movement that is stuck in a steady position to avoid body falls while not trying

to track the target motion. To manage this problem, we train an expert policy for the

given motion state with a curriculum to expand the range of motion and the number of

tasks.

We divide the curriculum in to two parts: difficulties and the number of tasks.

Therefore, we sort all the robot reference motions based on two criteria: a task type

as a primary and difficulty of the task as a secondary. For instance, we train a stand

expert policy by training on the tilting-at-stand task first and expanding the task set

by adding the manipulation-at-stand task. For each task, we gradually increase the

difficulty by manipulating the range of reference motions. Likewise, we train a walking

expert by expanding the curriculum from the walking forward to the turning left/right,

with increasing turning rates.

5.4 Hierarchical Control with States

Our system is designed to perform motions with multiple tasks including tilting, ma-

nipulation, and locomotion over three different robot states, stand, sit, and walk. The

states and tasks yields different combinations such as tilting-at-stand or manipulation-

at-sit. This leads us to develop three expert policies for each robot state instead of

a monolithic policy. We produce a special transition controller which is called when

the motion selector of the motion retargeting module detects transitions. There are

multiple methods to build a transition controller such as model-based control or rein-

forcement learning. However, we reuse the existing motion imitation framework as a

controller. The transition takes 1 to 3 seconds depending on the tasks and the robot’s
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state. During transitions, the robot performs the predefined policy while ignoring hu-

man motions.

5.5 Domain Randomization

The dynamics of the simulation and the real world contain a certain gap which de-

creases the performance of simulation learned control policies that are deployed on

a real robot. We bring the Domain Randomization method [41], which randomizes

dynamics parameters during the training of the policy in simulation to obtain more

robust control in the real world. The randomized parameters and their ranges are iden-

tified in Table 5.1. We also applied the curriculum to these parameters similar to the

method mentioned in section C to facilitate the learning. Detailed procedures are well

mentioned in previous works [6, 8].

Parameters Range Unit
Link Mass [0.75, 1.25] X default kg

Ground Friction Coefficients [0.5, 1.5] 1
Proportional Gain [0.7, 1.3] X default N/rad
Derivative Gain [0.7, 1.3] X default N·s/rad

Communication Delay [0, 0.016] sec
Ground Slope [0, 0.14] rad

Table 5.1: Domain Randomization Parameters
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Chapter 6

Results and Analysis

We design the analysis process to evaluate our framework from three perspectives.

First, we demonstrate our result of the system’s ability to perform a set of tasks in

simulation and real environments. Second, we conduct ablation studies that evaluate

the effectiveness of our system components. Finally, we compare our system with

similar motion-based interfaces in a qualitative manner.

6.1 Experimental Setup

Our system is tested on an A1 quadrupedal robot [83], which has twelve actuated de-

grees of freedom for all legs(three for each leg) and six under-actuated degrees of free-

dom for the root. We utilize 76 to 522 matching data pairs for training the retargeting

module varying by the tasks. We train each control policy using 1.2 billion samples in

the RaiSim [84] physics simulator which serves a stable environment. Our experiment

was conducted on a stable desktop computer with Intel 16 core 3.60GHz i9-9900K

CPU and GeForce RTX 2070 SUPER GPU. We capture an operator’s motion using a

Kinect [12].

The simulation demonstrations are performed in interactive response. On the other

hand, we conduct real-world experiments in two modes. The first mode is the live mode
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that controls a real robot interactively in an end-to-end fashion which is in fact the

same way as simulation demos. The second mode is the replay mode that controls the

robot with the prerecorded human motion trajectories. The reason to build the replay

mode is that fluctuation control delays could harm a real robot and an operator. We do

not feed the future trajectory information even in the replay mode to grant the same

condition with the live mode. We annotate the experiment modes in the manuscript

and supplemental videos to clarify the demonstration.

6.2 Motion Performance

Individual tasks. First, we demonstrate a diverse set of motor tasks on the individ-

ual state for A1 using human motion control. In the stand state, a robot manipulates

its end-effector while simultaneously tilting its body. The range of tilting varies from

−40◦ to 40◦ for all x, y, z axes, which is larger than the tilting range of the manufac-

turer’s controller: −20◦ to 20◦ for pitch and roll and −28◦ to 28◦ for yaw. We show that

simultaneous manipulation and tilting provide a broader workspace. The manipulation

space with tilting delivers approximately 2.7 times larger touching space volume than

manipulation without tilting. We generate point clouds as in Figure 6.1 to compare the

working space volume. In the sit state, a robot is allowed to use both arms so that it

can reach higher targets. The capability of tilting while balancing in the sit state is 30◦,

15◦, and 7◦ in pitch, roll, and yaw axes, respectively. Our controller enables a robot to

walk at the speed of 0.0m/s to 0.97 m/s with the maximum turning rate of 15◦/second.

The quality of motion shows lesser performance than other controllers since our con-

troller should prepare for the abrupt change of motion at any moment. We illustrate

the motion tasks in Figure 6.2.

Composite tasks. Our control system enables a user to smoothly switch between tasks

by building a hierarchical structure. As illustrated in Figure 6.3 top, we conduct a sim-

ulation experiment with the following sequence: (1) tilting the body to tell a salute, (2)
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locomoting forward to reach a target of 3m, (3) weaving a thrown orange-colored ball

by crouching, (4) manipulating the target and (5) touching another target high in the

air. In the same way, we set up the replay mode demonstration to execute the follow-

ing tasks: (1) smashing a tennis ball located at 0.42m height, (2) sitting to hit a bone

hanging high at 0.8m height, and (3) dodging a thrown tennis ball (Figure 6.3 mid-

dle). The robot must sit to achieve (2) since the target bone is too high to reach while

standing. These scenarios present the seamless transition capability of our control sys-

tem. We conduct the final demo that controls a real robot to push the box to the target

position(X-mark on the floor) in real-time. The challenge of this task comes from the

fact that the target box has located a distance from the initial position. To achieve the

goal, we control the robot by repeating the following control tasks: (1) walk near the

box and (2) push the box toward the target (Figure 6.3 bottom).

Control responsiveness. To conduct the real-time control, responsiveness issue emerges

to be the most important criteria, which is even more critical for a quadrupedal robot

with a floating base. Our control system consists of two main stages: motion recon-

struction and control inference. In the motion reconstruction stage, the system infers

human 3D poses from the Kinect. The important technical components of our system

is included in the control inference stage. However, our system responsiveness bot-

tleneck mainly occurs at the motion reconstruction stage which affects for our 30 Hz

control loop. The main control loop component, entire inference task, consumes less

than 0.01 second, which is fast enough. We stabilize the control frequency from mo-

tion reconstruction stage by skipping Kinect reading when the delay is significant and

reusing the existing human motions from the previous frame.

Different mapping styles. Support of different styles of mapping for the same task

shows the flexibility of our system. As shown in Figure 6.4, we generate two different

retargeting functions with the human motion of (1) in-place marching and (2) cyclic

hand gestures. Both mapping styles demonstrate successful marching motions in the

simulation.
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Figure 6.1: Point clouds that illustrate the workspace of the right front leg when per-
forming only manipulation(red) and manipulation with tilting(bottom) during stand-
ing. The robot can reach approximately 2.7 larger volumes by simultaneously tilting
its body.
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Figure 6.2: Individual task motion of the (a) tilting and manipulation and (b) walking
tasks. From the top row, we illustrate human video footage, human skeleton, retar-
geted robot motion, simulated motion, and real robot motion, at the corresponding
time frames.

Figure 6.3: Composite tasks in simulation (top), real-world (middle (replay mode) and
bottom (live mode)).
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Figure 6.4: Different styles of mapping for walking. The top shows a mapping with
in-place marching and the bottom shows a mapping with hand gestures.

Semantic mapping with manual features. Similarly, we can manually tune a map-

ping not from selecting direct motion but by selecting features for retargeting. For

instance, mapping for the walking task with explicit notions can be extracted to the

feature parameters such as gait height, swing angle or gait patterns. Although this

explicit mapping offers slightly better motion quality, this requires domain-specific

knowledge of the task.

6.3 Analysis

Contact and temporal consistency. The importance of contact consistency and tem-

poral consistency corrections are evaluated through an ablation study. We conduct the

test environment to track 10 seconds of noisy trajectories perturbed from the ground

truth robot motions by 5120 test episodes. We compare ablations based on the success

time ratio, which is the ratio of the termination time to the maximum episode length.

As shown in Figure 6.5, both components are critical for the system. While contact
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consistency correction shows more importance for standing and sitting motions, tem-

poral consistency seems vital for walking motions.

Figure 6.5: Average success time ratio, which is the ratio of the termination time to the
maximum episode duration. We conduct an ablation study with contact consistency,
temporal consistency, and domain randomization to evaluate their effectiveness.

Curriculum learning. The presence of curriculum learning is essential for obtaining

the best motion control performance. The absences of the curriculum learning show the

tendency of survival motion until the last frame while showing conservative behaviors.

This leads us to compare the quality of motions to show the ablation as in Figure 6.6.

They illustrate the conservative behaviors of the policies without curriculum, which

put all the feet on the ground and do not attempt to reach the target.

Domain adaptation. Our system is able to overcome the sim-to-real gap by intro-

ducing Domain randomization (DR). We evaluate its effectiveness by measuring the

success time ratio in the same way as the consistency ablation study with the presence

of randomized dynamics. Figure 6.5 illustrates that DR is essential for our system. In
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addition, we conduct the sim-to-real experiment, where the policy without DR cannot

complete the given motion and leads to failure.

Figure 6.6: Snapshots of the robot control to show the effectiveness of curriculum
learning. The physically simulated agent tries to mimic the motion of reference (Top).
While the policy trained with curriculum successfully mimic the reference (Middle),
the policy without curriculum is stuck in local optimum (Bottom).

Importance of future reference. We observe that our controller shows a motion qual-

ity that is not as good as we expected. We hypothesize that the poor tracking per-

formance is caused by our real-time motion tracking without information about the

future trajectory. We train an additional policy that takes the additional future infor-

mation to track the motion to verify our hypothesis. We compare the motion quality

with our original agent. The experiment shows that the policy with future information

generates more stable motions.
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Criteria (A) (B) (C) (D) Ours
Mapping dimension 2D 3D 3D 3D 3D
Real-Time Y N N Y Y
Dynamics Y N Y N Y
Mapping Flexibility N N N Y Y
Sim2Real N N N N Y

Table 6.1: Comparison with previous human to non-humanoid control methods (A)
Kim et al. [1], (B)Dontcheva et al. [2], (C)Yamane et al. [3] (D)Seol et al. [4]

6.4 Comparison to Other Methods

Our method presents the novelty compared to the previous human to non-humanoid

control methods. As illustrated in Table 6.1, our method enables various aspects that

previous methods can’t accomplish. Kim et al. [1] showed the motion mapping that

corresponds to the dynamical systems of two different morphologies, but it is limited

to 2D cyclic motions. Dontcheva et al. [2] suggested the concept of detecting the hu-

man gesture to explore the matched motion pair of characters. This method carries the

limitation that a lack of dynamics. Yamane et al. [3] showed the success in mapping

human motions to non-humanoid characters with natural movements. However, this

approach obtains heavy calculation therefore, not aiming to get real-time control. Seol

et al. [4] showed a flexible retargeting scheme that contains both agility and semantics

by feature mapping but is limited to kinematic animations.

Our framework shows strength over flexible mapping and real-time control com-

pared to the presented methods. Thus, our framework supports a wide range of tasks

without domain knowledge of task-specific dynamics due to the motion retargeting

schemes. We also perform robust control in a real robot by adopting motion imitation

learning with domain randomization.

31



Chapter 7

Conclusion And Future Work

We presented a novel human motion control system that enables a user to control

quadrupedal robots using body motion. Our system mainly consists of two parts: a mo-

tion retargeting module and a motion imitation policy. The motion retargeting module

converts the captured human motion into robot motion with preserving semantics via

supervised learning manner and post-processing techniques. Then, we train a motion

imitation control policy that tracks the given retargeted motion while adapting to the

physics environment using deep reinforcement learning. We further improve the con-

trol performance by leveraging the concept of a set of experts and curriculum learning.

We demonstrate the evaluation of the motion control system on both simulation and

the real world by conducting various tasks, including standing, tilting, sitting, manip-

ulating, walking, or their combinations.

Our system shows a few limitations. First, we observe that the significant delay of

the motion capture processing system, Kinect, shows 0.01s to 0.06s latency. This par-

ticularly for a real robot, prevents us from conducting more real-world experiments in

the live mode by affecting the control frequency loop. While we mitigate this issue by

randomizing control frequency during training, some raised issues still remain. More-

over, the instability of the Kinect estimation system occasionally observes unexpected

operator motions that lead to control failure. We suggest that a motion capture system
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with better stability and higher rates will be more suitable for real-time motion control

applications.

Another limitation comes from the lack of future trajectory that severly degrades

the motion quality. Our control policies track the versatile reference motions with fre-

quent changes in motion that often resulting in conservative policies with not good

motion quality. We suggest to improve this issue by referencing the research that pre-

dict user intentions from history and leverage them in the control policies.

We conduct our experiments that the user and the robot are in the same space.

However, we can expand this setting to achieve the higher goal of developing robotic

workers in dangerous environments. In the future study, we suggest combining the pro-

posed system with virtual reality devices to deliver a more immersive control scheme.

Our proposed extensions raise new research questions: which robot sensory informa-

tion is essential for users to operate the robot with proper intention or how to deal with

increased delay.
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초록

사람의모션을이용한로봇컨트롤인터페이스는사용자의직관과로봇의모터

능력을합하여위험한환경에서로봇의유연한작동을만들어낸다.하지만,휴머노

이드외의사족보행로봇이나육족보행로봇을위한모션인터페이스를디자인하는

것은쉬운일이아니다.이것은사람과로봇사이의형태차이로오는다이나믹스차

이와제어전략이크게차이나기때문이다.우리는사람사용자가움직임을통하여

사족보행로봇에서부드럽게여러과제를수행할수있게끔하는새로운모션제어

시스템을 제안한다. 우리는 우선 캡쳐한 사람의 모션을 상응하는 로봇의 모션으로

리타겟시킨다.이때상응하는로봇의모션은유저가의도한의미를내포하게되며,

우리는이를지도학습방법과후처리기술을이용하여가능케하였다.그뒤우리는

모션을 모사하는 학습을 커리큘럼 학습과 병행하여 주어진 리타겟된 참조 모션을

따라가는 제어 정책을 생성하였다. 우리는 ”전문가 집단”을 학습함으로 모션 리타

게팅모듈과모션모사모듈의성능을크게증가시켰다.결과에서볼수있듯,우리의

시스템을 이용하여 사용자가 사족보행 로봇의 서있기, 앉기, 기울이기, 팔 뻗기, 걷

기,돌기와같은다양한모터과제들을시뮬레이션환경과현실에서둘다수행할수

있었다.우리는연구의성능을평가하기위하여다양한분석을하였으며,특히우리

시스템의각각의요소들의중요성을보여줄수있는실험들을진행하였다.

주요어: 심층 강화학습, 컴퓨터 애니메이션, 컴퓨터 그래픽스, 로보틱스, 휴먼-로봇

상호작용

학번: 2019-25917
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