

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Efficient Resource Scaling Policy in Inference

Serving of Natural Language Generation

Models

자연어 생성 모델 추론 서비스의 효율적인 자원 스케일링

정책

2022 년 7 월

서울대학교 대학원

컴퓨터 공학부

조 성 우

Efficient Resource Scaling Policy in Inference Serving

of Natural Language Generation Models

자연어 생성 모델 추론 서비스의 효율적인 자원

스케일링 정책

지도교수 전 병 곤

이 논문을 공학석사학위논문으로 제출함

2022 년 7 월

서울대학교 대학원

컴퓨터 공학부

조 성 우

조성우의 공학석사 학위논문을 인준함

2022 년 7 월

위 원 장 염 헌 영 (인)

부위원장 전 병 곤 (인)

위 원 장 병 탁 (인)

Abstract

Though number of different types of Deep Neural Network (DNN) models are

increasing, language generation model is still the most in demand. There is also

an increasing demand for serving the pre-trained model. However, managing

computing resources in serving Natural Language Generation (NLG) model is

not a trivial problem, because requests and responses of each query is different

due to a variety of environment. Moreover, it is even more challenging to decide

scaling policy, which minimizes both violation of service level objective (SLO)

and GPU resource usage. In this paper, we discuss the problem of using efficient

GPU resources in serving language generation model, and propose a design a

serving framework which supports fast and accurate scaling policy. We imple-

mented an deep learning inference serving framework with policy and validated

our system on the serving request query workloads.

Keywords: Deep Learning, Serving, NLP, NLG, GPU, Resource Management,

Scaling, Inference Engine

Student Number: 2018-23073

1

Contents

Abstract 1

1 Introduction 5

2 Background 8

2.1 Natural Language Generation Model 8

2.2 Scaling Inference Engine in Kubernetes Cluster 10

3 Related Work 12

3.1 Scaling in Machine Learning Inference Serving 12

3.2 Model-less Inference Serving . 12

4 Observation 14

4.1 Various Input Queries Violates SLOs 14

5 Scaling Mechanism and Policy 19

5.1 Horizontal Pod Scaling Mechanism 19

5.2 Per-Token Latency Based Policy 20

6 System Design 21

6.1 System Architecture . 21

2

6.2 Management Server API Design 23

6.3 Implementation . 23

7 Evaluation 25

7.1 Evaluation Setup . 25

7.1.1 Environment . 25

7.1.2 Workloads . 25

7.2 First Scaling Time . 26

7.3 SLO Violations and Total Resource Usage 27

7.4 Appropriate Resource Usage . 27

8 Conclusion 31

초록 38

3

Chapter 1

Introduction

While Deep Neural Network (DNN) models have rapidly grown [1, 2, 3, 4, 5],

it’s focus was mainly on serving and training the model. Especially in Natural

Language Generation (NLG), the size of model parameter have grown, starting

from BERT [1] to GPT-3 [4]. A lot of services intend to use these trained NLG

models in many ways: Automatic response in chat-bot, smart assistance, text

automatic generation, and so on.

Distributed training is essential to train those large DNN models quickly in

shared GPU clusters. GPU resource management system and the job scheduling

system are essential for efficient learning that saves costs. There were researches

about resource management in shared GPU clusters [6, 7, 8]. These systems

schedule training jobs and their resources to grow and to shrink dynamically.

As such, the resource management, scheduling, and scaling system realted to

DNN model training has been researched enough.

Though the resources used for model inference serving is less than the re-

sources used for training models, GPU resource management system for serving

5

model is needed as the demand increases. In traditional machine learning (ML),

there are multiple Machine Learning as a Service (MLaaS) platforms such as

Google Vertex AI, Amazon ML, and Microsoft Azure ML [9, 10, 11], which

already support resource management system in ML.

However, it is difficult to use the mechanism or policy used in NLG model

inference serving because it has different properties from the training and tra-

ditional machine learning service. In the case of training, if the input batch size

does not change for a job, the same computation is always repeated, so dynamic

resource change does not occur. Likewise, input query of MLaaS is simple, so

the resource is changed by almost input query rate. In the case of NLP inference

serving, if the request query changes, the amount of computation to response

to the query may change for each. Therefore, despite some studies of training

and MLaaS resource management, research on serving is still needed.

The use of input query throughput or latency, commonly used as Service

Level Objectives (SLO) in previous studies, is not suitable for NLP inference

serving as mentioned above. In other words, to allocate proper resources in re-

source management system, it would be more reasonable to use another metric,

not query throughput or latency. Per-token latency(input query latency / num-

ber of generated tokens) is a proper metric for scaling NLP inference serving

engine.

In this work, we designed and implemented an inference serving manage-

ment system. User can create the inference serving engine using RESTful API

and also choose the policy about SLO. After the inference serving engine is de-

ployed, our system automatically scales the engine out and in according to input

queries, not violating SLO. System collects both query latency and per-token

latency to decide scaling and supports both based scaling policy. Per-token la-

tency based scaling policy can achieve more flexible, fast and correct scaling.

6

And this scaling policy also generates less SLO violation than query latency

based scaling policy.

7

Chapter 2

Background

2.1 Natural Language Generation Model

Natural Language Generation model, or NLG model, is one of the most popular

AI which aimed at creating machines that can understand and produce human

language. As NLG models have developed, number of parameters of the model

is rapidly grown. Table 2.1 shows the number of parameters of recent NLG

models.

There are several Deep learning serving engines which guarantee high per-

formance for production environments. Tensorflow Serving [12], or TFX is a

serving system for machine learning Tensorflow [13] models. TorchServe [14] is

also a useful framework for serving and scaling PyTorch [15] models. NVIDIA

Triton server [16] is an open-source inference serving software that supports

various backends, such as Tensorflow, Pytorch, TensorRT [17] and so on.

Several existing NLG interference services use the various engines described

above in production.

8

Model Developer Parameter Size

BERT-Base [1] Google 110M

BERT-Large [1] Google 340M

GPT2 / GPT2-XL [2] OpenAI 1.5B

Chinchilla [18] DeepMind 70B

LaMDA [19] Google 137B

GPT3 [4] OpenAI 175B

OPT [20] Meta 175B

Gopher [21] DeepMind 280B

Megatron Turing [22] NVIDIA 530B

PaLM [23] Google 540B

Table 2.1 Recent Language model parameter size.

• Text Summarization: For given any text, the task is to generate a sum-

mary, which contains its main information and is shorter in length.

• Dialogue: A model intends to converse with a human, especially chat-bot.

• Creative writing: A model generates storytelling or poetry with given text

as a topic or material.

• Image captioning: For given image, a model makes a verbal description of

the contents of the image

• Machine Translation: For given text from one source language, a model

automatically translates to the target language.

9

2.2 Scaling Inference Engine in Kubernetes Cluster

In general, a kubernetes [24] cluster is used for deep learning interference serv-

ing. Kubernetes cluster is a group of nodes that execute containerized programs,

which is more lightweight and flexible than virtual machines. Pod is a group of

containerized programs, with shared storage, network, and computing resources

of node, and the smallest deployable units that kubernetes can create and man-

age. When deploying inference serving engine in kubernetes cluster, each engine

runs in a pod unit using node resources. Deployment is a group of same pod,

and provides declarative updates for pods. In order to manage and scale in/out

the pods of same interference engine, it is necessary to manage it as deployment,

not as each pod. Service is an abstraction method to expose executing applica-

tion in pod group to network service. Kube-proxymanages network connections

across multiple nodes in shared cluster and maintain network rules.

Figure 2.2 describes that inference engine is deployed on the kubernetes

clsuter. There are three inference engine is executed in a pod, and three pods

are grouped as a deployment. Service gathers the endpoints of inference engine

to single service endpoint, and kube-proxy manages and update IP table of

service when the number of pods is changed. When a user requests input queries

to the service endpoint, service properly distributes requests to each inference

engine. Pod scaler adjusts the number of pods in a deployment when triggered

by specific condition.

10

Figure 2.1 Kubernetes proxy to inference serving engine.

11

Chapter 3

Related Work

3.1 Scaling in Machine Learning Inference Serving

In traditional Machine Learning (ML), ML-as-a-service (MLaaS) is widely adopted

for inference serving. There have been studies about resource management sys-

tem and autoscaling. Jennings et al. [25] and Lorido-Botran et al. [26] investigate

a variety of resource management systems, which Gujarati et al. [27] focuses

service level agreement (SLA) aware autoscaling in a production of large scale

ML-as-a-service platform. Though these works targeted to serve general ML

model, polices in these works are not suitable for NLP model inference serving.

3.2 Model-less Inference Serving

InFaas [28] is a model-less inference serving system that efficiently navigates

the proper amount of resources. Resource requirements of serving application

are diverse due to the application purpose. For example, in a face recognition

model inference service, social media application needs high accuracy with low

12

cost, where as the visual guidance application asks high accuracy, low latency,

but is willing to pay high cost for service. Even an application with the same

function can have different requirements: InFaas selects a model, hardware, and

model optimizations for each application requirements.

13

Chapter 4

Observation

The concept of service level objective is needed when explaining the scaling of

NLG inference serving. Service Level Objective (SLO) is the most important

element of service level agreements (SLA), which is the consensus between a

customer and a service provider. SLOs commonly include input query through-

put, accuracy, frequency, response time or latency, availability. SLOs also can

be measured based on acheivement levels that can represented by menas, rates

or percentiles.

4.1 Various Input Queries Violates SLOs

In this section, we explain why scaling is difficult only with the existing SLO

measurement and propose a new suitable SLO measurement metric for NLG

inference serving.

In general inference serving, input query is not very diverse. For example

in image recognition inference service, the size and type of input image is fixed

14

Option Explanation

prompt Input text passed to the language generation engine.

max tokens Maximum number of tokens to be generated by engine.

min tokens Minimum number of tokens to be generated by engine.

choices Number of choices to generate by engine.

no repeat ngram Engine blocks to generate repeated n-gram.

temperature Distribution temperature to decide which token to gen-

erate. Only one of temperature and top p should be

utilised.

top p Distribution top p to decide which token to generate.

Only one of temperature and top p should be utilised.

top k Decide which token to generate in k largest element of

the candidates along a given vocabulary.

stop Engine stops to generate when it generate stopping

words.

Table 4.1 Various options of input query for natural language generation model.

Option
Query Type

Simple Complex

of tokens in prompt 34 82

of generated tokens

mean 30 62

min 10 15

max 34 64

choices 1 4

Table 4.2 Options and stats of input query to observe.

15

Figure 4.1 Latency of simple query using GPT2-XL model inference engine.

Left: Input rate and request latency graph.

Middle: Output throughput and request latency graph.

Right: Input rate and per-token latency graph.

and also the output is the same. In this case, query latency is according to the

input rate which is arrival interval from user to engine.

However, natural language generation inference service can receive a various

kinds of queries. Table 4.1 shows that several options of input query. In various

options, especially max tokens, min tokens, choices, and stop take control

the engine to decide the number of tokens to generate. Naturally, the number

of tokens to be made by engine is proportional to the latency of the query.

Furthermore, even if the number of token to generate is not enough, if the

number of input tokens (prompt) is large then this causes engine use a lot of

computing resources.

Table 4.2 describes two different type of input query for using observation

experiment. A simple query only request 1 choice, while a complex query re-

quests 4 choices for each input. Moreover, number of input tokens for a complex

query is x2.4 larger than a simple query, and the number of generated tokens

is x8 more than a simple one. Both input query types look the same, but the

engine computation for both query is quite different.

16

Figure 4.2 Latency of complex query using GPT2-XL model inference engine.

Left: Input rate and request latency graph.

Middle: Output throughput and request latency graph.

Right: Input rate and per-token latency graph.

Figure 4.1, 4.2 shows an experiment result to observe. Simple and complex

query in the experiment used the one described above, in Table 4.2. For ex-

periment, we generate input trace of simple and complex query, each trace has

2000 input queries, and input query follows the Poisson probability distribution

with four different lambdas(10, 20, 40, 80). We deploy GPT2-XL model infer-

ence engine in single node from 1 GPU to 4 NVIDIA T4 GPUs, and we fix the

amount of GPU resources used by the engine for each trace. For each trace, we

measure request latency and generated token latency (per-token latency).

In a simple query experiment (Figure 4.1), all three graphs are similar ten-

dency. Comparing the left and right graphs, it can be seen that per-token laten-

cies or request latencies have the same characteristics. The middle figure shows

that engine have reached a limit on the throughput, when it only uses 1 GPU

resource in computing high lambda of poisson distribution, and all the other

requests in small lambdas are not a problem. For simple query input, 1 GPU

is up to 40 lambda, and 2 4GPU is not difficult to serve in all cases in this

experiment.

17

Furthermore, we discover that result of complex query is quite different to

the previous result. (Figure 4.2) Once, it seems to radiate only at the engine

with 1 GPU resource in left figure. The middle graph indicates the limitation

of engine where each resource is used. An engine using 1 GPU resource cannot

handle any throughput, and with 2, 3, and 4GPU, the limit is 13, 20, and

30 series/sec throughput, respectively. This means that the limitations of the

engine cannot be sufficiently known by simply measuring the request latency.

However, measurement of per-token latency at the right figure represents the

limitation, too.

From these experimental results, we discover that per-token latency ex-

presses the limitations of the engine better than request latency. The following

section describes the scaling policy that uses per-token latency to enable the

NLG inference engine to have efficient resources according to the input query.

18

Chapter 5

Scaling Mechanism and Policy

5.1 Horizontal Pod Scaling Mechanism

We define scaling mechanism of NLG inference serving in kubernetes cluster.

In kubernetes cluster, Horizontal Pod Autoscaler (HPA) automatically updates

a resource of deployment. HPA appropriately adjusts the number of pods in

deployment using a user-defined metric. The following algorithm describes how

HPA calculates the number of proper pods of inference serving engine for de-

ployment.

Des i red number o f pods

= c e i l [cur rent number o f pods

∗ (cur r ent metr ic va lue / th r e sho ld)]

Listing 5.1 Autoscaling algorithm

HPA polls the current metric value every polling time and determines how

many pods are most appropriate according to the autoscaling algorithm. If HPA

19

determines that the number of pods needs to change, it adjusts the number of

pods in the target deployment, and kubernetes cluster notices that the deploy-

ment’s configuration has been updated and either executes new pods or stop

working pods.

5.2 Per-Token Latency Based Policy

We propose per-token latency based scaling policy, which is a fast and correct

resource scaling policy. We investigated the necessity of scaling using per-token

latency through observation at the previous chapter. In this section, we argue

in two ways the per-token latency based policy is better than request latency

based one.

First of all, we compare the two policies from the perspective of scale in

and out. In fact, the two policies are not very different for simple query input.

In the case of request latency-based policy, the time it takes for the scaler to

receive the metric is exactly as long as the request latency. On the contrary,

the pod scaler recieves whenever an output choice is created, with per-token

latency based policy.

Furthermore, per-token latency based policy is more flexible to both scale

in and out. In fact, the measurement of per-token latency metric has its upper

bound depending on the combination of inference serving engine and model.

As seen in Chapter 4, per-token latency does not diverge no matter how fast

any input query comes into the engine. Therefore, in per-token latency based

policy, as fewer pods run and stop more frequently, the process of finding the

optimal resource proceeds with less delay. This characteristic limits the number

of pods that change at once when scaling in/out. Therefore, per-token latency

based policy adjusts the number of pods little by little, quickly and accurately.

20

Chapter 6

System Design

In this chapter, we design inference serving system that supports fast and cor-

rect scaling policy.

6.1 System Architecture

In this section, we describe the system architecture of our inference serving sys-

tem. The components of our system consists of management server, horizontal

pod scaler and metric server. Figure 6.1 shows the whole architecture of system.

The management server controls the overall objects of the kubernetes clus-

function usage

READ GET http://host:port/deployment/$MODEL ID/

DELETE DELETE http://host:port/deployment/$MODEL ID/

CREATE POST http://host:port/deployment/

Table 6.1 APIs for inference management server.

21

Figure 6.1 System architecture.

ter. This server contains kubernetes control plain for creating, reading and

deleting various kubernetes objects, such as service, deployment and scaling

policy in pod scaler. The management server receives a request from the user

to create inference serving engine with submitted policy, and delivers pod scal-

ing policy to scaler.

Each inference serving engine, which is launched by the server and executed

in a pod, has metric exporter to the metric server. Metric server gather all

metrics from each engine. Horizontal pod scaler polls the metric corresponding

to its own scaling policy from the metric server every time interval. If the

number of pods has to be changed by policy, scaler adjusts the number of engine

pods by changing the configuration of the corresponding target deployment.

22

6.2 Management Server API Design

Based on the previous section, we provide the client RESTful API for manage-

ment server. In this section, we describes API endpoints and some examples on

usage. Query request and response is a JSON object, which User can create,

read and delete deep learning serving engine to send request to management

server. Table 6 describes RESTful APIs and Listing 6.1 shows body of creating

deployment of inference serving engine.

6.3 Implementation

Our system implementation is based on Python 3.9 and packaged by helm

chart. We use Kubernetes Python SDK for control kubernetes objects, and

make RESTful API using FastAPI [29]. For exposing engine metric such as

request latency and per-token latency, we implement prometheus [30] exporter

which expose these metrics to the endpoint of engine. For horizontal pod scaler,

we use KEDA [31], one of the custom resource definition in kubernetes cluster,

to perform scaling using metric exposed by prometheus.

23

{

// Cloud instance type.

"instance_type": <string >,

// Serving model id.

"model_id": <string >,

// Which serving engine to use.

"engine_type": <string >

// Define caling policy.

"scaler": {

// minimum number of engine pod.

"min_deployment_count": <int >,

// maximum number of engine pod.

"max_deployment_count": <int >,

// type of scaling policy.

"type": "request" | "pertoken",

// time window to gather metrics.

"time_window": <int >,

// threshold to scale out/in.

"threshold": <int >

}

}

Listing 6.1 Request body of CREATE API

24

Chapter 7

Evaluation

7.1 Evaluation Setup

7.1.1 Environment

We evaluated our system on a single node AWS instance, g4dn.12xlarge, with

4 NVIDIA T4 GPUs, 48 AWS custom Intel cascade lake virtual CPUs, 192 GiB

of memory in us-west-2 region. We use client program, sending the request in

the experiment, using the c4.xlarge instance in the same region to reduce the

networking time. We use Python 3.9, Ubuntu 22.04 and CUDA 11.4 for all our

experiments. .

7.1.2 Workloads

We evaluate our scaling policy using simulated input trace shown in Table 4.2.

We use trace of complex input query with 10 requests/sec input rate(lambda

of Poisson distribution). For natural language generation model, we use GPT2-

XL [2] by OpenAI. We serve this model using our custom inference serving

25

engine, which is similar to NVIDIA Triton [16]. For serving GPT2-XL model

with our custom engine, we use 1 GPU resource for each engine pod. Specif-

ically, we compare two main policies, query request latency based policy and

per-token latency based policy. We fix 2000ms request latency as a service level

objectives (SLO) for every experiment, and measure total violation response,

query latency, GPU resource usage, scaling speed for each policy. The thresh-

old of query request latency based policy to trigger scaler is 2000ms, same as

SLO latency, and 20ms, 25ms, 30ms, 35ms for per-token latency based policy.

In order to reduce the overhead of scaling pods, GPT2-XL pre-trained model

for inference serving engine was previously downloaded to the node for every

experiment.

7.2 First Scaling Time

Figure 7.1 First Scaling Time of different policy.

26

Figure 7.2 shows the scaling latency of GPT-2XL model measured in a single

node. In the figure, ”token” stands for our per-token latency based policy, and

our baseline, ”base” refers to request latency based policy. The first scaling time

is a measurement of scaling out latency from using 1 GPU to multiple GPU for

each policies. This measurement shows how quickly policy triggers pod scaler

to scale out inference serving engine. The smaller the first scaling time is, the

more sensitive and flexible the corresponding policy is to the input query. All

per-token latency based policies scale at most 2.29 times faster than baseline.

7.3 SLO Violations and Total Resource Usage

Figure 7.2 represents the number of total SLO violations of inference serving

engine. The result of measuring violations for SLO latency 2000 ms, and there

is 3840 queries as input in this experiment. And Figure 7.2 shows total GPU

resource usage (GPUsec) while inference engine serves the same number of

queries. We discover per-token latency based policy is much better than the

baseline. In general, it can be thought that the number of viloations and total

GPU resource usage are trad-off. However in per-token latency with 20 ms, the

number of violations is 2.1 times less and total resource usage is 17% less than

the baseline. Per-token latency based policy with 25 ms also defeat baseline in

both violations and usage. This result shows that such policy efficiently saves

resources while scaling.

7.4 Appropriate Resource Usage

Figure 7.4 explains that the GPU resource usage over time. For the first 120

seconds, though per-token latency based policy moves faster than the baseline,

changes in the resource usage are similar between both policies. After 120 sec-

27

onds, per-token latency based policy finds the optimal usage by reducing GPU

resource. However, baseline policy cannot find appropriate optimal resource for

inference serving. As we mentioned in Chapter 5, this is because the number

of pods that are scaled at once is smaller and scaling occurs more often using

per-token latency based policy.

28

Figure 7.2 Number of SLO violations.

Figure 7.3 Total resource usage.

29

Figure 7.4 GPU resource usage over time.

30

Chapter 8

Conclusion

In this paper, we have discussed the problem of using SLO request latency

in scaling inference serving for natural language generation model. And we

proposed a per-token latency policy which is a fast and correct resource scaling

policy. We implemented a inference serving deployment system to compare

scaling policy.

As a result of comparing the performance, the per-token latency based policy

of all thresholds had a smaller scaling latency than the baseline request latency

based policy. Furthermore, the Per-token latency based policy minimizes both

violation of service level objective (SLO) and GPU resource usage.

In conclusion, for serving various inference models, it is good to use effi-

cient resource scaling policy which is suitable for the characteristics of each

application.

31

Bibliography

[1] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of

deep bidirectional transformers for language understanding,” in Proceed-

ings of the 2019 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies,

NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1

(Long and Short Papers) (J. Burstein, C. Doran, and T. Solorio, eds.),

pp. 4171–4186, Association for Computational Linguistics, 2019.

[2] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Lan-

guage models are unsupervised multitask learners,” 2019.

[3] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-

zaro, “Megatron-lm: Training multi-billion parameter language models us-

ing model parallelism,” 2020.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-

Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,

C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,

J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and

32

D. Amodei, “Language models are few-shot learners,” in Advances in Neu-

ral Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell,

M. F. Balcan, and H. Lin, eds.), vol. 33, pp. 1877–1901, Curran Associates,

Inc., 2020.

[5] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,

W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a

unified text-to-text transformer,” Journal of Machine Learning Research,

vol. 21, no. 140, pp. 1–67, 2020.

[6] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,

P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou, “Gan-

diva: Introspective cluster scheduling for deep learning,” in 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 18),

(Carlsbad, CA), pp. 595–610, USENIX Association, Oct. 2018.

[7] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient

dynamic resource scheduler for deep learning clusters,” in Proceedings of

the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April

23-26, 2018 (R. Oliveira, P. Felber, and Y. C. Hu, eds.), pp. 3:1–3:14,

ACM, 2018.

[8] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman, A. Akella,

A. Phanishayee, and S. Chawla, “Themis: Fair and efficient GPU cluster

scheduling,” in 17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 20), (Santa Clara, CA), pp. 289–304, USENIX

Association, Feb. 2020.

[9] “Google vertex ai..” https://cloud.google.com/vertex-ai.

33

https://cloud.google.com/vertex-ai

[10] “Amazon machine learning - predictive analytics with aws..” https://

aws.amazon.com/machine-learning/.

[11] “Azure machine learning..” https://azure.microsoft.com/en-us/

services/machine-learning.

[12] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Ra-

jashekhar, S. Ramesh, and J. Soyke, “Tensorflow-serving: Flexible, high-

performance ml serving,” 2017.

[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,

S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,

M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale ma-

chine learning,” in 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), pp. 265–283, 2016.

[14] “Torchserve.” https://github.com/pytorch/serve.

[15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,

E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-

performance deep learning library,” in Advances in Neural Information

Processing Systems (H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

Buc, E. Fox, and R. Garnett, eds.), vol. 32, Curran Associates, Inc., 2019.

[16] “Nvidia triton.” https://github.com/triton-inference-server/

server.

[17] “Nvidia tensorrt.” https://github.com/NVIDIA/TensorRT.

34

https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning
https://azure.microsoft.com/en-us/services/machine-learning
https://github.com/pytorch/serve
https://github.com/triton-inference-server/server
https://github.com/triton-inference-server/server
https://github.com/NVIDIA/TensorRT

[18] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Ruther-

ford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan,

E. Noland, K. Millican, G. v. d. Driessche, B. Damoc, A. Guy, S. Osin-

dero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals, and L. Sifre, “Training

compute-optimal large language models,” 2022.

[19] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-

T. Cheng, A. Jin, T. Bos, L. Baker, Y. Du, Y. Li, H. Lee, H. S. Zheng,

A. Ghafouri, M. Menegali, Y. Huang, M. Krikun, D. Lepikhin, J. Qin,

D. Chen, Y. Xu, Z. Chen, A. Roberts, M. Bosma, V. Zhao, Y. Zhou,

C.-C. Chang, I. Krivokon, W. Rusch, M. Pickett, P. Srinivasan, L. Man,

K. Meier-Hellstern, M. R. Morris, T. Doshi, R. D. Santos, T. Duke, J. So-

raker, B. Zevenbergen, V. Prabhakaran, M. Diaz, B. Hutchinson, K. Olson,

A. Molina, E. Hoffman-John, J. Lee, L. Aroyo, R. Rajakumar, A. Butryna,

M. Lamm, V. Kuzmina, J. Fenton, A. Cohen, R. Bernstein, R. Kurzweil,

B. Aguera-Arcas, C. Cui, M. Croak, E. Chi, and Q. Le, “Lamda: Language

models for dialog applications,” 2022.

[20] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,

M. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster,

D. Simig, P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer, “Opt:

Open pre-trained transformer language models,” 2022.

[21] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song,

J. Aslanides, S. Henderson, R. Ring, S. Young, E. Rutherford, T. Hen-

nigan, J. Menick, A. Cassirer, R. Powell, G. v. d. Driessche, L. A.

Hendricks, M. Rauh, P.-S. Huang, A. Glaese, J. Welbl, S. Dathathri,

S. Huang, J. Uesato, J. Mellor, I. Higgins, A. Creswell, N. McAleese,

A. Wu, E. Elsen, S. Jayakumar, E. Buchatskaya, D. Budden, E. Suther-

35

land, K. Simonyan, M. Paganini, L. Sifre, L. Martens, X. L. Li, A. Kun-

coro, A. Nematzadeh, E. Gribovskaya, D. Donato, A. Lazaridou, A. Men-

sch, J.-B. Lespiau, M. Tsimpoukelli, N. Grigorev, D. Fritz, T. Sottiaux,

M. Pajarskas, T. Pohlen, Z. Gong, D. Toyama, C. d. M. d’Autume, Y. Li,

T. Terzi, V. Mikulik, I. Babuschkin, A. Clark, D. d. L. Casas, A. Guy,

C. Jones, J. Bradbury, M. Johnson, B. Hechtman, L. Weidinger, I. Gabriel,

W. Isaac, E. Lockhart, S. Osindero, L. Rimell, C. Dyer, O. Vinyals, K. Ay-

oub, J. Stanway, L. Bennett, D. Hassabis, K. Kavukcuoglu, and G. Irving,

“Scaling language models: Methods, analysis &; insights from training go-

pher,” 2021.

[22] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper,

Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti, E. Zhang, R. Child,

R. Y. Aminabadi, J. Bernauer, X. Song, M. Shoeybi, Y. He, M. Houston,

S. Tiwary, and B. Catanzaro, “Using deepspeed and megatron to train

megatron-turing nlg 530b, a large-scale generative language model,” 2022.

[23] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,

P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi,

S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer,

V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury,

J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghe-

mawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fe-

dus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sep-

assi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat,

A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang,

B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck,

J. Dean, S. Petrov, and N. Fiedel, “Palm: Scaling language modeling with

36

pathways,” 2022.

[24] B. Burns, J. Beda, and K. Hightower, Kubernetes: up and running: dive

into the future of infrastructure. O’Reilly Media, 2019.

[25] B. Jennings and R. Stadler, “Resource management in clouds: Survey

and research challenges,” Journal of Network and Systems Management,

vol. 23, no. 3, pp. 567–619, 2015.

[26] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of auto-

scaling techniques for elastic applications in cloud environments,” Journal

of grid computing, vol. 12, no. 4, pp. 559–592, 2014.

[27] A. Gujarati, S. Elnikety, Y. He, K. S. McKinley, and B. B. Brandenburg,

“Swayam: distributed autoscaling to meet slas of machine learning infer-

ence services with resource efficiency,” in Proceedings of the 18th ACM/I-

FIP/USENIX Middleware Conference, pp. 109–120, 2017.

[28] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “Infaas: Automated

model-less inference serving,” in 2021 USENIX Annual Technical Confer-

ence (USENIX ATC 21), pp. 397–411, 2021.

[29] “Fastapi.” https://fastapi.tiangolo.com.

[30] “Prometheus monitoring system..” https://prometheus.io/.

[31] “Keda.” https://github.com/kedacore/keda.

37

https://fastapi.tiangolo.com
https://prometheus.io/
https://github.com/kedacore/keda

초록

다양한 유형의 심층 신경망 모델 (DNN)이 증가함에 따라 자연어 생성 모델에

대한 관심이 많아지고 있다. 또한 학습된 모델 이용한 추론 서비스에 대한 수요

또한 함께 증가하고 있다. 그러나 자연어 생성 모델 추론 서비스를 운용하는 데

있어서 컴퓨팅 자원을 효율적으로 사용하는 것은 단순한 문제가 아니다. 이는 추

론 서비스에 들어오는 각 쿼리마다 추론 엔진에서 사용하는 컴퓨팅 자원이 다르기

때문이다.그렇기에추론서비스에대해자원스케일링정책을사용하는것은훨씬

더 어려운 일이다. 본 논문에서는 언어 생성 모델 추론 서비스에서 GPU 자원을

효율적으로 사용하는 문제에 대해 논의한다. 문제를 해결하기 위한 빠르고 정확

한 자원 스케일링 정책을 제안하고, 요청 쿼리 워크로드에 대해서 해당 정책을

검증한다.

주요어: 딥러닝, 서빙, 자연어처리, 자연어 생성 모델, GPU, 자원관리자, 스케일링

정책

학번: 2018-23073

38

	1. Introduction
	2. Background
	2.1 Natural Language Generation Model
	2.2 Scaling Inference Engine in Kubernetes Cluster

	3. Related Work
	3.1 Scaling in Machine Learning Inference Serving
	3.2 Model-less Inference Serving

	4. Observation
	4.1 Various Input Queries Violates SLOs

	5. Scaling Mechanism and Policy
	5.1 Horizontal Pod Scaling Mechanism
	5.2 Per-Token Latency Based Policy

	6 System Design
	6.1 System Architecture
	6.2 Management Server API Design
	6.3 Implementation

	7. Evaluation
	7.1 Evaluation Setup
	7.1.1 Environment
	7.1.2 Workloads
	7.2 First Scaling Time
	7.3 SLO Violations and Total Resource Usage
	7.4 Appropriate Resource Usage

	8. Conclusion

<startpage>6
1. Introduction 5
2. Background 8
 2.1 Natural Language Generation Model 8
 2.2 Scaling Inference Engine in Kubernetes Cluster 10
3. Related Work 12
 3.1 Scaling in Machine Learning Inference Serving 12
 3.2 Model-less Inference Serving 12
4. Observation 14
 4.1 Various Input Queries Violates SLOs 14
5. Scaling Mechanism and Policy 19
 5.1 Horizontal Pod Scaling Mechanism 19
 5.2 Per-Token Latency Based Policy 20
6 System Design 21
 6.1 System Architecture 21
 6.2 Management Server API Design 23
 6.3 Implementation 23
7. Evaluation 25
 7.1 Evaluation Setup 25
 7.1.1 Environment 25
 7.1.2 Workloads 25
 7.2 First Scaling Time 26
 7.3 SLO Violations and Total Resource Usage 27
 7.4 Appropriate Resource Usage 27
8. Conclusion 31
</body>

