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Abstract

Portfolio diversification 1s a major concern for a robust
investment strategy and time series comparison is maybe the most
common way to assess correlation between assets during capital
allocation. By creating a graph or network with assets as nodes and
pairwise correlation between assets as edges weights, it is possible
to identify clusters of assets strongly correlated to the overall
market, hence creating a resilient portfolio. Unfortunately, as in
many real—world systems, the wusual approach for community
detection based on shortest path does not account for the real—
world conditions.

This research tries to offer constructive insights on the graph
building and the correlation computation methods necessary for a
good portfolio allocation based on an assets correlation network.
This is done through the combination of two research areas: 1.
Communicability & centrality measure in graphs and 2. Lower tail
dependence for assets correlation assessment.

The final product of this research is a system that takes assets
daily return time series as input and output the composition of a

portfolio built using an asset correlation network.

Keyword : Portfolio Optimization, Graph, Lower—tail Dependence,
Network, Communicability
Student Number : 2020—23584
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Chapter 1. Introduction

1.1. Study Background

An asset correlation network is a network where nodes
represent assets and edges are weighted based on the established
correlation of the two assets (nodes) linked by the edge.

Community identification on a network can be done through
several methods. Whether it is through edges betweenness
computation or hierarchical clustering, they often rely on shortest
path or pairwise comparison and rarely account for real—world

“side” interactions, where information flow does not necessarily
take the shortest path.

To address this issue, Michelle Girvan & M. E. J. Newman
studied extensively the notion of communicability [1]: Rather than
limiting the interactions between nodes to the shortest path, all
paths are considered with a weight inversely scaled to their length.
This notion can be extended to other networks’ metrics such as
centrality [2], which assess how much a node is strongly linked into
the overall network™.

While there is evidence of this graph—based strategy being
used in the industry®, and while the allocation method once the
centrality is computed has been studied, there is little research on
which method to use for correlation computation as most graph—
based strategies rely on simple correlations such as Pearson

correlation or Distance correlation.

? See Betweenness centrality in chapter 2.

@ Notably, a portfolio allocation method called Hedgecraft 21 6
1 .__x_! _'q.l_. ¥ -



1.2. Purpose of Research

This paper aims to explore the asset correlation network
approach for portfolio diversification while improving the early
steps of the process. To establish how much the communicability
provides a better representation of the market than the simple edge
betweenness, and by using different correlation assessments, a
comparison is made of this network—based method on pools of
stocks from well—known indexes.

While distance correlation (used in the initial strategy) takes
non—linear correlation into account, it has a limited interpretation in
the real world. Another common method in finance to assess the
correlation between two asset is the lower tail dependence. Applied
on stock returns, it describes how much an asset price would be
impacted knowing that an other’s is going to zero. This is especially
useful to provide robust strategy in trying times such as crisis or
high volatility periods.

Based on the work of Giovanni De Luca and Paola Zuccolotto
[6], an attempt is made to build the market graph with lower tail
dependence as the correlation value. It is then compared to the
initial approach using distance correlation, as well as approaches
only based on shortest path methods for the assets’ allocation.
Every experiment is conducted on S&P500, DAX, CAC and Kospi
underlying assets to test the robustness of the strategy using

different experiment parameters and on different markets.

9 -":rxﬁ-! _'q.;:-'l u 1-.



Chapter 2. Communicability & Centrality

2.1. Communicability

The first limit to network representation of real—world complex
systems i1s how the interactions between nodes are evaluated.
Common methods rely on shortest path while reality is not as
simple. Even though it is more obvious for mechanical or
thermodynamical systems, finance is not spared by this inherent
complexity. Hence, it is necessary to consider other paths than the

shortest one in an asset correlation network.

To that extent, we need the followings:

Given an unoriented graph G such as
G=W,E), |Vl=n, [E|=m_ A(G) =4¢€{0,1}""

We define the following values:

number of shortest the number of walks
number of walks of
paths of length $ of length k >s
length k from node P .
o g between nodes P connecting the nodes
© and 4 P and 4
k (s) (k)
(4),q Py W

Using those, we can define the communicability between p and g as

oo Ak
Gy = =P 4 Z w = Z—( 2= (eh)
s1'pa k! k! pa
=1

k>s

Rather than considering solely the shortest path between p and
q, this communicability takes all paths into account, inversely
weighted by their length. Moreover, as the definition allows it, the
communicability is none other than the exponential of the adjacency

matrix. This property 1is extremely convenient since given

A =2 2 2 A the eigenvalues of 4 and ®/(®) the P™ element of



:th . . )
the J* orthonormal eigenvector of the adjacency matrix

(associated with A'j), we can express the communicability between

p and g as

o0

Z pq—e —Z@J(p)fpj(q)eﬂf

2.2. Green function

Green’s function is defined as the impulse response of an
inhomogeneous linear differential operator in a domain with
specified initial conditions. Estrada & Hatano [5] shows that the
communicability can be expressed as the Green’s function of the
network. By treating each node as an oscillator and each edge as a

spring, we can express the mechanical system that ensue as follow:

Let % be the force from p applying on q (1), we can then
derivate the potential energy from the resulting force (2). B
summing these, we find the total energy (3). Diagonalizing L we can

express the partition function (4) as in (5)

(1) b= K Xq(2, = 2)Apq (K a common spring constant)

(2) U = gzq(zp - Zq)zqu

2
(3) E= LU pq(z —24) Apq = —K Xpq ZpLpeZg

Lpqg = Apq = kpdpq (L being the Laplacian matrix of the graph)

- 1
(4) Z= Zauconfig € FE = Efzpzqexp (ﬁKZs,lZsleZi)Hrer

=%J’exp (ﬁKZA uz)ndu

(%)



qu (ﬁ) = (Zp|zq) = ;J‘szq exp (ﬁK Zs,iZsleZi) H:r'dzr

Gpq is the Green’s function of the network and represents how

much node q oscillate when node p is shaken. It is even possible to
extend that definition to weighted graphs as the symmetric matrix

still allows diagonalization:
E, = qu(zp - Zq)qu = Xqkpq (Zp - Zq)

The asset correlation network can then be represented as a force—
directed graph where each edge is a spring subject to the Hooke
law. When an information (an impulse) is released, the market is
impacted, and the contagion spread from assets to assets. The

assets prices are impacted further propagate the phenomenon.

2.3. Centrality

Unfortunately, identifying communities using solely the
communicability is difficult for asset correlation networks. In their
work, Michelle Girvan & M. E. J. Newman [2] identify two main
graph structures with specific communicability properties:

e Disassortative: strong communicability between hubs and
nodes of low degree
e Assortative: strong communicability between nodes with
the highest degrees (hubs)
The main drawback to asset correlation networks is that they are of
the latter kind and tend to show overlapping communities, making it
difficult to properly distribute the capital among them. Instead, a
solution is to consider the centrality of a node to the network.
Rather than allocating capital among communities of assets, we
allocate the capital based on how correlated the assets are to the

overall market.

The common centrality of node v is based on shortest path as



follow:

() = Z o5 (v)

Ot

sEvEL
But we want to use the communicability previously established to

generalize the centrality:

1 G,
ccp(v) = c Z t(:J)

G
sFv*l

A representation of the asset correlation network for the
German (DAX) and French (CAC) indexes’ stocks, with assets
colored by centrality can be observed in Figure 1. The
corresponding asset allocation is then visible in the Results section.

In order to amplify the difference of centrality between assets
and to reduce the computation cost, it is possible to prune away the
edges with smallest weights. Estrada, Higham & Hatano [5]
recommend pruning edges with weights below 0.325 but in order to
preserve the connexe structure of the graph, it is sometimes

necessary to use a lower threshold (0.2 for DAX for example).



Chapter 3. Lower tail Dependence

3.1. Lower tail dependence

While distance correlation is commonly used to assess
correlation between time series, a lot of other methods are used in
finance. In order to improve the results of the performance of this
network—based strategy, we need to find a correlation computation
that better fit the assumptions made when using Green’s function.
The correlation coefficient represents the elasticity constant of the
edges in the network. Hence it needs to account for the “impulse
propagation” mechanic that is represented by the communicability.
In finance, this could be explained as the “contagion” phenomenon
triggered by bad news. An unexpected event drives the price of an
asset down and this news propagate to others similar assets that
are then affected (for example, a shortage of semi—conductor might
first impact electronics companies before spreading to the overall
tech market).

Lower tail dependence assesses how much an asset’s price is
likely to tend to zero knowing another one tends to zero. It can be

formally expressed as following:

A = lim P(X; < F5 ()X < Fi (q))
where F€(q) = inf{x € R: F(x) = q}

In practice, the tail dependence coefficients must be estimated
from observed data. A very effective way of modeling financial
returns is to use a copula function thanks to which tail dependence
estimation is both simple and flexible.

The difference between distance correlation and lower tail
dependence can be observed in Figure 2 wusing hierarchical

clustering.



3.2. Copulas

A copula is a multivariate cumulative distribution function
defined as follow: €:[0,1]1 = [0,1] (in our case, with two time series,
d =2 g bivariate copula). It describes the dependence structure
between the variables. The main advantage of copulas resides in the
Sklar’s theorem that states that every multivariate cumulative
distribution function can be expressed in term of its marginals and a
copula.

For the lower tail dependence, the most used class of copula is
the class of Archimedean copulas as they often admit an explicit
formula and allow modeling dependence in high dimensions.
Specifically, in our case, we use the Clayton copula, defined as

follow:

Co(w,v) = [max(u™® +v7¢ = 1;0)] 7 yith 6 € R\{0}

The process to determine the lower tail dependence is the
following: Empirically fit the copula ¢ € R\{0} parameters on the
time series studied, derivate marginal distribution from the copula

and finally determine lower tail dependence.



Chapter 4. Computation improvement

While the graph building and the centrality computation have a
relatively light computational cost, the copula becomes extremely
slow to process for a large number of assets (during an S&P500
portfolio construction for example). Moreover, the need for dynamic
strategy or the will to apply this strategy on a shorter—term basis
may require reducing this computation time.

De Luca & Zuccolotto [7] have shown evidence of association
between index volatility and lower tail dependence of pairs of
assets. This provides an opportunity to improve the computation
time by deducing the copula parameter directly from the index

volatility using a simple linear regression.

To assess the potential gain in computational power, the
following experiment is realized for CAC and DAX indexes:

e Compute the index daily volatility using the ARCH model

e Compute lower tail dependence on a daily rolling period

using a copula for each pair of assets

. . A
e Plot the scatter points of the resulting values ( ”’t)tero;ﬂ

against the index volatility (00 )eefo,r)

While the results are not as conclusive as De Luca &
Zuccolotto’s on the Italian market, Figure 3 shows that some scatter
plots still provide evidence of a strong linear correlation. Applying a
linear regression to those gives us an estimate value for the copula
parameter of the pair.

For each pair with a sufficient linear correlation factor, the

following estimation is made to replace the parameter fitting during

the lower tail dependence computation: ftij = €XP(®i; + @i0:—1)  The

lower tail dependence is then estimated as follow:

9 ;A X

3 =11 =1
- T O



De Luca & Zuccolotto note that pairs with significant correlation

have a positive %ij. In their own words, “The lower tail dependence
coefficient tends to increase with rising volatility in the market, in

accordance with the idea of contagion”. This confirms the legitimacy

of using the lower tail dependence in our centrality—based approach.

10 / -":rxi ":'l::r' L



Chapter 5. Experiments

5.1. Strategy

Once each asset is given a centrality value, we allocate a share
of capital depending on this value. By allocating capital to assets
depending on their centrality (the lower the centrality the higher
the share), we create a portfolio disconnected from the global
market trend, hence more resilient to high volatility periods such as

those seen recently.

ioo j-Cm
M= : P, centrality(G(M)) = (ciefin]
lno ﬁ'ml

Four allocation functions are proposed:

Avg Exp Ln TT

_ (=c) W, = exp(-cj) W, = =In (c;)

c —Ci
w; = W, = (emax=ci)
Cavg LTexp Cin Crt

With Cavg , Cexp | Cin , Cit as normalization constants

5.2. Back test

The correlations matrix used as adjacency matrix to build
the graphs are created using 2015—2018 daily returns from S&P,
Kospi, DAX and CAC underlying assets®. For each index, distance
correlation and lower—tail dependence matrix are computed. For
each correlation matrix, several graphs are created with increasing
threshold® to prune the edges with smallest correlation values. The
nodes centrality of each graph is then computed and turned into an
asset allocation using the four allocation functions. All these newly

formed portfolios are tested on 2018—-2021 market data.

® The stocks that were included or excluded from the index during the
training period are not considered.

© 0.3 for S&P and CAC, 0.2 for DAX, 0.03 for Kospi i
11 A =1



S&P
Kospr
DAX
CAC

S&P
Kospr
DAX
CAC

Chapter 6. Results

Table 1. Return (in %) on the 2018—2021 period for every strategy.

Uniform [ndex

S&P \ 57.74 39.33

Kospi \ 19.93 19.41

DAX 26 6.58

CAC 2.09 4.97

Lowertail
Communicability Shortest path
Avg Exp Ln TT Avg Exp Ln TT
71.66 65.87 107.66 101.89 57.75 57.75 58.63 61.08
21.23 20.43 19.96 23.57 19.94 19.94 20.62 22.6
42.32 34.66 104.31 180.96 25.95 25.95 25.7 24.16
4.98 3.7 20.13 26.96 2.06 2.06 1.97 0.87
Distance Correlation
Communicability Shortest path
Avg Exp Ln TT Avg Exp Ln TT
54.74 56.55 53.75 21.22 57.74 57.74 56.59 23.11
19.93 19.93 19.93 13.29 19.93 19.93 «© *
25.7 25.89 25.6 =15.83 26 26 25.61 —15.33
1.62 1.9 1.45 -11.77 2.09% 2.09% 1.6 0.87
© Because of the low threshold for edges pruning, these allocation functions
could not be computed. A -
¥ s A&t et



5.1. S&P
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5.2. Kospi
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5.3. DAX

DAX portfolio lowertail avg
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5.4. CAC

CAC portfolio lowertail avg

a aa a

ar

ao bn btp @ cap dg dsy e

en e fr ge kr Ir mc m m o oa pub re

CAC portfolio lowertail exp

mo saf san sgo sm s sw

U vie v

vin

a aa a

air

ao bn bop @ cap dg dsy e

en e f ge ker It m m m o oa pub re

CAC portfolio lowertail In

mo sf san sgo stm su sw

U vie wv

vin

010

a aa a

ar

ao bn btop @ cap dg dsy e

en e f ge ker It m m m o oa pub

CAC portfolio lowertail tt

mo saf san sgo sm s sw

U vie v

vin

005
0.00 .

a aa a

air

ao bn bnp ca @p dg dsy e

en e fr ge kr I mc m m o oa pub R

28

0

mo saf san sgo stm su sw

U vie wv

vin




AVG

1e6 CAC capital
= = Uniform
+ Index
—— Lower Tail
—— Lower Tail w/o communicability
—— Distance Correlation
11 —— Distance Correlation w/o communicability
10
09
08
07
2018-01-02  2018-04-27 20181212 2019-02-25 20190509  2019-07-18  2019-09-26  2019-12:05  2020-02-18  2020-04-30  2020-07-10  2020-09-18  2020-11-27
CAC 50-avg return
0.006 = = Uniform
L + Index
—— Lower Tail
—— Lower Tail w/o communicability
—— Distance Correlation
0,004 —— Distance Correlation w/o communicability
(
{
A AR 7
0,002 4 W & 1
fA % 7,
+ ¥ A g
& f\ 2
* 1 N b i A\
9 r ¥ A f B
0.000 \s - 3 b | po i
X & +
R b +
% :: #
tx
7 1 ¥
-0.002 %
e d
o+
4
i
-0.004 ¥
1
~0.006 L
|
-0.008 1
|
2018-12-12 2019-02-25 2019-05-09 2019.07-18 2019-09-26 2019-12-05 2020-02-18 2020-04-30 2020-07-10 2020-09-18 2020-11-27

29



11

10

0.9

08

07

0.006

0.004

0.002

0.000

-0.002

—0.004

-0.006

-0.008

EXP

CAC capital

== = Uniform
+  Index
— Lower Tail

—— Lower Tail wjo communicability
—— Distance Correlation
—— Distance Correlation w/o communicability

2018-01-02  2018-04-27

2019-05-09  2019-07-18  2019-09-26  2019-12-05

CAC 50-avg return

2020-02-18

2020-04-30

2020-07-10  2020-09-18  2020-11-27

= = Uniform
+  Index
—— Lower Tail

—— Lower Tail w/o communicability
—— Distance Correlation
—— Distance Correlation w/o communicability

2018-12-12

2019-07-18 2019-09-26 2019-12-05

2020-02-18

2020-04-30

vy .
E » ;M
% -
% §
¥ #
A
£
L

20200710 20200918 2020-11-27



12

11

10

0.9

08

07

0.0075

0.0050

0.0025

0.0000

~0.0025

~0.0050

-0.0075

~0.0100

LN

1e6 CAC capital
= = Uniform
+  Index
—— Lower Tail

—— Lower Tail w/o communicability
—— Distance Correlation
—— Distance Correlation w/o communical

S B
#
4 ot
+
9 :J;* +
A A & T\
b 3
¥
2018.01-02  2018-04-27 20181212 20190225 20190509  2019-07-18  2019-09-26  201912-05  2020-02-18  2020-04-30  2020-07-10  2020-0918  2020-11-27
CAC 50-avg return
= = Uniform
+  Index
—— Lower Tail
—— Lower Tail w/o communicability
—— Distance Correlation
—— Distance Correlation w/o communicability
o LAl

i A + ¥l +
[Y v d /
f ' A
y A
v /\‘* i i | p
[ 2 ’ MA
) .«J LR p’* | B'W
4 V
K/
A
LA
0
|
\
2018-12-12 2019-02-25 2019-05-09 2019-07-18 2019-09-26 2019-12-05 2020-02-18 2020-04-30 2020-07-10 2020-09-18 2020-11-27

31




13

12

11

10

09

08

07

06

0.0100

0.0075

0.0050

0.0025

0.0000

-0.0025

~0.0050

-0.0075

-0.0100

1e6 CAC capital
= = Uniform
+  Index
Lower Tail

Distance Correlation

—— Lower Tail w/o communicability
—— Distance Correlation w/o communical

%
A
2018-01-02  2018-04-27 20181212  2019-02-25 20190509  2019-07-18  2019-09-26  2019-12-05 2020-04-30  2020-07-10  2020-09-18  2020-11-27
CAC 50-avg return
= = Uniform
+  Index
—— Lower Tail

—— Lower Tail w/o communicability
—— Distance Correlation
—— Distance Correlation w/o communicability

2018-12-12

2019-02-25

2019-05-09

2019-07-18

2019-09-26 2019-12-05

32

2020-07-10 2020-09-18 2020-11-27



Chapter 7. Discussion

From the Table 1 in the Results section, we can see that for
every index and almost every allocation function, the lower—tail
dependence associated with communicability centrality betweenness
shows better performance than the other solutions. Even the uniform
allocation and an index pegged portfolio do not overperform this
method. The two exceptions are concerning the CAC and Kospi
indexes. For CAC, the index allocation overperform the AVG
allocation and has a close result to the EXP allocation. For Kospi,
despite a slightly better average result, the performance is very
close to the uniform allocation. This is due to the fact that the
pruning threshold to preserve the connexe structure of the graph is
extremely low compared to other markets. This may be due to an
overall strong correlation of the underlying assets of Kospi.

By observing the allocation bar graphs, we can see that the
different allocations functions provide different approach to the
portfolio constitution: AVG and EXP provide a highly diversified
portfolio with a share of every stock of the index and a slightly
higher share attributed to assets with low centrality. On the other
hand, LN and TT single out specific stock that can be considered as
likely to outperform the market during a crisis. This translates by a
higher return but a riskier portfolio as some stock can reach a 40%

share of the asset bag.

Note: while the thresholds used to prune the correlation networks
are made to preserve a connexe structure using lower tail
dependence as edges weights, the thresholds for networks using
distance correlation are far higher. However, a stronger pruning does
not yield better performances during back testing, hence the
minimum weight used for edge pruning on distance correlation is the

same as the one for lower tail dependence.
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Chapter 8. Conclusion

The experiment results show good performances as well as
a good adaptability of the asset correlation network strategy.
Overall, the communicability betweenness centrality using lower tail
dependence as asset correlation proves to be the best method for
the asset correlation network strategy. An interesting point is the
fact that lowering the threshold for graph pruning draw the
allocation closer to the uniform asset allocation, hence reducing the
over—exposition to certain assets. This can be used to adapt the
strategy to the risk tolerance of the investor or to define more
precisely the strategy desired: this method can be used to build a
diverse portfolio with little correlation with the market or it can be
diverted to 1dentify stocks with high potential during bear

markets or high volatility periods.
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Figure 2.a) DAX correlation dendrogram using lowertail dependence

as correlation factor
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Figure 2.c) CAC correlation dendrogram using lowertail dependence

as correlation factor
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Figure 3.a) Copulas coefficient inference on DAX
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Figure 3.b) Copulas coefficient inference on CAC
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