

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Geometry Kernel based on

G1-continuous Circular Arcs

G1 연속 원호 기반의 기하학 커널

August 2022

서울대학교 대학원

컴퓨터공학부

정 하 선

Geometry Kernel based on

G1-continuous Circular Arcs

G1 연속 원호 기반의 기하학 커널

지도교수 김 명 수

이 논문을 공학석사 학위논문으로 제출함

2022 년 4 월

서울대학교 대학원

컴퓨터공학부

정 하 선

정 하 선의 공학석사 학위논문을 인준함

2022 년 6 월

위 원 장 신 영 길 (인)

부위원장 김 명 수 (인)

위 원 서 진 욱 (인)

Abstract

We discuss some technical issues in the design and analysis of geometry kernel

for planar geometric models designed with G1-continuous arc splines. In par-

ticular, we mainly focus on numerical instability in computing the intersection

for planar curves, and how the usage of G1-continuous arc splines can allevi-

ate some of the instability problems inherent to geometric computations using

floating-point arithmetic. With arc spline model’s higher numerical stability,

we further present algorithms for some essential operations of geometry kernel

that require finding precise intersection points.

As an effort to improve the computational efficiency, we also present the

data structures for the geometry kernel that is tailored to modeling with

G1-continuous arc splines. The presented data structures greatly simplify the

bounding volume computation for planar curves through monotone segmen-

tation and simplification of case analysis. Considering the 8-DOP bounding

volume of planar curves, the BVH construction can be made with ease based

on the support distances of each bounding volume. Finally, we consider appli-

cations of the aforementioned algorithms and data structures to the classical

problems, such as convex hull and offset computations.

Keywords: Circular arcs, Arc spline, Geometry kernel, Self-intersections,

Boolean operation, Bounding volume computation

Student Number: 2020-26241

Contents

Abstract . i

Contents ii

List of Figures iv

List of Tables vi

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Research objectives and main contributions 3

1.3 Thesis organization . 8

Chapter 2 Related Work 9

2.1 Biarc approximation . 9

2.2 Bounding volume hierarchy . 10

2.3 Algorithms using biarc . 11

Chapter 3 Preliminaries 13

3.1 Geometric models . 13

ii

3.2 Curve segmentation . 17

Chapter 4 Arc-Arc Intersection 18

4.1 Algorithm . 19

4.2 Experimental results . 23

Chapter 5 Boolean Operations 26

5.1 Algorithm . 30

5.1.1 No intersection case . 32

5.1.2 Tangential case . 33

5.1.3 Transversal case . 36

Chapter 6 Bounding Volume Computation 40

6.1 Collision detection . 43

6.2 Minimum distance computation 44

Chapter 7 Discussions on Applications 48

7.1 Offset computation . 48

7.2 Convex hull . 50

7.3 Voronoi diagram . 51

Chapter 8 Conclusion 53

Bibliography 55

초록 . 60

Acknowledgments . 61

iii

List of Figures

Figure 1.1 Polygonal model and NURBS model 3

Figure 1.2 Intersection detection using polygonal models 4

Figure 1.3 Boolean union based on different number of intersections 6

Figure 2.1 Bounding volumes using arcs 10

Figure 3.1 Basic data types . 14

Figure 3.2 Basic structs . 15

Figure 3.3 Basic constructors . 16

Figure 4.1 Two intersecting circles 22

Figure 4.2 Self-intersection detection 24

Figure 4.3 Intersection between almost identical objects 26

Figure 4.4 Intersection between almost tangential objects with fewer

line segments . 27

Figure 4.5 Intersection between almost tangential objects with more

line segments . 28

Figure 5.1 Two arc splines with intersection points 31

iv

Figure 5.2 Boolean result . 31

Figure 5.3 Two solids with holes with no intersection point 33

Figure 5.4 Tangential case when d = |r1 − r2| 34

Figure 5.5 Tangential case when d = r1 + r2 35

Figure 5.6 Transversal case where the arcs are tangential at the

intersection . 35

Figure 5.7 Both adjacent arcs have the same start and end points 37

Figure 5.8 Both adjacent arcs have the same start point 37

Figure 5.9 Both adjacent arcs have the same end point 37

Figure 6.1 Conditions for each direction to exist for 8-DOP and

support distances . 41

Figure 6.2 Examples of 8-DOP in the first quadrant 42

Figure 6.3 Minimum distance between two arcs 45

Figure 6.4 Minimum distance between two lines 46

Figure 8.1 Union between two circles 54

v

List of Tables

Table 4.1 Self-intersection detection 24

Table 4.2 Intersection between almost identical objects 26

Table 4.3 Intersection between almost tangential objects with fewer

line segments . 27

Table 4.4 Intersection between almost tangential objects with more

line segments . 28

vi

Chapter 1

Introduction

1.1 Background

Geometric modeling kernel is a set of core geometry functions used in 2D

and 3D modeling applications. This software component defines the way of

storing geometric shapes, and provides algorithms to execute operations such

as Boolean operations, distance computation, bounding volume construction,

and so on. Conventionally, geometric algorithms are mostly developed based

on polygonal models, Non-Uniform Rational B-Spline (NURBS) curves and

surfaces. Polygonal models defined by points, lines and triangles are used to

represent objects for applications in digital media based on computer graph-

ics technology. Additionally, as the de facto industry standards, commercial

products are mostly designed using the NURBS models due to their repre-

sentational and computational power that supports high precision not only in

shape modeling but also in physical simulation.

1

Nonetheless, each conventional approach presents some limitations. Polyg-

onal models are not G1-continuous, and thus cannot avoid sharp corners and

edges. Compared to NURBS representation, polygonal models show large ap-

proximation errors because of sharp edges and flat faces. Furthermore, polyg-

onal models need to store information regarding vertices, edges, and faces,

making the data size of objects become enormously large. On the other hand,

NURBS models are often represented with high-degree rational polynomial

curves and surfaces. When the degrees of the curves and surfaces become

higher, the calculation tends to take considerably longer time and consequently

can become numerically unstable.

Polygonal models and NURBS models present relative strengths and weak-

nesses compared to one another. Polygonal models are employed when the

rendering time is more important than the precision. NURBS models are pre-

ferred when the precision is more important than the rendering time. Thus,

polygonal models are mainly used for applications in video games, animations,

and other forms of real-time computer graphics, while NURBS models play

an important role in product design and engineering simulations.

As a compromise to these two mainstream modeling approaches, there has

been some previous work done on arc-based modeling which suggests its effi-

ciency and efficacy. Arc-based models offer a new stream where the advantages

of both polygonal modeling and NURBS modeling can be maintained. In this

thesis, we discuss some technical issues that must be considered in the devel-

opment of a new geometry kernel which uses circular arcs to represent planar

geometric objects.

2

(a) A polygonal model (b) A NURBS model

Figure 1.1: Polygonal model and NURBS model

1.2 Research objectives and main contributions

The geometry kernel based on G1-continuous circular arcs is based on previous

results developed for arcs. The main motivation is to put geometry knowledge

about arcs altogether in one place. As a whole, the geometry kernel in this

thesis defines how to represent objects using arcs maintaining G1-continuity. In

the course, we aim to demonstrate numerical stability of arc spline modeling

through experiments and comparison. While some advantages of arc spline

modeling compared to the conventional approaches are apparent, the analysis

on numerical stability leads to some interesting new findings.

One of the comparable advantages of arc spline modeling over polygonal

modeling is that the number of arc splines required to represent a curve is far

fewer than the number of line segments required to represent a curve. This

is because approximation error exhibits cubic convergence when an object is

approximated by arc splines. On the other hand, quadratic convergence is

3

(a) False-positive intersection detection (b) False-negative intersection detection

Figure 1.2: Intersection detection using polygonal models

observed when an object is approximated by line segments [2]. This leads to

an improvement in computing speed and accuracy for finding the intersection

between two curves when they are represented in circular arcs. Furthermore,

the arc spline modeling guarantees G1-continuity, which is more compliant to

the design specifications [5, 19].

Besides, polygonal models usually show larger error for finding the inter-

sections. When polygons are used to approximate curves, there is a higher

possibility of finding the intersections incorrectly. Intersections detected by

polygonal curves often result in false-positive, or false-negative as shown in

Figure 1.2. Two concentric circles do not meet each other because they share

the same center, but different radii in Figure 1.2(a). However, polygons approx-

imating the circles with 8 line segments meet each other at 16 points. On the

other hand, the approximation error in polygonal models can lead to missing

4

some intersections. Furthermore, the precision in finding the intersections be-

tween almost tangential circular arcs is exceptionally high compared to finding

the intersections between line segments that are almost tangential. Two circles

can have at most two intersection points if their centers or radii are different.

However, line segments that approximate almost tangential curves can result

in detecting more intersections than the ground-truth because of approxima-

tion as well as numerical errors. This issue will be discussed in Chapter 4.2

with some experimental results.

For Boolean operations, the incorrect number of intersections can return

wrong results when the algorithm flips the selection based on the intersection

point. In Figure 1.3(a), a union operation determines that the blue line encloses

the red line above the intersection point, and leaves the blue line segment

while removing the red line segment. Then the determination is flipped below

the intersection point, and the red line is selected. However, when one more

intersection point is detected, the selection flips again, and the union operation

returns a wrong result where the blue line is chosen instead of the red line

in Figure 1.3(b). As such, some edge cases from polygonal modeling can be

handled more reliably using arc-based modeling.

Unlike polygonal model, NURBS model guarantees G1-continuity, and rep-

resents geometric objects more smoothly. But computation for NURBS models

requires non-trivial mathematical tools. For arc spline models, the computing

time increases proportionately to the number of arcs as the degree of polyno-

mials is fixed to quadratic. However, the calculation becomes comparatively

stable. For example, a quadratic equation has two discrete roots, while degree

n polynomials can have up to n roots. Lastly, arc modeling allows classical

construction using ruler and compass, and is thus quite intuitive.

5

(a) Correct Boolean operation (b) Wrong Boolean operation

Figure 1.3: Boolean union based on different number of intersections

We also describe data structures and algorithms for a minimal set of basic

operations necessary for the geometry kernel. There are many mathematical

properties that are useful for geometry modeling when it is based on circles,

such as curvature information, or equidistant property. These properties are

already utilized in many previous results as premises for efficient algorithms.

All these algorithms begin with approximating planar geometric objects with

biarcs. Offset computation exploits the radius, circle-circle intersection algo-

rithm, and bounding circular arc, while convex hull computation only employs

support distance and angles of the arcs. On the contrary, curvature monotonic-

ity is used to construct Voronoi diagram in a stable way. Although the base

models are the same, the information of arcs is used differently. We try to

incorporate the necessary information of arcs, and support various operations

by unifying the data structures.

6

We consider some technical issues in the design of spatial data structures.

Well-designed data structures and construction rules for arc splines can im-

prove the precision by reducing the numerical errors in floating-point arith-

metic, and the number of arc splines to represent planar geometric models. It

can also simplify some case analyses required for the algorithms. At the same

time, we can make sure that all the necessary data are included efficiently.

To sum up, we introduce a new choice of geometry kernel other than the

conventional polygonal modeling or NURBS modeling. With the cornerstone

set, we hope to bring about more analyses to be done on arc spline modeling

and exploit its advantages. The main contributions of this research are as

follows:

• We analyze how arc based geometry kernel can maintain the respective

advantages of conventional modeling approaches. We compare the pre-

cision error, running time, and the data size between our approach and

the conventional approaches. In effect, we can model with arc based ge-

ometry kernel for applications in geometric modeling that require stable

and precise computation.

• We explain the basic elements of spatial data structures that should

be considered in order to support various geometric operations. Once

we incorporate the advantageous traits of arcs in the data structure, we

show how arc based modeling in this thesis can simplify existing solutions

to some classical problems.

7

1.3 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 introduces previ-

ous work related to arc splines. Chapter 3 provides the data structures for

arc representation and constructions. In Chapter 4, we present an algorithm

for detecting intersections between two circular arcs. Chapter 5 addresses the

Boolean operations such as union, intersection, and difference using the in-

tersection finding algorithm presented in Chapter 4. In Chapter 6, we explain

how to compute bounding volumes of planar objects composed of arcs. In

turn, the bounding volumes of arcs is used to detect collisions and to compute

distance between arc-based objects. Then Chapter 7 discusses applications of

the arc based geometry kernel. Finally in Chapter 8, we conclude this thesis

with possible extensions to 3D.

8

Chapter 2

Related Work

2.1 Biarc approximation

Previous geometric algorithms based on arcs approximate other forms of pla-

nar geometric curves with circular arcs, so that they can exploit computa-

tional advantages of circular arcs. Many algorithms approximate curves using

biarcs to improve the efficiency of operations on planar curves. Especially,

Meek and Walton [19, 20] demonstrated that the number of circular arcs re-

quired to approximate planar geometric curves is smaller than that of line

segments to do the same. They also confirmed that biarc approximation has

cubic convergence rate; on the other hand, polygonal approximation exhibits

quadratic convergence. Another work of Š́ır et al. [26] showed how to main-

tain the G1-continuity during the biarc construction. In this work, we use the

same approximation method using biarcs to analyze the relative performances

between the arc splines and line segments.

9

(a) Fat arc (b) Bounding circular arc (c) 8-arc

Figure 2.1: Bounding volumes using arcs

2.2 Bounding volume hierarchy

Bounding volume is a container that includes objects that users select. There

are many forms of bounding volumes such as Axis-Aligned Bounding Boxes

(AABB) [4], Oriented Bounding Boxes (OBB) [8], Discrete Oriented Poly-

topes (k-DOP) [14], and a family of sphere swept volumes [15]. Bounding

Volume Hierarchy (BVH) is a data structure that organizes bounding volumes

as nodes in a tree structure. BVH is used to accelerate many important op-

erations by filtering out a subset of objects that are clearly excluded from

further consideration. When arcs are proposed as the geometric primitives for

bounding volumes, the applicability of bounding volumes can be expanded to

non-convex objects as well. For planar curves, non-convex bounding volumes

such as Bounding Circular Arcs (BCA) [20], n-arcs [21], and fat arcs [23] have

been proposed.

10

2.3 Algorithms using biarc

There are several algorithms that use biarc to make algorithms efficient and

stable. One application of biarc is offset curve trimming. Kim et al. [13] approx-

imate planar rational curves with biarcs to trim offset curves efficiently. Fur-

thermore, Lee et al. [16] detect self-intersection and trim offsets of deformable

curves using BCA bounding volume. These works show how the usage of biarcs

can accelerate intersection detection, and hence offset trimming.

Convex hull can also be computed efficiently using biarcs. Similar to offset

trimming problem, Kim et al. [12] approximate curves with biarcs to compute

the convex hull of planar freeform curves efficiently. When the curves are

represented with biarcs, the interior culling can be done faster using the angle

information of arcs. Then the convex hull is computed by concatenating the

remaining arcs after the redundancies are eliminated.

Biarcs can accelerate the computation of Hausdorff distance as well. Kim

et al.[14] approximate planar curves with biarcs to find the lower bound of

Hausdorff distance efficiently. Then they remove redundant arcs based on the

lower bound. Among the remaining arcs, they find a point with the maximum

distance using a distance map. In the neighborhood around the point, they

select candidate arcs. Finally, a precise Hausdorff distance is computed using

the candidate arcs.

Biarc approximation is also used to enhance efficiency for the discovery of

maximal disk, the computation of medial axis, and the construction of Voronoi

diagram. Maximal disks are necessary to compute medial axis and construct

Voronoi diagram, and they are easier to locate when planar geometric objects

are represented with circular arcs [1]. Lee et al. [17] developed a highly efficient

11

algorithm to construct Voronoi diagrams, which uses BCA to speed up the

process. We delve into these applications in Chapter 7, focusing on possible

implementation and benefits with arc based geometry kernel.

12

Chapter 3

Preliminaries

3.1 Geometric models

The design of a geometry kernel starts with a formal definition of point and

vector in two-dimensional space [18]. For vector computation, we shall use

homogeneous coordinates to represent points and vectors as in Figure 3.1.

These basic data types are necessary for geometric computations. A point

is encapsulated in an arc struct to represent the arc’s center. A vector is used

to represent the tangent or direction of an arc at a point, and calculated when

necessary. We use one struct to represent all basic objects: vertex, line, and

arc. These three types of objects are grouped to create a planar region, and

can be changed to one another.

Arc struct contains type information, center point, squared radius, two

angle structs, and convexity as illustrated in Figure 3.2. The type information

stores whether an arc struct is a point, a line, or an arc. The angle struct

13

Figure 3.1: Basic data types

with quadrant information and angle information makes computations using

arcs become somewhat quadrant-independent. Two angle structs represent

angles at the start and end points. Note that in this thesis, we only consider

affine transformation. So we assume one perspective where angle 0 represents

3 o’clock direction, and the angle increases counter-clockwise. Convexity is

determined based on the direction in which the angle increases. An arc is

concave if its starting angle is bigger than the ending angle. Convexity also

indicates the interior of the boundary represented with arcs. We define the left

side of the direction as the object interior that the arc bounds.

Then we have constructors to create vertex, line and arc. A vertex is a full

circle with 0 radius, and with its center at the location of the vertex. As a

result, the input for creating a vertex is only the location of a point.

In order to create a straight line with an arc, the circle containing the arc

needs to be very big so that the displayed portion of the arc assimilates a

straight line. Thus, the radius for this arc should be big enough. This leads to

the center point being far away and out of the screen. But we know that the

center point is located in the normal direction of the line. The length of the

line will be calculated with the arc struct’s angle. In this way, we can gradually

shift a curve into line, and vice versa.

14

typedef struct {

int quad ;

/∗ quad i n d i c a t e s which quadrant ang l e e x i s t s ∗/

f loat ang le ;

/∗ ang le i s in between 0 to 90 ∗/

} ang le ;

typedef struct {

po int c ente r ;

f loat rad iu s ;

ang le s ta r tAng l e ;

ang le endAngle ;

bool concave = true ;

/∗ t rue i f s t a r tAng l e i s sma l l e r than endAngle ∗/

} a r cS t ruc t ;

Figure 3.2: Basic structs

Finally, an arc representation is quite straightforward. Convexity is implied

within two angle structs, but we store this information for convenience. Note

that the radius stores the squared radius so that we reduce the truncation

errors from square root operations. To minimize the number of multiplications

and the usage of trigonometry functions, we can store the starting point and

the ending point of the arcs as well.

15

#define CREATEVERTEX(x , y)

((a r cS t ruc t) { . c en t e r = point {x , y} ,

. r ad iu s = 0 ,

. s ta r tAng l e = angle {0 , 0} ,

. endAngle = angle {3 , 90} })

#define CREATE LINE(po int x1 , po int x2)

((a r cS t ruc t) { . c en t e r = point at normal d i r e c t i on ,

. r ad iu s = INF ,

. s ta r tAng l e = angle o f x1 ,

. endAngle = angle o f x2 })

#define CREATEARC(x , y , r , sAng , eAng)

((a r cS t ruc t) { . c en t e r = point {x , y} ,

. r ad iu s = r ,

. s ta r tAng l e = sAng ,

. endAngle = eAng })

Figure 3.3: Basic constructors

16

3.2 Curve segmentation

Many geometric operations on a curve can be greatly simplified when the

curve is cut into segments so that each segment changes monotonically [7].

This monotonicity is achieved by cutting the curve at x-extreme and y-extreme

points, singular points, and inflection points. When the curve is of d -th degree,

the polynomial equations for x- and y- extreme points are of degree d−1, and

degree 2d− 4 for singular points, and 4d− 7 for inflection points.

Monotonicity along the x-axis or y-axis direction for example, ends when

the respective extreme point is reached. In the planar case, these extreme

points are calculated as follows:

x′(t) = 0, y′(t) = 0

We can also subdivide the curve at each inflection point, where the curva-

ture is 0. This is a point where the convexity changes to concavity and vice

versa. The equation for finding inflection points is given as follows:

x′(t)y′′(t)− x′′(t)y′(t) = 0

Finally, when the curve is segmented at curvature extreme points, the cur-

vature is monotone within each segment of the curve. The curvature extreme

points can be found by solving:

(
x′(t)y′′′(t)− x′′′(t)y′(t)

) (
x′(t)2 + y′(t)2

)
−3

(
x′(t)y′′(t)− x′′(t)y′(t)

) (
x′(t)x′′(t) + y′(t)y′′(t)

)
= 0

In this thesis, we segment the curve at each x-extreme, y-extreme, and

inflection points to simplify the geometric operations.

17

Chapter 4

Arc-Arc Intersection

There are two types of self-intersections: local and global self-intersections.

Global self-intersection is relatively more difficult to detect in general. It is

also important to detect local self-intersections. A geometrically correct sur-

face should be closed, and free of local and global self-intersections [11]. Like

surface models, any planar model should be geometrically correct for stable

computation. Furthermore, detecting the intersections between arc splines is

a crucial part of many basic operations of the geometry kernel system such

as Boolean operations, and collision detection. Local self-intersections cannot

occur within a circular arc, but global self-intersections may occur among dif-

ferent arcs. In such case, the global self-intersections should be removed with

a proper trimming process.

18

4.1 Algorithm

Bézier curves are not free of local self-intersections [6]. Compared to Bézier

curves, we can show that the arc spline modeling detects the local self-intersections

in a stable manner. To do so, we first approximate the Bézier curve with arc

splines according to the algorithm of [26]. Then we find the intersections of

the arc splines. Detecting the self-intersection for Bézier curves or any other

forms of planar curves often uses binormal lines [22], or bounding boxes [25].

Theoretically speaking, the intersection detection algorithm using arc splines

only requires some trigonometry, and Euclidean transformations. An algebraic

result based on the trigonometry and simple mathematical operations is pro-

posed below.

To find the intersection between the arc splines, we need to compare their

arcs pairwise. Notably, G1-continuity guarantees that the neighboring arcs

cannot intersect with each other, so we can skip the comparison between the

neighboring arcs. When comparing an arc against the other arc, we first screen

them based on the circle-circle intersection to reduce the number of operations.

Because an arc is part of a circle, if the circle corresponding to the arc does

not intersect with the circle corresponding to the other arc, the arcs do not

intersect. Given that r1 and r2 are the radii of two circles, and d being the

distance between the centers of the circles, we determine whether the circles

intersect using the following equation:

d ≤ r1 + r2 and d ≥ |r1 − r2|

If there is an intersection between the corresponding circles of the arcs,

we then move onto finding the intersection points. The computation becomes

19

much simpler by translating and rotating the centers of the circles to be located

on the x-axis, and one of them to be on the origin point as in Figure 4.1(c).

When the first circle’s center is at the origin point, we have the following

solutions for the intersection of the two circles in Figure 4.1(c):

x =
d2 + r21 − r22

2d
, y = ±

√
4d2r21 − (d2 + r21 − r22)

2

2d

In the above equation, we only need to know x in order to determine

whether the intersection point lies on the arc. Note that x is equal to r1 ·cos θ1

and also to d − r2 · cos θ2, where θ1 and θ2 are the angles between the x-axis

and the intersection point centered on the respective circle’s center. When the

angle of rotation that places the second circle’s center on the x-axis is denoted

as θ, the real intersection point needs to be rotated back by θ. If θ1 − θ and

θ2 − θ are both in between the start and end angles of the corresponding

arcs, it means that the intersection point is on the arcs and that the arcs

intersect with each other. The algorithm for detecting the intersection is given

in Algorithm 1.

In order to minimize the numerical error, we tried to reduce the number

of square root operations and the usage of trigonometry functions during the

process of determining whether the intersection point lies on the arcs. We do

so by calculating the actual intersection points instead of rotating and trans-

lating. Then the actual intersection points for Figure 4.1(a) are represented as

follows:

x = x1 +
(d2 + r21 − r22)(x2 − x1)∓ (y2 − y1)

√
4d2r21 − (d2 + r21 − r22)

2

2d2

y = y1 +
(d2 + r21 − r22)(y2 − y1)± (x2 − x1)

√
4d2r21 − (d2 + r21 − r22)

2

2d2

20

Algorithm 1: Intersection detection between the two arcs

Result: boolean

input: arcStruct first, arcStruct second

1 d← distance between the center points

2 if first.center.x > second.center.x then

3 swap first and second

4 r1 ← first.radius

5 r2 ← second.radius

6 if (d > r1 + r2 or d < |r1 − r2|) then

// the circles don’t intersect

7 return false

8 c2 ← second.center − first.center

9 θ ← arctan(c2.y, c2.x)

10 rotate c2 by θ

11 x← d2+r21−r22
2d

12 θ1 ← arccos x
r1

13 θ2 ← arccos d−x
r2

14 if (θ1 − θ) is on first arc & (θ2 − θ) is on second arc then

// check for the positive intersection

15 return true

16 if (−θ1 − θ) is on first arc & (−θ2 − θ) is on second arc then

// check for the other intersection

17 return true

18 return false

21

(a) Original

(b) Translated to origin

(c) Rotated the center to x-axis

Figure 4.1: Two intersecting circles

22

We simply need to get the angles of the actual intersection point with

respect to each circle’s center. In order to determine if the intersection point

lies on both arcs, we test whether those angles are in between the start and

end angles of the respective arc’s.

4.2 Experimental results

The algorithm is developed using C++ and OpenGL. The data type is in

double precision. We have tested for transversal cases, almost identical cases,

and almost tangential cases. The increase in the number of line segments

does not improve the precision in almost tangential cases, but slows down the

running time, and more seriously, the number of detected intersection points

also increases. The tables show the number of splines used, running time, and

the detected intersection points along with the illustrations. The four control

points of a cubic Bézier curve are provided in the first row of the table. The first

experiment shows that both line modeling and arc spline modeling detect the

self-intersection reliably. But the number of segments for arc spline modeling

is fewer, and thus the running time is shorter.

When detecting intersections between two different curves, polygonal ap-

proximation shows larger error compared to arc approximation. The test re-

sults can be found in Figure 4.3, 4.4, 4.5.

Figure 4.4 and Figure 4.5 use the same Bézier curve, but different number

of line segments. These cases are for a scenario where solving the equations for

the intersection of Bézier curves produces too many candidates as solutions.

Figure 4.4 uses 50 lines segments to approximate each Bézier curve, while

Figure 4.5 uses 100 line segments. While the approximation error got lower

23

Control points: (200, 100), (400, 300), (100, 300), (300, 100)

Arc Line

Number of segments 24 50

Running time (ms) 0.4369 0.7037

Number of intersections 1 point 1 point

Table 4.1: Self-intersection detection

(a) Self-intersection detected by lines (b) Self-intersection detected by arcs

Figure 4.2: Self-intersection detection

for Figure 4.5, the number of detected intersection points increased as the

result of more line segments generated for better approximation. For example,

point at (453, 524.91) is additionally identified as an intersection in Figure 4.5.

However, with fewer line segments, the polygonal curve in Figure 4.4 does not

pass the point at (453, 524.91). As a result, Figure 4.4 could not find (453,

524.91) as an intersection point that can be detected in Figure 4.5. Note that

the line segments are more edged in Figure 4.5(b). Also, if a certain range is

24

detected as intersection, all line segments within that range can be identified as

intersection. When more line segments are used, the number of line segments

detected as intersection will increase. Nonetheless, both polygonal modeling

and arc modeling detected the actual intersection point at (450, 525) reliably.

Overall, we can conclude that the polygonal modeling with lower approx-

imation error tends to detect the intersections of planar geometric curves in

excess, and take longer time to find the intersections compared to the arc

modeling.

25

Curve 1 control points: (300, 300), (400, 600), (500, 600), (600, 300)

Curve 2 control points: (300, 300), (400.01, 600.01), (499.99, 600.01), (600, 300)

Arc Line

Number of segments 32 50

Running time (ms) 0.3321 0.4926

Number of intersections 4 points 7 points

Table 4.2: Intersection between almost identical objects

(a) Arc (b) Line

Figure 4.3: Intersection between almost identical objects

26

Curve 1 control points: (300, 300), (400, 600), (500, 600), (600, 300)

Curve 2 control points: (310, 300), (390, 600), (510, 600), (590, 300)

Arc Line

Number of segments 32 50

Running time (ms) 0.3309 0.5218

Number of intersections 1 point 1 line segment

Table 4.3: Intersection between almost tangential objects with fewer line seg-

ments

(a) Arc (b) Line

Figure 4.4: Intersection between almost tangential objects with fewer line seg-

ments

27

Curve 1 control points: (300, 300), (400, 600), (500, 600), (600, 300)

Curve 2 control points: (310, 300), (390, 600), (510, 600), (590, 300)

Arc Line

Number of segments 32 100

Running time (ms) 0.3288 1.863

Number of intersections 1 point 1 point + 1 line segment

Table 4.4: Intersection between almost tangential objects with more line seg-

ments

(a) Arc (b) Line

Figure 4.5: Intersection between almost tangential objects with more line seg-

ments

28

Chapter 5

Boolean Operations

Boolean operations are useful for merging two different objects, selecting the

common section of the objects, and so on. There are Boolean operations other

than union, intersection, and difference, but we will focus on the three basic

operations because they are the most essential ones. In fact, other Boolean op-

erations, and even the union and difference, can be reduced to the intersection

operation [9].

Finding the intersections between the object boundaries is the first step

in a Boolean operation for boundary representation geometric models. The

conventional approaches to computing intersection points have limitations in

the numerical precision and stability of the calculations. These problems be-

come apparent especially when the objects are almost coincidental [9, 10], or

almost tangential. When unnecessary intersections are detected, it negatively

affects the performance and even the correctness of Boolean operations. With

an increased number of intersections from polygonal models, the objects may

29

be excessively subdivided, and thus the higher the complexity of algorithms

in topological decisions. This may also lead to Boolean operations erroneously

removing some curve segments that are important. However, based on the

analysis from Chapter 4, discovering intersection points with arcs is quite sta-

ble and robust.

The number of intersections between planar objects affects the size of list

that keeps the end points and the intersection points. For example, there is

only one intersection point between two non-parallel straight lines. The maxi-

mum number of possible intersection points between circular arcs increases to

two. Now, intersecting two cubic Bézier curves can result in up to 9 possible

intersection points. The computation time increases naturally as the size of

list that we need to scan becomes larger. As a result, intersecting arcs is more

manageable compared to intersecting NURBS curves.

5.1 Algorithm

In the preprocessing stage, the input curve is segmented at the intersection

points using the intersection algorithm described in Chapter 4. If there is at

least one intersection point, and the intersection is in the middle of the arc

splines, the arc splines need to be segmented by adding new vertex at each

intersection point. The end points of the arc segments are inserted in the

list. The arc segments between the intersection points are removed if they

have an improper relation with the other object. For example, the arcs that

are determined to be inside the other object are returned for the intersection

operation. Finally, the arc splines will be merged to form the boundary of the

resulting object of the Boolean operation.

30

Figure 5.1: Two arc splines with intersection points

(a) Union (b) Intersection (c) Difference

Figure 5.2: Boolean result

Segmenting an arc spline is simple, as we know the location of each in-

tersection point. The segmented arc splines will share many values with the

original arc splines, such as one of the end points, center point, radius, and

convexity. The intersection point is newly added as a new end point. If the

intersection point is an end point of the curve, then we do not split the curve.

One intersection point will divide the curve into two arc splines. An additional

intersection point leads to one more arc segment. As a result, if there are k

intersection points on a curve made of n arcs, the list will keep n+ k points.

For the Boolean intersection operation, we need to determine which side of

the intersection point is the common interior of both objects starting from

31

the first intersection point. If it is interior up to the next intersection point,

the next intersection point exits the interior. The next intersection point will

enter the interior of the objects again. Repeating the same procedure, we can

construct the boundary for the intersection of the two planar objects.

Lastly, the remaining arcs will be combined in a proper order. To maintain

the G1-continuity of the arc spline, a small arc that diffuses the rapid change

of tangent needs to be added between the merged arcs.

5.1.1 No intersection case

We start with a case where there is no intersection point between the bound-

ary curves of two objects A and B. When both A and B are connected objects

with no holes, we have either (i) A ⊂ B, (ii) B ⊂ A, (iii) A ∩ B = ϕ. We can

check if a sample point on the boundary of A is inside the region B to decide

that A is included in B. Alternatively, we can determine the relationship by

ray-casting from a point of A to B [3]. In general, A and B may have many

connected components and with interior holes, e.g., the solids with holes as in

Figure 5.3. Then each disconnected boundary curve should be tested against

the other object for inclusion. The included object is returned for the Boolean

intersection operation. We return nothing if there is no overlap between the

two objects. Union operation basically reverses the result of the intersection

operation. Difference operation subtracts the intersection region from the first

operand. Alternatively, the difference can be expressed as an intersection be-

tween the first operand and the complement of the second operand. So the

difference operation returns the first operand if there is no intersection and no

inclusion. If the second operand is contained in the first operand, we return

both objects but the second operand will change its orientation.

32

Figure 5.3: Two solids with holes with no intersection point

5.1.2 Tangential case

There are several cases we need to consider when arc-based objects intersect

tangentially. Note that the arcs are tangential at the intersection point only

when there is one touching point between the two curves, or when the two

curves are identical. When the two curves are identical, they are regularized. If

there is one intersection point where the arcs are tangential, the arc splines that

meet at one intersection point may be either (i) facing in the same direction,

(ii) facing against each other, (iii) locally tangential but globally transversal.

We compare the distance between the arc’s center points and the difference

between their radii to determine if the tangentially intersecting arcs are facing

in the same way as in Figure 5.4:

d = |r1 − r2|.

In this case, the orientation of the arcs matter. When the direction of both arcs

are concave, an arc with higher curvature is always included within another arc

with lower curvature as in Figure 5.4(a). Thus, the arc with lower curvature

is in the interior of the area bounded by the arc with higher curvature. On

33

(a) Both arcs are concave (b) Both arcs are convex (c) Different orientation

Figure 5.4: Tangential case when d = |r1 − r2|

the other hand, if both arcs are convex as illustrated in Figure 5.4(b), the arc

with lower curvature is included within the arc with higher curvature. Finally,

when the directions are different, either the two arcs are in the interior of the

union or the union area is bounded by both arcs. We can determine which case

it is based on both the curvature and the direction, or by sampling a point in

one arc, and testing whether the sample point is included in the other object.

Similarly, when the arcs are facing against each other as in Figure 5.5, the

orientations of the arcs are used for the decision. This case occurs when the

distance between the arc’s center points is equal to the sum of the radii of

both arcs:

d = r1 + r2.

In this case, the curvature does not matter. Instead, the directions tell us

which arcs are included. For example, when both arcs are concave, both arcs

bound the intersection area. However, when both arcs are convex, there is no

intersection.

If the junction of two adjacent G1-circular arcs is the intersection point as in

Figure 5.6, the curvature can change after the intersection. Then the inclusion

34

(a) Both arcs are concave (b) Both arcs are convex (c) Different orientation

Figure 5.5: Tangential case when d = r1 + r2

Figure 5.6: Transversal case where the arcs are tangential at the intersection

test for tangentially intersecting arcs may not be sufficient. Although the arcs

are locally tangential at the intersection point, their intersection is transversal

globally. Consequently, this case should be considered as a transversal case

because it is a different arc after the intersection point. In other words, if it is

a tangential case at an arc’s end point, the inclusion tests for transversal case

should be applied to check for a proper relation.

Note that the Boolean operation on tangential case becomes more complex

for polygonal modeling. In the tangential case, we need to decide how much

of the polygonal curve is tangential to the other curve. Then the line segment

35

that is tangential will be regularized. However, arc-based kernel detects more

reliably the case of one intersection point, or more than one intersection point.

The tangential arc segments are topologically decided based on the intersection

point, and the coincidental arcs are regularized if there are more than one

intersection point.

Also, consider the case in Figure 4.4 where unnecessary intersection points

are identified. After deciding the direction for entry to the intersection area,

additional intersection point will return reversed area for intersection region.

This is the case described in Figure 1.3 of Chapter 1.

5.1.3 Transversal case

The transversal case is the basic case, where we identify the intersection area

based on the intersection points. There are four arc segments separated by an

intersection point. An arc segment needs to be compared against its adjacent

arc segments to figure out which branches should be removed. The pairwise

test needs to be done for all four possible pairs of adjacent arcs. It looks for

three cases that determine which arcs are eliminated for Boolean operations:

a case where both arcs share the same end points (Figure 5.7), a case where

only the start points are the same (Figure 5.8), and a case where only the end

points are the same (Figure 5.9).

When two arc segments share the same start and end points, we first check

the directions of the arcs. If the directions of the arcs are different as illustrated

in Figure 5.7(c), the concave arc is the boundary arc for the intersection region

and returned for the Boolean intersection operation. If the directions of both

arcs are concave, then the arc with smaller radius is selected for the Boolean

intersection operation. In general, the arc on the left is selected.

36

(a) Both arcs are concave (b) Both arcs are convex (c) Different orientation

Figure 5.7: Both adjacent arcs have the same start and end points

(a) Both arcs are concave (b) Both arcs are convex (c) Different orientation

Figure 5.8: Both adjacent arcs have the same start point

(a) Both arcs are concave (b) Both arcs are convex (c) Different orientation

Figure 5.9: Both adjacent arcs have the same end point

37

If only the end points are the same or only the start points are the same,

the arc that lies on the left side of the other arc is the arc included in the

other. This is stated in the Algorithm 2. If the intersection point is the start

point of the first arc, then we check if the end point is on the left side of the

second arc as in line 5 of Algorithm 2. If the intersection point is the end point

of the first arc, then we check if the start point is on the left as in line 9.

After the entry point to the intersection region is decided, the exit point

becomes the next intersection point. In this way, the arcs that are in between

the exit point to the next entry point are in the exterior of both objects. The

arcs that are in between the next entry point and the next exit point are the

boundary for the intersection area.

Algorithm 2: In-out test which checks whether the first arc before

the intersection is included in the second arc
Result: boolean

input: arcStruct first, arcStruct second, Point intersection

1 Point s1=first.start, s2=second.start, e1=first.end, e2=second.end;

2 if s1 == intersection then

3 // start point of the first arc is the intersection:

4 // check if the end point is on the left

5 Return

((e2.x− s2.x)× (e1.y − s2.y)− (e2.y − s2.y)× (e1.x− s2.x)) > 0;

6 else if e1 == intersection then

7 // end point of the first arc is the intersection:

8 // check if the start point is on the left

9 Return

((e2.x− s2.x)× (s1.y − s2.y)− (e2.y − s2.y)× (s1.x− s2.x)) > 0;

38

Algorithm 3: Boolean operation for union and intersection

Result: array of arcs

input: arcStruct first, arcStruct second, char opcode

1 intersections = Find the intersections using Algorithm 1;

2 if intersections.size == 0 then

3 return {first, second} for union;

4 else if d2 == (r1 − r2)
2 || d2 == (r1 + r2)

2 then

5 if d2 == 0 then

6 Return {first, second}; // Identical case

7 else

8 // Tangential case

9 Find the entering arcs around the intersection point;

10 else

11 Split the curve at the intersection if intersection is not end point;

12 Find the entering arcs around the intersection using in-out test;

13 Return the arcs that are before entering the interior for union or

14 the arcs that are after entering the interior for intersection;

39

Chapter 6

Bounding Volume Computation

In this chapter, we present how to compute the bounding volume of arc splines.

As an arc is part of a circle, we can use the whole circle of an arc as the bound-

ing volume. But for more tightness, we explore AABB and k-DOP bounding

volumes. Although there are bounding volumes made with arcs, which are

effective in handling non-convex objects, usage of conventional bounding vol-

umes can still be effective for collision detection and minimum distance compu-

tation. We need fewer arcs to represent a planar object compared to polygons,

because the approximation order of arcs is higher. Thus, there are fewer nodes

in the BVH and the culling is faster for arc-based objects.

First, we need to know x-extreme and y-extreme points in order to compute

the bounding volumes. When an arc spline is segmented monotonically, the

end points of the arcs become x-extreme and y-extreme points. We can create

AABB with the end points of arc splines, but we will analyze k-DOP bounding

volume, which is more complex, but tighter.

40

Figure 6.1: Conditions for each direction to exist for 8-DOP and support dis-

tances

Assuming that the curves are segmented monotonically, the end points of

the arc always reside in the same quadrant. This simplifies the case analysis

for the computation of k-DOP bounding volume. We use 8-DOP in which the

cases are divided at every π
4 starting from π

8 . Figure 6.1 shows which boundary

should exist for the convex arc segment that is located in the first quadrant.

The cases for the second quadrant are simply rotated versions of the first cases

by π
2 counter-clockwise. Figure 6.2 elaborates on some of the specific examples.

Then we store the support distance of each direction in an array. To bound

the smaller bounding volumes, we compare the support distance of the same

index in the array, and extract the maximum support distance for each direc-

tion. The support distance for fifth direction in Figure 6.1 depends on whether

the start angle is smaller than the difference between 90◦ and the end angle.

41

(a) start, end < 45◦ (b) start, end > 45◦ (c) start < 45◦ & end > 45◦

(d) 6.2(c) & (90◦ − end > Start (e) 6.2(c) & (90◦−end < Start)

Figure 6.2: Examples of 8-DOP in the first quadrant

42

6.1 Collision detection

Like many collision detection algorithm, we proceed to make a bounding vol-

ume hierarchy [3]. The BVH is constructed with the bigger bounding volumes

found by comparing the support distances of smaller bounding volumes of the

same index. We can tell whether the bounding volumes overlap by checking

k
2 directions for k-DOP. Two k-DOPs D1, D2 do not overlap if none of the k

2

directions of D1 overlaps the corresponding direction of D2 [14]. For 8-DOP

in Figure 6.2, checking the overlap for only East, Northeast, North, Northwest

direction is enough. If the bounding volumes are disjoint, then there is no col-

lision. If the bounding volumes overlap with each other, and is not a leaf node

in the BVH, we traverse down the tree.

If the bounding volumes overlap and both are leaf nodes, it means that

there is a collision between the two bounding volumes. For higher precision, the

algorithm for intersection detection in Chapter 4 can be used to find the pre-

cise intersection between the arcs corresponding to the overlapped bounding

volumes. As collision detection is a closed question with positive and negative

answer, we can conclude that there is a collision if there exists an intersection.

Note that the number of arc segments used to represent the curves in Fig-

ure 4.2 is 24, and the number of line segments used is 50. The resulting BVH

in each case has height of 6(47 nodes) for arc representation, and height of

7(99 nodes) for polygonal representation. This means that we have to traverse

down further to locate the leaf node for polygonal representation, and thus

takes longer time to detect the collision.

43

6.2 Minimum distance computation

Similar to the collision detection, minimum distance computation can use the

bounding volumes to accelerate the process. The minimum distance is approx-

imated by finding the lower bound and upper bound of the distances between

the bounding volumes [15]. This approach is also used to evaluate the minimum

distance between solids of revolution [24]. To efficiently compute the minimum

distance between the solids of revolution, they also use biarc approximation

and circles.

We start from calculating the distance between the root nodes of the BVH.

The distance is stored as the priority for the pairs of children in the priority

queue. We go through the hierarchy repeating the same operation between

the children until we reach the leaf nodes. When we calculate the distances

between the leaf nodes, we take off the bounding volume and calculate the dis-

tance between the arc splines. The minimum distance between the arc splines

becomes the upper bound of the minimum distance between two planar ob-

jects. As we stored the distance between the bounding volumes for every pair

of nodes in the BVH, except for the leaves, we can extract the first element in

the priority queue as the lower bound of the minimum distance.

To get the upper bound, we can sample multiple random points on each

boundary of the arc splines, and use the distance between them. Or we can

calculate the distance between the arc splines based on the scenarios given

in Figure 6.3. With the lower bound and upper bound of minimum distance

obtained, we can approximate the minimum distance between the arc splines

by averaging the lower bound and the upper bound.

When the arcs are concentric as in Figure 6.3(a), we know the minimum

44

(a) Concentric (b) Facing against (c) Facing toward (d) Arc-Point

Figure 6.3: Minimum distance between two arcs

distance between them is r1 − r2 with each arc’s radius being r1 and r2.

We can check whether the arcs are facing against each other by the quad-

rant information of the angles. The minimum distance for Figure 6.3(b) oc-

curs at the end points of each arc. Say the s and end points are denoted as

(s1.x, s1.y), (e1.x, e1.y) for the first arc, and (s2.x, s2.y), (e2.x, e2.y) for the

second arc. Then we need to calculate 4 pairs of distances between the end

points, and select the minimum distance.

Alternatively, when the arcs are facing toward each other, as illustrated in

Figure 6.3(c), we can get the minimum distance using the distance between

the center points and radii as follows.

√
(x1 − x2)2 + (y1 − y2)2 − r1 − r2

for each arc’s center points given as (x1, y1), and (x2, y2).

Otherwise, the minimum distance is calculated between the arc and the end

point of the arc. In this case, which is Figure 6.3(d), we choose the minimum

distance between the center point and the end point. Then the minimum

45

(a) Point-Point (b) Line-Point

Figure 6.4: Minimum distance between two lines

distance will be the smaller of√
(s2.x− x1)2 + (s2.y − y1)2 − r1

or√
(e2.x− x1)2 + (e2.y − y1)2 − r1

The minimum distance between the line segments occurs in two cases.

Figure 6.4(a) is where we calculate the distances between two end points of

the line segments. The minimum distance for Figure 6.4(b) is calculated by

the formula given below:

(s1.y − e1.y)(s2.x) + (e1.x− s1.x)(s2.y) + (s1.x · e1.y − e1.x · s1.y)√
(e1.x− s1.x)2 + (e1.y − s1.y)2

Evaluating the minimum distance between the NURBS curves is much

more complicated. As the minimum distance between the NURBS curves can-

not be set to a certain degree of polynomials, we only present the approach to

calculating it. We first need to get the parameters u, and v from solving the

46

dot products. Then we need to calculate the distance between the curves at

these parameters. The distance between the curves is expressed as below:

d =
√
||C(u)−D(v)||2 where u, v are the solutions of

< C(u)−D(v), C ′(u) >= 0,

< C(u)−D(v), D′(v) >= 0

The numerical precision of minimum distance computed with arcs is similar

to that of polygonal model, not to mention that it is much higher than NURBS

model. The number of multiplications involved in the calculation of minimum

distance between the arcs is at most 3 for each case. On the other hand, it is 7

for polygonal model. Also, while it is straightforward to calculate the distance

between two concentric circles as in Figure 6.3(a), it can cause problem for

both polygonal approach and NURBS approach. Both polygonal approach and

NURBS approach will compare the minimum distances at each point on the

boundary despite them being the same.

47

Chapter 7

Discussions on Applications

7.1 Offset computation

Offset computations highly depend on the performance of intersection finding

algorithm. The offset curve is non-rational in general, even for a rational curve.

So detecting and eliminating the redundant offset stood as challenges. This

problem has been addressed with an algorithm using biarc approximation

in Kim et al. (2012) [13] for rational curves. The algorithm that resulted in

more efficient computation is presented in Lee et al. (2015) [16] for deformable

curves. It is worth noting that the offset curves can be represented in arcs if

the original curves are arcs. Thus, the offset curves and the original curves are

geometrically closed.

Algorithm suggested in Kim et al. [13] starts with the curve segmentation.

Then biarc trees are used to represent the distance map. Instead of solving a

complex system of non-linear polynomial equations, Lee et al. [16] finds the lo-

48

cal self-intersection using osculating circles to the curve, and intersecting each

pair of osculating circles. Also, local self-intersections of an offset curve can

be detected where the radius of the arc is smaller than the offset radius.These

are the main basis of algorithm’s acceleration. The arc based geometry kernel

takes the same approach to find the local self-intersection points. But the ap-

proximation step is unnecessary for the arc based kernel because the objects

are already represented in arc. After the local self-intersections are dealt with,

we need to handle the global self-intersection of the offset curve.

In order to find the global self-intersection of the offset curve, the previous

algorithms of Kim et al. [13] and Lee et al. [16] compute the approxima-

tion error to narrow down the candidate offset curves, which may have global

self-intersection. Then they check the redundant offset curve segments if they

share a common normal in order to determine if there are multiple intersec-

tions, such as tangential intersection. Then, Kim et al. [13] tries to pinpoint

a single intersection for the offset curves going down the biarc tree. However,

arc spline based kernel has no approximation error. Both the global and lo-

cal self-intersection points are found using arc-arc intersections. So we do not

have to separate the cases between the global self-intersection and local self-

intersection. Furthermore, we do not have to track down the single intersection

point from a curve segment. As stated in Chapter 4, using line segments to

detect intersection points results in finding more intersection points that the

actual ones. However, this is not a problem in arc-arc intersection.

Lee et al. [16], tries to improve the performance by reducing the approxima-

tion error using different types of bounding volumes. In the two-level overlap

test, AABB is applied first. When AABBs overlap, we have to test the over-

lap within these leaf nodes using the Bounding Circular Arc(BCA) and Line

49

Swept Circle(LSC). Also, the analysis suggests that the redundant offset curve

segments occur as the redundant segments in the offset curve of a bigger arc

as well. So the same redundant segments can be removed in multiple offset

curves. In arc based geometry kernel, we use the k-DOP bounding volume for

overlap test. When the arc spline is used as a base geometry to represent a

planar model, it is easier to find the bigger arc than the arc that intersects

because the radius is already known. Then we remove the redundant offset

curve segments by checking the relative orientations of the two offset curve

segments, just like in the Boolean operations.

7.2 Convex hull

Convex hull requires solving two bivariate equations. But when convex hull

encloses multiple objects, it is difficult to achieve a real-time performance by

solving the equations. To achieve a real-time performance, biarc approximation

of a curve plays an important role again [12]. The interior arcs are detected

faster using the support distance to the edges that share the same direction as

the arcs, the number of which is at most two. This is possible because of the

monotone segmentation of curves, all the more reason to segment the curves so

that monotonicity is maintained. In fact, the same thing cannot be applied to

curves represented by lines because we cannot tell the angle of the line strips.

But arc based geometry kernel can handle this algorithm.

Then the remaining arcs, after the trimming of interior arcs, have to be

merged in a way that each pair of arcs share a common tangent line. The

proposed approach finds the common tangent line recursively using the oscu-

lating circle. This can be quite exhaustive for the polygonal modeling system,

50

because multiple osculating circles should be found for the same curve. For arc

based kernel, all the arcs have their osculating circles known. So the algorithm

from Kim et al. [12] can be used in arc based kernel to compute convex hull

efficiently.

7.3 Voronoi diagram

We first look into the computation of medial axis, because it requires finding

a maximal disk which is also necessary for computing the Voronoi diagram.

O. Aichholzer et al. [1, 2] introduced a divide-and-conquer algorithm for me-

dial axis computation. According to their results, medial axis convergence is

not guaranteed for polygonal approximations. But it is not the same for the

approximations using G1-continuous arc. The curvature extrema is a neces-

sary feature for the medial axis to converge into one. Naturally, the arc based

geometry kernel has the curvature information ready at hand.

First, we select a random arc spline segment of the planar curve as a

starting point. Then we find the disk that is tangent to this segment at the

midpoint, or the end point of the arc. This process is repeated until the valid

maximal disk is found. The disk is considered a valid maximal disk if it does

not intersect or overlap with any part of the curve. The only information that

arc kernel system does not have is the midpoint. Yet, the calculation of the

midpoint of an arc is simple because we know the angle of the arc. By rotating

one of the end point by half of the angle difference toward the other end, we

get the midpoint. But more importantly, we already know the disk that is

tangent to the arc segment in arc based kernel, the whole circle of the arc

segment itself. But this is only the case for the convex arc segment, so we still

51

need to find the tangential disk for concave segments. This step is repeated

until the planar curve is divided into three basic cases. Finally, the medial axis

is a set of all centers of maximal disks in the conquer step.

A more efficient result is presented by Lee et al. [17]. The main difference

of this work is that Lee et al. segments the input freeform curves to monotone

spirals. The spiral curves are further segmented at the points where maximal

disks touch. Then the maximal disks are computed at the end points. They

use Möbius transformation to search for the maximal disks more efficiently.

Then the Voronoi diagram is constructed by detecting the bifurcation point,

or by inserting bisector depending on the relationship between the spirals that

share a common maximal disk. Spirals are basically a chain of G1-continuous

arc splines that change curvature monotonically. So if we further segment the

arc splines to form a spiral, at a point where the derivative of the curvature is

0, we can also support this efficient algorithm to construct a Voronoi diagram.

52

Chapter 8

Conclusion

We have discussed stability and efficiency issues in the design of geometry

kernel based on G1-continuous circular arcs, and some potential benefits in

modeling with arcs over the conventional approaches. Planar objects mod-

eled with circular arcs have demonstrated improved stability and efficiency

for operations between one another, such as intersection detection, Boolean

operation, and bounding volume computation.

Intersecting two circular arcs is slightly more difficult than that of intersect-

ing two line segments. However, the overall algorithmic stability is improved

because fewer arcs are intersected with each other. At the same time, the inter-

section points identified by using arcs reflect the actual result more faithfully

than the case of intersecting two line segments.

The number of cases that we need to consider for topological decision of

Boolean operation increases for arc based modeling compared to polygonal

modeling. Nonetheless, the increase in number is manageable, and the in-out

53

(a) Two circles (b) Union between two circles

(c) Solid of revolution made out of (b)

Figure 8.1: Union between two circles

test which identifies the arcs in the interior is considerably simpler than the

multitudinous cases of the arrangement of NURBS curves. Furthermore, the

stability improvement from intersection detection enhances the stability of

Boolean operation as well.

The computation of 8-DOP bounding volumes can be done fairly easily,

and the BVH can be constructed more efficiently using circular arcs and their

support distances. The resulting BVH is more compact than when the same

object is represented in polygons. Accordingly, the operations using BVH can

be done efficiently. We can improve the stability at the leaf level by calculating

the intersection point or the distance between the arcs.

54

In conclusion, G1-continuous arc geometry kernel can be a compromise be-

tween the two conventional approaches: polygon based approach, and NURBS

based approach. While we mainly considered planar objects in this paper, the

applications of arc spline modeling can be extended to the 3D case because

circular arcs become torus in 3D.

55

Bibliography

[1] O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler, and

M. Rabl. Medial axis computation for planar free-form shapes. Computer

Aided Design, 41(5):339–349, 2009.

[2] O. Aichholzer, A. Franz, H. Thomas, J. Bert, R. Margot, and Z. Š́ır.

Computational and structural advantages of circular boundary represen-

tation. International Journal of Computational Geometry & Applications,

21(1):47–69, 2011.

[3] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-time Rendering.

A.K. Peters, 2008.

[4] G. v. d. Bergen. Efficient collision detection of complex deformable models

using aabb trees. Journal of graphics tools, 2(4):1–13, 1997.

[5] P. Bo, H. Pottmann, M. Kilian, W. Wang, and J. Wallner. Circular arc

structures. ACM Transactions on Graphics (TOG), 30(4):1–12, 2011.

[6] G. Farin and D. Hansford. The essentials of CAGD. A.K. Peters, 2000.

56

[7] R. T. Farouki. Hierarchical Segmentations of Algebraic Curves and Some

Applications. Elsevier, 1989.

[8] S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: A hierarchical struc-

ture for rapid interference detection. In Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques, pages 171–

180, 1996.

[9] C. M. Hoffmann. Geometric and Solid Modeling : an Introduction. Mor-

gan Kaufmann, 1989.

[10] C. M. Hoffmann, J. Hopcroft, and M. Karasick. Robust set operations on

polyhedral solids. IEEE computer graphics and applications, 9(6):50––59,

1989.

[11] T. Ju. Fixing geometric errors on polygonal models: A survey. Journal

of Computer Science and Technology, 24(1):19–29, 2009.

[12] Y.-J. Kim, J. Lee, M.-S. Kim, and G. Elber. Efficient convex hull compu-

tation for planar freeform curves. Computers & Graphics, 35(3):698–705,

2011.

[13] Y.-J. Kim, J. Lee, M.-S. Kim, and G. Elber. Efficient offset trimming

for planar rational curves using biarc trees. Computer Aided Geometric

Design, 29(7):555–564, 2012.

[14] J. T. Klosowski, M. Held, J. S. Mitchell, H. Sowizral, and K. Zikan. Ef-

ficient collision detection using bounding volume hierarchies of k-dops.

IEEE transactions on Visualization and Computer Graphics, 4(1):21–36,

1998.

57

[15] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha. Fast proximity

queries with swept sphere volumes. Technical report, Technical Report

TR99-018, Department of Computer Science, University of North Car-

olina, 1999.

[16] J. Lee, Y.-J. Kim, M.-S. Kim, and G. Elber. Efficient offset trimming for

deformable planar curves using a dynamic hierarchy of bounding circular

arcs. Computer Aided Design, 58:248–255, 2015.

[17] J. Lee, Y.-J. Kim, M.-S. Kim, and G. Elber. Efficient voronoi diagram

construction for planar freeform spiral curves. Computers Aided Geomet-

ric Design, 43:131–142, 2016.

[18] M. Mäntylä. An Introduction to Solid Modeling. Computer Science Press,

1988.

[19] D. S. Meek and D. J. Walton. Approximation of quadratic bézier curves

by arc splines. Journal of Computational and Applied Mathematics,

54(1):107–120, 1994.

[20] D. S. Meek and D. J. Walton. Approximating smooth planar curves by arc

splines. Journal of Computational and Applied Mathematics, 59(2):221–

231, 1995.

[21] R. Ollington. Using piecewise circular curves as a 2d collision primitive.

Asia-Pacific journal of business, 9(2):1–13, 2018.

[22] D. Pekerman, G. Elber, and M.-S. Kim. Self-intersection detection and

elimination in freeform curves and surfaces. Computer Aided Design,

40(2):150–159, 2008.

58

[23] T. W. Sederberg, S. C. White, and A. K. Zundel. Fat arcs: A bound-

ing region with cubic convergence. Computer Aided Geometric Design,

6(3):205–218, 1989.

[24] S.-H. Son, S.-H. Yoon, M.-S. Kim, and G. Elber. Efficient minimum dis-

tance computation for solids of revolution. In Computer Graphics Forum,

volume 39, pages 535–544. Wiley Online Library, 2020.

[25] S. Suri, P. Hubbard, and J. Hughes. Analyzing bounding boxes for object

intersection. ACM transactions on graphics, 18(3):257–277, 1999.

[26] Z. Š́ır, R. Feichtinger, and B. Jüttler. Approximating curves and their

offsets using biarcs and pythagorean hodograph quintics. Computer Aided

Design, 38(6):608–618, 2006.

59

초 록

본논문에서는 G1-연속원호스플라인으로구성된평면모델에대한기하커널의

설계및분석에서몇가지기술적인문제를논의한다.특히평면곡선에서의교차

점 계산이 수치적으로 불안정할 수 있는 점을 보이며, G1-연속 원호 스플라인의

사용이이러한컴퓨터프로그래밍고유의불안정성을완화할수있는방법에주로

초점을 맞춘다. 이에 더해, 원호 스플라인 모델의 더 높은 수치적 안정성을 토대

로,정밀한교차점을찾아야하는기하커널의일부필수연산에대한알고리즘을

제시한다.

또한, 계산 효율성을 향상시키기 위한 노력의 일환으로 G1-연속 원호 스플

라인 모델링에 맞게 구상된 기하 커널에 대한 데이터 구조를 제시한다. 제시된

데이터 구조는 각 곡선 조각들이 단조롭게 변화하게끔 분할한 후, 분석된 케이스

들을 간단화시켜 평면 곡선에 대한 경계 볼륨 계산 역시 간단하게 만들 수 있다.

평면 곡선의 8-DOP 경계 볼륨을 사용하면, 각 경계 볼륨의 지지 거리 사이의 비

교를 통해 경계 볼륨 계층의 상위 노드를 쉽게 계산할 수 있다. 마지막으로 볼록

껍질 및 오프셋 계산과 같은 기존의 문제들에 본 논문에서 소개하는 알고리즘과

데이터 구조를 적용하는 방법을 제시한다.

주요어:원호,원호스플라인,기하커널,자가교차,불리안연산,바운딩볼륨계산

학번: 2020-26241

Acknowledgments

이 자리를 빌어 끝까지 저를 믿고 지도해주신 김명수 교수님께 깊은 감사의 말

씀 드립니다. 2년이란 짧다면 짧고 길다면 긴 시간동안 컴퓨터 그래픽스 분야의

이론에 대해 무지했던 제가 기하 커널에 관한 논문을 쓰게 되었다는 사실이 스스

로도 놀라울 뿐입니다. 해박하신 교수님 덕분에 저에게는 너무나 유익하고 정말

많은것들을배울수있는시간이었습니다.은사라고부를만한사람이없던제게

김명수 교수님은 졸업 이후에도 늘 감사할 분으로 남을 것입니다.

제가 대학원에 입학했을 시기에는 이미 코로나가 터져 많은 것들이 비대면

이 되었고 여러 기회들이 사라졌음에도 불구하고, 낯선 학습 환경에 적응할 수

있도록 도와주신 박영진 박사님, 홍규연 박사님, 손상현 석사님, 정민규 석사님,

함유경 석사님께도 많은 감사를 드립니다. 선배님들 덕분에 외롭지 않은 대학원

생활을 할 수 있었고, 학문적으로도 많이 이끌어주셨기에 제가 도태되지 않고

버틸 수 있었습니다.

뿐만 아니라 학사 행정에 대해 도움을 주신 행정실 직원분들께도 감사한 마

음을 전합니다. 친절하고 유능하게 안내해주셨기에 제가 어느 하나도 빠트리지

않고 무사히 여기까지 올 수 있었습니다.

서울대학교에서 석사 생활을 할 수 있었던 것은 정말 여러모로 저에게 매우

좋은기회였고앞으로두번다시없을행운이었다고생각합니다.제주변에서도

움을주신분들과더불어최적의환경덕분에지금의발전한제가있을수있다고

생각합니다. 다시 한 번, 모든 분들에게 감사드립니다.

	Chapter 1. Introduction
	1.1 Background
	1.2 Research objectives and main contributions
	1.3 Thesis organization

	Chapter 2. Related Work
	2.1 Biarc approximation
	2.2 Bounding volume hierarchy
	2.3 Algorithms using biarc

	Chapter 3. Preliminaries
	3.1 Geometric models
	3.2 Curve segmentation

	Chapter 4. Arc-Arc Intersection
	4.1 Algorithm
	4.2 Experimental results

	Chapter 5. Boolean Operations
	5.1 Algorithm
	5.1.1 No intersection case
	5.1.2 Tangential case
	5.1.3 Transversal case

	Chapter 6. Bounding Volume Computation
	6.1 Collision detection
	6.2 Minimum distance computation

	Chapter 7. Discussions on Applications
	7.1 Offset computation
	7.2 Convex hull
	7.3 Voronoi diagram

	Chapter 8. Conclusion
	Bibliography
	초록
	Acknowledgments

<startpage>10
Chapter 1. Introduction 1
 1.1 Background 1
 1.2 Research objectives and main contributions 3
 1.3 Thesis organization 8
Chapter 2. Related Work 9
 2.1 Biarc approximation 9
 2.2 Bounding volume hierarchy 10
 2.3 Algorithms using biarc 11
Chapter 3. Preliminaries 13
 3.1 Geometric models 13
 3.2 Curve segmentation 17
Chapter 4. Arc-Arc Intersection 18
 4.1 Algorithm 19
 4.2 Experimental results 23
Chapter 5. Boolean Operations 26
 5.1 Algorithm 30
 5.1.1 No intersection case 32
 5.1.2 Tangential case 33
 5.1.3 Transversal case 36
Chapter 6. Bounding Volume Computation 40
 6.1 Collision detection 43
 6.2 Minimum distance computation 44
Chapter 7. Discussions on Applications 48
 7.1 Offset computation 48
 7.2 Convex hull 50
 7.3 Voronoi diagram 51
Chapter 8. Conclusion 53
Bibliography 54
초록 59
Acknowledgments 60
</body>

