

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사 학위논문

Reducing the Cost of Training a

Transformer Model

by Using a Trained Model

이미 학습된 모델의 활용을 통한
새로운 트랜스포머 모델의 학습 비용 감소

서울대학교 대학원

컴퓨터공학부

한민희

2022년 8월

- ii -

Reducing the Cost of Training a

Transformer Model

by Using a Trained Model
이미 학습된 모델의 활용을 통한

새로운 트랜스포머 모델의 학습 비용 감소

지도교수 이재진

이 논문을 공학석사 학위논문으로 제출함
년 월2022 5

서울대학교 대학원
컴퓨터공학부

한민희

한민희의 석사 학위논문을 인준함
년 월2022 5

위 원 장 인 ()

 부위원장 인 ()

 위 원 인 ()

- i -

1. Abstract

The cost of training a new language model is higher than

ever, and it continues to increase. To mitigate the issue, this

paper proposes reusing a trained model to reduce the cost of

training a larger model. By using the methods used in Knowledge

Distillation(KD), the knowledge of the present trained model can

be transferred to the new model, even when the new model is

larger than the trained model. This is done by 1) copying the

weights and 2) logits matching. The former can be used for

models of the same dimensions while the second can be used

regardless of the dimensions, though it requires more

computations than the former. In the experiments with the

GPT-like models, it is shown that reusing a relatively small

trained model reduced the training time of a relatively larger

model.

Keyword : Deep Learning, NLP, Knowledge Distillation,

Transformer Model, Model Training, Model Reuse

Student Number : 2020-25068

- ii -

Table of Contents

Chapter 1. Introduction ·· 1

Chapter 2. Design and Implementation ······································ 3

Chapter 4. Experiments ·· 7

Chapter 5. Conclusion ··· 11

Bibliography ··· 12

Abstract in Korean ··· 14

- 1 -

Chapter 1. Introduction

1.1. Introduction
Recently published Natural Language Processing (NLP) models are

showing lots of improvements, and their improvements are based on

the scaling of the model. [8] For example, the original GPT model had

124 million parameters and the GPT-2 model had 1.5 billion parameters,

while the most recent GPT-3 model had 175 billion parameters. [2, 3, 4]

The trend of increase in the model size is expected to continue further.

However, the increase in the model size is entailed by the increase in

the training cost and time. It is known that the cost for training BERT

was $ 6,912. [11] Though the research team has not officially disclosed

the training cost, it is estimated to be up to $ 4.6 million, with a Tesla

V100 cloud instance [18]

There have been many researches to reduce the training costs of these

models, or to accelerate the training speed. [11, 12, 13] Though these

approaches proved effective, they don't utilize the present models,

which is an act of wasting these models. It would be beneficial if we

can utilize a present model to reduce the training cost of a new model

we’re trying to train. Though the new model can be larger than the

previous model, the previous model is often also a result of a large

amount of training. Thus, even the present model that is smaller than

the new model can contain much more information than the new model

at the early stage of the training. Thus, if we can transfer the

knowledge of the present model, which is already trained, to the large

and new model, we can expect the overall training time to be reduced.

In transferring the knowledge of the previous model, we'll use the

techniques from Knowledge Distillation (KD). Previous work regarding

KD usually tries to compress a larger teacher model's information into

a smaller student model. However, the same techniques can be used in

the opposite case, where the teacher is smaller than the students. We

used two techniques from KD, 1) weight copying and 2) matching the

logits to transfer the knowledge from the teacher model to the student

model. [6]

For the paper, we used smaller versions of GPT-2 models that have the

same architecture with the original GPT-2 model but different

- 2 -

dimensions and layer numbers.

1.2. Related Work
Since the publication of the attention-based transformer model, [1] it

became a dominant architecture in the area of Natural Language

Processing (NLP). [2, 3, 4, 9, 14] Across different models, their model

capacities are known to be determined by the model sizes, that are

determined by the number of parameters in the model, the number of

layers, etc.. As a consequence, recent NLP models are becoming larger

then ever, and they actually constitute the largest models in the whole

DNN domain. [8] This trends in the enlargements of NLP models are

entailed by the huge increase in the training costs and time. [4, 8, 11]

Other than the traditional approaches like using mixed-precision and a

large batch, there have been recent approaches targeted specifically at

optimizing the training of language models. Megatron-LM alleviates the

large memory constraints by using model parallelism. [13] DeepSpeed

aims at reducing the GPU memory usage and effectively utilizing the

distributed resources. [12] By using the both techniques, a language

model with 530 billion parameters could be made. [12, 13, 14]

However, there was no attempt to reuse the already trained models to

reduce the cost of training a new model. For our approach can be

used together with other optimizations, it can still be beneficial even if

the improvement is relatively less dynamic.

We use Knowledge Distillation(KD) techniques to use the knowledge in

the present trained model. KD was originally used to compress a large

model into a smaller one, or to compress an ensemble of models into a

single model. [6] There have been various applications of the KD in

different domains, and the application for language models are

relatively recent. [17] DistilBERT is one example of such cases, and

using the same method, DistilGPT-2 was also released. [16]

Unlike the previous work in KD, we’re using the method not to

compress the model, but to transfer the information, which actually is

an intermediate goal for most KD approaches.

- 3 -

Chapter 2. Design and Implementation

For transformer models, the main factors that determine the model size

is the embedding size and the number of the transformer layers. A

transformer layer's size(i.e., the number of parameters in the layer) is

proportional to the square of the embedding size. Often, for a same

architecture, there are a few models with different model sizes, which

was the case for BERT and GPT models. [3, 9] We assume a situation

where there is a model which already finished its training, and there

are two larger models to be trained from scratch, one of which has the

same dimensions as the trained model but twice the number of layers.

Another model has larger dimensions and more layers compared to the

original model, but not as much as twice the layers. Those two models

are set to have the same number of parameters in the transformer

layers: twice that of the original model. We transfer the knowledge of

the original, trained model to these two new models before training

them. By initializing the new model’s parameters using the original

model, we can achieve the same accuracy with less training compared

to the situation where we don't use the original model in the training

of the new model.

We first randomly initialize the new model that we are trying to train.

Next, we transfer the knowledge of the trained model to a part of the

new model. Then, the new model with the transferred knowledge is

trained with the usual training method with the dataset.

For transferring the knowledge of the teacher model to the student

model, we use two methods. The first one can be used for the models

with the same dimensions but different layer numbers. The second one

can be used regardless of the dimensions, but requires a little bit more

computations during the training period.

- 4 -

Fig 1. Copying the Weights

Method 1: Copying the Weights

It is known that the output "evolves" going through each transformer

layers, becoming closer to the "correct" output. [7] Let's say that there

are two trained models with different number of layers. One has 4

layers while the other has 8 layers. Then, the output of the 4-layer

model will be similar to that of the output of the 4th layer in the

8-layer model and their parameter values will also be similar. This is

why simply copying the weights from the teacher model to the student

model can transfer the knowledge.

When the student and the teacher models have the same dimensions

but different number of transformer layers, a transformer layer in each

model has exactly the same size and the same number of parameters.

We can directly copy the weights of the teacher model layers to the

student model layers. The cost of copying the weights is trivial and can

be ignored.

However, there is a possibility that the this method can result in the

trap of ‘local minima’. Thus, we train the models until they converge to

see if they can reach the same loss even after large amounts of

training.

- 5 -

Fig 2. Matching the Logits

Method 2: Matching the Logits

Instead of directly copying the weights, we can use the output logits

from the teacher model. Though their layer dimensions might vary,

their outputs have the same dimensions and structures. For a GPT-like

model trained to predict the next vocabularies, the output logits

represents the possibility for each vocabulary, and this possibility

distribution contains much more information than a hot label that

denotes a single vocabulary. The student model can train on the logits

from the teacher model. That is, we can match logits from two models.

Though this method requires inferences from the teacher model, the

volume of additional computations isn't high as it is possible for the

information to be transferred with much fewer training steps compared

to the usual training on hot labels. It is shown in the experiments that

only 0.4 epochs of training worked.

For the new model is larger than the trained model, instead of directly

matching the large new model's logits with the original model, we make

a intermediate model that has the same dimensions as the new model,

but fewer layers. The intermediate model's total parameters should be

less than or equal to the teacher model's parameters.

After setting the intermediate model that way, we transfer the

- 6 -

knowledge of the teacher model to the intermediate model by training

the intermediate model on the logits from the teacher model. After the

intermediate training, the weights of the intermediate model is

transferred to the large model by copying the weights.

For the intermediate training, training settings similar to DistilBERT was

used. the cross entropy loss is used:

    ×  

Eqn 1. cross entropy loss

 denotes the teacher’s logits for the ith input, and  denotes the

student’s logits for the same input.

 


exp 

exp 

Eqn 2. softmax-temperature

Also, a softmax-temperature is used so that the logits are softened. 

denotes the model score for the class i, and the numerator denotes the

sum of the scores for the all classes. Various temperatures were tried,

and the temperature value (T) of 4 yielded the best results among many

choices. [5]

We used the PyTorch based transformer library from Huggingface, and

modified it to implement our design. [15]

- 7 -

Chapter 3. Experiments
3.1. Setup
For the experiments, we used smaller versions of GPT-2 models that

have the same architecture with the original GPT-2 model but different

model sizes.

Model
of

Parameters
of Layers Dimension

4-128 6.7M 4 128
8-128 8.4M 8 128
6-144 8.7M 6 144

Table 1. The models used in the experiments

We set three models for the experiment. 4-128 is the base "teacher"

model. 8-128 is set such that it has twice the decoder layers of the

4-128. 6-144 has almost the same number of parameters in the

decoder layers as 8-128. For models with larger dimensions and

number of layers, the total number of parameters will more

proportionate to the number of layers, but for our experiments, as the

models used are relatively smaller, a large portion of parameters are

for the layers other than decoders. For the training dataset, we

randomly sampled 8GB of OpenWebText2 as the train set and 2GB as

the test set. The training epochs were set to 5, 6 and 6 respectively for

4-128, 8-128 and 6-144. As recent work rarely gives information on the

training epochs, it is difficult to choose the right epoch for the

training. [10] We set it this way so that

number of parameters

dataset size×epochs

to be similar to that of BERT. [9] 4 NVIDIA Tesla V100 PCIe 32 GB

cards were used in the experiments. The batch size of 16 was used for

all experiments, except for the case of training the intermediate model

of 3-144. The training was done for the next sentence generation task

with cross entropy loss as the loss computation.

We first trained each model to 5, 6 and 6 epochs respectively. Then,

using the trained 4-128 model, we transferred the knowledge of the

4-128 model to newly initialized 8-128 and 6-144 model. We denotes the

transferred version as 8-128’ and 6-144’ to distinguish them with ones

without the transfer. After the transfer, we trained the two models with

- 8 -

the transferred knowledge in them. The training was stopped when the

training loss reached the training loss of each model when training

them for 6 epochs without the transfer.

- 9 -

3.2. Preliminary Experiment
First, to see how we should copy the weights, three ways of copying the

weights were tested. The first was copying the teacher’s weights to the

front, the second was copying the weights in between the student layers

(interpolating), and the last was copying the teacher’s weights to the

back. Below 3 figures show the three ways.

Fig 3. Copying to the front

Fig 5. Copying to the back

- 10 -

After initializing each model, we trained each model. The result shows

that the copying to the front was the best among three, and copying

the back was the worst. As it showed the fastest convergence among

three, we copied the weights to the front of the new model in the

succeding

Fig 4. Interpolating

Fig 5. The training loss of 8-128’ with three
methods. orange: copying to the front, blue: copying

to the back, green: interpolating

- 11 -

3.3. Results

Model Epochs Time (Hours) Final Loss
4-128 5 24 4.919
8-128 6 55 4.68
6-144 6 58 4.71

Table 2. The training of each model without the transfer

1) 8-128 and 8-128’

Model Epochs Time (Hours) Final Loss
8-128 6 55 4.68
8-128’ 5.79 53 4.68

Table 3. The training of 8-128 and 8-128’

The weights from 4-128 is copied to a newly initialized 8-128’, and

training using the dataset was done for the model. The 8-128’ model

reached the loss of 4.68 in 5.79 epochs, thus saving about 3.5% of the

training epochs and 2 hours of training compared to training the

original 8-128 model without using the trained 4-128 model. 8-128’

showed slightly lower loss overall.

Fig 6. The training loss of 8-128 and 8-128’

training epochs

loss

- 12 -

3) 6-144 and 6-144’

Model Epochs Time (Hours) Final Loss
3-144 10
6-144 6 55 3.87
8-128’ 4.71 34 3.87

Table 4. The training of 6-144 and 6-144’

For the transfer from the 4-128 to the intermediate 3-144, it took

about 10 hours for the 0.4 epochs of training. As the loss started at

5.08 and reached below 0.4 in 0.4 epochs, no more training was needed

for the transfer. It was done running the inference on 4-128 and

training on 3-144 at the same time. The time for this can be further

reduced when the inference on 4-128 and training on 3-144 with the

inference results are separated, as concurrently running the two models

restricted the use of large batch sizes.

After 3-144 finished its training, the weights were copied to a newly

initialized 6-144’, and the usual training was done. 6-144’ reached the

loss of 4.71 in just 3.87 epochs, reducing . If we add the time for

training the intermediate model, the total saved time of training will be

21 hours of training, which means 18.9% reduction in the total training

time.

Fig 7. The training loss of 8-128 and 8-128’

loss

training epochs

- 13 -

Chapter 4. Conclusion

4.1. Conclusion
The experiments results showed that it is beneficial to transfer the

knowledge of present, trained models to the new models, thus resulting

thm. Though the amount of the benefits might vary, as transferring the

knowledge of the teacher model is trivial, it can be regarded as an

improvement. Further optimizations like tuning the hyper parameters or

using different intermediate models could further improve the results.

4.2. Discussions
Most importantly, as we used a mini-sized model for the experiments, it

can be different when using a full-sized model. However, as the SOTA

models require huge amounts of computations, [14] it is difficult to

actually train the full-sized models. Still, as the models used in our

experiments share the same architectural characteristics with other

SOTA models, we expect the method to work also for the larger models,

though their effectiveness can vary. Moreover, it is possible that the

same methods perform better for the real-sized models than our

experiments models, as it is possible that the smallness of the teacher

model might restricted its model capacity.

Though the main point of the paper was proved by the experiments,

there is still room regarding the explainability aspect. Especially

because the results were much better with 6-144’ model compared to

8-128’, further explanations are needed. This can be done by

comparing the weight values and hidden states from each model and at

each stage of the training.

It is possible to transfer the knowledge to a model with a different

architecture. We did a preliminary research transferring a BERT

model’s knowledge to a GPT-like model we used in the experiments.

Fine-tuning to make the same outputs and index conversion of different

tokenizers were required. It yielded similar results, so it is expected

that the techniques from this paper can be generally used among

different models.

- 14 -

Bibliography
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. Attention Is

All You Need, arXiv:1706.03762, 2017.

[2] Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.

Improving Language Understanding by Generative Pre-Training, 2018.

[3] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,

and Ilya Sutskever. Language models are unsupervised multitask

learners, 2019.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish

Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen

Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,

Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,

Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher

Berner, Sam McCandlish, Alec Radford, Ilya Sutskever and Dario

Amodei. Language Models are Few-Shot Learners, arXiv:2005.14165,

2020.

[5] Victor Sanh, Lysandre Debut, Julien Chaumond and Thomas Wolf.

DistilBERT, a distilled version of BERT: smaller, faster, cheaper and

lighter, arXiv:1910.01108, 2019.

[6] Geoffrey Hinton, Oriol Vinyals and Jeff Dean. Distilling the Knowledge

in a Neural Network, arXiv:1503.02531, 2015.

[7] Jay Alammar. Ecco: An Open Source Library for the Explainability of

Transformer Language Models. In Proceedings of the 59th Annual

Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System

Demonstrations, pages 249 257, Online, 2021.–

[8] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown,

Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu and

Dario Amodei. Scaling Laws for Neural Language Models,

arXiv:2001.0836, 2020.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.

BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding, arXiv:1810.04805, 2018.

[10] Aran Komatsuzaki. One Epoch Is All You Need, arXiv:1906.06669,

2019.

- 15 -

[11] Or Sharir, Barak Peleg and Yoav Shoham. The Cost of Training

NLP Models: A Concise Overview, arXiv:2004.08900, 2020.

[12] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase and Yuxiong He.

DeepSpeed: System Optimizations Enable Training Deep Learning Models

with Over 100 Billion Parameters, KDD '20: Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data

Mining, pages 3505-3506, 2020.

[13] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,

Jared Casper and Bryan Catanzaro. Megatron-LM: Training Multi-Billion

Parameter Language Models Using Model Parallelism, arXiv:1909.08053,

2019.

[14] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley,

Samyam Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye,

George Zerveas, Vijay Korthikanti, Elton Zhang, Rewon Child, Reza

Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi,

Yuxiong He, Michael Houston, Saurabh Tiwary, Bryan Catanzaro. Using

DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A

Large-Scale Generative Language Model, arXiv:2201.11990, 2022.

[15] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,

Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf,

Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara

Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain

Gugger, Mariama Drame, Quentin Lhoest and Alexander M. Rush.

HuggingFace's Transformers: State-of-the-art Natural Language

Processing, arXiv:1910.03771, 2020.

[16] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao

and Kaisheng Ma. Be Your Own Teacher: Improve the Performance of

Convolutional Neural Networks via Self Distillation, arXiv:1905.08094,

 2019.

[17] Jianping Gou, Baosheng Yu, Stephen John Maybank and Dacheng

Tao. Knowledge Distillation: A Survey, arXiv:2006.0552, 2021.

[18] Lambda Labs, OpenAI's GPT-3 Language Model: A Technical

Overview, https://lambdalabs.com/blog/demystifying-gpt-3/, June 03,

2020, accessed on May 06. 2022.

- 16 -

국문 초록
새로운 자연어 처리 모델을 학습하는 비용은 어느 때보다도 높으며,

계속해서 증가하고 있다 이런 문제를 해결하기 위해 이 논문은 이미 .

학습된 모델을 재활용하여 더 큰 모델을 학습하는 비용을 줄이는 방안을

제시한다 지식 증류 의 기법들을 이용해 이미 . (Knowledge Distillation)

학습된 모델의 지식을 새로운 모델로 이전하는 것이 가능한데 이는 ,

새로운 모델이 학습된 모델보다 더 큰 경우에도 그러하다 이것은 그 . 1)

가중치 를 복사하는 것과 두 모델의 로짓 을 같게 만드는(weights) 2) (logit) ,

두 가지 방법으로 가능하다 전자는 두 모델의 차원 이 동일한 . (dimension)

경우에만 사용 가능하지만 후자는 그렇지 않은 경우에도 사용할 수 있다, .

와 비슷한 모델을 이용한 실험에서 두 가지 방법은 학습 시간을 GPT2 ,

각각 단축하였다 이를 통해 비교적 작은 학습된 모델을 3.5%, 18.9% . ,

재사용해 큰 모델의 학습 시간을 단축할 수 있음을 보였다.

주요어 딥러닝 자연어처리 지식 증류 트랜스포머 모델 모델 학습: , , , , ,
모델 재활용
학 번 : 2020-25068

	Chapter 1. Introduction p.
	Chapter 2. Design and Implementation p.
	Chapter 3. Experiments p.
	Chapter 4. Conclusion p.

<startpage>6
Chapter 1. Introduction p. 1
Chapter 2. Design and Implementation p. 3
Chapter 3. Experiments p. 7
Chapter 4. Conclusion p. 13
</body>

