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1. Abstract

The cost of training a new language model is higher than 

ever, and it continues to increase. To mitigate the issue, this 

paper proposes reusing a trained model to reduce the cost of 

training a larger model. By using the methods used in Knowledge 

Distillation(KD), the knowledge of the present trained model can 

be transferred to the new model, even when the new model is 

larger than the trained model. This is done by 1) copying the 

weights and 2) logits matching. The former can be used for 

models of the same dimensions while the second can be used 

regardless of the dimensions, though it requires more 

computations than the former. In the experiments with the 

GPT-like models, it is shown that reusing a relatively small 

trained model reduced the training time of a relatively larger 

model.

Keyword : Deep Learning, NLP, Knowledge Distillation, 

Transformer Model, Model Training, Model Reuse

Student Number : 2020-25068
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Chapter 1. Introduction

1.1. Introduction
Recently published Natural Language Processing (NLP) models are 

showing lots of improvements, and their improvements are based on 

the scaling of the model. [8] For example, the original GPT model had 

124 million parameters and the GPT-2 model had 1.5 billion parameters, 

while the most recent GPT-3 model had 175 billion parameters. [2, 3, 4] 

The trend of increase in the model size is expected to continue further.  

However, the increase in the model size is entailed by the increase in 

the training cost and time. It is known that the cost for training BERT 

was $ 6,912. [11] Though the research team has not officially disclosed 

the training cost, it is estimated to be up to $ 4.6 million, with a Tesla 

V100 cloud instance [18] 

There have been many researches to reduce the training costs of these 

models, or to accelerate the training speed. [11, 12, 13] Though these 

approaches proved effective, they don't utilize the present models, 

which is an act of wasting these models. It would be beneficial if we 

can utilize a present model to reduce the training cost of a new model 

we’re trying to train. Though the new model can be larger than the 

previous model, the previous model is often also a result of a large 

amount of training. Thus, even the present model that is smaller than 

the new model can contain much more information than the new model 

at the early stage of the training. Thus, if we can transfer the 

knowledge of the present model, which is already trained, to the large 

and new model, we can expect the overall training time to be reduced.

In transferring the knowledge of the previous model, we'll use the 

techniques from Knowledge Distillation (KD). Previous work regarding 

KD usually tries to compress a larger teacher model's information into 

a smaller student model. However, the same techniques can be used in 

the opposite case, where the teacher is smaller than the students. We 

used two techniques from KD, 1) weight copying and 2) matching the 

logits to transfer the knowledge from the teacher model to the student 

model. [6]

For the paper, we used smaller versions of GPT-2 models that have the 

same architecture with the original GPT-2 model but different 
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dimensions and layer numbers.

1.2. Related Work
Since the publication of the attention-based transformer model, [1] it 

became a dominant architecture in the area of Natural Language 

Processing (NLP). [2, 3, 4, 9, 14] Across different models, their model 

capacities are known to be determined by the model sizes, that are 

determined by the number of parameters in the model, the number of 

layers, etc.. As a consequence, recent NLP models are becoming larger 

then ever, and they actually constitute the largest models in the whole 

DNN domain. [8] This trends in the enlargements of NLP models are 

entailed by the huge increase in the training costs and time. [4, 8, 11]

Other than the traditional approaches like using mixed-precision and a 

large batch, there have been recent approaches targeted specifically at 

optimizing the training of language models. Megatron-LM alleviates the 

large memory constraints by using model parallelism. [13] DeepSpeed 

aims at reducing the GPU memory usage and effectively utilizing the 

distributed resources. [12] By using the both techniques, a language 

model with 530 billion parameters could be made. [12, 13, 14]

However, there was no attempt to reuse the already trained models to 

reduce the cost of training a new model. For our approach can be 

used together with other optimizations, it can still be beneficial even if 

the improvement is relatively less dynamic. 

We use Knowledge Distillation(KD) techniques to use the knowledge in 

the present trained model. KD was originally used to compress a large 

model into a smaller one, or to compress an ensemble of models into a 

single model. [6] There have been various applications of the KD in 

different domains, and the application for language models are 

relatively recent. [17] DistilBERT is one example of such cases, and 

using the same method, DistilGPT-2 was also released. [16]

Unlike the previous work in KD, we’re using the method not to 

compress the model, but to transfer the information, which actually is 

an intermediate goal for most KD approaches.



- 3 -

Chapter 2. Design and Implementation

For transformer models, the main factors that determine the model size 

is the embedding size and the number of the transformer layers. A 

transformer layer's size(i.e., the number of parameters in the layer) is 

proportional to the square of the embedding size. Often, for a same 

architecture, there are a few models with different model sizes, which 

was the case for BERT and GPT models. [3, 9] We assume a situation 

where there is a model which already finished its training, and there 

are two larger models to be trained from scratch, one of which has the 

same dimensions as the trained model but twice the number of layers. 

Another model has larger dimensions and more layers compared to the 

original model, but not as much as twice the layers. Those two models 

are set to have the same number of parameters in the transformer 

layers: twice that of the original model. We transfer the knowledge of 

the original, trained model to these two new models before training 

them. By initializing the new model’s parameters using the original 

model, we can achieve the same accuracy with less training compared 

to the situation where we don't use the original model in the training 

of the new model.

We first randomly initialize the new model that we are trying to train. 

Next, we transfer the knowledge of the trained model to a part of the 

new model. Then, the new model with the transferred knowledge is 

trained with the usual training method with the dataset.

For transferring the knowledge of the teacher model to the student 

model, we use two methods. The first one can be used for the models 

with the same dimensions but different layer numbers. The second one 

can be used regardless of the dimensions, but requires a little bit more 

computations during the training period.
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Fig 1. Copying the Weights

Method 1: Copying the Weights

It is known that the output "evolves" going through each transformer 

layers, becoming closer to the "correct" output. [7] Let's say that there 

are two trained models with different number of layers. One has 4 

layers while the other has 8 layers. Then, the output of the 4-layer 

model will be similar to that of the output of the 4th layer in the 

8-layer model and their parameter values will also be similar. This is 

why simply copying the weights from the teacher model to the student 

model can transfer the knowledge.

When the student and the teacher models have the same dimensions 

but different number of transformer layers, a transformer layer in each 

model has exactly the same size and the same number of parameters. 

We can directly copy the weights of the teacher model layers to the 

student model layers. The cost of copying the weights is trivial and can 

be ignored.

However, there is a possibility that the this method can result in the 

trap of ‘local minima’. Thus, we train the models until they converge to 

see if they can reach the same loss even after large amounts of 

training.
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Fig 2. Matching the Logits

Method 2: Matching the Logits

Instead of directly copying the weights, we can use the output logits 

from the teacher model. Though their layer dimensions might vary, 

their outputs have the same dimensions and structures. For a GPT-like 

model trained to predict the next vocabularies, the output logits 

represents the possibility for each vocabulary, and this possibility 

distribution contains much more information than a hot label that 

denotes a single vocabulary. The student model can train on the logits 

from the teacher model. That is, we can match logits from two models. 

Though this method requires inferences from the teacher model, the 

volume of additional computations isn't high as it is possible for the 

information to be transferred with much fewer training steps compared 

to the usual training on hot labels. It is shown in the experiments that 

only 0.4 epochs of training worked.

For the new model is larger than the trained model, instead of directly 

matching the large new model's logits with the original model, we make 

a intermediate model that has the same dimensions as the new model, 

but fewer layers. The intermediate model's total parameters should be 

less than or equal to the teacher model's parameters.

After setting the intermediate model that way, we transfer the 
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knowledge of the teacher model to the intermediate model by training 

the intermediate model on the logits from the teacher model. After the 

intermediate training, the weights of the intermediate model is 

transferred to the large model by copying the weights.

For the intermediate training, training settings similar to DistilBERT was 

used. the cross entropy loss is used:

    ×  

Eqn 1. cross entropy loss

 denotes the teacher’s logits for the ith input, and  denotes the 

student’s logits for the same input. 

 


exp 

exp 

Eqn 2. softmax-temperature

Also, a softmax-temperature is used so that the logits are softened.  

denotes the model score for the class i, and the numerator denotes the 

sum of the scores for the all classes. Various temperatures were tried, 

and the temperature value (T) of 4 yielded the best results among many 

choices. [5]

We used the PyTorch based transformer library from Huggingface, and 

modified it to implement our design. [15]
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Chapter 3. Experiments
3.1. Setup
For the experiments, we used smaller versions of GPT-2 models that 

have the same architecture with the original GPT-2 model but different 

model sizes.

Model
# of 

Parameters
# of Layers Dimension

4-128 6.7M 4 128
8-128 8.4M 8 128
6-144 8.7M 6 144

Table 1. The models used in the experiments

We set three models for the experiment. 4-128 is the base "teacher" 

model. 8-128 is set such that it has twice the decoder layers of the 

4-128. 6-144 has almost the same number of parameters in the 

decoder layers as 8-128. For models with larger dimensions and 

number of layers, the total number of parameters will more 

proportionate to the number of layers, but for our experiments, as the 

models used are relatively smaller, a large portion of parameters are 

for the layers other than decoders. For the training dataset, we 

randomly sampled 8GB of OpenWebText2 as the train set and 2GB as 

the test set. The training epochs were set to 5, 6 and 6 respectively for 

4-128, 8-128 and 6-144. As recent work rarely gives information on the 

training epochs, it is difficult to choose the right epoch for the 

training. [10] We set it this way so that    

number of parameters

dataset size×epochs

to be similar to that of BERT. [9] 4 NVIDIA Tesla V100 PCIe 32 GB 

cards were used in the experiments. The batch size of 16 was used for 

all experiments, except for the case of training the intermediate model 

of 3-144. The training was done for the next sentence generation task 

with cross entropy loss as the loss computation.

We first trained each model to 5, 6 and 6 epochs respectively. Then, 

using the trained 4-128 model, we transferred the knowledge of the 

4-128 model to newly initialized 8-128 and 6-144 model. We denotes the 

transferred version as 8-128’ and 6-144’ to distinguish them with ones 

without the transfer. After the transfer, we trained the two models with 
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the transferred knowledge in them. The training was stopped when the 

training loss reached the training loss of each model when training 

them for 6 epochs without the transfer.
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3.2. Preliminary Experiment
First, to see how we should copy the weights, three ways of copying the 

weights were tested. The first was copying the teacher’s weights to the 

front, the second was copying the weights in between the student layers 

(interpolating), and the last was copying the teacher’s weights to the 

back. Below 3 figures show the three ways.

Fig 3. Copying to the front

Fig 5. Copying to the back



- 10 -

After initializing each model, we trained each model. The result shows 

that the copying to the front was the best among three, and copying 

the back was the worst. As it showed the fastest convergence among 

three, we copied the weights to the front of the new model in the 

succeding

Fig 4. Interpolating

Fig 5. The training loss of 8-128’ with three 
methods. orange: copying to the front, blue: copying 

to the back, green: interpolating
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3.3. Results

Model Epochs Time (Hours) Final Loss
4-128 5 24 4.919
8-128 6 55 4.68
6-144 6 58 4.71

Table 2. The training of each model without the transfer

1) 8-128 and 8-128’

Model Epochs Time (Hours) Final Loss
8-128 6 55 4.68
8-128’ 5.79 53 4.68

Table 3. The training of 8-128 and 8-128’

The weights from 4-128 is copied to a newly initialized 8-128’, and 

training using the dataset was done for the model. The 8-128’ model 

reached the loss of 4.68 in 5.79 epochs, thus saving about 3.5% of the 

training epochs and 2 hours of training compared to training the 

original 8-128 model without using the trained 4-128 model. 8-128’ 

showed slightly lower loss overall.

Fig 6. The training loss of 8-128 and 8-128’

training epochs

loss
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3) 6-144 and 6-144’

Model Epochs Time (Hours) Final Loss
3-144 10
6-144 6 55 3.87
8-128’ 4.71 34 3.87

Table 4. The training of 6-144 and 6-144’

For the transfer from the 4-128 to the intermediate 3-144, it took 

about 10 hours for the 0.4 epochs of training. As the loss started at 

5.08 and reached below 0.4 in 0.4 epochs, no more training was needed 

for the transfer. It was done running the inference on 4-128 and 

training on 3-144 at the same time. The time for this can be further 

reduced when the inference on 4-128 and training on 3-144 with the 

inference results are separated, as concurrently running the two models 

restricted the use of large batch sizes.

After 3-144 finished its training, the weights were copied to a newly 

initialized 6-144’, and the usual training was done. 6-144’ reached the 

loss of 4.71 in just 3.87 epochs, reducing . If we add the time for 

training the intermediate model, the total saved time of training will be 

21 hours of training, which means 18.9% reduction in the total training 

time.

Fig 7. The training loss of 8-128 and 8-128’

loss

training epochs
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Chapter 4. Conclusion

4.1. Conclusion
The experiments results showed that it is beneficial to transfer the 

knowledge of present, trained models to the new models, thus resulting 

thm. Though the amount of the benefits might vary, as transferring the 

knowledge of the teacher model is trivial, it can be regarded as an 

improvement. Further optimizations like tuning the hyper parameters or 

using different intermediate models could further improve the results.

4.2. Discussions
Most importantly, as we used a mini-sized model for the experiments, it 

can be different when using a full-sized model. However, as the SOTA 

models require huge amounts of computations, [14] it is difficult to 

actually train the full-sized models. Still, as the models used in our 

experiments share the same architectural characteristics with other 

SOTA models, we expect the method to work also for the larger models, 

though their effectiveness can vary. Moreover, it is possible that the 

same methods perform better for the real-sized models than our 

experiments models, as it is possible that the smallness of the teacher 

model might restricted its model capacity.

Though the main point of the paper was proved by the experiments, 

there is still room regarding the explainability aspect. Especially 

because the results were much better with 6-144’ model compared to 

8-128’, further explanations are needed. This can be done by 

comparing the weight values and hidden states from each model and at 

each stage of the training.

It is possible to transfer the knowledge to a model with a different 

architecture. We did a preliminary research transferring a BERT 

model’s knowledge to a GPT-like model we used in the experiments. 

Fine-tuning to make the same outputs and index conversion of different 

tokenizers were required. It yielded similar results, so it is expected 

that the techniques from this paper can be generally used among 

different models. 
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국문 초록
새로운 자연어 처리 모델을 학습하는 비용은 어느 때보다도 높으며, 

계속해서 증가하고 있다 이런 문제를 해결하기 위해 이 논문은 이미 . 

학습된 모델을 재활용하여 더 큰 모델을 학습하는 비용을 줄이는 방안을 

제시한다 지식 증류 의 기법들을 이용해 이미 . (Knowledge Distillation)

학습된 모델의 지식을 새로운 모델로 이전하는 것이 가능한데 이는 , 

새로운 모델이 학습된 모델보다 더 큰 경우에도 그러하다 이것은 그 . 1) 

가중치 를 복사하는 것과 두 모델의 로짓 을 같게 만드는(weights) 2) (logit) , 

두 가지 방법으로 가능하다 전자는 두 모델의 차원 이 동일한 . (dimension)

경우에만 사용 가능하지만 후자는 그렇지 않은 경우에도 사용할 수 있다, . 

와 비슷한 모델을 이용한 실험에서 두 가지 방법은 학습 시간을 GPT2 , 

각각 단축하였다 이를 통해 비교적 작은 학습된 모델을 3.5%, 18.9% . , 

재사용해 큰 모델의 학습 시간을 단축할 수 있음을 보였다.

주요어 딥러닝 자연어처리 지식 증류 트랜스포머 모델 모델 학습: , , , , , 
모델 재활용
학   번 : 2020-25068
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