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Abstract 

Semiparametric Modeling of Consumer 

Behavior Incorporating Time-Varying Effects 

- Focusing on Updating Expectations and Perceptions in 

Platform Service Use - 
 

Justine Jihyun Kim 

Technology Management, Economics, and Policy Program 

The Graduate School 

Seoul National University 
 

The marketing literature clearly defines that consumers’ intention to repurchase a 

product or continue to use a service depends primarily on their prior experience of using 

them, and that continued user satisfaction is considered the key to building and retaining a 

loyal base of long-term customers. However, most existing studies use static utility models 

to explain consumer behavior in platform services and therefore do not adequately reflect 

the time-varying effects of continued use of the service. In addition, cross-sectional studies 

of consumers’ continued use of services cannot provide an accurate view of how customers’ 

expectations and perceptions of the product/service may change over time. Therefore, 

dynamic longitudinal studies are needed to determine how customers update their 



iv 

 

expectations and perceptions through experience and how this may affect customer 

satisfaction and/or behavior. This study aims to fill this gap by employing a dynamic utility 

model to explain consumer behavior in a platform economy where services are used 

repeatedly. Through an empirical study, we examine the time-varying effects of covariates 

in explaining consumers' use of ride-hailing platforms by first identifying the effect of 

updating expectations and perceptions with repeated use, thereby extending upon the 

expectation-confirmation theory. In the second part of this study, we observe the temporal 

effects on consumers' usage behavior through semiparametric modeling. The results of this 

study are expected to add to the literature on consumer behavior by presenting how the 

discrepancy between updated service expectations and actual service delivery, as well as 

updated perceptions, affect consumer behavior in platform services and by demonstrating 

seasonality in services with repeated use. 

 

Keywords: Consumer Behavior, Repeated Use, Semi-parametric Modeling, 

Expectations Updating, Time-varying Effects, Platform Services 

Student Number: 2017-32883 
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Chapter 1. Introduction 

1.1 Research Background 
 

In the sharing economy, an online platform that brings together supply and demand is 

a driving force for growth, innovation and competition. They enable a business model that 

creates value by connecting service providers and consumers, enabling businesses and 

consumers to take advantage of opportunities in the digital economy (Parker et al., 2016). 

The mobile platform is a representative example of information technology (IT), where 

consumers can access the necessary information and services without time and space 

constraints through the mobile data service provided. It provides a service based 

consumer’s location and can promptly provide the necessary information they need. Today, 

the platform revolution is no longer limited to the retail or high-tech industries, but can be 

observed in several industries (Parker et al., 2010). 

A representative business strategy of platform service providers is consumer lock-in, 

where consumers are dependent on a single producer or provider for a particular service 

and cannot switch to another provider without significant cost or inconvenience (Arthur, 

1989; Farrel & Klemperer, 2007). In a platform environment, once consumers have chosen 

a predominantly used service, they continue to invest in using that particular product rather 

than replacing the product they are already using, creating a potential barrier to entry for 

potential competitors (Arthur, 1989; Barney, 1991). However, users also have the option of 

using multiple services, making it easy to find a substitute that offers a similar service, as 
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the obvious difference between the various services is usually difficult to discern. Since 

users, once they choose a service, tend to use it repeatedly, the churn rate may increase if 

user satisfaction cannot be maintained over time.  

Therefore, studies in the field of management information and marketing have 

attempted to explore the factors that induce consumers’ continued use of various services. 

There is an agreement in the marketing literature that consumer satisfaction with the 

perceived quality (including pricing) of services is critical to customer retention, and that 

the value of a service depends on its quality and price (Steiner et al., 2013). Moreover, 

while there is a general consensus that a person’s decision to reuse a service, as opposed to 

the decision to use it for the first time, depends on the expected value of the service – that 

is, the benefits that is derived from using the service relative to expectations. Therefore, 

individual evaluation of the value of a service is likely to depend on his or her previous 

experience with services (Ganesh et al, 2000; Kalwani and Narayandas, 1995; Bolton et al., 

2006). Similarly, Helson, (1964) established that a person's perception of a new stimulus is 

formed relative to the reference value accumulated through experience through adaptation 

level theory. This suggests, for example, that observed prices and internal reference prices 

that are determined by previous information to which consumers have been exposed are 

compared (Blattberg and Neslin, 1990; Kneib et al., 2007). Thus, some studies have 

designed choice models to include additional covariates that reflect the discrepancy 

between observed and reference prices (Kalwani et al. 1990, or Kalyanaram and Little 1994, 

Kneib et al., 2007). Similarly, studies have shown that perceptions of service quality are 
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positively correlated with customer retention (e.g., Boulding et al. 1993). 

Furthermore, marketing literature states that a consumer’s intention to purchase or use 

a product or service again is mainly determined by previous experience with that product 

or service (Anderson and Sullivan, 1993; Oliver, 1980, 1993, Steiner et al., 2013). 

Additionally, sustained user satisfaction considered key to building and maintaining a loyal 

base of long-term consumers (Bolton et al., 2006). However, existing studies on demand-

side adoption behavior of platform services do not adequately reflect the time-varying 

effects of continued use of the service; they utilize static utility models to explain consumer 

behavior for these platform services. Moreover, cross-sectional studies of consumers’ 

continued use of services are unable to capture an accurate view of how customers’ 

expectations and perceptions of products/services may change as a function of their 

consumption experiences and the impact of these changes on subsequent cognitive 

processes. Therefore, a dynamic longitudinal study is needed to determine how customers 

update their expectations and perceptions through experience, and how these, in turn 

influence consumer satisfaction and/or behavior. This study aims to fill this gap by 

implementing a dynamic utility model to explain consumer behavior in the platform 

economy, where repeated use of services occurs.  

Through an empirical study, we examine the time-varying effects of covariates for 

explaining consumers’ use of ride-hailing platforms by, first, identifying the effect of 

updated expectations (UE) and updated perceptions (UP) with repeated use and then 

incorporating models based on penalized splines, a semiparametric approach. Second, we 
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observe temporal effects in consumers’ usage behavior through semiparametric modeling. 

The results of this study are expected to add to the literature on consumer behavior by 

presenting how the discrepancy between updated service expectations and actual service 

delivery, as well as updated perceptions, affect consumer behavior in platform services and 

by identifying seasonality in services with repeated use. 

 

1.2 Research Objectives 

 

This dissertation aims to incorporate time-varying effects of covariates in explaining 

consumers’ use of platform service by using models based on P-splines, a semiparametric 

approach. In doing so, this study first incorporates accumulated experience effect rising 

from repeated use of service, elaborating on how the described and/or updated ‘Service 

Gap’ influence consumers’ usage behavior of the platform. While it is assumed that the 

customer’s expectation of the service is either (1) described (specified) by the service 

provider or (2) formed by their own past experiences with repeated use, the study is 

expected to describe how consumers’ usage experience can update consumer expectations 

and perceptions, and they influence consumer’s platform usage behavior over time. 

Thereafter, by incorporating time-varying effects of covariates, stream-of-time effects 

(seasonality) in consumer behaviors can also be observed. The empirical analysis will be 

conducted in the context of ride-hailing platforms. The study is a meaningful addition to 

the literature that aims to understand platform service adoption from the demand-side 
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perspective and provides important implications that can be applied in practice when 

considering strategies to retain and improve the loyalty of ride-hailing platform users. 
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Chapter 2. Literature Review 

2.1 Studies on Consumer Behavior  
 

2.1.1 Expectation-Confirmation Theory 

 

Expectation Confirmation Theory (ECT), which states that consumers' satisfaction with 

previous use of that product or service primarily determines their intention to repurchase a 

product or to continue using a service, is one of the representative theories widely used in 

consumer behavior literature (Anderson and Sullivan, 1993; Oliver, 1980, 1993). The 

predictive power of ECT has been demonstrated in a wide range of products or services in 

the context of service marketing; more specifically, consumer satisfaction and post-

purchase behavior (Anderson and Sullivan, 1993; Dabholkar et al., 2000; Oliver, 1980, 

1993; Patterson et al. 1997; Tse and Wilton, 1988). The post-purchase behavior, 

representatively repurchase, has been explained including but not limited to camcorder 

(Spreng et al., 1996), photographic products (Dabholkar et al., 2000), automobile (Oliver, 

1993), and public transit (Fu et al., 2018), recently expanding to IT products and services 

such as e-books (Valvi and West, 2013), internet banking (Rahi and Ghani, 2019), and 

wearable devices (Gupta et al., 2021). 

While satisfaction is considered the key to building and maintaining a loyal base for 

long-term consumers, ECT hypothesizes that satisfaction with products/services, which is 

determined by the consumer’s initial expectations level with the product/service and its 
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discrepancies with actual performance, determines consumer’s intention to repurchase 

(Thong et al., 2006). The theory posits that expectations about the product/service are 

developed by consumers even before the purchase, and after the actual purchase, 

experience from using the product/service is gained by the consumer; say, the discrepancies 

may arise between expectations and actual delivery. In this way, consumers can confirm or 

disconfirm their expectations before purchase, evaluate perceived performance against 

previous frames of reference, and then form an opinion of performance. Consumer 

expectations are confirmed when the product/service meets or exceeds expectations 

(Churchill and Surprenant, 1982). 

Figure 1 below illustrates the key constructs and relationships in the framework of ECT 

(Bhattacherjee, 2001). Consumers form repurchase intentions as the following process:  

1. Initial expectations for a particular product or service is formed by consumers 

before purchasing. 

2. Product or service is accepted or used. After an initial consumption, a perception 

of its performance is formed. 

3. The product or service’s perceived performance is evaluated against original 

expectations, and it is determined to what extent users’ expectations are confirmed. 

4. A level of satisfaction is formed according to their confirmation and expectation 

level on which that confirmation was based. 

5. Satisfied consumers form repurchase intentions, and dissatisfied users churn from 

subsequent use. 
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Source: Bhattacherjee (2001) 

Figure 1. Key constructs and relationships in ECT 

 

The concept of satisfaction was extended by Oliver (1980) to the context of 

consumption as “the summary psychological state that occurs when emotions related to 

disconfirmed expectations are coupled with consumer’s prior feeling about consumption 

experiences.” However, the psychological state associated with the cognitive evaluation of 

the discrepancy between expectation and performance (confirmation) and the resulting 

psychological state were underscored. As illustrated in Figure 1, ECT assumes that 

confirmation is directly related to perceived performance, while being inversely 

proportional to expectations. Lower expectations and/or high-performance leads to greater 

level of confirmation, which then positively affects customer satisfaction and continuity 

(Bhattacherjee, 2001). The opposite vice versa causes disconfirmation and dissatisfaction, 

which lead to discontinuance intention. 

ECT is also theorizes expectations as an additional determinant of satisfaction, as they 

provide a criterion or reference level by which consumers can make evaluation decisions 
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about a particular product/service. Supporting this association is Helson’s (1964) adaption 

level theory, that claim that people perceive deviations from the "adjusted level" or 

reference level of stimuli based on the situational context, characteristics of the stimulus, 

and the psychological characteristics of the person experiencing the stimulus. Higher 

baseline levels or expectations tend to lead to higher satisfaction, and lower expectations 

lead to lower subsequent satisfaction. 

However, ECT has some limitations. First, even when post-purchase expectations may 

differ from pre-purchase expectations, it ignores possible changes in consumer 

expectations depending on the consumption experience. While pre-purchase expectations 

are generally based on the opinions or information provided by the media, post-purchase 

expectations are tempered by the consumers’ direct experience (Fazio and Zanna 1981). 

Second, conceptualization of expectations differs across studies regarding ECT. Some 

define expectations as “anticipated performance”, which is prior consumption beliefs on 

overall performance of a product/service (Westbrook and Reilly, 1983), when others, as 

beliefs about the level of attributes of a product or service (Oliver and Linda, 1981). 

Therefore, there exists the need to define expectations by incorporating the post-purchase 

expectations that are updated by consumer’s direct experience. 

 

2.1.2 Studies on Consumer’s Continued Use of IT Service 

 

Extending ECT paradigm, an Expectation Confirmation Model (ECM) of continuity in 
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information technology (IT) was proposed by Bhattacherjee (2001) based on the 

correspondence between decisions of individuals’ continued usage and repeat purchase of 

IT. The study argued that continuance decisions of IT users are similar to repurchase 

decisions of customers, which are influenced by the initial decision (acceptance or purchase) 

and the initial usage experience (of service or product), and can potentially lead to 

subsequent reversal of the initial decision. ECT’s assertion that satisfaction with using IT, 

followed by perceived usefulness, is the strong predictor of users’ intention to continue 

using the service/product was also supported. As such, the study contributed to the literature 

by conceptualizing the construct of confirmation and validating its effects on IT 

continuance intention through satisfaction. Researchers have also drawn upon recent 

findings of cognitive psychology literature by conceptualizing two dimensions, IT self-

efficacy and facilitating conditions, to comprise perceived behavioral control, and have 

linked these dimensions to continuance behavior and intention (Bhattacherjee et al., 2008). 

It was found that users who lack confidence in particular IT use ability (i.e., low self-

efficacy) are more likely to not continue using it even if they are reasonably satisfied with 

their previous usage experience, than users with high self-efficacy. 

Similarly, several studies synthesize the ECM to explain and predict users’ continuance 

intention of certain services from IT. Thong et al., (2006) adopts extended ECM that 

incorporates beliefs about perceived usefulness, enjoyment and ease of use after service 

use to explain the continued usage behavior. The results show that post-adoption service 

beliefs play an important role in the continued use of IT. In particular, the effect of 
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perceived ease of use on continuance intention was strongest for mobile internet use. Other 

studies examine factors that determine customers’ repurchase intentions in online shopping 

(Chiu et al., 2009; Lu and Su, 2009). Chiu et al. (2009) found significant predictors of 

customers’ repurchase intentions in online shopping as trust, perceived ease of use, 

usefulness, and enjoyment. To add, Lu and Su (2009) demonstrated that enjoyment, 

usefulness, and compatibility are significant predictors, whereas anxiety was an emotional 

barrier against using innovative systems. Likewise, Lee (2010) found that satisfaction had 

the greatest influence on the users’ intention to in continuously using the e-learning system.  

Other recent studies explore ECM to identify factors that influence intention to continue 

using mobile applications (Hsiao et al., 2016; Tam et al., 2020; Alalwan, 2020). Hsiao et 

al. (2016) incorporated a customer value perspective to identify the factors that influence 

the intention to continue using social apps, which was driven by users’ satisfaction, intimate 

connection with others, and hedonic motivation to use. Tam et al. (2020) demonstrated that 

the key drivers of persistent mobile app intentions using ECM along with the extended 

unified theory of acceptance and use of technology (UTAUT2). In terms of e-commerce 

platforms, Alalwan (2020) confirmed that hedonic motivation has a significant impact on 

both e-satisfaction and continued intention in mobile meal ordering apps. These results are 

due to the fact that functional benefits (i.e., ease of use and performance expectancy) in the 

consumer environment are sufficient in themselves to ensure customer satisfaction 

(Venkatesh et al., 2012). Therefore, it is consistently argued that in the decision of 

consumers to either adopt or reject new products and innovations are primarily shaped by 
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psychological and hedonic benefits (Brown & Venkatesh, 2005; Davis et al., 1989; Van der 

Heijden, 2004). 

The nature of these studies on consumers’ continued use of services; however, are cross-

sectional, therefore cannot accurately capture how customers’ perception of product/service 

could change over time. Therefore, a longitudinal study is needed to discover how 

customers may adjust service expectations, perception, and satisfaction over time based on 

experience, and how they, in turn will affect consumer behaviors. 

 

2.1.3 The GAP Model of Service Quality 
 

The GAP service quality model first proposed by Parasuraman et al. (1985) to help 

organizations understand the factors that influence customer satisfaction. It is specifically 

used to understand various deviations, the “gaps”, that occur in the process of providing 

services to potential customers by identifying the entire service delivery process and the 

gaps between processes. Suggesting that organization executives do not always know the 

characteristics that define high quality to consumers, characteristics a service must have to 

meet consumer needs, and levels of performance required to deliver high quality service, 

such lack of understanding affect consumer perception of quality. 

According to the GAP Model, the five gaps that affect consumer’s evaluation of service 

quality in the service provision process are as follows: 
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1. Knowledge Gap: The difference between expectations of consumers for service 

and the company's service provision. The gap may arise from lack of 

management’s market research and therefore not knowing exactly what consumers 

want or need. 

2. Design (Policy) Gap: The difference between perception of management and/or 

understanding and the actual specification of the consumer experience. When the 

management may correctly understand customer needs but fails to set performance 

standards. Administrators should ensure that the organization is defining the level 

of service that it deems necessary. 

3. Delivery Gap: The difference between the service delivery policies and standards 

and the actual service delivery. It may be caused by a lack of workforce policies, 

employees who lack knowledge of the product, failure to match supply to demand, 

and lack of cohesive teamwork to deliver a product or service. 

4. Communication Gap: The difference between what is promised to customers 

through advertisements and the actual delivery. This gap usually occurs when 

organizations exaggerate the deliverables to consumers, or share best practices to 

raise customer expectations and undermine customer perceptions. 

5. Customer Gap: The difference between expectations and perceptions of 

consumers. Consumer expectations are shaped based on word-of-mouth, personal 

needs, and past experiences, but the actual perceived service quality may differ 

from expectations. 
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The concept of these gaps in service and their impact on customer satisfaction has long 

been researched. However, the GAP Model of service quality does not identify the gap 

between customer expectations and actual delivery in its impact on customer satisfaction. 

As part of a decision strategy, consumers evaluate services based on expectations and 

relative experiences. As mentioned in the previous section, the ECT paradigm hypothesizes 

that consumer's pre-purchase expectation and the discrepancy between the expectation and 

the product/service's performance determine consumer’s satisfaction level with a 

product/service (Thong et al, 2006). In this regard, the concept of reference point was first 

introduced by Kahneman and Tversky (2013) in the prospect theory. Consumer behaviors 

are frequently observed as reference-dependent in economic situations, and therefore, it has 

been consistently emphasized in the behavioral economics and cognitive psychology 

literatures that relative levels of service may be more important than absolute levels in 

determining consumer preferences (Carson and Groves, 2007; DellaVigna, 2009; Hardie et 

al., 1993; Tversky and Kahneman, 1991). In particular, several studies report that the 

reference-dependent model perform better than standard choice modeling in exploring 

consumer behavior (Bateman et al., 2009; Kim et al., 2020). Therefore, to properly 

understand factors that influence consumer satisfaction of service, the gap between 

customer expectations, perceptions, and actual delivery, referred to as the “service gap” and 

the “perception gap”, need further elucidation in addition to the identified five gaps model 

of service quality. 
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2.1.4 Studies on Seasonality of Consumer Behaviors 

 

Consumers’ purchase of goods or use of services often show a specific pattern. 

Researchers have conducted various studies to study these patterns, some of which have 

tried to observe the consumer's natural seasonality in behaviors or to identify the 

consumer's usage behavior toward seasonal goods. 

Seasonality is a phenomenon that affects several economic sectors, and among many, 

tourism a representative sector that is most identified by such seasonality (Fernández-

Morales et al., 2016). While some studies suggest that the income level of tourists’ countries 

of origin may have a direct impact on the seasonal behavior of visitors (Nadal et al., 2004), 

other studies suggest that while income changes inevitably affect aggregate demand, period 

of economic recovery may be associated with a decline in seasonal agglomeration (Duro 

and Turrión-Prats, 2019).  

As such, previous studies have analyzed numerous factors involved in decision making 

and influencing seasonal trends. In analyzing the determinants, Hylleberg (1992) 

distinguishes three groups of factors: those related to the weather, specific events (religious 

events, festivals), and decisions tied to specific dates (school/company vacations, fiscal 

years). As seasonality analysis in tourism progressed, other explanatory factors were also 

presented. Reference has been made to the type of tourism products by the structure of 

tourism markets (Fernández-Morales et al., 2016), destinations and its potential for year-

round availability and use (Cuccia and Rizzo, 2011; Martín et al., 2014), and seasonality 
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and diversity of origin markets (Duro and Turrión-Prats, 2019). Martinez et al. (2020) 

specifically studied how the behavioral patterns of domestic and foreign tourists are 

influenced by the improvement of the economic conditions in terms of seasonal trends, in 

tourists arrivals. 

Other groups of studies aimed to identify demand dynamics in the seasonal goods 

industry, where products are sold over limited seasons and have limited availability. In 

these markets, retailers often adopt dynamic pricing policies where initial sale prices are 

announced at the beginning of the season and price is reduced as the season progresses. In 

such market, strategic consumers find trade-off between buying early when prices are high 

but are available, and buying later in the season when the price is low but inventory risk is 

high (Soysal and Krishnamurthi, 2012). When dynamic pricing techniques are applied to 

the sales of seasonal product sales, sellers must consider the sales environment, including 

consumer behavior, product scarcity, and demand uncertainty (Aviv and Pazgal, 2008). 

Specifically, a study by Soysal and Krishnamurthi (2012) found that, in the context of 

fashion product, failure to account for consumer expectations of future availability or 

changes in seasonal total consumption utility can lead to biased demand estimates. 

 

2.1.5 Studies on Online Platform Service Use 

 

The online platform economy, recently characterized as the “future of work,” includes 

economic activities in which independent workers or vendors are provided with a platform 
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to sell individual services or goods to consumers (Farrell and Greig, 2016). This includes 

labor platforms such as Uber that match consumers with providers who perform individual 

assignments or tasks, and capital platforms such as Airbnb and eBay that match consumers 

with providers who rent assets or sell goods. In digital economy, such platforms that bring 

together supply and demand are engines of growth, innovation, and competition, enabling 

businesses and consumers to take advantage of opportunities. In this regard, many of the 

existing studies have tried to understand consumer preferences for different online platform 

services and to develop marketing strategies. 

Among studies conducted on the use of platform services, Dickinger and Mazanec 

(2008) focused on online hotel booking services, which is one of the most widely used 

online platforms. They investigated the hotel characteristics that influence consumer choice 

in an online booking environment by conducting an adaptive conjoint survey among 346 

respondents. The results showed that the most important factors influencing online hotel 

booking were recommendations from friends and online reviews. More specifically, Chan 

et al. (2017) aimed to identify the impact of online reviews on consumers’ buying decisions 

in hotel booking. The findings from experiments indicated that hotel booking intention 

were significantly affected by review valence (Chan et al., 2017). Similarly, Park et al. 

(2017) have found that popularity and consumer ratings had main effects on the booking 

intention. Others have investigated strategic consumer behavior in online hotel booking 

(Masiero et al. 2020; Alderighi et al., 2022). To derive consumers' preferences for free 

cancelations and nonrefundable rates in different scenarios, Masiero et al. (2020) conducted 



29 

 

a discrete choice experiment. The result was that risk-seeking consumers were found to 

prefer the free cancelation rate, and that consumers' risk tolerance increases with the 

availability of automatic rebooking services. Based on data from Booking.com, Alderighi 

et al. (2022) added that dynamic pricing has a negative impact on consumers' perception of 

price fairness. 

On other types of service, Suhartanto et al (2019) sought to identify different motives 

for using different types of online food delivery (OFD) services, with customer experience, 

restaurant search, ease of use, and listing being important antecedents for intention to use 

the service. In contrast, Suhartanto et al. (2019) found a direct effect of food quality on 

online loyalty. Similarly, Roh and Park (2019) showed that people's moral obligations in 

meal preparation can change attitudes that influence the decision to use OFDs. 

Chandrasekhar et al. (2019) conducted a comparative analysis of OFDs and consumer 

preferences and found that consumer perceptions play an important role in understanding 

their decision-making processes. To add, the study showed that consumers prefer 

uniqueness above all in terms of price, quality and delivery. Related to COVID -19, Habib 

et al. (2022) investigated the factors that favor consumers' online engagement (OCE) and 

platform preferences. The results showed that consumer self-concept and platform 

interactivity influenced OCE and platform preference during COVID -19. Meanwhile, 

Belarmino et al. (2021) compared antecedents of satisfaction before and during quarantine 

using ECT, and food quality, speed of service, ease of use, and belief confirmation during 

quarantine were found to be significant. 
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In the context of transport systems, Frei et al. (2017) conducted a representative analysis 

of demand for flexible, demand-responsive transit services in Chicago. They conducted a 

survey to determine consumer preferences and analyzed the data using choice models. The 

mode choice was set to three alternatives, such as (flexible) transit and car, while the 

attributes of these alternatives were walk time, wait time, and travel time, as well as cost, 

frequency, and number of transfers. The study found that bike-sharers or those who 

currently use active transportation or public transportation for commute were significantly 

more likely to choose flexible and traditional modes than car commuters. 

Among the online platform services, e-hailing ride services (ERS), also known as ride-

hailing and ride-sourcing, which are on-demand services that connect car owners and 

passengers via smartphones, are gaining popularity and changing the urban mobility 

landscape (Wang, 2019; Yan et al., 2020). Since stakeholder satisfaction with a service is a 

very important factor for the continuity of the service, a number of studies have recently 

been conducted to understand the objectives of various stakeholders of ERS and to find the 

equilibrium between them for the operation of sustainable transport systems. Existing 

studies on ERS can be broadly classified into followings: (1) understanding service 

adoption from the supply side and demand side perspectives and (2) identifying matching 

mechanisms and/or optimization of services. Specifically with respect to the ride-hailing 

platform, studies have mainly attempted to explain the service adoption from both the 

supply (drivers) and demand side (passenger) perspectives while trying to understand how 

ERS changes people’s travel behavior.  
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As the popularity of ERS encourages the development of service that is not only reliable 

but is also consumer-oriented, numerous studies have been conducted to identify the factors 

that influence consumer intention and adoption of services (Arumugam et al., 2020; 

Nguyen-Phuoc et al., 2020). The studies have especially focused in developing countries 

where public transport systems are poorly developed due to lacking infrastructure, as ERS 

are increasingly seen as a substitute or complement to public transport. Representatively, 

Arumugam et al. (2020) studied consumer behavior toward ERS, which is rapidly 

becoming the preferred mode of public transportation in Malaysia. Referring to previous 

studies, they identified several factors that may influence user satisfaction and intention to 

use. As a result, subjective norms, perceived usefulness, perceived ease of use, 

compatibility, relative advantage, and safety were significant indicators of user satisfaction. 

Nguyen-Phuoc et al. (2020) focused on the factors affecting customer satisfaction and 

loyalty to ERS in Vietnam. They used partial least squares and structural equation modeling 

to identify the influencing factors from survey data of 559 ride-hailing passengers. The 

results show that perceived usefulness, sales promotion, and service quality directly 

influenced passenger satisfaction and loyalty. 

Other studies analyzing the matching process in the sharing economy have mainly 

focused on demand-side heterogeneity. Ibrahim (2019) and Bai et al. (2019) considered 

consumer impatience with congestion as demand-side heterogeneity. Ibrahim (2019) also 

pointed out that the number of available workers is uncertain when the assumption that the 

firm controls whether and when workers work is no longer true. Bai et al. (2019) presented 
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an analytical model that considers the number of participating agents and the demand rate. 

They found that the platform should charge a higher price when demand increases, but the 

price is not necessarily monotonic with the increase in provider capacity or waiting costs. 

Studies that consider heterogeneity on the supply side develop optimal work schedules 

that incorporate flexible supplier self-schedules (Hu and Zhou, 2022; Chen et al., 2020).  

While Wang et al. (2019) proposed a modified change-point model to derive adoption 

decisions and estimated changes in taxi drivers’ driving behavior caused by mobile ride-

hailing technology in Beijing, the optimal choice of trip selection was to favor longer trips 

than to aim for cruising time reduction to improve hourly earnings. Sun et al. (2020) 

proposed a new perspective on flexibility by considering the real-world choices of workers 

and drivers with respect to operating systems. Specifically, they modeled the matching 

process for taxi-hailing platforms and derived the optimal decisions for the platform and 

drivers using an approximate queuing analysis. Their analysis is based on real-world data 

from Didi Chuxing, which operates a number of matching systems: Inform and Assign. 

They found that the optimal radius is 1-3 kilometers and is lower during rush hour. 

Recent studies in the field of management information and marketing have attempted 

to uncover the factors that bring about supply-side and demand-side satisfaction and that 

drive continued use in various platform environments. It is well defined in the marketing 

literature that ㅊontinued user satisfaction is considered key to building and retaining a 

loyal base of long-term customers. A consumer’s intention to repurchase a product or 

continue to use a service depends primarily on satisfaction with the previous use of that 
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product or service (Anderson and Sullivan, 1993; Oliver, 1980, 1993). There are some 

studies that identify the factors that influence consumer intention and adoption of services 

(Arumugam et al., 2020; Nguyen-Phuoc et al., 2020). However, the existing studies on the 

adoption behavior of platform services on the demand side do not adequately reflect the 

time-varying effects of continued use of the service. 

 

2.2 Models with Time Effect 
 

2.2.1 Fitting Data with Spline 

 

Spline interpolation is an interpolation method where a special type of piecewise 

polynomial called a spline is used as an interpolant. Spline pieces together several functions 

in a principled way, that is, instead of fitting a single higher order polynomial to all values 

at once, spline interpolation fits a lower order polynomial to a small subset of values. It is 

often preferred to polynomial interpolation because the interpolation error can be small, 

even when using low-degree polynomials for splines. Spline interpolation also avoids the 

Lungi problem, which can cause oscillations between points when interpolating with higher 

order polynomials. Applications of these techniques include identifying trends in change 

for a given number. There also exists benefit of avoiding the problem of Runge's 

phenomenon, which can cause oscillations between points when interpolating with higher 

order polynomials. Application of these technique include identifying trends in change for 
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a given number. 

Suppose there are several points: (𝑥&, 𝑦&), (𝑥!, 𝑦!), … (𝑥', 𝑦'). Then, we aim to find a 

smooth function 𝑆(𝑥) so that 𝑆((𝑥() = 𝑦( for all 𝑘; more precisely, we seek 𝑘 cubic 

polynomials 𝑆&, … , 𝑆()! for each 𝑥 in the interval [𝑥( , 𝑥(*!]. Such polynomials can be 

defined by Eq. (1). 

 

𝑆((𝑥) = 𝑆(,& + 𝑆(,!(𝑥 − 𝑥() + 𝑆(,#(𝑥 − 𝑥()# + 𝑆(,$(𝑥 − 𝑥()$ ············· Eq. (1)  

 

The main constraints for splines are as follows: 

- Constraint 1: 𝑆((𝑥() = 𝑦( (has to go through the data) 

- Constraint 2: 𝑆((𝑥(*!) = 𝑆(*!(𝑥(*!) (spline has to be continuous; two splines 

have to meet at a point) 

- Constraint 3: 𝑆′((𝑥(*!) = 𝑆′(*!(𝑥(*!) (1st derivative must also match) 

- Constraint 4: 𝑆′′((𝑥(*!) = 𝑆′′(*!(𝑥(*!) (2nd derivative (infliction point) must also 

match (extra smooth- strong constraint) 

 

If there are 𝑛 + 1 points (knots), then there exists n-intervals, and in each interval, 

there is a spline. The constraints can only be met with polynomials of degree 3 (cubic 

polynomial) or higher are used. The classical approach is to use the cubic splines, where 

there are n-intervals and 4 ∙ 𝑛 unknowns. Then, there exists 4𝑛 − 2 constraints: 𝑛 + 1 

constraint 1s, 𝑛 − 1 constraint 2s as the splines have to meet at knots excluding those at 
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the two ends, and likewise 𝑛 − 1 constraint 3s and 4s. Sometimes, additional constraints 

that the 2nd derivative at the two endpoints are zero are added (two additional constraints).  

Because every interval is an individual cubic spline, there is no one global function, and 

there is a local fit. An important concept is that the constraint is used to estimate the 

polynomial within the interval. Intermediate values between knots can be identified 

through spline, but it is not good for extrapolation. 

 

2.2.2 Varying Coefficient Models 

 

Regression models are used to determine the numerical correlation between the 

predictors and response variables. However, when ‘curvature’ comes into play, the 

limitations of using linear regression models for estimation becomes apparent. There are 

two types of models used in the regression analysis: parametric and nonparametric. 

Parametric regression models are appropriate when the shape of the regression curve is 

known. Adopting a parametric regression curve necessitates access to other sources that 

provide point-by-point data. Otherwise, a nonparametric regression model can be 

employed as a constrained parametric regression will produce inconsistent results. In a 

nonparametric regression model, a curve fits into a function space, and the choice of 

function space is based on the characteristic of smoothness.  

Likewise, smoothing splines with penalty (P-splines) can be used to estimate trends in 

expected values and time-varying regression coefficients modeled as curves or surfaces as 
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part of a varying coefficient models (VCM) (Hastie and Tibshirani, 1993; Marx and Eilers, 

1999; Ramsay and Silverman, 2003).  

Hastie and Tibshirani (1993) first introduced VCM, where regression coefficients were 

allowed to interact with other variables, say, by varying as smooth functions of other 

variables to increase the flexibility of a linear regression model. The model suggests a linear 

relationship with the regressors, but the coefficients can change smoothly with the value of 

other variables (the effect modifiers). The simplest form is as follows: 

 

𝐸[𝑦(𝑡)] = 𝜇(𝑡) = 𝛽(𝑡)𝑥(𝑡) ······················································· Eq. (2)  

 

In Eq. (2), 𝑦 and 𝑥 are observed, 𝛽 is estimated, and must change slowly with 𝑡. 

VCM assumes proportionality between 𝑦 and 𝑥 with a varying slope of the regression 

line. If B-spline basis 𝐵  is assumed, then 𝜷 = 𝑩𝒂  yielding 𝝁 = 𝑿𝑩𝒂  where 𝑿 =

𝑑𝑖𝑎𝑔(𝑥). If a difference penalty is given on 𝒂, the equation has the structure of a P-spline 

with only the modified basis 𝑿𝑩. With a varying offset added, Eq. (2) can be expanded as 

Eq. (3) below in a form of an additive model, and if 𝜷𝟎 is built with P-splines, it is called 

a P-GAM. 

 

𝐸[𝑦(𝑡)] = 𝜇(𝑡) = 𝛽(𝑡)𝑥(𝑡) + 𝛽&(𝑡) ············································ Eq. (3)  

 

P-splines, which is smoothing splines with penalty, was originally introduced by Marx 

and Eilers (1999). A nonparametric technique previously used to flexibly estimate the 
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effects of covariates, existing studies were mainly concerned with price response modeling 

in retailing (Steiner et al., 2007; Brezger and Steiner, 2008; Haupt et al., 2014). The idea of 

P-splines in the current context is to express the time-varying functions 𝑓(𝜏) in terms of 

a high-dimensional parametric basis and to add to the likelihood an appropriate penalty 

term corresponding to the regularization. 

 

2.2.3 Discrete Choice Models with Time Effect in Attributes 

 

A variety of choice models have been proposed to reflect the complexity of consumers’ 

decision-making process, and a representative model is the dynamic discrete choice model. 

Here, consumers’ choices are assumed to be the result of maximizing their present value of 

utility than the result of static utility maximization (Keane and Wolpin, 2009). Say, since 

consumers tend to prefer utility generated now or in the near future than utility generated 

in the far future, appropriate discounting should be applied to future utilities. 

 Its ultimate goal is to estimate the structural model of consumers’ decision process, 

which includes intertemporal choices, based on Rust’s (1987) framework. In the dynamic 

model, the agent’s preference over period time 𝑡 within discrete set 𝐴 = {0,1, … , 𝐽} and 

state vector 𝑠"-  containing individual characteristics is represented as 

∑ 𝛽.𝑈(𝛼",-*. , 𝑠",-*.)/
.0& . Here, 𝑈(𝑎",- , 𝑠",-) represents the current utility function, and 𝛽 

indicates a discounted factor. It is assumed that the evolution of future values of the state 

variables are affected by the decision at period time 𝑡. The agent is uncertain about the 
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future values of the state, but can be represented as a Markov transition distribution 

function 𝐹(𝑠",-*!|𝑎"- , 𝑠"-). The vector of state variables 𝑠"- for each 𝑡 is observed by the 

agent who chooses its action 𝑎"- ∈ 𝐴 that maximizes expected utility as follows: 

 

𝐸R∑ 𝛽.𝑈S𝑎",-*. , 𝑠",-*.T|𝑎"- , 𝑠"-	/)-
.0& V ·············································· Eq. (4)  

 

While the dynamic discrete choice model captures consumers’ dynamic behaviors along 

with time preference, estimation requires computational burden.  

Economists have also introduced several consumers’ psychological consequences for 

consumers and integrated them into choice models, specifically for time preference. 

Largely, the literatures draw upon the modified choice experiments based on duration 

approach and time discounting. Duration approach allows for the estimation of the time 

trade-off among attributes by including duration in choice sets, and is commonly applied 

to estimate the value of a health state in health economics (Flynn, 2010; Norman et al., 

2013; Bansback et al., 2014; Mulhern, 2017; Jonker, 2018). More specifically, a discount 

utility functions incorporating discounting function are used to reflect the discounting of 

value given to individuals over time as represented in following Eq. (5). 

 

𝑈'.- = S𝜷𝒏2 𝑿𝒏𝒋𝒕T𝑇".- + 𝜖".- ······················································· Eq. (5)  

 

As such, the discrete choice experiment under the duration approach is based on 

estimating consumer preferences through temporal tradeoffs by incorporating attributes of 
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duration into the choice task. However, they have generally been analyzed as linear 

temporal preferences. 

Other studies have included the “no-choice” or “past alternatives” options in discrete 

choice models to determine the timing of new project purchase. Haaijer et al. (2001) claim 

that a “no-choice” option should be included in conjoint choice experiments to enhance the 

model’s predictive power and to provide respondents with a more realistic choice situation. 

On the other hand, Dhar (1997) argued that respondents are more likely to choose the “no-

choice” option when included in the choice set because it is more likely to stand out from 

the other alternatives.  

 

2.3 Deep Learning Models for Data Prediction 
 

2.3.1 Recurrent Neural Network (RNN) 

 

A recurrent neural network (RNN) is a deep learning model for processing sequential 

data or time series. They are typically used in ordinal or temporal problems and are 

characterized by "memory" because they take in information from previous inputs to 

influence the current input/output. As shown in Figures 2 and 3, the hidden layer neural 

network 𝐻- sees an input 𝑥- and outputs 𝑦-. It can be thought of as multiple copies of 

the same network, with each loop capable of passing information from one layer of the 

network to the next. It therefore connects previous information to the current task. This 
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iterative module has a very simple structure like a single tanh layer of a neural network. 

The network is called the “recurrent” neural network because the repetition continues until 

the result value becomes optimized. The equations for RNN are shown in Eq. (6) to (9). 

 

 

Figure 2. The unrolled recurrent neural network (RNN) 

 

 

Figure 3. Internal structure of RNN 

 

ℎ-)! = 𝑡𝑎𝑛ℎ(𝑊55ℎ-)# +𝑊65𝑥-)! + 𝑏5) ······································ Eq. (6)  
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ℎ- = 𝑡𝑎𝑛ℎ(𝑊55ℎ-)! +𝑊65𝑥- + 𝑏5) ············································ Eq. (7)  

 

𝑦-] = 𝑊57ℎ- + 𝑏7 ··································································· Eq. (8)  

 

𝐿- = 𝑀𝑆𝐸 = ∑(𝑦- − 𝑦̀-)# 𝑛⁄  ······················································ Eq. (9)  

 

In equations above, ℎ- is a hidden state at time 𝑡, 𝑊". is the weight from layer 𝑖 to 

layer 𝑗, 𝑏" is the bias in each layer, and 𝐿- is the loss at time 𝑡. The model shares the 

weights and biases at all points in time and runs through the input data to output the results. 

The training of the RNN is iterated to minimize the loss due to the gradient descent of the 

loss function, taking into account the information about a particular previous time steps, 

while the weights are updated to find the optimal value. Such process, called the 

backpropagation through time (BPTT), can be expressed as follows, where 𝜂  is the 

learning rate ranging [0, 1] (Chen, 2016): 

 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑊65 = 𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑊65 − 𝜂∑ ∑ 89!
87:!

87:!
85!

85!
85"

85"
8;#$

'
(0&

'
-0!  ············ Eq. (10)  

 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑊55 = 𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑊55 − 𝜂∑ ∑ 89!
87:!

87:!
85!

85!
85"

85"
8;$$

'
(0&

'
-0!  ············ Eq. (11)  

 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑊57 = 𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑊57 − 𝜂∑
89!
8;$%

'
-0!  ································ Eq. (12)  
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2.3.2 Long Short-Term Memory (LSTM) 

 

LSTM refers to the structure of an artificial neural network used in artificial intelligence 

and deep learning fields. It is designed to enable long/short-term memory by compensating 

for the disadvantage that the existing RNN cannot contain information located far from the 

output even when it’s needed, so called the “vanishing gradient” problem, as the gradient, 

the rate of weights update, disappears as the derivative value of tanh function with respect 

to ℎ- that is less than one is multiplied repetitively. LSTM is capable of learning long-

term dependencies with chain-like structure (Hochreiter and Schmidhuber, 1997). Four 

interacting layers make up the repeating module in an LSTM, rather than a single neural 

network layer, as shown in Figure 4. In LSTM cells, the states are largely divided into two 

vectors: the ℎ- , short-term state, and the 𝐶- , the long-term state. The process of each 

LSTM layer is summarized in Table 1. 

 

 

Figure 4. The repeating module in LSTM 
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In LSTM, forgetting and memory 𝑓- , input 𝑖- , inner cell state candidate 𝐶-g , 

conveyance and inner cell state at time 𝑡, and output 𝑜- are added to the RNN model. 𝐶- 

contributes significantly to resolving long-term dependencies by penetrating all time points. 

 

Table 1.  Steps in LSTM 

 

Cell State 
- Responsible for allowing information to flow without change. 

 

Forget Gate 

- Decides what information to discard from the cell state 

through the sigmoid layer, also called the forget gate layer. 

𝑓& = 𝜎$𝑊' ∙ [ℎ&(), 𝑥&] + 𝑏'. 

 

Input Gate 
- Decides which of the new incoming information to be stored in 

the cell state. First, it goes through the sigmoid layer to decide 

which value to update. Next, a new candidate vector 𝐶&0  is 

created in the tanh layer that could be added to the state. 

𝑖& = 𝜎$𝑊' ∙ [ℎ&(), 𝑥&] + 𝑏*. 

𝐶&0 = 𝑡𝑎𝑛ℎ(𝑊+ ∙ [ℎ&(), 𝑥&] + 𝑏+) 

 

Cell Status Update 
- After determining the information to be discarded and the 

information to be updated in the previous gate, 𝐶&() is updated 

into the new cell state 𝐶&. 

𝐶& = 𝑓&⨀𝐶&() + 𝑖&⨀𝐶&0  
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Output Gate 
- Decides what information to send to the output based on the cell 

state, but filtered. 

- First, the output is determined by putting the input data in the 

sigmoid layer, then put the cell state in the tanh layer, multiply it 

with the output of the sigmoid layer, and export it as an output. 

𝑜& = 𝜎(𝑊,[ℎ&(), 𝑥&] + 𝑏,) 

ℎ& = 𝑜&⨀tanh	(𝐶&) 

 

2.3.3 Applications of Deep Learning in Consumer Studies 

 

While many studies have used quantitative approaches to capture diverse consumer 

preferences, with the expansion of deep learning applications, recent studies have 

attempted to use them in explaining consumer behaviors. In terms of product design, the 

study of Burnap and Hauser (2018) developed a deep learning approach to predict the 

"design gap", representing product designs that are not yet in markets but are highly 

preferred and are feasible to be built under existing constraints. By comparing design gaps 

retroactively predicted based on U.S. automotive market data with known successful 

designs in practice, the authors suggested that such an approach could identify market 

opportunities relatively early. Similarly, Bhat et al. (2019) used a machine learning-based 

3D model quality assessment algorithm that mimics user preferences to select high-quality 

3D models from a set of generated models. The results show that human intervention is not 

required in subjective quality analysis after learning user preferences, as the algorithm 

mimics user selection with 90% accuracy. 
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In the field of marketing, study of Yu (2021) advanced the concept and future 

development of interactive marketing by leveraging the power of natural language 

processing (NLP) to identify the interactions between marketers and consumers. Based on 

content generated by consumers and by marketers in the tourism industry, this study 

revealed the interaction relationships between them. In describing consumer behavior, 

RNNs were used help predict user changes (i.e., churn) using recorded user behavior in 

online card games (Xi et al., 2019). Khotimah and Sarno (2019) utilized LSTM using word 

embeddings from online reviews in a hotel service for sentiment classification. Interactive 

LSTM has also been used to predict sentiment from reviews of online restaurant (Luo and 

Xu, 2021). Furthermore, Oh et al. (2022) explored hospitality industry’s consumer 

satisfaction by combining deep learning techniques with expectation-confirmation theory. 

The model achieved 83.54% accuracy in predicting customer satisfaction with hotel service 

using comments on hotel reviews, hotel information, and images. However, no studies have 

yet incorporated the deep learning techniques to identify expectations and/or perceptions 

of consumers that are updated with repeated use of services. 

 

2.4 Limitations of Previous Literature and Research Motivation 
 

Studies have attempted to identify factors that affect consumer satisfaction and 

behaviors in the context of IT services. However, existing studies utilize static utility 

models that inadequately reflect the time-varying effects of continued use of the service to 
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explain consumer behaviors. Therefore, a dynamic longitudinal study is needed to uncover 

how consumers could adapt their experience and perception, and how they, in turn will 

affect consumer satisfaction and/or behaviors. 

This dissertation therefore aims to fill this void by implementing a dynamic utility 

model to explain consumer behavior in the platform economy, where there is repeated use 

of service. As an empirical study, we aim to identify time-varying effects of covariates in 

explaining consumers’ use of platform service by first incorporating accumulated 

experience effects rising from repeated use of service. In the second part of the study, we 

observe temporal effects in consumers’ usage behaviors through semiparametric modeling. 

The study is a meaningful addition to the literature that aims to understand platform service 

adoption from the demand-side perspective and provide important implications that can be 

used in practice when considering strategies to retain and improve the loyalty of ride-

hailing platform users. 
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Chapter 3. Methodology 

3.1 Methodological Framework 
 

In this dissertation, both linear regression model (generic model) and function with 

time-varying parameters are used for analysis. More specifically, a flexible regression 

model, penalized splines which is a flexible but parsimonious nonparametric smoothing 

method, is used for data-driven estimation time-varying effects on repeated service use 

behavior. In the model, a unified approach is used to determine the flexible functions as 

well as the corresponding degrees of smoothness. It can mimic state-space approaches with 

random-walk parameter dynamics and allows for time-varying effects of covariates. 

 

Figure 5. Time-varying preference of users 

 

The semiparametric models are employed under the assumptions that people’s 

preference on service may vary over time. The preferences of service users are captured by 

the parameter coefficients, which is assumed to be constant (and parametric) in the linear 
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additive utility function, and non-constant (and nonparametric) in the semiparametric 

approach. Then, we construct the model under the assumption that people’s preference on 

service is influenced by past usage experiences and that users make experience-based 

decisions, which emanates from direct or vicarious reinforcements that were received in 

the past. The conceptualizations of these assumptions are illustrated in Figures 5 and 6. 

 

 

Figure 6. Accumulated experience and utility formation 

 

3.2 Model Specification 

 

3.2.1 Generic Model 
 

The linear additive (indirect) utility that consumer 𝑛 obtains	from	service	 𝐽	 can be 
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represented as follows: 

 

𝑈'.- = 𝑉'.- + 𝜖'.- = 𝛼. + ∑ 𝛽( ∙ 𝑥('.-<
(0! + 𝜖'.- ··························· Eq. (13)  

 

The utility in Eq. (13) is composed of the representative utility, 𝑉'.-, and the stochastic 

term, 𝜖'.-. In this model, 𝑉'.- is defined as a linear function of 𝐾 observable attributes 

𝑥('.-  with corresponding coefficients 𝛽(  that represent effects of 𝐾  independent 

variables. 𝛼. represent intrinsic utilities of service 𝐽, also referred to as average effect of 

all unobserved variables in the model, and the random error term 𝜖".- captures unobserved 

influences not covered by the data.  

 

3.2.2 Functions with Time-Varying Parameters 

 

The generic model (linear regression model) completely ignores possible temporal 

dependencies of individual usage behavior across successive usage occasions. Therefore, 

coefficients are assumed to be constant over the entire observation period, and each 

individual’s observations over time are treated as independent. Time dependence can be 

introduced for both the intercept and the covariate effect to account for the time-varying 

parameters of the linear additive utility function. 

First, time-varying intercepts is described by replacing the intercept parameter 𝛼. with 

(a priori unknown) smooth time-dependent functions f=>	(τ)  leading to the following 
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regression function: 

 

𝑈'.- = 𝑓.?(𝜏'-) + ∑ 𝛽( ∙ 𝑥('.-<
(0! + 𝜖'.- ······································ Eq. (14)  

 

Then, the intercepts can account for changes in intrinsic utility over time (𝜏), which 

can be caused by long-term or short-term fluctuations. It is worth noting that the service 

use occasion 𝑡 for each individual 𝑛 occurs at a particular time 𝜏'- . In the empirical 

application of this dissertation, 𝜏 indexes days, and in most cases, 𝑡th usage occurs at 

different 𝜏  for different individuals. Nevertheless, an individual may use the service 

multiple times within the same 𝜏, and multiple users may use the service within the same 

𝜏, where the value of 𝑓.?(𝜏) is identical. 

Further, the covariates’ time-varying effects can likewise be allowed by incorporating 

smooth time-dependent functions 𝑓.
@(𝜏) to replace 𝐾 time-constant effects 𝛽(, leading 

to the following utility function: 

 

𝑈'.- = 𝑓.?(𝜏'-) + ∑ 𝑓(
@(𝜏'-) ∙ 𝑥('.-<

(0! + 𝜖'.- ······························· Eq. (15)  

 

Accordingly, it is possible to investigate whether the effects of marketing measures 

(such as price) or behavioral covariates that vary with time (such as reference price) change 

over time. Since the unknown time-varying function is modeled nonparametrically with a 

penalized spline (P-spline) for both the intercept and covariate effects, and the error term 
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follows a parametric distribution as before, the utility functions from Eq. (14) and Eq. (15) 

are called semiparametric models. 

 

3.2.3 Smoothing Splines and Penalized Regression 

 

Nonparametric regression models are used to estimate a regression curve that depends 

only on the observed data. Functional estimation could be done using higher order global 

polynomials or by using splines which can be specified by choosing a set of knots. A spline, 

also called a regression spline, is a segmented polynomial model whose segment properties 

provide more flexibility than typical polynomial models. In a more locally oriented 

approach, the use of splines focuses on data patterns that have different specifications in 

one sector than in another. The spline regression model is adequately fitted to the local 

specification of the data (Hardle, 1990). 

Smoothing splines with penalty (P-splines), first introduced by Marx and Eilers (1999), 

has previously been used as a nonparametric technique mostly concerned with price 

response modeling to flexibly estimate effects of retail covariates (Steiner et al., 2007; 

Brezger and Steiner, 2008; Haupt et al., 2014). The idea of P-splines in the present context 

is to represent the time-varying functions 𝑓(𝜏) in terms of a high-dimensional parametric 

basis and to add to the likelihood an appropriate penalty term for the same of regularization. 

Assuming that for some continuous bivariate distribution 𝐹A,B  there exists an 

independent sample of 𝑛  observations (𝑥" , 𝑦")~𝐹A,B , we consider the following 
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nonparametric regression model: 

 

𝑦" = 𝑓(𝑥") + 𝜖" 	  ·································································· Eq. (16)  

 

, where 𝑓(∙) is some unknown smooth function, and 𝜖"~	𝑖𝑖𝑑	(0, 𝜎#) are independently 

and identically distributed error terms with mean zero and variance 𝜎# , implying that 

𝑓(𝑥") is the conditional mean of 𝑦" given 𝑥". The objective is to estimate the unknown 

function 𝑓(∙) from the data sample.  

When we fit a curve to a data, the goal is to find a function that minimizes the residual 

sum of squares (RSS), which is defined as ∑ S𝑦" − 𝑓(𝑥")T
#'

"0! . However, if there exist no 

constraints for 𝑓(𝑥") , RSS can simply be made to equal 0 by selecting a curve that 

interpolates all of the 𝑦". However, such curve is overly flexible and can cause problems 

with overfitting.  

Therefore, a smoothing spline that minimizes the penalized least squares function 𝑓C, 

which is represented in Eq. (17), is used to estimate 𝑓(∙). 

 

𝑓C = min
D∈ℋ	

!
'
∑ S𝑦" − 𝑓(𝑥")T

# + 𝜆𝐽H(𝑓)'
"0!   ····································· Eq. (17)  

 

Here, (∑ S𝑦" − 𝑓(𝑥")T
#'

"0!  is a loss function, otherwise called the residual squares, that 

allows 𝑓(𝑥") to fit well to the data (measuring closeness to the data), and 𝜆𝐽H(𝑓) is a 

penalty term that penalizes the curvature of 𝑓(𝑥"). 𝜆 > 0 is the smoothing parameter 
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(roughness coefficient) that controls the influence of the penalty. In other words, it controls 

the trade-off between too much flexibility (𝜆 being too small) and sufficient smoothness 

( 𝜆  being too big). 𝐽H(𝑓) = ∫|𝑓H(𝑧)|#𝑑𝑧  quantifies the lack of parsimony of the 

functional estimate. 𝑓H(∙)  denotes the 𝑚 th derivative of 𝑓(∙) , say, with 𝑓#(𝑧) 

representing the change of slope at point 𝑧. Therefore, 𝑓H(𝑧) is a measure of roughness 

of the function. It is particularly notable that in most cases of smoothing splines, 𝐽H(𝑓) =

∫|𝑓22(𝑧)|#𝑑𝑧 is used as a roughness penalty. Lastly, ℋ = {𝑓: 𝐽H(𝑓) < ∞} is the space of 

functions with square integrable 𝑚th derivative. 

 

3.2.3.1 Influence of the Smoothing Parameter 

 

As mentioned previously, the goal is to find a function that minimizes the penalized 

RSS, which is defined in Eq. (5). The first and the second term measures the closeness to 

the data and penalizes the curvature of the function, respectively. Then, the two extreme 

cases are as follows: 

 

� If 𝜆 = 0, 𝑓(∙) is any function that interpolates the data. 

� If 𝜆 = ∞, 𝑓(∙) is the least squares fit for regression that satisfies 𝐽H(𝑓C) ≈ 0. 

 

That is, the closer 𝜆 is to 0, the less influence penalty has on the least squares function. 

Thus, for very small values, the function estimate 𝑓C essentially minimizes the residual 
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sum of squares. On the other hand, the penalty has a greater effect on the penalized least 

squares function as 𝜆 approaches ∞. This means that the function estimate 𝑓C for very 

large values of 𝜆  must essentially have a penalty of zero that satisfies 𝐽H(𝑓C) ≈ 0 . 

As 𝜆  increases from 0 to ∞ , the function estimate 𝑓C  for the penalty function 𝐽H(∙) 

becomes smoother. The goal is to find the 𝜆 that gives the "right" degree of smoothing for 

the function estimate. An example of smoothing splines with varying smoothing parameters 

is represented in Figure 7. 

  

Figure 7. Influence of changing smoothing parameter (𝜆) 
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3.2.3.2 Influence of Penalty Order 

 

In the empirical context of the dissertation, it is assumed that the unknown function 

𝑓(𝜏) can be approximated by B-spline basis functions that has equally spaced intervals 

within the given time horizon. This leads to: 

 

𝑓(𝜏) = 	∑ 𝛾H ∙ 𝐵H(𝜏, 𝛿)I
H0! 	  ···················································· Eq. (18)  

 

, with 𝐵H(𝜏; 𝛿)  representing 𝑚 th B-spline basis functions of degree 𝛿 . 𝛾H  is the 

unknown regression coefficient that is to be estimated from least squares for the 𝑚th B-

spline basis function (De Boor, 2001). The use of cubic splines is a fairly standard initial 

point for smoothing in generalized additive models (GAMS); however, the resulting 

functions may turn out too smooth in some situations (Wood, 2017). Eilers et al. (2015) 

therefore suggested to ensure enough flexibility for the unknown functions by using a 

relatively large number of intervals, allowing for the short-term fluctuations in consumers’ 

service usage behavior in the context of our empirical study.  

While a suitable penalty term can be derived from squared 𝑟th order derivative, the 

derivative penalty with a roughness penalty based on first or second-order differences of 

adjacent regression coefficients 𝛾H can be approximated according to the B-spline theory, 

leading to the penalty terms of 𝜆∑ (𝛾H − 𝛾H)!)#I
H0#  or 𝜆∑ (𝛾H − 2𝛾H)! − 𝛾H)#)#I

H0$ , 

respectively. For statistical inference, the difference penalties can be represented in terms 
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of the following quadratic forms: 𝜆𝜸2𝑷(𝒓)𝜸 , where the vector 𝜸  contains the 𝑀 

regression coefficients 𝛾H , and 𝑷(𝒓) = 𝑫(𝒓)2 𝑫(𝒓)  corresponds to the penalty matrix 

constructed from the first or the second-order difference matrix as follows: 

 

𝐷(") = '
−1 1

−1 1
⋱
−1 1

+	 and 𝐷($) = '
1 −2 1

1 −2 1
⋱ ⋱
1 −2 1

+ ········ Eq. (19)  

 

 
Figure 8. Influence of penalty order (𝛿) on smoothing splines 

 

Likewise, B-splines with 𝛿 = 3  is a cubic spline that penalizes the square of the 
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second derivative of the function (twice continuously differentiable). A smooth cubic spline 

estimate 𝑓(∙) using a piecewise cubic function connected at points are known as “knots,” 

with two continuous derivatives that ensures a smooth estimate of the function and its 

derivatives. 𝛿 = 2 results in a linear smoothing spline (a piecewise linear function), and 

𝛿 = 4 yields a quintic smoothing spline (a piecewise quintic function). An example of 

linear, cubic, and quintic smoothing splines is represented in Figure 8. 

 

3.2.4 Estimation Method 
 

The minimizer of Eq. (5) is finite-dimensional, although the criterion to be minimized 

lies over a Sobolev function space (function space for which the integral ∫|𝑓H(𝑧)|# is 

defined), an infinite-dimensional space. The Kimeldorf-Wahba representation theorem 

shows that the function 𝑓 ∈ ℋ minimizing the penalized least squares function has the 

following form: 

 

𝑓C(𝑥) = 	∑ 𝛽M𝑁M(𝑥) + ∑ 𝛾N𝐾!(𝑥, 𝑥N∗)P
N0!

H)!
M0&   ································ Eq. (20)  

 

, where {𝑁M}M0&H)! are unknown functions spanning the null space ℋ& = {𝑓: 𝐽H(𝑓) = 0}. 

𝐾!(∙,∙)  is the reproducing kernel function that is known for the contrast space ℋ! =

ℋ⊝ℋ& , and {𝑥N∗}N0!P  are the selected spline knots. 𝜷 = (𝛽&, … , 𝛽H)!)Q  and 𝜸 =

(𝛾&, … , 𝛾H)!)Q are the unknown coefficient vectors of the basis functions. In an optimal 

solution, all 𝑛 data points as knots are used. However, often, 𝑟 < 𝑛 knots can be used to 
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obtain good solutions, and in such cases, knots are typically placed at the quantiles of 𝑥". 

If the Kimldorf-Wahba representor theorem is applied to the penalized least squares 

function, it can be rewritten as follows: 

 

!
'
‖𝒚 − 𝑿𝜷 − 𝒁𝜸‖# + 𝜆𝜸𝐓𝑸𝜸  ··················································· Eq. (21)  

 

, where 𝒚 = (𝑦!, … , 𝑦')Q  in the response vector, 𝑿 = [𝑁M(𝑥")]  is a null space basis 

function matrix, 𝒁 = [𝐾!(𝑥" , 𝑥N∗)] is the contrast space basis function matrix, and 𝑸 =

[𝐾!(𝑥N∗ , 𝑥M∗)] is the penalty matrix, given Eq. (11), due to the reproducing property of the 

kernel function. 

 

𝐽H(𝑓C) = ∑ ∑ 𝛾N𝛾M𝐾!(𝑥N∗ , 𝑥M∗)P
M0!

P
N0!   ·········································· Eq. (22)  

 

The optimal basis function coefficients given 𝜆 can be written as Eq. (11), where (∙)∔ 

denotes the Moore-Penrose pseudoinverse. Because the coefficient estimates depend on the 

chosen smoothing parameter, meaning that different choice of 𝜆  result in different 

coefficient estimates, it is subscripted with 𝜆. 

 

�𝜷
�C
𝜸]C
� = �𝐗

𝐓𝐗 𝐗𝐓𝐙
𝐙𝐓𝐗 𝐙𝐓𝐙 + 𝑛𝜆𝐐�

∔
�𝐗

𝐓

𝐙𝐓
� 𝐲  ·········································· Eq. (23)  

 

Then, the fitted values have the following form: 
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𝐲̀C = 𝐗𝛃�C + 𝐙𝜸]C = 𝐒7𝐲  ························································· Eq. (24)  

 

, where the smoothing matrix is as in Eq. (13). It is the smoothing spline analogue of the 

“hat matrix” 𝐇 = 𝐗S𝐗𝐓𝐗T)𝟏𝐗𝐓 in linear regression. 

 

𝐒C = [𝐗 𝐙] = �𝐗
𝐓𝐗 𝐗𝐓𝐙
𝐙𝐓𝐗 𝐙𝐓𝐙 + 𝑛𝜆𝐐�

∔
�𝐗

𝐓

𝐙𝐓
�  ··································· Eq. (25)  

 

In a parametric regression model, the number of parameters (i.e. regression coefficients) 

are equivalent to the degrees of freedom (DF) of a model fit. Nonetheless, for smoothing 

splines, the number of coefficients could be equal or be greater than the number of 

observations 𝑛; therefore, such statement is not applicable. 

In a nonparametric regression model, the effective (or equivalent) degrees of freedom 

(EDF) is defined as follows, where tr(∙) is a matrix trace function. 

𝜈C = tr(𝐒C)   ······································································ Eq. (26)  

 

The EDF changes as a function of 𝜆 in a way that as 𝜆 approaches 0, the it approaches 

𝑚+ 𝑟 (null space dimension + number of knots), and as 𝜆 approaches ∞, it approaches 

𝑚  (null space dimension). As mentioned previously, the trace of the “hat matrix” in 

multiple linear regression is identical to the number of coefficients; therefore, the DF 

defined in the model above is a direct analogue of the DF defined in a multiple linear 

regression model. 
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3.2.5 Parameter Selection 

 

3.2.5.1 Cross-Validations Method 

 

The use of ordinary cross-validation (OCV), also referred to as leave-on-out cross-

validation (LOO-CV), for model selection and assessment discovered by Allen (1974) and 

Stone (1974), and it was later suggested the use of OCV when fitting smoothing spline 

models (Wahba and Wold, 1975). The OCV can be used to find the 𝜆 that minimizes the 

following: 

 

𝑂𝐶𝑉(𝜆) = !
'
∑ �𝑦" − 𝑓C

["](𝑥")�
#

'
"0!  ·············································· Eq. (27)  

 

, where 𝑓C
["] ∈ ℋ	 is the function that minimizes the penalized least squares function that 

leaves out the 𝑖th pair (𝑥" , 𝑦"), as follows: 

 

𝜂C
["] = min

D∈ℋ	
!
'
∑ S𝑦" − 𝑓(𝑥")T

# + 𝜆𝐽H(𝑓)'
.0!,.W"  ································ Eq. (28)  

 

In other words, Eq. (28) is the minimizer of the leave-one-out version of the penalized 

least squares function. Equation (27) by definition suggests that evaluating the OCV 

criterion for a given 𝜆 requires fitting the model 𝑛 different times, once for each 𝑥" . 

However, it can be shown that the OCV can be evaluated for a given 𝜆 using the results 
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from the single model fit to the full sample of data, such as: 

 

𝑂𝐶𝑉(𝜆) = !
'
∑ �𝑦" − 𝑓C(𝑥") 1 − 𝑠""(C)� �

#
'
"0!  ··································· Eq. (29)  

 

, where 𝑠""(C) is the 𝑖th diagonal element of 𝐒C. Eq. (29), a computational form of the 

OCV criterion, is yielded by plugging in the following form of 𝜂C
["] into the OCV criterion 

in Eq. (27). Different weight are given to each observation for CV tuning, where the weights 

are defined as 𝑤" = S1 − 𝑠""(C)T
# , and the leverages satisfy 𝑠""(C) ∈ (0,1), that differs 

across observations. 

 

𝜂C
["] = 𝜂C(𝑥") − 𝑠""(C)𝑦" 	

1 − 𝑠""(C)�  ·············································· Eq. (30)  

 

An improved version of OCV is the generalized cross-validation criterion (GCV) that 

equalizes the influence of observations on the smoothing parameter selection by replacing 

the leverages with their average value, !
'
∑ 𝑠""(C) = 𝜈C/𝑛'
"0!  , as first suggested by Craven 

and Wahba (1978). In other words, GCV seeks to find 𝜆 that minimizes the following: 

 

𝐺𝐶𝑉(𝜆) =
!
'
∑ S𝑦" − 𝑓C(𝑥")T

#'
"0!

�1 − 𝜈𝜆
𝑛
�
2   ···································· Eq. (31)  
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, where 𝑣C = tr(𝐒C) is the EDF of the estimator 𝜂C. The GCV criterion is preferred over 

the OCV as it has desirable asymptotic properties assuming 𝜖"~	𝑖𝑖𝑑	(0, 𝜎#), especially 

when there exists replicate 𝑥" scores in the sample (Li, 1987). 

 

3.2.5.1 Information Criteria 

 

Meanwhile, the usage of information criteria requires more assumption than the cross-

validation based methods. If the error terms are assumed to be i.i.d. Gaussian, say, 

𝜖"~𝑖𝑖𝑑	𝑁(0, 𝜎#)  which implies that 𝑦"~𝑖𝑛𝑑	𝑁(𝑓(𝑥"), 𝜎#), information criteria can be 

used to select the smoothing parameter 𝜆.  

The log-likelihood function given a sample of 𝑛 independent observations has the 

following form: 

 

𝑙(𝜆, 𝜎#) = − !
#X1

£∑ S𝑦" − 𝑓C(𝑥")T
#'

"0! − '
#
log(𝜎#) − '

#
log(2𝜋)¨ ·········· Eq. (32)  

 

, which depends on the smoothing parameter 𝜆 and the error variance 𝜎# . The error 

variance is known in most cases, therefore, the maximum likelihood estimate 𝜎C
# =

!
'
∑ (𝑦" − 𝑓C(𝑥"))'
"0!

# can be used. Then, by substituting 𝜎C
# for 𝜎#, the log-likelihood as 

a function of 𝜆 is yielded as in Eq. (21). It can be noted that the following equation only 

depends on 𝜆 through log	(𝜎C
#) with other terms constant. 
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𝑙©(𝜆) = 𝑙S𝜆, 𝜎C
#T = − '

#
− '

#
logS𝜎C

#T − '
#
log	(2𝜋) ····························· Eq. (33)  

 

To select smoothing parameters, the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC) proposed by Akaike (1974) and Schwarz (1978) can 

be used by adding a penalty to the log likelihood 𝑙©(𝜆). AIC aims to select a model whose 

BIC is similar to AIC but uses different weights in the penalty to select the model that loses 

the least information about the unknown true data generation process. The two criteria seek 

to find 𝜆 that minimizes the following: 

 

𝐴𝐼𝐶(𝜆) = −2𝑙©(𝜆) + 2𝑣C ·························································· Eq. (34)  
 

𝐵𝐼𝐶(𝜆) = −2𝑙©(𝜆) + log	(𝑛)𝑣C ·················································· Eq. (35)  

 

3.2.5.2 Maximum Likelihood 

 

The maximum likelihood (ML) approach exploits the computational relationship 

between a penalized spline and a linear mixed effects model (Wahba, 1985; Wang, 1998; 

Ruppert et al., 2003). The underlying approach is similar to the Bayesian confidence 

intervals (CI) except that the null space coefficients are treated as fixed effects. 

Let us assume that 𝜸~𝑁 �𝟎, X
𝟐

'C
𝐐)!� and 𝝐~𝑁(𝟎, 𝜎#𝐈), where 𝝐 = (𝜖!, … , 𝜖')Q  is 

the error vector and 𝛾 is independent of 𝜖. Then, the response vector is 𝐲~𝑁S𝑿𝜷, 𝜎𝟐𝚺CT, 

where 𝚺C  is part of the covariance matrix that is 𝜆  dependent. The null space 
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representation and the contrast space representation contains the fixed and random effects, 

respectively. 

 

𝚺3 = 1 𝑛𝜆# $𝐙𝐐−1𝐙T + 𝐈% ·························································· Eq. (36)  

 

Then, the log-likelihood function has the following form with independent sample of 

𝑛 observations, where 𝐫 = 𝐲 − 𝐗𝜷. 

 

𝐿(𝜆, 𝜎#) = − !
#
{𝜎)#𝑟/𝚺𝜆−1𝑟 + 𝑙𝑜𝑔(|𝚺𝜆|) + 𝑛𝑙𝑜𝑔(𝜎2) + 𝑛𝑙𝑜𝑔(2𝜋)} ············ Eq. (37)  

 

The ML estimate for 𝜎# has the following form since in most cases, 𝜎# is unknown: 

 

𝜎C(I9)
# = !

'
𝐫Q𝚺𝜆−1𝐫 ·································································· Eq. (38)  

 

Substituting Eq. (25) for 𝜎# of the log-likelihood function produces the following ML 

criterion that depends on 𝜆 through 𝚺C: 

 

𝑀𝐿(𝜆) = − !
#
°𝑛 + 𝑙𝑜𝑔(|𝚺𝜆|) + 𝑛𝑙𝑜𝑔S𝐫Q𝚺𝜆−1𝐫T + 𝑛𝑙𝑜𝑔(2𝜋/𝑛)± ················ Eq. (39)  

 

The restricted maximum likelihood (REML) estimation accounts for DF reduction due 
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to estimation of 𝑚 null space coefficients (Patterson, 1971), yielding the following log-

likelihood: 

 

𝑅(𝜆, 𝜎#) = 𝐿(𝜆, 𝜎#) − !
#
°𝑙𝑜𝑔³𝐗Q𝚺𝜆−1𝐗³ − 𝑚𝑙𝑜𝑔(2𝜋𝜎2)± ······················· Eq. (40)  

 

, implying that the REML estimate for 𝜎# has the following form: 

 

𝜎C(]^I9)
# = !

')H
𝐫Q𝚺𝜆−1𝐫 ··························································· Eq. (41)  

 

Substituting Eq. (29) for 𝜎#  of the log-likelihood function produces the following 

REML criterion in Eq. (30), where 𝑛́ = 𝑛 −𝑚  indicates the DF corresponding to 

𝜎C(]^I9)
# . 

𝑅𝐸𝑀𝐿(𝜆) = −
1
2
°𝑛́ + 𝑙𝑜𝑔(|𝚺𝜆|) + 𝑛́𝑙𝑜𝑔S𝐫Q𝚺𝜆−1𝐫T + 𝑛́𝑙𝑜𝑔S2𝜋 𝑛́µ T + 𝑙𝑜𝑔S³𝐗Q𝚺𝜆−1𝐗³T± 

 																																															 ························································ Eq. (42)  
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Chapter 4. Simulation Study 

4.1 Validation of P-spine Implementation  
 

In this section, the proposed smoothing spline model with penalty, the P-splines, is 

implemented and verified using the R software. In particular, this section aims to show that 

implementation of nonparametric models is more suitable for fitting data with variation (i.e. 

time variance caused by long-term or short-term fluctuations) than the parametric models 

(i.e. linear additive function) where parametric coefficients are assumed to be constant. 

For validation, a set of data is randomly generated according to the model in Eq. (4) 

using the following equation. 

 

𝑓!(𝑥") = 2 + 4 ∙ sin	(2𝜋𝑥)  ······················································ Eq. (43) 

 

The randomly generated data created based on a noise of the function in Eq. (43) is 

represented in Figure 9 below. It can be observed that the simulated data fluctuates with 

the values of 𝑥. For the generated data, P-spline model was fit using the R program’s ss() 

function of npreg package. 𝑟 = 10 knots were placed evenly across the range of the 𝑥" 

scores. Amongst the smoothing parameter selection methods, GCV method was used as it 

was the default choice in the implemented program. 
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Figure 9. Randomly created data based on 𝑓!(𝑥") for spline validation 

 

Then, the smoothing spline with penalty (P-spline) was fit for function 𝑓!(𝑥"). The 

approximate significance of the parametric and nonparametric effects from P-spline fit for 

𝑓!(𝑥") is presented in Tables 2 and 3, respectively.  

 

Table 2.  Approx. significance of parametric effects from P-spline fit for 𝑓!(𝑥") 

Parameter Estimate Std. Error t-value Pr(>|𝑡|) 

(Intercept) 4.052 0.0450 90.07 0*** 

x 3.688 0.2844 12.97 0*** 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 
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Table 3.  Approx. significance of nonparametric effects from P-spline fit for 𝑓!(𝑥") 

Parameter DF 
Sums of 

Squares 
Mean Squares F-value Pr(>𝐹) 

𝑓(𝑥) 4.432 17.60 3.9712 19.45 2.09e-12*** 

Residuals 94.568 19.31 0.2042 - - 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 

 

Note that the model has a coefficient of determination, 𝑅#, of 0.7464 with DF of 94.57. 

Then, the coverage of the 95% Bayesian confidence interval (CI) for each smoothing 

parameter selection method can be calculated using the following Eq. (44), where 𝐼{∙} 

denotes an indicator function.  

 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = !
'
∑ 𝐼 £𝑎 �𝑓·C(𝑥")� ≤ 𝑓(𝑥") ≤ 𝑏 �𝑓·C(𝑥")�¨'
"0!   ················· Eq. (44) 

 

The upper bound and the lower bound for the 95% Bayesian CI is 𝑎 �𝑓·C(𝑥")� =

𝑓·C(𝑥") − 1.96𝜎̀C¼𝑠""(C) and 𝑏 �𝑓·C(𝑥")� = 𝑓·C(𝑥") + 1.96𝜎̀C¼𝑠""(C), respectively. Figure 10 

shows the estimated functional relationship using the P-spline fit for 𝑓!(𝑥"), and the gray 

shaded area denotes the simulated coverage of the 95% Bayesian CI of the function. From 

the figure, it can be noted that the linear model fit does not completely fall within the 

Bayesian CIs, which suggests that the nonparametric model better fits the given data. 
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Figure 10. Comparison of P-spline and parametric model fit for 𝑓!(𝑥") 

 

The root mean squared error (RMSE) of the estimator can be calculated using Eq. (45) 

to evaluate the performance of the estimation method. Smaller value of RMSE indicates 

better fit (or recovery) of the true mean function. By comparing the RMSE value of the 

spline and the parametric fit, it can be determined whether the nonparametric model is a 

better fit of the given data. 

 

𝑅𝑀𝑆𝐸 = ½!
'
∑ �𝑓(𝑥") − 𝑓·C(𝑥")�

#
'
"0!   ·········································· Eq. (45) 

 

It is yielded that the RMSE value of the P-spline is 0.0836, whereas the RMSE value 
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of the parametric model (linear fit) is 0.4537. It can also be noted that the RMSE value 

between P-spline and the parametric model fit is 0.4036. Because the value of P-spline is 

far smaller than that of the parametric model, it is once again validated that the 

nonparametric model should be preferred in fitting the given data that fluctuates with the 

values of 𝑥 . The RMSE values for P-spline and parametric model fits for 𝑓!(𝑥") are 

summarized in Table 4. 

 

Table 4.  RMSE value comparison for P-spline and parametric model fits for 𝑓!(𝑥") 

 
Between P-spline Fit  

and 𝑓"(𝑥%) 

Between Parametric 

Model Fit and 𝑓"(𝑥%) 

Between P-spline Fit 

and Parametric Model Fit 

RMSE 0.0836 0.4537 0.4036 

 

4.2 Functional Case Studies 
 

For functional case studies, three types of data are generated for comparison of P-spline 

fit. First is a set of data that (1) strictly forms linear relationship, (2) does not fluctuate with 

time or fluctuates with small variation, and (3) fluctuates with time (big variation). 

 

𝑓#(𝑥") = 2𝑥 + 3  ·································································· Eq. (46) 
 
𝑓$(𝑥") = 𝑥# + 𝑥$ + sin	(3𝑥)  ··················································· Eq. (47) 
 
𝑓%(𝑥") = sin	(2𝜋𝑥 + 2)  ·························································· Eq. (48) 
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The randomly generated data created based on a noise of the functions in Eq. (46), Eq. 

(47), and Eq. (48) are represented in Figures 11, 12, and 13, respectively. Again, for the 

generated data, P-spline model was fit using the R program via the ss() function. Figures 

14, Figure 15, and Figure 16 shows the estimated functional relationship using the P-spline 

fits for 𝑓#(𝑥") , 𝑓$(𝑥") , and 𝑓%(𝑥") , and the gray shaded area denotes the simulated 

coverage of the 95% Bayesian CI of the function. 

 

 

Figure 11. Randomly created data based on 𝑓#(𝑥") for simulation 
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Figure 12. Randomly created data based on 𝑓$(𝑥") for simulation 

 

Figure 13. Randomly created data based on 𝑓%(𝑥") for simulation 
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It is noticeable that in Figure 14 and 15, the parametric model fit falls completely within 

the Bayesian CIs, whereas in Figure 16, the parametric model fit does not, suggesting that 

the nonparametric model better fits the given data generated from function 𝑓%(𝑥"). 

The root mean squared error (RMSE) of the estimator was calculated using Eq. (45) to 

evaluate the performance of the estimation method, and it was yielded that for 𝑓#(𝑥"),	the 

RMSE value of the P-spline is 0.0453, whereas the RMSE value of the parametric model 

(linear fit) is 0.0451. The RMSE value between the P-spline and the parametric model fit 

is 0.0038. The results indicate that while the two fits are relatively similarly close to the 

true value, parametric model is a better recovery of the true mean function. 

 

 

Figure 14. Comparison of P-spline and parametric model fit for 𝑓#(𝑥") 
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Figure 15. Comparison of P-spline and parametric model fit for 𝑓$(𝑥") 

 

Figure 16. Comparison of P-spline and parametric model fit for 𝑓%(𝑥") 
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Likewise, for 𝑓$(𝑥"),	the RMSE value of the P-spline is 0.0582, whereas the RMSE 

value of the parametric model (linear fit) is 0.1136. The RMSE value between the P-spline 

and the parametric model fit is 0.0822. The results indicate that while the parametric fit 

was within the Bayesian CI as shown in Figure 16, the nonparametric model is a better fit 

of the given data. 

Differing from the first two data sets, for 𝑓%(𝑥"), the RMSE value of the P-spline is 

0.1228, whereas the RMSE value of the parametric model (linear fit) is 0.6832. Also, the 

RMSE value between P-spline and the parametric model fit is 0.7579. Because the value 

of P-spline is far smaller than that of the parametric model, it is shown that the 

nonparametric model should be preferred in fitting the given data, consistent to Figure 16. 

The results from the functional case studies once again reveals that nonparametric model 

should be preferred in fitting the data that fluctuates with the values of 𝑥. The RMSE 

values for P-spline and parametric model fits for each data set are summarized in Table 5. 

 

Table 5.  RMSE value comparison from simulation 

Function 
RMSE Between P-spline  

Fit and True Function 

Between Parametric  

Model Fit and True 

Function 

Between P-spline Fit 

and Parametric Model Fit 

𝑓$(𝑥%) 0.0453 0.0451 0.0038 

𝑓&(𝑥%) 0.0582 0.1136 0.0822 

𝑓'(𝑥%) 0.1228 0.6832 0.7579 
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The approximate significance of the parametric and nonparametric effects for each 

spline fit from simulations can be summarized as in Tables 6 and 7, respectively. 

 

Table 6.  Approx. significance of parametric effects from P-spline fits (simulation) 

Function Parameter Estimate Std. Error t-value Pr(>|𝑡|) 

𝑓$(𝑥%) 
(Intercept) 4.013 0.0519 77.29 0*** 

x 2.147 0.1793 11.97 0*** 

𝑓&(𝑥%) 
(Intercept) 1.297 0.0450 28.82 0*** 

x 2.015 17.847 11.29 0*** 

𝑓'(𝑥%) 
(Intercept) -0.008 0.0467 -0.16 0.8715 

x 0.003 0.2870 0.08 0.9369 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 

 

Table 7.  Approx. significance of nonparam. effects from P-spline fits (simulation) 

Function Parameter DF 
Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) 

𝑓$(𝑥%) 
𝑓(𝑥) 0.082 0.0239 0.2908 1.068 0.304 

Residuals 98.918 26.9359 0.2723 - - 

𝑓&(𝑥%) 
𝑓(𝑥) 1.053 0.9934 0.9431 4.608 0.0324* 

Residuals 97.947 20.0476 0.2047 - - 
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𝑓'(𝑥%) 
𝑓(𝑥) 4.105 59.64 14.5292 65.93 0*** 

Residuals 94.895 20.91 0.2204 - - 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 

 

Note that the model for 𝑓#(𝑥") has a coefficient of determination, 𝑅#, of 0.5955 with 

98.92 DF, and the model for 𝑓$(𝑥"), 0.6461 with 97.94 DF. Lastly, the model for 𝑓%(𝑥") 

has a coefficient of determination of 0.7641 with 94.90 DF. 

 

4.3 Comparison of Fit by Parameter Selection Method 

 

In this section, the six smoothing parameter selection methods that were discussed in 

the previous chapter (OCV, GCV, AIC, BIC, ML, REML), as well as the generalized 

approximate cross-validation criterion (GACV) and absolute cross validation (ACV) 

selection methods, were implemented for comparison.  

The randomly generated data created based on a noise of the function in Eq. (36) from 

the previous section is used. The comparison of fit is shown in Figure 17 below. To evaluate 

the performance of the different tuning method, the root mean squared error (RMSE) of the 

estimator were calculated. The fitted results and RMSE of each smoothing parameter 

selection method are summarized in Table 8. 
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Figure 17. Comparison of fit by smoothing parameter selection method 

 

Table 8.  Summary of results and RMSE of smoothing parameter selection method 

Selection 

Method 

Criterion 

Value 

Smoothing 

Parameter 

Equivalent 

Degrees of 

Freedom (DF) 

Penalized 

Criterion (RSS) 
RMSE 

OCV 0.2198 0.2368 8.2046 18.8486 0.0925 

GCV 0.2210 0.2593 7.7839 19.0104 0.0850 

GACV -0.2353 0.2330 8.2830 18.8240 0.0938 

ACV -0.2376 0.2540 7.8854 18.9696 0.0867 

ML -70.0039 0.3143 6.7216 19.5098 0.0715 
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REML -72.4965 0.3124 6.7577 19.4907 0.0718 

AIC 133.4843 0.2929 8.0920 18.8900 0.0904 

BIC 149.6579 0.4059 5.0999 20.6140 0.0873 

 

 

Figure 18. Simulation coverage results by smoothing parameter selection method 

 

From the simulation results presented in Table 8, it can be noted that the parameter 

selection methods based on the maximum likelihood (ML and REML) tend to produce 

RMSE values that are similar or smaller than those produced by the methods based on 
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cross-validation (OCV, GCV, GACV, ACV) and information theory (AIC, BIC). Then, the 

coverage of the 95% Bayesian confidence interval (CI) for each smoothing parameter 

selection method was calculated using the Eq. (44), where 𝐼{∙}  denotes an indicator 

function. Figure 18 shows the estimated functional relationship as well as the simulated 

coverage of the 95% Bayesian CI for each smoothing parameter selection method. 

The approximate significance of the parametric effects for each spline fit from above 

simulation can be summarized as in Table 9. 

 

Table 9.  Approx. significance of the parametric effects by parameter selection 

Selection 

Method 
Parameter Estimate Std. Error t-value Pr(>|𝑡|) 

OCV 
(Intercept) 0.0524 0.0449 1.1672 0.2461 

x -0.2391 0.3209 -0.7451 0.4581 

GCV 

(Intercept) 0.0520 0.0450 1.1570 0.2502 

x -0.2099 0.3136 -0.6694 0.5049 

GACV 
(Intercept) 0.0524 0.0449 1.1688 0.2455 

x -0.2438 0.3220 -0.7572 0.4508 

ACV 
(Intercept) 0.0521 0.0450 1.1595 0.2492 

x -0.2169 0.3154 -0.6879 0.4933 

ML (Intercept) 0.0511 0.0449 1.1394 0.2574 
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x -0.1361 0.2903 -0.4689 0.6402 

REML 
(Intercept) 0.0511 0.0453 1.1300 0.2615 

x -0.1387 0.2938 -0.4720 0.6380 

AIC 
(Intercept) 0.0523 0.0449 1.1640 0.2472 

x -0.2312 0.3189 -0.7250 0.4703 

BIC 

(Intercept) 0.0498 0.0462 1.0788 0.2834 

x 0.0126 0.2558 0.0493 0.9608 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 

 

Likewise, the approximate significance of the nonparametric effects for each spline fit 

from simulation can be summarized as in Table 10. Note that by dividing the sum of squares 

by the degrees of freedom, the mean squares is obtained. 

 

Table 10.  Approx. significance of the nonparametric effects by parameter selection 

Selection 

Method 
Parameter DF 

Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) 

OCV 
𝑓(𝑥) 6.205 45.44 7.323 36.05 0*** 

Residuals 92.795 18.85 0.203 - - 

GCV 
𝑓(𝑥) 5.784 45.19 7.812 38.31 0*** 

Residuals 93.216 19.01 0.204 - - 
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GACV 
𝑓(𝑥) 6.273 45.48 7.250 37.71 0*** 

Residuals 92.727 18.82 0.203 - - 

ACV 
𝑓(𝑥) 5.885 45.25 7.688 37.74 0*** 

Residuals 93.115 18.97 0.204 - - 

ML 
𝑓(𝑥) 4.722 44.41 9.406 46.33 0*** 

Residuals 94.278 19.14 0.203 - - 

REML 
𝑓(𝑥) 4.758 44.44 9.341 45.17 0*** 

Residuals 94.242 19.49 0.207 - - 

AIC 
𝑓(𝑥) 6.092 45.37 7.448 36.63 0*** 

Residuals 92.908 18.89 0.203 - - 

BIC 
𝑓(𝑥) 3.100 42.22 13.621 63.37 0*** 

Residuals 95.900 20.61 0.215 - - 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 
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Chapter 5. Empirical Study 

 

The empirical application of functions with time-varying parameters is discussed in this 

chapter. Among the different types of consumer services, platform services have the 

characteristics that the switching rate (churn rate) from a predominantly used service is low 

due to the psychological switching costs incurred by the lock-in effect. Once consumers 

choose a service, they continue to invest in using that particular product rather than 

replacing the product they are already using, which is a potential barrier to entry for 

potential competitors (Klemperer, 1987, 1989; Shapiro et al., 1998). However, users also 

have the option of using multiple services, making it easy to find a substitute that provides 

a similar service, as the obvious difference between the various services tends to be difficult 

to discern. Since users, once they choose a service, use it repeatedly, the churn rate for ride-

hailing platforms may increase if user satisfaction cannot be maintained over time. Yet, 

existing studies on demand-side adoption behavior of platform services do not adequately 

reflect the time-varying effects of continued use of the service; they utilize static utility 

models to explain consumer behavior with these platform services. 

E-hailing ride services (ERS), also known as ride-hailing and ride-sourcing, which are 

on-demand services that connect car owners and passengers via smartphones, have become 

popular in recent years mainly because of their high-quality passenger service that provides 

an efficient and convenient mechanism to match supply and demand between passengers 

and drivers in real time through the platform (Wang, 2019; Yan et al., 2020). ERS, as one 
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of the most representative platform services, clearly necessitates the use of a dynamic utility 

model in analyzing consumers’ usage behaviors. As shown in Figure 19, consumers make 

various decisions when using ERS, such as accessing the application, requesting a ride, 

boarding, paying, and exiting the service. At the end of each use, they evaluate the service 

directly or indirectly; direct devaluation refers to leaving a rating, and indirect evaluation 

refers to forming an “image” or “expectation” about the service in their mind. After the 

initial use, the consumer decides whether to reuse the service. As such, it can be seen that 

considering the “repeated use” characteristic is important when evaluating consumer 

behavior on ERS. Therefore, this chapter aims to demonstrate the inclusion of time-varying 

effects of covariates in explaining the use of ERS by using models based on P-splines, a 

semiparametric approach. 

 

 

Figure 19. Passenger decision patterns on ERS 

 

5.1 Research Background 
 

In the taxi and travel industry, the emergence of platforms such as Uber and Lyft in the 
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US, Ola in India, Grab in Southeast Asia, and DiDi Chuxing in China has provided 

passengers and drivers a centralized and automated matching and pricing system in a two-

sided marketplace, experiencing explosive growth and reshaping the urban transportation 

dynamics (Yan et al., 2020). Driven by the rise in trend of on-demand transportation 

services, creation of employment opportunities, low rate of car ownership among 

millennials, and global interest in the reduction of carbon emissions, the proportion of taxis 

and cars operated by ride-hailing companies is estimated to reach 26% by 2030 (Ferguson, 

1997; Kelley, 2007; Caulfield, 2009; Chan and Shaheen, 2012; Morgan Stanley, 2016). For 

example, Uber, a representative transportation network company (TNC) that kickstarted 

the evolution of the taxi market in the early 2010s, reported that it operates in 65 countries 

and 700 cities, completing 4.98 billion rides with 93 million users in 2020 alone (Statistica, 

2022). Grab, a leading ride-hailing platform in Southeast Asia that was founded in 2011, 

reported 187 million users taking an average of 46 million rides per day (Vaswani, 2021). 

Similarly, monthly active users (MAU) of Kakao T, a dominant ERS platform service used 

in South Korea, reached 10.16 million, followed by UT (860,000 MAU), a joint service of 

SKT’s mobility subsidiary and UBER, TADA (90,000 MAU) and Macaron Taxi (30,000) 

of KST Mobility (Kim, 2021). It is notable that more than half of South Korean citizens 

are the users of these services. Nonetheless, both ridesharing and ride-sharing services 

reflect a shift from vehicles-as-products to vehicles-as-mobility services, with ridesharing 

services appealing to a much larger and broader segment of the overall population 

(Clewlow and Mishra, 2017). 
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Figure 20. Consumer’s choice of traveling mode and multi-homing opportunities 

 

As the power of the platform lies in the algorithm that refines the matching based on 

the vast amount of data formed in the two-sided market of producer/supplier and 

consumer/user, a key feature of ERS is that the algorithm is a human in the task of matching 

available drivers with incoming requests, replacing the dispatcher. Such platforms employ 

two representatively different matching systems. The “inform” system allows drivers to 

select a destination with multiple drivers within a given area receiving the trip detail, and 

the first to respond is selected and assigned to the customer (Sun et al., 2020). In contrast, 

the “assign” system, also called first-dispatch protocol, immediately assigns an available 

driver who is expected to have the shortest travel time to the customer (Gao et al., 2019; 

Sun et al., 2020, Wei et al., 2020).  

For online ride-hailing platforms, the inform system is usually chosen, which ensures 

drivers’ freedom of choice by allowing them to control their destination by responding only 

to associated customer requests. However, unlike the assign system, the customer’s waiting 
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time cannot necessarily be minimized by the platform (Dai et al., 2017). Some other 

platforms use a system that can be considered as a hybrid of the two, where the system 

requests nearby drivers in order of distance until a driver decides to accept the ride; however, 

the key drawback of this algorithm is that the customer’s average waiting time increases 

due to the sequential call (Sun et al., 2020). Due to these algorithmic limitations, despite 

the fact that these platforms aim to meet the transportation needs of travelers through 

seamless and efficient mobility solutions, there are still instances where individuals are 

sometimes not assigned to a driver at the desired time and location. Also, even when they 

are successfully matched, consumer satisfaction with these rides has not increased 

significantly. 

The main stakeholders of ERS include drivers (service providers), riders/passengers 

(customers), the platform, and policy makers with different goals and decisions (Ashkrof 

et al., 2020). Since stakeholder satisfaction with a service is a very important factor for the 

continuity of the service, a number of studies have recently been conducted to understand 

the objectives of various stakeholders of ERS and to find the equilibrium between them for 

the operation of sustainable transport systems. Specifically with respect to the ride-hailing 

platform, studies have mainly attempted to explain the service adoption from both the 

supply (drivers) and demand side (passenger) perspectives. The assumption has been that 

that while the way the platform allocates rides has a direct impact on the attractiveness of 

the service for both drivers and passengers, not everyone has the same degree of preference 

for certain features of the service and they are likely to be heterogeneous in terms of their 
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preferences. 

 

 
Figure 21. The role of algorithms in passenger-driver matching in ERS 

 

Meanwhile, it has been repeatedly emphasized that not only the matching algorithm of 

the service must be designed to successfully meet the demand through supply, but also a 

better understanding of passenger heterogeneity is needed for the ride-hailing platform to 

make a significant contribution to satisfying consumer needs and maintaining long-term 

financial performance (Nguyen-Phuoc et al., 2020). Since the nature of ride-hailing 

platforms makes it easy for consumers to find an alternative service or choose a different 

mode of transportation, it is important to provide tailored services through a better 

understanding of passenger behavior. Since most platform services have dominant 

operators by geographic region, laggards seek transition from the existing profit-oriented 
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service to a customer-oriented service in order to successfully enter and compete in the 

market, and in the case of dominant operators, retain their users. As previous studies have 

long emphasized the relationship between service quality and customer satisfaction (Rust 

and Oliver, 1994), the relationship between customer satisfaction and customer loyalty 

(Oliver, 1999; Reichheld and Sasser, 1990), is known to be the key to retaining existing 

passengers and attracting new passengers from other modes to ride-hailing services 

(Nguyen-Phuoc et al., 2020). 

Therefore, this chapter aims to incorporate time-varying effects of covariates in 

explaining consumers’ use of ride-hailing platforms by using models based on P-splines, a 

semiparametric approach. By doing so, accumulated experience effect rising from repeated 

use of service can be observed, elaborating on how the described and/or adapted ‘Service 

Gap’ influence consumers’ usage behavior of the platform. While it is assumed that the 

customer’s expectation of the service is either (1) described (specified) by the service 

provider or (2) formed (updated) by their own past experiences with repeated use, the 

chapter is expected to describe how consumer perception can update consumer 

expectations, and how consumers’ service expectations influence their platform usage 

behavior over time. Then, this study identifies stream-of-time effects in consumer 

behaviors. The study is a meaningful addition to the literature that aims to understand 

platform service adoption from the demand-side perspective and provide important 

implications that can be used in practice when considering strategies to retain and improve 

the loyalty of ride-hailing platform users. 
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5.2 Data 
 

The data used in this work was provided by the Macaron Taxi Company, a second 

largest mobility service company in South Korea. Macaron Taxi provides mobility service 

across South Korea (mainly Seoul), encompassing over 270,000 users and 30,000 drivers. 

They provide different types of services, such as immediate calling service, reservation 

service, calling for friends, and driving with babies/pets, etc. Considering that the 

immediate calling is not only the primarily used service provided by the Macaron Taxi, but 

also a most widely used type of service in the ride-hailing platforms, this study only 

considered the data from the immediate calling service for the empirical study. 

As previously described in the passenger decision patterns on ride-hailing platforms, 

the consumer of Macaron Taxi first access the platform application when the he/she first 

decide to use the service to hail a taxi for the designated trip. Once the user accesses the 

application, one can choose whether to call the driver for him/herself or to call for friends, 

whether to hail now or reserve for later, etc. For this specific study, the data for immediate 

call for the user him/herself was categorized as the ‘immediate calling’. Then, the user is 

asked to choose the place of departure as well as the destination. Once all necessary 

information is filled out including the payment details, messages containing departure and 

destination locations are distributed to drivers, who can decide whether to accept the call. 

When a driver accepts the call, the consumer receives a message containing location and 

arrival time of the driver. The consumer was regarded as having successfully used the 
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service only when they have successfully gone through the full service-usage process: 

matched with a driver, board the taxi, and arrived at the destination location where they 

make transactions for the ride. The empirical decision-making setting of Macaron Taxi’s 

immediate call service is visualized in Figure 22 below.  

 

 

Figure 22. The empirical setting of Macaron Taxi’s immediate call service 

 

The dataset consists of individual consumer’s personal information including as age, 

gender, and cellular phone number, as well as the detailed records of ride-hailing calls, 

boarding, and transactions. The data span the period from February 23 to November 14, 

2020 with total of 2,502 consumers consisting of a total of 8,564 successful immediate 

rides. Consumer data on the usage of the service were obtained from the company’s server 

log files, which keep track of the cookies for each consumer, call details (call request date 

and time), allocation details (passenger-rider matching date and time, passenger boarding 

date and time), and transaction details (arrival date and time, payment). The timestamp for 
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each service-usage process has been collected and used.  

After the users have successfully used the service, they were asked to evaluate the 

service satisfaction. Because the response was not a required part of the service, majority 

of the consumers did not answer their service satisfaction. The service satisfaction data 

from the dataset is summarized in Table 11 below. 

 

Table 11.  Service satisfaction statistics 

Satisfied Frequency Percentage (%) 

NO 39 0.46 

YES 1,349 15.75 

No Response 7,176 83.79 

 

5.3 Model Specification 
 

5.3.1 Covariates of Time and Cost 
 

Key stakeholders of ERS include drivers (service providers), passengers/customers, 

platforms, and policy makers with different goals and decisions. As mentioned earlier, 

stakeholder satisfaction with the service is a very important factor in the success and 

continuity of the service. This study specifically examines the attributes that influence the 

user behavior of the ride-hailing platform’s passengers, as user retention is a key to the 

success of ride-hailing platforms, where the market is highly competitive. 
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In the service of ride-hailing platforms, (1) the time is spent for a ride and (2) the cost 

of the ride are the main elements that passengers experience. Therefore, in this study, the 

factor of “time” was set as the main covariate among the factors that influence the usage 

behavior of consumers, one of the main stakeholders of the Macaron Taxi ride-hailing 

service. Figure 21 shows the time configuration for consumers’ use of the service on this 

platform. The first time component is the 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒, which is the time it takes for a 

consumer to request a call and match a driver with a passenger, plus the time it takes for a 

consumer to board after the match. The second component is the 𝑅𝑖𝑑𝑒𝑇𝑖𝑚𝑒, which is the 

time it takes for a passenger to board the taxi at the departure location and arrive at the 

destination. Therefore, the 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒 and the 𝑅𝑖𝑑𝑒𝑇𝑖𝑚𝑒 can be represented as Eq. (49) 

and (50) as below using the timestamp. Then, in addition to the covariates for the time 

factor, the “service cost” factor was simultaneously considered as the main covariate. 

 
𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒 = (𝑇𝑖𝑚𝑒!"#$% − 𝑇𝑖𝑚𝑒&"'') + (𝑇𝑖𝑚𝑒()"*+ − 𝑇𝑖𝑚𝑒!"#$%)  ······ Eq. (49) 

 
𝑅𝑖𝑑𝑒𝑇𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒,**-."' − 𝑇𝑖𝑚𝑒/01"*#  ······································· Eq. (50) 

 

5.3.2 The Interaction of Trip Distance and Travel Speed 
 

Many people have certainly had the experience of not being able to catch a taxi at a 

certain time. During the commute rush hour and late at night, the demand for taxis is much 

higher than the supply, leaving some without matched rides. Amongst, it is known that the 

most problematic time is late at night. During the day, even if one cannot catch a taxi, he/she 
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can use other means of transportation such as busses and subways. However, in the late-

night hours, there are often no alternatives to get around except taxis. Without a match, 

he/she will not be able to go home at all. Nonetheless, endlessly waiting for a taxi or rushing 

home earlier than planned are not realistic alternatives either. Therefore, it is necessary to 

find a reasonable solution by accurately identifying when and where the excessive demand 

of taxis arise. 

There are three types of cases in particular where there is a large excess demand for 

late-night taxis (Kakao Mobility Report, 2019). First, excessive demand for taxis occurred 

when drivers were reluctant to travel because the destined ride was too short. Meanwhile, 

there were also areas where the drivers did not prefer to travel, even if it was not a short-

destined ride, because they were too densely populated (difficult to navigate) or there was 

too much traffic. Both cases lead to inefficient hourly earnings for the taxi drivers. Likewise, 

the drivers were hesitant to drive to the entertainment districts, such as Itaewon, Hongdae, 

and Gangnam Station in Seoul, even if they knew that they could easily be matched to 

customers. Nonetheless, even for general trips, customer’s satisfaction with the use of 

service may vary depending on the situation at the time the service was used, such as 

whether the trip was short-distanced or long-distanced, whether the service was used at a 

time when the road is congested or not, etc. To reflect the characteristics of the 

circumstances of service use, it is necessary to incorporate the variables for distance and 

travel speed from departure location to destination in the model. 

To calculate the distance between the initial point of travel to the destination given the 
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latitude and longitude (based on GPS), haversine formula represented in Eq. (51) can be 

used. Then, based on the haversine formula, Eq. (52) and (53) can be used to calculate the 

great-circle distance between two points – that is, the shortest distance over the earth’s 

surface. 

 

𝑎 = sin# £(𝜑# − 𝜑!) 2µ ¨ + cos(𝜑!) ∙ cos(𝜑#) ∙ sin# £
(𝜆# − 𝜆!)

2µ ¨  ······ Eq. (51) 

 
𝑐 = 2 ∙ atan2S√𝑎, √1 − 𝑎T  ····················································· Eq. (52) 

 
𝐷𝑖𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑅 ∙ 𝑐				    ······················································· Eq. (53) 

 

In equations above, 𝜑 is the latitude and 𝜆 is longitude, where 𝑃"'"- = (𝜑!, 𝜆!) and 

𝑃_`a- = (𝜑#, 𝜆#). 𝑅 represents the radius of the earth, of which the mean value is 6,371 

km. It is noted that all angles are noted in radians. 

Then, the average speed of travel can be calculated using the simple equation 

represented in Eq. (54). The 𝐴𝑣𝑔𝑆𝑝𝑒𝑒𝑑  was multiplied by 3600 to be represented in 

(km/hr), as all the time variables were evaluated in seconds in this empirical study. 

 

𝐴𝑣𝑔𝑆𝑝𝑒𝑒𝑑	(𝑘𝑚 ℎ𝑟⁄ ) = 𝑇𝑟𝑎𝑣𝑒𝑙𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒			
𝑅𝑖𝑑𝑒𝑇𝑖𝑚𝑒µ ∗ 3600	    ······· Eq. (54) 

 

5.3.3 Formation of Consumer Expectations 

 

Consumer expectations of the service are formed by either system specifications or 
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usage experience. Described expectations (DE) are formed by system notifications. For 

example, the system notifies the consumer of (1) the expected distance from the departure 

location to the destination, (2) how long the trip is expected to take from the departure 

location to the destination, and (3) how much it is expected to cost. The expectation that 

the system forms through the notification are based on the system-specific algorithms. How 

the described expectations are formed in Macaron Taxi service is represented in Figure 23. 

 

 

Figure 23. Formation of described expectations on covariates 

 

Because the described expectations are not always identical to the actual delivery of the 

service in the ride-hailing platforms, this study incorporates a model that accounts for 

reference-dependent effects in explaining platform consumer behaviors. The baseline or 

reference effect is obtained by dividing the absolute level 𝑥('.-  by the gain and loss 

relative to the reference (Kahneman and Tversky, 2013; DellaVigna, 2009; Hess et al., 
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2012). If the consumer prefers an attribute with an absolute level higher than the reference 

point, the deterministic term in Eq. (1) can be rewritten as Eq. (55) below with respect to 

the reference 𝑟'.-. 

 

𝑉23#0𝑟423#2 = 𝐼(𝑥 ≥ 𝑟)∑𝛽245 0𝑥423# − 𝑟423#2 + 𝐼(𝑥 < 𝑟)∑𝛽246 |𝑥423# − 𝑟423#|  ······ Eq. (55) 

 

In above equation, 𝛽'(b  refers to the coefficient of gains, and 𝛽'(9  represents the 

coefficient of loss. Estimated coefficients for the gain and loss domains indicate preferred 

and unfavorable directions relative to the reference. Prospect theory assumes an 

asymmetric effect of gains/losses, indicating that consumer tend to be more responsive to 

losses than gains (Kahneman and Tversky, 1979). However, researchers have provided 

conflicting empirical results about the existence of asymmetric reference price effects. 

Nonetheless, as the individual repeatedly use the service, they experience gains and/or 

losses (difference between described expectations (system-notified time/cost) and those 

actually experienced (actual time/cost)) from the rides, therefore forming subjective 

“expectations error” regarding the service. Based on such experience, they adapt and form 

new expectations on gains and/or losses from the service usage (incorporating the “error”). 

Whereas the described expectations are readily available from our data, the experience-

based updated expectations have to be computed from each consumer’s purchase history. 

Previous research has documented the importance of incorporating purchase event 

feedback effects in consumer behavior analysis (Ailawadi et al., 1999). Based on Guadagni 
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and Little (1983), the experience-based expectations on the “time” and “cost” covariates in 

using the service was computed recursively by exponentially smoothing past usage of 

service 𝑗 by individual 𝑛 at usage occasion 𝑡 − 1 using smoothing coefficient 𝜃P`D . 

Such adaptive formation approach increases model fit and predictive performance and has 

been widely used in the marketing literature to capture covariate effects (Ailawadi et al., 

1999; Kalyanaram and Winer, 1995). 

In this study, we built on a widely used updating expectations framework to compute 

individuals’ updated reference distance, times, and cost based on their service usage history. 

As the individuals use the service repeatedly, they form new expectations of system errors 

(discrepancy) based on described expectations of service distance, times, and costs, as 

shown in Eq. (56), (57), and (58), respectively, below.  

 

𝐸𝑥𝑝𝑡𝐸𝑟𝑟𝑜𝑟𝐷𝑖𝑠𝑡*7& = 𝜃89',;*<& ∙ ?𝐷𝑖𝑠𝑡𝐺𝑎𝑖𝑛*7,&() −𝐷𝑖𝑠𝑡𝐿𝑜𝑠𝑠*7,&()C 

																																																																		+(1 − 𝜃89',;*<&) ∙ 𝐸𝑥𝑝𝑡𝐸𝑟𝑟𝑜𝑟𝐷𝑖𝑠𝑡*7,&()  ········ Eq. (56) 

 

𝐸𝑥𝑝𝑡𝐸𝑟𝑟𝑜𝑟𝑇𝑖𝑚𝑒*7& = 𝜃89',&*=9 ∙ ?𝑇𝑖𝑚𝑒𝐺𝑎𝑖𝑛*7,&() − 𝑇𝑖𝑚𝑒𝐿𝑜𝑠𝑠*7,&()C 

																																																																		+(1 − 𝜃89',&*=9) ∙ 𝐸𝑥𝑝𝑡𝐸𝑟𝑟𝑜𝑟𝑇𝑖𝑚𝑒*7,&()  ······ Eq. (57) 

 

𝐸𝑥𝑝𝑡𝐸𝑟𝑟𝑜𝑟𝐶𝑜𝑠𝑡*7& = 𝜃89',>,<& ∙ ?𝐶𝑜𝑠𝑡𝐺𝑎𝑖𝑛*7,&() − 𝐶𝑜𝑠𝑡𝐿𝑜𝑠𝑠*7,&()C 

																																																																		+(1 − 𝜃89',>,<&) ∙ 𝐸𝑥𝑝𝑡𝐸𝑟𝑟𝑜𝑟𝐶𝑜𝑠𝑡*7,&()  ······· Eq. (58) 

 

Here, the gains (𝐷𝑖𝑠𝑡𝐺𝑎𝑖𝑛, 𝑇𝑖𝑚𝑒𝐺𝑎𝑖𝑛, C𝑜𝑠𝑡𝐺𝑎𝑖𝑛) and losses (𝐷𝑖𝑠𝑡𝐿𝑜𝑠𝑠, 𝑇𝑖𝑚𝑒𝐿𝑜𝑠𝑠, 

C𝑜𝑠𝑡𝐿𝑜𝑠𝑠) are the difference (gain/loss) between the described expectations and the actual 

experience of the service. Therefore, these equations represent the adapted “error” of the 



99 

 

ride-hailing platform’s described expectations. Because the users naturally adapt to the 

error of a system, they update their service expectations based on their experience, forming 

new experience-based expectations on distance, times, and costs of the service as in 

following Eq. (59), (60), and (61), respectively.  

 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐷𝑖𝑠𝑡𝐸*7& = 𝐷𝑖𝑠𝑡𝑆𝑦𝑠𝐸*7& + 𝐸𝑥𝑝𝑡𝐸𝑟𝑟𝑜𝑟𝐷𝑖𝑠𝑡*7&  ····························· Eq. (59) 

 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑇𝑖𝑚𝑒𝐸*7& = 𝑇𝑖𝑚𝑒𝑆𝑦𝑠𝐸*7& + 𝐸𝑥𝑝𝑡𝐸𝑟𝑟𝑜𝑟𝑇𝑖𝑚𝑒*7&  ·························· Eq. (60) 

 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐶𝑜𝑠𝑡𝐸*7& = 𝐶𝑜𝑠𝑡𝑆𝑦𝑠𝐸*7& + 𝐸𝑥𝑝𝑡𝐸𝑟𝑟𝑜𝑟𝐶𝑜𝑠𝑡*7&  ···························· Eq. (61) 

 

It should be noted that in above, 𝐷𝑖𝑠𝑡𝑆𝑦𝑠𝐸".-, 𝑇𝑖𝑚𝑒𝑆𝑦𝑠𝐸".-, and 𝐶𝑜𝑠𝑡𝑆𝑦𝑠𝐸".- are 

the reference points formed by described expectations (system-notified expectations) for 

that particular usage at time 𝑡. Then, the adapted error from Eq. (56) to (58) are added for 

each covariate to form experience-based updated expectations.  

 

5.3.4 Estimation of Smoothing Coefficient for Error Adaption 

 

In forming expected errors from service expectations through service experience, it is 

sensible to give more weight to recent observations than to observations made far in the 

past. Forecasts are therefore calculated using a weighted average; the weights decrease 

exponentially the further the observations come from. Such exponential smoothing 
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involves the smoothing coefficient 𝜃P`D with a value between 0 and 1, where the smallest 

weight is associated with the oldest observation. The problem that arises with this method 

is determining the optimal parameters to minimize the prediction error. 

To determine smoothing coefficients 𝜃P`D,_"a- , 𝜃P`D,-"H` , 𝜃P`D,cda-  that minimize 

forecast error, the Limited-memory Broyden–Fletcher–Goldfarb–Shanno optimization 

algorithm (L-BFGS) is utilized using pytorch. Pytorch-LBFGS is a modular 

implementation of L-BFGS, a widely used popular quasi-Newton method.  

Quasi-Newton methods forms an approximation to the Hessian 𝐻(  and applies a 

Newton-like algorithm 𝑥(*! = 𝑥( +	𝜃(𝐻(∇𝐹(𝑥()  to solve the matrix satisfying the 

following secant condition. 

 

𝐻((𝑥( − 𝑥()!) = ∇𝐹(𝑥() − ∇(𝑥()!)	    ····································· Eq. (62) 

 

L-BFGS is a quasi-Newtonian optimization algorithm. Compared to the BFGS method 

that requires high density matrices to be stored, L-BFGS uses limited memory. Only 5-20 

vectors need to be stored to implicitly approximate the matrix and the matrix-vector product 

is immediately constructed by two-loop recursion. In other words, this method is a method 

of approximating the Hessian matrix by maintaining only a few dimensional vectors instead 

of storing the Hessian matrix with high density. 

L-BFGS constructs an approximation to the Hessian by collecting curvature pairs 

(𝑠( , 𝑦()  in the deterministic or full-batch setting. A curvature pair is defined as the 



101 

 

difference in consecutive gradients (i.e. 𝑠( = 𝑥(*! − 𝑥( 	𝑎𝑛𝑑	𝑦( = ∇𝐹(𝑥(*!) − ∇(𝑥()) 

and iterates. In the implementation of L-BFGS algorithm in pytorch, the curvature pair is 

updated after an optimization step leading to 𝑥(*!. 

 

5.4 Estimation Results 

 

In this section, the author conducts consumer behavior analysis using both (1) the 

generic model that do not incorporate time-varying effects and (2) functions with time-

varying parameters. Then, the time-varying expectations effect (description-based vs. 

experience-based) are investigated. The estimation results are presented sequentially in the 

following sections. 

 

5.4.1 The Generic Model 

 

In this section linear regression models as well as a discrete choice model that do not 

incorporate time effects (the generic models) were used for consumer behavior analysis. To 

investigate the usage interval and the total number of usage of passengers in the Macaron 

ride-hailing platform service, negative binomial regression was used.  

In the negative binomial regression, the dependent variable is an observed count that 

follows the negative binomial distribution. Thus, the possible values of dependent variable 

are the non-negative integers. It is a generalization of Poisson regression in which the 
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limiting assumption of the Poisson model that the variance equals the mean is relaxed.  

Poisson regression can be generalized by including the gamma noise variable with mean 

1 and scale parameter 𝑣. In negative binomial regression, the mean of 𝑦 is determined by 

the exposure at time 𝑡 and a set of 𝑘 regressors. The expressions for these variables are 

given in Eq. (63) below. 

 

𝜇" = exp	(ln(𝑡") + 𝛽!𝑥!" + 𝛽#𝑥#" +⋯+ 𝛽( + 𝑥(")	    ···················· Eq. (63) 

 

Often 𝑥! = 1 , in which case 𝛽!  is represented as the intercept. The regression 

coefficients is an unknown parameter estimated in a data set. The negative binomial 

regression model for an observation 𝑖 is then written as: 

 

Pr(Y = ye|𝜇" , 𝛼) =
fg7?*?@Ah

f(?@A)f(7?*!)
� !
!*?i?

�
?@A

� ?i?
!*?i?

�
7?
	    ················· Eq. (64) 

 

, where 𝜇" = 𝑡"𝜇 and 𝛼 = 1/𝑣. The parameter of 𝜇 is the mean incident rate of 𝑦 per 

unit exposure, which can be time, space, distance, area, volume, or population size. This 

can be interpreted as the risk of occurrence of a new event during a given exposure. 

Then, as described in the previous sections, we can assume that the service usage 

behavior of consumer 𝑛 at occasion 𝑡 depends on their demographic characteristics and 

the covariates of distance, time, and cost. Therefore, the service usage interval (𝐼𝑛𝑡𝑣𝑙𝑈𝑠𝑒) 

of consumer 𝑛 at occasion 𝑡 can be specified as the following Model 1 using Eq. (65). It 
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should be noted that described expectations were used for analysis. 

 

Model 1: 
𝐼𝑛𝑡𝑣𝑙𝑈𝑠𝑒%,) = 𝛽* + 𝛽"𝐴𝑔𝑒% + 𝛽$𝐺𝑒𝑛𝑑𝑒𝑟% + 𝛽&𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒%,)+" 

  +𝐼E𝐸𝑥𝑝𝐷𝑖𝑠𝑡%,)+" ≥ 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡%,)+"J𝛽'E𝐸𝑥𝑝𝐷𝑖𝑠𝑡%,)+" − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡%,)+"J 

  +𝐼E𝐸𝑥𝑝𝐷𝑖𝑠𝑡%,)+" < 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡%,)+"J𝛽,L𝐸𝑥𝑝𝐷𝑖𝑠𝑡%,)+" − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡%,)+"L 

  +𝐼E𝐸𝑥𝑝𝑅𝑖𝑑𝑒%,)+" ≥ 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒%,)+"J𝛽-E𝐸𝑥𝑝𝑅𝑖𝑑𝑒%,)+" − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒%,)+"J 

  +𝐼E𝐸𝑥𝑝𝑅𝑖𝑑𝑒%,)+" < 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒%,)+"J𝛽.L𝐸𝑥𝑝𝑅𝑖𝑑𝑒%,)+" − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒%,)+"L 

  +𝐼E𝐸𝑥𝑝𝐶𝑜𝑠𝑡%,)+" ≥ 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡%,)+"J𝛽/E𝐸𝑥𝑝𝐶𝑜𝑠𝑡%,)+" − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡%,)+"J 

  +𝐼E𝐸𝑥𝑝𝐶𝑜𝑠𝑡%,)+" < 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡%,)+"J𝛽.L𝐸𝑥𝑝𝐶𝑜𝑠𝑡%,)+" − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡%,)+"L 

+𝑆𝑎𝑡𝑖𝑠𝑓𝑦%,)+" + 𝜖%)	                          ··························· Eq. (65) 

 

Our interest in using Model 1 is to estimate the influence of gains and losses of specified 

covariates with respect to expectations on the interval of consumers’ use of service. Then, 

to observe the interaction effects of trip distance and travel speed as described in Section 

5.3.2, Models 2 and 3 using Eq. (66) and (67) can be used as the following, respectively. 

The estimation results for three models are presented in Table 12. 

 

Model 2: 
𝐼𝑛𝑡𝑣𝑙𝑈𝑠𝑒*,& = 𝛽B + 𝛽)𝐴𝑔𝑒* + 𝛽C𝐺𝑒𝑛𝑑𝑒𝑟* + 𝛽D𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒*,&() 

  +(𝛽E + 𝛽F𝐷𝑖𝑠𝑡*,&())𝐼?𝐸𝑥𝑝𝐷𝑖𝑠𝑡*,&() ≥ 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡*,&()C?𝐸𝑥𝑝𝐷𝑖𝑠𝑡*,&() − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡*,&()C 

  +(𝛽G + 𝛽H𝐷𝑖𝑠𝑡*,&())𝐼?𝐸𝑥𝑝𝐷𝑖𝑠𝑡*,&() < 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡*,&()CU𝐸𝑥𝑝𝐷𝑖𝑠𝑡*,&() − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡*,&()U 

  +(𝛽I + 𝛽J𝐷𝑖𝑠𝑡*,&())𝐼?𝐸𝑥𝑝𝑅𝑖𝑑𝑒*,&() ≥ 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒*,&()C?𝐸𝑥𝑝𝑅𝑖𝑑𝑒*,&() − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒*,&()C 

  +(𝛽)B + 𝛽))𝐷𝑖𝑠𝑡*,&())𝐼?𝐸𝑥𝑝𝑅𝑖𝑑𝑒*,&() < 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒*,&()CU𝐸𝑥𝑝𝑅𝑖𝑑𝑒*,&() − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒*,&()U 

  +(𝛽)C + 𝛽)D𝐷𝑖𝑠𝑡*,&())𝐼?𝐸𝑥𝑝𝐶𝑜𝑠𝑡*,&() ≥ 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡*,&()C?𝐸𝑥𝑝𝐶𝑜𝑠𝑡*,&() − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡*,&()C 

  +(𝛽)D + 𝛽)E𝐷𝑖𝑠𝑡*,&())𝐼?𝐸𝑥𝑝𝐶𝑜𝑠𝑡*,&() < 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡*,&()CU𝐸𝑥𝑝𝐶𝑜𝑠𝑡*,&() − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡*,&()U 

+𝑆𝑎𝑡𝑖𝑠𝑓𝑦*,𝑡−1 + 𝜖*&	                          ··························· Eq. (66) 
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Model 3: 
𝐼𝑛𝑡𝑣𝑙𝑈𝑠𝑒K,& = 𝛽B + 𝛽)𝐴𝑔𝑒* + 𝛽C𝐺𝑒𝑛𝑑𝑒𝑟* + 𝛽D𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒*,&() 

  +(𝛽E + 𝛽F𝑆𝑝𝑒𝑒𝑑*,&())𝐼?𝐸𝑥𝑝𝐷𝑖𝑠𝑡*,&() ≥ 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡*,&()C?𝐸𝑥𝑝𝐷𝑖𝑠𝑡*,&() − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡*,&()C 

  +(𝛽- + 𝛽.𝑆𝑝𝑒𝑒𝑑𝑖,𝑡−1)𝐼E𝐸𝑥𝑝𝐷𝑖𝑠𝑡%,)+" < 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡%,)+"JL𝐸𝑥𝑝𝐷𝑖𝑠𝑡%,)+" − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡%,)+"L 

  +(𝛽I + 𝛽J𝑆𝑝𝑒𝑒𝑑*,&())𝐼?𝐸𝑥𝑝𝑅𝑖𝑑𝑒*,&() ≥ 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒*,&()C?𝐸𝑥𝑝𝑅𝑖𝑑𝑒*,&() − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒*,&()C 

  +(𝛽)B + 𝛽))𝑆𝑝𝑒𝑒𝑑*,&())𝐼?𝐸𝑥𝑝𝑅𝑖𝑑𝑒*,&() < 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒*,&()CU𝐸𝑥𝑝𝑅𝑖𝑑𝑒*,&() − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒*,&()U 

  +(𝛽)C + 𝛽)D𝑆𝑝𝑒𝑒𝑑*,&())𝐼?𝐸𝑥𝑝𝐶𝑜𝑠𝑡*,&() ≥ 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡*,&()C?𝐸𝑥𝑝𝐶𝑜𝑠𝑡*,&() − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡*,&()C 

  +(𝛽)D + 𝛽)E𝑆𝑝𝑒𝑒𝑑*,&())𝐼?𝐸𝑥𝑝𝐶𝑜𝑠𝑡*,&() < 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡*,&()CU𝐸𝑥𝑝𝐶𝑜𝑠𝑡*,&() − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡*,&()U 

+𝑆𝑎𝑡𝑖𝑠𝑓𝑦𝑖,𝑡−1 + 𝜖*&	                          ··························· Eq. (67) 

 

The results of Model 1 show that for the ride-hailing platform, as the 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒-)! 

increased, the service usage interval increased. Moreover, the usage interval increased 

when the gained distance and cost decreased compared to expectations in the previous 

usage. In contrast, the gains and losses in 𝑅𝑖𝑑𝑒𝑇𝑖𝑚𝑒  and 𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛-)!  were all 

insignificant, indicating that they did not affect the usage interval. 

It is worth noting that all of the interactive effects of age were not significant, indicating 

that consumer age has no effect on the influence of the covariates on the service use interval. 

As can be seen in Model 3, the positive coefficient of gender on 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒  and 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝑜𝑠𝑠-)!  pointed to the increasing effect of wait time and distance loss with 

respect to expectations in the previous usage experience among female consumers. While 

a negative gender coefficient for 𝐶𝑜𝑠𝑡_𝐺𝑎𝑖𝑛-)! indicates an increasing effect of the cost 

variable among male consumers, the estimated gender coefficient for the interaction 

between 𝐶𝑜𝑠𝑡_𝐺𝑎𝑖𝑛-)! and 𝐴𝑣𝑔𝑆𝑝𝑒𝑒𝑑-)!was positive and significant, implying that the 
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interactive effect of average speed decreases among female consumers. Finally, all 

interactive effects of travel distance were insignificant. 

 

Table 12.  Estimation results for usage interval (generic model) 

VARIABLES Model (1) Model (2) Model (3) 

Main Effects     

Age  -4.36e-03 -4.83e-03 -4.23e-03 

  (9.06e-03) (9.19e-03) (9.02e-03) 

Gender  -1.83e-01 -2.17e-01 -1.86e-01 

  (1.72e-01) (0.170) (1.73e-01) 

WaitTime t-1  1.55e-04* 1.42e-04* 1.51e-04** 

  (8.45e-05) (8.62e-05) (8.55e-05) 

Distance Gain t-1 -1.74e-01* -1.43e-01* -2.65e-01* 

  (1.05e-01) (1.11e-01) (1.17e-01) 

 Loss t-1 3.83e-02 3.28e-02 -4.38e-02 

  (9.47e-02) (9.41e-02) (9.41e-02) 

RideTime Gain t-1 -1.24e-04 -4.91e-04 -1.07e-03 

  (9.65e-04) (1.46e-03) (1.78e-03) 

 Gain t-1 × DirDistance t-1 - 3.18e-06 - 

  - (1.43e-04) - 

 Gain t-1 × AvgSpeed t-1 - - 3.40e-05 

  - - (6.68e-05) 

 Loss t-1 3.17e-04 6.88e-04 -2.30e-03 

  (9.14e-04) (2.27e-03) (2.20e-03) 

 Loss t-1 × DirDistance t-1 - -1.17e-06 - 

  - (2.02e-04) - 

 Loss t-1 × AvgSpeed t-1 - - 1.02e-04 

  - - (7.48e-05) 

Cost Gain t-1 -3.45e-04* -3.42e-04 3.81e-04 



106 

 

  (2.09e-04) (3.65e-04) (5.52e-04) 

 Gain t-1 × DirDistance t-1 - 2.81e-06 - 

  - (3.80e-05) - 

 Gain t-1 × AvgSpeed t-1 - - -2.96e-05 

  - - (2.17e-05) 

 Loss t-1 -2.52e-04 -2.18e-04 6.37e-04 

  (1.74e-04) (4.85e-04) (5.89e-04) 

  Loss t-1 × DirDistance t-1 - -1.65e-06 - 

  - (4.40e-05) - 

 Loss t-1 × AvgSpeed t-1 - - -3.23e-05 

  - - (2.07e-05) 

Satisfyt-1  -8.48e-01 -1.03e+00* -1.01e+00* 

  (5.36e-01) (5.40e-01) (5.40e-01) 

Constant  3.21e+00*** 3.26e+00*** 3.23e+00*** 

  (3.82e-01) (3.86e-01) (3.81e-01) 

Age Interactions    

 WaitTime t-1  -3.38e-06 -3.58e-06 -3.61e-06 

  (3.44e-06) (3.46e-06) (3.44e-06) 

Distance Gain t-1 3.10e-03 2.01e-03 4.69e-03 

  (2.74e-03) (2.96e-03) (2.99e-03) 

 Loss t-1 -2.03e-03 -1.98e-03 -2.39e-03 

  (2.06e-03) (2.04e-03) (2.06e-03) 

RideTime Gain t-1 1.89e-05 3.23e-05 4.96e-05 

  (2.14e-05) (3.31e-05) (3.86e-05) 

 Gain t-1 × DirDistance t-1 - -1.09e-06 - 

  - (2.96e-06) - 

 Gain t-1 × AvgSpeed t-1 - - -1.20e-06 

  - - (1.29e-06) 

 Loss t-1 8.39e-06 -1.66e-05 6.02e-05 

  (2.32e-05) (5.23e-05) (5.54e-05) 

 Loss t-1 × DirDistance t-1 - 1.04e-06 - 
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  - (4.51e-06) - 

 Loss t-1 × AvgSpeed t-1 - - -2.36e-06 

  - - (2.02e-06) 

Cost Gain t-1 6.34e-06 7.89e-06 -5.24e-06 

  (4.93e-06) (8.90e-06) (1.35e-05) 

 Gain t-1 × DirDistance t-1 - -1.31e-07 - 

  - (8.98e-07) - 

 Gain t-1 × AvgSpeed t-1 - - 4.94e-07 

  - - (5.13e-07) 

 Loss t-1 5.36e-06 4.38e-06 -1.63e-06 

  (3.76e-06) (1.03e-05) (1.29e-05) 

  Loss t-1 × DirDistance t-1 - 1.16e-07 - 

  - (9.34e-07) - 

 Loss t-1 × AvgSpeed t-1 - - 8.41e-07* 

  - - (4.73e-07) 

Satisfyt-1  -5.96e-03 -2.08e-03 -2.46e-03 

  (1.29e-02) (1.29e-02) (1.29e-02) 

Gender Interactions    

WaitTime t-1  3.28e-04* 3.62e-04* 3.24e-04* 

  (1.90e-04) (1.91e-04) (1.89e-04) 

Distance Gain t-1 5.67e-02 5.96e-02 7.39e-02 

  (3.89e-02) (5.05e-02) (4.98e-02) 

 Loss t-1 5.45e-02 5.89e-02 6.66e-02** 

  (3.89e-02) (4.02e-02) (3.98e-02) 

RideTime Gain t-1 -4.87e-04 -1.07e-04 5.57e-04 

  (3.98e-04) (6.36e-04) (9.55e-04) 

 Gain t-1 × DirDistance t-1 - -2.69e-05 - 

  - (6.76e-05) - 

 Gain t-1 × AvgSpeed t-1 - - -3.81e-05 

  - - (3.82e-05) 

 Loss t-1 -5.57e-04* 2.67e-04 6.93e-04 
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  (3.34e-04) (7.40e-04) (8.42e-04) 

 Loss t-1 × DirDistance t-1 - -7.33e-05 - 

  - (7.22e-05) - 

 Loss t-1 × AvgSpeed t-1 - - -3.86e-05 

  - - (2.84e-05) 

Cost Gain t-1 6.21e-05 -1.36e-04 -8.05e-04** 

  (9.69e-05) (1.89e-04) (3.39e-04) 

 Gain t-1 × DirDistance t-1 - 1.48e-05 - 

  - (1.57e-05) - 

 Gain t-1 × AvgSpeed t-1 - - 3.20e-05** 

  - - (1.27e-05) 

 Loss t-1 4.64e-05 6.00e-05 -7.56e-05 

  (4.28e-05) (1.20e-04) (2.03e-04) 

  Loss t-1 × DirDistance t-1 - -4.56e-06 - 

  - (1.38e-05) - 

 Loss t-1 × AvgSpeed t-1 - - 2.61e-06 

  - - (7.64e-06) 

Satisfyt-1  1.24e-01 1.68e-01 1.27e-01 

  (2.19e-01) (2.24e-01) (2.19e-01) 

Observations  925 925 925 

/lnalpha  8.33e-02* 7.17e-02 6.42e-02 

  (4.60e-02) (4.61e-02) (4.62e-02) 

Log-Likelihood -3227.4408 -3321.5744 -3317.5553 

*** p<0.01, ** p<0.05, * p<0.1; Standard errors are in parenthesis 

 

Likewise, the total service use (𝑁𝑏𝑟𝑈𝑠𝑒)  of consumer 𝑛  at occasion 𝑡  can be 

specified as the following Model (1) using Eq. (68). Our interest in using Model 1 is to 

estimate the influence of gains and losses of specified covariates on the consumers’ total 

number of uses of service. Then, to observe the interaction effects of trip distance and travel 
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speed as described in Section 5.3.2, Models 2 and 3 using Eq. (69) and (70) can again be 

used for analysis. The estimation results for all three models are presented in Table 13.  

 

Model 1: 
𝑁𝑏𝑟𝑈𝑠𝑒-,# = 𝛽< + 𝛽=𝐴𝑔𝑒- + 𝛽>𝐺𝑒𝑛𝑑𝑒𝑟- + 𝛽?𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒-,# 

  +𝐼0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# ≥ 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2𝛽@0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2 

  +𝐼0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# < 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2𝛽AJ𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#J 

  +𝐼0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# ≥ 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2𝛽B0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2 

  +𝐼0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# < 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2𝛽CJ𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#J 

  +𝐼0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# ≥ 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2𝛽D0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2 

  +𝐼0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# < 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2𝛽CJ𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#J 

+𝑆𝑎𝑡𝑖𝑠𝑓𝑦-,# + 𝜖-#	                          ····························· Eq. (68) 

 

Model 2: 
𝑁𝑏𝑟𝑈𝑠𝑒-,# = 𝛽< + 𝛽=𝐴𝑔𝑒- + 𝛽>𝐺𝑒𝑛𝑑𝑒𝑟- + 𝛽?𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒-,# 

  +(𝛽@ + 𝛽A𝐷𝑖𝑠𝑡-,#)𝐼0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# ≥ 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#20𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2 

  +(𝛽B + 𝛽C𝐷𝑖𝑠𝑡-,#)𝐼0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# < 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2J𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#J 

  +(𝛽D + 𝛽E𝐷𝑖𝑠𝑡-,#)𝐼0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# ≥ 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#20𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2 

  +(𝛽=< + 𝛽==𝐷𝑖𝑠𝑡-,#)𝐼0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# < 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2J𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#J 

  +(𝛽=> + 𝛽=?𝐷𝑖𝑠𝑡-,#)𝐼0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# ≥ 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#20𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2 

  +(𝛽=? + 𝛽=@𝐷𝑖𝑠𝑡-,#)𝐼0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# < 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2J𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#J 

+𝑆𝑎𝑡𝑖𝑠𝑓𝑦-,# + 𝜖-#	                          ··························· Eq. (69) 

 

Model 3: 
𝑁𝑏𝑟𝑈𝑠𝑒-,# = 𝛽< + 𝛽=𝐴𝑔𝑒- + 𝛽>𝐺𝑒𝑛𝑑𝑒𝑟- + 𝛽?𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒-,# 

  +(𝛽@ + 𝛽A𝑆𝑝𝑒𝑒𝑑-,#)𝐼0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# ≥ 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#20𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2 

  +(𝛽B + 𝛽C𝑆𝑝𝑒𝑒𝑑-,#)𝐼0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# < 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2J𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#J 

  +(𝛽D + 𝛽E𝑆𝑝𝑒𝑒𝑑-,#)𝐼0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# ≥ 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#20𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2 

  +(𝛽=< + 𝛽==𝑆𝑝𝑒𝑒𝑑-,#)𝐼0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# < 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2J𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#J 
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  +(𝛽=> + 𝛽=?𝑆𝑝𝑒𝑒𝑑-,#)𝐼0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# ≥ 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#20𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2 

  +(𝛽=? + 𝛽=@𝑆𝑝𝑒𝑒𝑑-,#)𝐼0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# < 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2J𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#J 

+𝑆𝑎𝑡𝑖𝑠𝑓𝑦-,#+𝜖-#	                          ······························ Eq. (70) 
 

According to the results, in the ride-hailing platform service, it was revealed that as the 

age of the consumers increased, the total number of service use increased. It was also found 

that consumers were sensitive to the cost; the higher the gain and the lower the loss 

compared to expectations, the higher the total number of uses, implying that “saving” cost 

was important. In addition, the interactive effect of distance and travel speed on 

𝐶𝑜𝑠𝑡_𝐺𝑎𝑖𝑛 was negative and significant, indicating that shorter distance and lower travel 

speed led to a greater effect of cost gain on the number of times the service was used. 

Contrastingly, the main effect of gender, 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒, distance variables, and ride time 

variables were insignificant. One noticeable result was that the lower the satisfaction with 

use, the higher the total number of use. 

The interactive effect of age was significant with 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒 , 𝐶𝑜𝑠𝑡_𝐺𝑎𝑖𝑛 , and 

𝑆𝑎𝑡𝑖𝑠𝑓𝑦, showing that the effect of these covariates on the number of service use increased 

the younger the user was. The interaction effect of travel distance and average speed were 

both negatively significant with 𝐶𝑜𝑠𝑡_𝐺𝑎𝑖𝑛, indicating that the positive effect of cost gain 

on total service use was negatively affected by increasing travel distance and average speed. 

Furthermore, the coefficient on age was negatively significant, suggesting that the effect of 

increased 𝐶𝑜𝑠𝑡_𝐺𝑎𝑖𝑛 on use decreased for older consumers, while this effect amplified 

with increased travel distance and average speed. Gender interactions were generally not 
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significant, but being a male resulted in a higher effect of service satisfaction on total 

service use, and the positive coefficient of gender on 𝐶𝑜𝑠𝑡_𝐿𝑜𝑠𝑠 pointed to the increasing 

effect of cost loss on female consumers. 

 

Table 13.  Estimation results for total usage (generic model) 

VARIABLES Model (1) Model (2) Model (3) 

Main Effects     

Age  2.98e-02*** 3.51e-02*** 3.60e-02*** 

  (8.80e-03) (9.17e-03) (9.12e-03) 

Gender  2.38e-01 2.87e-01 1.86e-01 

  (2.25e-01) (2.21e-01) (2.23e-01) 

WaitTime  3.98e-04 3.40e-04 2.50e-04 

  (3.22e-04) (3.19e-04) (3.23e-04) 

Distance Gain 1.90e-01 1.58e-01 1.66e-01 

  (1.24e-01) (1.22e-01) (1.26e-01) 

 Loss 5.64e-02 6.44e-02 9.28e-02 

  (6.66e-02) (7.31e-02) (8.26e-02) 

RideTime Gain -7.89e-04 1.35e-04 1.45e-03 

  (8.11e-04) (1.34e-03) (1.95e-03) 

 Gain × DirDistance - -1.25e-04 - 

  - (9.16e-05) - 

 Gain × AvgSpeed - - -5.40e-05 

  - - (4.92e-05) 

 Loss 2.35e-04 1.18e-03 -5.88e-04 

  (7.52e-04) (1.24e-03) (1.79e-03) 

 Loss × DirDistance - -3.83e-05 - 

  - (9.17e-05) - 

 Loss × AvgSpeed - - 7.17e-05 

  - - (8.51e-05) 
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Cost Gain 8.10e-04*** 1.45e-03*** 1.74e-03*** 

  (2.11e-04) (3.44e-04) (4.97e-04) 

 Gain × DirDistance - -5.92e-05*** - 

  - (1.85e-05) - 

 Gain × AvgSpeed - - -3.92e-05*** 

  - - (1.31e-05) 

 Loss -2.09e-04* -1.36e-04 2.13e-06 

  (1.17e-04) (1.66e-04) (3.06e-04) 

  Loss × DirDistance - 2.64e-06 - 

  - (9.25e-06) - 

 Loss × AvgSpeed  - - -1.49e-06 

  - - (8.31e-06) 

Satisfy  -7.26e-01** -6.71e-01** -7.22e-01** 

  (3.18e-01) (3.26e-01) (3.21e-01) 

Constant  1.37e+00*** 1.10e+00*** 1.16e+00*** 

  (3.67e-01) (3.84e-01) (3.78e-01) 

Age Interactions    

WaitTime  -2.17e-05** -1.85e-05** -1.63e-05* 

  (8.86e-06) (8.79e-06) (8.90e-06) 

Distance Gain -4.85e-03 -5.12e-03 -4.96e-03 

  (3.32e-03) (3.36e-03) (3.38e-03) 

 Loss 7.78e-04 3.30e-04 1.37e-03 

  (1.44e-03) (1.65e-03) (1.95e-03) 

RideTime Gain 1.18e-05 1.49e-05 -3.40e-06 

  (2.03e-05) (3.54e-05) (4.65e-05) 

 Gain × DirDistance - -4.63e-07 - 

  - (2.33e-06) - 

 Gain × AvgSpeed - - -1.74e-07 

  - - (1.18e-06) 

 Loss -1.46e-05 -2.51e-05 2.48e-06 

  (1.57e-05) (2.62e-05) (3.54e-05) 
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 Loss × DirDistance - 1.28e-07 - 

  - (2.28e-06) - 

 Loss × AvgSpeed - - -1.90e-06 

  - - (1.82e-06) 

Cost Gain -2.01e-05*** -3.08e-05*** -3.88e-05*** 

  (5.18e-06) (8.57e-06) (1.20e-05) 

 Gain × DirDistance - 1.24e-06*** - 

  - (4.53e-07) - 

 Gain × AvgSpeed - - 8.42e-07** 

  - - (3.33e-07) 

 Loss 3.73e-06 2.81e-06 1.19e-06 

  (2.53e-06) (3.60e-06) (6.45e-06) 

  Loss × DirDistance - -1.94e-07 - 

  - (2.01e-07) - 

 Loss × AvgSpeed  - - -9.36e-08 

  - - (1.73e-07) 

Satisfy  3.00e-02*** 2.83e-02*** 2.87e-02*** 

  (7.72e-03) (7.94e-03) (7.84e-03) 

Gender Interactions    

WaitTime  2.20e-04 1.78e-04 1.74e-04 

  (1.62e-04) (1.61e-04) (1.62e-04) 

Distance Gain 1.52e-02 2.66e-02 1.72e-02 

  (5.01e-02) (5.40e-02) (5.58e-02) 

 Loss -7.98e-02** -5.43e-02 -1.08e-01** 

  (3.99e-02) (3.94e-02) (4.28e-02) 

RideTime Gain 1.39e-04 -3.73e-04 -9.01e-04 

  (4.06e-04) (5.81e-04) (8.22e-04) 

 Gain × DirDistance - 6.83e-05* - 

  - (3.88e-05) - 

 Gain × AvgSpeed - - 3.52e-05 

  - - (2.28e-05) 
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 Loss 2.01e-04 -1.69e-04 4.35e-04 

  (3.04e-04) (4.83e-04) (6.95e-04) 

 Loss × DirDistance - 2.11e-05 - 

  - (3.21e-05) - 

 Loss × AvgSpeed - - -5.56e-06 

  - - (3.11e-05) 

Cost Gain 2.24e-05 -1.36e-04 -3.40e-06 

  (9.56e-05) (1.41e-04) (1.99e-04) 

 Gain × DirDistance - 3.59e-06 - 

  - (5.56e-06) - 

 Gain × AvgSpeed - - -1.22e-07 

  - - (4.80e-06) 

 Loss 5.32e-05* 3.67e-05 1.31e-05 

  (3.00e-05) (4.41e-05) (8.96e-05) 

  Loss × DirDistance - 1.09e-06 - 

  - (3.77e-06) - 

 Loss × AvgSpeed  - - 1.48e-06 

  - - (3.17e-06) 

Satisfy  -4.89e-01** -4.66e-01** -4.18e-01** 

  (2.07e-01) (2.04e-01) (2.06e-01) 

Observations  1,388 1,388 1,388 

/lnalpha  3.10e-01*** 2.57e-01*** 2.72e-01*** 

  (3.59e-02) (3.64e-02) (3.62e-02) 

Log-Likelihood -5037.6187 -4994.8908 -5005.5464 

*** p<0.01, ** p<0.05, * p<0.1; Standard errors are in parenthesis 

 

Finally, an ordered logit model (OL) was used to examine service satisfaction among 

users of the Macaron ride-hailing platform service. OL can be applied when the dependent 

variable 𝑌 is categorical and has a significant order with three or more categories or levels. 
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The ordinal variable 𝑌  is a function of another variable 𝑌∗  that is continuous and 

unmeasured and has different critical points. The value 𝑌"  of the observed variable 

depends on whether or not a certain threshold has been crossed, as shown by the formula: 

 

𝑌" = Ñ
1
𝑗
𝑀	
						

𝑖𝑓	𝑌"∗ ≤ 𝑘!
	𝑖𝑓	𝑘" ≤ 𝑌"∗ ≤ 𝑘")!
𝑖𝑓	𝑌"∗ ≥ 𝑘I)!

	    ············································ Eq. (71) 

 

The continuous latent variable 𝑌∗is equal to Eq. (72), where the stochastic term 𝜖" is 

normally distributed. The vector of 𝛽  parameters is estimated by the Maximum 

Likelihood method. 

 

𝑌" = ∑ 𝛽(𝑋(" + 𝜖"<
(0! 	    ························································ Eq. (72) 

 

The probability of each categorical outcome 𝑗 is equal to the probability that the linear 

function estimated with the random error lies within the range of cutpoints computed for 

the outcome as follows: 

 

Pr	(𝑌" = 𝑗) = Pr(𝑘")! < 𝛽!𝑥!" +⋯+ 𝛽(𝑥(" + 𝜖" ≤ 𝑘")    ··············· Eq. (73) 

 

In our study, the OL was adopted to identify factors that influence consumer’s 

satisfaction of the service, which is identified as 1=satisfied, 0=indifferent, and -1 = not 

satisfied. No response was categorized as consumers being indifferent.  
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Again, we can assume that the service satisfaction of consumer 𝑛  at occasion 𝑡 

depends on their demographic characteristics and the covariates of distance, time, and cost. 

In addition, consumer’s satisfaction in the previous service use was incorporated. Therefore, 

the service satisfaction of consumer 𝑛 at occasion 𝑡 can be specified as the following: 

 
Model 1: 
𝑆𝑎𝑡𝑖𝑠𝑓𝑦-,# = 𝛽< + 𝛽=𝐴𝑔𝑒- + 𝛽>𝐺𝑒𝑛𝑑𝑒𝑟- + 𝛽?𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒-,# 

  +𝐼0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# ≥ 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2𝛽@0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2 

  +𝐼0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# < 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2𝛽AJ𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#J 

  +𝐼0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# ≥ 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2𝛽B0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2 

  +𝐼0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# < 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2𝛽CJ𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#J 

  +𝐼0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# ≥ 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2𝛽D0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2 

  +𝐼0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# < 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2𝛽CJ𝐸𝑥𝑝𝐶𝑜𝑠𝑡2,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#J 

+𝜖2#	            ······························································· Eq. (74) 

 

Model 2: 
𝑆𝑎𝑡𝑖𝑠𝑓𝑦-.# = 𝛽< + 𝛽=𝐴𝑔𝑒- + 𝛽>𝐺𝑒𝑛𝑑𝑒𝑟- + 𝛽?𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒-,# 

  +(𝛽@ + 𝛽A𝐷𝑖𝑠𝑡-,#)𝐼0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# ≥ 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#20𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2 

  +(𝛽B + 𝛽C𝐷𝑖𝑠𝑡-,#)𝐼0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# < 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2J𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#J 

  +(𝛽D + 𝛽E𝐷𝑖𝑠𝑡-,#)𝐼0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# ≥ 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#20𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2 

  +(𝛽=< + 𝛽==𝐷𝑖𝑠𝑡-,#)𝐼0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# < 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2J𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#J 

  +(𝛽=> + 𝛽=?𝐷𝑖𝑠𝑡-,#)𝐼0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# ≥ 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#20𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2 

  +(𝛽=? + 𝛽=@𝐷𝑖𝑠𝑡-,#)𝐼0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# < 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2J𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#J 

+𝜖-#	            ································································ Eq. (75) 

 

Model 3: 
𝑆𝑎𝑡𝑖𝑠𝑓𝑦-.# = 𝛽< + 𝛽=𝐴𝑔𝑒- + 𝛽>𝐺𝑒𝑛𝑑𝑒𝑟- + 𝛽?𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒-,# 

  +(𝛽@ + 𝛽A𝑆𝑝𝑒𝑒𝑑-,#)𝐼0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# ≥ 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#20𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2 

  +(𝛽B + 𝛽C𝑆𝑝𝑒𝑒𝑑-,#)𝐼0𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# < 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2J𝐸𝑥𝑝𝐷𝑖𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#J 
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  +(𝛽D + 𝛽E𝑆𝑝𝑒𝑒𝑑-,#)𝐼0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# ≥ 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#20𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2 

  +(𝛽=< + 𝛽==𝑆𝑝𝑒𝑒𝑑-,#)𝐼0𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# < 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2J𝐸𝑥𝑝𝑅𝑖𝑑𝑒-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#J 

  +(𝛽=> + 𝛽=?𝑆𝑝𝑒𝑒𝑑-,#)𝐼0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# ≥ 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#20𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2 

  +(𝛽=? + 𝛽=@𝑆𝑝𝑒𝑒𝑑-,#)𝐼0𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# < 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2J𝐸𝑥𝑝𝐶𝑜𝑠𝑡-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#J 

+𝜖-#	              ······························································ Eq. (76) 
 

Our interest in using Model 1 is to estimate the influence of gains and losses of specified 

covariates on the consumers’ satisfaction of service. Then, to observe the interaction effects 

of trip distance and travel speed as described in Section 5.3.2, Models 2 and 3 using Eq. 

(75) and (76) can be used as the following, respectively. The estimation results for three 

models are presented in Table 14.  

According to the results, the younger the user, the higher the user satisfaction. The 

satisfaction was also higher for male than for female It was also revealed that the 

consumer’s satisfaction in the previous use of service positively influences the service 

satisfaction of the current use. All other covariates with regards to time and cost were 

insignificant, including the interaction effects of travel distance and average speed. 

 

Table 14.  Estimation results for service satisfaction (generic model) 

VARIABLES Model (1) Model (2) Model (3) 

Main Effects     

Age  -1.43e-02*** -1.43e-02*** -1.29e-02** 

  (5.27e-03) (5.34e-03) (5.34e-03) 

Gender  -3.34e-01*** -4.07e-01*** -4.23e-01*** 

  (9.52e-02) (1.01e-02) (1.02e-01) 

WaitTime  -2.88e-04 -3.67e-04 -3.45e-04 
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  (3.20e-04) (3.22e-04) (3.21e-04) 

Distance Gain -2.90e-02 -1.18e-02 -5.30e-02 

  (6.57e-02) (6.90e-02) (6.97e-02) 

 Loss 4.19e-02 6.28e-02 7.40e-02 

  (5.21e-02) (4.76e-02) (5.65e-02) 

RideTime Gain -3.07e-04 -1.25e-03 -9.36e-04 

  (5.76e-04) (7.78e-04) (8.74e-04) 

 Gain × DirDistance - 9.57e-05* - 

  - (5.28e-05) - 

 Gain × AvgSpeed - - 2.07e-05 

  - - (2.44e-05) 

 Loss -6.01e-04 -1.25e-03 -7.66e-05 

  (5.08e-04) (8.71e-04) (7.97e-04) 

 Loss × DirDistance - 6.34e-05 - 

  - (5.61e-05) - 

 Loss × AvgSpeed - - -2.80e-05 

  - - (4.30e-05) 

Cost Gain 1.28e-04 1.82e-04 3.44e-04 

  (1.52e-04) (2.43e-04) (3.04e-04) 

 Gain × DirDistance - -8.77e-06 - 

  - (1.35e-05) - 

 Gain × AvgSpeed - - -5.96e-06 

  - - (7.94e-06) 

 Loss 1.50e-05 -6.63e-05 -9.89e-05 

  (9.37e-05) (1.52e-04) (1.69e-04) 

  Loss × DirDistance - 1.62e-06 - 

  - (4.79e-06) - 

 Loss × AvgSpeed  - - 3.69e-06 

  - - (3.39e-06) 

Satisfyt-1  1.60e+00*** 1.61e+00*** 1.61e+00*** 

  (7.63e-02) (7.66e-02) (7.66e-02) 
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Age Interactions    

WaitTime  2.41e-07 1.70e-06 1.57e-06 

  (8.14e-06) (8.20e-06) (8.17e-06) 

Distance Gain 4.21e-04 9.83e-05 1.14e-03 

  (1.68e-03) (1.79e-03) (1.81e-03) 

 Loss -8.61e-04 -9.52e-04 -1.33e-03 

  (1.30e-03) (1.16e-03) (1.40e-03) 

RideTime Gain 1.09e-05 2.25e-05 9.14e-06 

  (1.45e-05) (1.93e-05) (2.25e-05) 

 Gain × DirDistance - -1.80e-06 - 

  - (1.25e-06) - 

 Gain × AvgSpeed - - -2.16e-07 

  - - (6.28e-07) 

 Loss 1.34e-05 2.89e-05 4.12e-06 

  (1.16e-05) (1.97e-05) (1.84e-05) 

 Loss × DirDistance - -1.68e-06 - 

  - (1.32e-06) - 

 Loss × AvgSpeed - - 3.33e-07 

  - - (9.67e-07) 

Cost Gain -5.94e-07 -2.09e-06 -5.41e-06 

  (3.56e-06) (5.38e-06) (6.54e-06) 

 Gain × DirDistance - 2.66e-07 - 

  - (3.09e-07) - 

 Gain × AvgSpeed - - 1.63e-07 

  - - (1.78e-07) 

 Loss -1.51e-07 1.67e-06 2.61e-06 

  (2.04e-06) (3.32e-06) (3.66e-06) 

  Loss × DirDistance - -3.87e-08 - 

  - (1.05e-07) - 

 Loss × AvgSpeed  - - -9.32e-08 

  - - (7.30e-08) 
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Gender Interactions    

WaitTime  -4.82e-05 -3.55e-05 -4.47e-05 

  (1.59e-04) (1.60e-04) (1.60e-04) 

Distance Gain 1.33e-02 1.31e-02 1.32e-02 

  (1.69e-02) (1.70e-02) (1.70e-02) 

 Loss 2.48e-03 1.93e-03 1.70e-03 

  (6.30e-03) (6.31e-03) (6.31e-03) 

RideTime Gain 7.53e-04 8.54e-04** 1.07e-03** 

  (3.32e-04) (3.89e-04) (5.12e-04) 

 Gain × DirDistance - -3.83e-05 - 

  - (2.47e-05) - 

 Gain × AvgSpeed - - -1.41e-05 

  - - (1.49e-05) 

 Loss -2.40e-04 -2.80e-04 -6.64e-04* 

  (2.13e-04) (3.27e-04) (3.79e-04) 

 Loss × DirDistance - 6.25e-06 - 

  - (1.95e-05) - 

 Loss × AvgSpeed - - 2.62e-05 

  - - (1.91e-05) 

Cost Gain -1.51e-04** -1.52e-04 -2.36e-04* 

  (6.73e-05) (1.08e-04) (1.29e-04) 

 Gain × DirDistance - -3.35e-06 - 

  - (6.18e-06) - 

 Gain × AvgSpeed - - 1.10e-07 

  - - (3.24e-06) 

 Loss -1.74e-05 1.06e-05 5.57e-05 

  (3.40e-05) (3.86e-05) (5.76e-05) 

  Loss × DirDistance - -9.15e-07 - 

  - (1.11e-06) - 

 Loss × AvgSpeed  - - -2.24e-06 

  - - (1.70e-06) 
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/cut1  -6.06e+00*** -6.11e+00*** -6.06e+00*** 

  (2.78e-01) (2.82e-01) (2.81e-01) 

/cut2  1.26e+00*** 1.23e+00*** 1.27e+00*** 

  (2.23e-01) (2.28e-01) (2.27e-01) 

Observations  8,564 8,564 8,564 

Log-Likelihood -3709.441 -3698.702 -3700.3472 

*** p<0.01, ** p<0.05, * p<0.1; Standard errors are in parenthesis 

 

5.4.2 Accumulated Experience Effect 

 

In this section, consumer satisfaction with the service is classified by number of uses 

(i.e., first use, second use, etc.) to show that people’s preferences may change over time 

with continued use of the service. The time-varying effects of covariates in explaining 

consumers’ use of ride-hailing platforms are analyzed, first based on the described 

expectations. Then, updated expectations are used to show how users may make 

experience-based decisions based on direct or vicarious reinforcement they have received 

in the past, and to show how preference for a service is influenced by past usage experiences. 

While the described expectations are readily available from our data, the experience-based 

updated expectations need to be computed from individual consumers purchase history, as 

mentioned in Section 5.3.3. Finally, updated perceptions of the gain and/or loss of a service 

component are estimated using the Long Short-Term Memory (LSTM) model, a form of 

Recurrent Neural Network (RNN), to illustrate the impact of consumers’ updated 

perceptions on service satisfaction. The time-varying effects of covariates based on 



122 

 

described expectations, updated expectations, and updated perceptions are compared and 

presented. In all cases, service user preferences are captured with models based on P-

splines, a semiparametric approach. In Figure 24, individuals are categorized by the total 

number of successful rides. 

 

 

Figure 24. Total number of service use by individuals 

 

5.4.2.1 Change of Preference with Repeated Use 

 

First, Macaron Taxi data, which included a total of 8,564 successful immediate rides, 

were classified by number of uses (i.e., first use, second use, etc.) to analyze consumers’ 

accumulated experience effects. For each ride, the number of times the individual has used 
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the service was identified and classified. The frequency of data classified by the usage 

count is presented in Figure 25. The empirical model used to analyze the accumulated 

experience effects of the covariates on service satisfaction (𝑆𝑎𝑡𝑖𝑠𝑓𝑦) of consumers of the 

Macaron ride-hailing platform service is shown in Equation (77) using OL regression. 

Again, our interest is to determine the impact of gains and losses of certain covariates, i.e., 

the “Service Gap”, on consumers’ service satisfaction and how it varies with the number of 

times the service is used. In the model, the seasonal effect (i.e., weekday/weekend and the 

time of the day) was added as a control variable. The estimation results are presented in 

Table 15, and the significant variables for each time of day are again summarized in Table 

16 for clarity. The conceptualization of the “Service Gap” is illustrated in Figure 26. 

 

 

Figure 25. Frequency of data with usage count 
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𝑆𝑎𝑡𝑖𝑠𝑓𝑦-,# = 𝛽< + 𝛽=𝐴𝑔𝑒- + 𝛽>𝐺𝑒𝑛𝑑𝑒𝑟- + 𝛽?𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒-,# + 𝛽@𝑊𝑒𝑒𝑘𝑒𝑛𝑑-,# + 𝛽A𝐷𝑎𝑦𝑡𝑖𝑚𝑒-,# 

  +𝛽B𝑅𝑢𝑠ℎ𝐻𝑜𝑢𝑟-,# + 𝛽C𝐿𝑎𝑡𝑒𝑁𝑖𝑔ℎ𝑡-,# + 𝛽D𝐸𝑎𝑟𝑙𝑦𝑀𝑜𝑟𝑛𝑖𝑛𝑔-,# 

  +𝐼0𝑆𝑦𝑠𝑡𝑒𝑚𝐷𝑖𝑠𝑡𝐸-,# ≥ 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2𝛽E0𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐷𝑖𝑠𝑡𝐸-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2 

  +𝐼0𝑆𝑦𝑠𝑡𝑒𝑚𝐷𝑖𝑠𝑡𝐸-,# < 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2𝛽=<J𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐷𝑖𝑠𝑡𝐸-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#J 

  +𝐼0𝑆𝑦𝑠𝑡𝑒𝑚𝑇𝑖𝑚𝑒𝐸-,# ≥ 𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒-,#2𝛽==0𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑇𝑖𝑚𝑒𝐸-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2 

  +𝐼0𝑆𝑦𝑠𝑡𝑒𝑚𝑇𝑖𝑚𝑒𝐸-,# < 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒2,#2𝛽=>J𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑇𝑖𝑚𝑒𝐸-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#J 

  +𝐼0𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑜𝑠𝑡𝐸-,# ≥ 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2𝛽=?0𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐶𝑜𝑠𝑡𝐸-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2 

 		+𝐼0𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑜𝑠𝑡𝐸-,# < 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2𝛽=@J𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐶𝑜𝑠𝑡𝐸-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡,#J

 		+𝜖-#    ······································································ Eq. (77) 
 

 

 
Figure 26. Conceptualization of the “Service Gap” and “Perception Gap” 
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Table 15.  Estimation results for service satisfaction with repeated use (DE) 

VARIABLES  Cnt=1 Cnt=2 Cnt=3 Cnt=4 Cnt=5 Cnt=6~10 Cnt=11~15 

Age  -6.48e-03 -2.18e-02** -1.99e-02 -1.43e-03 -4.36e-03 -1.57e-02 2.67e-02* 

  (5.45e-03) (1.04e-02) (1.35e-02) (1.42e-02) (2.10e-02) (1.04e-02) (1.37e-02) 

Gender  -2.94e-01*** -4.44e-01** -6.81e-01*** -2.77e-01 -7.13e-01* -7.06e-01*** -5.46e-01** 

  (1.04e-01) (1.85e-01) (2.48e-01) (2.86e-01) (3.70e-01) (1.94e-01) (2.63e-01) 

Weekend  -2.76e-02 -1.44e-01 1.99e-01 -9.51e-02 -2.80e-01 4.43e-02 1.61e-01 

 (1.11e-01) (2.07e-01) (2.85e-01) (3.53e-01) (5.33e-01) (2.59e-01) (3.37e-01) 

Time of the 

Day 

Daytime 

(10am-4pm) 

1.11e-01 -1.32e-01 -3.79e-01 3.11e-01 1.26e-01 1.17e-01 -2.07e-01 

(1.11e-01) (1.88e-01) (2.58e-01) (2.94e-01) (3.89e-01) (2.15e-01) (2.86e-01) 

Rush Hour 

(7-9am, 5-8pm) 

2.48e-01 -1.16e-01 -1.08e-01 5.09e-01 -3.88e-01 2.21e-02 -5.63e-02 

(1.54e-01) (2.79e-01) (3.82e-01) (4.58e-01) (7.15e-01) (3.35e-01) (4.26e-01) 

Evening 

(9-11pm) 
(reference) 

Late Night 

(12am-3am) 

2.50e-01 2.28e-01 -3.89e-01 1.46e-01 5.48e-01 2.61e-02 -6.12e-01 

(2.06e-01) (3.56e-01) (5.33e-01) (5.87e-01) (6.75e-01) (3.87e-01) (5.74e-01) 

Early Morning  

(4-6am) 

1.43e-02 -5.94e-01 1.54e-01 6.08e-01 -14.84 8.90e-02 -1.203 

(2.06e-01) (4.75e-01) (5.01e-01) (6.09e-01) (1,039) (4.11e-01) (8.45e-01) 

WaitTime  -3.44e-04*** -4.82e-04** 5.72e-05 -6.72e-04* -7.72e-04* -4.57e-04* 2.50e-04 

  (1.21e-04) (2.04e-04) (2.38e-04) (3.52e-04) (4.67e-04) (2.53e-04) (4.06e-04) 

Distance Gain -1.79e-02 -1.14e-01* -3.36e-02 -4.32e-03 -3.46e-01 2.94e-02 4.70e-02 
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  (1.92e-02) (6.08e-02) (9.82e-02) (8.93e-02) (2.32e-01) (6.75e-02) (7.62e-02) 

 Loss 1.22e-04 -7.58e-03 -4.58e-02 -9.70e-02 -5.83e-02 3.85e-02* 2.05e-01*** 

  (8.95e-03) (3.16e-02) (3.89e-02) (1.06e-01) (9.57e-02) (1.99e-02) (6.36e-02) 

RideTime Gain 4.43e-04** -2.13e-04 -1.21e-03* -3.36e-04 -4.39e-04 -1.82e-04 -1.00e-03 

  (2.10e-04) (4.61e-04) (6.43e-04) (6.59e-04) (1.22e-03) (5.68e-04) (7.43e-04) 

 Loss -2.42e-04 -3.86e-05 -4.47e-04 -3.83e-04 1.75e-03 -6.34e-04* -8.30e-04* 

  (1.58e-04) (2.48e-04) (4.56e-04) (7.23e-04) (1.08e-03) (3.67e-04) (4.46e-04) 

Cost Gain 1.55e-05 1.78e-05 1.39e-04 -5.26e-06 2.57e-04 -1.38e-04 2.81e-04 

  (3.59e-05) (1.17e-04) (1.40e-04) (1.76e-04) (3.22e-04) (1.54e-04) (1.97e-04) 

 Loss -4.56e-05** 4.35e-05* -7.82e-06 -5.55e-05 -2.46e-04 4.18e-05 -1.89e-04** 

  (1.90e-05) (2.27e-05) (4.70e-05) (2.10e-04) (2.68e-04) (7.02e-05) (9.23e-05) 

/cut1  -5.987*** -7.117*** -7.148*** -4.112*** 1.686* -6.321*** -5.354*** 

  (4.24e-01) (7.69e-01) (9.12e-01) (7.78e-01) (1.015) (6.60e-01) (8.92e-01) 

/cut2  9.49e-01*** 4.52e-01 1.50e-01 1.795**  1.086** 2.468*** 

  (2.52e-01) (4.81e-01) (6.45e-01) (7.03e-01)  (4.99e-01) (6.65e-01) 

Observations  2,502 1,047 627 468 369 1,146 655 

Log-Likelihood -1389.9824 -488.9607 -275.2702 -232.0771 -115.0512 -442.4215 -239.0167 

Prediction Error 0.5563 0.4685 0.4417 0.4983 0.3204 0.3862 0.3677 
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VARIABLES  Cnt=16~20 Cnt=21~30 Cnt>31 ALL 

Age  -3.67e-03 4.35e-02*** 3.32e-02** -1.03e-02*** 

  (1.74e-02) (1.56e-02) (1.61e-02) (3.27e-03) 

Gender  -1.622*** -9.86e-01*** -1.791*** -5.24e-01*** 

  (3.43e-01) (2.89e-01) (3.26e-01) (6.31e-02) 

Weekend  -3.41e-01 -3.68e-01 -6.44e-01 4.89e-02 

 (4.73e-01) (4.56e-01) (4.36e-01) (7.50e-02) 

Time of the 

Day 

Daytime 

(10am-4pm) 

-8.98e-01** -9.31e-01*** 5.90e-02 -1.48e-01** 

(3.83e-01) (3.13e-01) (3.99e-01) (6.84e-02) 

Rush Hour 

(7-9am, 5-8pm) 

0.384 -0.0749 0.880 0.0880 

(5.12e-01) (4.44e-01) (6.60e-01) (9.99e-02) 

Evening 

(9-11pm) 
(reference) 

Late Night 

(12am-3am) 

-1.266* -1.668** -1.27e-01 -2.47e-01** 

(6.53-01) (7.07e-01) (4.86e-01) (1.23e-01) 

Early Morning  

(4-6am) 

-5.99e-01 -3.179*** -9.59e-01 -2.13e-01 

(6.80e-01) (1.191) (1.078) (1.43-01) 

WaitTime  -2.37e-04 1.06e-04 -1.18e-04 -3.07e-04*** 

  (4.14e-04) (4.85e-04) (4.76e-04) (7.35e-05) 

Distance Gain -1.85e-02 7.91e-02 -1.18e-01 -2.09e-02 

  (1.01e-01) (9.50e-02) (1.02e-01) (1.60e-02) 
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 Loss 7.32e-02 5.25e-02 -1.03e-01 4.49e-02 

  (9.79e-02) (3.29e-02) (1.45e-01) (5.93e-03) 

RideTime Gain -9.90e-04 3.40e-04 2.06e-03*** 1.25e-04 

  (9.12e-04) (7.80e-04) (6.63e-04) (1.42e-04) 

 Loss -4.18e-04 -4.22e-04 -5.67e-04 -2.66e-04** 

  (8.76e-04) (1.01e-03) (1.24e-03) (1.08e-04) 

Cost Gain 3.60e-04 -7.19e-05 2.06e-04 2.99e-05 

  (2.72e-04) (2.05e-04) (1.49e-04) (2.84e-05) 

 Loss -4.63e-05 -3.68e-05 -2.80e-04 2.65e-06 

  (1.90e-04) (2.10e-04) (2.98e-04) (1.19e-05) 

/cut1  -6.796*** -5.738*** -7.494*** -6.185*** 

  (1.039) (1.029) (1.455) (2.26e-01) 

/cut2  5.71e-01 2.658*** 2.840*** 0.959*** 

  (8.16e-01) (7.40e-01) (7.84e-01) (1.54e-01) 

Observations  417 555 778 8,564 

Log-Likelihood -151.4939 -187.6789 -197.4161 -3913.6313 

Prediction Error 0.3777 0.3588 0.2576 0.4567 

*** p<0.01, ** p<0.05, * p<0.1; Standard errors are in parenthesis 
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Table 16.  Summary of significant variables for satisfaction with repeated use (DE) 

VARIAB

LES 
 Cnt=1 Cnt=2 Cnt=3 Cnt=4 Cnt=5 

Cnt= 

6~10 

Cnt= 

11~15 

Cnt= 

16~20 

Cnt= 

21~30 
Cnt>31 ALL 

Age   (-)     (+)  (+) (+) (-) 

Gender  (-) (-) (-)  (-) (-) (-) (-) (-) (-) (-) 

Weekend             

Time of 

the Day 

Daytime        (-) (-) (+) (-) 

Rush 

Hour 
           

Evening (reference) 

Late Night        (-) (-)  (-) 

Early 

Morning 
        (-)   

WaitTime   (-) (-)  (-) (-) (-)     (-) 

Distance 
Gain  (-)          

Loss      (+) (+)     

RideTime 
Gain (+)  (-)       (+)  

Loss      (-) (-)    (-) 

Cost 
Gain            

Loss (-) (+)     (-)     
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The results show that overall, the coefficients for the covariates 𝐴𝑔𝑒 , 𝐺𝑒𝑛𝑑𝑒𝑟 , 

𝐷𝑎𝑦𝑡𝑖𝑚𝑒, 𝐿𝑎𝑡𝑒𝑁𝑖𝑔ℎ𝑡, 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒, and 𝑅𝑖𝑑𝑒𝑇𝑖𝑚𝑒_𝐿𝑜𝑠𝑠 have a significant influence on 

user satisfaction with the service. The 𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟, and 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒 were also almost 

always consistently significant. It is worth noting that the control variables that are used to 

determine the seasonal effect, such as 𝑊𝑒𝑒𝑘𝑒𝑛𝑑 and 𝑇𝑖𝑚𝑒_𝐷𝑎𝑦, were almost always not 

significant in this model. The coefficients for the covariates that were consistently 

significant and varies by number of uses were fit using cubic and quintic splines. The result 

of fit is shown in Figure 27. 

The graphs depict estimated coefficient with usage count 𝜏 on the horizontal axis and 

the estimated coefficients for the covariate effects on the vertical axis. The solid line 

represents the full interpolation of the estimated coefficients, and the constant coefficient 

estimated for the average effect is also shown. Cubic and quintic splines are those with the 

two lowest degrees that allow separate control of the two endpoints and the two end 

derivatives, while they have the lowest degree that allows reflection points. While cubic 

splines are the most popular because they have lowest degree, we also incorporate quintic 

splines to obtain a smoother curve at the expense of additional derivatives. 

The figure shows that the younger the consumer, the higher the satisfaction when using 

the service for the first time. However, the positive effect of young age on user satisfaction 

decreased as the number of uses increased, and around the 5th time of use, the direction of 

influence completely reversed, i.e., the older the user, the higher the satisfaction with the 

service. In addition, satisfaction with the service was higher for men than for women, and 
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this tendency was more heavily influenced as the number of uses increased. Lastly, a 

reduction in wait time and ride time increased satisfaction for all users; however, the 

influence of the two time covariates varied with increasing number of uses. The results 

suggest that the influence of shortening wait time with respect to expectation on service 

satisfaction decreased as usage experience accumulates for consumers, whereas the 

influence of shortening ride time on satisfaction with service slightly increased. 

Such result indicates that towards the initial use of service, the reduction of wait time 

and the decrease in ride time loss with respect to expectations is what the managerial 

algorithms should focus on to increase service satisfaction, whereas for those who have 

used the service for several times and have formed a form of loyalty, matching a ride that 

can decrease the ride time loss with respect to expectations is of greater importance. 

Following, the coverage of the 95% Bayesian confidence interval (CI) for each 

smoothing was calculated using Eq. (44). Figure 28 shows the estimated functional 

relationship as well as the simulated coverage of the 95% Bayesian CIs. To add, the 

summary of fit of the estimated splines is summarized in Table 17 and 18, each showing 

the approximate significance of parametric and nonparametric effects, respectively. 

Statistical inference is conducted via (approximate) frequentist chi-square tests using the 

Bayesian interpretation of a smoothing spline (Nychka, 1988; Wahba, 1983). 
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Figure 27. P-spline fits for satisfaction parameters with DE 
 
 
 

(a) Age 

(b) Gender 

(d) RideTime_Loss 

(c) WaitTime 
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Figure 28. P-spline CIs for satisfaction parameters with DE 

 
 

(a) Age 

(b) Gender 

(d) RideTime_Loss 

(c) WaitTime 
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The way the output of our approach to fitting Generalized Additive Models (GAMs) is 

structured is to group the linear parts of the smoothers in with the other parametric terms. 

The reason the smooth terms are separated into two types of effect is that the results allow 

the researchers to decide if a smooth term has a nonlinear effect and/or a linear effect.  

The parametric part refers to the linear effect of the covariate involved in the smooth. 

The non-parametric part refers to the nonlinearity beyond the linear/parametric part of the 

smooth. These tests in the nonparametric section can be interpreted as test of the null 

hypothesis of a linear relationship instead of a nonlinear relationship. If the nonparametric 

part is significant, it suggests that a linear effect of that covariate is not supported by the 

data. If insignificant, the linear effect needs to be considered. Presenting the information 

this way allows researchers to see what might be linear or effectively linear effects of 

covariates that we represented via smooth functions in setting up the model. 

Putting the results from Figure 28 together with Tables 17 and 18, it is noticeable that 

for the two covariates 𝐴𝑔𝑒 and 𝐺𝑒𝑛𝑑𝑒𝑟, the coefficient estimated for the average effect 

is not entirely within the Bayesian CI of the cubic spline. This suggests that the 

nonparametric model should be preferred when fitting the given coefficients that vary with 

time. However, since all the nonparametric effects of the covariates are insignificant, this 

indicates that the linear effects should be considered. This is because the time variances are 

caused by long-term fluctuations.  

Contrastingly, we obtain rather smooth curves for covariates 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒  and 

𝑅𝑖𝑑𝑒𝑇𝑖𝑚𝑒_𝐿𝑜𝑠𝑠 , again suggesting long-term trends in their time-varying influence on 
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satisfaction. Coefficients estimated for the average effect completely falls within the 

Bayesian CIs of the cubic spline, indicating that all models sufficiently explain the data, 

with the nonparametric model showing the long-term variance of time. Likewise, because 

all nonparametric effects of the covariates are insignificant, this indicates that that the linear 

effects need to be considered. In all, there are no short-term trends in the effect of covariates 

on the usage interval of ride-hailing platform’s customers, and their preferences are rather 

consistent with time. 
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Table 17.  Parametric effects from P-spline fits of satisfaction parameters with DE 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

Estimate Std. Error t-value Pr(>|𝑡|) Estimate Std. Error t-value Pr(>|𝑡|) 

Age 

(Intercept) 2.69e-03 4.85e-03 5.56e-01 5.94e-01 1.69e-03 4.83e-03 3.50e-01 7.37e-01 

x 5.27e-02 1.53e-02 3.43e+00 9.47e-03** 5.28e-02 1.48e-02 3.57e+00 9.12e-03** 

x2 - - - - 1.42e-01 1.05e-01 1.35e+00 2.19e-01 

Gender 

(Intercept) -7.98e-01 1.01e-01 -7.89e+00 6.37e-05*** -7.78e-01 1.01e-01 -7.68e+00 1.18e-04*** 

x -1.25e+00 3.21e-01 -3.89e+00 5.11e-03** -1.24e+00 3.11e-01 -4.00e+00 5.21e-03** 

x2 - - - - -3.02e+00 2.21e+00 -1.37e+00 2.14e-01 

WaitTime 

(Intercept) -2.67e-04 1.04e-04 -2.58e+00 3.29e-02* -2.83e-04 1.09e-04 -2.60e+00 3.57e-02* 

x 4.23e-04 3.25e-04 1.30e+00 2.29e-01 4.23e-04 3.35e-04 1.26e+00 2.46e-01 

x2 - - - - 1.74e-03 2.38e-03 7.31e-01 4.88e-01 
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RideTime 

_Loss 

(Intercept) -2.23e-04 2.37e-04 -9.43e-01 3.73e-01 -1.91e-04 2.51e-04 -7.59e-01 4.73e-01 

x -5.01e-04 7.42e-04 -6.76e-01 5.18e-01 -5.01e-04 7.70e-04 -6.51e-01 5.36e-01 

x2 - - - - -3.52e-03 5.48e-03 -6.52e-01 5.41e-01 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 

 

Table 18.  Nonparam. effects from P-spline fits of satisfaction parameters with DE 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

DF 
Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) DF 

Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) 

Age 
𝑓(𝑥) 3.18e-01 1.04e-04 3.27e-04 1.40e+00 2.72e-01 6.62e-09 1.79e-13 2.70e-05 1.21e-01 7.38e-01 

Residuals 7.18e+00 1.79e-03 2.23e-04 - - 7.00e+00 1.56e-03 2.23e-04 - - 

Gender 
𝑓(𝑥) 3.94e-01 6.10e-02 1.55e-01 1.53e+00 2.52e-01 6.62e-09 1.33e-10 2.02e-02 2.05e-01 6.65e-01 

Residuals 7.61e+00 7.69e-01 1.01e-01 - - 7.00e+00 6.88e-01 9.84e-02 - - 
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WaitTime 
𝑓(𝑥) 7.68e-07 6.11e-14 7.95e-08 7.40e091 4.15e-01 6.62e-09 4.33e-16 6.54e-08 5.73e-01 4.74e-01 

Residuals 8.00e+00 8.60e-07 1.07e-07 - - 7.00e+00 7.98e-07 1.14e-07 - - 

RideTime 

_Loss 

𝑓(𝑥) 7.68e-07 2.29e-13 2.97e-07 5.31e-01 4.87e-01 6.62e-09 1.19e-15 1.79e-07 2.97e-01 6.03e-01 

Residuals 8.00e+00 4.48e-06 5.60e-07 - - 7.00e+00 4.23e-06 6.05e-07 - - 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 
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5.4.2.2 Expectations Updating Effect 

 

This section analyzes the time-varying effects of covariates in explaining consumers’ 

use of ride-hailing platforms based on updated expectations, assuming that consumers’ 

service expectations are updated with repeated use. As in the previous analysis based on 

described expectations, Macaron Taxi data, which included a total of 8,564 successful 

immediate rides, were categorized by the number of experiences with the service.  

To determine the overall impact of the updated expectations, the expected errors from 

the (described) service expectations are first calculated from the person’s usage history, i.e., 

their usage experience, as shown in Figure 29. In doing so, it is reasonable to give more 

weights to recent observations than to observations from the distant past. The forecasts are 

therefore calculated using weighted averages, with the weights decreasing exponentially as 

the observations become more distant – the smallest weights are associated with the oldest 

observations. Such exponential smoothing involves the smoothing coefficient 𝜃P`D with a 

value between 0 and 1. A value close to 0 indicates that observations from further in the 

past are weighted more heavily, and a value close to 1 indicates that more weight is given 

to the recent observations.  
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Figure 29. Formation of described and updated expectations 

 

In this section, the exponential smoothing parameter of 0.5 is used for all three 

components: 𝜃P`D,_"a- , 𝜃P`D,-"H` , 𝜃P`D,cda- . The updated service expectations are as 

calculated using Eq. (78) to Eq. (80). 

 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐷𝑖𝑠𝑡𝐸*7& = 𝐷𝑖𝑠𝑡𝑆𝑦𝑠𝐸*7& + {𝜃89',;*<& ∙ ?𝐷𝑖𝑠𝑡𝐺𝑎𝑖𝑛*7,&() −𝐷𝑖𝑠𝑡𝐿𝑜𝑠𝑠*7,&()C  
																																																								+?1 − 𝜃89',;*<&C ∙ 𝐸𝑥𝑝𝑡𝐸𝑟𝑟𝑜𝑟𝐷𝑖𝑠𝑡*7,&()} ·············· Eq. (78) 

 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑇𝑖𝑚𝑒𝐸*7& = 𝐷𝑖𝑠𝑇𝑖𝑚𝑒𝐸*7& + {𝜃89',&*=9 ∙ ?𝑇𝑖𝑚𝑒𝐺𝑎𝑖𝑛*7,&() − 𝑇𝑖𝑚𝑒𝐿𝑜𝑠𝑠*7,&()C  
																																																								+?1 − 𝜃89',&*=9C ∙ 𝐸𝑥𝑝𝑡𝐸𝑟𝑟𝑜𝑟𝑇𝑖𝑚𝑒*7,&()} ············ Eq. (79) 

 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐶𝑜𝑠𝑡𝐸*7& = 𝐶𝑜𝑠𝑡𝑆𝑦𝑠𝐸*7& + {𝜃89',>,<& ∙ ?𝐶𝑜𝑠𝑡𝐺𝑎𝑖𝑛*7,&() − 𝐶𝑜𝑠𝑡𝐿𝑜𝑠𝑠*7,&()C  
																																																								+?1 − 𝜃89',>,<&C ∙ 𝐸𝑥𝑝𝑡𝐸𝑟𝑟𝑜𝑟𝐶𝑜𝑠𝑡*7,&()} ············· Eq. (80) 
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The empirical model used to analyze the accumulated experience effects of covariates 

on service satisfaction (𝑆𝑎𝑡𝑖𝑠𝑓𝑦)  of consumers in the Macaron ride-hailing platform 

service is presented in Eq. (81). The estimation results using updated expectations with 

exponential smoothing parameter values of 0.5 are presented in Table 19 below, and the 

significant variables for each use are again summarized in Table 20. 

 

𝑆𝑎𝑡𝑖𝑠𝑓𝑦-,# = 𝛽< + 𝛽=𝐴𝑔𝑒- + 𝛽>𝐺𝑒𝑛𝑑𝑒𝑟- + 𝛽?𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒-,# 

  +𝐼0𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐷𝑖𝑠𝑡𝐸-,# ≥ 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2𝛽@0𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐷𝑖𝑠𝑡𝐸-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2 

  +𝐼0𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐷𝑖𝑠𝑡𝐸-,# < 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#2𝛽AJ𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐷𝑖𝑠𝑡𝐸-,# − 𝑅𝑒𝑎𝑙𝐷𝑖𝑠𝑡-,#J 

  +𝐼0𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑇𝑖𝑚𝑒𝐸-,# ≥ 𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒-,#2𝛽B0𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑇𝑖𝑚𝑒𝐸-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#2 

  +𝐼0𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑇𝑖𝑚𝑒𝐸-,# < 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒2,#2𝛽CJ𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑇𝑖𝑚𝑒𝐸-,# − 𝑅𝑒𝑎𝑙𝑅𝑖𝑑𝑒-,#J 

  +𝐼0𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐶𝑜𝑠𝑡𝐸-,# ≥ 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2𝛽D0𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐶𝑜𝑠𝑡𝐸-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2 

 		+𝐼0𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐶𝑜𝑠𝑡𝐸-,# < 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡-,#2𝛽CJ𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝐶𝑜𝑠𝑡𝐸-,# − 𝑅𝑒𝑎𝑙𝐶𝑜𝑠𝑡,#J

 		+𝜖-#    ······································································ Eq. (81) 
 

Coefficients for covariates as identical to those of described expectations analysis were 

fit using both the cubic and quintic P-spline functions as shown in Figure 30. From the 

figure, it can be seen that the coefficients for all four covariates show similar long-time 

trends, only to note that the positive the effect of reduced ride time loss with respect to 

expectations on service satisfaction increased more steeply with increasing number of uses. 

The coverage of the 95% Bayesian confidence interval (CI) for each smoothing was 

calculated using Eq. (44). Figure 31 shows the estimated functional relationship as well as 

the simulated coverage of the 95% Bayesian CIs. The summary of fit of the estimated 

splines is summarized in Table 21 and 22.
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Table 19.  Estimation results for satisfaction with UE (smoothing parameter=0.5) 

VARIABLES  Cnt=1 Cnt=2 Cnt=3 Cnt=4 Cnt=5 Cnt=6~10 Cnt=11~15 

Age  -8.00e-03 -2.17e-02** -1.65e-02 -1.83e-04 -7.26e-03 -1.66e-02 2.64e-02* 

  (5.38e-03) (1.01e-02) (1.34e-02) (1.41e-02) (2.01e-02) (1.04e-02) (1.37e-02) 

Gender  -3.19e-01*** -4.07e-01** -7.32e-01*** -3.78e-01 -6.64e-01* -7.94e-01*** -5.83e-01** 

  (1.02e-01) (1.80e-01) (2.43e-01) (2.69e-01) (3.64e-01) (1.91e-01) (2.56e-01) 

WaitTime  -3.62e-04*** -4.94e-04** 1.29e-04 -5.70e-04* -7.59e-04* -4.84e-04* 2.56e-04 

  (1.21e-04) (2.01e-04) (2.40e-04) (3.47e-04) (4.50e-04) (2.49e-04) (4.16e-04) 

Distance Gain -1.75e-02 -1.01e-01** -9.44e-02 -2.38e-02 -1.50e-01 -2.37e-02 1.44e-02 

  (1.92e-02) (3.95e-02) (6.81e-02) (6.76e-02) (1.23e-01) (5.90e-02) (6.76e-02) 

 Loss -1.68e-04 1.16e-02 -4.18e-02 -7.41e-02 -5.09e-02 4.88e-02** 1.71e-01*** 

  (8.83e-03) (2.00e-02) (3.63e-02) (4.86e-02) (7.60e-02) (1.94e-02) (5.27e-02) 

RideTime Gain 4.33e-04** -1.45e-06 -1.02e-03** -2.15e-06 -3.56e-04 -5.23e-04 -1.67e-03*** 

  (2.09e-04) (2.89e-04) (4.59e-04) (4.56e-04) (7.48e-04) (4.30e-04) (5.82e-04) 

 Loss -2.45e-04 -2.00e-04 -6.00e-04* -8.91e-05 -4.56e-05 -5.91e-04** -8.08e-04** 

  (1.59e-04) (1.87e-04) (3.20e-04) (3.95e-04) (7.49e-04) (2.98e-04) (3.95e-04) 

Cost Gain 1.78e-05 6.40e-05 1.99e-04** 8.31e-05 2.47e-04 -2.09e-04* 1.61e-04 

  (3.54e-05) (6.58e-05) (9.54e-05) (1.07e-04) (1.71e-04) (1.25e-04) (1.48e-04) 

 Loss -4.53e-05** 3.68e-05** 4.00e-05 1.34e-05 1.33e-04 -1.34e-07 -1.48e-04** 

  (1.92e-05) (1.83e-05) (2.47e-05) (6.43e-05) (1.61e-04) (5.73e-05) (7.16e-05) 

/cut1 -6.125*** -6.975*** -7.049*** -4.233*** 1.726* -6.712*** -5.620*** 
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 (4.16e-01) (7.47e-01) (8.83e-01) (7.33e-01) (9.21e-01) (6.51e-01) (8.88e-01) 

/cut2 8.04e-01*** 6.14e-01 2.98e-01 1.656**  7.89e-01* 2.352*** 

 (2.36e-01) (4.45e-01) (5.99e-01) (6.45e-01)  (4.70e-01) (6.27e-01) 

Observations 2,502 1,047 627 468 369 1,146 655 

Log-Likelihood -1391.8091 -489.7736 -273.5431 -232.9184 -119.4861 -436.2779 -236.2949 

Prediction Error 0.5563 0.4685 0.4417 0.4983 0.3204 0.3862 0.3677 

 

VARIABLES  Cnt=16~20 Cnt=21~30 Cnt>31 ALL 

Age  6.96e-03 5.15e-02*** 3.82e-02** -1.04e-02*** 

  (1.72e-02) (1.54e-02) (1.63e-02) (3.24e-03) 

Gender  -1.512*** -8.06e-01*** -1.576*** -5.17e-01*** 

  (3.33e-01) (2.82e-01) (3.23e-01) (6.18e-02) 

WaitTime  -2.75e-04 -1.35e-04 1.11e-05 -3.32e-04*** 

  (3.66e-04) (4.61e-04) (4.69e-04) (7.34e-05) 

Distance Gain -2.26e-02 4.62e-02 -3.01e-02 -2.92e-02** 

  (7.91e-02) (7.87e-02) (6.99e-02) (1.43e-02) 

 Loss 1.17e-01* 8.10e-02** -1.74e-01 8.87e-03 

  (6.80e-02) (3.23e-02) (1.27e-01) (6.23e-03) 

RideTime Gain -7.67e-04 5.49e-04 1.42e-03*** -8.82e-05 

  (6.31e-04) (5.48e-04) (5.00e-04) (1.18e-04) 

 Loss -1.72e-04 -4.43e-04 -4.40e-04 -3.84e-04*** 
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  (5.98e-04) (8.90e-04) (8.90e-04) (9.32e-05) 

Cost Gain 2.06e-04 -3.51e-04* 6.52e-05 2.87e-05 

  (1.79e-04) (1.80e-04) (1.06e-04) (2.55e-05) 

 Loss -1.27e-04 -3.68e-04** -2.16e-04 -1.29e-06 

  (1.20e-04) (1.78e-04) (2.13e-04) (1.11e-05) 

/cut1  -5.687*** -4.694*** -7.242*** -6.192*** 

  (9.09e-01) (9.38e-01) (1.464) (2.19e-01) 

/cut2  1.501** 3.544*** 3.142*** 9.64e-01*** 

  (7.45e-01) (6.88e-01) (6.91e-01) (1.44e-01) 

Observations  417 555 778 8,564 

Log-Likelihood  -155.1528 -192.2037 -199.5080 -3911.1860 

Prediction Error  0.3777 0.3588 0.2576 0.4567 

*** p<0.01, ** p<0.05, * p<0.1; Standard errors are in parenthesis 
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Table 20.  Summary of significant variables for satisfaction with UE (smoothing parameter=0.5) 

VARIAB

LES 
 Cnt=1 Cnt=2 Cnt=3 Cnt=4 Cnt=5 

Cnt= 

6~10 

Cnt= 

11~15 

Cnt= 

16~20 

Cnt= 

21~30 
Cnt>31 ALL 

Age   (-)     (+)  (+) (+) (-) 

Gender  (-) (-) (-)  (-) (-) (-) (-) (-) (-) (-) 

WaitTime   (-) (-) (+) (-) (-) (-)     (-) 

Distance 
Gain  (-)         (-) 

Loss      (+) (+) (+) (+)   

RideTime 
Gain (+)  (-)    (-)   (+)  

Loss   (-)   (-) (-)    (-) 

Cost 
Gain   (+)   (-)   (-)   

Loss (-) (+)     (-)  (-)   
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Figure 30. P-spline fits for satisfaction parameters with UE (smoothing param=0.5) 

 

(a) Age 

(b) Gender 

(d) RideTime_Loss 

(c) WaitTime 
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Figure 31. P-spline CIs for satisfaction parameters with UE (smoothing param=0.5) 

(a) Age 

(b) Gender 

(d) RideTime_Loss 

(c) WaitTime 
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Table 21.  Parametric effects from P-spline fits of satisfaction parameters with UE (smoothing parameter=0.5) 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

Estimate Std. Error t-value Pr(>|𝑡|) Estimate Std. Error t-value Pr(>|𝑡|) 

Age 

(Intercept) 4.62e-03 4.59e-03 1.01e+00 3.46e-01 3.87e-03 4.57e-03 8.24e-01 4.37e-01 

x 6.05e-02 1.48e-02 4.10e+00 4.08e-03** 6.09e-02 1.40e-02 4.34e+00 3.38e-03** 

x2 - - - - 1.64e-01 9.98e-02 1.65e+00 1.44e-01 

Gender 

(Intercept) -7.77e-01 9.17e-02 -8.48e+00 2.88e-05*** -7.51e-01 9.55e-02 -7.97e+00 9.31e-05*** 

x -1.02e+00 2.87e-01 -3.56e+00 7.40e-03*** -1.02e+00 2.93e-01 -3.49e+00 1.01e-02* 

x2 - - - - -1.74e+00 2.08e+00 -8.35e-01 4.31e-01 

WaitTime 

(Intercept) -2.68e-04 1.02e-04 -2.63e+00 3.03e-02* -2.84e-04 1.08e-04 -2.63e+00 3.38e-02* 

x 3.60e-04 3.20e-04 1.13e+00 2.93e-01 3.60e-04 3.31e-04 1.09e+00 3.12e-01 

x2 - - - - 1.65e-03 2.35e-03 7.03e-01 5.05e-01 

 (Intercept) -3.65e-04 2.36e-05 15.47e+00 4.32e-01 -3.67e-04 8.80e-05 -4.17e+00 4.19e-03** 
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RideTime 

_Loss 

x -1.99e-04 7.24e-05 -2.74e+00 4.32e-01 -2.19e-04 2.70e-04 -8.12e-01 4.44e-01 

x2 - - - - 3.77e-04 1.92e-03 1.96e-01 8.50e-01 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 

 

Table 22.  Nonparam. effects from P-spline fits of satisfaction parameters with UE (smoothing parameter=0.5) 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

DF 
Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) DF 

Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) 

Age 
𝑓(𝑥) 6.11e-01 2.65e-04 4.33e-04 2.09e+00 1.90e-01 6.62e-09 2.36e-13 3.58e-05 1.79e-01 6.85e-01 

Residuals 7.399 1.53e-03 2.07e-04 - - 7.00e+00 1.40e-03 2.00e-04 - - 

Gender 
𝑓(𝑥) 7.68e-07 4.22e-08 5.50e-02 6.54e-01 4.42e-01 6.62e-09 9.11e-11 1.38e-02 1.58e-01 7.03e-01 

Residuals 8.00e+00 6.73e-01 8.41e-02 - - 7.00e+00 6.12e-01 8.74e-02 - - 

WaitTime 
𝑓(𝑥) 7.68e-07 4.82e-14 6.28e-08 6.02e-01 4.60e-01 6.62e-09 8.89e-17 1.34e-08 1.21e-01 7.39e-01 

Residuals 8.00e+00 8.35e-07 1.04e-07 - - 7.00e+00 7.79e-07 1.11e-07 - - 
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RideTime 

_Loss 

𝑓(𝑥) 7.80e+00 5.10e-07 6.54e-08 24.88e+00 5.96e-01 6.62e-09 9.91e-17 1.50e-08 2.02e-01 6.68e-01 

Residuals 2.02e-01 5.29e-10 2.63e-09 - - 7.00e+00 5.20e-07 7.42e-08 - - 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 
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5.4.2.2.1 Expectation Updating Parameter Estimation 

 

In the previous section, the exponential smoothing parameter of 0.5 was used for all 

three components of the expectation update: 𝜃P`D,_"a- , 𝜃P`D,-"H` , 𝜃P`D,cda- , while the 

problem with this method is to determine the optimal parameters to minimize the prediction 

error. In this section, the Limited-memory Broyden–Fletcher–Goldfarb–Shanno optimizer 

(L-BFGS) using pytorch is used to determine the smoothing coefficients 

𝜃P`D,_"a- , 𝜃P`D,-"H` , 𝜃P`D,cda- that minimize prediction error. Pytorch-LBFGS is a modular 

implementation of L-BFGS, a popular quasi-Newton method. The optimized smoothing 

parameter estimates are shown in Table 23. 

While optimizers are algorithms or methods used to change the attributes of the neural 

network such as weights and learning rate in order to reduce the losses, loss function in a 

neural network quantifies the difference between the expected outcome and the outcome 

produced by the deep learning model. In other words, it is used to quantify how good or 

bad the model is performing. Therefore, it is notable that the greater the loss (train error), 

the greater the error in the prediction. 
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Table 23.  Estimation results for service satisfaction with UE (optimized smoothing parameter) 

VARIABLES  Cnt=1 Cnt=2 Cnt=3 Cnt=4 Cnt=5 Cnt=6~10 Cnt=11~15 

Age  -8.00e-03 -2.17e-02 -1.69e-02 5.88e-04 -1.04e-02 -1.66e-02 2.68e-02 

Gender  -3.19e-01 -4.07e-01 -7.33e-01 -3.82e-01 -6.33e-01 -8.02e-01 -5.80e-01 

WaitTime  -3.62e-04 -4.93e-04 1.37e-04 -5.57e-04 -7.65e-04 -4.89e-04 2.56e-04 

Distance Gain -1.75e-02 -1.01e-01 -1.41e-01 -1.42e-02 -3.10e-01 -3.32e-02 -3.98e-03 

 Loss -1.70e-04 1.16e-02 -4.20e-02 -8.92e-02 -6.06e-03 4.23e-02 1.80e-01 

RideTime Gain 4.33e-04 -1.41e-06 -1.08e-03 3.53e-05 -5.11e-04 -5.02e-04 -1.77e-03 

 Loss -2.45e-04 -2.00e-04 -6.23e-04 -5.82e-05 -7.51e-05 -5.76e-04 -8.65e-04 

Cost Gain 1.78e-05 6.40e-05 2.34e-04 8.74e-05 2.68e-04 -2.04e-04 2.35e-04 

 Loss -4.53e-05 3.68e-05 4.24e-05 1.75e-05 1.37e-04 -8.36e-06 -1.11e-04 

𝜃012,3%4)  5.00e-01 5.00e-01 9.85e-02 7.71e-01 1.00e+00 2.72e-01 6.30e-01 

𝜃012,)%51  5.00e-01 5.00e-01 3.443-01 7.83e-01 6.87e-01 5.42e-01 4.38e-01 

𝜃012,674)  5.00e-01 5.00e-01 3.72e-01 6.65e-01 7.23e-01 3.74e-01 8.90e-02 

/cut1 -5.7059 -5.9737 -5.5925 -4.1369 -64.5065 -5.4045 -5.7779 

/cut2 1.2229 1.6144 1.8237 1.7650 2.3759 2.1018 2.2027 

Observations 2,502 1,047 627 468 369 1,146 655 

Train Error 0.5563 0.4678 0.4332 0.4969 0.3187 0.3805 0.3597 
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VARIABLES  Cnt=16~20 Cnt=21~30 Cnt>31 ALL 

Age  4.59e-03 5.23e-02 3.29e-02 -1.04e-02 

Gender  -1.51e+00 -9.59e-01 -1.47e+00 -5.16e-01 

WaitTime  -2.35e-04 3.30e-05 -2.28e-05 -3.34e-04 

Distance Gain -7.71e-02 8.36e-02 -5.65e-03 -2.41e-02 

 Loss 1.32e-01 8.60e-02 -1.52e-01 9.78e-03 

RideTime Gain -1.31e-03 -1.10e-03 1.61e-03 -1.33e-04 

 Loss -2.92e-04 -5.99e-04 -6.07e-04 -3.41e-04 

Cost Gain 3.67e-04 -2.07e-04 -5.83e-05 3.37e-05 

 Loss -1.44e-04 -3.99e-04 -3.44e-04 -2.23e-05 

𝜃012,3%4)  7.48e-01 5.00e-01 0 1.72e-05 

𝜃012,)%51  8.80e-01 1.00e+00 8.34e-01 4.72e-16 

𝜃012,674)  9.80e-01 3.99e-07 1.00e+00 9.99e-01 

/cut1  -4.9632 -6.4258 -7.8455 -5.4604 

/cut2  2.3970 2.2043 2.7703 1.7047 

Observations  417 555 778 8,564 

Train Error  0.3658 0.3397 0.2517 0.4563 
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5.4.2.2.2 Updated Preference with Accumulated Usage Experience 

 

The empirical model used to analyze the accumulated experience effects of covariates 

on service satisfaction (𝑆𝑎𝑡𝑖𝑠𝑓𝑦)  of consumers in the Macaron ride-hailing platform 

service is identical to that used in the previous section. The coefficient estimates using 

updated expectations using optimized parameters are also summarized in Table 23. 

Coefficients for covariates as identical to those of previous analysis were fit using both 

the cubic and quintic P-spline functions as shown in Figure 32. From the figure, it can be 

seen that the coefficients for all four covariates show similar long-time trends, only to note 

that the positive the effect of reduced ride time loss with respect to expectations on service 

satisfaction increased more steeply with increasing number of uses compared to the model 

using described expectations. 

The coverage of the 95% Bayesian confidence interval (CI) for each smoothing was 

calculated using Eq. (44). Figure 33 shows the estimated functional relationship as well as 

the simulated coverage of the 95% Bayesian CIs. The summary of fit of the estimated 

splines is summarized in Table 24 and 25.
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Figure 32. P-spline fits for satisfaction parameters with UE (optimized) 

(a) Age 

(b) Gender 

(d) RideTime_Loss 

(c) WaitTime 
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Figure 33. P-spline CIs for satisfaction parameters with UE (optimized) 

(a) Age 

(b) Gender 

(d) RideTime_Loss 

(c) WaitTime 
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Table 24.  Parametric effects from P-spline fits of satisfaction parameters with UE (optimized smoothing parameter) 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

Estimate Std. Error t-value Pr(>|𝑡|) Estimate Std. Error t-value Pr(>|𝑡|) 

Age 

(Intercept) 3.88e-03 4.96e-03 7.84e-01 4.57e-01 2.94e-03 4.97e-03 5.92e-01 5.72e-01 

x 5.78e-02 1.58e-02 3.66e+00 7.06e-03** 5.81e-02 1.53e-02 3.81e+00 6.62e-03** 

x2 - - - - 1.53e-01 1.09e-01 1.41e+00 2.02e-01 

Gender 

(Intercept) -7.79e-01 8.19e-02 -9.52e+00 1.22e-05*** -7.65e-01 8.50e-02 -9.00e+00 4.28e-05*** 

x -1.03e+00 2.57e-01 -4.01e+00 3.88e-03** -1.03e+00 2.61e-01 -3.95e+00 5.56e-03** 

x2 - - - - -1.59e+00 1.86e+00 -8.59e-01 4.19e-01 

WaitTime 

(Intercept) -2.50e-04 1.03e-04 -2.42e+00 4.18e-02* -2.66e-04 1.09e-04 -2.44e+00 4.44e-02* 

x 4.14e-04 3.23e-04 1.28e+00 2.36e-01 4.14e-04 3.33e-04 1.24e+00 2.54e-01 

x2 - - - - 1.71e-03 2.37e-03 7.21e-01 4.94e-01 

RideTime (Intercept) -4.14e-04 8.01e-05 -5.17e+00 8.54e-04*** -4.11e-04 8.73e-05 -4.71e+00 2.17e-03** 
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_Loss x -3.99e-04 2.51e-04 -1.59e+00 1.50e-01 -3.99e-04 2.68e-04 -1.49e+00 1.80e-01 

x2 - - - - -2.58e-04 1.91e-03 -1.36e-01 8.96e-01 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 

 

Table 25.  Nonparam. effects from P-spline fits of satisfaction parameters with UE (optimized smoothing parameter) 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

DF 
Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) DF 

Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) 

Age 
𝑓(𝑥) 4.54e-01 1.81e-04 3.99e-04 1.65e+00 2.37e-01 6.62e-09 4.15e-13 6.28e-05 2.65e-01 6.23e-01 

Residuals 7.55e+00 1.83e-03 2.42e-04 - - 7.00e+00 1.66e-03 2.37e-04 - - 

Gender 
𝑓(𝑥) 7.68e-07 3.77e-08 4.91e-02 7.32e-01 4.17e-01 6.62e-09 3.12e-11 4.71e-03 6.79e-02 8.02e-01 

Residuals 8.00e+00 5.36e-01 6.70e-02 - - 7.00e+00 4.85e-01 6.93e-02 - - 

WaitTime 
𝑓(𝑥) 7.68e-07 5.48e-14 7.14e-08 6.71e-01 4.36e-01 6.62e-09 1.59e-16 2.40e-08 2.12e-01 6.59e-01 

Residuals 8.00e+00 8.51e-07 1.06e-07 - - 7.00e+00 7.93e-07 1.13e-07 - - 
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RideTime 

_Loss 

𝑓(𝑥) 7.68e-07 5.67e-15 7.39e-09 1.15e-01 7.43e-01 6.62e-09 1.11e-16 1.68e-08 2.30e-01 6.46e-01 

Residuals 8.00e+00 5.13e-07 6.42e-08 - - 7.00e+00 5.12e-07 7.31e-08 - - 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 
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5.4.2.3 Perception Updating Effect (Using RNN LSTM Model)  

 

This section analyzes the time-varying effects of covariates in explaining consumers’ 

use of ride-hailing platforms based on updated perception, assuming that individual’s 

perception is formed relative to a reference value that has been built up through experience. 

In the previous section, in which consumer expectations were updated using adapted error, 

we observed how user satisfaction is affected by the “Service Gap”, i.e., the gap between 

service expectation and actual service delivery. Contrastingly, in this section, consumer’s 

updated perception of the service component is directly estimated using the LSTM model, 

a form of RNN, to illustrate the impact of the consumer’s updated perception on service 

satisfaction. In other words, by directly updating the consumer’s updated perception and 

estimating its influence on service satisfaction, we explain the effect of the “Perception 

Gap”.  

Here, the updated perception directly indicates the “consumers’ perceived service gains 

and losses,” which is similar but not identical to the updated expectation of “the difference 

between the updated expectation and the actual service delivery (gain/loss).” Originally, 

the expected gain and losses were defined as functions of previous gains and losses (i.e., 

𝑓(𝑔𝑎𝑖𝑛- , 𝑙𝑜𝑠𝑠- , 𝑔𝑎𝑖𝑛-)!, 𝑙𝑜𝑠𝑠-)!, … )), where the smoothing parameter could be optimized 

(“learned”). In this section, this function is more generalized in the form of LSTM. 

Conceptual framework for updated perception is represented in Figure 34. 
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Figure 34. Formation of updated perception 

 

In this paper, the final objective of LSTM was learning to predict the dependent variable, 

service satisfaction, well. Since the result of the function may be too arbitrary when using 

the LSTM, the output range was restricted to [-1,1] to follow the original constraint that 

either the gain or loss always has a value of 0, so that the output of LSTM does not differ 

significantly from existing gain-loss. It was also designed so that LSTM can only adjust 

the existing gain or loss between multiple of 0.5 and 1.5 as represented in Eq. (82) and (83). 

 

𝑔𝑎𝑖𝑛′ = 𝑔𝑎𝑖𝑛 + 𝐿𝑆𝑇𝑀_𝑔𝑎𝑖𝑛_𝑜𝑢𝑡 × 0.5 × 𝑔𝑎𝑖𝑛  ···························· Eq. (82)  
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𝑙𝑜𝑠𝑠2 = 𝑙𝑜𝑠𝑠 + 𝐿𝑆𝑇𝑀_𝑙𝑜𝑠𝑠_𝑜𝑢𝑡 × 0.5 × 𝑙𝑜𝑠𝑠	  ······························ Eq. (83)  

 

As such, the empirical model used to analyze updated perception effects of covariates 

on service satisfaction (𝑆𝑎𝑡𝑖𝑠𝑓𝑦)  of consumers in the Macaron ride-hailing platform 

service is presented in Equation (84). The conceptualization of the “Perception Gap” is 

illustrated in Figure 26. 

 

𝑆𝑎𝑡𝑖𝑠𝑓𝑦-,# = 𝛽< + 𝛽=𝐴𝑔𝑒- + 𝛽>𝐺𝑒𝑛𝑑𝑒𝑟- + 𝛽?𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒-,# 

  +𝛽@𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑𝐺𝑎𝑖𝑛𝐷𝑖𝑠𝑡-,# + 𝛽A𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑𝐿𝑜𝑠𝑠𝐷𝑖𝑠𝑡-,# 

  +𝛽B𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑𝐺𝑎𝑖𝑛𝑇𝑖𝑚𝑒-,# + 𝛽C𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑𝐿𝑜𝑠𝑠𝑇𝑖𝑚𝑒-,# 

  +𝛽D𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑𝐺𝑎𝑖𝑛𝐶𝑜𝑠𝑡-,# + 𝛽E𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑𝐿𝑜𝑠𝑠𝐶𝑜𝑠𝑡-,#		+𝜖-# ················ Eq. (84) 

 

The estimated results using the updated perceptions are presented in Table 26. 

Coefficients for covariates as identical to those of described and updated expectations 

analysis were again fit using both the cubic and quintic P-spline functions as shown in 

Figure 35. From the figure, it can be seen that the coefficients for all four covariates show 

similar long-time trends compared to previous analysis. Figure 36 shows the estimated 

functional relationship as well as the simulated coverage of the 95% Bayesian CIs. The 

summary of fit of the estimated splines is summarized in Tables 27 and 28.
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Table 26.  Estimation results for service satisfaction with UP 

VARIABLES  Cnt=1 Cnt=2 Cnt=3 Cnt=4 Cnt=5 Cnt=6~10 Cnt=11~15 

Age  -8.68e-03 -2.32e-02 -1.83e-02 -8.58e-04 -1.35e-02 -1.54e-02 2.99e-02 

Gender  -3.32e-01 -4.22e-01 -6.85e-01 -4.64e-01 -7.12e-01 -6.90e-01 -4.54e-01 

WaitTime  -3.62e-04 -5.13e-04 3.74e-05 -6.67e-04 -7.13e-04 -4.03e-04 3.20e-04 

Distance Gain -3.31e-02 -1.34e-01 -1.80e-01 3.24e-02 -6.03e-01 1.37e-01 1.55e-01 

 Loss 2.59e-03 -1.76e-02 -1.06e-01 -7.80e-02 -1.80e-01 1.41e-01 4.74e-01 

RideTime Gain 7.40e-04 -5.31e-04 -1.51e-03 -1.66e-03 -1.37e-03 -1.32e-04 -2.07e-03 

 Loss -3.30e-04 3.38e-05 -5.87e-04 -1.10e-03 1.24e-03 -9.26e-04 -1.97e-03 

Cost Gain 4.16e-05 1.10e-04 2.70e-04 7.94e-05 4.49e-04 -3.06e-04 5.40e-04 

 Loss -3.83e-05 5.22e-05 1.56e-05 -4.00e-05 -3.02e-04 -7.88e-05 -3.50e-04 

/cut1 -5.8194 -6.1451 -5.5121 -4.0525 -18.3405 -5.3076 -5.5535 

/cut2 1.1702 1.6125 2.0011 1.9834 3.0008 2.1368 2.4135 

Observations 2,502 1,047 627 468 369 1,146 655 

Train Error 0.5544 0.4656 0.4371 0.4923 0.3097 0.3804 0.3512 
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VARIABLES  Cnt=16~20 Cnt=21~30 Cnt>31 ALL 

Age  9.48e-03 4.86e-02 4.35e-02 -1.04e-02 

Gender  -1.46e+00 -9.09e-01 -1.35e+00 -5.03e-01 

WaitTime  -2.33e-04 2.21e-04 -2.02e-04 -3.22e-04 

Distance Gain -7.65e-02 3.80e-01 -4.47e-01 -2.08e-02 

 Loss 2.15e-01 1.92e-01 -2.85e-01 3.14e-03 

RideTime Gain -8.86e-04 -1.93e-03 1.74e-03 1.21e-04 

 Loss 1.26e-04 -2.12e-03 -6.95e-04 -2.64e-04 

Cost Gain 6.22e-04 -6.85e-05 2.45e-04 5.93e-05 

 Loss -1.77e-04 5.93e-05 -7.60e-05 7.16e-06 

/cut1  -5.2246 -6.2349 -8.2658 -5.4606 

/cut2  2.2326 2.2567 3.0208 1.6896 

Observations  417 555 778 8,564 

Train Error  0.3701 0.3400 0.2470 0.4574 
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Figure 35. P-spline fits for satisfaction parameters with perception updating 

 

(a) Age 

(b) Gender 

(d) RideTime_Loss 

(c) WaitTime 
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Figure 36. P-spline CIs for satisfaction parameters with perception updating 

(a) Age 

(b) Gender 

(d) RideTime_Loss 

(c) WaitTime 
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Table 27.  Parametric effects from P-spline fits of satisfaction parameters with UP 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

Estimate Std. Error t-value Pr(>|𝑡|) Estimate Std. Error t-value Pr(>|𝑡|) 

Age 

(Intercept) 4.29e-03 4.45e-03 9.64e-01 3.66e-01 3.47e-03 4.40e-03 7.88e-01 4.56e-01 

x 6.48e-02 1.44e-02 4.49e+00 2.61e-03** 6.55e-02 1.35e-02 4.86e+00 1.84e-03** 

x2 - - - - 1.82e-01 9.60e-02 1.89e+00 9.94-02. 

Gender 

(Intercept) -7.48e-01 8.18e-02 -9.14e+00 1.66e-05*** -7.35e-01 8.61e-02 -8.54e+00 6.00e-05*** 

x -8.94e-01 2.56e-01 -3.49e+00 8.24e-03** -8.94e-01 2.64e-01 -3.38e+00 1.17e-02* 

x2 - - - - -1.38e+00 1.88e+00 -7.34e-01 4.87e-01 

WaitTime 

(Intercept) -2.52e-04 1.06e-04 -2.36e+00 4.58e-02* -2.61e-04 1.15e-04 -2.28e+00 5.68e-02. 

x 4.64e-04 3.33e-04 1.39e+00 2.02e-01 4.63e-04 3.52e-04 1.32e+00 2.30e-01 

x2 - - - - 1.06e-03 2.51e-03 4.24e-01 6.84e-01 

RideTime (Intercept) -6.33e-04 3.12e-04 -2.03e+00 7.68e-02. -6.22e-04 3.40e-04 -1.83e+00 1.10e-01 
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_Loss x -1.07e-03 9.76e-04 -1.09e+00 3.06e-01 -1.07e-03 1.04e-03 -1.02e+00 3.40e-01 

x2 - - - - -1.17e-03 7.41e-03 -1.58e-01 8.79e-01 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 

 

Table 28.  Nonparam. effects from P-spline fits of satisfaction parameters with UP 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

DF 
Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) DF 

Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) 

Age 
𝑓(𝑥) 7.59e-01 3.87e-04 5.10e-04 2.63e+00 1.47e-01 6.62e-09 3.28e-13 4.95e-05 2.67e-01 6.21e-01 

Residuals 7.24e+00 1.40e-03 1.94e-04 - - 7.00e+00 1.30e-03 1.86e-04 - - 

Gender 
𝑓(𝑥) 7.68e-07 2.99e-08 3.89e-02 5.81e-01 4.68e-01 6.62e-09 7.86e-11 1.19e-02 1.67e-01 6.95e-01 

Residuals 8.00e+00 5.36e-01 6.70e-02 - - 7.00e+00 4.98e-01 7.11e-02 - - 

WaitTime 
𝑓(𝑥) 7.68e-07 3.63e-14 4.73e-08 4.17e-01 5.37e-01 6.62e-09 6.95e-16 1.05e-07 8.32e-01 3.92e-01 

Residuals 8.00e+00 9.07e-07 1.13e-07 - - 7.00e+00 8.84e-07 1.26e-07 - - 



169 

 

RideTime 

_Loss 

𝑓(𝑥) 7.68e-07 6.72e-14 8.75e-08 9.01e-02 7.72e-01 6.62e-09 1.48e-15 2.24e-07 2.03e-01 6.66e-01 

Residuals 8.00e+00 7.77e-06 9.71e-07 - - 7.00e+00 7.74e-06 1.11e-06 - - 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 
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5.4.2.4 Comparison of Models 

 

This section compares the analysis results presented in the previous sections. Figures 

37 to 40 illustrates both the interpolation of time-varying coefficients estimated from 

models with described expectations, updated expectations, and updated perceptions, as well 

as their P-spline fits. It can be easily seen that the overall time-varying characteristics of 

the estimated coefficients of the three models are very similar. At the same time, it can be 

seen that the influence of the attributes on consumers’ service satisfaction changes 

differently across the models. 

Again, the graphs show estimated coefficients with usage count 𝜏 on the horizontal 

axis and the estimated coefficients for the covariate effects on the vertical axis. As 

mentioned in Section 5.4.2.1, the general time-varying trend in the age coefficients was 

that the younger the consumer, the higher the satisfaction at first use of the service. The 

influences of young age on service satisfaction were similar in all three models at this point 

in the usage experience. Nonetheless, after the 2nd time of service use, the increase in 

satisfaction among younger consumers declined more steeply in the models that accounted 

for the expectations effect than in the models with the updated perceptions effect. After the 

5th time of use, however, the direction of the influence completely reversed in all three 

models, i.e., the older the user, the higher the satisfaction with the service. Thereafter, the 

influence of older age on increased satisfaction increased more steeply in the updated 

perceptions model. The magnitude of the increase in the influence of age covariate was 
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greater in the order of the updated perceptions, updated expectations, and described 

expectations models. Overall, the sensitivity of age to user satisfaction was greatest in the 

updated perceptions model and least in the described expectations model. 

 

 
Figure 37. P-spline fits comparison for Age coefficients 

 

Overall, satisfaction with the service was higher among men than among women, and 

this tendency was more heavily influenced as the number of uses increased. For the first 

use of the service, the influence of gender was greatest for the model incorporating updated 

perceptions effect and least for described expectations effect. However, the degree of 

increase in the influence of gender was lowest in the updated perception model, so that the 

final influence corresponding to the effect of accumulated experience was ultimately lowest. 

In contrast, the model with the described expectations with steepest increase had the highest 
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degree of influence in the end. Comparison of the models showed that the model with the 

described expectations was the most sensitive overall and the model with the updated 

perceptions was the least sensitive to the covariate gender. 

 

 
Figure 38. P-spline fits comparison for Gender coefficients 

 

Trends in changes in wait time coefficients were generally similar across models, with 

a similar degree of decline in their effects on service satisfaction. Nevertheless, the model 

with the updated perceptions was the most sensitive and the one with the updated 

expectations was the least sensitive to the number of times the service was used. While the 

model with updated expectations showed the smallest impact of wait time on service 

satisfaction at first use, the model with updated perceptions, which once showed the largest 

impact at first use, showed the smallest impact at cumulative use. 
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Figure 39. P-spline fits comparison for WaitTime coefficients 

 

It can also be seen from Figure 41 that the time-varying trends of 𝑅𝑖𝑑𝑒𝑇𝑖𝑚𝑒_𝐿𝑜𝑠𝑠 

coefficients differ significantly across models. At first use, the model with described 

expectations revealed almost zero influence of loss in ride time on service satisfaction; 

however, with accumulated usage experience, reduction in such loss led to marginal 

increase in service satisfaction. While reduction of loss in ride time led to increased service 

satisfaction in models with updated expectations and updated perceptions, the degree of 

increase in the level of impact was greater in the model with updated perception with 

accumulated use. Integration of updated perception yielded significant impact of reduction 

in 𝑅𝑖𝑑𝑒𝑇𝑖𝑚𝑒_𝐿𝑜𝑠𝑠 to increased service satisfaction with increased number of use of the 

service. 
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Figure 40. P-spline fits comparison for RideTime_Loss coefficients 

 

Finally, the prediction errors of the three models were compared to determine which 

model performed better in explaining the data. While optimizers are algorithms or methods 

used to change neural network attributes such as weights and learning rate in order to 

reduce losses, the loss function in a neural network quantifies the difference between the 

expected outcome and the outcome produced by the deep learning model. In other words, 

it is used to quantify how well or poorly the model performs. The greater the loss (train 

error), the greater the error in the prediction. 

Figure 41 illustrates the change in prediction error for models that incorporate described 

expectations, updated expectations, and updated perceptions. The two models with 

described and updated expectations reveal identical prediction loss at first use (0.5563), 

with updated preference model performing slightly better (0.5544). However, as the 
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consumers’ number of service use increases, the prediction error for each model decreases 

at a different rate. Observing that the prediction error for described expectations model 

decreases, it can be speculated that the service itself optimizes the notification function as 

to minimize its error with actual delivery of service for users. But however well the system 

learns through algorithm to notify the messages that form described expectations with least 

error, users themselves update their expectations on error, and in turn on service 

components, with accumulated experience. This is well observed in Figure 41, where the 

decrease in prediction error for updated expectations model is steeper than that with 

described expectations.  

 
Figure 41. Prediction error comparison 

 

Finally, the graph confirms our assumption that people update their perceptions of 
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expected gains and losses with respect to service use. While the prediction error for the 

model with updated perceptions decreases with repeated use, the error reduces at a higher 

level than for other models. The final prediction errors for described expectations, updated 

expectations, and the updated perceptions models are 0.2576, 0.2517, and 0.2470, 

respectively. Lower prediction error indicates better explanatory power of the model when 

incorporating the time-varying behavior of platform users. 

 

5.4.3 Stream-of-Time Effects (by Times of the Day) 

 

In this section, the stream-of-time effects of covariates in explaining consumers’ use of 

ride-hailing platforms are analyzed using models based on P-splines, a semiparametric 

approach. The flow of time is observed by the times of the day. Analysis that observes 

stream-of-time effects by the days of the week can be found in the Appendix. By identifying 

the stream-of-time effects, the seasonality of consumer behaviors can be observed.  

The data pooled from Macaron Taxi totaling 8,564 successful immediate rides were 

categorized by the times of the day to analyze stream-of-time effects by usage hours. The 

number of successful rides as categorized by times are presented in Figure 42. From the 

figure, it is observed that the usage of the service most occur during the morning hours 

(7am to 1pm), followed by 6pm and 10pm. This coincides with the trend reported in the 

2019 Kakao Mobility Report that states that its peak usage hours were (1) 7am to 10am, (2) 

5pm to 7pm, and (3) 9pm to 2am in year 2019, with the greatest number of usages at 8am 
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(ref). As such, while Kakao Taxi is the largest mobility service company in South Korea, 

Macaron is also deemed as a representative sample as of usage frequency trends of ride-

hailing platforms by times of the day. 

 

 

Figure 42. Service usage frequency by times of the day 

 

To investigate the usage interval and the total number of usage of passengers in the 

Macaron ride-hailing platform service, negative binomial regression was used alike the 

general model; however, only the model without the interaction effects of travel distance 

and speed (Model 1) was utilized. Again, our interest is to identify the influence of gains 

and losses of specified covariates in the interval of consumers’ use of service as well as 

their total number of usages. For usage interval (𝐼𝑛𝑡𝑣𝑙𝑈𝑠𝑒) analysis, consumers with only 

a single use of service were excluded. The estimation results for usage interval are 
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presented in Table 29 below. The significant variables for each time are again summarized 

in Table 30 for clarity. 

It is notable that for times of 3AM and 4AM, estimation did not converge due to the 

lack of sample size. The results also reveal that coefficients for covariates of 𝐴𝑔𝑒 , 

𝐺𝑒𝑛𝑑𝑒𝑟, and 𝑆𝑎𝑡𝑖𝑠𝑓𝑦-)!, as well as the constant, were consistently significant on most 

times of the day. Covariates with regards to distance, ride time, and cost were almost always 

insignificant (≤ 6). The estimated paths for coefficients of covariates that were consistently 

significant and varies by the times of the day were realized using both the cubic and quintic 

P-spline functions as shown in Figure 43. It depicts estimated coefficient with calendar 

time 𝜏 in hours on the horizontal axis and estimated coefficients for covariate effects and 

constant term on the vertical axis. The solid line represents full interpolation of estimated 

coefficients, and the constant coefficient estimated in the generic model is also depicted.  
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Table 29.  Estimation results for usage interval by times 

VARIABLES  0AM 1AM 2AM 3AM 4AM 5AM 6AM 7AM 

Age  0.0727** -0.0894*** 0.2200*** - - 0.1180*** 0.0044 -0.0283*** 

  (0.0297) (0.0206) (0.0552) - - (0.0425) (0.0123) (0.0067) 

Gender  1.1350*** 1.5050*** -3.4070*** - - 1.4420 0.7320*** -0.7930*** 

  (0.4340) (0.3610) (0.6970) - - (0.9490) (0.2520) (0.1610) 

WaitTime t-1  -0.0006 0.0006*** 0.0005 - - 0.0035** -0.0003 0.0005 

  (0.0006) (0.0002) (0.0008) - - (0.0016) (0.0006) (0.0003) 

Distance Gain t-1 0.1780 0.0979* -0.1070 - - -0.3830 0.1520 0.0234 

  (0.2250) (0.0500) (0.1300) - - (0.4200) (0.1670) (0.0404) 

 Loss t-1 -0.3860 0.0479 -0.2880* - - -1.8530* 0.1390 0.0243 

  (0.2880) (0.0618) (0.1750) - - (0.9510) (0.1140) (0.0199) 

RideTime Gain t-1 -0.0017* 3.88e-05 -0.0004 - - 0.0015 0.0006 0.0003 

  (0.0009) (0.0005) (0.0010) - - (0.0022) (0.0009) (0.0005) 

 Loss t-1 0.0007 -0.0002 0.0010 - - -0.1390 0.0012 0.0005 

  (0.0023) (0.0005) (0.0014) - - (2.087e+08) (0.0012) (0.0005) 

Cost Gain t-1 -0.0004 -0.0002* -0.0012 - - -0.0008 -0.0006 -0.0001 

  (0.0003) (8.88e-05) (0.0011) - - (0.0006) (0.0004) (0.0001) 

 Loss t-1 6.77e-05 0.0005*** -0.0004 - - -0.0004 -0.0002 2.16e-05 

  (0.0003) (8.96e-05) (0.0003) - - (0.0006) (0.0003) (0.0001) 

Satisfy t-1  -1.1330* -0.5290** -0.2590 - - -1.6840 -1.078** 0.5460*** 
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  (0.6650) (0.2380) (0.3940) - - (1.4650) (0.4290) (0.1950) 

Constant  -0.0122 4.0780*** -4.8170*** - - -4.5460** 1.7610*** 3.2170*** 

  (1.125) (0.7430) (1.7890) - - (2.3190) (0.6180) (0.3560) 

Observations  75 205 64   14 110 438 

/lnalpha  -0.1200 -0.2080* -0.4450* - - -1.2220** -0.1080 0.2100*** 

  (0.1790) (0.1210) (0.2390) - - (0.5660) (0.1440) (0.0707) 

Log-Likelihood -208.8408 -520.4036 -165.5782 - - -42.0036 -340.4732 -1206.2964 

 

VARIABLES  8AM 9AM 10AM 11AM 12PM 13PM 14PM 15PM 

Age  -0.0302*** -0.0041 0.0448*** -0.0302** 0.0252* -0.0275** -0.0052 0.0204 

  (0.0057) (0.0094) (0.0133) (0.0128) (0.0136) (0.0139) (0.0140) (0.0464) 

Gender  0.0802 0.4360*** 0.2770 0.4610 0.6090 -0.9820* -0.9500*** 0.3980 

  (0.1320) (0.1580) (0.2570) (0.3840) (0.3820) (0.5020) (0.2480) (0.4960) 

WaitTime t-1  -6.73e-06 4.72e-05 -0.0009** -0.0005** 0.0005 0.0003 0.0001 0.0007 

  (0.0002) (0.0002) (0.0004) (0.0002) (0.0005) (0.0005) (0.0003) (0.0006) 

Distance Gain t-1 -0.0273 0.0352 0.0203 -0.0465 -0.0519 -6.34e-05 -0.2520* -0.2410 

  (0.0622) (0.1070) (0.1440) (0.0845) (0.1020) (0.4290) (0.1420) (0.2570) 

 Loss t-1 -0.0140 -0.1660 0.0178 -0.0948 0.0380** -0.0899 0.4300 -0.0229* 

  (0.0172) (0.1160) (0.0347) (0.0738) (0.0169) (0.1820) (0.2780) (0.0134) 

RideTime Gain t-1 -0.0003 0.0005 -0.0002 0.0009 0.0016* 0.0014 0.0004 9.82e-05 

  (0.0004) (0.0006) (0.0006) (0.0006) (0.0009) (0.0012) (0.0007) (0.0011) 
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 Loss t-1 0.0002 -5.95e-05 -0.0001 -0.0009* -2.85e-05 0.0012 0.0013 9.24e-05 

  (0.0004) (0.0006) (0.0002) (0.0005) (0.0009) (0.0010) (0.0009) (0.0013) 

Cost Gain t-1 -0.0004*** -0.0003* 0.0003 5.38e-05 -0.0002 -0.0001 -0.0005** 0.0009* 

  (0.0001) (0.0002) (0.0003) (0.0003) (0.0003) (0.0004) (0.0002) (0.0005) 

 Loss t-1 -5.86e-05 8.45e-05 0.0002** 0.0002 -0.0001 -0.0002 -0.0003 7.03e-05 

  (8.32e-05) (0.0001) (0.0001) (0.0002) (0.0003) (0.0002) (0.0003) (0.0003) 

Satisfy t-1  0.5960*** 0.4330* -1.0560*** 0.5010 -0.1150 -1.3160** -0.4180 0.9670*** 

  (0.1520) (0.2340) (0.3300) (0.3260) (0.3730) (0.5780) (0.2720) (0.3060) 

Constant  2.8520*** 2.1710*** 0.8030 3.4030*** 0.5080 4.3130*** 3.0460*** 0.5250 

  (0.2400) (0.4430) (0.6580) (0.6230) (0.5950) (0.9500) (0.6390) (2.1810) 

Observations  377 249 126 116 90 83 117 45 

/lnalpha  0.0416 0.1990** -0.1290 0.1020 -0.2620 -0.0417 -0.3650** -0.7870*** 

  (0.0803) (0.0902) (0.1270) (0.1380) (0.1640) (0.1660) (0.1530) (0.2420) 

Log-Likelihood -987.9757 -817.8342 -455.9177 -386.5990 -292.3635 -289.2689 -353.1928 -145.9683 
 

VARIABLES  16PM 17PM 18PM 19PM 20PM 21PM 22PM 23PM 

Age  -0.0862 0.0069 0.0249** -0.0271* -0.0040 0.0264 0.0163** 0.0066 

  (0.0658) (0.0153) (0.0122) (0.0151) (0.0072) (0.0210) (0.0080) (0.0147) 

Gender  -0.4110 -1.2010*** 0.3270 0.7340*** -0.0435 -0.0592 -0.2630 -1.1550*** 

  (0.9650) (0.3750) (0.2100) (0.2620) (0.2850) (0.610) (0.1890) (0.2910) 

WaitTime t-1  -0.0020* -0.0002 0.0003 -0.0005 -0.0006 -0.0009** -7.28e-05 -0.0001 

  (0.0011) (0.0002) (0.0003) (0.0004) (0.0005) (0.0004) (0.0003) (0.0005) 
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Distance Gain t-1 -0.2030 0.1120 -0.0227 0.0511 0.0312 0.1380 -0.0206 -0.0452 

  (0.3110) (0.1600) (0.0993) (0.0970) (0.0442) (0.1540) (0.0514) (0.0570) 

 Loss t-1 -0.5500* -0.2480 -0.2490 0.4120 0.1550 0.1650 -0.3190*** -0.0421 

  (0.2920) (0.2540) (0.2660) (0.3400) (0.1120) (0.1850) (0.1200) (0.2090) 

RideTime Gain t-1 0.0003 0.0015* 0.0012* 0.0031*** -0.0006 -0.0013 0.0006 0.0027*** 

  (0.0027) (0.0008) (0.0007) (0.0008) (0.0006) (0.0015) (0.0007) (0.0010) 

 Loss t-1 -0.0009 -0.0009 0.0009 0.0016 0.0018*** 0.0049*** -0.0007 0.0002 

  (0.0013) (0.0008) (0.0009) (0.0011) (0.0007) (0.0017) (0.0005) (0.0012) 

Cost Gain t-1 0.0015 3.37e-05 -0.0004*** -6.98e-05 7.93e-05 0.0020 -9.08e-06 -5.24e-05 

  (0.0012) (0.0002) (0.0001) (0.0002) (0.0003) (0.0014) (0.0001) (8.50e-05) 

 Loss t-1 0.0004 0.0005** -0.0002 -0.0004 -0.0003* -0.0005*** -3.32e-05 0.0001 

  (0.0003) (0.0002) (0.0003) (0.0003) (0.0002) (0.0002) (5.00e-05) (0.0003) 

Satisfy t-1  -0.4430 -0.7310* 0.6270 -0.5710 0.2830 -1.7460*** -0.4260 0.1520 

  (0.8790) (0.4100) (0.3860) (0.4470) (0.7470) (0.5820) (0.2790) (0.5520) 

Constant  6.8440* 2.7110*** 1.2350*** 2.1940*** 2.5570*** 1.9520 1.6430*** 2.6330*** 

  (3.7280) (0.6470) (0.4680) (0.5060) (0.470) (1.1870) (0.3870) (0.6420) 

Observations  26 121 130 98 80 55 161 42 

/lnalpha  -1.3840*** -0.0642 0.0100 -0.3620** -0.3480* 0.6620*** 0.0059 -0.9860*** 

  (0.4040) (0.1330) (0.1290) (0.1690) (0.1800) (0.2000) (0.1200) (0.2660) 

Log-Likelihood -78.4276 -388.8822 -441.0752 -282.4286 -251.1285 -160.5067 -482.6943 -135.8860 

*** p<0.01, ** p<0.05, * p<0.1; Standard errors are in parenthesis 
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Table 30.  Summary of significant variables for usage interval by times 

VARIABLES  0AM 1AM 2AM 3AM 4AM 5AM 6AM 7AM 

Age  (+) (-) (+)   (+)  (-) 

Gender  (+) (+) (-)    (+) (-) 

WaitTime t-1   (+)    (+)   

Distance 
Gain t-1  (+)       

Loss t-1   (-)   (-)   

RideTime 
Gain t-1 (-)        

Loss t-1         

Cost 
Gain t-1  (-)       

Loss t-1  (+)       

Satisfy t-1  (-) (-)     (-) (-) 

Constant   (+) (-)   (-) (+) (+) 

 

VARIABLES  8AM 9AM 10AM 11AM 12PM 13PM 14PM 15PM 

Age  (-)  (+) (-) (+) (-)   

Gender   (+)    (-) (-)  

WaitTime t-1    (-) (-)     

Distance 
Gain t-1       (-)  

Loss t-1     (+)   (-) 
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RideTime 
Gain t-1     (+)    

Loss t-1    (-)     

Cost 
Gain t-1 (-) (-)     (-) (+) 

Loss t-1   (+)      

Satisfy t-1  (+) (+) (-)   (-)  (+) 

Constant  (+) (+)  (+)  (+) (+)  

 

VARIABLES  16PM 17PM 18PM 19PM 20PM 21PM 22PM 23PM 

Age    (+) (-)   (+)  

Gender   (-)  (+)    (-) 

WaitTime t-1  (-)     (-)   

Distance 
Gain t-1         

Loss t-1 (-)      (-)  

RideTime 
Gain t-1  (+) (+) (+)    (+) 

Loss t-1     (+) (+)   

Cost 
Gain t-1   (-)      

Loss t-1  (+)   (-) (-)   

Satisfy t-1   (-)    (-)   

Constant  (+) (+) (+) (+) (+)  (+) (+) 
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Figure 43. P-spline fits for Usage Interval parameters by times of the day 

 
  

(a) Age 

(b) Gender 

(d) Constant 

(c) Satisfy
t-1
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From the figure, we obtain rather smooth curves for all covariates suggesting long-term 

trends in their time-varying influence on usage interval. Amongst, the coefficients for 

𝐺𝑒𝑛𝑑𝑒𝑟 varies the least, almost coinciding with the constant coefficient from the generic 

model. The result suggests that while women have a slightly larger usage interval until 

around noon, men have a slightly larger usage interval afterwards. Overall, the effect of the 

consumer’s gender on the usage interval of service is rather small. 

It is also revealed that the older the person the greater the usage interval of the ride-

hailing platform, meaning that younger people use the service more often. However, such 

influence of age on the total service use decreases by time. The influence of age on usage 

interval is the least around 6pm. To add, the results also show that until around 11AM, 

being women have a larger usage interval, and then afterwards, being men yield a larger 

usage interval. This suggests that men use the service more frequently until around noon, 

and women use the service more frequently in the afternoons and evenings. 

Lastly, the results show that the lesser satisfied the consumers in their previous use of 

service, the greater the usage interval, suggesting that greater satisfaction leads to more 

frequent usage of the service. Such influence of previous user satisfaction on usage interval 

is at is greatest around midnight (0AM~2AM), and as the time flows, the level of influence 

decreases. 
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Figure 44. P-spline CIs for Usage Interval parameters by times of the day 

  

(a) Age 

(b) Gender 

(d) Constant 

(c) Satisfy
t-1
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The coverage of the 95% Bayesian confidence interval (CI) for each smoothing was 

calculated using Eq. (44). Figure 44 shows the estimated functional relationship as well as 

the simulated coverage of the 95% Bayesian CIs. To add, the summary of fit of the 

estimated splines is summarized in Table 31 and 32, each showing the approximate 

significance of parametric and nonparametric effects, respectively. 

Putting the results together, it is noticeable that for covariates of 𝐴𝑔𝑒, 𝐺𝑒𝑛𝑑𝑒𝑟, and 

𝑆𝑎𝑡𝑖𝑠𝑓𝑦-)!, the coefficients that are estimated from the generic model completely falls 

within the Bayesian CIs of the cubic spline. This indicates that all models sufficiently 

explain the data, with the nonparametric model showing the long-term variance of time. 

Likewise, because all nonparametric effects of the covariates are insignificant, this 

indicates that that the linear effects need to be considered. There are no short-term trends 

in the effect of covariates on the usage interval of ride-hailing platform’s customers, and 

their preferences are rather consistent with time. 

Meanwhile, the constant coefficients that is estimated from the generic model do not 

fall completely within the Bayesian CIs of the cubic spline estimations for the constant, 

suggesting that the nonparametric model should be preferred in fitting the coefficients of 

the constant term that varies with time. Nonetheless, the nonparametric effects are 

insignificant, indicating that the linear effects involved in the smooth need to be considered, 

again representing long-term trend of time-varying coefficients.  
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Table 31.  Parametric effects from P-spline fits of usage intvl parameters by times 

Variables Parameter 

Cubic P-Spline Quintic P-Spline 

Estimate Std. Error t-value Pr(>|𝑡|) Estimate Std. Error t-value Pr(>|𝑡|) 

Age 

(Intercept) 0.0105 0.0126 0.83 0.4137 0.0093 0.0126 0.74 0.4665 

x -0.0495 0.0421 -1.18 0.2524 -0.0497 0.0416 -1.19 0.2456 

x2 - - - - 0.3518 0.3100 1.14 0.2691 

Gender 

(Intercept) -0.0470 0.2141 -0.22 0.8282 -0.0428 0.2198 -0.19 0.8476 

x -0.5657 0.7114 -0.80 0.4350 -0.5657 0.7273 -0.78 0.4453 

x2 - - - - -1.1779 5.4178 -0.22 0.8300 

Satisfyt-1 

(Intercept) -0.3083 0.1575 -1.96 0.0630. -0.2947 0.1583 -1.86 0.0768. 

x 0.2162 0.5232 0.41 0.6835 0.2162 0.5240 0.41 0.6841 

x2 - - - - -3.7723 3.9030 -0.97 0.3448 

Constant 

(Intercept) 1.6420 0.4733 3.47 0.0022** 1.6770 0.4769 3.52 0.0021** 

x 3.2170 1.6153 1.99 0.0593. 3.2870 1.5783 2.08 0.0497* 

x2 - - - - -13.5010 11.7567 -1.15 0.2637 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 
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Table 32.  Nonparam. effects from P-spline fits of usage intvl parameters by times 

Variables Parameter 

Cubic P-Spline Quintic P-Spline 

DF Sum Sq. Mean Sq. F-value Pr(>𝐹) DF Sum Sq. Mean Sq. F-value Pr(>𝐹) 

Age 
𝑓(𝑥) 0.1307 5.629e-04 0.0043 1.14 0.2978 5.34e-09 2.31e-12 4.326e-04 0.11 0.7380 

Residuals 21.8693 0.0828 0.0038 - - 2.10e+01 7.904e-02 3.764e-03 - - 

Gender 
𝑓(𝑥) 6.562e-07 6.059e-08 0.0923 0.08 0.7748 5.34e-09 7.373e-10 0.1381 0.12 0.7324 

Residuals 2.200e+01 2.420e+01 1.1002 - - 2.10e+01 2.415e+01 1.1500 - - 

Satisfyt-1 
𝑓(𝑥) 6.562e-07 3.222e-07 0.4910 0.83 0.3735 5.34e-09 4.406e-10 0.0825 0.14 0.7137 

Residuals 2.200e+01 1.309e+01 0.5950 - - 2.10e+01 1.253e+01 0.5968 - - 

Constant 
𝑓(𝑥) 0.3681 2.7540 7.4830 1.39 0.2505 5.34e-09 2.310e-08 4.3260 0.80 0.3816 

Residuals 21.6319 116.0820 5.3660 - - 2.10e+01 1.137e+02 5.4150 - - 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1
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Likewise, the same empirical model from the generic model was used to observe 

stream-of-time effects of the total service use (𝑁𝑏𝑟𝑈𝑠𝑒) of consumer 𝑛 at occasion 𝑡. 

However, only the model without the interaction effects of travel distance and speed (Model 

1) were utilized. Our interest in using Model 1 is to identify the influence of gains and 

losses of specified covariates on consumers’ total numbers of usages. The estimation results 

are presented in Table 33 below, and the significant variables for each day are again 

summarized in Table 34 for clarity. 

The results reveal that the coefficients for covariates of 𝐴𝑔𝑒  and 𝐺𝑒𝑛𝑑𝑒𝑟  were 

consistently significant at most times of the day, followed by covariates of 𝑆𝑎𝑖𝑠𝑓𝑦, which 

was almost always significant other than 1AM to 5AM, and 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒. Coefficients for 

covariates that were consistently significant and varies by day of the week were fit using 

both the cubic and quintic P-spline functions as shown in Figure 45.  

From the figure, it can be seen that the coefficients for all four covariates show long-

time trends. Meanwhile, the results show that the older the person, and the lesser the wait 

time, the greater the total service use of ride-hailing platform, and their level of influence 

on the total service use decrease slowly as the time flows. The quintic spline for wait time 

additionally shows that the level of influence in reduced wait time may temporarily 

diminish until about noon and increase back afterwards. Overall, this suggests that the 

effect of wait time reduction on the total service use is most effective during night hours. 

Nonetheless, coefficients for these two covariates vary less with respect to time than those 

of other covariates. 
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Table 33.  Estimation results for total usage by times 

VARIABLES  0AM 1AM 2AM 3AM 4AM 5AM 6AM 7AM 

Age  -0.0507*** 0.1264*** 0.0756** -0.0052 0.0351** 0.0311*** -0.0149** 0.0528*** 

  (0.0098) (0.0086) (0.0307) (0.0282) (0.0143) (0.0079) (0.0072) (0.0066) 

Gender  -0.6929*** -1.1703*** -1.064** -0.1067 -0.1734 0.1150 -1.2118*** 0.9964*** 

  (0.1600) (0.1777) (0.4180) (0.5247) (0.3868) (0.1997) (0.1365) (0.1033) 

WaitTime  6.06e-05 -0.0002 -0.0013*** -5.55e-05 -6.30e-05 0.0005 -5.92e-05 -0.0007*** 

  (0.0002) (0.0002) (0.0004) (0.0010) (0.0009) (0.0004) (0.0003) (0.0003) 

Distance Gain -0.0838 0.0585** -0.0413 0.0340 0.0334 -0.0195 -0.0675* 0.0446 

  (0.0581) (0.0276) (0.0736) (0.0815) (0.0932) (0.0533) (0.0401) (0.0410) 

 Loss 0.1137 -0.0113 0.0055 0.0485 0.1211 0.0423 0.0434 0.0378 

  (0.1040) (0.0361) (0.0700) (0.1840) (0.2227) (0.1353) (0.0284) (0.0292) 

RideTime Gain 0.0018*** -0.0009*** 0.0001 -0.0008 -4.03e-05 0.0003 -0.0014*** -0.0003 

  (0.0004) (0.0003) (0.0007) (0.0017) (0.0008) (0.0006) (0.0004) (0.0003) 

 Loss -0.0008 0.0001 -0.0003 -0.0036 -0.0015 -0.0003 -0.0006** 2.20e-05 

  (0.0007) (0.0002) (0.0005) (0.0089) (0.0028) (0.0017) (0.0003) (0.0003) 

Cost Gain 0.0002** 0.0001** -0.0014*** 0.0001 -2.78e-05 -0.0002 0.0002 -8.05e-05 

  (9.31e-05) (5.39e-05) (0.0003) (0.0007) (0.0001) (0.0002) (0.0001) (7.23e-05) 

 Loss 0.0002* -0.0002*** -0.0002 -1.50e-05 6.33e-05 -0.0002 -3.59e-05*** -9.39e-05 

  (0.0001) (5.13e-05) (0.0002) (5.93e-05) (0.0002) (0.0002) (1.33e-05) (7.25e-05) 

Satisfy  -0.4343* -0.1826 -0.3713 -0.1292 -0.3371 -0.0331 -0.5642*** -0.4327*** 
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  (0.2234) (0.1408) (0.2547) (0.4572) (0.4828) (0.2199) (0.1984) (0.1333) 

Constant  3.2105*** -1.0860*** 1.3314 0.5225 -1.1811 -1.1161** 3.4104*** 0.5294* 

  (0.4200) (0.3047) (0.9920) (1.1378) (0.8029) (0.4677) (0.3532) (0.2988) 

Observations  202 293 110 26 35 81 326 726 

/lnalpha  -0.5086*** -0.5504*** -0.1419 -52.3537 -22.6692 -23.7283 -0.0237 0.2815*** 

  (0.1274) (0.0932) (0.1440) (0) (0) (0) (0.0852) (0.0491) 

Log-Likelihood -557.5909 -1209.3737 -404.6645 -27.0552 -38.7780 -99.2822 -941.9313 -2978.3224 

 

VARIABLES  8AM 9AM 10AM 11AM 12PM 13PM 14PM 15PM 

Age  0.0338*** 0.0179*** 0.0097* 0.0613*** -9.87e-05 0.0277*** -0.0052 0.0699*** 

  (0.0042) (0.0050) (0.0050) (0.0039) (0.0050) (0.0042) (0.0064) (0.0111) 

Gender  -0.1123 -0.6844*** -0.2157** 0.6252*** 0.5879*** 0.4722*** 0.2540* 0.4024** 

  (0.1121) (0.0828) (0.1060) (0.1113) (0.1150) (0.1122) (0.1435) (0.1819) 

WaitTime  0.0003* -0.0005*** -0.0002* 0.0002* -0.0002** 4.82e-05 -0.0009*** -0.0002 

  (0.0001) (0.0001) (0.0001) (9.34e-05) (0.0001) (0.0001) (0.0002) (0.0002) 

Distance Gain -0.0393 0.0367 -0.0804*** -0.0723* 0.0076 -0.0282 0.0020 0.0033 

  (0.0415) (0.0308) (0.0299) (0.0400) (0.0389) (0.0355) (0.0496) (0.0391) 

 Loss 0.0023 0.0062 -0.0476 -0.0221* 0.0020 0.0059 -0.0572 -0.0155 

  (0.0155) (0.0085) (0.0412) (0.0114) (0.0046) (0.0187) (0.0640) (0.0367) 

RideTime Gain 2.17e-05 -0.0004** -0.0001 -2.38e-05 -0.0004 -0.0006** 0.0004 -0.0004 

  (0.0003) (0.0002) (0.0002) (0.0002) (0.0003) (0.0003) (0.0004) (0.0005) 
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 Loss 0.0002 -0.0004** -0.0007*** 0.0001 -0.0001 -0.0001 -0.0008** -0.0004 

  (0.0002) (0.0002) (0.0002) (8.80e-05) (0.0001) (0.0002) (0.0003) (0.0003) 

Cost Gain 0.0004*** 0.0001*** 4.19e-05 4.98e-05 -0.0001 -0.0002*** 1.70e-06 -0.0002 

  (7.72e-05) (5.18e-05) (6.16e-05) (7.18e-05) (0.0001) (7.09e-05) (0.0001) (0.0001) 

 Loss -4.46e-05** -0.0001*** -8.51e-06 -1.03e-05 -1.68e-05 -7.08e-05* 9.11e-06 -4.61e-06 

  (1.79e-05) (4.04e-05) (3.78e-05) (1.20e-05) (1.78e-05) (4.27e-05) (7.47e-05) (5.13e-05) 

Satisfy  0.4710*** -0.4440*** -0.0439 -0.2005* -0.1492 -0.1885* 0.4921*** 0.1413 

  (0.1295) (0.1125) (0.1119) (0.1191) (0.1239) (0.1091) (0.1626) (0.1586) 

Constant  1.1128*** 1.7918*** 1.1697*** -1.7845*** 0.7004*** -0.3876 1.7818*** -1.8083*** 

  (0.2021) (0.2121) (0.2777) (0.1913) (0.2139) (0.2378) (0.2987) (0.5364) 

Observations  711 659 586 548 531 497 458 211 

/lnalpha  0.2166*** -0.3141*** -0.5543*** -0.7008*** -0.6866*** -1.2839*** -0.0413 -0.7165*** 

  (0.0514) (0.0656) (0.0834) (0.0913) (0.0951) (0.1357) (0.0742) (0.1460) 

Log-Likelihood -2635.2577 -1856.3519 -1319.5716 -1231.7662 -1111.9058 -959.8803 -1190.6452 -456.1036 
 

VARIABLES  16PM 17PM 18PM 19PM 20PM 21PM 22PM 23PM 

Age  0.0315*** 0.0291*** -0.0063 -0.0029 0.0378*** 0.0376*** 0.0186*** 0.0162** 

  (0.0077) (0.0095) (0.0055) (0.0068) (0.0040) (0.0077) (0.0053) (0.0070) 

Gender  0.5416*** 1.4912*** -0.5678*** -0.1780 0.4954*** 0.5899*** 0.3364*** 0.2014 

  (0.1429) (0.1687) (0.0987) (0.1272) (0.1165) (0.1506) (0.1184) (0.1374) 

WaitTime  -0.0002 -0.0008*** -8.25e-05 3.41e-05 -0.0005*** 0.0006*** -0.0007*** -0.0005** 

  (0.0002) (0.0002) (0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002) 
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Distance Gain -0.0066 -0.0035 -0.0119 -0.0590 -0.0315 0.0311 -0.0089 0.0066 

  (0.0432) (0.0541) (0.0279) (0.0416) (0.0241) (0.0411) (0.0282) (0.0228) 

 Loss -0.0105 -0.1319*** -0.0296 -0.0694* -0.0252 -0.0265 -0.0470* -0.0441 

  (0.0117) (0.0479) (0.0254) (0.0420) (0.0270) (0.0296) (0.0248) (0.0475) 

RideTime Gain -0.0003 -0.0005 -0.0003 -0.0007* 0.0006** -0.0006* -0.0002 -0.0008* 

  (0.0003) (0.0003) (0.0002) (0.0004) (0.0002) (0.0004) (0.0003) (0.0004) 

 Loss -0.0003 0.0002 0.0002 -0.0001 0.0002 -0.0010*** 0.0005** -0.0005* 

  (0.0002) (0.0001) (0.0002) (0.0003) (0.0002) (0.0003) (0.0002) (0.00028) 

Cost Gain 3.03e-05 4.81e-05 7.26e-05 -0.0002* -0.0002*** -8.64e-05 -9.06e-05 4.85e-05 

  (4.96e-05) (8.93e-05) (7.05e-05) (0.0001) (6.52e-05) (6.15e-05) (6.61e-05) (6.42e-05) 

 Loss -4.90e-06 -0.0001* -6.28e-05 -0.0001 -1.76e-05 0.0001** -3.48e-05 -2.46e-05 

  (3.12e-05) (6.10e-05) (4.15e-05) (8.21e-05) (4.43e-05) (4.61e-05) (3.81e-05) (2.58e-05) 

Satisfy  0.1049 -0.4450** -0.6107*** -0.4490*** -0.4324*** 0.2911** -0.1383 -0.3628* 

  (0.1548) (0.2035) (0.1409) (0.1658) (0.1489) (0.1405) (0.1497) (0.2034) 

Constant  -0.7380** 0.1700 2.2253*** 2.1410*** -0.3091 -0.8182** 1.4547*** 0.7270** 

  (0.3741) (0.3873) (0.2244) (0.2825) (0.2038) (0.3796) (0.2219) (0.2975) 

Observations  212 352 460 352 306 290 385 207 

/lnalpha  -1.5126*** 0.0660 -0.3579*** -0.1678* -0.7411*** -0.2489** -0.0012 -0.8982*** 

  (0.2544) (0.0798) (0.0829) (0.0884) (0.1241) (0.1005) (0.0773) (0.1690) 

Log-Likelihood -378.3781 -1061.7159 -1155.6832 -920.0649 -723.5587 -682.1803 -1197.9232 -433.6335 

*** p<0.01, ** p<0.05, * p<0.1; Standard errors are in parenthesis 
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Table 34.  Summary of significant variables for total usage by times 

VARIABLES  0AM 1AM 2AM 3AM 4AM 5AM 6AM 7AM 

Age  (-) (+) (+)  (+) (+) (-) (+) 

Gender  (-) (-) (-)    (-) (+) 

WaitTime     (-)     (-) 

Distance 
Gain  (+)     (-)  

Loss         

RideTime 
Gain (+) (-)     (-)  

Loss       (-)  

Cost 
Gain (+) (+) (-)      

Loss (+) (-)     (-)  

Satisfy  (-)      (-) (-) 

Constant  (+) (-)    (-) (+) (+) 

 

VARIABLES  8AM 9AM 10AM 11AM 12PM 13PM 14PM 15PM 

Age  (+) (+) (+) (+)  (+)  (+) 

Gender   (-) (-) (+) (+) (+) (+) (+) 

WaitTime  (+) (-) (-) (+) (-)  (-)  

Distance 
Gain   (-) (-)     

Loss    (-)     
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RideTime 
Gain  (-)    (-)   

Loss  (-) (-)    (-)  

Cost 
Gain (+) (+)    (-)   

Loss (-) (-)    (-)   

Satisfy  (+) (-)  (-)  (-) (+)  

Constant  (+) (+) (+) (-) (+)  (+) (-) 

 

VARIABLES  16PM 17PM 18PM 19PM 20PM 21PM 22PM 23PM 

Age  (+) (+)   (+) (+) (+) (+) 

Gender  (+) (+) (-)  (+) (+) (+)  

WaitTime   (-)   (-) (+) (-) (-) 

Distance 
Gain         

Loss  (-)  (-)   (-)  

RideTime 
Gain    (-) (+) (-)  (-) 

Loss      (-) (+) (-) 

Cost 
Gain    (-) (-)    

Loss  (-)    (+)   

Satisfy   (-) (-) (-) (-) (+)  (-) 

Constant  (-)  (+) (+)  (-) (+) (+) 
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Figure 45. P-spline fits for Total Usage parameters by times of the day 

(a) Age 

(b) Gender 

(c) WaitTime 

(d) Satisfy 

(e) Constant 
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The coefficient trends of gender show that while men have a greater total use of service 

in mornings until about 8AM-9AM, women’s total use of service is greater in the hours 

following. This suggests that in particular, men use the service more during the late night 

and early morning hours. On the same line, the level of influence of being men on total use 

of service consistently decreases with time, and the opposite is true for women. One 

interesting observation is that lower satisfaction of the service led to the increase in the 

total number of uses. There exists a possibility that because Macaron Taxi service is still in 

its infancy having been launched in 2019, users do not yet have high expectations of the 

service. Therefore, consumers who use Macaron Taxi service to hail rides in substitute of 

other existing ride-hailing services have higher interest in the newly-developed service and 

are more willing to leave their comfort zones to invest in the novel service. In those terms, 

persons who invest their time more in using the novel service may more strictly evaluate 

the service. Such influence of user satisfaction on total number of service usage is least 

around noon, and the further the time is from noon, the level of influence increases. 

The coverage of the 95% Bayesian confidence interval (CI) for each smoothing was 

calculated using Eq. (44). Figure 46 shows the estimated functional relationship as well as 

the simulated coverage of the 95% Bayesian CIs. To add, the summary of fit of the 

estimated splines is summarized in Table 35 and 36, each showing the approximate 

significance of parametric and nonparametric effects, respectively. 
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Figure 46. P-spline CIs for Total Usage parameters by times of the day 

(a) Age 

(b) Gender 

(c) WaitTime 

(d) Satisfy 

(e) Constant 
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Putting the results together, it is noticeable that for covariates of 𝐴𝑔𝑒 and 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒, 

coefficients that are estimated from the generic model completely falls within the Bayesian 

CIs of the cubic spline. This indicates that all models sufficiently explain the data, with the 

nonparametric model showing the long-term variance of time. Likewise, because all 

nonparametric effects of the covariates are insignificant, this indicates that that the linear 

effects need to be considered.  

For 𝐺𝑒𝑛𝑑𝑒𝑟 , the coefficient that is estimated from the generic model do not fall 

completely within the Bayesian CIs of the cubic spline. This suggests that the 

nonparametric model should be preferred in fitting the given coefficients that vary with 

time. Nonetheless, because the nonparametric effects of the covariate are insignificant, this 

indicates that that the linear effects need to be considered as the time variances are caused 

by long-term fluctuations. It should finally be noted that the coefficient of covariate 

𝑆𝑎𝑡𝑖𝑠𝑓𝑦 was insignificant in the generic model – the constant graph is drawn just for 

reference, not for interpretation. 
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Table 35.  Parametric effects from P-spline fits of total usage parameters by times 

Variables Parameter 

Cubic P-Spline Quintic P-Spline 

Estimate Std. Error t-value Pr(>|𝑡|) Estimate Std. Error t-value Pr(>|𝑡|) 

Age 

(Intercept) 0.0266 0.0073 3.62 0.0015** 0.0265 0.0075 3.52 0.0021** 

x -0.0153 0.0244 -0.63 0.5374 -0.0153 0.0249 -0.61 0.5469 

x2 - - - - 0.0159 0.1858 0.09 0.9326 

Gender 

(Intercept) 0.0477 0.1155 0.41 0.6841 0.0575 0.1147 0.50 0.6212 

x 1.2038 0.4089 2.94 0.0077** 1.2089 0.3795 3.19 0.0044** 

x2 - - - - -5.1592 2.8267 -1.83 0.0822. 

WaitTime 

(Intercept) -0.0002 9.325e-05 -2.42 0.0242* -0.0002 0.0001 -2.33 0.0299* 

x -0.0001 3.098e-04 -0.32 0.7555 -0.0001 0.0003 -0.31 0.7602 

x2 - - - - -0.0009 0.0024 -0.38 0.7074 

Satisfy 

(Intercept) -0.1839 0.0632 -2.91 0.0082** -0.1786 0.0634 -2.82 0.0103* 

x 0.0895 0.2142 0.42 0.6804 0.0896 0.2097 0.43 0.6736 

x2 - - - - -1.8541 1.5620 -1.19 0.2485 

Constant 

(Intercept) 0.5437 0.3087 1.76 0.0921. 0.5247 0.3138 1.67 0.1094 

x -0.3521 1.0258 -0.34 0.7347 -0.3521 1.0386 -0.34 0.7379 

x2 - - - - 5.2609 7.7364 0.68 0.5039 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1  
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Table 36.  Nonparam. effects from P-spline fits of total usage parameters by times 

Variables Parameter 

Cubic P-Spline Quintic P-Spline 

DF Sum Sq. Mean Sq. F-value Pr(>𝐹) DF Sum Sq. Mean Sq. F-value Pr(>𝐹) 

Age 
𝑓(𝑥) 6.56e-07 2.775e-11 4.228e-05 0.03 0.8581 5.34e-09 3.895e-13 7.295e-05 0.05 0.8186 

Residuals 2.20e+01 2.841e-02 1.291e-03 - - 2.10e+01 2.840e-02 1.352e-03   

Gender 
𝑓(𝑥) 0.7015 0.5500 0.7840 2.47 0.1318 5.34e-09 3.387e-11 0.0063 0.02 0.8882 

Residuals 21.2985 6.7970 0.3191 - - 2.10e+01 6.574e+00 0.3130   

WaitTime 
𝑓(𝑥) 6.56e-07 2.213e-14 3.372e-08 0.16 0.6916 5.34e-09 1.294e-16 2.423e-08 0.11 0.7417 

Residuals 2.20e+01 4.591e-06 2.087e-07 - - 2.10e+01 4.560e-06 2.171e-07 - - 

Satisfy 
𝑓(𝑥) 2.2897 0.0368 0.1270 1.32 0.2618 5.34e-09 4.219e-11 0.0079 0.08 0.7765 

Residuals 21.7103 2.0765 0.0957 - - 2.10e+01 2.007e+00 0.0956 - - 

Constant 
𝑓(𝑥) 6.56e-07 5.999e-07 0.9142 0.40 0.5338 5.34e-09 6.599e-10 0.1255 0.05 0.8193 

Residuals 2.20e+01 5.032e+01 2.2875 - - 2.10e+01 4.924e+01 2.3448 - - 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1
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Lastly, the service satisfaction (𝑆𝑎𝑡𝑖𝑠𝑓𝑦) of passengers in the Macaron ride-hailing 

platform service that varies by day was analyzed using the ordered logit (OL). Amongst, 

Model 1 without the interaction effects of travel distance and speed was used. The 

estimation results are presented in Table 37 below, and the significant variables for each 

day are again summarized in Table 38 for clarity. It is notable that for times of 3AM and 

4AM, estimation did not converge due to the lack of sample size. 

The results reveal that the coefficients for covariates of 𝐴𝑔𝑒 and 𝐺𝑒𝑛𝑑𝑒𝑟 and were 

consistently significant on each day of the week, followed by 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒. Covariates with 

regards to distance and ride time were almost always insignificant (≤ 6). The estimated 

paths for coefficients of covariates that were consistently significant and varies by the times 

of the day were fit using both the cubic and quintic P-spline functions as in Figure 47.  

From the figure, it can be seen that the coefficients for age show short-term trend, 

whereas coefficients for gender and wait time show long-term trends. It is revealed that the 

older the person, the greater the service satisfaction of ride-hailing platform, and such level 

of influence is the greatest in late-night/early-morning hours (0AM-6AM) and decreases 

slowly with time. The quintic spline for age additionally shows a lot of short-term 

fluctuations, and the level of influence in age increase sharply and reach its the highest at 

1AM (most distinct local maxima), and decrease back until 3AM. Although the coefficients 

fluctuate at other times revealing short-term trends, they are mostly kept at similar levels.
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Table 37.  Estimation results for satisfaction by times 

VARIABLES  0AM 1AM 2AM 3AM 4AM 5AM 6AM 7AM 

Age  -0.0475*** 0.2530*** 0.1630*** - - 0.1520*** 0.0066 0.0409*** 

  (0.0179) (0.0228) (0.0460) - - (0.0373) (0.0102) (0.0076) 

Gender  -1.2410*** -1.0680*** -0.6030 - - 1.3030* -1.0620*** 1.1180*** 

  (0.3130) (0.3530) (0.6200) - - (0.7920) (0.2290) (0.1590) 

WaitTime  -0.0004 -0.0010** -0.0026*** - - 0.0015 -0.0001 -0.0010*** 

  (0.0003) (0.0004) (0.0007) - - (0.0015) (0.0005) (0.0004) 

Distance Gain -0.0711 0.1550** -0.1130 - - -0.6010 -0.1240 0.0438 

  (0.1140) (0.0666) (0.1530) - - (0.3750) (0.0951) (0.0491) 

 Loss 0.1770 0.0074 -0.0103 - - -0.8300 0.0504 0.0474 

  (0.2120) (0.0974) (0.1860) - - (0.8260) (0.0492) (0.0409) 

RideTime Gain 0.0031*** -0.0024*** 0.0004 - - 0.0022 -0.0020*** -0.0004 

  (0.0008) (0.0008) (0.0015) - - (0.0025) (0.0006) (0.0004) 

 Loss -0.0015 0.0002 -0.0002 - - -1.6290 -0.0014* 8.89e-05 

  (0.0017) (0.000563) (0.0011) - - (161.30) (0.0008) (0.0005) 

Cost Gain 0.0002 0.0003*** -0.0030*** - - -0.0019* 2.39e-05 -0.0002* 

  (0.0002) (0.0001) (0.0008) - - (0.0010) (0.0002) (0.0001) 

 Loss 0.0004 -0.0005*** -0.0004 - - -0.0022* -0.0006*** -0.0001 

  (0.0003) (0.0001) (0.0004) - - (0.0012) (0.0002) (8.89e-05) 

Satisfy t-1  -0.6520* -0.4400 -0.6480 - - 0.1480 -0.2830 -0.7620*** 
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  (0.3840) (0.3180) (0.5290) - - (0.8750) (0.3380) (0.1960) 

Observations  202 293 110 26 35 81 326 726 

/cut1  -2.424*** 6.190*** 2.730* - - 7.568*** -1.497*** 0.425 

  (0.790) (0.745) (1.444) - - (2.125) (0.550) (0.368) 

/cut2  -1.810** 6.618*** 2.844** - - 8.766*** -0.942* 0.881** 

  (0.784) (0.752) (1.446) - - (2.239) (0.552) (0.367) 

/cut3  -1.434* 6.705*** 3.122** - - 9.533*** -0.689 1.055*** 

  (0.778) (0.754) (1.452) - - (2.355) (0.552) (0.367) 

/cut4  -0.993 6.844*** 3.525** - - - -0.453 1.299*** 

  (0.770) (0.757) (1.458) - - - (0.552) (0.367) 

/cut5  -0.500 6.995*** 5.103*** - - - -0.222 1.397*** 

  (0.764) (0.760) (1.501) - - - (0.551) (0.367) 

Log-Likelihood -345.4842 -458.1534 -131.5386 - - -42.2561 -612.2200 -1900.4877 

 
VARIABLES  8AM 9AM 10AM 11AM 12PM 13PM 14PM 15PM 

Age  0.0415*** 0.0287*** 0.0336*** 0.0904*** 0.0170 0.0588*** 0.0082 0.1160*** 

  (0.0070) (0.0088) (0.0111) (0.0110) (0.0104) (0.0105) (0.0107) (0.0238) 

Gender  -0.2750* -0.8800*** -0.2720 1.0780*** 1.025*** 0.8030*** 0.1200 0.8630** 

  (0.1520) (0.1650) (0.1950) (0.2210) (0.2470) (0.2500) (0.2060) (0.4190) 

WaitTime  0.0002 -0.0008*** -0.0007** 0.0003 -0.0002 -0.0005* -0.0011*** -0.0002 

  (0.0002) (0.0002) (0.0003) (0.0002) (0.0002) (0.0003) (0.0003) (0.0005) 
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Distance Gain -0.0711 0.0750 -0.1980** -0.1680* 0.0062 -0.0198 -0.0414 -0.1580 

  (0.0645) (0.0625) (0.0828) (0.0903) (0.0890) (0.0839) (0.0809) (0.1330) 

 Loss 0.0134 0.0077 -0.0870 -0.0289 0.0007 -0.0362 -0.1560 -0.0492 

  (0.0210) (0.0146) (0.0840) (0.0233) (0.0137) (0.0602) (0.1060) (0.1360) 

RideTime Gain -0.0004 -0.0011*** -0.0004 -0.0001 -0.0009 -0.0010 0.0003 -0.0013 

  (0.0004) (0.0004) (0.0005) (0.0005) (0.0007) (0.0007) (0.0006) (0.0010) 

 Loss 8.64e-05 -0.0007* -0.0009* 0.0002 -0.0002 -0.0003 -0.0006 -9.94e-05 

  (0.0003) (0.0004) (0.0005) (0.0002) (0.0004) (0.0004) (0.0005) (0.0009) 

Cost Gain 0.0005*** 0.0003*** 0.0002 3.96e-05 -0.0002 -0.0006*** 7.68e-06 -0.0001 

  (0.0001) (0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002) (0.000285) 

 Loss -6.86e-05 -0.0002** -1.71e-05 -5.50e-06 -4.32e-05 -0.0002 -4.24e-06 -0.0004** 

  (5.27e-05) (6.97e-05) (7.41e-05) (1.88e-05) (5.95e-05) (0.0001) (0.0001) (0.0002) 

Satisfy t-1  0.6640*** -0.1860 0.1520 0.0078 -0.3200 -0.0654 0.5270** 0.2100 

  (0.1870) (0.1970) (0.2130) (0.2230) (0.2490) (0.232) (0.2370) (0.3060) 

Observations  711 659 586 548 531 497 458 211 

/cut1  0.546* -0.580 0.706 4.339*** 1.488*** 2.435*** -0.0103 4.794*** 

  (0.311) (0.394) (0.507) (0.503) (0.472) (0.558) (0.500) (1.153) 

/cut2  0.989*** -0.0577 1.274** 5.227*** 2.164*** 3.249*** 0.528 5.376*** 

  (0.310) (0.394) (0.510) (0.515) (0.478) (0.564) (0.501) (1.167) 

/cut3  1.179*** 0.257 1.763*** 5.499*** 2.577*** 3.589*** 0.801 5.694*** 

  (0.310) (0.394) (0.515) (0.521) (0.483) (0.567) (0.502) (1.175) 
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/cut4  1.350*** 0.417 2.005*** 5.675*** 2.675*** 4.028*** 1.165** 6.313*** 

  (0.311) (0.395) (0.517) (0.525) (0.484) (0.573) (0.505) (1.190) 

/cut5  1.562*** 0.556 2.116*** 5.988*** 3.025*** 4.705*** 1.293** 6.574*** 

  (0.313) (0.395) (0.519) (0.532) (0.490) (0.588) (0.505) (1.193) 

Log-Likelihood -1759.5163 -1478.3713 -969.6323 -883.8076 -791.5655 -713.3038 -806.2947 -298.4029 

 
VARIABLES  16PM 17PM 18PM 19PM 20PM 21PM 22PM 23PM 

Age  0.0420** 0.0231** -0.00718 2.37e-05 0.1060*** 0.0363*** 0.0512*** 0.0200 

  (0.0192) (0.0115) (0.0105) (0.0113) (0.0120) (0.0125) (0.0093) (0.0145) 

Gender  1.0280*** 0.9270*** -0.5770*** -0.0528 0.7080*** -0.1850 0.4800** 0.3640 

  (0.3590) (0.2290) (0.1890) (0.2400) (0.2490) (0.2530) (0.2010) (0.2950) 

WaitTime  -0.0012** -0.0013*** 3.29e-06 9.55e-05 -0.0007* 0.0003 -0.0011*** -0.0010* 

  (0.0006) (0.0003) (0.0002) (0.0003) (0.000354) (0.0003) (0.0003) (0.0005) 

Distance Gain -0.1930 -0.02140 -0.0394 -0.0587 -0.0971* 0.0331 -0.1690** 0.0269 

  (0.1830) (0.0642) (0.0501) (0.0730) (0.0552) (0.0785) (0.0780) (0.0419) 

 Loss -0.1380 -0.1830* 0.0066 -0.1290 -0.1550* -0.0019 -0.1410** -0.0834 

  (0.1230) (0.0993) (0.0419) (0.0921) (0.0871) (0.0552) (0.0637) (0.135) 

RideTime Gain -0.0003 -0.0002 -0.0007 -0.0006 0.0012* -0.0007 -0.0003 -0.0016* 

  (0.0008) (0.0005) (0.0005) (0.0006) (0.0006) (0.0007) (0.0007) (0.0009) 

 Loss -0.0007 0.0003 0.0001 -9.66e-05 0.0005 -0.0013** 0.0011*** -0.0011 

  (0.0006) (0.0002) (0.0004) (0.0005) (0.0004) (0.0005) (0.0004) (0.0007) 
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Cost Gain -0.0002 -1.66e-05 0.0002 -0.0002 -0.0005*** -0.0002 -2.04e-06 -5.05e-05 

  (0.0003) (0.0002) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001) 

 Loss 2.01e-05 -0.000210** -0.000120 -0.000143 -0.000108 0.000179** 5.95e-06 -0.000146 

  (0.000111) (0.000101) (9.81e-05) (0.000132) (0.000106) (7.54e-05) (5.59e-05) (0.000170) 

Satisfy t-1  0.1890 -0.4620 -0.6260*** -0.6450** -0.2720 0.3330 -0.3310 -0.1240 

  (0.3920) (0.3030) (0.2400) (0.2950) (0.3110) (0.2520) (0.2570) (0.4410) 

Observations  212 352 460 352 306 290 385 207 

/cut1  2.178** 0.499 -1.210*** -0.683 3.948*** 1.341** 1.086** 0.258 

  (0.947) (0.504) (0.456) (0.535) (0.553) (0.617) (0.425) (0.624) 

/cut2  3.192*** 0.966* -0.668 -0.0185 4.770*** 2.147*** 1.488*** 0.834 

  (0.960) (0.505) (0.455) (0.536) (0.567) (0.623) (0.424) (0.624) 

/cut3  3.405*** 1.333*** -0.268 0.132 5.051*** 2.801*** 1.682*** 0.982 

  (0.964) (0.508) (0.456) (0.537) (0.574) (0.633) (0.424) (0.626) 

/cut4  3.611*** 1.507*** 0.0688 0.459 5.378*** 3.002*** 1.769*** 1.814*** 

  (0.969) (0.511) (0.456) (0.538) (0.583) (0.636) (0.424) (0.642) 

/cut5  3.900*** 1.739*** 0.245 0.534 5.603*** 3.294*** 1.933*** 2.012*** 

  (0.978) (0.514) (0.457) (0.539) (0.590) (0.643) (0.424) (0.649) 

Log-Likelihood -235.6297 -623.6880 -879.2788 -650.7913 -492.8205 -426.9736 -840.5457 -284.1148 

*** p<0.01, ** p<0.05, * p<0.1; Standard errors are in parenthesis 
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Table 38.  Summary of significant variables for satisfaction by times 

VARIABLES  0AM 1AM 2AM 3AM 4AM 5AM 6AM 7AM 

Age  (-) (+) (+)   (+)  (+) 

Gender  (-) (-)    (+) (-) (+) 

WaitTime    (-) (-)     (-) 

Distance 
Gain  (+)       

Loss         

RideTime 
Gain (+) (-)     (-)  

Loss       (-)  

Cost 
Gain  (+) (-)   (-)  (-) 

Loss  (-)    (-) (-)  

Satisfy t-1  (-)       (-) 

 

VARIABLES  8AM 9AM 10AM 11AM 12PM 13PM 14PM 15PM 

Age  (+) (+) (+) (+)  (+)  (+) 

Gender  (-) (-)  (+) (+) (+)  (+) 

WaitTime   (-) (-)   (-) (-)  

Distance 
Gain   (-) (-)     

Loss         

RideTime Gain  (-)       
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Loss  (-)       

Cost 
Gain (+) (+)    (-)   

Loss  (-)      (-) 

Satisfy t-1  (+)      (+)  

 

VARIABLES  16PM 17PM 18PM 19PM 20PM 21PM 22PM 23PM 

Age  (+) (+)   (+) (+) (+)  

Gender  (+) (+) (-)  (+)  (+)  

WaitTime  (-) (-)   (-)  (-) (-) 

Distance 
Gain     (-)  (-)  

Loss  (-)   (-)  (-)  

RideTime 
Gain     (+)   (-) 

Loss      (-) (-)  

Cost 
Gain     (-)    

Loss  (-)    (+)   

Satisfy t-1    (-) (-)     
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Figure 47. P-spline fits for Satisfaction parameters by times of the day 

 
 
  

(a) Age 

(b) Gender 

(c) WaitTime 
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The coefficient trends of gender show that while men have a service satisfaction in late 

nights from about 0AM to 6AM, women are generally more satisfied in the following hours. 

This is in accordance with the previous results that men use the service more during the 

late night and early morning hours. On the same line, the level of influence of being men 

on service satisfaction consistently decreases with time until about 4PM, and increase back 

afterwards. The result also indicates that the reduced wait time yield greater service 

satisfaction, and such tendency is rather consistent with time revealing long-term trends. 

Such influence is greater in late night and early-morning hours. Overall, it can be observed 

that the covariate effects on consumer service satisfaction are the greatest from 0AM to 

6AM. 

The coverage of the 95% Bayesian confidence interval (CI) for each smoothing was 

calculated using Eq. (44). Figure 48 shows the estimated functional relationship as well as 

the simulated coverage of the 95% Bayesian CIs. To add, the summary of fit of the 

estimated splines is summarized in Table 39 and 40, each showing the approximate 

significance of parametric and nonparametric effects, respectively. 

Accordingly, it is noticeable that for all covariates, the coefficient that is estimated from 

the generic model do not fall completely within the Bayesian CIs of the cubic spline. This 

suggests that the nonparametric model should be preferred in fitting the given coefficients 

that vary with time. Nonetheless, because all nonparametric effects of the covariates are 

insignificant, this indicates that that the linear effects need to be considered. That is because 

overall, the time variances are generally caused by long-term fluctuations.  
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Figure 48. P-spline CIs for Satisfaction parameters by times of the day 

  

(a) Age 

(b) Gender 

(c) WaitTime 



215 

 

Table 39.  Parametric effects from P-spline fits of satisfaction parameters by times 

Variables Parameter 

Cubic P-Spline Quintic P-Spline 

Estimate Std. Error t-value Pr(>|𝑡|) Estimate Std. Error t-value Pr(>|𝑡|) 

Age 

(Intercept) 0.0514 0.0135 3.80 0.0010** 0.0556 0.0095 5.86 0.0002*** 

x -0.0475 0.0449 -1.06 0.3018 0.0524 0.0634 0.83 0.4280 

x2 - - - - -10.6929 3.7966 -2.82 0.0189* 

Gender 

(Intercept) 0.1652 0.1421 1.16 0.2581 0.1765 0.1411 1.25 0.2249 

x 1.0516 0.5172 2.03 0.0548. 1.0138 0.4670 2.17 0.0416* 

x2 - - - - -7.2880 3.4786 -2.10 0.0485* 

WaitTime 

(Intercept) -4.782e-04 0.0002 -2.90 0.0082** -4.66e-04 0.0002 -2.80 0.0107* 

x -9.925e-05 0.0005 -0.18 0.8580 -9.93e-05 0.0006 -0.18 0.8586 

x2 - - - - -3.77e-03 0.0041 -0.92 0.3680 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1  
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Table 40.  Nonparam. effects from P-spline fits of satisfaction parameters by times 

Variables Parameter 

Cubic P-Spline Quintic P-Spline 

DF Sum Sq. Mean Sq. F-value Pr(>𝐹) DF Sum Sq. Mean Sq. F-value Pr(>𝐹) 

Age 
𝑓(𝑥) 6.56e-07 8.610e-10 1.312e-03 0.03 0.5897 11.330 0.0636 0.0056 2.69 0.0673. 

Residuals 2.20e+01 9.639e-02 4.381e-03 - - 9.666 0.0202 0.0021 - - 

Gender 
𝑓(𝑥) 0.9040 1.3290 1.4701 3.05 0.0955. 5.34e-09 6.943e-10 0.1300 0.27 0.6060 

Residuals 21.0960 10.1790 0.4825 - - 2.10e+01 9.995e+00 0.4741 - - 

WaitTime 
𝑓(𝑥) 6.56e-07 3.322e-13 5.062e-07 0.77 0.3900 5.34e-09 2.893e-15 5.417e-07 0.82 0.3745 

Residuals 2.20e+01 1.438e-05 6.535e-07 - - 2.10e+01 1.382e-05 6.581e-07 - - 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1
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Chapter 6. Conclusion 

 

At the heart of all consumer behaviors are decision-making processes that are 

influenced by various factors including those that are time-dependent and/or experience-

dependent. It is clearly defined in the marketing literature that consumers’ intention to 

repurchase a product or continue to use a service depends primarily on their prior 

experience of using that product or service, and that continued user satisfaction is 

considered key to building and retaining a loyal base of long-term customers. However, 

most existing studies use static utility models to explain consumer behavior in platform 

services and therefore do not adequately reflect the time-varying effects of continued use 

of the service. In addition, cross-sectional studies of consumers’ continued use of services 

are unable to capture an accurate view of how customers’ expectations and perceptions of 

the product/service might change over time.  

From a managerial point of view, ignoring time-varying effects concerning covariates 

may leave competitive trends in a product/service category or proper understanding of 

consumers undetected with the risk of misjudging the nature of consumer behavior. It is 

further important for service providers to recognize short- or long-term changes of their 

consumers as a basis for adjusting their marking mix adequately and in due time. This study 

aimed to fill this gap by employing a dynamic utility model to explain consumer behavior 

in the platform economy, where services are used repeatedly. Expanding on the 
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expectation-confirmation theory that hypothesizes that a consumer's level of satisfaction 

with a product/service determines re-purchase intention, and that consumers’ continue 

service use is determined primarily by their satisfaction with prior use of that product or 

service, this paper incorporated time-varying effects of covariates in explaining consumers’ 

use of platform service using P-splines. Through an empirical study, we examined the time-

varying effects of covariates in explaining consumers’ use of ride-hailing platforms by first 

identifying the effect of updating expectations and perceptions with repeated use and then 

incorporating models based on penalized splines, a semiparametric approach.  

In all, this study showed that the dynamics are important in marketing and should be 

considered in consumer modeling. More specifically, it was shown how the time-varying 

effect of variables can be applied in analyzing consumer behavior in the widely-used ride-

hailing platform service. Through this analysis, it was also clearly shown that 

implementation of semiparametric model was necessary to identify seasonality of 

consumer behaviors in platform services. The findings of this paper suggest the necessity 

to employ models with time-varying parameters and should encourage firms and managers 

to adopt more flexible models to detect such time-varying effects. 

This study also showed how users may make experience-based decisions based on 

direct or vicarious reinforcement they have received in the past, and how preference for a 

service is influenced by past usage experiences. Described expectations were readily 

available from our data, but the experience-based updated expectations and updated 

perceptions were computed from individual consumers purchase history. While the gap 
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between updated expectation and actual service delivery (“Service Gap”) and the gap 

between updated perception and service delivery (“Perception Gap”) were not 

conceptualized further expanding on the existing GAP model, the results indicated that the 

‘Service Gap’ and ‘Perception Gap’ sometimes amplifies, and at others, lessens the effect 

of covariates on consumers’ satisfaction of the service. Overall, the study added to the 

literature by empirically suggesting what marketing implications can be derived through 

the extended GAP model. 

There are several limitations in this study. First, since an empirical analysis was 

conducted on a very specific service, the managerial implication yielded from the empirical 

analysis cannot be generalized for all other services. Nonetheless, the study was conducted 

to show how the time-varying effects of covariates in services with repeated use can be 

employed. Also, data for only the immediate successful rides were used for the analysis as 

they are the most used types of service. However, factors such as failure of match after 

immediate call, or turn-down of user after call can be considered for future research. Also, 

other types of services provided by the platform, such as reservation of rides, can be 

observed for further managerial implications. 
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 Appendix: Stream-of-Time Effects (Days of the Week)  

 

In the Appendix, the stream-of-time effects are additionally observed by the days of the 

week to observe the seasonality effect in explaining consumers’ use of ride-hailing 

platforms. Again, the data pooled from Macaron Taxi totaling 8,564 successful immediate 

rides were categorized by the days of the week to analyze stream-of-time effects by the 

days of the week. The number of successful rides as categorized by days are presented in 

Figure Appendix 1. 

 

 
Figure Appendix 1. Service usage frequency by days of the week 

 

Alike the generic model, to investigate the usage interval and the total number of usage 

of passengers in the Macaron ride-hailing platform service, negative binomial regression 
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was used. The same empirical models used to analyze the stream-of-time effects of by the 

times of the day was used for the analysis of stream-of-time effects by the days of the week. 

Our interest in using Model 1 is to identify the influence of gains and losses of specified 

covariates on the interval of consumers’ use of service as well as their total number of 

usages. For usage interval analysis (𝐼𝑛𝑡𝑣𝑙𝑈𝑠𝑒), consumers with only a single use of service 

were excluded. The estimation results for usage interval are presented in Table Appendix 

1, and the significant variables for each day are again summarized in Table Appendix 2. 

The results reveal that the coefficients for covariates of 𝐺𝑒𝑛𝑑𝑒𝑟  and 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝐺𝑎𝑖𝑛-)!  were consistently significant on most days of the week, and the 

constant was significant on all days. The variables with regards to cost were insignificant 

at all times. Coefficients for covariates that were consistently significant and varies by day 

of the week are fit using both the cubic and quintic P-spline functions as shown in Figure 

Appendix 2. It depicts estimated coefficient with calendar time 𝜏 in days on the horizontal 

axis and estimated coefficients for covariate effects and constant term on the vertical axis. 

The solid line represents full interpolation of estimated coefficients, and the constant 

coefficient estimated in the generic model is also depicted. Cubic and quintic splines are 

those with two lowest degrees that allows separate control on the two end points and two 

end derivatives, while being the lowest degree that allows reflection points. While cubic 

splines are most popular as it is the lowest degree meeting, we also incorporate quintic 

splines to observe a smoother curve at the expense of additional derivatives. 
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Table Appendix 1.  Estimation results for usage interval by days 

VARIABLES  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Age  -0.00705* -0.00825* -0.000851 0.00288 -0.00519 0.00241 -0.00142 

  (0.00361) (0.00439) (0.00480) (0.00492) (0.00402) (0.00608) (0.00879) 

Gender  -0.299*** -0.293*** -0.159* -0.208** -0.318*** 0.0410 0.0140 

  (0.0973) (0.0916) (0.0933) (0.0893) (0.0919) (0.115) (0.187) 

WaitTime t-1  0.000186 -3.82e-05 -0.000115 -9.60e-05 0.000226** -6.97e-05 -6.30e-05 

  (0.000115) (0.000135) (0.000135) (0.000143) (0.000108) (0.000131) (0.000315) 

Distance Gain t-1 -0.0631** -0.0490** -0.0501* -0.0699** 0.0151 -0.0324 0.00412 

  (0.0263) (0.0235) (0.0274) (0.0288) (0.0235) (0.0355) (0.0526) 

 Loss t-1 0.0102 0.0334* 0.0207 0.0171 0.0107 0.0330* 0.0234 

  (0.0312) (0.0177) (0.0194) (0.0242) (0.0220) (0.0192) (0.0844) 

RideTime Gain t-1 0.000163 0.000247 0.000380* 0.000205 -0.000314 1.30e-05 0.000348 

  (0.000286) (0.000256) (0.000230) (0.000224) (0.000234) (0.000300) (0.000483) 

 Loss t-1 9.61e-06 0.000248 0.000208 0.000119 -9.06e-05 2.40e-05 0.000954* 

  (0.000161) (0.000211) (0.000171) (0.000218) (0.000136) (0.000265) (0.000564) 

Cost Gain t-1 8.18e-05 -5.11e-05 -5.41e-05 6.02e-05 3.03e-05 -1.90e-05 -2.23e-06 

  (6.26e-05) (6.55e-05) (6.17e-05) (5.64e-05) (6.00e-05) (4.33e-05) (0.000148) 

 Loss t-1 -1.37e-05 -3.01e-05 -1.65e-05 -3.36e-05 1.93e-05 4.73e-05 -1.25e-05 

  (1.18e-05) (4.97e-05) (1.32e-05) (4.10e-05) (4.00e-05) (5.88e-05) (8.01e-05) 

Satisfy t-1  0.214 0.326 0.0631 0.0231 0.202 0.823*** -0.384 
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  (0.223) (0.234) (0.230) (0.247) (0.213) (0.305) (0.428) 

Constant  2.904*** 3.137*** 2.850*** 2.799*** 3.050*** 2.268*** 2.963*** 

  (0.231) (0.262) (0.270) (0.255) (0.244) (0.321) (0.433) 

Observations  621 741 736 663 741 441 186 

/lnalpha  -0.0945 0.0635 0.136*** 0.0382 0.131*** 0.203*** 0.110 

  (0.0575) (0.0504) (0.0504) (0.0535) (0.0500) (0.0644) (0.100) 

Log-Likelihood -2243.2735 -2816.0188 -2766.2696 -2516.7999 -2835.4810 -1708.9624 -712.9231 

*** p<0.01, ** p<0.05, * p<0.1; Standard errors are in parenthesis 

Table Appendix 2.  Summary of significant variables for usage interval by days 

VARIABLES  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Age  (-) (-)      

Gender  (-) (-) (-) (-) (-)   

WaitTime t-1      (+)   

Distance 
Gain t-1 (-) (-) (-) (-)    

Loss t-1  (+)    (+)  

RideTime 
Gain t-1   (+)     

Loss t-1       (+) 

Satisfyt-1       (+)  

Constant  (+) (+) (+) (+) (+) (+) (+) 
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Figure Appendix 2. P-spline fits for Usage Interval parameters by days of the week 

 

From the figure, it can be seen that being men have a larger usage interval on weekdays 

and women have a larger usage interval on weekends. This suggests that women use the 

(a) Gender 

(b) Distance_Gain 

(c) Constant 
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service more frequently on weekdays and men use it more frequently on weekends. The 

usage interval influenced by being a man on weekdays decreases as the days approach the 

weekend. Also, the distance gained with respect to described expectations is negatively 

significant with the usage interval. That is, the greater the distance gained from 

expectations, the more frequently the service is used. This tendency is more heavily 

influenced on Mondays to Thursdays than on Fridays to Sundays.  

Then, the coverage of the 95% Bayesian confidence interval (CI) for each smoothing 

was calculated using Eq. (44). Figure Appendix 3 shows the estimated functional 

relationship as well as the simulated coverage of the 95% Bayesian CIs. To add, the 

summary of fit of the estimated splines is summarized in Tables Appendix 3 and 4, each 

showing the approximate significance of parametric and nonparametric effects, 

respectively. Statistical inference is conducted via (approximate) frequentist chi-square 

tests using the Bayesian interpretation of a smoothing spline (Nychka, 1988; Wahba, 1983). 

It is noticeable from the results that for both covariates of 𝐺𝑒𝑛𝑑𝑒𝑟  and 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝐺𝑎𝑖𝑛, as well as the constant, the coefficient that is estimated from the generic 

model do not fall completely within the Bayesian CIs of the cubic spline. This suggests that 

the nonparametric model should be preferred in fitting the given coefficients that vary with 

time. Nonetheless, because all nonparametric effects of the covariates are insignificant, this 

indicates that that the linear effects need to be considered. That is because the time 

variances are caused by long-term fluctuations. There are no short-term trends in the effect 

of covariates on the usage intervals of ride-hailing platform’s customers. 
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Figure Appendix 3. P-spline CIs for Usage Interval parameters by days of the week 

  

(a) Gender 

(b) Distance_Gain 

(c) Constant 
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Table Appendix 3.  Parametric effects from P-spline fits of usage interval parameters by days 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

Estimate Std. Error t-value Pr(>|𝑡|) Estimate Std. Error t-value Pr(>|𝑡|) 

Gender 

(Intercept) -0.1746 0.0409 -4.267 0.0080** -0.1845 0.0441 -4.19 0.0139* 

x 0.3103 0.1227 2.528 0.0527. 0.3103 0.1271 2.44 0.0711. 

x2 - - - - 0.7183 0.8803 0.82 0.46 

Distance_Gaint-1 

(Intercept) -0.0350 0.0097 -3.63 0.0151* -0.0361 0.0111 -3.26 0.0310* 

x 0.0643 0.0290 2.22 0.0772. 0.0643 0.0319 2.02 0.1141 

x2 - - - - 0.0769 0.2211 0.35 0.7455 

Constant 

(Intercept) - - - - 2.8478 0.1261 22.59 2.275e-05*** 

x - - - - -0.2916 0.3634 -0.80 4.672e-01 

x2 - - - - 0.3763 2.5178 0.15 8.884e-01 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1
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Table Appendix 4.  Nonparametric effects from P-spline fits of usage interval parameters by days 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

DF 
Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) DF 

Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) 

Gender 
𝑓(𝑥) 3.496e-05 3.144e-07 0.0090 0.7675 0.4211 3.023e-07 1.385e-09 0.0046 0.36 0.5784 

Residuals 5.000 5.859e-02 0.0117 - - 4.000 5.023e-02 0.0126 - - 

Distance_Gaint-1 
𝑓(𝑥) 8.535e-07 1.073e-10 0.0001 0.1925 0.6791 7.379e-09 5.574e-13 7.554e-05 0.10 0.7728 

Residuals 5.000 3.253e-03 0.0007 - - 4.000 3.167e-03 7.919e-04 - - 

Constant 
𝑓(𝑥) - - - - - 7.379e-09 5.476e-10 0.0742 0.7225 0.4432 

Residuals - - - - - 4.000 4.109e-01 0.1027 - - 

*** p<0.001, ** p<0.01, * p<0.05, . p<0
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Following, the same empirical model used to analyze the stream-of-time effects of 

covariates on the total service use by the times of the day was used to observe stream-of-

time effects of the total service use (𝑁𝑏𝑟𝑈𝑠𝑒) by the days of the week as our interest is to 

identify the influence of gains and losses of specified covariates in consumers’ total use of 

service. The estimation results for total usage are presented in Table Appendix 5, and the 

significant variables for each time of the day are again summarized in Table Appendix 6. 

The results reveal that the coefficients for covariates of 𝐴𝑔𝑒 and 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒 were 

consistently significant on most days of the week, followed by covariates of 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝐺𝑎𝑖𝑛 and 𝑆𝑎𝑡𝑖𝑠𝑓𝑦𝑈𝑠𝑒 that were only significant for three days in a week. 

Coefficients for covariates that were consistently significant and varies by day of the week 

were fit using both the cubic and quintic P-spline functions as in Figure Appendix 4.  

From the figure, it can be seen that overall, the older the person, the greater the total 

service use of ride-hailing platform. However, such influence of age on the total service 

use decreases as the weekend approaches. The quintic spline additionally shows that such 

decrease is most sharp from Monday to Thursday, and then the level of decrease diminishes. 

Also, it was revealed that as the wait time decreases, the total service use increases. Such 

level of increase diminishes until Wednesday and Thursday and then gradually increases 

again. This suggests that the effect of wait time reduction on the total service use is most 

effective on Saturday, Sunday, and Monday, and less effective on other days of the week. 

 



248 

 

Table Appendix 5.  Estimation results for total usage by days 

VARIABLES  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Age  0.0376*** 0.0295*** 0.0462*** 0.0136 0.0364*** 0.00856 0.0341*** 

  (0.00784) (0.00886) (0.00793) (0.00909) (0.00792) (0.00722) (0.0132) 

Gender  0.149 -0.265* -0.140 -0.0479 -0.211 -0.372*** -0.840*** 

  (0.142) (0.144) (0.127) (0.145) (0.134) (0.139) (0.224) 

WaitTime  -0.000347* -0.000215 -0.000528*** -0.000472*** -0.000146 0.000226* -0.00117*** 

  (0.000210) (0.000168) (0.000186) (0.000183) (0.000166) (0.000136) (0.000306) 

Distance Gain 0.00643 0.0371 -0.0109 0.0219 0.105* 0.0561* 0.179 

  (0.0375) (0.0633) (0.0470) (0.0416) (0.0583) (0.0334) (0.119) 

 Loss 0.0598 0.0225 0.0335 0.0450 0.0124 0.0134* 0.0274 

  (0.0378) (0.0216) (0.0400) (0.0301) (0.0232) (0.00687) (0.137) 

RideTime Gain -0.00129** -0.000536 -0.000660* -0.000192 -0.000632* -0.000164 -0.000690 

  (0.000562) (0.000529) (0.000386) (0.000368) (0.000377) (0.000295) (0.000681) 

 Loss -0.000287 -0.000335 -0.000865** -0.000192 0.000337 -3.19e-05 -0.00305*** 

  (0.000211) (0.000410) (0.000352) (0.000354) (0.000374) (0.000389) (0.00107) 

Cost Gain 0.000131 0.000233* 0.000156 -4.98e-05 -7.26e-05 -0.000128** -0.000164 

  (0.000135) (0.000129) (0.000123) (8.72e-05) (9.49e-05) (5.63e-05) (0.000131) 

 Loss -1.34e-05 -5.27e-05 -1.57e-05 6.71e-07 -0.000193** -5.52e-05 -2.97e-05 

  (1.36e-05) (7.32e-05) (1.47e-05) (6.30e-05) (8.29e-05) (3.95e-05) (0.000154) 

Satisfy  0.457 0.465 -1.033*** 0.831 0.877* 0.519 -0.979** 
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  (0.398) (0.440) (0.379) (1.075) (0.491) (0.453) (0.417) 

Constant  -0.236 -0.133 1.099** 0.243 -0.417 0.287 2.204*** 

  (0.534) (0.596) (0.459) (1.115) (0.656) (0.522) (0.701) 

Observations  206 188 237 199 269 189 100 

/lnalpha  -0.374*** -0.579*** -0.471*** -0.451*** -0.176* -0.882*** -0.370** 

  (0.122) (0.144) (0.120) (0.132) (0.1000) (0.173) (0.175) 

Log-Likelihood -532.4360 -430.0043 -603.9028 -485.3961 -701.7730 -381.3279 -253.2531 

*** p<0.01, ** p<0.05, * p<0.1; Standard errors are in parenthesis 

Table Appendix 6.  Summary of significant variables for total usage by days 

VARIABLES  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Age  (+) (+) (+)  (+)  (+) 

Gender   (-)    (-) (-) 

WaitTime  (-) (-) (-) (-)  (+) (-) 

Distance 
Gain     (+) (+)  

Loss      (+)  

RideTime 
Gain (-)  (-)  (-)   

Loss   (-)    (-) 

Cost 
Gain  (+)    (-)  

Loss     (-)   

Satisfy    (-)  (+)  (-) 

Constant    (+)    (+) 
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Figure Appendix 4. P-spline fits for Total Usage parameters by days of the week 

 

Then, the coverage of the 95% Bayesian confidence interval (CI) for each smoothing 

was calculated using Eq. (44). Figure Appendix 5 shows the estimated functional 

relationship as well as the simulated coverage of the 95% Bayesian CIs. To add, the 

summary of fit of the estimated splines is summarized in Tables Appendix 7 and 8, each 

showing the approximate significance of parametric and nonparametric effects, 

respectively. 

Putting the results from Figure Appendix 5 together with Tables Appendix 7 and 8, it is 

(a) Age 

(b) WaitTime 
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noticeable that for both covariates of 𝐴𝑔𝑒  and 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒 , the coefficients that are 

estimated from the generic model completely falls within the Bayesian CIs of the cubic 

spline. This indicates that all models sufficiently explain the data, with the nonparametric 

model showing the long-term variance of time. Likewise, because all nonparametric effects 

of the covariates are insignificant, this indicates that that the linear effects need to be 

considered. There are no short-term trends in the effect of covariates on the total usage of 

ride-hailing platform’s customers, and their preferences are rather consistent with time. 

 

 

Figure Appendix 5. P-spline CIs for Total Usage parameters by days of the week

(a) Age 

(b) WaitTime 
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Table Appendix 7.  Parametric effects from P-spline fits of total usage parameters by days 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

Estimate Std. Error t-value Pr(>|𝑡|) Estimate Std. Error t-value Pr(>|𝑡|) 

Age 

(Intercept) 0.0294 0.0053 5.60 0.0025** 0.0288 0.0060 4.80 0.0087** 

x -0.0133 0.0158 -0.85 0.4366 -0.0133 0.0173 -0.77 0.4836 

x2 - - - - 0.0483 0.1197 0.40 0.7075 

WaitTime 

(Intercept) -0.0004 0.0002 -2.18 0.0807. -0.0003 0.0002 -1.80 0.1456 

x -0.0003 0.0005 -0.50 0.6408 -0.0003 0.0005 -0.48 0.6549 

x2 - - - - -0.0032 0.0037 -0.85 0.4437 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1
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Table Appendix 8.  Nonparametric effects from P-spline fits of total usage parameters by days 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

DF 
Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) DF 

Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) 

Age 
𝑓(𝑥) 8.535e-07 3.653e-11 4.281e-05 0.22 0.6577 7.379e-09 8.505e-13 1.115e-04 0.50 0.5199 

Residuals 5.000 9.664e-04 1.933e-04 - - 4.000 9.287e-04 2.322e-04 - - 

WaitTime 
𝑓(𝑥) 3.496e-07 5.769e-14 1.650e-07 0.78 0.4166 3.023e-09 1.325e-15 4.384e-07 1.97 0.2335 

Residuals 5.000 1.053e-06 2.106e-07 - - 4.000 8.921e-07 2.230e-07 - - 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1
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Lastly, the same empirical model used to analyze the stream-of-time effects of 

covariates on service satisfaction of consumers in the Macaron ride-hailing platform 

service by the times of the day was used to observe stream-of-time effects of the service 

satisfaction (𝑆𝑎𝑡𝑖𝑠𝑓𝑦) that varies by days of the week. Our interest is to identify the 

influence of gains and losses of specified covariates in consumers’ service satisfaction. The 

estimation results for service satisfaction are presented in Table Appendix 9, and the 

significant variables for each time of the day are again summarized in Table Appendix 10.  

The results reveal that the coefficients for covariates of 𝐺𝑒𝑛𝑑𝑒𝑟 and 𝑅𝑖𝑑𝑒𝑇𝑖𝑚𝑒_𝐿𝑜𝑠𝑠 

were consistently significant on each day of the week, while the covariate of 𝑆𝑎𝑡𝑖𝑠𝑓𝑦-)!, 

indicating whether the consumer experience of prior ride-hailing use was satisfactory, was 

significant on all days. Covariates with regard to cost were almost always insignificant. 

The estimated paths for coefficients of covariates that were consistently significant and 

varies by the day of the week were depicted using both the cubic and quintic P-spline 

functions as shown in Figure Appendix 6.  

From the figure, we obtain rather smooth curves for 𝐺𝑒𝑛𝑑𝑒𝑟  and 𝑆𝑎𝑡𝑖𝑠𝑓𝑦-)! , 

suggesting long-term trends in their time-varying influence on satisfaction. Specifically, it 

can be seen that overall, men are more satisfied with the Macaron Taxi ride-hailing service 

than women. The level of satisfaction influenced by being a man decreases from Monday 

to Thursday, and again increases from Friday to Sunday, suggesting that on Thursdays and 

Fridays, consumers’ level of satisfaction is least influenced by gender. It should be noted 

that although the constant estimate from the generic model seems to imply that women are 
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more satisfied, the coefficient of gender was insignificant in that model – the constant graph 

is drawn just for reference, not for interpretation. 
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Table Appendix 9.  Estimation results for satisfaction by days 

VARIABLES  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Age  -0.0177** -0.0169* 0.00213 -0.0120 -0.00973 -0.0144 -0.00571 

  (0.00880) (0.00898) (0.00830) (0.00930) (0.00750) (0.00907) (0.0131) 

Gender  -0.593*** -0.605*** -0.206 -0.237 -0.558*** -0.387** -0.475* 

  (0.169) (0.174) (0.157) (0.167) (0.145) (0.172) (0.251) 

WaitTime  0.000340 0.000492** 0.000153 0.000335* 0.000194 0.000407** 0.000364 

  (0.000229) (0.000211) (0.000184) (0.000191) (0.000181) (0.000190) (0.000309) 

Distance Gain -0.00777 -0.0713 -0.0416 0.0730* -0.0337 0.0350 -0.0533 

  (0.0525) (0.0639) (0.0373) (0.0423) (0.0337) (0.0418) (0.0822) 

 Loss -0.0141 0.0556* -0.00802 0.00630 -0.00804 0.0349** 0.00293 

  (0.0127) (0.0289) (0.0278) (0.0405) (0.0251) (0.0149) (0.0854) 

RideTime Gain 0.000155 -0.000304 0.000563 -0.000217 -1.28e-05 0.000171 -0.00151** 

  (0.000483) (0.000464) (0.000344) (0.000373) (0.000312) (0.000375) (0.000748) 

 Loss 9.07e-05 -0.000319 -0.000631** 7.30e-05 -7.84e-05 -0.000860*** -0.00181** 

  (0.000235) (0.000304) (0.000297) (0.000309) (0.000220) (0.000331) (0.000902) 

Cost Gain 0.000139 0.000233** -2.49e-05 -0.000151 -2.24e-05 -2.24e-05 0.000137 

  (0.000120) (0.000117) (7.55e-05) (0.000104) (9.25e-05) (6.19e-05) (0.000147) 

 Loss 2.17e-05 -2.50e-05 3.93e-06 -9.67e-06 -1.37e-05 1.89e-05 -1.78e-05 

  (2.63e-05) (6.57e-05) (1.85e-05) (4.47e-05) (3.30e-05) (4.90e-05) (9.48e-05) 

Satisfy t-1  2.949*** 2.689*** 2.930*** 2.535*** 2.824*** 2.476*** 3.170*** 
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  (0.357) (0.375) (0.338) (0.350) (0.308) (0.374) (0.502) 

Observations  1,190 1,405 1,471 1,354 1,503 1,130 511 

/cut1  -4.543*** -5.076*** -3.935*** -6.413*** -4.804*** -4.906*** -3.492*** 

  (0.587) (0.638) (0.571) (1.101) (0.564) (0.625) (0.765) 

/cut2  2.514*** 2.603*** 3.405*** 2.789*** 2.567*** 2.490*** 2.795*** 

  (0.453) (0.489) (0.441) (0.470) (0.388) (0.430) (0.672) 

Log-Likelihood -533.9838 -537.9248 -635.8605 -539.9025 -684.3139 -498.1884 -249.3963 

*** p<0.01, ** p<0.05, * p<0.1; Standard errors are in parenthesis 

Table Appendix 10.  Summary of significant variables for satisfaction by days 

VARIABLES  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Age  (-) (-)      

Gender  (-) (-)   (-) (-) (-) 

WaitTime   (+)  (+)  (+)  

Distance 
Gain    (+)    

Loss  (+)    (+)  

RideTime 
Gain       (-) 

Loss (+) (-) (-) (+) (-) (-) (-) 

Cost 
Gain  (+)      

Loss        

Satisfy t-1  (+) (+) (+) (+) (+) (+) (+) 
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Figure Appendix 6. P-spline fits for Satisfaction parameters by days of the week 

  

(b) RideTime_Loss 

(c) Satisfy
t-1

 

(a) Gender 
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The results also reveal that as the consumer’s satisfaction in the previous use of service 

positively influences the service satisfaction of the current use. Such level of influence 

diminishes until Thursday and then increase again. This suggest that the effect of 

satisfaction in the previous use of service is of least influence on the current satisfaction of 

the service on Thursday. 

Comparatively, the time-varying coefficients of 𝑅𝑖𝑑𝑒𝑇𝑖𝑚𝑒_𝐿𝑜𝑠𝑠 suggest short-term 

trend. While the decrease in loss of ride time relative to described expectations yield 

increase in service satisfaction, such level of increase in satisfaction amplifies from 

Monday to Wednesday and lessens back to the level of that on Monday by Thursday. Then, 

as the day approaches weekend, consumers are again more sensitively influenced by the 

loss in ride time, where the increase of marginal gain in service satisfaction becomes 

sharper from Friday to Sunday than from Thursday to Friday. The tendency also suggests 

that the reduction of gap between the expected ride time as suggested by the platform 

system and the actual ride time that the consumer experiences will most increase consumers’ 

service satisfaction on weekends compared to other days of the week. 

Then, the coverage of the 95% Bayesian confidence interval (CI) for each smoothing 

was calculated. Figure Appendix 7 shows the estimated functional relationship as well as 

the simulated coverage of the 95% Bayesian CIs. To add, the summary of fit of the 

estimated splines is summarized in Tables Appendix 11 and 12, each showing the 

approximate significance of parametric and nonparametric effects, respectively. 
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Figure Appendix 7. P-spline CIs for Satisfaction parameters by days of the week 

  

(b) RideTime_Loss 

(c) Satisfy
t-1

 

(a) Gender 
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Putting the results from Figure Appendix 7 together with Tables Appendix 11 and 12, it 

is noticeable that for both all covariates, constant coefficients that is estimated from the 

generic model do not fall completely within the Bayesian CIs of the cubic spline 

estimations, suggesting that the nonparametric model should be preferred in fitting the 

given coefficients that vary with time. Nonetheless, for covariates of 𝐺𝑒𝑛𝑑𝑒𝑟  and 

𝑆𝑎𝑡𝑖𝑠𝑓𝑦-)!, all nonparametric effects are insignificant, indicating that the linear effects 

involved in the smooth need to be considered, again representing long-term trend of time-

varying coefficients. Contrastingly, because the nonparametric part of the 𝑅𝑖𝑑𝑒𝑇𝑖𝑚𝑒_𝐿𝑜𝑠𝑠 

is significant, which refers to the nonlinearity beyond the linear/parametric part of the 

smooth, a linear effect of the covariate is not supported by the data. 
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Table Appendix 11.  Parametric effects from P-spline fits of satisfaction parameters by days 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

Estimate Std. Error t-value Pr(>|𝑡|) Estimate Std. Error t-value Pr(>|𝑡|) 

Gender 

(Intercept) -0.4373 0.0671 -6.52 0.0013** -0.4123 0.0638 -6.46 0.0030** 

x 0.0939 0.2013 0.4662 0.6607 0.0939 0.1839 0.51 0.6366 

x2 - - - - -1.8000 1.2737 -1.41 0.2305 

RideTime 

_Loss 

(Intercept) -0.0004 5.777e-05 -7.59 0.0453* -0.0004 9.317e-05 -4.635 0.0245* 

x -0.0019 1.957e-04 -9.65 0.0329* -0.0019 3.202e-04 -5.912 0.0134* 

x2 - - - - -0.0041 3.655e-03 -1.129 0.3503 

Satisfyt-1 

(Intercept) 2.7843 0.0970 28.70 2.451e-06*** 2.2781 0.0968 28.50 9.016e-06*** 

x 0.0383 0.2916 0.13 9.011e-01 0.0281 0.2789 0.10 9.247e-01 

x2 - - - - 2.7369 1.9323 1.42 2.296e-01 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 
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Table Appendix 12.  Nonparametric effects from P-spline fits of satisfaction parameters by days 

Variable Parameter 

Cubic P-Spline Quintic P-Spline 

DF 
Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) DF 

Sums of 

Squares 

Mean 

Squares 
F-value Pr(>𝐹) 

Gender 
𝑓(𝑥) 3.496e-05 1.788e-06 0.0511 1.62 0.2588 3.023e-07 4.272e-09 0.0141 0.54 0.5041 

Residuals 5.000e+00 1.577e-01 0.0315 - - 4.000e+00 1.052e-01 0.0263 - - 

RideTime 

_Loss 

𝑓(𝑥) 3.649 2.261e-06 3.456e-07 17.24 0.1146 1.335 5.850e-07 4.381e-07 7.957 0.0761. 

Residuals 1.351 2.708e-08 2.005e-08 - - 2.665 1.467e-07 5.505e-08 - - 

Satisfyt-1 
𝑓(𝑥) 0.430 0.0414 0.0964 1.50 0.2800 7.397e-09 3.489e-10 0.0473 0.78 0.4266 

Residuals 4.570 0.2935 0.0642 - - 4.000 2.420e-01 0.0605 - - 

*** p<0.001, ** p<0.01, * p<0.05, . p<0.1 
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Abstract (Korean) 

 

서비스에 대한 고객 충성도를 야기하고 유지하기 위해서는 지속적으로 소

비자를 만족시켜야 하고, 소비자의 서비스 재이용 여부는 해당 서비스와 관련

하여 축적된 소비자의 이용 경험에 따라 달라진다는 것은 마케팅 문헌에서 익

히 알려져 있다. 그러나 기존 연구는 재이용이 빈번한 플랫폼 서비스에서의 

사용자 행태를 분석하는데 있어 정적 효용 모형을 사용하므로, 서비스의 지속 

사용에 따른 시간 변동 효과를 적절하게 보이지 못하고 있다. 또한 소비자의 

지속적인 사용에 따른 고객의 서비스에 대한 기대치 및 인식이 변화할 수 있

음을 반영하지 못한다. 본 연구에서는 동적 효용 모형을 채택함으로써 플랫폼 

사용자가 서비스 이용 경험에 기반하여 서비스에 대한 기대치 및 인식을 조정

할 수 있음을 반영하고, 서비스에 대한 기대치와 실제 경험의 차이가 서비스

의 만족도에 어떻게 영향을 미치는지를 알아보고자 한다. 또한 반모수 모델링

을 통해 소비자의 서비스 이용 행태에서의 공변량의 시간적 특성을 알아본다. 

분석 결과, 서비스에 대한 ‘서비스 격차’ 및 ‘인식 격차’는 서비스 만족도에 영

향을 미치며, 그 영향 수준은 경험이 누적됨에 따라 변화함을 알 수 있었다. 

또한, 누적된 경험에 기반하여 조정된 소비자의 서비스에 대한 인식과 실제 

서비스 이용 경험 간의 차이가 서비스 만족에 대한 경험 누적 효과를 가장 잘 

설명함을 알 수 있었다. 마지막으로 소비자의 서비스 이용에 있어 계절적 특

성이 있음을 알 수 있었다. 이에 마케팅 관점에서 공변량에 대한 시간적 효과
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를 반영하지 못하면 소비자의 행동 변화를 잘못 감지할 가능성이 있으므로, 

마케팅 전략 수립에 있어 서비스 재이용에 따른 특성 및 계절성을 적절히 반

영할 필요가 있음을 알 수 있었다. 

 

주요어 : 소비자 이용행태, 반복사용, 반모수 모델링, 기대치 조정, 시간적 

효과, 플랫폼 서비스 

학  번 : 2017-32883 
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