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Abstract

Automatic Classification Framework for 3D
Positional Relationship between Mandibular
Third Molar and Mandibular Canal Using

Deep Learning

So Young Chun
Interdisciplinary Program in Bioengineering
College of Engineering

Seoul National University

Background: Confirming the relative buccal or lingual relationship with the
mandibular canal (MC) is important for appropriate risk assessment and treatment
planning for inferior alveolar nerve (IAN) damage during the mandibular third molar
extraction. Whereas, for inexperienced clinicians and beginners, identifying the
position and path of the mandibular canal in cone-beam computed tomographic

(CBCT) images is difficult due to anatomical variation, variable density and noise.



In addition, manual segmentation in each slice of CBCT images is a time-consuming
and labor-intensive task. For this reason, this study was performed to develop a
computer-aided diagnosis (CAD) framework that can automatically segment both
the M3 and the MC on CBCT images and classify the positional relationship between

these two structures.

Materials and Methods: The CBCT dataset was divided into a training set (24
patients), validation set (8 patients), and test set (18 patients). At the first stage of the
CAD system, an encoder-decoder network was trained to predict the segmentation
of both the M3 and the MC in a 2-dimensional (2D) axial slice of CBCT. Then a
geometry-guided 3-dimensional (3D) classification network (GCNN) with multiple
volume inputs was trained for classifying relative buccal-lingual relationships
between the M3 and the MC by learning spatial and geometry information.
Afterward, the accuracy of the shape of the mandibular third molar and the
mandibular canal and the accuracy of the positional relationship between them
predicted through the proposed method were evaluated to whether it was a

reasonable CAD system.

Result: In the automatic segmentation, Dense U-Net achieved the dice coefficient
similarity values of 0.920+0.131 for the M3 segmentation and DSC values of
0.861+0.096 for the MC segmentation. In the automatic classification of the buccal-
lingual relationship between the M3 and the MC, GCNN achieved an accuracy of

1.00.

1 A ==



Conclusion: In this study, a two-step CAD framework was developed to
automatically segment both the M3 and the MC on CBCT images and classify the

positional relationship between these two structures using deep learning.

Keyword: Deep Learning, Convolutional Neural Network, Segmentation,

Classification, Computer-aided diagnosis, Third Molar Extraction Surgery

Student Number: 2020-27763
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Introduction

Mandibular third molar (M3) extraction is one of the most commonly
performed surgeries in the oral and maxillofacial field'. An important complication
that can occur in mandibular third molar extraction surgery is nerve damage. In
particular, inferior alveolar nerve damage accounts for approximately 0.2 to 8.4%7.
This attributed to the close positional relationship between the mandibular M3 and
the mandibular canal (MC)*. As preoperative imaging to predict and minimize
complications such as nerve damage, panoramic radiographs have been
conventionally used>>-¢. Since the panoramic radiograph appears on a 2-dimensional
(2D) plane, there is a problem with superimposing or distortion of the surrounding
anatomical structures. In particular, the positional relationship between the MC and
the M3 in the buccal or lingual direction cannot be grasped* ’. To overcome the
limitations of such panoramic radiographs, cone-beam computed tomography
(CBCT) has been widely used in the dental field®. CBCT has the advantage of lower

radiation dose and cost compared with multi-detector computed tomography



(MDCT), and clearly shows 3-dimensional (3D) information of anatomical

structures including teeth, jaw bone, and neural canal”* ',

To predict the relationship between the M3 and the MC from conventional
panoramic radiographs, clinicians had to infer specific radiological signs (e.g.,
darkening or narrowing of the root, bifid apex, interruption or diversion of the
cortical outline of the mandibular canal)!'. On the other hand, the actual buccal or
lingual direction can be directly confirmed in the cross-sectional slices of CBCT. In
this regard, Maglione et al. classified 6 types according to the distance between the
mandibular third molar and the mandibular canal on the CBCT image, the level of
contact, and the three-dimensional positional relationship®. Wang et al. attempted
quantitative classification based on the presence of contact and periradicular,

interradicular, buccal, and inferior positionslz.

In addition, Wang et al. analyzed the risk factors for nerve damage on
preoperative CBCT images of patients with paresthesia after extraction of the M3"°.
The direct contact relationship between the inferior alveolar neural tube and the root
of the M3 and the buccal or lingual position were mentioned as important factors.
Moreover, the previous study reported that the possibility of damage to the inferior
alveolar nerve is higher if it is located lingually'®. The rate of the MC passing to the
lingual side of the M3 root is high when the MC and the M3 are in contact',
Therefore, confirming the relative buccal or lingual relationship with the mandibular
canal is important for appropriate risk assessment and treatment planning for inferior

alveolar nerve damage during the M3 extraction.

Whereas, for inexperienced clinicians and beginners, identifying the



position and path of the mandibular canal in CBCT images is difficult due
to variable density and noise". In addition, manual segmentation in each
slice of CBCT images is time-consuming and labor-intensive task. For these
reasons, the need for automatic segmentation of mandibular canal in

panoramic radiography and CBCT images has emerged.

Previous automatic methods for segmentation include level-set methods'®
2 template-based fitting methods®', and statistical shape models*> *. There was an
issue such as an initialization problem, transformation vulnerability, and additional
manual annotation that needed improvement for full automation. Currently, research
to segment and classify anatomical structures or lesions using deep learning in
medical or dental images has been actively conducted®, and the performance tends
to improve while overcoming limitations depending on the number of data and image
modality”?. More recently, studies on various deep learning network models for

detecting and segmenting the MCs in CBCT images has been conducted®* %',

Liu et al. evaluated the relationship between the M3 and the MC in CBCT
images using ResNet-based deep learning method®. In their study, the proximity and
contact relationship between the M3 and the MC were classified, while the relative
buccal or lingual relationship was not included. In this paper, a U-shape network for
segmentation of the M3 and the MC and a 3D-convolutional neural network that
used geometrical features for the classification of positional relationship between the
M3 and the MC were proposed. Therefore, the purpose of this study was to develop
a two-stage Computer-aided diagnosis (CAD) framework that performs automatic
segmentation of the M3 and the MC on CBCT images and classifies the positional

relationship between these two structures using deep learning.
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Material and Methods

Data acquisition and preparation

The CBCT datasets were collected from patients who underwent dental
implant and the M3 extraction surgery at Seoul National University Dental Hospital.
All CBCT images were obtained on a CBCT modality (CS 9300, Carestream Health
Inc., Rochester, USA) using tube voltage of 80 kVp, a tube current of 8 mA, and had
a spatial resolution of 0.2~0.25 mm’® and size of 841x841 pixels. The CBCT images
were collected retrospectively after removing identifiable patient information. This
study was performed with approval from the institutional review board of the Seoul
National University Dental Hospital (ERI18001). The study was performed in

accordance with the Declaration of Helsinki.



The CBCT dataset from patients were divided into a training set (24
patients), validation set (8 patients), and test set (18 patients). A total of 50 patients
were split into 24, 8, and 8 patients for training, validation, and test sets, respectively.
The number of CBCT axial images was 2735 sections for training set, 811 sections
for validation set, and 1801 sections for testing set. In addition, 63 buccal cases and
19 lingual cases were included in the dataset, and the configuration for deep learning
classification was shown in the Table 1. Each pixel in all CBCT images was
normalized to have a value between 0 and 1 for deep learning input. The M3 and the
MC were annotated in CBCT images by an oral and maxillofacial radiologist using
a software (3D Slicer, MIT, Cambridge, US)’' (Fig. 2). The ground truth of
annotation for the MC was established by the inferior alveolar nerve surrounded by
cortical bone. For buccolingual classification, the positional relationship of the M3
and the MC was defined by analyzing the successive slices from multiplanar images
of CBCT. The passing direction and path of the MC were evaluated based on the
lamina dura of the M3 root. If the MC directly contacted or passed in close proximity
to the inner surface of the M3 root, it was considered a lingual class, and if it directly
contacted or passed in close proximity to the outer surface of the M3 root, it was
classified as a buccal class (Fig. 1). Cases in which the mandibular canal was located

directly below the wisdom tooth were not included.

For segmentation of the M3 and the MC, axial images of CBCT were used
to simultaneously segment the M3 and the MC on both sides. Then 3D CBCT
volumes cropped per the M3 of the patient were used to classify the positional
relationship between the M3 and the MC. In the cases with third molars on both sides,

they were flipped to one side (right side) for classification.



Figure 1. The example of patient who the mandibular canal running the buccal side of the

mandibular third molar and the example of patient who the mandibular canal running the
lingual side of the mandibular third molar. (a, d) Axial slices of cone beam computed
tomography images, (b, €) ground truth of segmentation, and (c, f) 3D visualization of

annotated third molars and mandibular canal.



Table 1. The dataset configuration for training deep learning

Number of Number of Number of

Number of

patients axial sections  buccal cases lingual cases
Train 24 2735 30 6
Validation 8 811 13 2
Test 18 1804 20 11
Total 50 5350 63 19
e
7 s - i)
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Overall architecture of CAD framework for positional relationship between M3

and MC

The proposed method was explicitly explained in this section. Our method
consists of segmentation and classification parts as shown in Figure 3. In the
segmentation part, an encoder-decoder network was trained to predict the
segmentation of both the M3 and the MC in a 2D axial slice of CBCT. In the
classification part, a geometry-guided 3D classification network (GCNN) with
multiple volume inputs was designed for classifying relative buccal-lingual
relationships between the M3 and the MC by learning spatial and geometry

information.
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Segmentation network architecture

CBCT images were automatically cropped into 512x512 pixels images
including the region of the mandible. The U-shape network®*~ has been widely used
in medical segmentation tasks and achieved reasonable performance. Inspired by a

1°” backbone was

U-shape network, an encoder-decoder network with a DenseNet12
designed for accurate segmentation of both the M3 and the MC in CBCT images. the
DenseNet121 backbone was used as the encoder consisting of multiple densely

connected layers and transition layers to improve feature propagation and alleviate

vanishing gradients. The decoder part was comprised of a 5-level structure, where

each level consisted of a 2x2 up-sampling layer, a skip connection, and two

convolutional blocks. The skip connection concatenated up-sampled feature maps
with the corresponding those of the encoder path. The convolutional block consisted
of a 3x3 convolutional filter, a batch-normalization layer, and rectified linear unit
(ReLU) activation function. The SoftMax activation function was applied at the last
activation layer of the proposed model to extract multi-class segmentation outputs

of the M3 and the MC.
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CBCT image Prediction 1'e§ult of SDM
segmentation

CBCT image Prediction rc‘§ult of SDM
segmentation

Figure 4. (a-c) The example of patient who the mandibular canal running the buccal side of
the mandibular third molar and (d-f) an example of patient who the mandibular canal running
the lingual side of the third molar. (a, d) Examples of cone beam computed tomography
region of interest at the point closest to the mandibular canal and the third molar, (b, €)
segmentation mask of the third molar and the mandibular canal, and (c, f) signed distance
map. The line protruding radially was observed in the signed distance map, and the difference
in direction was observed when the mandibular canal was passing the lingual side or buccal

side.
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Classification network architecture

For classification, the most important part of the positional relationship
determination is the point where the M3 and the MC are in contact or closest to each
other. Volume-of-interest (VOI) was extracted with a size of 256x256x32 centered
on the point where the M3 and the MC are nearest (Fig. 5). Performing deep learning
training in small volumes is efficient because of its lower computing cost, allowing

it to be trained rapidly and with few resources.

For relationship classification, the GCNN that simultaneously learns 3D
spatial and geometric information using multi-channel inputs was proposed. Our
proposed network was composed of two main parts. The first was multiple volume
inputs for learning 3D spatial and geometric information. Signed distance transform
(SDT)* was used to calculate the geometric distance between the M3 and the MC
from the segmentation result for the second input to increase the classification
accuracy. The SDT, f, was defined as the Euclidean distance from the nearest

background point as shown in the following equation f(x):

_ d(x,0M) if xeM Eq.1
fx) = {—d(x,aM) if xeMe

Where x is metric space, M denotes the metric space of the M3 and MC,

OM denotes the boundary of M**,
For any x € X,

=i Eq. 2
d(x,0M) ylelgw d(x,y) q
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Where inf denotes the infimum.

A signed distance map (SDM) was derived by applying the SDT in 3D as
shown in the following equation considering the internal shape of the object and the

external relationship.

SDM = (1-B) «SDT(1—B) — B« (SDT(B) — 1) Eq.3
Where B denotes binary segmentation mask of the M3 and the MC, SDT

denotes application of the signed distance transform f.

In the SDM, the inside of a boundary of an object was a negative value, and
the outside was a positive value. In the SDM of predicted the M3 and the MC result,
the values between the boundaries of the two objects form a line that has a constant
value. This helps to reveal the spatial relationship between the M3 and the MC, and
this can be shown in Fig. 4. In the second, the GCNN with multiple volume inputs
was proposed to classify the relative three-dimensional relationship between the M3
and the MC. Our GCNN was comprised of a five-level structure, each level consisted
of a 3x3x3 convolutional layer, batch-normalization layer, ReLU activation function,
and 2x2x2 max-pooling layer. In the last output part, the class probabilities for the
relative buccal-lingual positions of the MC were calculated using the SoftMax
activation function following the global average pooling layer and dense layer (Fig.
3). Our GCNN simultaneously learned 3D spatial and geometric information from

both CBCT volumes and SDM of predicted the M3 and the MC.
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Evaluation metrics

The performance of segmentation was evaluated by comparing the
annotated ground truth with deep learning results of segmentation. The evaluation
metrics included volumetric overlap error (VOE), relative volume difference (RVD),

precision, recall, dice similarity coefficient (DSC). All matrices were calculated as

Vgthpred

volume level. VOE (1 — ) means a rate between intersection and union,

VgtUVpred

VoV o
RVD (Iytv—pre‘il) means absolute volumetric size difference. Where V.4 was the
gt

number of voxels from prediction and Vg, from annotated ground truth. Precision

TP . " - TP
(m) was a rate of correctly predicted among positive predictions, recall (TP+FN)
. 2TP
was a rate of correctly predicted among ground truth and DSC (-—————) means
2TP+FN+FP

a harmonic mean of precision and recall. Where TP, FP, and FN respectively denote

true positive, false positive, false negative.

The performance of classification was evaluated using evaluation method

as follows: sensitivity, specificity, accuracy and area under receiver operating

TP
TP+FN

characteristic curve. Sensitivity (; ) was a rate that correctly identifies the

TN
TN+FP

positive result for the actual class, specificity ( ) was a rate that correctly

TP+TN

identifies the negative result for the actual class, and accuracy(m)

was

the proportion of correct predictions for all classes. Where TN denote true negative.

Interpreting classification result

After training the deep learning network model for classification, the

rationality was confirmed by extracting the attentional area of the classification

16 M 2-H



system. In this study, Grad-CAM was used to verify the target area of buccolingual
classification using the GCNN. Grad-CAM verified the learning rationale of the deep
learning network model, previously referred to as a black box, by visualizing the
learning results of CNN as a heat map. The classification system proposed in this
paper utilized the segmentation results and multiple inputs for effective classification.
Therefore, a qualitative evaluation was performed by confirming the difference in
the attentional area of the classification method according to the segmentation result

from each network and the input configuration (Fig. 11) using Grad-CAM.
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3

Results

The segmentation performance was evaluated for a total of 18 patient cases
not used for training. Table 2 shows the quantitative evaluation of the segmentation
performance of DSC, precision, recall, RVD, and VOE. Dense U-Net achieved the
highest score for most indicators. Dense U-Net achieved DSC, precision, recall,
RVD, and VOE values 0f 0.920+0.131, 0.946+0.091, 0.918+0.148, 0.039+0.025, and
0.088+0.024, respectively for the M3 segmentation. For the MC segmentation,
Dense U-Net achieved DSC, precision, recall, RVD, and VOE of 0.86140.096,

0.911+0.085, and 0.830+0.136, 0.157+0.0950, 0.248+0.075, respectively.
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Figure 6 shows some qualitative segmentation results of both the M3 and
the MC in CBCT axial images. The predicted segmentation masks of M3&MC (red)
from the segmentation networks and the ground-truth of M3&MC (green) were
overlaid on the original CBCT images. In Figure 6 (a), (d), and (e), the segmentation
result from Dense U-Net has more true positives and fewer false negatives in the MC
area. Particularly, in Figure 6(a), the MC was difficult to identify visually. In contrast
to other segmentation networks that failed to successfully segment the MC, Dense
U-Net successfully segmented the MC. In addition, the segmentation result of Dense
U-Net has fewer false positives compared with the segmentation result of other

networks as in Figure 6 (c).
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CBCTImage SegNet simple U-Net Attention U-Net Dense U-Net

(@)

(b)

©

@

©

Figure 6. Segmentation results from SegNet, Simple U-Net, Attention U-Net, and Dense U-
Net. The predicted segmentation masks of the third molar and the mandibular canal and the
ground-truth of those were overlaid on the original cone beam computed tomography images.
The green, yellow, and red regions represent the false negative, the true positive, and the false

positive, respectively.
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Figure 7 shows the 3D visualizations of 2D segmentation results from each
network. The 3D visual results of Dense U-Net show in general agreement with the
ground truth without frequent discontinuities compared with other networks,
indicating a lower level of false negative than those of the other networks. Figure 8
shows the precision-recall curves representing the segmentation performance of
SegNet, simple U-Net, Attention U-Net, and Dense U-Net for the M3 (a), the MC
(b), the M3 and the MC (c). Dense U-Net achieved (a) 0.9571, (b) 0.8717, and (c)
0.9363 in the area under curve values of the precision-recall curve for the M3, the
MC, the M3 with the MC, respectively. These were the highest values compared with
the AUCs from other networks. Figure 9 shows the line plots of DSC, precision, and
recall of the M3 and the MC. Computed values were averaged mean DSC of a same
axial slice from deep networks from the inferior to the superior part of the CBCT
volumes and plotted for each deep learning network. The results of Dense U-Net had

higher values and more minor fluctuations in the lines plot than other results.
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Ground Truth SegNet simple U-Net Attention U-Net Dense U-Net
(a) Lingual

‘eeveele
\B\B\&\&
A CACACA
99999
Bf 0/ B/ &
of &f of & of

(f) Lingual

Figure 7. Three-dimensional visualization of ground truth, Three-dimensional
visualization of segmentation results from SegNet, Simple U-Net, Attention U-Net, and
Dense-U-Net from right to left. (a-c) Third molars and mandibular canals at the right side
of patients, (d-f) third molars and mandibular canals at the left side of patients. The red line
passing through each third molar was the main axis of the third molar, traversing the center
of the root of the tooth from the center of the tooth crown. The direction of the red line
explicitly confirmed the buccal-lingual relationship between the third molar and the

mandibular canal.
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Table 3 shows the quantitative results of a comparative experiment on
classification performance to prove the validity of the input components of the
GCNN consisting of multi-channel input, including the SDM. The result of training
the three-dimensional positional relationship with only the CBCT volume showed
the lowest accuracy, sensitivity, and AUC, indicating the classification failed. In
addition, most of the results of the different input combinations were highly
imbalanced. On the other hand, the highest values were achieved with accuracy,
sensitivity, specificity, and area under the ROC curve where the Dense U-Net
segmentation results were utilized for SDM generation, which was employed as the
second channel of multi-input. Figure 10 shows the ROC curve for verifying the
performance of the GCNN. The classification performance using the segmentation

result of Dense U-Net is closest to the upper left, indicating the best classifier.

The segmentation performance affected the classification performance
because the SDM, a component of the GCNN, was derived from the result of the
segmentation. Binary masks provided location information and shape information in
the training of classification even though discontinuities of segmentation results
frequently appeared. This can be explained that a coherent region was emphasized
as a target for classification training in Fig. 12. In contrast to a binary mask
representing a distinct region, even if successive segmentation of the M3 and the MC
fails, the SDM displayed a fine linear structure. In the case of the SDM derived from
segmentation results with poor accuracy and discontinuity, fragmented and scattered
white linear structures were shown, resulting in images that were difficult to
represent proper relationships between the M3 and the MC. Accordingly, reduced

classification performance was shown when using SDM of SegNet and Simple Unet,
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which have relatively low segmentation performance, and significantly increased
classification performance when the SDM of Attention U-Net and Dense U-Net was
used. The training of classification using only the SDM as input still does not seem
to target reasonable regions well. On the other hand, as suggested in this paper, if the
SDM was used with CBCT volume for the classification training, training targeted a
reasonable area with high consistency. Our assumption that the additional
information on the regions closest to the M3 and the MC and the position and shape
of adjacent anatomical structures would be an important basis for classification

training was verified.

Fig. 12 shows some representative cases of applying Grad-CAM to
classification results. The activation heatmaps of Grad-CAM overlaying on the
patient's CBCT images were shown, according to the segmentation network and the

input configuration of the classification network.
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Table 3. Comparative analysis of the geometry-guided 3-dimensional classification network
for classification performance. Accuracy, sensitivity, specificity, and area under the receiver
operating characteristic (ROC) curve (AUC) values for classification performance of the

buccal-lingual relationship between the third molar and the mandibular canal.

Segmentation model CBCT ]?1111:113’ Dilsliaal}:ce Accuracy  Sensitivity ~ Specificity A}Eg COf
- Vv 0.32 0.10 0.73 0.34
SegNet v 0.87 0.90 0.82 0.97
Simple U-Net Vv 0.74 1.00 0.27 1.00
Attention U-Net Vv 0.61 0.50 0.82 0.81
Dense U-Net Vv 0.84 1.00 0.55 0.91
SegNet v v 0.48 0.25 0.91 0.69
Simple U-Net Vv Vv 0.77 0.80 0.73 0.83
Attention U-Net Vv Vv 0.52 0.40 0.73 0.62
Dense U-Net Vv Vv 0.71 1.00 0.18 0.69
SegNet v 0.77 0.65 1.00 0.91
Simple U-Net N 0.84 0.80 0.91 0.96
Attention U-Net Vv 0.71 0.85 0.45 0.85
Dense U-Net Vv 0.84 0.90 0.73 0.92
SegNet Vv Vv 0.65 0.65 0.64 0.76
Simple U-Net Vv v 0.68 1.00 0.09 0.92
Attention U-Net Vv Vv 0.90 0.90 0.91 0.98
Dense U-Net Vv Vv 1.00 1.00 1.00 1.00
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ROC Curve for classification
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—— Dense U-Net (AUC=1.00)
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Figure 10. The performance of buccolingual classification in terms of receiver operating
characteristic curves. Classification performance using geometry-guided 3D classification
network was presented for segmentation networks of SegNet, U-Net, Attention U-Net, and

Dense U-Net.
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4

Discussion and Conclusion

The detection of the inferior alveolar nerve is a necessary step in oral and
maxillofacial surgery, such as implant placement in the mandible, extraction of
impacted teeth, and orthognathic surgery'**'. If nerve damage occurs during surgery,
it may cause temporary or permanent sensory and functional abnormalities, affecting
the patients quality of life*?. The incidence of inferior alveolar nerve injuries in the
M3 extraction surgery increases as the MC and the root of the M3 are closely
located®. In addition, the positional relationship in the buccolingual aspect of the
MC to the M3 is a risk factor as important as proximity between the M3 and the MC
for nerve damage and a factor that is routinely classified in the clinical field"* **,
Therefore, preoperative imaging and diagnosis are essential to sufficiently predict
and prepare for the risk. Conventionally used 2D panoramic images have limitations
such as distortion and superimposing of structures* ’. The CBCT images, which
overcome these problems have been widely used in recent years®. However, it is a

labor-consuming task to accurately identify the path of the MC and the three-

dimensional relationship with the M3, in each cross-section of the CBCT image



which has lower contrast resolution and higher noise"’.

The application of deep learning to diagnosis and prognosis in the medical
field as well as in the dental field has been actively conducted. These include
segmentation of the M3 or the MC on 2D panoramic radiography or 3D CT or CBCT

25.27.29. 4548 and classification of impacted third molars®~2. In particular, Liu

images
et al. segmented the M3 and MC on CBCT images and classified the positional
relationship into three types according to the proximity and contact between the two
structures®’. However, no previous studies have yet been reported on the automatic

classification of the buccal-lingual positional relationship between the M3 and the

MC using deep learning.

In this study, a two-stage deep learning CAD framework was proposed to
automatically segment the M3 and the MC and classify the positional relationship
between the M3 and the MC in the CBCT images. In the first stage, a U-shaped
architecture was proposed for multi-class segmentation of the M3 and the MC, where
the encoder path is built using pre-trained DenseNet121’. In the second stage, the
GCNN learns anatomical geometric information in the CBCT volumes using a
signed distance map (SDM)*® generated from a segmentation mask of the M3 and

the MC to accurately classify their positional relationship.

Before classifying the positional relationship between the M3 and the MC,
the M3 and the MC were segmented using Dense U-Net, the deep learning model
that effectively reused features of objects. In the case of the M3 segmentation, all
four network models showed high segmentation performance, but Dense U-Net

showed the highest segmentation result. In the case of the MC segmentation,
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Attention U-Net and Dense U-Net showed higher results than the other two networks
(Table 2). In the AUC values of the precision-recall curve, Dense U-Net had the
highest value in all segmentation results, indicating that the Dense- Dense U-Net was
a network with balanced precision and recall. (Fig. 8). In the result of superimposing
the predicted mask and the ground truth for qualitative evaluation, fewer false-
positive (red color) and false negative (green color) areas were observed in the result
of Dense U-Net compared with the results of the other networks (Fig. 6). When the
segmentation result was visualized in performance, disconnectivity of the MC
occurred in the region where the border of the cortex of the MC was not clearly
observed on the CBCT image, or where the MC was compressed or interrupted by
the root of the M3. Conversely, discontinuous points were significantly reduced in
the results of Dense U-Net (Figs. 6, 7, and 9). This was demonstrated numerically
by finding higher values and more minor fluctuations in the lines plotting the results
of the Dense U-Net (Fig. 9). As shown in Figures 6-8, the Dense U-Net was an

effective network for seamlessly segmenting all target objects.

To classify the relative positional relationship between the M3 and the MC,
the GCNN was designed utilizing the SDM that provided additional three-
dimensional spatial information. A comparative study was performed to validate the
effect of the SDM used as multiple volume inputs together with CBCT, which was
the component of the GCNN. The result of classification using the proposed GCNN
was the highest with 1.00 AUC (Table 3, Fig. 10). In this case, the SDM of the
proposed GCNN was generated as a result of Dense U-Net. the GCNN trained using
both 3D CBCT volumes and the SDM as multi-channel inputs showed higher

performance than other combinations of inputs. In particular, the classification
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accuracy using the SDM, which transformed results of Attention U-Net or Dense U-
Net, was 0.9 or higher, which was higher than the results of other networks used. On
the other hand, when single-channel inputs were used, the sensitivity or specificity
values were significantly lower. In addition, adding CBCT volume as a multi-
channel input resulted in lower accuracy. These results show that there is a limitation
to extracting 3D position information from a binary mask. It also demonstrates that
the complexity of the positional relationship analysis increases when the CBCT

volume is applied as a multi-channel input.

The quantitively confirmed classification performance was qualitatively
interpreted by Grad-CAM, confirming the target area for buccal-lingual
classification of the GCNN (Fig. 12). The most reasonable Grad-CAM was observed
when using our suggested GCNN, CBCT with the distance map produced by the
segmentation result of Dense U-Net as an input of classification. Unlike other
methods that targeted the entire M3, mandible, or external regions unrelated to
classification, the proposed method targeted the root of the M3 and periphery of the
MC. In the case of the lingual class predicted with the GCNN, the shape of the M3
root and the medullary space, including or adjacent to the cortical layer of the MC,
was recognized. In most cases of the buccal class predicted with the GCNN, the
marginal area of the M3 and the medullary space adjacent to the cortical layer of the
MC were recognized. Grad-CAM confirmed that the GCNN predicted buccal-
lingual class by an overall consistent region, especially anatomical structures close
to the M3 and the MC. In other words, the GCNN served as a geometric guide
providing specific location and spatial information of the M3 and the MC in the

classification process. As a result, the GCNN model acquired reasonable
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classification performance.

Figure 11. Input configurations for the comparative experiment. (a) Cone beam computed
tomography image only, (b) binary mask only, (c) cone beam computed tomography image
with the binary mask, (d) The signed distance map only, and (e¢) cone beam computed

tomography image with the signed distance map.
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Attention U-Net simple U-Net SegNet CBCT Image

Dense U-Net

Binary Mask CBCT + Binary Mask Distance map CBCT +Distance map
. - 2

Figure 12. Visualization results of Grad-CAM from SegNet, Simple U-Net, Attention U-Net,
and Dense U-Net. Grad-CAM result when the input image configuration was (a) binary mask
only (b) cone beam computed tomography with binary mask (c) signed distance map only (d)
cone beam computed tomography with signed distance map. Ground truth and predicted class

name was shown on the bottom of each image.
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Our proposed framework automated the classification of the positional
relationship between the M3 and the MC, which was often performed in clinical
practice. The developed CAD framework performed segmentation of the M3 and the
MC in the first stage. In the second stage, spatial information was extracted from the
result of segmentation through the SDT, and the buccal-lingual relationship between
the M3 and the MC was classified. The segmentation mask sufficient to identify the
M3 and the MC was obtained, and DSC values of 0.920+0.131 and 0.0.861+0.096
were achieved, for the M3 and the MC, respectively. Then, the GCNN achieved an
accuracy of 1.00 in that automatic classification of the positional relationship
between the M3 and the MC, which can help in the preoperative image examination
of the M3 extraction operation. This presented more explicit three-dimensional
information than simply analyzing CBCT images as a multiplanar. In addition, our
deep learning segmentation network served as a guide for CBCT images that were
difficult to read since the segmentation mask overlaid on the CBCT image. Moreover,
the decision-making time of clinicians could be shortened by receiving a kind of
proposal for cross-checking through the automatic classification of buccal relation,

which is the goal of this framework.

In our method, the segmentation step must precede the classification step.
The classification performance depended on the segmentation performance, but the
training process did not affect each other. Therefore, a new framework combining
the segmentation and the classification, two training losses with adjustable weights,
would be discussed in future studies. For lack of data, only buccal and lingual
position was used as the criterion for classification in this study. The M3 appears in

various positions and orientations, and the MC can travel between or below the roots
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of the M3. In future research, an in-depth discussion on the diversification of
classification and criteria for ambiguous cases should be made. In this study, the
annotation process for the supervised training of segmentation was semi-automated
using a 3D slicer; nevertheless, labeling the M3 and MC for each slice is still time
and labor-consuming. There is a necessity to improve the efficiency of annotation
processing on the acquired training data. Another limitation is that CBCT images of
similar quality with the same equipment were used. For future studies, evaluating
performance of the network on various CBCT images with different imaging

equipment or scanning conditions is regarded.

In conclusion, a deep-learning CAD framework was proposed for the M3
extraction surgery, including the segmentation of the M3 and the MC and the
classification of positional relationships between them. This approach was an
outstanding tool for automating preoperative tasks such as classifying positional
relationships in the M3 extraction surgery and identifying the shape of the M3 and

MC in three dimensions through 3D visualization of the segmentation result.

37 o



S

References

1. Sayed N, Bakathir A, Pasha M, Al-Sudairy S. Complications of third molar
extraction: a retrospective study from a tertiary healthcare centre in Oman. Sultan
Qaboos University Medical Journal 2019;19¢230.

2. Leung Y, Cheung L. Risk factors of neurosensory deficits in lower third
molar surgery: a literature review of prospective studies. International Journal of
Oral and Maxillofacial Surgery 2011;40:1-10.

3. Bui CH, Seldin EB, Dodson TB. Types, frequencies, and risk factors for
complications after third molar extraction. Journal of Oral and Maxillofacial Surgery.
2003;61:1379-89.

4, Hasegawa T, Ri S, Shigeta T, Akashi M, Imai Y, Kakei Y, et al. Risk factors
associated with inferior alveolar nerve injury after extraction of the mandibular third
molar—a comparative study of preoperative images by panoramic radiography and
computed tomography. International Journal of Oral and Maxillofacial Surgery
2013;42:843-51.

5. Jerjes W, Upile T, Shah P, Nhembe F, Gudka D, Kafas P, et al. Risk factors

38 A 2-TH



associated with injury to the inferior alveolar and lingual nerves following third
molar surgery—revisited. Oral Surgery Oral Medicine Oral Pathology Oral
Radiology and Endodontology 2010;109:335-45.

6. Maglione M, Costantinides F, Bazzocchi G. Classification of impacted
mandibular third molars on cone-beam CT images. Journal of Clinical and
Experimental Dentistry 2015;7:¢224.

7. Maegawa H, Sano K, Kitagawa Y, Ogasawara T, Miyauchi K, Sekine J, et
al. Preoperative assessment of the relationship between the mandibular third molar
and the mandibular canal by axial computed tomography with coronal and sagittal
reconstruction. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and
Endodontology. 2003;96:639-46.

8. Matzen L, Wenzel A. Efficacy of CBCT for assessment of impacted
mandibular third molars: a review—based on a hierarchical model of evidence.
Dentomaxillofacial Radiology. 2015;44:20140189.

9. Ueda M, Nakamori K, Shiratori K, Igarashi T, Sasaki T, Anbo N, et al.
Clinical significance of computed tomographic assessment and anatomic features of
the inferior alveolar canal as risk factors for injury of the inferior alveolar nerve at
third molar surgery. Journal of Oral and Maxillofacial Surgery. 2012;70:514-20.

10. Ghaeminia H, Meijer G, Soehardi A, Borstlap W, Mulder J, Bergé S.
Position of the impacted third molar in relation to the mandibular canal. Diagnostic
accuracy of cone beam computed tomography compared with panoramic
radiography. International Journal of Oral and Maxillofacial Surgery. 2009;38:964-
71.

11. Blaeser BF, August MA, Donoff RB, Kaban LB, Dodson TB. Panoramic

39 A 2-TH



radiographic risk factors for inferior alveolar nerve injury after third molar extraction.
Journal of Oral and Maxillofacial Surgery. 2003;61:417-21.

12. Wang W-Q, Chen MY, Huang H-L, Fuh L-J, Tsai M-T, Hsu J-T. New
quantitative classification of the anatomical relationship between impacted third
molars and the inferior alveolar nerve. BMC Medical Imaging. 2015;15:1-6.

13. Wang D, Lin T, Wang Y, Sun C, Yang L, Jiang H, et al. Radiographic
features of anatomic relationship between impacted third molar and inferior alveolar
canal on coronal CBCT images: risk factors for nerve injury after tooth extraction.
Archives of Medical Science: AMS. 2018;14:532.

14. Gu L, Zhu C, Chen K, Liu X, Tang Z. Anatomic study of the position of the
mandibular canal and corresponding mandibular third molar on cone-beam
computed tomography images. Surgical and Radiologic Anatomy. 2018;40:609-14.
15. Pauwels R, Jacobs R, Singer SR, Mupparapu M. CBCT-based bone quality
assessment: are Hounsfield units applicable? Dentomaxillofacial Radiology.
2015;44:20140238.

16. Gan, Xia Z, Xiong J, Li G, Zhao Q. Tooth and alveolar bone segmentation
from dental computed tomography images. IEEE Journal of Biomedical and Health
Informatics. 2017;22:196-204.

17. Hosntalab M, Aghaeizadeh Zoroofi R, Abbaspour Tehrani-Fard A, Shirani
G. Segmentation of teeth in CT volumetric dataset by panoramic projection and
variational level set. International Journal of Computer Assisted Radiology and
Surgery. 2008;3:257-65.

18. Gao H, Chae O. Individual tooth segmentation from CT images using level

set method with shape and intensity prior. Pattern Recognition. 2010;43:2406-17.

40 A 22 '



19. Ji DX, Ong SH, Foong KWC. A level-set based approach for anterior teeth
segmentation in cone beam computed tomography images. Computers in Biology
and Medicine. 2014;50:116-28.

20. Moris B, Claesen L, Sun Y, Politis C, editors. Automated tracking of the
mandibular canal in cbet images using matching and multiple hypotheses methods.
2012 Fourth International Conference on Communications and Electronics (ICCE);
2012: IEEE.

21. Barone S, Paoli A, Razionale AV. CT segmentation of dental shapes by
anatomy-driven reformation imaging and B-spline modelling. International Journal
for Numerical Methods in Biomedical Engineering. 2016;32:¢02747.

22. Abdolali F, Zoroofi RA, Abdolali M, Yokota F, Otake Y, Sato Y. Automatic
segmentation of mandibular canal in cone beam CT images using conditional
statistical shape model and fast marching. International Journal of Computer
Assisted Radiology and Surgery. 2017;12:581-93.

23. Kainmueller D, Lamecker H, Seim H, Zinser M, Zachow S, editors.
Automatic extraction of mandibular nerve and bone from cone-beam CT data.
International Conference on Medical Image Computing and Computer-Assisted
Intervention; 2009: Springer.

24, Hwang J-J, Jung Y-H, Cho B-H, Heo M-S. An overview of deep learning
in the field of dentistry. Imaging Science in Dentistry. 2019;49:1-7.

25. Kwak GH, Kwak E-J, Song JM, Park HR, Jung Y-H, Cho B-H, et al.
Automatic mandibular canal detection using a deep convolutional neural network.
Scientific Reports. 2020;10:1-8.

26. Cui Z, Li C, Wang W, editors. ToothNet: automatic tooth instance

41 A '



segmentation and identification from cone beam CT images. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019.

27. Jaskari J, Sahlsten J, Jarnstedt J, Mehtonen H, Karhu K, Sundqvist O, et al.
Deep learning method for mandibular canal segmentation in dental cone beam
computed tomography volumes. Scientific Reports. 2020;10:1-8.

28. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al.
A survey on deep learning in medical image analysis. Medical Image Analysis.
2017;42:60-88.

29. Vinayahalingam S, Xi T, Bergé S, Maal T, de Jong G. Automated detection
of third molars and mandibular nerve by deep learning. Scientific Reports. 2019;9:1-
7.

30. Liu M-Q, Xu Z-N, Mao W-Y, Li Y, Zhang X-H, Bai H-L, et al. Deep
learning-based evaluation of the relationship between mandibular third molar and
mandibular canal on CBCT. Clinical Oral Investigations. 2022;26:981-91.

31. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol
S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging
Network. Magnetic Resonance Imaging. 2012;30:1323-41.

32. Ronneberger O, Fischer P, Brox T, editors. U-net: Convolutional networks
for biomedical image segmentation. International Conference on Medical Image
Computing and Computer-assisted Intervention; 2015: Springer.

33. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. Unet++: A nested
u-net architecture for medical image segmentation. Deep learning in medical
image analysis and multimodal learning for clinical decision support: Springer; 2018.

p. 3-11.

42 A I



34, Milletari F, Navab N, Ahmadi S-A, editors. V-net: Fully convolutional
neural networks for volumetric medical image segmentation. 2016 Fourth
International Conference on 3D Vision (3DV); 2016: IEEE.

35. Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK. Recurrent residual
convolutional neural network based on u-net (r2u-net) for medical image
segmentation. arXiv preprint arXiv:180206955. 2018.

36. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, et al.
Attention u-net: Learning where to look for the pancreas. arXiv preprint
arXiv:180403999. 2018.

37. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ, editors. Densely
connected convolutional networks. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition; 2017.

38. Ye Q-Z, editor The signed Euclidean distance transform and its applications.
9th International Conference on Pattern Recognition; 1988: IEEE Computer Society.
39. Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation:
A level set approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 1995;17:158-75.

40. Chan T, Zhu W, editors. Level set based shape prior segmentation. 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR'05); 2005: IEEE.

41. Juodzbalys G, Wang HL, Sabalys G, Sidlauskas A, Galindo-Moreno P.
Inferior alveolar nerve injury associated with implant surgery. Clinical Oral Implants
Research. 2013;24:183-90.

42. Abarca M, van Steenberghe D, Malevez C, De Ridder J, Jacobs R.

43 -':I'H."i '-x 3 :.



Neurosensory disturbances after immediate loading of implants in the anterior
mandible: an initial questionnaire approach followed by a psychophysical
assessment. Clinical Oral Investigations. 2006;10:269-77.

43. Sarikov R, Juodzbalys G. Inferior alveolar nerve injury after mandibular
third molar extraction: a literature review. Journal of Oral & Maxillofacial Research.
2014;5.

44, Tachinami H, Tomihara K, Fujiwara K, Nakamori K, Noguchi M.
Combined preoperative measurement of three inferior alveolar canal factors using
computed tomography predicts the risk of inferior alveolar nerve injury during lower
third molar extraction. International Journal of Oral and Maxillofacial Surgery.
2017;46:1479-83.

45. Dhar MK, Yu Z. Automatic tracing of mandibular canal pathways using
deep learning. arXiv preprint arXiv:211115111. 2021.

46. Lahoud P, Diels S, Niclaes L, Van Aelst S, Willems H, Van Gerven A, et al.
Development and validation of a novel artificial intelligence driven tool for accurate
mandibular canal segmentation on CBCT. Journal of Dentistry. 2022;116:103891.
47. Lim H-K, Jung S-K, Kim S-H, Cho Y, Song I-S. Deep semi-supervised
learning for automatic segmentation of inferior alveolar nerve using a convolutional
neural network. BMC Oral Health. 2021;21:1-9.

48. Ariji Y, Mori M, Fukuda M, Katsumata A, Ariji E. Automatic visualization
of the mandibular canal in relation to an impacted mandibular third molar on
panoramic radiographs using deep learning segmentation and transfer learning
techniques. Oral Surgery Oral Medicine Oral Pathology and Oral Radiology. 2022.

49, Orhan K, Bilgir E, Bayrakdar IS, Ezhov M, Gusarev M, Shumilov E.

44 !



Evaluation of artificial intelligence for detecting impacted third molars on cone-
beam computed tomography scans. Journal of Stomatology, Oral and Maxillofacial
Surgery. 2021;122:333-7.

50. Celik ME. Deep Learning Based Detection Tool for Impacted Mandibular
Third Molar Teeth. Diagnostics. 2022;12:942.

51. Yoo J-H, Yeom H-G, Shin W, Yun JP, Lee JH, Jeong SH, et al. Deep learning
based prediction of extraction difficulty for mandibular third molars. Scientific
Reports. 2021;11:1-9.

52. Fukuda M, Ariji Y, Kise Y, Nozawa M, Kuwada C, Funakoshi T, et al.
Comparison of 3 deep learning neural networks for classifying the relationship
between the mandibular third molar and the mandibular canal on panoramic
radiographs. Oral Surgery Oral Medicine Oral Pathology and Oral Radiology.

2020;130:336-43.

45 ME2-T :5



SE2%

HH 3= o] &3t dtet AT e et
33 Y& #AAE A AF EF
ZHLAY} =
AT WA skel AU A WA F Sk A EAFe] dist A

99 B 9 A ARL et aerade AUHd 45 m:

¢

>4

olulA o] 7t zZA FF FEE Al wol A xF HoA

Zfoltt. olggt olf® & A= CBCT FdolA A3t+4 %

1

stetdhE Awow Feetal o] 7 Fx FHe 9A BAE EFE T
2l= CAD(Computer—Aided Diagnosis) ZTdAYIE 737 sl

T = A

1o
2
~

A7 R 2 A= CBCT HolH AES &d AlE(247°
A5 AEE@HEY 2 " HAE AEA08ES  gxp

=
APA. CBCTE 2D % ol ~olA A3thTA9h shotyt w9

o
o
ok
)
)
N
Oft
Lo
1%
o
(=
ﬂllﬂl
o
ey
Oft
Lo
£
)
w
=
-
B
o
Oft
_,d

19
<)

>
=
o
1o



%o 1S5 shet A3 TAL srote] el Aswe} o5 Ao]e]
92 BA A= ASEE Wrhste] @A CAD AAHIA

G,

AT A3 AE FE o)A Dense U—Netd #|3th+-x #sto] 7

o

DSC % 0.920+0.131, sfetet &&°] 39 DSC % 0.861F0.096+
SYsGTh ANTAYG Setw Alole AU BAY AF BFHAA

GCNN< 1.009] A&x== A5t}

A B2 Q7N CBCT J4lA A3t T stetae) A%

de Tt | HEs AREEk o] ¢ g e SIA #AE

M
sk

ok 297 CAD ZH 9 aE sHEsksivh

M

A (CAD), A3UYTX &x &

3 W: 2020-27763

ﬁ
2 A L1



	Introduction 
	Materials and Methods
	Results  
	Discussion and Conclusion
	References 
	국문초록  


<startpage>20
Introduction  1
Materials and Methods 4
Results   18
Discussion and Conclusion 30
References  38
국문초록   46
</body>

