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1. Abstract 

Rice (Oryza sativa) is a vital cereal crop that feeds more than 50% of the world population. 

However, the traditional anaerobic management leads rice production to consume ~40% of the 

irrigation water and emit ~10% of the global anthropogenic methane. A new paradigm for 

sustainable rice farming is urgently required amid challenges from increasing food demand, water 

scarcity, and reducing greenhouse gases emissions. Rice plants transpire considerable water 

overnight. Saving nighttime water loss is desirable but first need to understand the underlying 

mechanism of nocturnal stomatal opening. Apart from the night, optimizing daytime management 

is pivotal for designing an environmentally sustainable rice farming system. In a long-term strategy, 

detailed and reliable crop type map is compulsory to upscale new leaf level findings and site level 

methods to regional or global scale. Therefore, in this dissertation, we improved mechanistic 

understanding of nocturnal stomatal conductance in rice plants (Chapter II); provided an 

interdisciplinary and heuristic approach for designing an environmentally sustainable rice farming 

system with a case study in South Korea (Chapter III); and developed a new crop type referencing 

method by mining off-the-shelf Google Street View images to map crop types (Chapter IV). 

 

In chapter II, we proposed a “coordinated leaf trait” hypothesis to explain the ecological 

mechanism of nocturnal stomatal conductance (gsn) in rice. We conducted an open-field 

experiment by applying drought, nutrient deficiency, and the combined drought-nutrient 

deficiency stress. We found that gsn was neither strongly reduced by drought nor consistently 

increased by nutrient deficiency. With abiotic stress as a random effect, gsn was strongly positively 

correlated with nocturnal respiration (Rn). Notably, gsn primed early morning photosynthesis, as 

follows: Rn (↑) → gsn (↑) → gsd (daytime stomatal conductance) (↑) → A (assimilation) (↑). This 

photosynthesis priming effect diminished after mid-morning. Leaves were cooled by gsn as 

follows: gsn (↑) → E (transpiration) (↑) → Tleaf  (leaf temperature) (↓). However, our results clearly 

suggest that evaporative cooling did not reduce Rn cost. Our results indicate that gsn is more closely 

related to carbon respiration and assimilation than water and nutrient availability, and that leaf trait 

coordination (Rn − gsn − gsd − A) is likely the primary mechanism controlling gsn.  
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In chapter III, we aimed to increase current crop yield, reduce irrigation water consumption, and 

tackle the dilemma to simultaneously reducing CH4 and N2O emissions in a flooded rice 

production system. By proposing a heuristic and holistic method, we optimized farm management 

beyond previous most emphasized irrigation regimes while also exploring niches from other 

pivotal options regarding sowing window, fertilization rate, tillage depth, and their interactions. 

Specifically, we calibrated and validated the process-based DNDC model with five years of eddy 

covariance observations. The DNDC model later was integrated with the non-dominated sorting 

genetic algorithm (NSGA-III) to solve the multi-objective optimization problem. We found that 

the optimized management would maintain or even increase current crop yield to its potential (~10 

t/ha) while reducing more than 50% irrigation demand and GHGs (CH4 & N2O) emissions. Our 

results indicate that earlier sowing window and improvements on irrigation practice together 

would be pivotal to maximizing crop yield while sustaining environmental benefits. We found that 

the optimal fraction of non-flooded days was around 54% of growing season length and its optimal 

temporal distributions were primarily in vegetative stages. Our study shows that the present farm 

yield (8.3-8.9 t/ha) in study site not only has not achieved its potential level but also comes at a 

great environmental cost to water resources (604-810 mm/yr) and GHGs emissions (CH4: 186-220 

kg C/ha/yr; N2O: 0.3-1.6 kg C/ha/yr). Furthermore, this simple method could further be applied to 

evaluate the environmental sustainability of a farming system under various climate and local 

conditions and to guide policymakers and farming practices with comprehensive solutions. 

 

In chapter IV, we apply a convolutional neural network (CNN) model to explore the efficacy of 

automatic ground truthing via Google Street View (GSV) images in two distinct farming regions: 

Illinois and the Central Valley in California. Ground reference data are an essential prerequisite 

for supervised crop mapping. The lack of a low-cost and efficient ground referencing method 

results in pervasively limited reference data and hinders crop classification. In this study, we 

demonstrate the feasibility and reliability of our new ground referencing technique by performing 

pixel-based crop mapping at the state level using the cloud-based Google Earth Engine platform. 

The mapping results are evaluated using the United States Department of Agriculture (USDA) 

crop data layer (CDL) products. From ~130,000 GSV images, the CNN model identified ~9,400 

target crop images. These images are well classified into crop types, including alfalfa, almond, 
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corn, cotton, grape, rice, soybean, and pistachio. The overall GSV image classification accuracy 

is 92% for the Central Valley and 97% for Illinois. Subsequently, we shifted the image 

geographical coordinates 2–3 times in a certain direction to produce 31,829 crop reference points: 

17,358 in Illinois, and 14,471 in the Central Valley. Evaluation of the mapping results with CDL 

products revealed satisfactory coherence. GSV-derived mapping results capture the general pattern 

of crop type distributions for 2011–2019. The overall agreement between CDL products and our 

mapping results is indicated by R2 values of 0.44–0.99 for the Central Valley and 0.81–0.98 for 

Illinois. To show the applicational value of the proposed method in other countries, we further 

mapped rice paddy (2014–2018) in South Korea which yielded fairly well outcomes (R2=0.91). 

These results indicate that GSV images used with a deep learning model offer an efficient and 

cost-effective alternative method for ground referencing, in many regions of the world.  

 

Keyword: sustainable rice production, nocturnal stomata, mapping 

Student Number: 2018-30098  
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Chapter I. Introduction 

1.1. Study Background 

Rice (Oryza sativa) is a vital cereal crop that feeds more than 50% of the world population and 

over 90% is cultivated in Asia (Bouman and Tuong, 2001; Dong and Xiao, 2016). Rice has been 

prevalently cultivating worldwide in the flooded paddy to imitate its original subtropical growing 

environments, suppress weeds, and maintain yield for ~4000 years (Gutaker et al., 2020; Zong et 

al., 2007). However, the traditional anaerobic management leads rice production to consume ~40% 

of the irrigation water (Lampayan et al., 2015) and emit ~10% of the global anthropogenic methane 

(Saunois et al., 2020). As the largest water consumer in the agricultural sector and dominant 

anthropogenic methane emitter, the longstanding thousand years of flooded rice farming is no 

longer sustainable while challenged by water scarcity (Gosling and Arnell, 2016), carbon-neutral 

pledges (Flagg, 2015), and global warming (Naylor et al., 2007; Zhao et al., 2017). We urgently 

need new paradigms for cultivating rice sustainably. 

1.2. Purpose of Research 

Saving considerable transpiration water loss overnight is desirable but need to understand the 

underlying mechanism of nocturnal stomatal opening. Recently, Zhang et al. (2021) determined 

that the average transpiration ratio between night and daytime (En/Ed) was 16.5 ± 6.1% across 30 

rice genotypes, with a maximum of ~35% (Zhang et al., 2021). Similarly, C3 and C4 plants 

transpire 5–30% of daytime water through their stomata overnight (Caird et al., 2007; Forster, 

2014; Fricke, 2019; Resco de Dios et al., 2019). To elucidate the conundrum, several hypotheses 

have emerged regarding the potential mechanisms of nocturnal stomatal conductance (gsn), 

including photosynthesis priming, evaporative cooling, nutrient uptake, and CO2 removal (Caird 

et al., 2007; Resco de Dios et al., 2019; Wang et al., 2021). Nevertheless, little is known about the 

role of gsn particularly in rice plants. Therefore, in chapter II, we conducted open-field experiments 

involving drought, nutrient deficiency, and combined nutrient and drought stress treatments to 

examine the primary mechanism of gsn in rice. Here we propose nocturnal respiration (Rn), gsn, 

daytime stomatal conductance (gsd), and assimilation rate (A) would covary with the adjacent leaf 

traits. 
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Despite the considerable nocturnal water loss, improving daytime farm management would be 

pivotal to design an environmentally sustainable rice farming system. Considerable research 

efforts have been investigating to decrease water consumption, greenhouse gases (GHGs) 

emissions, and maintain the grain yield. In particular, altering soil redox conditions with draining 

management has been attracting the most attention (Bo et al., 2022; Kudo et al., 2014; LaHue et 

al., 2016; Li et al., 2006a; Meijide et al., 2017; Peng et al., 2006). However, solely conducting 

field experiments or applying the biogeochemical models with limited numerical experiments is 

nearly infeasible to quest all the potential optimal solutions while encountering multi competing 

objectives. For instance, the dilemma to reduce CH4 and N2O footprints simultaneously (Li et al., 

2005; Liu et al., 2019). Therefore, in chapter III, we provide a new alternative to optimize irrigated 

rice farming systems regarding food security, GHGs emissions, and water resources. We integrated 

the process-based DNDC (DeNitrification DeComposition) model with the non-dominated sorting 

genetic algorithm (NSGA-III). Specifically, we developed a holistic and integrated approach to 

balance several contradictory objectives including the trade-off between conserving water 

resources and maximizing grain yield, reducing CH4 and N2O emissions. 

 

In a long-term strategy, detailed and reliable crop type map is compulsory to assess the impacts of 

nocturnal stomatal opening from leaf level (chapter II) and upscale the multi-objective 

optimization method from site level (chapter III) to regional or global scales. However, the lack of 

a low-cost and efficient method for producing ground reference data results in pervasively limited 

cropland information and hindered supervised crop type mapping, particularly for large-scale and 

long periods (Phalke and Özdoğan, 2018; Wang et al., 2019; Zhong et al., 2019b). Therefore, in 

chapter IV, we developed a new crop type referencing method by mining off-the-shelf Google 

Street View (GSV) images. A successful method should be location-independent and have the 

ability to be upscaled efficiently to large areas where GSV images are available. Thus, we applied 

a convolutional neural network (CNN) model to explore the efficacy of automatic ground truthing 

via GSV images in three distinct large farming regions: South Korea, Illinois, and the Central 

Valley in California. 
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Chapter II. Nocturnal stomatal conductance in rice: a coordinating 

bridge between prior respiration and photosynthesis next dawn 

 

Abstract 

The ecological mechanism underlying nocturnal stomatal conductance (gsn) in non-CAM plants 

remains elusive. We propose a “coordinated leaf trait” hypothesis to explain gsn in rice. We 

conducted an open-field experiment by applying drought, nutrient deficiency, and the combined 

drought-nutrient deficiency stress. We found that gsn was neither strongly reduced by drought nor 

consistently increased by nutrient deficiency. With abiotic stress as a random effect, gsn was 

strongly positively correlated with nocturnal respiration (Rn). Notably, gsn primed early morning 

(5:00-7:00) photosynthesis, as follows: Rn (↑) → gsn (↑) → gsd (daytime stomatal conductance) (↑) 

→ A (assimilation) (↑). This photosynthesis priming effect diminished after mid-morning (9:00). 

Leaves were cooled by gsn as follows: gsn (↑) → E (transpiration) (↑) → Tleaf  (leaf temperature) (↓). 

However, our results clearly suggest that evaporative cooling did not reduce Rn cost. Our results 

indicate that gsn is more closely related to carbon respiration and assimilation than water and 

nutrient availability, and that leaf trait coordination (Rn − gsn − gsd − A) is likely the primary 

mechanism controlling gsn. Thus, gsn is driven by the prior Rn and primes next-day photosynthesis. 

 

Key words: Abiotic stress, leaf trait coordination, nocturnal respiration, nocturnal stomatal 

conductance, photosynthesis, Oryza sativa  
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1. Introduction 

The ecological mechanism underlying incomplete nighttime stomatal closure in C3 and C4 plants 

has remained a conundrum for more than a century. Back in circa 1886, Austrian botanist Hubert 

Leitgeb was the first to thoroughly examine nocturnal stomatal opening in many plant species 

(Leitgeb, 1886). Early related discoveries received both support (Stahl, 1897) and opposition 

(Schellenberg, 1896). Francis Darwin’s conclusion that “the biology of nocturnal closure is 

obscure” (Darwin, 1898) remains valid today. Only fairly recently, a solid body of evidence has 

confirmed that C3 and C4 plants transpire 5–30% of daytime water through their stomata overnight 

(Caird et al., 2007; Forster, 2014; Fricke, 2019; Resco de Dios et al., 2019). During recent decades, 

several hypotheses (Fig. 1) have emerged regarding the potential mechanisms of nocturnal 

stomatal conductance (gsn), including photosynthesis priming, evaporative cooling, nutrient uptake, 

and CO2 removal (Caird et al., 2007; Resco de Dios et al., 2019; Wang et al., 2021). Nevertheless, 

we still cannot reconcile the aforementioned propositions into a single framework. The benefits of 

transpiring a non-negligible portion of water without carbon assimilation after dusk are poorly 

understood.  

 

Plant functional types, intraspecific genetic diversity, leaf age, environmental conditions, stomatal 

anatomy, and nutrient availability all contribute to variation in gsn (Caird et al., 2007; Resco de 

Dios et al., 2019; Zeppel et al., 2014). Several studies have demonstrated that gsn is associated with 

the environmental origin and habitat type of species (Caird et al., 2007; Daley and Phillips, 2006; 

Snyder et al., 2003; Yu et al., 2019), with the highest ratio of gsn to daytime stomatal conductance 

(gsd) being reported in the tropics (Resco de Dios et al., 2019). Nocturnal stomatal opening prevents 

the respiratory CO2 buildup, facilitates the cytochrome pathway (Palet et al., 1991), and  reverses 

oxygen depletion in parenchyma cells (Gansert, 2003; Resco de Dios et al., 2019). However, a 

global database analysis showed that gsn, a median of 0.04 mol m−2 s−1, is unnecessarily high if the 

goal is to simply avoid toxic CO2 concentration (Resco de Dios et al., 2019). Some studies have 

also shown that gsn enhances nutrient uptake via sap flow; however, the evidence is inconsistent 

(Kupper et al., 2012; Lewis et al., 2011; Resco de Dios et al., 2019; Zeppel et al., 2014). Recently, 

Wang et al. (2021) used an optimality theory-based method to model gsn under different 

environmental conditions. Under this approach, the key benefit of gsn was assumed to be nocturnal 
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respiratory reduction, and the key cost was a loss of subsequent assimilation due to antecedent 

water use. The model well predicted the responses of gsn to soil moisture and atmospheric CO2, 

but not to vapor pressure deficit or temperature. Other theories proposed to explain gsn include 

hydraulic competition (Huang et al., 2017; Resco de Dios et al., 2019) and leaky stomata (Barbour 

et al., 2005). 

 

Photosynthesis/circadian priming is a promising hypothesis that may partly resolve the enigma of 

gsn. Circadian priming proposes that plants evolved a ~24-h biological clock synchronized with 

the Earth's rotation to enhance photosynthesis and growth, for a competitive advantage (Dodd et 

al., 2005). After sunset, this clock usually regulates gsn to decline continuously until midnight 

(Ogle et al., 2012; Resco de Dios et al., 2016) likely to conserve water. Subsequently, gsn increases 

from predawn to facilitate photosynthesis in the early morning, particularly via a faster stomatal 

response and higher stomatal conductance, which result in a higher photosynthetic rate (Drake et 

al., 2013; Resco de Dios et al., 2016). Predawn stomatal priming has been shown to increase leaf 

area index and final biomass (Resco de Dios et al., 2016), but also has a marginal effect on early 

morning photosynthesis in the common sunflower, Helianthus annuus (Auchincloss et al., 2014). 

Recent studies have found no relation between gsn and the steady-state gsd or net assimilation rate 

(A), i.e., at a photosynthetic photon flux density (PPFD) of 1,200 µmol m−2 s−1 (McAusland et al., 

2021; Resco de Dios et al., 2016; Zhang et al., 2021). Stomatal priming is likely beneficial only at 

low PPFD ranges, and its effects may diminish with the circadian cycle once gsd has acclimated to 

new environmental conditions. Thus, the circadian priming hypothesis appears to be exclusive to 

certain plant species and constrained by environmental conditions; however, further study is 

required to evaluate its applicability. 

 

Nocturnal respiration (Rn) and gsn may be mechanistically related. Recent experimental and 

modeling studies have reported that, at the leaf scale, gsn and Rn are tightly correlated (McAusland 

et al., 2021; Wang et al., 2021; Yu et al., 2019; Zhang et al., 2021) and that, at the cellular scale, 

rapid starch degradation through mitochondrial respiration promotes stomatal opening at dawn 

(Flütsch and Santelia, 2021; Flütsch et al., 2020; Rea, 2020). Mitochondrial respiration provides 

energy directly for guard cell movement before photosynthesis-derived sugars are available 
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(Flütsch and Santelia, 2021). Together, these new pieces of physiological evidence suggest that gsn 

may be actively regulated by respiration both at dawn and, more importantly, overnight. As ~46% 

of antecedent photosynthetic products are respired for maintenance and growth (Collalti and 

Prentice, 2019), gsn likely coordinates several photosynthetic traits continuously via Rn, such that 

gsn responds to the trend of the previous day, from Rn to gsn, and sets the trend for the following 

dawn, from gsn to gsd and A (Fricke, 2019). Therefore, in this study, we aimed to evaluate whether 

a combination of circadian priming and coordination between gsn and Rn could explain nighttime 

and daytime leaf physiological traits as a single model (Fig. 1). 

 

Little is known about the role of gsn in rice plants. Rice is a semiaquatic crop usually grown under 

saturated water conditions; therefore, it can be used as a model plant for evaluating multiple 

hypotheses aiming to explain gsn. For example, if leaf cooling and water conservation are the 

primary benefits of gsn, rice plants might be expected to exhibit excessively stomatal opening 

overnight because their water supply is unlimited. Recently, Zhang et al. (2021) determined that 

the average gsn/gsd ratio was ~11% across 30 rice genotypes, with a maximum of ~50%; they 

reported that significant gsn-induced evaporative cooling consistently, lowered leaf temperature 

(Tleaf) 0–2.2 °C below the air temperature; moreover, this was positively associated with stomatal 

size and related to several other leaf morphological traits. The mean gsn/gsd ratio (~11%) observed 

under saturated water conditions indicates that partial nocturnal stomatal closure in rice is a 

plausible strategy for conserving soil moisture; however, this hypothesis should be further tested 

using drought treatments. The considerable variation in gsn also suggests that further study is 

required to determine whether other hypotheses, such as circadian priming and nutrient uptake, 

can explain gsn dynamics in rice. Therefore, in this study, we conducted open-field experiments 

involving drought (DS), nutrient deficiency (NS), and combined nutrient and drought stress (NDS) 

treatments to examine the primary mechanism of gsn in rice (Fig. 1). 

 

The objective of this study was to improve our mechanistic understanding of gsn. A conceptual 

model of the key hypotheses addressed in this study is provided in Fig. 1. As the main hypothesis, 

we expected that daytime and nighttime leaf physiological traits would tightly coordinated. 

Namely, gsn, daytime stomatal conductance (gsd), net assimilation rate (A), and Rn will covary with 



21 

 

the adjacent leaf traits. As a sub-hypothesis, we expected that gsn would reduce the stomatal 

response time, i.e., the time taken to reach a maximum value of A at a certain light value (τ), and 

would also be positively correlated with early morning gsd and A. Furthermore, higher Rn values 

were expected to increase gsn, leading to higher nocturnal transpiration (En) and lower Tleaf, which 

would reduce Rn. Under NS, rice plants were expected to increase gsn to enhance sap flow for 

nutrient acquisition. Finally, under DS, gsn was expected to decline to reduce water loss. Thus, 

under NDS, rice might increase or decrease gsn, depending on the dominant competing factor. 

 

Figure 1 Conceptual model of prior hypotheses to explain gsn and the coordination hypothesis 

proposed in this study as its ecological mechanism. (I) Coordination of key leaf traits (Rn, gsn, gsd, 

A), simultaneous cooling (green and blue pathways), and subsequent circadian priming benefits 

(green and red pathways). (I-I) Circadian priming to boost photosynthesis (red pathway). (I-II) 

Evaporative cooling to regulate Tleaf and reduce respiration cost (blue pathway). (II) Nutrient 

uptake to alleviate abiotic stress (yellow pathway). (III) Water conservation due to DS and the 

unknown NDS effects (grey shaded box).  
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2. Materials and Methods 

2.1 Plants and growth conditions 

This study was conducted from May to August, 2021 on a building rooftop at the College of 

Agricultural and Life Sciences, Seoul National University (37.4573°N, 126.9482°E), Seoul, South 

Korea. We cultivated the early ripening rice cultivar “Odae” (Oryza sativa L. ssp. japonica) in silt 

clay loam soil (9.5 ± 0.5 kg/pot) obtained from a rice farm in Cheorwon (Huang et al., 2018; 

Hwang et al., 2020). On day of year (DOY) 124, we transplanted rice plants into 20 ~19-L pots 

(three seedlings per pot). We used a randomized block design including four treatments: control, 

NS, DS, and NDS. Each treatment had five replicates. Nutrient treatments started on DOY 130. In 

the control and DS treatments, we applied 5.1 g mineral fertilizer at a N/P/K ratio of 16:8:12 per 

pot. In the NS and NDS treatments, we applied 0.4 g mineral fertilizer per pot. In the control and 

NS treatments, we irrigated the rice plants daily to form a minimum 2-cm water table above the 

soil surface, to maintain a saturated volumetric water content (50 ± 1%), that was measured using 

a portable soil moisture sensor (HydroSense II; Campbell Scientific, Inc, Logan, UT, USA). In the 

DS and NDS treatments, we irrigated rice plants conservatively to sustain a volumetric water 

content of 25 ± 5% at a depth of 20 cm, as an ideal range for drought symptoms while avoiding 

excessive leaf rolling to ensure proper leaf gas exchange measurements.  

 

2.2 Leaf physiological traits  

Leaf physiological traits were measured using a portable photosynthesis system (LI-6800; LI-COR 

Biosciences, Lincoln, NE, USA) and cross-checked with an LI-6400XT instrument (LI-COR 

Biosciences). An auxiliary porometer (LI-600; LI-COR Biosciences) was used to double-check 

the stomatal conductance and Tleaf measurements obtained using the LI-6800 system. To obtain 

paired nighttime and daytime measurements, 3–4 healthy, fully expanded leaves of the same age 

were marked in each pot. We performed all measurements on the middle to upper leaf to avoid 

potential within-leaf heterogeneity. Measurements were performed by setting the chamber air 

temperature and relative humidity close to ambient conditions. A total of six measurement 

campaigns were scheduled, on DOY 169, 173, 197, 203, 211, and 218. Measurements planned for 
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DOY 169 and 211 failed due to unexpected rainfall and non-stabilized gsn in the LI-6800 cuvette 

(3 cm × 3 cm), respectively. Nocturnal measurements were conducted from 3:30 to 5:00 am local 

time in full darkness (0 µmol m−2 s−1 PPFD). Marked leaves were clamped into the LI-6800 cuvette. 

After the target traits (gsn, Rn, and Tleaf) had stabilized, measurements were performed for 1-min 

periods, with data logged at 10-s intervals. To avoid uncertainties and biases caused by dew, we 

only measured dry leaves. The gsn presented in this study also include the cuticular conductance; 

we assumed the gsn was equivalent to leaf diffusive conductance, as described previously (Resco 

de Dios et al., 2019; Zhang et al., 2021).  

 

To test the photosynthesis priming hypothesis, we conducted early morning measurements shortly 

after dawn (~5:00 – 7:00) when the ambient photosynthetic active radiation (PAR) was below 300 

µmol m−2 s−1. To minimize the effects of ambient light on stomata, we first stabilized (~5 min) 

stomatal conductance in the cuvette without an additional light source (0 µmol m−2 s−1 PPFD), and 

then set the PPFD intensity to 300 µmol m−2 s−1 using a built-in red–blue light source and recorded 

observations for 5 min; data were logged at 10-s intervals. Due to limited time and human 

resources, we used a stabilization time of 5 min based on a previous study (Resco de Dios et al., 

2016). We calculated the response time at which 63% [1-e-1] to obtain the maximum assimilation 

values (Resco de Dios et al., 2016; Woodward, 1987), and an additional 80% response time to 

obtain a gradient. Although continuous measurement would be ideal for testing whether priming 

effects diminish throughout the diurnal cycle and change with the ambient environments, due to 

limited human resources, instruments, and excessively high temperatures in the field, we measured 

only the daily maximum assimilation rate (Amax) and maximum gsd as boundary conditions. We 

measured steady-state photosynthesis between ~8:00 and 11:30 under the light-saturated 

conditions (1,800 µmol m−2 s−1 PPFD). Data were logged after the assimilation rate and stomatal 

conductance both reached steady-state (~25 min for each point). In addition, rapid light response 

curves were conducted on DOY 197 from ~9:00 to 13:00 (~10-20 min per curve). Each light 

response curve started at 1,800 µmol m−2 s−1 PPFD and dropped in steps of 300 µmol m−2 s−1. Two 

extra light values, at 50 and 150 µmol m−2 s−1 PPFD, were also included (2–3 min each). 
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2.3 Rapid A/Ci response curves 

To evaluate the efficacy of abiotic stress treatments, we used the rapid CO2 response method 

(RACiR) (Stinziano et al., 2019; Stinziano et al., 2017) to retrieve the maximum velocity of 

carboxylation (Vc,max) and maximum electron transport rate (Jmax) for marked leaves on DOY 224 

and 225. For automatic control of the reference CO2 concentration, we sued a linear ramp rate of 

82 ppm/min in the range of 10–1,000 ppm. We set the light intensity to 1,800 µmol m−2 s−1 PPFD 

and controlled the chamber air temperature and relative humidity close to ambient conditions. Data 

were recorded for a 13-min period, with high–frequency data logging (2-s interval). RACiR CO2 

ramps were also conducted daily using an empty chamber to correct the raw data. Empty chamber–

corrected data were later analyzed using Sharkey’s method to obtain Vc,max and Jmax values 

normalized at 25°C (Sharkey, 2016). 

 

2.4 Stomatal anatomy measurements 

To determine how abiotic stress affects the stomatal size and density, and whether stomatal 

anatomy can explain the hypothesized stress-induced gsn variation, we applied clear nail polish to 

both the abaxial and adaxial surfaces of marked leaves on DOY 229. The dried membrane under 

the polish was later peeled off using clear tape and mounted on an optical microscope (Axioskop2, 

Axiocam 506 Color, Zeiss, Jena, Germany) for data collection. Stomatal images were obtained at 

×400 magnification. Three to five clear images were captured per microscope slide. Stomatal size 

and number in the field of view were later analyzed using ImageJ software (National Institutes of 

Health, Bethesda, MD, USA) (Schneider et al., 2012). 

 

2.5 Statistical analyses  

Statistical and linear regression analyses were performed in the Python (v3.7) environment using 

the SciPy (v1.4.1) library. To compare means between two groups of samples, we used the two-

tailed Student’s t-test (n > 20) and nonparametric Mann–Whitney U test (n < 20). To determine 

whether two groups of samples were from the same populations, we used the nonparametric Epps–
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Singleton test (Epps and Singleton, 1986). To link multiple nocturnal leaf traits (gsn and Rn) with 

daytime traits (gsd and A) and test direct and indirect effects, we conducted path analysis using 

RStudio (v2021.09.0) software, with the Lavaan (v0.6-9) library. Three hypothesized paths were 

analyzed (Fig. 1), including the coordination–cooling path (Rn → gsn → En → Tleaf) and gsn induced 

Rn reduction path (gsn → En → Tleaf → Rn ) for nocturnal (0 µmol m−2 s−1 PPFD) steady-state 

conditions, and the coordination–circadian priming path (Rn → gsn → gsd / τ → A) for early morning 

(300 µmol m−2 s−1 PPFD) non-steady-state and light-saturated (1,800 µmol m−2 s−1 PPFD) steady-

state conditions.  

 

3. Results  

3.1 Effects of abiotic stress on leaf traits  

We detected a clear drought-induced reduction in gsd across treatments, which was unresponsive 

to nutrient deficiency (Fig. 2a).  By contrast, we found non-significant differences in the group 

mean gsn (~0.05 mol m−2 s−1) among all treatments (Fig. 2b). Both NS and DS significantly altered 

the distribution of gsn (Fig. 2b). Compared to the control, NS increased gsn from the lower to middle 

quartiles, whereas DS tended to decrease gsn in the upper quartile to the maximum range (Fig. 2b). 

In addition, gsn accounted for a large proportion (~30–60%) of gsd regardless of the DS (Fig. 2c, 

d). An effect of abiotic stress was also reflected in the clear reduction of both Vc,max and Jmax (Fig. 

S1). Abiotic stress significantly reduced stomatal size on both adaxial and abaxial leaf surfaces 

(Fig. 2e, f), as well as the adaxial/abaxial stomatal size ratio (Fig. S2). The distribution of stomatal 

size (Fig. 2e, f) displayed a similar pattern to that of gsn among all treatments (Fig. 2b). The abiotic 

effect on stomatal size was considerably larger on the adaxial leaf surface, and we detected no 

significant effects on stomatal density (Fig. S2). 
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Figure 2 (a) Daytime non-steady-state (300 µmol m−2 s−1 PPFD) and steady-state (1,800 µmol m−2 

s−1 PPFD) stomatal conductance (gsd) in each treatment. (b) Nighttime steady-state stomatal 

conductance (gsn) in each treatment, significant p-values indicate that samples are from different 

populations. (c) Grouped stomatal conductance (gs) for daytime and nighttime. (d) Ratio between 

gsn and the average gsd at 300 and 1,800 µmol m−2 s−1 PPFD for each sample. Error bars indicate 

one standard deviation of uncertainty. Stomatal size (SS) on (e) adaxial (ada) and (f) abaxial (aba) 

leaf surfaces. The lower-case letters within each panel indicate the significance level both for the 

mean values and in data distribution. Nonsignificant results are unlabeled. 

 

3.2 Nighttime leaf physiological traits  

Next, we pooled observations collected on different dates, (n = 29), and found that leaf Rn was 

significantly correlated with gsn, regardless of abiotic stress (R2 = 0.35, P < 0.001) (Fig. 3a). Tleaf 

was reduced at higher gsn values (Fig. 3b), and was negatively correlated with nocturnal En (R
2 = 

0.42, P < 0.001) (Fig. 3c and Fig. S3a). Rn and En were positively correlated (R2 = 0.28, P < 0.01) 

(Fig. S3c). 



27 

 

 

Figure 3 (a) Correlation between nocturnal respiration (Rn) and gsn (n = 29). (b) Correlation 

between gsn and Tleaf. (c) Correlation between nocturnal transpiration (En) and Tleaf. Solid 

regression line and statistics are based on all samples, colored dashed regression lines are based 

on each individual treatment.  

 

3.3 Significant priming effects of gsn on early morning photosynthesis (~5:00 – 7:00) 

We found that gsn was positively correlated with non-steady-state gsd, with a PAR of 300 µmol m−2 

s−1 PPFD, which includes abiotic stress disturbance (R2 = 0.38, P < 0.01, Fig. 4a). We also found 

that gsn was positively correlated with early morning A (R2 = 0.18, P < 0.05, Fig. 4b) and 

significantly reduced the time required to reach maximum early morning A (R2 = 0.27, P < 0.05, 

Fig. 4c; R2 = 0.29, P < 0.01, Fig. S4a). Larger gsd values (R2 = 0.63, P < 0.001) and shorter response 

times were both tightly coupled with higher A values (Fig. S3b, c). 
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Figure 4 (a) Correlation between nocturnal stomatal conductance (gsn) and early morning (300 

µmol m−2 s−1 PPFD) non-steady-state maximum stomatal conductance (gsd) within a 5-min period 

(n = 22). (b) Maximum assimilation rate (A) within a 5-min period. (c) Correlation between gsn 

and the time (τ1) to reach 63% of the maximum early morning A within a 5-min period. 

 

3.4 Path analyses only support the leaf trait coordination 

To determine how different leaf traits influence each other and ultimately act on Tleaf, A, or Rn, we 

conducted path analyses based on the proposed hypotheses, including abiotic stress as a random 

effect (Fig. 1). We detected no significant direct effects of gsn on Tleaf or A (Fig. 5a, b). The 

observed coordination-En cooling result was achieved through the pathway Rn → gsn → En → Tleaf 

(Fig. 5a), while the coordination-circadian priming effect was associated with the pathway Rn → 

gsn → τ1 → gsd  → A (Fig. 5b). Notably, Rn was tightly coupled with gsn in both pathways (Fig. 5a, 
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b), and in our linear regression analysis (Fig. 3a). We also found that lower Tleaf significantly 

increased Rn, however, the overall path model had poor fit indices (Fig. 5c). Based on these results, 

we conducted additional path analyses by increasing the degrees of freedom (Fig. S5). We found 

that the key pathways to lower Tleaf and higher A were identical.  

 

Figure 5 Path analyses of the (a) coordination-En cooling hypothesis (n = 29); (b) coordination-

circadian priming hypothesis (early morning 300 µmol m−2 s−1 PPFD and non-steady-state 

conditions; n = 22, where τ1 denotes the time to reach 63% of the maximum early morning A within 

a 5-min period; and (c) the Rn reduction hypothesis (n = 29). Arrows indicate speculated 

interactions between pairs of leaf traits. Integers in each panel denote the hypothesized sequence 

of interactions between leaf traits. Path coefficients were normalized from −1 to 1 and are shown 

in between traits; significant relationships (*P < 0.05, **P < 0.01, ***P < 0.001) are indicated by 

blue or green numbers. GFI, goodness of fit; AGFI, adjusted goodness of fit; CFI, comparative fit 

index; TLI, Tucker-Lewis index. Red text indicates poor model fit indices. Ranges of good model 

fit indices were defined as follows: AGFI > 0.90, CFI > 0.90, GFI > 0.95, and TLI > 0.97. 

 

3.5 Impacts of gsn on gsd and Amax under light-saturated conditions 

We found that gsn was not significantly correlated with gsd or Amax under light-saturated and steady-

state conditions (Fig. 6a, b). By contrast, we detected a significant positive correlation between Rn 

and gsd, and between Rn and Amax (Fig. S6c, d). However, we did not detect significant direct or 

indirect effects of nocturnal leaf traits gsn and Rn on either Amax or maximum gsd (Fig. 6d). Also, 
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we did not detect gsn-induced priming effects on gsd. Finally, Amax was strongly positively correlated 

with gsd (R
2 = 0.80, Fig. 6c). 

 

Figure 6 Correlation between nocturnal stomatal conductance (gsn) and (a) steady-state, light-

saturated (1,800 µmol m−2 s−1 PPFD) stomatal conductance, and (b) the assimilation rate (Amax) 

(n=16). (c) Correlation between steady-state, light-saturated gsd and Amax. (d) Path analysis of the 

coordination-circadian priming hypothesis (light-saturated, steady-state conditions; n=16). Path 

coefficients were normalized from −1 to 1 and are shown in between traits; significant 

relationships (***P < 0.001) are indicated in blue text. GFI, goodness of fit; AGFI, adjusted 

goodness of fit; CFI, comparative fit index; TLI, Tucker-Lewis index. 
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3.6 Photosynthesis priming effects not detected after mid-morning (9:00) 

Based on light response curve measurements obtained on DOY 197, we found that neither A nor 

gsd was clearly associated with gsn (Fig. 7a, b). At all light values, A was significantly correlated 

with gsd in all treatments (Fig. 7c). We also detected a non-significant positive correlation between 

gsn and gsd after mid-morning (9:00), even at low PAR values (50–300 µmol m−2 s−1 PPFD; Fig. 

7d). 

 

Figure 7 Light response curves of (a) A and (b) gsd. Correlation between gsd and (c) A and (d) gsn 

(n = 64, 8 PPFD values × 8 light response curves).  
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4. Discussion  

In this study, we proposed that daytime and nighttime leaf traits would covary with each other in 

the circadian cycle in rice (Fig. 1). Based on our new results (Fig. 5) and previous findings (Collalti 

and Prentice, 2019; Flütsch and Santelia, 2021; Van Oijen et al., 2010; Yu et al., 2019), we propose 

a new coordination framework for gsn (Fig. 8), in which the prior daily accumulated assimilate is 

the prerequisite nocturnal substrate, and is proportional to Rn (Collalti and Prentice, 2019; Van 

Oijen et al., 2010); mitochondrial respiration within guard cells provides energy to regulate gsn and 

light-induced stomatal opening (Flütsch and Santelia, 2021; Flütsch et al., 2020); gsn priming 

facilitates A through a shorter stomatal response time (Resco de Dios et al., 2016); nocturnal leaf 

traits (gsn and Rn) act to coordinate individual diurnal cycles to form a seasonal continuum (Fig. 

8).  

 

Figure 8 (a) Proposed temporal (diurnal and seasonal) coordination of key leaf traits and (b) 

functional interpretation; gsn acts as the key link. 
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4.1 Abiotic stress results: Implications for different hypotheses 

Our findings partly support the nutrient uptake hypothesis. We found that NS altered the 

distribution of gsn and stomatal size (Fig. 2). Unexpectedly, however, NS had no significant effects 

on mean gsn (Fig. 2b). Nutrient uptake hypothesis still lacks convincing evidence (Kupper et al., 

2012; Lewis et al., 2011; Resco de Dios et al., 2019; Zeppel et al., 2014). In this study, nutrient 

stress selectively increased gsn, for example, we obtained the highest median gsn in the NS 

treatment and highest gsn in the NDS treatment (Fig. 2b). Larger stomata maintained higher gsn in 

rice plants (Zhang et al., 2021), which is consistent with the findings that high gsn values and large 

stomata were both more frequent in the control and NDS treatments (Fig. 2b, e, f). We also found 

that stomatal size distribution pattern (Fig. 2e, f) was similar to that of gsn among all treatments 

(Fig. 2b). Thus, the proposed gsn-induced nutrient acquisition is likely achieved by increasing 

stomatal size. In addition, gsn tended to increase and decrease gsn in the upper and lower 

observation ranges, respectively, in the NDS treatment. Limited soil moisture partly offset nutrient 

acquisition demand via gsn regulation of sap flow, leading to competition in the combined NDS 

treatment between water conservation and N uptake. However, given our limited sample sizes and 

measurement uncertainty, we encourage further investigations across the growing season using 

larger sample sizes.   

 

The lack of a strong gsn response to drought (Fig. 2b) indicates that water conservation is not the 

key factor limiting gsn. In general, gsn decreases with lower soil water potential (Chowdhury et al., 

2021), but also exhibits high heterogeneity, even within the same species and treatment, see Fig. 

3a in Wang et al. (2021); this is consistent with the findings of this study (Fig. 2b). To date, gsn 

responses to drought stress were divergent (Chowdhury et al., 2021; Wang et al., 2021; Yu et al., 

2019; Zeppel et al., 2014). A recent meta-analysis also reported that gsn exhibits variable responses 

to environmental drivers such as drought, see Fig. 2 in Chowdhury et al. (2021). Notably, we 

observed high gsn/gsd ratios even under DS (Fig. 2d), which were identical to those of the control 

treatment. Drought only decreased gsn from the upper quartile (Fig. 2b). Furthermore, if the key 

benefit of stomatal closure is the conservation of water overnight (e.g., drought), why do stomata 

close under ample water supply (e.g., during water saturation)? The counterintuitive results 
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obtained in this study clearly indicate that gsn in rice plants is not closely related to water 

availability.  

 

This study found no clear evidence to reject the CO2 flushing hypothesis, however, gsn is 

excessively high for the sole reason of avoiding toxic CO2 concentrations. Excessive CO2 flushing 

is thought to prevent toxic CO2 concentrations in leaves, and therefore to assist the cytochrome 

respiration pathway. Following Resco de Dios et al. (2019), we applied Fick’s law of diffusion 

(𝑔𝑛 =
𝑅𝑛

𝐶𝑖−𝐶𝑎
), using the lowest gsn value (0.01 mol m−2 s−1) and highest Rn value (1.27 µmol m−2 

s−1) as an extreme case, and obtained an intercellular CO2 concentration (Ci) of 603 ppm (400 +

1.27×1.6

0.01
); this is unlikely to be sufficient to inhibit cytochrome respiration. We then computed Ci 

based on median values (gsn = 0.054 mol m−2 s−1; Rn = 0.85 µmol m−2 s−1), and obtained Ci = 425 

ppm, which was close to the ambient level. These findings are consistent with the results of the 

previous global gsn based study, in that gsn is favorable for CO2 removal but excessive relative to 

the requirement for cytochrome respiratory benefit (Resco de Dios et al., 2019). Importantly, we 

found that stomata did not close completely overnight, under which circumstances intercellular 

CO2 would accumulate over time, resulting in toxic CO2 levels. Therefore, we conclude that 

excessive CO2 flushing is only a secondary mechanism in the nocturnal stomatal opening seen in 

rice plants.  

 

4.2 Enhanced carbon assimilation through coordinated regulation by gsn 

We proposed that gsn acts as a “bridge” between antecedent Rn and photosynthesis occurring during 

the following dawn through the pathway Rn → gsn → τ → gsd → A (Fig. 5b). Importantly, we found 

that gsn was tightly coupled with Rn (Fig. 3a), which has also been reported previously (McAusland 

et al., 2021; Wang et al., 2021; Yu et al., 2019; Zhang et al., 2021). Interpreting gsn through Rn 

appears promising, but a main mechanism (i.e., beyond the secondary CO2 flushing mechanism) 

is required. The current literature suggests that starch metabolism is involved in guard cell 

osmoregulation (Caird et al., 2007; Chowdhury et al., 2021), which affects predawn gsn. Recent 

studies have applied isotope labeling techniques to obtain new cellular-level evidence that starch 
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degradation has distinct functions in dawn stomatal opening (Flütsch and Santelia, 2021). 

Specifically, sucrose metabolism (glycolysis and mitochondrial respiration) within guard cells 

provides energy for faster stomatal responses (Daloso et al., 2016; Flütsch et al., 2020; Lima et al., 

2018). Therefore, we suggest that Rn is not simply correlated with gsn, but is likely the causal factor 

and energy driver of nocturnal stomatal opening. Future studies should further investigate this 

hypothesis at the leaf level by collecting time-series Rn and gsn data under ambient conditions, as 

well as by conducting causality analyses.  

 

In this study, we found that gsn induced photosynthesis priming remained effective for at least 2 h 

after dawn (~5:00; Fig. 4) and diminished after mid-morning (9:00; Fig. 7). Circadian clock 

resonating gsn enhances growth (McAusland et al., 2021; Resco de Dios et al., 2016), although 

priming benefits likely also depend on plant species (Auchincloss et al., 2014), stomatal size and 

density (Drake et al., 2013) and, in particular, PPFD (Chieppa et al., 2021; Resco de Dios et al., 

2016; Zhang et al., 2021). In this study, we observed that circadian priming facilitated A in the 

early morning (~5:00 – 7:00, 300 µmol m−2 s−1 PPFD) (Figs. 4 and 5b), independent of the abiotic 

stress and stomatal anatomy (Fig. 2e, f). We found that gsn did not influence steady-state Amax 

(1,800 µmol m−2 s−1 PPFD) or the corresponding gsd (Fig. 6). More importantly, no photosynthesis 

priming effects were detected after mid-morning (9:00) at any PPFD values (Fig. 7d). Thus, based 

on the new evidence discussed above, these coordinated priming effects diminished over time and 

with changing environmental conditions. This phenomenon is likely influenced by a contribution 

of several confounding variables, particularly during circadian regulation and acclimation of gsd to 

new PPFD and temperature conditions (Matthews et al., 2018). To date, gsn has shown no effects 

on steady-state A at a PPFD of 1,200 µmol m−2 s−1 in rice plants, see Fig. S4c in Zhang et al. (2021). 

A similar result was reported for C4 switchgrass under light-saturated PPFD (Chieppa et al., 2021). 

To our knowledge, the upper limit of PPFD at which gsn influences A and gsd is 1,000 µmol m−2 

s−1, based on measurements in wheat (McAusland et al., 2021). Therefore, we suggest that future 

studies should quantify the role of coordinated priming on daily carbon budgets using continuous 

time-series observations.  
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The proposed “coordinated leaf physiological trait” hypothesis is consistent with current literature 

findings. In this study, we used Rn as a proxy of prior assimilation, based on evidence showing 

that the magnitude of nocturnal respiration is proportional to and constrained by antecedent 

photosynthesis (through the law of mass conservation), with a homeostatic Rn-to-photosynthesis 

ratio of 0.4–0.5 (Collalti and Prentice, 2019; Van Oijen et al., 2010). A recent meta-analysis also 

reported that changes in gsn are positively related to photosynthesis, see Fig. 2 in Chowdhury et al. 

(2021). These findings are consistent with the proposed coordination hypothesis (Fig. 8), in which 

Rn is first coordinated with A, subsequently provides energy for gsn, and eventually primes early 

morning gsd and photosynthesis. In this study, we tested the hypothesis that gsn responses to the 

previous-day Rn trend and sets the trend for the following dawn through the pathway Rn (day 1) 

→ gsn → τ → gsd  → A (day 2) (Fig. 5b). However, the full coordinated circle, starting with A, has 

yet to be completely elucidated (Fig. 8), for example, it may proceed through the pathway A1 (day 

1) → Rn → gsn  → gsd  → A2 (day 2). The quantitative impact of gsn on carbon assimilation is an 

important question that remains to be addressed. 

 

4.3 Evaporative cooling: Passive thermoregulation via leaf trait coordination 

We propose that leaf cooling is byproduct of coordinated leaf physiological traits. As potential 

benefit of gsn, evaporative cooling has been suggested to lower Tleaf, thereby also reducing 

respiratory cost. Wang et al. (2021) assumed that En loss was the key cost of gsn. However, this 

assumption may not be applicable in a flooded rice cultivation system, as semiaquatic plants can 

experience the full cooling benefits of large gsn, without any clear costs. In this study, we found 

that significant cooling effects were obtained through by gsn-induced transpiration (Fig. 3b, c), 

consistent with previous findings (Wang et al., 2021; Zhang et al., 2021). More importantly, we 

found clear evidence that lower Tleaf did not reduce the Rn cost under ambient conditions (Fig. 5c 

and Fig. S3b). Both linear regression and path analysis results contradicted the hypothesis of gsn-

derived Rn reduction through evaporative cooling. Nevertheless, our experiments were conducted 

under ambient conditions, with relatively low air temperature variation (27.0 ± 0.65 °C) during the 

sampling periods (Fig. 3b); this may explain why we were unable to detect respiratory reduction 

effects. Our findings, particularly the clear positive relationship between Rn and gsn over a large 
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range (Fig. 3a), conclusively demonstrate that cooling is byproduct of leaf trait coordination, rather 

than active thermoregulation, and reduces Rn cost. However, this finding does not fully exclude 

the possibility that leaf cooling is a driver in other situations, such as active at high temperatures. 

For example, Wang et al. (2021) detected a positive leaf-level response of gsn, ranging from 0.02 

to 0.05 mol m−2 s−1, to a temperature increase from 19°C to 35°C in red birch without DS. Thus, 

to determine whether evaporative cooling is an important component of gsn behavior, or rather a 

passive byproduct of leaf trait coordination at higher temperature, future studies should conduct 

measurements over a wider range of temperatures, and possibly also conduct warming treatments, 

ideally at the canopy scale (Resco de Dios et al., 2018; Stuerz and Asch, 2021). 
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Chapter III. Multi-objective optimization of crop yield, water 

consumption, and greenhouse gases emissions for sustainable rice 

production 

  

Abstract 

A new paradigm for sustainable rice farming is urgently required amid challenges from increasing 

food demand, water scarcity, and carbon-neutral pledges. This study aimed to increase current crop 

yield, reduce irrigation water consumption, and tackle the dilemma to simultaneously reducing 

CH4 and N2O emissions in a flooded rice production system. By proposing a heuristic and holistic 

method, we optimized farm management beyond previous most emphasized irrigation regimes 

while also exploring niches from other pivotal options regarding sowing window, fertilization rate, 

tillage depth, and their interactions. Specifically, we calibrated and validated the process-based 

DNDC model with five years of eddy covariance observations. The DNDC model later was 

integrated with the non-dominated sorting genetic algorithm (NSGA-III) to solve the multi-

objective optimization problem. We found that the optimized management would maintain or even 

increase current crop yield to its potential (~10 t/ha) while reducing more than 50% irrigation 

demand and GHGs (CH4 & N2O) emissions. Our results indicate that earlier sowing window and 

improvements on irrigation practice together would be pivotal to maximizing crop yield while 

sustaining environmental benefits. We found that the optimal fraction of non-flooded days was 

around 54% of growing season length and its optimal temporal distributions were primarily in 

vegetative stages. Our study shows that the present farm yield (8.3-8.9 t/ha) in study site not only 

has not achieved its potential level but also comes at a great environmental cost to water resources 

(604-810 mm/yr) and GHGs emissions (CH4: 186-220 kg C/ha/yr; N2O: 0.3-1.6 kg C/ha/yr). 

Furthermore, this simple method could further be applied to evaluate the environmental 

sustainability of a farming system under various climate and local conditions and to guide 

policymakers and farming practices with comprehensive solutions.   
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1. Introduction 

By around 2050, one of the most urgent global missions is to feed 10 billion people by doubling 

food production (Ray et al., 2013; Tilman et al., 2011) while achieving carbon neutrality (Flagg, 

2015). Rice (Oryza sativa) is a vital cereal crop that feeds more than 50% of the world population 

and over 90% is cultivated in Asia (Bouman and Tuong, 2001; Dong and Xiao, 2016). Rice, 

domesticated from wild grass as the semiaquatic crop in Yangtze valley China (Fuller et al., 2009; 

Gross and Zhao, 2014; Li et al., 2006b),  has been prevalently cultivating worldwide in the flooded 

paddy to imitate its original subtropical growing environments, suppress weeds, and maintain yield 

for ~4000 years (Gutaker et al., 2020; Zong et al., 2007). However, the traditional anaerobic 

management leads rice production to consume ~40% of the irrigation water (Lampayan et al., 2015) 

and emit ~10% of the global anthropogenic methane (Saunois et al., 2020). Unfortunately, 4.0 

billion people and many Asian countries comprised are already facing severe water scarcity 

(Mekonnen and Hoekstra, 2016). To slow climate warming, numerous countries have committed 

to achieving carbon neutrality in the next few decades. As the largest water consumer in the 

agricultural sector and dominant anthropogenic methane emitter, the longstanding thousand years 

of flooded rice farming is no longer sustainable while challenged by water scarcity (Gosling and 

Arnell, 2016), carbon-neutral pledges (Flagg, 2015), and global warming (Naylor et al., 2007; 

Zhao et al., 2017). We urgently need new paradigms for cultivating rice sustainably. 

 

Considerable research efforts have been investigating to decrease water consumption, greenhouse 

gases (GHGs) emissions, and maintain the grain yield. In particular, altering soil redox conditions 

with draining management has been attracting the most attention (Bo et al., 2022; Kudo et al., 

2014; LaHue et al., 2016; Li et al., 2006a; Meijide et al., 2017; Peng et al., 2006). Overall, a global 

meta-analysis finds non-continuous flooding mitigating CH4 budgets (53%) but substantially 

spiking N2O emissions (105%) and decreasing crop yield to some extent (3.6%) (Jiang et al., 

2019a). Specifically, by periodically draining the paddy, Alternate Wetting and Drying (AWD) 

technology shows up to 38% reduced irrigation water requirement without yield compromise 

(Lampayan et al., 2015). Similarly, the midseason drainage significantly reduces CH4 emissions 

(50–53%) and global warming potential (GWP) (46–50%) but increases N2O emissions (20–37%) 

(Haque et al., 2016). Early-season drainage also demonstrates effective GWP reduction while 
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maintaining the crop yield and constraining N2O footprints based on a growth chamber experiment 

(Islam et al., 2018). Thus, delicate planning of the duration and timing of the draining events is 

crucial to achieving the overall picture of sustainability. Mechanistic models and field experiments 

are therefore predominately applied to investigate the effects of various water-saving regimes 

(Chen et al., 2016; Fumoto et al., 2010; Liang et al., 2016; Linquist et al., 2015; Minamikawa et 

al., 2016; Tian et al., 2021). Among them, AWD has been recognized as the most promising water 

management approach and has been adopted in many regions (Ishfaq et al., 2020). Nevertheless, 

the emissions of long-lived N2O could also surge (30–45 times) from the non-continuous flooding 

management (Kritee et al., 2018). The anaerobic decomposition (Neue, 1993) and aerobic 

nitrification processes (Bouwman, 1998) conspire towards the dilemma to reduce CH4 and N2O 

footprints simultaneously (Li et al., 2005; Liu et al., 2019). 

 

In the context of rice production systems, while the bi-objective optimization problems have been 

well investigated, three or even more objectives remain less explored. Many key farming regimes 

affect the sustainability performance (Shang et al., 2021), therefore a new paradigm shall manage 

several key factors holistically such as the irrigation events (Jiang et al., 2019a), type and rate of 

the fertilization (Pandey et al., 2021; Zhong et al., 2016), straw addition (Jiang et al., 2019b), and 

tillage depth (Zhao et al., 2020). A holistic and integrated approach shall also balance several 

contradictory objectives including the trade-off between conserving water resources and 

maximizing grain yield, reducing CH4 and N2O emissions. With the extensive focus on improving 

water regimes, current solutions (e.g. AWD) are valuable to mitigate negative environmental 

impacts and sustain the social-economic benefits (Chen et al., 2016; Fumoto et al., 2010; Liang et 

al., 2016; Linquist et al., 2015; Minamikawa et al., 2016; Tian et al., 2021) but are unlikely to 

reach carbon neutrality in the mid of 21st century. To date, only a few studies consider the 

interaction of water regimes with fertilization and other farm management options by field 

experiments or scenario modeling (Kim et al., 2014; Towprayoon et al., 2005; Zhao et al., 2020). 

Furthermore, it remains unclear what the upper bound limit of irrigated rice farming system could 

achieve by optimizing rice production, GHGs emissions, and water consumption if integrated 

management is fully explored. Nevertheless, solely applying the biophysical models or conducting 
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field experiments is challenging to approach the optimal scenarios and nearly infeasible to quest 

all the potential integrated solutions while encountering multi competing objectives.  

 

To resolve a conflicting multi-objective problem efficiently, coupling a process-based model with 

a Pareto-dominance-based optimization algorithm has been demonstrated as a promising solution 

(Coleman et al., 2017; Groot et al., 2012; Kropp et al., 2019). Back in the 19th century, economists 

Francis Edgeworth and Vilfredo Pareto were the pioneers to initiate multi-objective optimization 

(MOO) problems (de Weck, 2004). Among the available MOO methods, the evolutionary 

algorithms are one of the state-of-the-art options to approximate the Pareto efficiency/front, which 

is inspired by the natural evolution (selection, recombination, and mutation) (Emmerich and Deutz, 

2018). In general, by executing the process model with vast different combinations of inputs (e.g. 

farm management), the optimization algorithm evaluates the model outputs to approach a set of 

solutions that possess the optimal values of the targeting objectives (e.g. crop yield) (Prina et al., 

2018). More specifically, the optimal solutions jointly formulate the Pareto front, where none of 

the objectives can be further improved without deterioration of any others. Therefore, it forms an 

efficient and powerful method to balance the trade-offs and synergy farm decision planning 

without developing sophisticated mathematical equations. 

 

This study aims to provide an interdisciplinary and heuristic approach for designing an 

environmentally sustainable rice farming system with a case study in South Korea. Specifically, 

we estimated Pareto fronts regarding the combination of the following key objectives: CH4 budgets, 

N2O emissions, irrigation water consumption, and crop yield. In this study, we integrated the 

process-based DNDC (DeNitrification DeComposition) model with the non-dominated sorting 

genetic algorithm (NSGA-III). Before coupling, we extensively validated a wide range of DNDC 

outputs to examine the robustness of the model. Subsequently, by comanaging the flooding events, 

fertilization dosage, and other pivotal farm regimes, this study provides a new alternative to 

optimize irrigated rice farming systems regarding food security, GHGs emissions, and water 

resources. Finally, we attempt to deploy the new method to address the following questions: 

I. Could heuristic and holistic management increase current rice yield with less irrigation water? 
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II. Could heuristic and holistic management simultaneously reduce CH4 and N2O emissions? 

 

2. Materials and methods 

2.1 Study site 

This study was conducted based on the data collected at a rice paddy site (38.2013°N, 127.2505°E), 

Cheorwon, South Korea, included in both the Korean Flux network (KoFlux) and AsiaFlux. 

During the study period (2016-2020), the farmer adopted a single cropping system and midseason 

drainage practice with the early ripening japonica variety “Odae”. The site has a temperate 

monsoon climate. In the last three decades, the annual mean air temperature and precipitation were 

10.2 °C and 1390 mm (Supplementary Fig. 1), respectively (Huang et al., 2018). The typical 

growing season starts in late April and ends in early September.  

 

2.2 DNDC model 

To assess the impacts of farm management on crop yield, GHGs emissions, and irrigation 

requirements, this study applied the process-based DeNitrification-DeComposition model (DNDC, 

version 9.5). DNDC is a carbon and nitrogen biogeochemistry model particularly developed for 

agroecosystems and comprises the following core interacting sub-modules: thermal-hydraulic, 

decomposition, denitrification, fermentation, and plant growth (Gilhespy et al., 2014; Giltrap et 

al., 2010; Li et al., 1992). DNDC has been shown to have considerable performance to predict the 

emissions of multiple GHGs (CO2, CH4, and N2O), crop growth, and soil climate under a wide 

range of climate conditions and farming practices (Chen et al., 2016; Jiang et al., 2021; Zhang et 

al., 2019; Zhao et al., 2020). To run DNDC properly, we first calibrated soil physicochemical 

properties and crop parameters including soil texture (silt clay loam), soil organic carbon, bulk 

density, growing degree days, maximum biomass production, biomass fraction, etc., by using the 

data from our previous studies (Huang et al., 2018; Hwang et al., 2020). After thoroughly 

validating simulations from DNDC with field daily and annual observations (CH4, GPP, Reco, ET, 
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Soil moisture, Soil temperature), the model was later integrated with a multi-objective 

optimization algorithm (section 2.5). For a detailed explanation of the DNDC model structure, see 

Gilhespy et al. (2014).   

 

2.3 In situ data 

Daily GHGs (CO2 and CH4) fluxes, latent heat flux, and meteorological data including air 

temperature, precipitation, wind speed, net radiation, and humidity were recorded half-hourly with 

an eddy covariance system mounted at a 10-meter high tower. The eddy covariance system 

comprises the following key instruments: a three-dimensional sonic anemometer (CSAT3, 

Campbell Scientific, Inc.); a closed path infrared gas analyzer (LI-7200, LI-COR Inc.); an open 

path CH4 analyzer based on wavelength modulation spectroscopy (LI-7700, LI-COR, Inc.) 

(Hwang et al., 2020). A nighttime method was used to partition CO2 fluxes into gross primary 

production (GPP) and ecosystem respiration (Reco). For detailed descriptions of the flux 

measurement and data processing, see Hwang et al. (2020). Soil volumetric water content and soil 

temperature were measured half-hourly at the depth of 0-0.1m and 0.1-0.2m, respectively with 

four soil moisture and temperature sensors (CS655, Campbell Scientific, Inc.). Other data 

including crop yield, rice phenology, irrigation schedule, and fertilization were obtained from the 

farming records and field measurements. The in-situ records were later used to validate simulation 

results from DNDC at both the daily and annual scale. To validate the annual simulation results 

from DNDC, we used the processed data (quality controlled & gap-filled) following the KoFlux 

protocol (Hong, 2009; Kang, 2018). To validate the daily simulation results from DNDC regarding 

GPP, Reco, CH4 emissions and evapotranspiration (ET), we used the gap-filled data but with a 

threshold of the observed percentile greater than 50-55%. Due to the common unclosed energy 

balance issue of eddy covariance measurements, we corrected measured ET with the following 

method: ETcorrected = (Rn - G) / (Huncorrected + ETuncorrected) × ETuncorrected. Where Rn is the net radiation, 

H is the sensible heat flux, and G is the soil heat flux (Jung et al., 2010). 
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2.4 Multi-objective optimization (MOO) algorithm  

To date, scalarization approaches and the Edgeworth-Pareto principle have become the key to 

solving a MOO problem efficiently. Scalarization methods, in essence, are deductive reasoning 

which decomposes a multi-objective problem into a single-objective by assembling objective 

functions or reconstructing them as constraints, such as linear weighting, Chebyshev distance, ε-

constraint method. Therefore, applying scalarization methods requires prior knowledge to design 

the constraints and parameters of the scalarization function carefully. In contrast, the Edgeworth-

Pareto principle by using inductive reasoning to find the Pareto front/set which contains a series 

of optimal solutions or so-called Pareto-nondominated solutions. In this study, to allow the 

algorithm enumerating potential optimal solutions on the Pareto front, we adopted the bioinspired 

non-dominated sorting genetic algorithm (NSGA-III) to solve the many (>3) objective 

optimization problems (Deb and Jain, 2014). In this study, we implemented the NSGA-III 

algorithm with the DEAP (Distributed Evolutionary Algorithms in Python) library (Rainville et 

al., 2012).  

 

2.5 DNDC-NSGA-III integration and optimization 

DNDC was coupled with the NSGA-III optimization framework. Particularly, we addressed the 

following four objective functions derived from DNDC: 

𝑓𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 = [𝑓𝑚𝑎𝑥{𝐷𝑁𝐷𝐶(𝑦𝑖𝑒𝑙𝑑)}, 𝑓𝑚𝑖𝑛{𝐷𝑁𝐷𝐶(𝐶𝐻4 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, 𝑁2𝑂𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, 𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑟𝑖𝑜𝑛)}](1) 

DNDC does not directly compute irrigation water consumption, here we used the water balance 

method to retrieve annual irrigation demand as: 

𝑓𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 = (𝐷𝑁𝐷𝐶𝐸𝑇 + 𝐷𝑁𝐷𝐶𝑟𝑢𝑛𝑜𝑓𝑓 +𝐷𝑁𝐷𝐶𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔 + 𝐷𝑁𝐷𝐶𝑠𝑜𝑖𝑙𝑤𝑎𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒 − 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑖𝑜𝑛)(2) 

Where the objective functions were subject to: 

⌊

𝑆𝑜𝑤𝑖𝑛𝑔:𝐴𝑝𝑟𝑖𝑙. 1𝑠𝑡 ≤ 𝑑𝑎𝑡𝑒 ≤ 𝑀𝑎𝑦. 31𝑡ℎ;
𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛:0 ≤ 𝑟𝑎𝑡𝑒 ≤ 140𝑘𝑔/ℎ𝑎;

𝑇𝑖𝑙𝑙𝑎𝑔𝑒:𝑑𝑒𝑝𝑡ℎ = [10,20, 30]𝑐𝑚;
⌋(3) 
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In addition, the objective functions were also subject to the following irrigation schedules. To 

maintain its simplicity and therefore practical relevance, we scheduled ten flooding events with a 

~15 days moving interval, which randomly started half-monthly and ended in the middle and end 

of each month respectively. 

 

The optimization framework was partly based on previous work (Prina et al., 2018) and comprised 

the following processes: i) Setting up NSGA-III algorithm, constraints, and objective functions. 

Specifically, we initialized a parental population with random solutions, 4500 individuals 

generated, namely 4500 random holistic farm managements (sowing, fertilization, tillage, and 

irrigation). ii) Computing the values of the objective functions by executing DNDC model with 

each solution, here we used the averaged climate data (2016-2020) and assumed the soil properties 

remained stable during the study period. As the source code of DNDC is not available, we used 

Python library ‘pyautogui’ to automate interactions between the DNDC model and NSGA-III 

algorithm. iii) Evaluating the performance of each individual by ranking the fitness of its objective 

functions. iv) Generating a new generation through selection, crossover, and mutation, based on 

the performance of fitness. v) Approaching Pareto fronts after all pre-defined generations, 10 

generations in this study, of individuals generated and evaluated. By testing the NSGA-III with 

varied population sizes and generations, we found that the configuration of 4,500 individuals and 

10 generations can obtain stable Pareto fronts with a relatively time-efficient (around 60 hours) 

optimization process. Considering the possibility of different farming management combinations, 

a smaller size of population or fewer generations would either omit potential non-dominated 

solutions or result in a biased Pareto front. By contrast, we found a larger population or more 

generations were notably time-consuming but did not further improve the Pareto fronts in the 

context of this study.  
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3. Results  

3.1 DNDC model validation 

The performance of DNDC was evaluated with in situ observations both at annual (Fig. 9) and 

daily (Fig. 10 and 11) scales. At the annual scale, we found that DNDC reasonably captured 

interannual variations of the four key objectives, including crop yield, CH4 emissions, GPP 

dynamics, and ET budgets (Fig. 8a-d).  

 

 

Figure 9 Annual scale validation of the DNDC simulations with in situ data regarding (a) crop 

yield, (b) CH4 emissions, (c) GPP, and (d) ET from 2016 to 2020. Error bars indicate 95% 

confidence interval.  

 

At the daily scale, we found that DNDC simulated well of CH4 flux under the current mid-season 

drainage practice and through the study periods (Fig. 10a). However, DNDC greatly overestimated 

GPP during the early growing season, particularly a biased spiking jumping from 0 to ~80 kg C/ha 
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following the sowing (Fig. 10b). By contrast, GPP simulations matched with observations from 

around middle growing seasons to the rest of investigated periods. DNDC also captured Reco 

fairly reasonably during the growing seasons, but also underestimated the flux at ~1-2 (g C m-2 d-

1) during the non-growing seasons. Importantly, we detected marginal effects of the early season 

GPP mismatch on crop yield estimations depicted in Fig. 9a. 

 

Figure 10 Daily scale validation of the DNDC simulations with in situ data in terms of (a) CH4 

flux, (b) GPP flux, and (c) Reco flux from 2016 to 2020.  

 

Daily scale ET and soil environment simulations also showed reasonable agreements with the 

observations (Fig. 11). During growing seasons, we found that DNDC well tracked the dynamics 

of water-related fluxes under the current mid-season drainage practice. 
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Figure 11 Daily scale validation of the DNDC simulations with in situ data in terms of (a) ET flux, 

(b) soil moisture, and (c) soil temperature from 2016 to 2020. 
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3.2 The gaps between the current farming outcomes and optimized objectives 

By DNDC-NSGA-III integration and optimization, we approached Pareto fronts and obtained the 

probability density distribution of each paired dual objective (Fig. 12). Crop yields were 

maintained at a relatively high level, but at a great environmental cost in both CH4 emissions (Fig. 

12a) and water consumption (Fig. 12b). We found that current farming practices resulted in 

considerable gaps to reach Pareto fronts for all the objectives (Fig. 12a-f), particularly for reducing 

CH4 emissions and irrigation water consumption (Fig. 12c). By contrast, the majority paired 

objectives between crop yield and N2O emissions located in the non-dominated sets, however, they 

were neither close to the Pareto front (Fig. 12d).  

 

Figure 12 Pareto fronts and probability density distribution of the each paired two objectives, 

where colorized dots denote the non-dominated sets and grey dots denote the dominated sets. (a) 

Minimizing CH4 emissions and maximizing crop yield, (b) minimizing CH4 and N2O emissions, 

(c) minimizing irrigation consumption and CH4 emissions, (d) minimizing N2O emissions and 

maximizing crop yield, (e) minimizing irrigation consumption and maximizing crop yield, (f) 

minimizing irrigation consumption and N2O emissions. Black triangles denote the paired 

objectives based on the current farm management (2016-2020).  



54 

 

By plotting 3-D Pareto fronts in planform, we simultaneously showed the present farming 

efficiency for each paired triplet state (Fig. 13). We found that the mean crop yield has reached 

87% of the potential level (~10 t/ha). Nevertheless, most of the paired objectives (blue triangles) 

have fallen out of the optimal sets (colorized planform, Fig. 13). Compared to the current farming 

systems, the optimized holistic management would achieve nearly potential rice yield while 

reducing more than half of the CH4 emissions (Fig. 12a & Fig. 13b), water consumption (Fig. 12e 

and Fig. 13b), and maintaining similar N2O emissions (Fig. 12d & Fig. 13a). 

 

Figure 13 Planform of the Pareto fronts of each paired three objectives in triangular surface plot, 

where the color bar indicates the values of z axis; (a) minimizing N2O, CH4 emissions and 

maximizing crop yield; (b) minimizing irrigation consumption, CH4 emissions and maximizing 

crop yield; (c) minimizing irrigation consumption, N2O emissions and maximizing crop yield; (d) 

minimizing CH4, N2O emissions, and irrigation consumption. Blue triangles denote the paired 

objectives based on the current farm management (2016-2020). 
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3.3 Approaching Pareto fronts through the heuristic and holistic management 

To demonstrate how the Pareto fronts were achieved (Fig. 12), we show the corresponding density 

distributions of the heuristic management (Fig. 14). Here we emphasized that the distributions (Fig. 

14) only indicate the optimization process (non-dominated population) to approach Pareto fronts 

(Fig. 12 & Fig. 13) rather than the set of optimal management per se. We found that irrigation 

schedules converged evidently to several narrow time windows in each month (Fig. 14a-e). The 

convergence, particularly depicted in the upper right corner (Fig. 14b & c), showed a higher 

likelihood of late initiation for the early to middle growing season. By contrast, an early irrigation 

schedule appeared higher probability for the peak to late growing season (Fig. 14d & e).  

 

In addition, we detected that the sowing window congregated in early April (Fig. 14f & g). We 

found that the fertilization rate at ~60-120 kg/ha occurred more frequently together with the early 

sowing day and shallow tillage depth (Fig. 14f & h). Finally, we found a considerably higher 

probability density between early sowing day and shallow tillage depth (Fig. 14g). The distribution 

of the holistic farm management depicted in Fig. 14 was also presented in form of different 

combinations (Supplementary Fig. 2 & 3) and three dimensions (Supplementary Fig. 4). Overall, 

we found identical interactions in the paired triple managements as well.  
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Figure 14 Probability density distribution of the non-dominated farm management regarding, 

irrigation schedules (a) in April, (b) in May, (c) in June, (d) in July, and (e) in August; (f) sowing 

day and fertilization rate, (e) sowing day and tillage depth, (f) tillage depth and fertilization rate. 

The non-dominated sowing month only occurred in April, therefore was not presented.  

 

3.4 The gaps between current farming practices to potential crop yield with optimal holistic 

management 

Numerous optimal holistic managements exist alongside the Pareto fronts. By applying a threshold 

of crop yield greater than 10 t/ha, here we showed the differences between the current farm 
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managements to the subset of optimized ones nearby the potential yield (Fig. 15). The optimal 

management all suggested advanced sowing dates, around 10-30 days earlier compared to current 

practices (Fig. 15a). However, the impacts of tillage depth on crop yields were marginal (Fig. 15b). 

We found that the current static fertilization rate matched the optimal range (Fig. 15c). 

Additionally, we also presented the optimized irrigation schedules as the dynamics of the water 

table (Fig. 15d) and soil moisture (Fig. 15e). We found that optimized irrigation schedules all 

showed the transitory duration of the flooding events from early to middle growing seasons. By 

contrast, current management only suspends irrigation in the mid of the growing season.  

 

 

Figure 15 Comparison between the current farming practices (n = 5) and optimized holistic 

managements (a-e, n = 21) with a threshold of crop yield greater than 10 t/ha (f). And the 

corresponding farming outcomes yielded from the current practices and the optimized 

managements (f-i).  
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4. Discussion 

By proposing a simple heuristic and holistic method, this study optimized rice farming beyond 

previous most emphasized irrigation regimes (Bo et al., 2022; Lampayan et al., 2015; Tian et al., 

2021), while also exploring niches from other pivotal farm managements regarding sowing 

window, fertilization rate, tillage depth, and their interactions. Specifically, we validated and 

coupled the DNDC model with the NSGA-III algorithm to maximize crop yield, minimize water 

consumption, and minimize N2O, CH4 emissions. By approaching four objectives on its paired 

Pareto fronts, we quantified the gaps in current farming practices in South Korea to achieve optimal 

solutions. Our results indicate that the optimized holistic farm management would maintain or 

even increase current crop yield while reducing more than 50% irrigation demand and GHGs 

emissions (Fig. 12). Furthermore, this new method also tackled the dilemma of simultaneously 

reducing CH4 and N2O emissions. Our study clearly shows that the present rice farming system in 

the study site not only has not achieved its potential yield level but also comes at a great 

environmental cost to water resources and GHGs emissions. More importantly, this simple method 

could further be applied to evaluate the environmental sustainability of a rice farming system under 

various climate and local conditions and to guide policymakers and farming practices with detailed 

solutions.  

      

4.1 Could heuristic and holistic management increase current rice yield with less irrigation 

water? 

Our results indicate that improvements on sowing window and flooding events together would be 

pivotal to approaching potential/maximum crop yield (~10 t/ha), as other present farming practices 

are already well-matched with the optimal solutions (Fig. 12). Early sowing date has been reported 

to increase crop biomass and grain yield particularly due to higher leaf area index and assimilation 

rate at vegetative stages and owing to the benefits of lower temperature on starch accumulation at 

the late grain filling stage (Huang et al., 2020; Li et al., 2021; Wenting et al., 2021). These 

physiological mechanisms support our findings that all non-dominated sowing dates converged in 

early April (Fig. 14f & g), roughly 10-40 days advanced compared to the present (Fig. 12). In 

addition, early planting also reduced the risk of extreme heat events and has been shown as a cost-
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effective strategy for adapting to climate warming (Acharjee et al., 2019; Ding et al., 2020). 

Nevertheless, the early sowing suggested in this study does not imply it is a “silver bullet” in other 

regions, as the optimal sowing window is highly dependent on both the local climate conditions 

and cultivar characteristics (Deng et al., 2022; Tu et al., 2020). Furthermore, the risk of cold or 

frost damage should also be considered while advancing the sowing date.  

 

Regarding the irrigation schedule, the optimized solutions all indicate that the current japonica 

variety (‘Odae’) in the study site requires nearly saturated water content during the grain filling 

stage (~DOY 190–240) to avoid yield penalty (Fig. 12e), which is a well-known drought-sensitive 

growth period (Lilley and Fukai, 1994; Saini and Westgate, 1999; Zhang et al., 2018). By contrast, 

multi-transitory flooding events at the vegetative stage conserve considerable water resources (> 

50%) while showing marginal negative effects on crop yield (Fig. 12e & f). To note that the 

optimized heuristic irrigation practice initiated new flooding events to maintain the soil moisture 

in rootzone mostly above ~0.45 m3/m3, which is identical to the threshold of soil water potential 

should be greater than −10 kPa to avoid drought stress, following the safe alternate wetting and 

drying guideline (Lampayan et al., 2015). Therefore, the heuristic-derived optimized managements, 

particularly adjusting sowing date and irrigation schedule, are not only consistent with the current 

literature findings but also highlight the essential role of a holistic approach to systematically 

manage rice farming. 

 

4.2 Could heuristic and holistic management simultaneously reduce CH4 and N2O emissions? 

This study demonstrated the feasibility to reduce CH4 emissions substantially while containing 

N2O footprints at similar or lower than current levels (Fig. 15g & h), although a trade-off between 

CH4 and N2O emissions is well expected (Fig. 12e) due to the anaerobic decomposition (Neue, 

1993) and aerobic nitrification processes (Bouwman, 1998). Lately, a global meta-analysis 

identified that non-flooded days ratio, bulk density, and nitrogen application rate primarily 

explained the benefits of non-continuous flooding on global warming potential (Bo et al., 2022), 

as fertilization is the source of nitrification-denitrification and moisture content affects relative gas 

diffusivity of N2O through the soil column (Klefoth et al., 2014). In this study, by giving the 
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priority to reaching the potential yield, the heuristic optimization process resulted in nearly all 

identical water table dynamics (Fig. 15d) to sustain the balance between anaerobic and aerobic soil 

environments. Importantly, we detected a fraction (~54%) of non-flooding days to growing season 

length (Fig. 15d & e), which is comparable to the optimal results (>50%) reported in the 

aforementioned meta-analysis for South Korea (Bo et al., 2022). Additionally, this study further 

indicates the optimal temporal distributions of the non-flooded days, which should primarily 

schedule in vegetative stages, shortly after sowing and before the grain filling stage. 

  

4.3 Limitations and uncertainties  

Several limitations should be noted in the present study. We did not validate N2O simulation results 

from DNDC due to a lack of observations. Although a well-calibrated DNDC model is capable to 

track the daily N2O fluxes reliability (Katayanagi et al., 2012; Li et al., 2005; Zhao et al., 2020). 

In this study, we have demonstrated the robustness of the calibrated DNDC model through 

multifaceted validation (Figs. 8-11), but the uncertainties about the N2O remain to be addressed. 

Additionally, to maintain the simplicity and practical relevance of the holistic method, this study 

narrowed down farming management to several pivotal options (Fig. 14) rather than including all 

possible practices. Future studies could also consider and explore other measures including but not 

limited to, new rice cultivars (drought-resistant & high-yielding), nitrification inhibitor (Sun et al., 

2016), straw addition (Jiang et al., 2019b), fertilizer selection, and fertilizer application method 

(Hussain et al., 2015). Furthermore, this study accounted for the very limited spatial heterogeneity 

of the rice farming system which only comprised one farming site although with 5 years of 

observations. Nevertheless, we have provided a new simple method that could be promptly 

adopted in other regions if sufficient data are available. 
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Chapter IV. Exploring Google Street View with Deep Learning for 

Crop Type Mapping 

Abstract 

Ground reference data are an essential prerequisite for supervised crop mapping. The lack of a 

low-cost and efficient ground referencing method results in pervasively limited reference data and 

hinders crop classification. In this study, we apply a convolutional neural network (CNN) model 

to explore the efficacy of automatic ground truthing via Google Street View (GSV) images in two 

distinct farming regions: Illinois and the Central Valley in California. We demonstrate the 

feasibility and reliability of our new ground referencing technique by performing pixel-based crop 

mapping at the state level using the cloud-based Google Earth Engine platform. The mapping 

results are evaluated using the United States Department of Agriculture (USDA) crop data layer 

(CDL) products. From ~130,000 GSV images, the CNN model identified ~9,400 target crop 

images. These images are well classified into crop types, including alfalfa, almond, corn, cotton, 

grape, rice, soybean, and pistachio. The overall GSV image classification accuracy is 92% for the 

Central Valley and 97% for Illinois. Subsequently, we shifted the image geographical coordinates 

2–3 times in a certain direction to produce 31,829 crop reference points: 17,358 in Illinois, and 

14,471 in the Central Valley. Evaluation of the mapping results with CDL products revealed 

satisfactory coherence. GSV-derived mapping results capture the general pattern of crop type 

distributions for 2011–2019. The overall agreement between CDL products and our mapping 

results is indicated by R2 values of 0.44–0.99 for the Central Valley and 0.81–0.98 for Illinois. To 

show the applicational value of the proposed method in other countries, we further mapped rice 

paddy (2014–2018) in South Korea which yielded fairly well outcomes (R2=0.91). These results 

indicate that GSV images used with a deep learning model offer an efficient and cost-effective 

alternative method for ground referencing, in many regions of the world.  

Keywords: crop type mapping, deep learning, Google Earth Engine, Google Street View, ground 

referencing  



71 

 

1. Introduction  

Supervised crop type classification requires extensive ground reference data for model training 

and validation (Foody and Mathur, 2004; Ma et al., 2017; Wang et al., 2019). The quality and 

quantity of reference data used to label crop types fundamentally affects classification accuracy 

(Foody et al., 2016; Kavzoglu, 2009; Van Niel et al., 2005). The common sources for these 

reference data include field surveys, census data, or visual interpretation of remote sensing 

products (Dong et al., 2016; Kun et al., 2013; Wardlow et al., 2007). However, conventional 

ground truthing is time-consuming, labor-intensive, and costly. The lack of a low-cost and efficient 

method for producing ground reference data results in pervasively limited cropland information, 

particularly for large-scale and long periods (Phalke and Özdoğan, 2018; Wang et al., 2019; Zhong 

et al., 2019b). 

 

Many satellite-derived global land cover products are available, but very few provide detailed crop 

type information (Buchhorn et al., 2019; Friedl et al., 2010; Gong et al., 2013). One possible reason 

is the lack of ground truth crop type data, which has hindered crop growth monitoring and yield 

prediction at large scales. Annual cropland data layer (CDL) products released by the United States 

Department of Agriculture (USDA) are one of the most successful crop type maps to date in terms 

of nationwide coverage, annual updating frequency, and high mapping accuracy (85–95%) 

(Boryan et al., 2011). Since 2008, many studies have relied on CDL products for geo-referenced 

and crop-specific maps (Howard and Wylie, 2014; King et al., 2017; Skakun et al., 2017; Torbick 

et al., 2018). However, many regions and countries are incapable of producing long-term, large-

scale, and accurate crop type mapping products. The extremely limited amount of publicly 

available ground reference data is a critical obstacle of crop type mapping, especially for 

developing countries (Wang et al., 2020b). Therefore, frequent updating of large-scale crop type 

maps with high spatial resolution remains a great challenge (You et al., 2014).  

 

Efficient acquisition and sharing of sufficiently high-quality ground truthing observations are 

therefore goals for both the scientific and practical applications of crop type mapping. Aside from 

CDL products, a recent crowdsource-based project attempted to initiate collaborations between 
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scientists and citizens to collect and distribute geo- and time-referenced field photographs on a 

global scale (Xiao et al., 2011). As of 2020, the resulting data portal stores more than 180,000 land 

cover images. Another crowdsourced project, GeoWiki recruited volunteers to review and improve 

global land cover map products using the Google Earth platform (Fritz et al., 2009). Citizen science 

thus provides unconventional solutions for generating ground truth data. However, encouraging 

citizens to participate remains a challenge, as does quality assurance.   

 

Google Street View (GSV) images offer an unprecedented high-quality data source that directly 

captures land cover information. GSV; was launched in 2007 in the US and has been developing 

rapidly, with international coverage including several major crop producing regions, including 

America, Europe, and parts of Asia (Fig. 16). A vast number of panoramic images containing 

detailed geographic coordinates and time information are now available. These data hold great 

potential for scientific studies and are surprisingly underexploited for land cover applications. 

Ringland et al. (2019) applied a pre-trained convolutional neural network (CNN) model to GSV 

images to characterize food production along roads. Gebru et al. (2017) also employed a CNN 

model to analyze socioeconomic profiles across 200 American cities using GSV images. Deep 

learning, especially in CNN models, has been successfully applied to image classification tasks 

(Ciresan et al., 2011; Sharif et al., 2014). Applying a CNN model to GSV images is a promising 

alternative for the efficient and cost-effective production of large amounts of ground reference 

data. Moreover, the widely available of GSV images have already shown great scalable potential 

for urban land use studies (Li et al., 2017; Srivastava et al., 2019; Srivastava et al., 2020; Zhang et 

al., 2017). Nevertheless, to the best of our knowledge, GSV images have not been explored or 

demonstrated as a feasible and robust proxy for generating broadly representative ground reference 

data for continuous crop type mapping at large spatial and temporal scales.  
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Figure 16 Examples of the availability and spatial distribution of GSV images across the globe, 

indicated in light blue. Note that the red circles show the approximate location of the inset areas. 

Image copyright: Google Inc. 

 

The objective of this study is to develop an effective crop type referencing method using off-the-

shelf GSV images. A successful method should be location-independent and have the ability to be 

upscaled efficiently to large areas where GSV images are available. To assess the performance of 
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the GSV based method, we validate the GSV derived crop type maps with other renowned land 

cover products such as CDL, particularly for the years without GSV as reference (see detailed 

description in the Method sections (2.6–2.7)).  

 

Here, we address the following two key questions: 

1. Can we use GSV images to efficiently produce low-cost, sufficient, and reliable crop type 

ground reference data covering large areas?  

2. Can we use GSV-derived reference data as “ground truth” to map crop types for large areas 

spanning many years?  

 

2. Materials and Methods 

2.1 Study area  

To demonstrate the reliability and generality of the proposed method, we use two large and 

representative farming regions in the US. Study area I is the Central Valley in California, covering 

approximately 46,620 km² (Fig. 17). According to recent CDL products (2011–2017), the majority 

of cropland in California is concentrated in the Central Valley region. This is one of the most 

diverse crop regions in the US; producing alfalfa, corn, cotton, wheat, almonds, grape, pistachios, 

as well as other crops varying annually. The Central Valley has two growing seasons with a 

common rotation practice, e.g., winter wheat and summer maize. Study area II is the entire state 

of Illinois, covering approximately 149,998 km² (Fig. 17). This area is at the core of the US Corn 

Belt; its major crops are soybean and maize. The general practice in this region is single-season 

cropping.  
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Figure 17 Study area I and II, the Central Valley in California and the state of Illinois, and their 

major crop types distribution from the CDL.  

 

2.2 General methodology 

This research involves the following steps: GSV image acquisition, GSV image classification, crop 

type referencing, and crop type mapping. Figure 3 presents an overall flowchart of our proposed 

methodology. To make an automatic image classifier, we trained a convolutional neural network 

(CNN) model with labeled GSV images. To produce point ground reference data, we subsequently 

applied the CNN model to classify GSV images. To evaluate the usefulness of the GSV-derived 

crop type ground reference on a large scale, we applied a random forest (RF) classifier with the 

CNN derived-references and Landsat satellite imagery to produce state-level crop type maps over 

multiple years. Finally, we compared the mapping results with the USDA CDL. 
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Figure 18 Flowchart of the convolutional neural network (CNN)-based ground referencing and 

pixel-based crop type classification.    

 

2.3 Google Street View image collection  

GSV images were automatically downloaded from Google Maps with an HTTP URL request using 

the GSV API via a Python script (Fig. 19). When we accessed these images in May 2020, the cost 

was $7 USD per 1000 images. Upon user-specification of the latitude and longitude information, 

the GSV API searches for the photographs within a 50-m radius and provides panoramic images 

where available. To decompose the images, we used a heading parameter to identify images facing 

four directions: north, east, south, and west. We collected GSV images by specifying latitude and 

longitude coordinates around the two study areas. Time information is also preserved for each 

image. Detailed information on the retrieval of GSV images is available in the Google Developer 

Guide (https://developers.google.com/maps/documentation/streetview). The code that we used for 

collecting GSV images is available here: http://environment.snu.ac.kr/ground_truth//. 

http://environment.snu.ac.kr/
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Figure 19 GSV image samples randomly collected in this study: (a) corn, (b) soybean, (c) almond, 

(d) cotton, (e) alfalfa, (f) grape, (g) pistachio, (h) and (i) are classified as “other”. Image copyright: 

Google Inc.  

 

2.4 CNN model training and validation  

We applied a CNN model to automatically classify all collected GSV images into three classes in 

Illinois (corn, soybean and “other”), and eight classes in the Central Valley (alfalfa, almonds, corn, 

cotton, grape, pistachios, rice, and “other”). The “other” category includes forest, grassland, man-

made structures, and water bodies. Because the target land cover type in the study areas is cropland, 

we did not further classify “other” according to land cover type. The key structure of the CNN 
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model is presented in Fig. 20. The Input layer (a GSV image) with dimensions 30×30×3 of the 

CNN model includes three color channels (R, G, B), with an image width and height of 30. Cov2D 

is a two-dimensional convolution layer that results in feature maps from the previous input. We 

applied the Rectified Linear Unit (ReLU) activation function for the convolutional operation. The 

Max Pooling layer is a downsampling process that takes the maximum value in each patch through 

the feature maps. To prevent over-fitting, we applied four dropout layers. The full connection layer 

calculates the final probabilities for each class, which is activated by the softmax function. For a 

more detailed explanation of the CNN model structure and technical terms, see Krizhevsky et al. 

(2012).  

 

To prepare training datasets for the CNN model, we labeled approximately 500–1000 GSV images 

for each crop type, with 7 classes for the Central Valley and 2 classes for Illinois, and 1 class 

representing “other”. To simplify this task, we targeted only ideal images containing a single 

homogeneous crop type (Fig. 19a–g). Images like the one in Fig 19i, containing both corn and 

forest, were classified as “other”. Because preparing a training dataset is usually time-consuming 

at the initial model setup phase, we share all of our classified images to facilitate potential future 

studies here: http://environment.snu.ac.kr/ground_truth//. The images were later randomly 

separated into three groups (60%, 20%, and 20%) for training (parameter fitting), validation 

(hyper-parameter tuning), and test (performance evaluation), respectively.  

 

 

http://environment.snu.ac.kr/
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Figure 20 Architecture of the CNN model used for Google Street View (GSV) image classification.  

 

2.5 Producing ground reference data and quality control 

We applied the CNN model to filter out crop images automatically from GSV images, which 

contained detailed geographic coordinate and time information. We first conducted quality control 

to remove minor images (<10%) that were incorrectly classified by the CNN model (Table 1 & 2). 

The quality control is optional but valuable for the region with lower CNN performance. Currently, 

we still have to do quality control by human intervention, but the post-processing is marginal. In 

Appendix Table 1, we present the quantitative impacts of quality control on the performance of 

the land cover classification model. The coordinates of the image represent the location of the GSV 

vehicle, which is not identical to that of the crop parcel of interest (Fig. 21). Therefore, we shifted 

the coordinates of the GSV car by considering the width of the road and size of the crop parcel; an 

example of the process is shown in Fig. 21.  

 

We applied a buffer zone to avoid the reference points locating in the Landsat pixels mixing with 

road and crop parcels. Thus, the coordinates of targeted GSV images were moved 0.5y (6 m) away 

from the car and approximately x (30 m) away from a parcel edge (Fig. 21). To produce many 

reference points as possible, we moved the coordinates 2–3 times in the same direction with an 

interval of 30 m, thereby producing reference points at 30 m, 60 m and 90 m away from the road 

edge. By considering the field sizes of US cropland (Fritz et al., 2015), we assumed that the crop 

type would not change within approximately 100 m of the GSV car in the study areas.  

 

Although road width varies considerably, based on random checks of road widths in the two study 

areas we applied a fixed value of 12 m. The fixed distance x value of 30 m between adjacent 

reference points is related to the spatial resolution of the Landsat 7 and 8 surface reflectance 

products used for mapping. For smaller parcel, a value of 10 m would be more suitable to produce 

the reference points, if higher spatial resolution remote sensing products such as Sentinel are 

available. To test the generality of our method, we used the same x- and y-values for both the 
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Central Valley and Illinois. To simplify the procedure, we considered images captured from the 

four absolute cardinal directions only: north, south, east, and west.  

 

Figure 21 GSV vehicle coordinates were shifted to generate ground reference points. The buffer 

zone indicates potential mixed pixels near the parcel edge. Red dots indicate the position of the 

GSV car; green dots indicate reference points; y is road width; x is Landsat pixel resolution. Image 

copyright: Google Inc. 

 

2.6 Mapping crop types 

To demonstrate the reliability and usefulness of the GSV-derived ground reference across spatial 

and temporal domains, we conducted crop type mapping at the scale of the Central Valley and all 

the state of Illinois over a period of years with and without GSV-derived reference data. We 

performed the pixel-based crop type classification using the cloud-based Google Earth Engine 

(GEE) platform with the RF classifier. For a detailed description of GEE and RF classifier for land 

cover classification, see Gorelick et al. (2017) and Pal (2005).  

 

Intuitively, a model trained with multiple years of data should result in better performance. We 

trained the RF classifier with all available GSV image data through all study periods. In Appendix, 

Fig. A1 shows the sensitivity of the RF classifier to the training dataset size. Table A2 shows the 
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overall accuracy of the RF classifier in Illinois when trained with different years of data. As 

expected, the performance of the RF classifier substantially increases with more training data, and 

eventually saturates. To train the RF classifier, we randomly divided all the reference as 80% for 

training and 20% for validation. To test the generic performance of the trained model in the case 

of data scarcity, we applied the classifier for years without GSV images as reference.  

 

Temporal and spectral features from remote sensing surface reflectance products are commonly 

used to map crop types (Arvor et al., 2011; Foerster et al., 2012; Wardlow and Egbert, 2008). 

However, different crop types with similar spectral information can hinder classification (Cai et 

al., 2018). We therefore combined time series (for each year) of spectral reflectance data (Blue, 

Green, NIR, Red, SWIR1, and SWIR2), and normalized difference vegetation index (NDVI) 

(Tucker, 1979) for use as input for the RF classification model. NDVI was derived from Landsat 

7 Collection 1 Level-2 scene product (surface reflectance) for the Central Valley, and Landsat 8 

surface reflectance for Illinois. We used the “pixel_qa” band to mask out cloud contaminated data 

generated from the C Function of Mask (CFMask) algorithm (Foga et al., 2017). In accordance 

with the availability of Landsat products and GSV images, we mapped the crop types in the Central 

Valley (using Landsat 7) from 2011–2017, and in Illinois (using Landsat 8) from 2013–2019. Our 

code for performing landcover classification on the GEE platform is available here: 

http://environment.snu.ac.kr/ground_truth//. 

 

2.7 Mapping results evaluation 

The annual CDL products provided by the USDA is one of the most successful cropland datasets 

available in terms of nationwide coverage, annual updating frequency, and overall accuracy. Fig. 

A2 presents the producer and user accuracies of CDL for our investigated crop types in the Central 

Valley and Illinois, for the entire study periods. Detailed crop type mapping accuracy assessments 

of the CDL from 2008–2019 are freely available at 

nass.usda.gov/Research_and_Science/Cropland/SARS1a.php.  

 

http://environment.snu.ac.kr/
https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php
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We assessed the mapping results using CDL by sampling the number of pixels for each crop type 

with a 5-km2 resolution for both the study areas, using the following equation: 

𝑌𝑖,𝑘,𝑝 = 𝛼𝑋𝑖,𝑘,𝑝 + 𝑏 + 𝜀                                                                                                             Eq. 1 

where Yi,k,p (Xi,k,p) is the number of pixels for crop type k at year p derived from CDL (this study) 

respectively, for grid i across the entire study area; 𝛼 is the linear-fit coefficient, b is the linear fit 

intercept; and 𝜀 is the error. To evaluate the spatial distribution of crop types in our methods 

against CDL, we calculated the difference in pixel numbers of each crop type from the mapping 

results every 5km2, using the following equation:  

𝐷𝑖,𝑘,𝑝 =
𝑋𝑖,𝑘,𝑝−𝑌𝑖,𝑘,𝑝

𝑁
× 100                                                                                                          Eq. 2 

where 𝐷𝑖,𝑘,𝑝 is the disagreement (%) between the CDL and mapping results of this study for crop 

type k in grid i for year p; and 𝑁 is the total number of pixels per 5km2. 

 

2.8 Additional test case 

To demonstrate the applicational value of the aforementioned method in other countries, we further 

apply the proposed method in South Korea and map the rice paddy for the year 2014-2018. 

Landscape in South Korea is much more heterogeneous and fragmented compared to Illinois and 

Central Valley, which could be a representative study area to showcase the practical value of our 

approach. To transfer the CNN model into a new study area, we use the rice paddy images prepared 

in Central Valley with only limited additional images in South Korea. Due to the absence of CDL 

alike products, we evaluate the mapping results with Dong et al. (2016) rice paddy map for the 

year 2014.  
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3. Results   

3.1 GSV image classification  

Tables 1 and 2 present the performance of the CNN model for differentiating GSV images in the 

Central Valley and Illinois, respectively. The CNN model demonstrates considerable capacity for 

crop type image classification in both simple (3 classes in Illinois) and complex (8 classes in the 

Central Valley) situations. In the Central Valley (Table 1), the overall accuracy is 92%. All 

producer accuracy results exceed 90%, except for alfalfa (82%) and almonds (82%). All user 

accuracy results exceed 90% except for rice (76%) and “other” (84%). The CNN model 

occasionally misclassified alfalfa and rice, especially for images of crop land with remote distance 

and low resolution. In Illinois (Table 2), the CNN model performed better, with an overall accuracy 

of 97% and producer and user accuracy both exceeding 94%. In South Korea, the CNN model 

achieved an overall accuracy of 92%, for the detailed results see Supplementary Table 1. 

 

Table 1 Performance of the CNN model for GSV image classification in the Central Valley, 

displayed as a confusion matrix. PA: producer accuracy; UA: user accuracy; OA: overall accuracy. 

Central Valley  Alfalfa Almonds Corn Cotton Grape Other Pistachios Rice UA 

Alfalfa 185 0 0 0 0 0 0 3 98% 

Almonds 0 127 0 0 3 1 3 0 95% 

Corn 6 0 110 2 1 0 1 0 92% 

Cotton 0 0 0 116 0 0 0 0 100% 

Grape 0 0 1 0 121 0 0 0 99% 

Other 4 25 0 0 1 182 0 4 84% 

Pistachios 0 3 0 0 3 2 119 0 94% 

Rice 31 0 0 2 0 0 0 104 76% 

PA 82% 82% 99% 97% 94% 98% 97% 94% OA = 

92% 
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Table 2 Performance of the CNN model for GSV image classification in Illinois, displayed as a 

confusion matrix. PA: producer accuracy; UA: user accuracy; OA: overall accuracy. 

Illinois Corn Other Soybean UA 

Corn 118 3 5 94% 

Other 0 139 0 100% 

Soybean 1 4 119 96% 

PA 99% 95% 96% OA = 97% 

 

3.2 Producing ground reference data from classified GSV images  

We applied the trained CNN model to automatically screen crop images. In the Central Valley, we 

found 4,811 out of a total of 42,485 GSV images belonging to 7 crop classes: 613 alfalfa, 1,682 

almond, 777 pistachio, 348 corn, 250 cotton, 796 grape, and 113 rice. In Illinois, we found 4,593 

out of a total of 85,635 GSV images for 2 classes: 3093 corn and 1500 soybean. Subsequently, we 

produced reference points with the classified GSV images by shifting the geocoordinates (Fig. 21). 

In South Korea, we found 1,488 rice paddy images from 43,536 GSV images. Supplementary Fig. 

1b shows the temporal and spatial distribution of the produced reference points. We retrieved rice 

images in two years (2015, 2018) but with a biased sample size, which is the nature of GSV.   

 

In total, we produced 31,829 crop reference points within parcels, 14,471 in the Central Valley, 

and 17,358 in Illinois (Fig. 22). Due to the unequal spatial-temporal availability of GSV image, as 

well as the varied areas of different crop types, the consequent GSV image derived reference points 

present an imbalanced distribution. For instance, in Illinois (Fig. 22h & 22i) the majority of 

reference points are located in the center of the state, whereas the reference point density is 

relatively low in north and southeast of Illinois; this may affect subsequent mapping results using 

these reference data. 
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Figure 22 Temporal and spatial distribution of crop type reference points derived from GSV 

images for the Central Valley (a-g) and Illinois (h-i). The doughnut plots and bar plots indicate the 

number and proportion of reference points for each year.  
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3.3 Mapping using the GSV derived ground reference 

Tables 3 and 4 present the accuracy assessment of the RF classifier for landcover classification in 

the Central Valley and Illinois, respectively. The RF classifier trained with GSV-derived reference 

points demonstrates good performance for crop type mapping in both study areas. However, using 

GSV derived data itself for both training and validation would result in potential biased accuracy. 

Therefore, the performance was further assessed with independent CDL products, as described 

next. In South Korea, we found the RF classifier shows comparable performance as Illinois and 

Central Valley. The detailed accuracy assessment is available in Supplementary Table 2. 

 

Table 3 Performance of the RF model for land cover classification in the Central Valley indicated 

as a confusion matrix. PA: producer accuracy; UA: user accuracy; OA: overall accuracy. 

Central 

Valley 

Alfalf

a 

Almond

s 

Cor

n 

Cotto

n 

Grap

e 

Othe

r 

Pistachio

s 

Ric

e 
UA 

Alfalfa 534 8 10 1 2 11 2 1 94% 

Almonds 1 1428 0 0 6 21 4 0 98% 

Corn 4 1 450 3 4 21 2 0 93% 

Cotton 4 1 1 234 2 3 1 0 95% 

Grape 1 5 0 0 427 7 6 0 96% 

Other 14 30 5 3 15 1192 9 2 94% 

Pistachios 1 23 0 1 1 10 865 0 96% 

Rice 0 0 1 0 0 2 0 70 96% 

PA 96% 95% 96% 97% 93% 94% 97% 
96

% 

OA= 95

% 

 

Table 4 Performance of the RF model for land cover classification in Illinois indicated as a 

confusion matrix. PA: producer accuracy; UA: user accuracy; OA: overall accuracy. 

Illinois Corn Others Soybean UA 

Corn 1168 47 41 93% 
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Others 45 1194 55 92% 

Soybean 52 61 938 89% 

PA 92% 92% 91% OA =92 % 

 

Figure 8 and 9 present the examples of the overall mapping results compared with the CDL 

products in the Central Valley for 2017, and in Illinois for 2014, respectively. Mapping results are 

notably consistent with CDL products for both study areas. The crop type mapping model (RF 

classifier) trained with GSV derived reference data (Fig. 22) captured the overall spatial pattern of 

crop types when applied to the years with very few GSV images. Note that only 190 reference 

points were available for pistachio crop in the Central Valley in 2017 (Fig. 22e), while no reference 

data were obtained via GSV images in Illinois in 2014. In South Korea, we also found a 

comparable rice paddy distribution map for the year without GSV as reference (Supplementary 

Fig. 2 & 3). 
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Figure 23 Comparison between the CDL and GSV-derived crop type maps for the Central Valley 

in 2017 (a, b, respectively), a year with only 190 reference points. Black squares serve as guide 

grids to facilitate visual comparison.  

 

Figure 24 Comparison between the CDL and GSV-derived crop type maps for Illinois in 2014 (a, 

b, respectively), a year without reference GSV images. Black squares serve as guide grids to 

facilitate visual comparison.  

 

Table 5 presents a detailed, long-term, quantitative comparison between the CDL and GSV-

derived crop type maps for the Central Valley from 2011–2017. Overall, the RF classifier trained 

with GSV-derived reference data is capable of mapping heterogenous and diverse land cover types 

at a large scale and over multiple years. Furthermore, the RF classifier still demonstrates 

comparatively promising performance for the years when GSV images are unavailable, e.g., 2014. 

As expected, the model generally achieves higher agreement for the years with more GSV images, 

e.g., 2012. Mapping results are more consistent for rice and cotton, although relatively fewer 

reference points were used for training. The CDL assessment also yielded similar mapping 
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performance for rice and cotton over time (Fig. A2). In contrast, the agreement was lower for 

pistachio, which could be explained by the higher uncertainties of the CDL for pistachio 

classification. For a more comprehensive evaluation, Fig. 25 presents a comparison of the mapping 

results with the CDL-derived results for a year with almost no ground reference data (2017). For 

the years 2011–2016, see Appendix Fig. A3. 

 

 Table 5 Comparison of GSV-derived and CDL-derived crop type distribution maps for each crop 

type in the Central Valley using a 5-km2 grid resolution. The number of references indicates data 

available for training and testing the random forest classifier for each year.  

  
2011 2012 2013 2014 2015 2016 2017 

Alfalfa R2 0.79 0.82 0.79 0.77 0.79 0.73 0.66 
 

number of references 0 1500 640 0 0 0 0 

Almonds R2 0.85 0.82 0.87 0.80 0.85 0.79 0.84 
 

number of references  98 2420 600 0 0 0 0 

Cotton R2 0.89 0.92 0.93 0.79 0.84 0.92 0.93 
 

number of references  0 1150 0 0 0 0 0 

Grape R2 0.88 0.87 0.82 0.75 0.81 0.78 0.83 
 

number of references  1068 524 304 0 892 0 0 

Corn R2 0.76 0.80 0.84 0.84 0.72 0.67 0.79 
 

number of references  100 1330 185 0 50 0 0 

Pistachios R2 0.60 0.59 0.61 0.44 0.66 0.63 0.61 
 

number of references  0 1345 585 0 690 400 190 

Rice R2 0.98 0.99 0.99 0.99 0.99 0.99 0.99 
 

number of references  0 400 0 0 0 0 0 
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Figure 25 Comparison between GSV-derived and CDL-derived crop type distribution for the 

Central Valley in 2017. The x and y axes show the pixel numbers of each crop type for a 5-km2 

grid resolution for the entire study area. 

 

Figure 26 and Fig. A4 present the detailed mapping assessment for corn and soybean in Illinois 

during 2013–2019. We found consistent mapping results for Illinois from 2013–2019, however, 

we found better overall agreement between GSV-derived and CDL crop type maps for the entire 

study period and domain. Comparable to the Central Valley, the RF classifier trained with multiple 

years of GSV-derived reference points (Fig. 22) can still be applied and has promising mapping 

results for both corn and soybean for years without GSV images as reference data, i.e., 2014, 2017, 
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and 2019. For the detailed quantitatively mapping assessment for rice paddy in South Korea, see 

Fig. 27. 

 

Figure 26 Comparison between GSV-derived and CDL-derived corn distribution for Illinois from 

2013–-2019. The x and y axes show the pixel numbers of corn for a 5-km2 grid resolution for the 

entire study area. 
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Figure 27 Comparison between GSV-derived and Dong et al., (2016) -derived rice paddy 

distribution for South Korea in 2014 (a). The x and y axes show the pixel numbers of rice paddy 

for a 5-km2 grid resolution for the entire study area. And rice paddy distribution error (%) map, 

expressed as the percentage difference in pixel numbers per 5km2 (b). 

 

For a more detailed spatial comparison, we present the zoomed-in views of mapping results for 

different regions from 2011–2017 (Fig. 28 and Fig. A5). The location of each region is shown in 

Fig. A5g. We found an overall consistent spatial pattern of the crop types between CDL- and GSV-

derived results. The reference points produced alongside the road are representative of “ground 

truth”, and can adequately map crop types at large scales in the Central Valley for complex 

scenarios, e.g., mapping the potential heterogeneity of the cropland within a field that would not 

be observable from the road. 
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Figure 28 Regional-scale crop type mapping comparison for the Central Valley for years with GSV 

as reference data. Each subplot covers approximately 2500 km2. Black squares serve as guide grids 

to facilitate visual comparison. 

 

Figure 29 and Fig. A6 provide the zoomed-in views of Illinois results for years with and without 

GSV-derived reference data, respectively. The location of each region is shown in Fig. A6g. We 

found better general agreement and less noisy mapping results across the study regions than for 

the Central Valley, which may be due to higher CDL accuracy (Fig. A2), and relatively 

homogeneous and simple land cover types. Moreover, the zoomed-in views for rice paddy in South 

Korea show fairly well agreement (Supplementary Fig. 3). 
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Figure 29 Regional-scale crop type mapping comparison for Illinois, for the years with GSV used 

as reference data. Each subplot covers approximately 2500 km2. Black squares serve as guide grids 

to facilitate visual comparison. 

 

The spatial errors in the mapping results for soybean and corn are shown in Fig. 30 and 31, 

respectively, for each study year for Illinois and in Fig. A7 for 2017 for the Central Valley, and in 

Fig. 27b for South Korea. The extent of the disagreement varies considerably over time. There is 

no clear correlation between reference data density and degree of error; for example, for Illinois 

in 2013, the year with the most abundant reference data, the error is not lower than for 2014, the 

year without reference data. This may affect by the performance of the RF classifier and the 

availability of the Landsat products (e.g., cloud cover).      
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Figure 30 Soybean distribution error (%) map between GSV-derived and CDL-derived soybean 

maps for Illinois from 2013–2019, expressed as the percentage difference in pixel numbers per 

5km2.   

 

Figure 31 Corn distribution error (%) map between GSV-derived and CDL-derived corn maps for 

Illinois from 2013–2019, expressed as the percentage difference in pixel numbers per 5km2.   
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4. Discussion 

4.1 Can we use GSV images to efficiently produce low-cost, sufficient, and reliable crop type 

ground reference data covering large areas?  

Currently, there are more than 100 countries have partial or full coverage of GSV. Except for the 

USA and Canada, most of the countries in the world do not have CDL alike high-quality crop type 

maps. At a cost of only $7 USD per 1000 images, GSV provides substantial opportunities to 

produce coherent ground reference points for different regions. To date, the potential for cost-

effective upscaling at the national scale has been underexplored for crop type and landcover 

mapping. By applying a CNN model (Fig. 20) and a simple shift in geocoordinates (Fig. 21) for 

three large study areas, we provide an effective method for producing ground reference points 

from GSV images over heterogeneous regions for multiple years (Fig. 22). A post-processing 

quality control step is necessary to reduce the uncertainties of the CNN model. For example, the 

distinction between crop types in GSV images is generally robust but less effective at the early 

phenological stages (e.g., for seedlings). Seedling morphology is nearly identical across crop types 

due to low image resolution and short canopy height, and neural network performance is 

susceptible to the image quality (Dodge and Karam, 2016). To reduce uncertainties in image 

classification, an ideal strategy would be to use images taken during the peak growing season in 

the model training process.  

 

In this study, we built a simple architecture-based CNN and trained the model using only a few 

thousand labeled GSV images. To further improve the performance of the CNN model in complex 

regions such as the Central Valley, future studies could also use a pretrained state-of-the-art CNN 

model (e.g. ResNeXt) with more training data containing seasonal crop morphology variations. 

Future studies could also explore generating object-based (instead of point-based) ground 

references by detecting cropland parcels along roads (e.g., edge extraction) (Graesser and 

Ramankutty, 2017). These could be connected with classified GSV images, which would fully 

utilize the image information and greatly benefit regions with fragmented and small parcel sizes.    
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4.2 Can we use GSV-derived reference data as “ground truth” to map crop types for large 

areas spanning many years? 

The GSV-derived reference points must be representative of subsequent crop type mapping 

(Campbell and Wynne, 2011). Heterogeneity within croplands might not be captured by GSV 

images that are taken from the roadside. Using a simple geocoordinate shift (Fig. 21) and based on 

assessments of the regional cropland mapping results (Figs. 25–27), we found that roadside 

sampling via GSV images is likely sufficient to account for potential environmental and 

management induced within-field variability. This is consistent with a previous assessment of 

roadside sampling strategy for crop mapping (Waldner et al., 2019).  

 

By mapping crop types for Illinois and the Central Valley (Figs. 25 and 26), we demonstrated the 

usefulness and reliability of GSV derived reference points at a large scale and over long periods. 

The multi-year crop type distribution maps are consistent when compared to CDL products for 

both large study areas, demonstrating the robustness of our proposed ground referencing method. 

To test the applicability of our method in the other region, we applied it for rice paddy mapping in 

South Korea, which showed comparable performance with the results from California and Illinois 

(Fig. 27 and Supplementary Information). GSV images certainly offer an unprecedented rich data 

source as ground truth for crop type mapping, but to date this has been underexplored. We only 

tested the proposed ground referencing method for croplands in the Central Valley, Illinois, and 

South Korea. More studies are needed to explore the usefulness of GSV images for land cover 

mapping in other regions of the world.  

 

The assessment of different ground sampling strategies is crucial to achieving credible mapping 

results. One study reported that a random sampling method (regardless of sample location) is 

superior to roadside sampling (Waldner et al., 2019), and another proposed a sequential 

exploration method for efficient in situ data collection (Fowler et al., 2020). However, constrained 

by the availability of GSV data, random or more sophisticated sampling for GSV image collection 

currently seems infeasible and impractical. Although we found that the random roadside sampling 

strategy (where we enumerate GSV images) is robust for producing “ground truth”, future studies 
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investigating different GSV image sampling methods would help the community collect data more 

efficiently, rather than enumerating the images. 

 

We also demonstrated that increasing the sample size temporally and spatially is an effective 

approach to improve the final crop type mapping results (Fig. A1 and Table. A2). However, the 

optimal size of training dataset needed to map crop types accurately is still the subject of debate 

(Lillesand et al., 2015; Van Niel et al., 2005; Waldner et al., 2019). For example, we found only 

400 reference points for rice in the Central Valley, and this was sufficient to achieve good mapping 

performance (Table. 5). It is challenging to give universal quantitative suggestions for the density 

of reference data because mapping results are strongly affected by the quality of the reference data, 

the performance of the classifier, the complexity of the landcover type, and also the availability of 

remote sensing products (Heydari and Mountrakis, 2018; Khatami et al., 2016; Ma et al., 2017). 

Nevertheless, we conclude that increasing the sample size temporally and spatially is highly 

desirable for collecting GSV images to enhance the representativeness.  

 

Another current limitation of using GSV image is that the update frequency remains uncertain, and 

ranges from months to years, and also varies spatially. Images recorded during non-growing 

seasons usually provide little to no useful information unless special traits related to the specific 

crops are exhibited, such as standing rice stem residues after harvesting. It is a common to train a 

classifier using one or more years of reference data and apply this to other years without the 

training reference (Massey et al., 2017; Wang et al., 2020a; Zhong et al., 2016a; Zhong et al., 

2019a). We adopted this idea and demonstrated the performance of the RF classifier when applied 

to the years without reference data (Figs. A5 and A6).  

 

Another limitation is that GSV still has large data gaps in China, India, and Germany due to privacy 

concerns and local restrictions (Rakower, 2011). Additional street view maps, such as the Baidu 

map, Tencent map, and OpenStreetMap, are available in these countries (Haklay and Weber, 2008; 

Liang et al., 2017; Long and Liu, 2017; Munoz et al., 2020; Zhang et al., 2019a). Recent trends in 

mining vast amounts of geo-tagged social media data for urban land use and tourist behavior 
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studies could provide another potential solution for crop type ground truthing (Frias-Martinez and 

Frias-Martinez, 2014; Liu et al., 2017; Wood et al., 2013). Although we show the reliability of 

GSV images for production-level crop type mapping, we believe GSV is one of the useful sources 

but not the solution for all the countries. For instance, a recent study mapped crop types in India 

(where GSV image is unavailable) with smartphone crowdsourcing data (Wang et al., 2020b). 

Social media users continually generate recent land use information and “big data” in the form of 

texts, images, and videos. These processes should be further investigated because these types of 

information are now far more timely and abundant than GSV images. In summary, we suggest that 

future studies use a hybrid method that fuses GSV images, social media data, and census data 

(Zhong et al., 2019b), which would be valuable at the global level, for both crop type and land 

cover ground truthing.  

  

Appendix   

  

Fig. A1 Sensitivity of the RF classifier to the size of training dataset (expressed as a percentage of 

the total reference dataset) for crop type classification. We assessed the overall accuracy with a 

fixed validation dataset (20% of the total dataset).  
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Table A1. Performance of the RF model for land cover classification in South Korea assessed with 

GSV derived reference in the absence of quality control. PA: producer accuracy; UA: user 

accuracy; OA: overall accuracy 

South Korea Rice paddy Other UA 

Rice paddy 250 33 89% 

Other 38 244 85% 

PA 87% 88% OA = 87% 

 

Table A2. Performance of the RF classifier when trained with multiple years of data for Illinois. 

Higher accuracy is achieved when longer periods of data are used for training. 

Number of years  1 2 3 4 

Overall accuracy 76% 81% 83% 92% 

 

 

 Fig. A2 Accuracy of the CDL for the Central Valley during 2011–2017, and for Illinois from 

2013–2019; PA is producer accuracy and UA is user accuracy. 
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Fig. A3 Comparison between GSV-derived and CDL-derived crop type distribution for the Central 

Valley from 2011–2016. The x and y axes are the pixel numbers of each crop type at a 5-km2 grid 

resolution for the whole study area. The R2 values are given in Table 5. 
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Fig. A4 Comparison between GSV-derived and CDL-derived soybean distribution for Illinois 

from 2013–2019. The x and y axes are the pixel numbers of soybean at a resolution of 5-km2 grid 

for the whole study area. 
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Fig. A5 Regional-scale crop type mapping comparison for the Central Valley, for years with few 

or no GSV images as reference data. Each subplot covers approximately 2500 km2. 
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Fig. A6 Regional-scale crop type mapping comparison for Illinois, for years without GSV images 

as reference data. Each subplot covers approximately 2500 km2. 

 

Fig. A7 Disagreement (%) between GSV-derived and CDL-derived crop type distribution maps 

for the Central Valley in 2017, expressed as the percentage difference in pixel numbers for each 

crop type per 5km2. White color indicates the non-cultivation area derived from both CDL and 

GSV mapping results for each crop type. 
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Palet, A., Ribas-Carbó, M., Argilés, J.M., Azcón-Bieto, J. (1991) Short-Term Effects of Carbon 

Dioxide on Carnation Callus Cell Respiration 1. Plant Physiology 96, 467-472. 

Pandey, A., Dou, F., Morgan, C.L.S., Guo, J., Deng, J., Schwab, P. (2021) Modeling organically 

fertilized flooded rice systems and its long-term effects on grain yield and methane 

emissions. Science of The Total Environment 755, 142578. 

Peng, S., Bouman, B., Visperas, R.M., Castañeda, A., Nie, L., Park, H.-K. (2006) Comparison 

between aerobic and flooded rice in the tropics: Agronomic performance in an eight-

season experiment. Field Crops Research 96, 252-259. 

Phalke, A.R., Özdoğan, M. (2018) Large area cropland extent mapping with Landsat data and a 

generalized classifier. Remote Sensing of Environment 219, 180-195. 



117 

 

Prina, M.G., Cozzini, M., Garegnani, G., Manzolini, G., Moser, D., Filippi Oberegger, U., Pernetti, 

R., Vaccaro, R., Sparber, W. (2018) Multi-objective optimization algorithm coupled to 

EnergyPLAN software: The EPLANopt model. Energy 149, 213-221. 

Rainville, F.-M.D., Fortin, F.-A., Gardner, M.-A., Parizeau, M., Gagné, C., (2012) DEAP: a python 

framework for evolutionary algorithms, Proceedings of the 14th annual conference 

companion on Genetic and evolutionary computation. Association for Computing 

Machinery, Philadelphia, Pennsylvania, USA, pp. 85–92. 

Rakower, L.H.J.B.J.I.l.L. (2011) Blurred line: zooming in on Google Street View and the global right 

to privacy. Brook. J. Int'l L 37, 317. 

Ray, D.K., Mueller, N.D., West, P.C., Foley, J.A. (2013) Yield Trends Are Insufficient to Double 

Global Crop Production by 2050. PLOS ONE 8, e66428. 

Rea, A.C. (2020) Sugar Is Sweeter: Plants Open Their “Mouths” for Glucose, Not Malate, in the 

Morning[OPEN]. The Plant Cell 32, 2071-2072. 

Resco de Dios, V., Chowdhury, F.I., Granda, E., Yao, Y., Tissue, D.T. (2019) Assessing the potential 

functions of nocturnal stomatal conductance in C3 and C4 plants.  223, 1696-1706. 

Resco de Dios, V., Loik, M.E., Smith, R., Aspinwall, M.J., Tissue, D.T. (2016) Genetic variation in 

circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and 

growth. Plant, Cell & Environment 39, 3-11. 

Resco de Dios, V., Loik, M.E., Smith, R.A., Tissue, D.T. (2018) Effects of a Heat Wave on Nocturnal 

Stomatal Conductance in Eucalyptus camaldulensis. Forests 9. 

Ringland, J., Bohm, M., Baek, S.-R. (2019) Characterization of food cultivation along roadside 

transects with Google Street View imagery and deep learning. Computers and Electronics 

in Agriculture 158, 36-50. 

Saini, H.S., Westgate, M.E., (1999) Reproductive Development in Grain Crops during Drought, in: 

Sparks, D.L. (Ed.), Advances in Agronomy. Academic Press, pp. 59-96. 

Saunois, M., Stavert, A.R., Poulter, B., Bousquet, P., Canadell, J.G., Jackson, R.B., Raymond, P.A., 

Dlugokencky, E.J., Houweling, S., Patra, P.K., Ciais, P., Arora, V.K., Bastviken, D., 

Bergamaschi, P., Blake, D.R., Brailsford, G., Bruhwiler, L., Carlson, K.M., Carrol, M., Castaldi, 

S., Chandra, N., Crevoisier, C., Crill, P.M., Covey, K., Curry, C.L., Etiope, G., Frankenberg, 



118 

 

C., Gedney, N., Hegglin, M.I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., 

Janssens-Maenhout, G., Jensen, K.M., Joos, F., Kleinen, T., Krummel, P.B., Langenfelds, 

R.L., Laruelle, G.G., Liu, L., Machida, T., Maksyutov, S., McDonald, K.C., McNorton, J., 

Miller, P.A., Melton, J.R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, 

S., O'Doherty, S., Parker, R.J., Peng, C., Peng, S., Peters, G.P., Prigent, C., Prinn, R., 

Ramonet, M., Regnier, P., Riley, W.J., Rosentreter, J.A., Segers, A., Simpson, I.J., Shi, H., 

Smith, S.J., Steele, L.P., Thornton, B.F., Tian, H., Tohjima, Y., Tubiello, F.N., Tsuruta, A., 

Viovy, N., Voulgarakis, A., Weber, T.S., van Weele, M., van der Werf, G.R., Weiss, R.F., 

Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, 

Q., Zhu, Q., Zhuang, Q. (2020) The Global Methane Budget 2000–2017. Earth Syst. Sci. 

Data 12, 1561-1623. 

Schellenberg, H.C. (1896) Beiträge zur Kenntnis von Bau und Funktion der Spaltöffnungen. 

Botanische Zeitung 1, 169. 

Schneider, C.A., Rasband, W.S., Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image 

analysis. Nature Methods 9, 671-675. 

Shang, Z., Abdalla, M., Xia, L., Zhou, F., Sun, W., Smith, P. (2021) Can cropland management 

practices lower net greenhouse emissions without compromising yield? Global change 

biology 27, 4657-4670. 

Sharif, R.A., Azizpour, H., Sullivan, J., Carlsson, S., (2014) CNN features off-the-shelf: an 

astounding baseline for recognition, Proceedings of the IEEE conference on computer 

vision and pattern recognition workshops, pp. 806-813. 

Sharkey, T.D. (2016) What gas exchange data can tell us about photosynthesis. Plant, Cell & 

Environment 39, 1161-1163. 

Skakun, S., Franch, B., Vermote, E., Roger, J.-C., Becker-Reshef, I., Justice, C., Kussul, N. (2017) 

Early season large-area winter crop mapping using MODIS NDVI data, growing degree 

days information and a Gaussian mixture model. Remote Sensing of Environment 195, 

244-258. 

Snyder, K.A., Richards, J.H., Donovan, L.A. (2003) Night‐time conductance in C3 and C4 species: 

do plants lose water at night? Journal of Experimental Botany 54, 861-865. 



119 

 

Srivastava, S., Vargas-Muñoz, J.E., Tuia, D. (2019) Understanding urban landuse from the above 

and ground perspectives: A deep learning, multimodal solution. Remote Sensing of 

Environment 228, 129-143. 

Srivastava, S., Vargas Muñoz, J.E., Lobry, S., Tuia, D. (2020) Fine-grained landuse characterization 

using ground-based pictures: a deep learning solution based on globally available data. 

International Journal of Geographical Information Science 34, 1117-1136. 

Stahl, E., (1897) Über den Pflanzenschlaf und verwandte Erscheinungen. A. Förstner. 

Stinziano, J.R., McDermitt, D.K., Lynch, D.J., Saathoff, A.J., Morgan, P.B., Hanson, D.T. (2019) The 

rapid A/Ci response: a guide to best practices. New Phytologist 221, 625-627. 

Stinziano, J.R., Morgan, P.B., Lynch, D.J., Saathoff, A.J., McDermitt, D.K., Hanson, D.T. (2017) The 

rapid A–Ci response: photosynthesis in the phenomic era. Plant, Cell & Environment 40, 

1256-1262. 

Stuerz, S., Asch, F. (2021) Responses of Rice Growth to Day and Night Temperature and Relative 

Air Humidity—Leaf Elongation and Assimilation. Plants 10. 

Sun, L., Lu, Y., Yu, F., Kronzucker, H.J., Shi, W. (2016) Biological nitrification inhibition by rice root 

exudates and its relationship with nitrogen-use efficiency. New Phytologist 212, 646-656. 

Tian, Z., Fan, Y., Wang, K., Zhong, H., Sun, L., Fan, D., Tubiello, F.N., Liu, J. (2021) Searching for 

“Win-Win” solutions for food-water-GHG emissions tradeoffs across irrigation regimes of 

paddy rice in China. Resources, Conservation and Recycling 166, 105360. 

Tilman, D., Balzer, C., Hill, J., Befort, B.L. (2011) Global food demand and the sustainable 

intensification of agriculture. Proceedings of the National Academy of Sciences 108, 

20260. 

Torbick, N., Huang, X., Ziniti, B., Johnson, D., Masek, J., Reba, M. (2018) Fusion of Moderate 

Resolution Earth Observations for Operational Crop Type Mapping. Remote Sensing 10. 

Towprayoon, S., Smakgahn, K., Poonkaew, S. (2005) Mitigation of methane and nitrous oxide 

emissions from drained irrigated rice fields. Chemosphere 59, 1547-1556. 

Tu, D., Jiang, Y., Liu, M., Zhang, L., Chen, L., Cai, M., Ling, X., Zhan, M., Li, C., Wang, J., Cao, C. 

(2020) Improvement and stabilization of rice production by delaying sowing date in 



120 

 

irrigated rice system in central China. Journal of the Science of Food and Agriculture 100, 

595-606. 

Tucker, C.J. (1979) Red and photographic infrared linear combinations for monitoring vegetation. 

Remote Sensing of Environment 8, 127-150. 

Van Niel, T.G., McVicar, T.R., Datt, B. (2005) On the relationship between training sample size and 

data dimensionality: Monte Carlo analysis of broadband multi-temporal classification. 

Remote Sensing of Environment 98, 468-480. 

Van Oijen, M., Schapendonk, A., Höglind, M. (2010) On the relative magnitudes of photosynthesis, 

respiration, growth and carbon storage in vegetation. Annals of Botany 105, 793-797. 

Waldner, F., Bellemans, N., Hochman, Z., Newby, T., de Abelleyra, D., Verón, S.R., Bartalev, S., 

Lavreniuk, M., Kussul, N., Le Maire, G. (2019) Roadside collection of training data for 

cropland mapping is viable when environmental and management gradients are surveyed. 

International Journal of Applied Earth Observation and Geoinformation 80, 82-93. 

Wang, S., Azzari, G., Lobell, D.B. (2019) Crop type mapping without field-level labels: Random 

forest transfer and unsupervised clustering techniques. Remote Sensing of Environment 

222, 303-317. 

Wang, S., Di Tommaso, S., Deines, J.M., Lobell, D.B. (2020a) Mapping twenty years of corn and 

soybean across the US Midwest using the Landsat archive. Scientific Data 7, 307. 

Wang, S., Di Tommaso, S., Faulkner, J., Friedel, T., Kennepohl, A., Strey, R., Lobell, D.B. (2020b) 

Mapping Crop Types in Southeast India with Smartphone Crowdsourcing and Deep 

Learning. Remote Sensing 12. 

Wang, Y., Anderegg, W.R.L., Venturas, M.D., Trugman, A.T., Yu, K., Frankenberg, C. (2021) 

Optimization theory explains nighttime stomatal responses. New Phytologist 230, 1550-

1561. 

Wardlow, B.D., Egbert, S.L. (2008) Large-area crop mapping using time-series MODIS 250 m NDVI 

data: An assessment for the U.S. Central Great Plains. Remote Sensing of Environment 

112, 1096-1116. 



121 

 

Wardlow, B.D., Egbert, S.L., Kastens, J.H. (2007) Analysis of time-series MODIS 250 m vegetation 

index data for crop classification in the U.S. Central Great Plains. Remote Sensing of 

Environment 108, 290-310. 

Wenting, W., Wenpei, C., Ke, X., Hui, G., Haiyan, W., Hongcheng, Z. (2021) Effects of Early- and 

Late-Sowing on Starch Accumulation and Associated Enzyme Activities During Grain Filling 

Stage in Rice. Rice Science 28, 191-199. 

Wood, S.A., Guerry, A.D., Silver, J.M., Lacayo, M. (2013) Using social media to quantify nature-

based tourism and recreation. Scientific Reports 3, 2976. 

Woodward, F.I. (1987) Climate and plant distribution. Cambridge University Press. 

Xiao, X., Dorovskoy, P., Biradar, C., Bridge, E. (2011) A library of georeferenced photos from the 

field. Eos, Transactions American Geophysical Union 92, 453-454. 

You, L., Wood, S., Wood-Sichra, U., Wu, W. (2014) Generating global crop distribution maps: From 

census to grid. Agricultural Systems 127, 53-60. 

Yu, K., Goldsmith, G.R., Wang, Y., Anderegg, W.R.L. (2019) Phylogenetic and biogeographic 

controls of plant nighttime stomatal conductance. New Phytologist 222, 1778-1788. 

Zeppel, M.J.B., Lewis, J.D., Phillips, N.G., Tissue, D.T. (2014) Consequences of nocturnal water loss: 

a synthesis of regulating factors and implications for capacitance, embolism and use in 

models. Tree Physiology 34, 1047-1055. 

Zhang, F., Wu, L., Zhu, D., Liu, Y. (2019a) Social sensing from street-level imagery: A case study in 

learning spatio-temporal urban mobility patterns. ISPRS Journal of Photogrammetry and 

Remote Sensing 153, 48-58. 

Zhang, J., Zhang, S., Cheng, M., Jiang, H., Zhang, X., Peng, C., Lu, X., Zhang, M., Jin, J. (2018) Effect 

of Drought on Agronomic Traits of Rice and Wheat: A Meta-Analysis. International Journal 

of Environmental Research and Public Health 15. 

Zhang, Q., Yang, Y., Peng, S., Li, Y. (2021) Nighttime transpirational cooling enabled by circadian 

regulation of stomatal conductance is related to stomatal anatomy and leaf morphology 

in rice. Planta 254, 12. 



122 

 

Zhang, W., Li, W., Zhang, C., Hanink, D.M., Li, X., Wang, W. (2017) Parcel-based urban land use 

classification in megacity using airborne LiDAR, high resolution orthoimagery, and Google 

Street View. Computers, Environment and Urban Systems 64, 215-228. 

Zhang, W., Liu, C., Zheng, X., Wang, K., Cui, F., Wang, R., Li, S., Yao, Z., Zhu, J. (2019b) Using a 

modified DNDC biogeochemical model to optimize field management of a multi-crop 

(cotton, wheat, and maize) system: a site-scale case study in northern China. 

Biogeosciences 16, 2905-2922. 

Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., 

Durand, J.-L., Elliott, J., Ewert, F., Janssens, I.A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., 

Peng, S., Peñuelas, J., Ruane, A.C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z., 

Asseng, S. (2017) Temperature increase reduces global yields of major crops in four 

independent estimates. Proceedings of the National Academy of Sciences 114, 9326. 

Zhao, Z., Cao, L., Deng, J., Sha, Z., Chu, C., Zhou, D., Wu, S., Lv, W. (2020) Modeling CH4 and N2O 

emission patterns and mitigation potential from paddy fields in Shanghai, China with the 

DNDC model. Agricultural Systems 178, 102743. 

Zhong, L., Hu, L., Yu, L., Gong, P., Biging, G.S. (2016a) Automated mapping of soybean and corn 

using phenology. ISPRS Journal of Photogrammetry and Remote Sensing 119, 151-164. 

Zhong, L., Hu, L., Zhou, H. (2019a) Deep learning based multi-temporal crop classification. Remote 

Sensing of Environment 221, 430-443. 

Zhong, L., Hu, L., Zhou, H., Tao, X. (2019b) Deep learning based winter wheat mapping using 

statistical data as ground references in Kansas and northern Texas, US. Remote Sensing 

of Environment 233, 111411. 

Zhong, Y., Wang, X., Yang, J., Zhao, X., Ye, X. (2016b) Exploring a suitable nitrogen fertilizer rate 

to reduce greenhouse gas emissions and ensure rice yields in paddy fields. Science of The 

Total Environment 565, 420-426. 

Zong, Y., Chen, Z., Innes, J.B., Chen, C., Wang, Z., Wang, H. (2007) Fire and flood management of 

coastal swamp enabled first rice paddy cultivation in east China. Nature 449, 459-462. 



123 

 

Chapter V. Conclusions 

Nocturnal stomatal conductance (gsn) in rice plants accounts for a non-negligible portion of the 

daytime stomatal conductance (gsd) and surprisingly showed no strong response to abiotic stress. 

In chapter II, we identify the coordinated leaf traits (Rn − gsn − gsd − A) as the primary mechanism 

of gsn in rice plants. We found gsn is acting as a “bridge” to link the prior Rn and photosynthesis 

next dawn. The proposed coordination hypothesis explains the considerable observed variation of 

gsn, early-morning gsd, early-morning A, and leaf cooling results, which could not fully be 

explained with the circadian regulation. We demonstrated the coordinated leaf traits hold firm 

under drought, nutrient scarcity, and the combination of these two abiotic stressors. Circadian 

priming, nutrient uptake, water conservation, and excessive CO2 flushing are only the secondary 

explanations of gsn in rice as we did not find clear evidence to deny these hypotheses as well. 

 

By proposing a simple heuristic and holistic method, chapter III optimized rice farming beyond 

previous most emphasized irrigation regimes, while also exploring niches from other pivotal farm 

managements regarding sowing window, fertilization rate, tillage depth, and their interactions. 

Specifically, we validated and coupled the DNDC model with the NSGA-III algorithm to 

maximize crop yield, minimize water consumption, and minimize N2O, CH4 emissions. By 

approaching four objectives on its paired Pareto fronts, we quantified the gaps in current farming 

practices in South Korea to achieve optimal solutions. Our results indicate that the optimized 

holistic farm management would maintain or even increase current crop yield while reducing more 

than 50% irrigation demand and GHGs emissions. Furthermore, this new method also tackled the 

dilemma of simultaneously reducing CH4 and N2O emissions. Our study clearly shows that the 

present rice farming system in the study site not only has not achieved its potential yield level but 

also comes at a great environmental cost to water resources and GHGs emissions. More 

importantly, this simple method could further be applied to evaluate the environmental 

sustainability of a rice farming system under various climate and local conditions and to guide 

policymakers and farming practices with detailed solutions. 
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Ground reference data are essential for supervised crop type mapping. In chapter IV, we developed 

a novel alternative method for nearly automated ground truthing by integrating a CNN model and 

GSV images. We demonstrated the general applicability of this new method by evaluation with 

CDL products at two large distinct farming areas in the Central Valley and Illinois from 2011–

2019 and the additional test case in South Korea. The CNN model revealed considerable capability 

for GSV image classification, with an accuracy of 92% for the Central Valley, and 97% for Illinois. 

The ground reference points derived from GSV images taken along roads are representative and 

suitable for conducting state- and country- level crop type classification, with R2 of 0.44-0.99 for 

the Central Valley, 0.81-0.98 for Illinois, and 0.91 for South Korea. The strong performance of the 

CNN model indicates upscaling potential for coherent ground truthing when GSV images are 

available. We have demonstrated that GSV is a useful data source which has been overlooked in 

generating massive ground truth data and making crop type maps. However, GSV is not a universal 

solution, we strongly encourage future studies to explore vast amounts of geo-tagged social media 

data in tandem with GSV if available. Furthermore, we would like to highlight that the coverage 

and data size in GSV and relevant street view images will expand and grow rapidly. 
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Supplementary Information Chapter II 

 

 

Fig. S1 Variation (n = 3) of the maximum velocity of carboxylation (Vc,max) and maximum electron 

transport rate (Jmax) normalized at 25°C across treatments on DOY 224 and 225.  
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Fig. S2 Stomatal density (SD) on the adaxial and abaxial surfaces (a & b), stomatal size ratio 

(SSRada/aba) (c), and stomatal density ratio (SDRada/aba) across treatments (d). The error bars 

indicate one standard deviation of uncertainty. The lowercase letters in each panel indicate the 

significance level of differences between mean values and data distributions. Nonsignificant 

results are unlabeled.  
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Fig. S3 Correlations between nocturnal stomatal conductance (gsn) and nocturnal transpiration (En) 

(a), nocturnal respiration (Rn) and leaf temperature (Tleaf) (b), and Rn and En (c). The grey 

regression line denotes the slope for all data points, while the dotted regression lines denote the 

slopes for individual treatments.  
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Fig. S4 Correlations between nocturnal stomatal conductance (gsn) and time to reach 80% of the 

early morning (PPFD = 300 µmol m−2 s−1) maximum A within a 5-min period (a), early morning 

non-steady-state maximum stomatal conductance (gsd) and the maximum assimilation rate (A) 

within a 5-min period (b), and the stomatal response time and early morning maximum A (c). 
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Fig. S5 Additional path analyses with higher degrees of freedom (df) for the coordination-En 

cooling hypothesis (n = 29) (a), and for the coordination-circadian priming hypothesis (early 

morning and non-steady-state conditions) (n = 22), where τ1 denotes the time to reach 63% of the 

maximum early morning A within a 5-min period (b). The arrows denote the speculative 

interactions between two leaf traits. Path coefficients were normalized from −1 to 1 and are shown 

in between traits; significant relationships (*P < 0.05, **P < 0.01, ***P < 0.001) are indicated by 

blue or green numbers. GFI, goodness of fit; AGFI, adjusted goodness of fit; CFI, comparative fit 

index; TLI, Tucker-Lewis index. Red text indicates poor model fit indices. Ranges of good model 

fit indices were defined as follows: AGFI > 0.90, CFI > 0.90, GFI > 0.95, and TLI > 0.97. 
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Fig. S6 Correlation between nocturnal respiration (Rn) and early morning (300 µmol m−2 s−1 PPFD) 

non-steady-state stomatal conductance (gsd) (a), assimilation rate (b), correlation between Rn and 

steady-state light-saturated (1,800 µmol m−2 s−1 PPFD) stomatal conductance (gsd) (c), and 

assimilation rate (d). 
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Supplementary Information Chapter III 

 

Supplementary Fig. 1 Mean daily climate conditions (surface temperature & precipitation) during 

2016-2020 in the study area.  
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Supplementary Fig. 2 Probability density distribution of the interaction between the non-

dominated fertilization rate and non-dominated half-monthly irrigation schedule. 
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Supplementary Fig. 3 Probability density distribution of the interaction between the non-

dominated sowing day and non-dominated monthly irrigation schedule. 
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Supplementary Fig. 4 (a-e) Probability density distribution of the interaction between the non-

dominated tillage depth and non-dominated monthly irrigation schedule. (f) Probability density 

distribution of the interaction between the non-dominated tillage depth, sowing day, and 

fertilization rate. 
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Supplementary Information Chapter IV 

 

Method 

To demonstrate the applicational value of the proposed method in other countries, we further apply 

the proposed method in South Korea and map the rice paddy for the year 2014-2018. To transfer 

the CNN model into a new study area, we use the rice paddy images prepared at California with 

only limited additional images in South Korea. Due to the absence of CDL alike products, we 

evaluate the mapping results with Dong et al. (2016) rice paddy map for the year 2014. 

 

Results 

Supplementary Fig. 1 Availability and spatial distribution of GSV images across South Korea (a), 

produced rice paddy reference points (b) which include 1219 for 2015 (green) and 269 for 2018 

(red). The blue squares indicate the location of regional-scale rice paddy mapping comparison 

against a reference rice paddy map (Dong et al., 2016) which appears at Supplementary Fig. 3. 

Supplementary Table 1. Performance of the CNN model for GSV image classification in South 

Korea, displayed as a confusion matrix. PA: producer accuracy; UA: user accuracy; OA: overall 

accuracy. 
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South Korea Rice paddy Other UA 

Rice paddy 210 5 98% 

Other 27 177 87% 

PA 89% 97% OA = 92% 

 

 

Supplementary Table 2. Performance of the RF model for land cover classification in South Korea 

indicated as a confusion matrix. PA: producer accuracy; UA: user accuracy; OA: overall accuracy 

South Korea Rice paddy Other UA 

Rice paddy 279 17 94% 

Other 27 263 91% 

PA 91% 94% OA =92 % 

Supplementary Fig. 2 Comparison between the Dong et al. (a) and GSV-derived (b) rice paddy 

maps in 2014, a year without reference GSV images. 
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Supplementary Fig. 3 Regional-scale rice paddy mapping comparison for South Korea in 2014. 

Each subplot covers approximately 2500 km2. The location of each region is available in 

Supplementary Fig. 1b. 

 

Supplementary Fig. 4 GSV- and Landsat8- derived rice paddy maps (green) for South Korea 

between 2015-2018. 
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5. Abstract in Korean 

쌀(오리자 사티바)은 세계 인구의 50% 이상을 먹여 살리는 중요한 곡물 작물이다. 그러나 

전통적인 혐기성 관리는 쌀 생산으로 관개수의 40%를 소비하고 전 세계 인공 메탄의 10%를 

배출한다. 식량 수요 증가, 물 부족, 온실가스 배출 감소 등의 과제 속에서 지속 가능한 

벼농사를 위한 새로운 패러다임이 시급하다. 벼는 하룻밤 사이에 상당한 양의 물을 

내뿜는다. 야간 수분 손실을 줄이는 것은 바람직하지만, 먼저 야간 기공 개방의 기본 

메커니즘을 이해할 필요가 있다. 야간과 별도로 주간 경영의 최적화는 환경적으로 지속 

가능한 벼농사 시스템을 설계하는 데 매우 중요하다. 장기 전략에서, 새로운 잎 수준 발견과 

현장 수준 방법을 지역적 또는 전역적 규모로 상향 조정하려면 상세하고 신뢰할 수 있는 

작물 유형 맵이 필수적이다. 따라서, 본 논문에서 우리는 벼농사의 야간 기공 전도도에 대한 

기계적 이해를 향상시켰다(제 2장). 환경적으로 지속 가능한 벼농사 시스템을 설계하기 

위한 학제 간 및 휴리스틱 접근법 제공(제 3 장). 그리고 새로운 작물 유형 참조 방법을 

개발했다. 기성품인 Google Street View 이미지를 마이닝하여 자르기 유형을 매핑합니다. 

 

2 장에서 우리는 벼의 야행성 기공 전도도(gsn)의 생태학적 메커니즘을 설명하기 위해 

"협동된 잎 형질" 가설을 제안했습니다. 가뭄, 영양 결핍 및 가뭄-영양소 결핍 복합 

스트레스를 적용하여 노지 실험을 수행했습니다. 우리는 gsn 이 가뭄에 의해 크게 

감소하지도 않고 영양 결핍에 의해 지속적으로 증가하지도 않는다는 것을 발견했습니다. 

무생물적 스트레스를 무작위 효과로 사용하여 gsn은 야간 호흡(Rn)과 강한 양의 상관관계를 

보였습니다. 특히, gsn은 Rn(↑) → gsn(↑) → gsd(주간 기공 전도도)(↑) → A(동화)(↑)와 같이 이른 

아침 광합성을 프라이밍했습니다. 이 광합성 프라이밍 효과는 오전 중반 이후에 

감소했습니다. 잎은 gsn에 의해 다음과 같이 냉각되었습니다: gsn(↑) → E(증산)(↑) → Tleaf(잎 

온도)(↓). 그러나 우리의 결과는 증발 냉각이 Rn 비용을 감소시키지 않았다는 것을 분명히 

시사합니다. 우리의 결과는 gsn이 물 및 영양소 가용성보다 탄소 호흡 및 동화와 더 밀접하게 

관련되어 있으며 잎 형질 조정(Rn - gsn - gsd - A)이 gsn을 제어하는 주요 메커니즘일 가능성이 

있음을 나타냅니다. 
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제 3장에서 우리는 현재의 작물 수확량을 늘리고 관개 용수 소비를 줄이며 침수된 쌀 생산 

시스템에서 CH4와 N2O 배출량을 동시에 줄이는 딜레마를 해결하는 것을 목표로 했다. 

휴리스틱하고 전체론적 방법을 제안함으로써, 우리는 이전에 가장 강조되었던 관개 체제를 

넘어 농장 관리를 최적화함과 동시에 파종 창, 수정률, 경작 깊이 및 이들의 상호 작용과 

관련된 다른 중추적 옵션의 틈새를 탐색했다. 구체적으로, 우리는 5년간의 와류 공분산 

관찰로 프로세스 기반 DNDC 모델을 교정하고 검증했다. DNDC 모델은 나중에 다중 객관적 

최적화 문제를 해결하기 위해 비지배적 정렬 유전 알고리듬(NSGA-III)과 통합되었다. 

우리는 최적화된 관리를 통해 50% 이상의 관개 수요와 GHG(CH4 & N2O) 배출량을 

줄이면서 현재 농작물 수확량을 잠재력(~10t/ha)까지 유지하거나 증가시킬 수 있다는 것을 

발견했습니다. 우리의 결과는 더 이른 파종 기간과 관개 관개 관행의 개선이 환경적 이익을 

유지하면서 농작물 수확량을 최대화하는 데 중추적일 것이라는 것을 보여준다. 우리는 

홍수 없는 날의 최적 부분이 성장기 길이의 약 54%였고 최적의 시간 분포는 주로 식물 

단계에 있다는 것을 발견했다. 우리의 연구는 연구 현장의 현재 농장 수확량(8.3-8.9 t/ha)이 

잠재적 수준을 달성했을 뿐만 아니라 수자원(604-810 mm/yr)과 GHGs 배출(CH4: 186-220 kg 

C/ha/yr; N2O: 0.3-1.6 kg C/ha/yr)에 막대한 환경 비용을 초래한다는 것을 보여준다. 또한, 이 

간단한 방법은 다양한 기후 및 지역 조건 하에서 농업 시스템의 환경 지속 가능성을 

평가하고 정책 입안자와 농업 관행을 포괄적인 해결책으로 안내하는 데 추가로 적용될 수 

있다. 

 

제 4장에서는 컨볼루션 신경망(CNN) 모델을 적용하여 두 개의 구별되는 농업 지역에서 

구글 스트리트 뷰(GSV) 이미지를 통해 자동 지상 트러싱의 효과를 탐구한다. 일리노이와 

캘리포니아의 센트럴 밸리. 지상 참조 데이터는 감독된 작물 매핑을 위한 필수 전제 

조건이다. 저렴하고 효율적인 지상 참조 방법이 없기 때문에 참조 데이터가 광범위하게 

제한되고 작물 분류를 방해한다. 본 연구에서는 클라우드 기반 Google 어스 엔진 플랫폼을 

사용하여 상태 수준에서 픽셀 기반 크롭 매핑을 수행하여 새로운 지상 참조 기술의 실현 

가능성과 신뢰성을 입증한다. 매핑 결과는 미국 농무부(USDA) 작물 데이터층(CDL) 제품을 

사용하여 평가된다. 약 130,000개의 GSV 이미지에서 CNN 모델은 약 9,400개의 목표 크롭 
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이미지를 식별했다. 이 이미지들은 알팔파, 아몬드, 옥수수, 면화, 포도, 쌀, 콩, 피스타치오 

등의 작물 유형으로 잘 분류된다. 전체 GSV 이미지 분류 정확도는 센트럴 밸리의 경우 92%, 

일리노이 주의 경우 97%이다. 그 후 이미지 지리적 좌표를 특정 방향으로 2~3회 이동하여 

31,829 개의 크롭 기준점을 생성했다. 즉, 일리노이에서 17,358 개, 센트럴 밸리에서 

14,471 개였다. CDL 제품으로 매핑 결과를 평가한 결과 만족스러운 일관성이 나타났다. 

GSV에서 파생된 매핑 결과는 2011-2019년 작물 유형 분포의 일반적인 패턴을 포착한다. 

CDL 제품과 우리의 매핑 결과 사이의 전체 합치는 센트럴 밸리의 경우 0.44–0.99의 R2 값과 

일리노이 주의 경우 0.81–0.98의 R2 값으로 표시된다. 제안된 방법의 다른 국가에서 적용 

가치를 보여주기 위해, 꽤 좋은 결과를 얻은 한국의 논(2014–2018)을 추가로 

매핑했다(R2=0.91). 이러한 결과는 딥 러닝 모델과 함께 사용되는 GSV 이미지가 세계의 

많은 지역에서 지상 참조를 위한 효율적이고 비용 효율적인 대체 방법을 제공한다는 것을 

나타낸다. 
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