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Abstract 

 

Semiconductor manufacturing goes through hundreds of complex 

processes, and improving low yield is an essential task in the industry. In 

addition, the manufacturing equipment greatly influences the yield of 

products produced in the semiconductor manufacturing process. Therefore, 

predicting the yield through the combination of the equipment will help 

improve the yield by finding wafers that need improvement in advance. 

Moreover, considering the complex characteristics of the semiconductor 

process, we can find a combination of semiconductor equipment using 

models with good predictive performance, such as the deep neural network 

(DNN) model. However, using the DNN model creates a computationally 

difficult problem that requires exploring all combinations of variables, and 

the complexity of the model does not help much in analyzing the issue of the 

low-yield products and in what direction to improve. Therefore, in this paper, 

we propose a methodology to find optimal manufacturing equipment 

combination by applying metaANOVA, which allows us to interpret the 

complex prediction model by approximating an ANOVA model with multi-

order interactions to the prediction model. In particular, we want to help 

identify the characteristics of each yield group by classifying the high and low 

yield groups based on the wafer test yield and exploring the combination of 

equipment representing each yield group. 

 

Keywords: Semiconductor, Deep Learning, Machine Learning, Equipment 

Combination 

Student ID: 2020-24952  
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1. Introduction 

 

1.1 Motivation 

The semiconductor is a vital component of the high-tech industry in 

the 21st century. The importance of semiconductors has been highlighted as 

the Biden administration in the U.S. has scheduled to make massive 

investments in semiconductor manufacturing upon its launch. The 

semiconductor market's growth, which was slowed down for a while due to 

the U.S.-China trade war and the COVID-19 Pandemic, has gradually 

increased with the recovery of its previous market size. According to SEMI's 

announcement, the semiconductor market is expected to grow further in 2022 

and achieve the largest ever. The importance of semiconductor manufacturing 

has become an essential factor in future national competitiveness, and studies 

related to semiconductor manufacturing have been continued. 

In semiconductor manufacturing, yield is the key performance index 

which indicates the proportion of successful outputs from the inputs, and the 

production yield is highly affected by the production equipment. In actual 
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industrial sites, equipment with low yield is identified during the wafer test 

stage. To solve this problem, engineers in the semiconductor industry 

temporarily reduce the production of the equipment to increase the yield in 

the short term, then search for issues with the equipment and fix them in the 

long term. To overcome this limitation, many studies suggest that defected 

wafers may be found in advance and converted into a high-yield product if 

the production equipment can predict the yield. As a result, maximizing 

production efficiency can be expected by reducing the time and cost required 

for semiconductor manufacturing. According to Baek et al. [6], applying 

traditional statistical methods and engineers’ empirical analysis has a 

limitation in identifying root factors that cause yield degradations. This is due 

to the increasingly complicated process of semiconductor manufacturing that 

the process becomes physically small as they enter the nano-scale, making it 

more challenging to rely solely on the analysis of the domain experts. 

Therefore, the necessity of diagnosing degrading factors such as 

manufacturing equipment by intellectual methodology emerges as a pivotal 

improvement. Moreover, offering a data-driven solution to engineers can 

enhance productivity so that finding the best equipment for each process 

independently and combining equipment that is in interactive relation can 

have significant meaning to the semiconductor industry. 
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In general, it is known that machine learning methodologies such as 

boosting, random forest, and deep neural network (DNN) models have high 

prediction power. However, these models are usually complex and unsuitable 

when analyzing the problem of low yields products and how they should be 

improved. In other words, they are deficient in knowledge representation, 

making them known as black-box models. To solve this issue, Shin [1] 

proposes a method to provide the most similar case to the predicted query 

using a hybrid system that combines machine learning with memory-based 

reasoning (MBR). However, it has limitations in offering symbolic 

knowledge because it simply provides similar previous cases to the current 

query [1]. In addition, considering the complex characteristics of the 

semiconductor manufacturing process, the equipment combination can be 

found using models with relatively higher prediction performance, like the 

DNN model. However, using the DNN model for the semiconductor-related 

data will cause a substantial computation cost problem in exploring all 

equipment combinations. To overcome this drawback, we leverage a new 

approach to reduce the scope of navigation for finding equipment 

combinations and add interpretive power to the black-box model. And 

through this method, we can analyze the semiconductor equipment and offer 

data-driven solutions to the semiconductor domain experts. 
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1.2 Purpose 

In the semiconductor manufacturing industry, the fabrication (FAB) 

process is a sequential step with multiple chemical and photolithographic 

process that turns a silicon wafer into integrated circuits. In general, the FAB 

process contains the following processing steps: lithography, etching, 

deposition, chemical mechanical planarization, oxidation, ion implantation, 

and diffusion. Each process step in the FAB process uses various equipment. 

In addition, interactions can exist between process steps, and finding those 

interactions can help improve productivity. Therefore, we expect to increase 

the wafer test (WT) yield, which is used after the FAB process as an index of 

productivity, by finding the interaction between the process steps and the 

optimal combination of equipment used in each process step in the FAB 

process. 

As a goal of this paper, we intend to maximize the WT yield through 

a combination of equipment used in the processing steps in the FAB process. 

To be more specific, we want to identify the characteristics to be included in 

each tier divided into a high-yield group and a low-yield group based on the 

WT yield and explore the equipment combinations representing each tier. 

Finding the optimal combination of equipment that best represents each tier 

in semiconductor manufacturing can provide insight into improving yield 
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through process equipment. In the case of searching for optimal equipment 

combinations for each high and low-yield group, all combinations of 

variables must be explored if the DNN model is used. Hence, we apply a 

novel method called metaANOVA, which approximates the complex 

predictive model like deep neural network to an ANOVA model with multi-

order interactions. Meta ANOVA uses the characteristics that the ANOVA 

model is segmentable to significantly reduce the scope of navigation, 

enabling an efficient search for representative combinations. By comparing 

the predicted probability of belonging to each tier from the optimal equipment 

combination and the existing combinations, we expect to see whether it is 

possible to find the best equipment combination of the FAB process. 

Furthermore, we expect that finding the optimal combinations will help 

identify the characteristics that the semiconductor process should have in 

order to increase its productivity. Moreover, since the ANOVA model used in 

this study is a linear model, it is model-agnostic in that we can directly 

interpret the model through its coefficients. Therefore, essential factors in the 

model can be found based on the variance of the coefficients for each factor, 

and interpretation of the predicted values of each observed data is also 

available.  
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2. Related Works 

 

Many prior studies have been conducted on semiconductor yield. 

Applying traditional statistical methods to semiconductor yield problems 

seems to be no longer effective due to semiconductor data's vast dimensions. 

Therefore, machine learning models have been used in the semiconductor 

manufacturing field in recent studies. Kim et al. [5] employs seven different 

machine learning models and three different dimensionality reduction 

methods to detect faulty wafers. The purpose of this study is to decrease 

manufacturing cost and increase lead time by finding faulty wafers in advance. 

Although statistical process control (SPC) method and virtual metrology (VM) 

have been applied for the detection, several limitations from these methods 

and the characteristics of the dataset bring the necessity of novel experimental 

approach. As one of the limitations, for example, SPC method uses each 

variable independently. But in fact, multiple variables have interactive 

influences each other. As an experimental setting, Kim et al. [5] applies three 

dimensionality reduction methods: stepwise linear regression, stepwise one 

class support vector machines (1-SVM), and principal component analysis 
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(PCA). In addition, the following machine learning based methods are used: 

gaussian density estimation, gaussian mixture model, parzen window, k-

means clustering, 1-SVM, PCA, and KPCA. As a result, the study concludes 

that stepwise 1-SVM shows the best dimensionality reduction performance 

and 1-SVM has the best TPR-FPR result. 

Jang et al. [8] propose a yield prediction method for new wafer maps 

by using deep learning algorithms on spatial features of semiconductor dies 

before the FAB process. This proposed study uses five spatial features of 

semiconductor dies, the wafer's central axis and four coordinates, as input 

variables for the DNN. As a result, this methodology improves the model's 

predictive power by learning yield data and helps design a new Wafer Map to 

improve productivity by 8.59%. 

Jiang et al [4] introduces a method for predicting the final test (FT) 

yield at wafer fabrication (FAB) stage using machine learning techniques. 

Predicting FT yield at FAB stage can detect low yield wafers in advance 

which will eventually enhance the productivity of semiconductor. The study 

proposes a robust solution that uses all manufacturing related parameters 

including both numerical and categorical data. Jian et al [4] applies gaussian 

mixture models, one hot encoder and label encoder techniques as a preprocess 

step. Then model selection and model ensemble are adopted with using F1 

macro method as a score metric. The study has an advantage in data-driven 
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decision-making process by using automatic handling of manufacturing data 

because this novel framework can overcome the limitations of engineers’ 

empirical analysis that manually reviews all production related data. The 

study compares the performance of seven different machine learning 

techniques with F1 macro (average) score: the machine learning techniques 

are support vector machine classifier, k-nearest neighbor, gaussian process 

classifier, logistic regression, extra tree classifier, gradient boost, and 

XGBoost model. In addition, three different pre-processing is adopted as an 

experimental condition which are label encoder, one hot encoder, and 

dropping categorical input. This generic framework selects top three models, 

extra tree classifier, gaussian process classifier, and XGBoost model, and 

carry out importance feature using feature importance analysis. 

An et al. [2] propose a yield prediction model using SVM to address 

the limitations of neural network models that have excellent predictive power 

but are difficult to explain. Instead of indiscriminate testing in the two Probe 

Tests, which are required from FAB OUT to the final test, selectively 

classifying lots into high and low yield and dualizing the probe test conditions 

according to the above classification can reduce the time and cost required for 

manufacturing. After the first probe test is completed, this method uses a 

Stepwise SVM (SSVM) classifier model to distinguish between a high-yield 

lot and a low-yield lot. Then potential defective chips can be found after 
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applying an adjusted second probe test to each yield lot. Therefore, the final 

test yield rate can be improved by finding potential defects in advance in the 

final test process. SSVM is a method of classifying data by adjusting 

parameters by expanding the classification interval step by step, which can 

improve predictive power over a traditional SVM model. As a result of this 

study, SSVM demonstrates superior performance in classification, showing 

higher classification accuracy and lower misclassification rates than 

traditional SVM, LDA, and QDA. 

Shin [1] proposes a hybrid machine learning technique that combines 

a neural network model with memory-based reasoning (MBR), which uses 

the k-nearest neighbor (k-NN) method for case retrieval. The results of this 

hybrid system are implemented by a prediction query manager (PQM) 

method that simultaneously compares the results of the neural network and 

MBR when a new query is requested and returns the predicted value. This 

system has two appealing features that it can be applied to both classification 

and regression tasks without the mechanism conversion. Moreover, due to its 

on-line learning property, the system can monitor the process which is 

suitable for the semiconductor manufacturing process. However, there are 

some limitations to this method. Firstly, many previous cases are required in 

advance, so it is challenging to utilize the proposed system with few cases. In 

addition, the system has limitations in providing explicit symbolic knowledge 
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because the system delivers information similar to the current query by 

offering previous cases. 
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3. Methods 

 

3.1 Data 

Semiconductor manufacturing involves a complex process that goes 

through hundreds of processes. In general, semiconductor manufacturing 

goes through the FAB, PKG, and Module processes. The wafer test (WT), 

package test, and module test are conducted accordingly at the end of each 

process to verify that each process is performed correctly, and defects or 

abnormal reactions occurring in each step degrade the yield/quality of the 

final products. Among the processes, the FAB process is the most complicated 

one which takes the longest time during the whole manufacturing process; 

therefore, the FAB process has the greatest influence on semiconductor yield 

[6]. The FAB process refers to the entire process of turning a raw silicon wafer 

into an integrated electronic circuit by forming several types of materials on 

the surface of a wafer and repeating the process of selectively removing a 

specific part using a mask already made. As shown in Figure 1, silicon wafers 

with non-conductor properties are made of semiconductors with electrical 

properties through the FAB process. Wafer test is the first stage to test the 
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wafer from the FAB process, and it plays a role in detecting and repairing 

initial defects. In addition, WT yield, which represents the number of final 

products compared to the input wafers during the WT process, is a crucial 

evaluation index indicating the production efficiency of the product. 

 

 

Figure 1. Basic steps of the FAB process in semiconductor manufacturing 

 

For this study, SK Hynix provides the FAB related dataset which 

consists nearly 79,800 wafer observations. Moreover, the 3,700 FAB process-

related can be divided into three types of variables. First, the information 

about each wafer is recorded with its lot id, wafer id, and the WT yield. The 

second is continuous variables with a cue time value representing the time 

cost in each processing step. The last is categorical variables which include 

meta information about the process such as equipment, recipe, reticle, etc. As 
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shown in Figure 2, most categorical variables contain 10 to 40 unique 

categories. There are 3,192 lots and each lot in the dataset contains up to 25 

wafers. Each wafer has a different WT yield value because of the different 

elements used to produce a wafer during the process. The most critical 

information in the FAB dataset is meta-information which consists of 2870 

variables with categorical data of FAB process. Since the study focuses on 

equipment of processing steps in the FAB process, we extract variables of the 

equipment and WT yield. Hence, we get equipment combination dataset with 

their WT yields that is represented as a row in the dataset. Unfortunately, the 

FAB process-related dataset has been encoded for security reasons, so the 

exact names of the variables and values are provided unknown. 
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Figure 2. Distribution of unique category per each categorical variable of 

processing steps in the FAB process 

 

The original FAB process-related dataset contains several missing 

values with some outliers. As a preprocessing step, we remove data whose 

yield value is less than 80 and variables with a single category. When handling 

the missing data, we realize that all data have missing values in at least one 

variable. Therefore, we first drop variables that contain 30% or more missing 

values and then remove row-wise data with missing values. As a result of 

preprocessing step, we get nearly 40,000 wafer observations with 240 

variables which contain equipment information of each processing steps in 

the FAB process. In other words, we could extract equipment combinations 

used in the FAB process. In consideration of the characteristics of the 
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semiconductor process, the WT yield has an imbalanced distribution structure. 

However, the imbalanced structure of the dataset is solved since the WT 

yields are classified into a high yield group and a low yield group according 

to the rank value after removing the outlier. 

 

3.2 Experiment Framework 

Previous studies use various machine learning models for predicting 

semiconductor yields. Considering the complex manufacturing process of 

semiconductors, using machine learning models with good prediction 

performance, such as the DNN, is essential. However, a high computation 

cost is required to navigate all possible combinations of semiconductor 

equipment variables if we use the DNN model. Moreover, it is difficult to 

interpret or explain the model due to its complexity. Gunning [3] presents the 

relationship between the prediction accuracy and explainability of machine 

learning models through Figure 3. We can observe a trade-off that the 

explainability of the model decreases as the prediction accuracy increases and 

vice versa. 
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Figure 3. Relation between performance and explainability 

 

In this paper, we try to solve the computation issue and 

interpretability problem by training an ANOVA model with multi-order 

interactions and using it to find a combination of the FAB process equipment 

representing each tier. The experimental framework is presented in Figure 4. 

First, the data are divided into two tiers based on the WT yield, the high yield 

group and the low yield group. Next, we use the DNN model as a 

classification model for each tier group. As mentioned above, however, the 

computation cost of the model will dramatically increase if we use the DNN 

model as it is to explore combinations of all variables. Thus, we obtain the 

equipment combination with the highest probability of belonging to each tier 

by approximating the DNN model to the ANOVA model. The process of 
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training ANOVA model that approximates the target model is conducted by 

applying metaANOVA algorithm. In this study, the probability that data 

belongs to each tier is used as a performance index because the higher the 

probability indicates a better expression of each tier's characteristic. Hence, 

the optimal equipment combinations for each tier are re-used as the 

classification model's inputs, and each optimal combination's performance is 

evaluated by comparing the maximum probability that the original FAB data 

belongs to each tier group. 

 

 

Figure 4. Framework of proposed method 
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3.3 MetaANOVA 

In general, the machine learning model is called a black-box model 

because the model becomes more complex and harder to interpret as the 

predictivity of the model increases. MetaANOVA is a methodology that 

allows a straightforward interpretation of black-box models by approximating 

a complex model to an ANOVA model with multiple-order interactions, i.e., 

creating an ANOVA model that predicts the output value of a given model [9]. 

Therefore, meta ANOVA involves finding interactions within a complex 

black-box model and learning the ANOVA model based on the interactions. 

At this time, an unnecessarily large number of coefficients are used when all 

interactions are included; thus, we eliminate insignificant interactions in meta 

ANOVA. Given the predictive model to be approximated, metaANOVA 

makes the ANOVA model through the following three steps [9]. 

 

1. Explore candidate interactions 

2. Learn the ANOVA model with main effects and explored interactions 

3. Eliminate non-significant factors from learned ANOVA models 

 

The most significant step of metaANOVA is exploring candidate 

interactions, and the used equation is as follows. The following equations 
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related to metaANOVA are introduced by Kim et al. [9]. Let 𝑓 be the 

function to be approximated is and 𝑥 ∈ ℝ𝑝 is the input vector. Suppose 

[𝑝] = {1, … , 𝑝}, then 𝑘 ∈ [𝑝] and 𝐽𝑘 = {𝑗 ⊂ [𝑝]: |𝑗| = 𝑘, and with given 

𝑗 ⊂ [𝑝], 𝑥𝑗! means ∏𝑗∈𝑗𝑥𝑗 and the input variable 𝑥𝑗 is either 0 or 1 [9]. 

Knowing that the input variable contains binary value, we assume that there 

is an ANOVA model 𝑔 that 𝑓(𝑥) = 𝑔(𝑥) where 𝑓 is a black box model 

to be approximated. Therefore, to screen interactions, metaANOVA 

considers the Equation (1), which is an ANOVA model that includes all 

interactions. 

𝑔(𝑥) =  𝛽0 +  ∑ 𝛽𝑗𝑥𝑗!

𝑗⊂[𝑝]

 (1) 

If 𝛽𝑗 ≠ 0, interaction j is valid for a given 𝑔(𝑥), so we have to find j that 

satisfies 𝛽𝑗 = 0 [9]. With the given 𝑗, the above equation can be 

summarized as the Equation (2). 

𝑔(𝑥) =  𝛽0 + ∑ 𝑥𝑗′!

𝑗′⊂𝑗

 {𝛽𝑗′ +  ∑ 𝛽𝑗′∪ 𝑗2
𝑥𝑗2

!

𝑗2⊂𝑗𝑐

} + ∑ 𝛽𝑗3
𝑥𝑗3

!

𝑗3⊂𝑗𝑐

 (2) 
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In addition, if we summarize 𝑔𝑗′,   𝑗(𝑥𝑗𝑐) =  𝛽𝑗′ +  ∑ 𝛽𝑗′∪ 𝑗2
𝑥𝑗2

!𝑗2⊂𝑗𝑐 , we can 

write the expression as the Equation (3). 

𝑔(𝑥) =  𝛽0 + ∑ 𝑥𝑗′!

𝑗′⊂𝑗

 𝑔𝑗′,𝑗(𝑥𝑗𝑐 ) +  ∑ 𝛽𝑗3
𝑥𝑗3

!

𝑗3⊂𝑗𝑐

 (3) 

Using the above equation, Kim et al. [9] introduce two theorems: 

 

Theorem 1  For a given 𝑗, 𝛽𝑗′ = 0 for all 𝑗′ > 𝑗 if and only if 𝑔𝑗,𝑗(𝑥𝑗𝑐) 

is a constant function for all 𝑥𝑗𝑐 , where 𝑗′ > 𝑗 means 𝑗′ ⊃ 𝑗 but 𝑗′ ≠ 𝑗. 

Theorem 2  For any 𝑗, 𝑔𝑗,𝑗(𝑥𝑗𝑐 ) can be represented as follows. Note that 

the function 𝑓(𝑥) is the result of 𝑓 at 𝑥𝑗′ = 1 and 𝑥𝑗−𝑗′ = 0. 

𝑔𝑗,𝑗(𝑥𝑗𝑐) =  ∑(−1)|𝑗−𝑗′|  𝑓(𝑥: 𝑥𝑗′ = 1, 𝑥𝑗−𝑗′ = 0)

𝑗′⊆𝑗

 (4) 

With these theorems, we can efficiently get the interaction set 𝑆 that is 

⋃ 𝑆𝑘
𝐾
𝑘=1  by eliminating unnecessary high-dimensional interactions. Then, 

the ANOVA model can be trained by using the set of main effects and the 

searched interactions 𝑆. For a function to be approximated 𝑓(𝑥), we can 
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train ANOVA model by minimizing the following the Equation (5). 

∑ (𝑓(𝑥𝑖) −  𝑓𝑎(𝑥𝑖;  𝛽))
2𝑁

𝑖=1
  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑠𝑢𝑚 − 𝑡𝑜 − 𝑧𝑒𝑟𝑜 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

(5) 

where ANOVA model including the interaction can be summarized as the 

Equation (6). 

𝑓𝑎(𝑥;  𝛽)  = 

 

𝛽0   + ∑ ∑ …

𝑎𝑗1∈𝑋𝑗1𝑗=(𝑗1 ,…,𝑗𝑘)∈𝑆

∑ 𝛽𝑎𝑗1,…,𝑎𝑗𝑘
𝐼(𝑥𝑗1 =  𝑎𝑗1, … ,

𝑎𝑗𝑘∈𝑋𝑗𝑘

 𝑥𝑗𝑘 =  𝑎𝑗𝑘) 

(6) 

 

 

3.4 Experiment Setting 

Label Smoothing 

This experiment divides the FAB process data into two tiers based on 

the WT yield and then finds the most suitable equipment combination for each 

tier group. Therefore, WT yield should be converted to the probability that 

the data belongs to each tier. As a first step, whether the data belongs to each 

tier is labeled as a binary value in additional variables: the high-yield and low-

yield groups. Since the dependent variable is a probability, the tier variables 
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should have a value between 0 and 1 according to the weight of the data 

instead of the binary value. Hence, we apply label smoothing to weigh the 

dependent variable with a probability value. In addition, label smoothing 

gives the normalization effect by converting hard targets to soft targets so that 

we can expect performance improvement in the model. Let 𝐾 be the number 

of categories, 𝑦𝑘 be a hard target composed of 0 and 1, and 𝜖 be given a 

hyperparameter; then, we can get the soft target 𝑦𝑘′ by using the Equation 

(7).  

𝑦𝑘′ = (1 − 𝜖) 𝑦𝑘 +  
𝜖

𝐾
 (7) 

By dividing each of the two converted variables by tier through label 

smoothing above, we can have two datasets that contain the probability of 

belonging to each tier as a dependent variable. 
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Exploring interaction candidates  

The most important part of the study is metaANOVA algorithm. To 

train ANOVA model, we first find interactions and explore candidate 

interactions sequentially according to order in the following way. 

1. Given the searched 𝑘 order interactions, calculate a score indicating the 

likelihood that there will be more than 𝑘 + 1  order interactions 

involving each interaction (𝑘 = 1 means the main effect) 

2. The 𝑘  order interaction with a low score determines that there is no 

interaction more than the (𝑘 + 1) difference involving itself, so eliminate 

all corresponding interactions 

 

We consider using second-order interactions in this study. Figure 5 shows the 

score for the main effects of the high-yield group in high order, and the score 

represents the importance of factors in each equipment variable. In the case 

of the high-yield group, we can see that the graph becomes gentle when the 

number of the main effect is 30 in Figure 5. Therefore, interactions that 

include the main effect below 30 can be removed. Similarly, Figure 6 

represents the sorted score for the main effects of the low-yield group, and 

the interactions including the corresponding main effects are deleted below 

30. 
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Figure 5. Score for the main effects of high-yield group in high order  
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Figure 6. Score for the main effects of low-yield group in high order  

 

Learning ANOVA model and eliminating non-significant factors 

We train the ANOVA model based on the candidate interactions 

explored above as a next step. Therefore, we learn the linear model that 

predicts the predicted value of the target function, and we limit the sum of all 

the coefficients of each factor to zero by applying the sum-to-zero constraint.
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Figure 7. Importance of main effects and Interactions in high order for high-

yield group 
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Figure 8. Importance of main effects and Interactions in high order for low-

yield group 

 

If the predicted value from the fitted ANOVA model changes 

substantially depending on a factor, the factor can be considered significant. 

This is equivalent to the large variance of the coefficients for the factor. 

Therefore, the variance of the coefficient can be considered as the importance 

of the factor, and insignificant factors can be removed based on their 

importance. Figure 7 shows the importance of the high yield tier model. 

According to Figure 7, factors below the 300-th rank can be considered 

insignificant and removed so that 241 main effects and 59 interactions remain. 
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An ANOVA model is learned in the same way for the low yield tier 

corresponding to the result shown in Figure 8. Using the fitted ANOVA model, 

the mean squared error (MSE) of the predicted logit outcome of the DNN 

model can be seen in Table 1. 

 

Table 1. Variance of DNN logit & MSE of ANOVA 

Yield Group Variance (DNN logit) MSE of ANOVA model 

High Yield 0.5687 0.0017 

Low Yield 0.4867 0.0038 

 

Using the variance and MSE in Table 1, we can compute the coefficient of 

determination as shown in the equation below. Since we have relatively high 

variance and low MSE, the value of the coefficient of determination increases, 

indicating that the independent variables have great explanatory power for the 

dependent variable. 

𝑅2 = 1 −  
𝑆𝑆𝐸

𝑆𝑆𝑇
=  

1
𝑛 ∑ (𝑦(𝑖) − 𝑦̂(𝑖))

2𝑛
𝑖=1

1
𝑛 ∑ (𝑦(𝑖) − 𝜇𝑦)

2𝑛
𝑖=1

= 1 −  
𝑀𝑆𝐸

𝑉𝑎𝑟(𝑦)
 (8) 
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Finding representative combinations by tier 

We can find optimal equipment combinations through ANOVA 

model that using the characteristics of the model can make the problem more 

explicit. Consider a network with variables as nodes and interactions as edges. 

If we find groups of variables in this network, there is no interaction between 

the groups. Therefore, we can arrange the ANOVA model according to the 

group of variables to form a group-by-group function. We can then switch to 

the problem of finding the combination that maximizes the functions of each 

group. In Figure 9, for example, variables numbered from 1 to 15 are marked 

as nodes, and edges connect nodes with interactions. Note that variables 

numbered 4 to 7 have interactions and are grouped into one cluster. Moreover, 

we can consider independent nodes like node 12 as a main effect variable. To 

sum up, we can search for the optimal equipment combination by finding a 

combination that maximizes the functions of the group. 
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Figure 9. Example of grouping variables 

 

We can select equipment variables with maximum coefficients for 

main effect variables. For the group of variables that include interactions, we 

should get predictions for all combinations implementing the network method 

mentioned above. However, calculating all combinations in this study is 

difficult due to the vast number of variables in a group. So multiple 

combinations are randomly generated to find the combination with the highest 

predictions. In this experiment, the variables with second-order interactions 

formed one large group. We select the combination with the highest predicted 

value among 50,000 randomly generated combinations in the existing data. 

 

After finding the optimal semiconductor equipment combination, we 
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use the DNN classification model, which the ANOVA model approximates, 

to evaluate the performance of the equipment combination. By inserting 

optimal equipment combination data as input into each high-yield group and 

low-yield group’s DNN classification model, we can obtain the probability 

values belonging to each yield group. Moreover, we evaluate the performance 

of the optimal equipment combination by comparing with the results of the 

existing equipment combinations in the data.  
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4. Results 

Using importance, we can select variables to be observed with 

particular attention. Since each variable represents the FAB process, we can 

consider the importance as a score for each process. The following Table 2 

and Table 3 show the three most important main effects and interactions in 

the high and low-yield model with their importance. Unfortunately, variables 

are encoded for security reasons, so the exact name of the process cannot be 

known. 

Table 2. Top three main effects and its importance score 

Yield Group Process Variable Importance 

High Yield 

I2061000E_lhi_tulh_daj_ln 0. 000375 

H9047000U_lhi_tulh_daj_ln 0.000372 

J9031000Q_lhi_tulh_daj_ln 0.000358 

Low Yield 

I4031100X_lhi_tulh_daj_ln 0.000760 

W1032000Q_lhi_tulh_daj_ln 0.000253 

I4156000M_lhi_tulh_daj_ln 0.000249 
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Table 3. Top 3 interactions and its importance score 

Yield Group Process Variable Importance 

High Yield 

(W1032000Q_lhi_tulh_daj_ln, 

I7095000E_lhi_tulh_daj_ln ) 

1.9087e-05 

(W1032000Q_lhi_tulh_daj_ln, 

I5010200A_lhi_tulh_daj_ln ) 

1.8476e-05 

(I7095000E_lhi_tulh_daj_ln, 

I7046200M_lhi_tulh_daj_ln) 

1.8247e-05 

Low Yield 

(W1032000Q_lhi_tulh_daj_ln,  

J1034000M_lhi_tulh_daj_ln) 

1.4995e-05 

(W1032000Q_lhi_tulh_daj_ln, 

I7095000E_lhi_tulh_daj_ln) 

1.4433e-05 

(I7095000E_lhi_tulh_daj_ln, 

J1034000M_lhi_tulh_daj_ln) 

1.3732e-05 
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We can explain the impact of each equipment on having the 

maximum predicted value by using the coefficient of the ANOVA model. 

Table 4 and 5 below show the main effects and interactions that have the 

greatest influence on predicting both high and low-yield group’s optimal 

equipment combinations. For example, we can interpret that equipment 

named 4QTLQ302 in “M1051600B_lhi_tulh_daj_ln” process contributes the 

most to have the maximum predicted value. 

 

Table 4. Top 3 main effects in optimal combination 

Yield 

Group 

Process Variable Equipment Coefficient 

High 

Yield 

Q1030000B_lhi_tulh_dah_ln 4ARA4703 0.1552 

L9511300B_lhi_tulh_daj_ln EFP404 0.1179 

I4166100M_lhi_tulh_daj_ln 4QMQ0306 0.1139 

Low 

Yield 

L9515100U_lhi_tulh_daj_ln 4QLPQ702 0.0863 

J8020200E_lhi_tulh_daj_ln 4QTLM921 0.0845 

I4157600M_lhi_tulh_daj_ln 4JLQF507 0.0802 
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Table 5. Top 3 interactions in optimal combination 

Yield 

Group 
Process Variable Equipment Coefficient 

High 

Yield 

(W1032000Q_lhi_tulh_daj_ln, 

I2031000B_lhi_tulh_daj_ln) 

(EFLZ02, 

4ARA4905) 

0.0874 

(H9047000U_lhi_tulh_daj_ln, 

I5010200A_lhi_tulh_daj_ln) 

(4LDU2211, 

4ARA5006) 

0.0769 

(M1056200Q_lhi_tulh_daj_ln, 

H9047000U_lhi_tulh_daj_ln) 

(4QTLM104, 

4LDU2211) 

0.0755 

Low 

Yield 

( X3065400M_lhi_tulh_daj_ln  ,  

W1032000Q_lhi_tulh_daj_ln  ) 

( 4ESW1005  ,  

4ELLB402  ) 

0.0481 

( W1032000Q_lhi_tulh_daj_ln  ,  

I5010200A_lhi_tulh_daj_ln  ) 

( 4ELLB402  ,  

4ARA5108  ) 

0.0463 

( M1023000E_lhi_tulh_daj_ln  ,  

W1032000Q_lhi_tulh_daj_ln  ) 

( 4QMS0704  ,  

4ELLB402  ) 

 

0.0452 

 

 



36 

 

Table 6 summarizes the predicted probability of original and optimal 

combinations in both high and low-yield groups. More specifically, it shows 

the highest predicted probability that each original combination from training 

data and optimal equipment combination belongs to both high and low yield 

groups. As shown in Table 6 and Figure 10, the optimal equipment 

combination contains a higher probability value in all yield groups, which are 

increased by 14% and 21%, respectively. Therefore, we can conclude that 

metaANOVA successfully finds the critical equipment in each process and 

interactions that have a crucial impact on the WT yield. 

 

Table 6. Predicted probability of training data and optimal equipment 

combination 

Yield Group Original Combination Optimal Combination 

High Yield 0.8504 0.9906 

Low Yield 0.7213 0.9261 
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Figure 10. Comparison of probability belonging to each high and low yield 

group between training data and optimal equipment combination 
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To verify the results above, we conducted additional experiments, 

and the result summary is represented in Table 7. Firstly, we ignore both main 

effects and interactions by applying the same constant value to all process 

variables. By doing so, we can see that the predicted probabilities decrease 

dramatically. In a second experiment, interaction variables are only used that 

we insert the same constant value to the main effect variables. Moreover, the 

main effects are solely used by using the same constant value to interaction 

variables in the third experiment. As shown in Table 7, we realize that main 

effect variables can be considered more significant than those of interaction. 

This is due to the differences between the predicted probability from the 

second and third experiments which are approximately 57% and 63% in the 

high and low yield groups, respectively. Lastly, we generate 50,000 random 

equipment combinations by sampling in a uniform distribution in all process 

variables. 
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Table 7. Comparison of maximum predicted probability that each 

equipment combination from additional experiments belongs to both yield 

group. 

Experiment 

High Yield 

Group 

Low Yield 

Group 

#1. Not using main effects and interactions 0.4466 0.2046 

#2. Using interactions only 0.4152 0.2893 

#3. Using main effects only 0.9303 0.8983 

#4. Random combinations 0.7315 0.6634 
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Figure 11 shows the results of the highest predicted probability of the 

equipment combinations from the additional tests mentioned above. In 

addition, we compare the predicted probabilities from the additional tests to 

the one from the optimal equipment combination which is found by applying 

the metaANOVA method. As shown in Fig. 10, we can validate that the 

optimal equipment combinations best represent both the high and low yield 

groups because they have the highest predicted probabilities. 

 

 

Figure 11. Comparison of probability belonging to each high and low yield 

group among the optimal equipment combination and four different tests. 

  

Optimal

Combin

ation

Test1 Test2 Test3 Test4

High Yield Group 0.9906 0.4466 0.4152 0.9303 0.7315

Low Yield Group 0.9261 0.2046 0.2893 0.8983 0.6634

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum Probability

High Yield Group

Low Yield Group



41 

 

 

 

5. Discussion 

 

Semiconductor manufacturing is complicated because hundreds of 

processes and various equipment are used. In addition, the yield indicating 

the productivity of the manufactured product is greatly influenced by the 

combination of equipment used. Therefore, while solid predictive 

performance can be expected with the DNN model, exploring all equipment 

combinations creates a problem because the computational volume becomes 

significantly large. Furthermore, studies have shown that models with more 

substantial predictive power, such as the DNN model, lack interpretability. In 

this study, we intend to enhance the WT yield of the semiconductor FAB 

process by improving the equipment combination. To compensate for the 

mentioned shortcomings, we propose to create an ANOVA model with multi-

interactions by applying the metaANOVA algorithm. We can find 

representative combinations efficiently by significantly reducing the scope of 

the search using the divisible nature of the model. In addition, direct 

interpretation of the model through coefficients is possible because the 

ANOVA model is linear. Then we find an optimal equipment combination in 
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the FAB process with the highest predicted probability of corresponding to 

each high and low yield group. 

The proposed method firstly has a process of training a DNN 

classification model with pre-processed data, and then we train an ANOVA 

model that approximates the DNN model by applying the metaANOVA 

algorithm. In short, MetaANOVA trains the ANOVA model through three 

steps: exploring candidate interactions, training the ANOVA model including 

main effects and explored interactions, and removing non-significant factors 

from the trained ANOVA model. As a result, the optimal equipment 

combinations, including main effects and interactions in the ANOVA model 

for both high and low yield groups, are compared with the original equipment 

combinations of the data. Moreover, we get the predicted probability by 

inserting these equipment combinations into the DNN classification model. 

As a result, we confirm that the optimal equipment combination in each yield 

group has a higher probability of belonging to the yield group than the original 

equipment combinations from the data. We expect that this method, which 

identifies essential process factors through the interpretable ANOVA model 

and finds the optimal equipment combination, will be helpful in various 

processes in the semiconductor manufacturing field. Still, we can improve the 

performance of this study by applying higher interaction order that we only 

use second-order interaction in this study due to the lack of computation 
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power. Without the limitation, we can find the proper interaction order that 

fits the given data, eventually finding a more optimal combination of 

semiconductor FAB process equipment.  
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국문 초록 

반도체 제조는 수백 가지의 복잡한 과정을 거치며, 낮은 

수율을 개선하는 것이 중요한 과제라고 할 수 있다. 또한 

반도체 제조 공정에서 생산되는 제품의 수율은 제조 장

비에 의해 큰 영향을 받기 때문에, 장비 조합을 통해 수

율을 예측할 수 있다면 개선이 필요한 웨이퍼를 사전에 

발견하여 수율을 개선하는 데 도움을 줄 것이다. 그리고 

반도체 공정의 복잡한 특성을 고려하면 딥러닝과 같이 

예측 성능이 좋은 모델을 사용하여 장비 조합을 찾을 수 

있을 것이다. 하지만 딥러닝 모델을 그대로 사용한다면 

모든 변수의 조합을 탐색해야 하는 계산적으로 매우 어

려운 문제가 발생하며, 모델의 복잡성 때문에 탐지된 저

수율 제품의 문제가 무엇인지 그리고 어떠한 방향으로 

개선해야 하는지 분석할 때 큰 도움이 되지 않는다. 따라

서 본 연구에서는 복잡한 예측 모델을 다차 교호작용을 

포함하는 ANOVA 모델로 근사시켜 간단하게 해석할 수 

있도록 하는 방법론인 metaANOVA를 적용하여 예측 모

형을 해석하는 방안을 제시한다. 특히, wafer test 수율을 

기준으로 고수율 군과 저수율 군을 분류하고 각 수율 군

을 대표하는 장비 조합을 탐색하여, 각 수율 군에 포함되

기 위해 가져야 할 특징을 파악하는 데 도움을 주고자 

한다. 
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