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ABSTRACT 

 

Biomarker Development of Distant Metastatic Breast Cancer 

and Mood Disorders using Quantitative Proteomics and 

Bioinformatics 

Dongyoon Shin 

Major in Biomedical Sciences 

Department of Biomedical Sciences 

Seoul National University 

Graduate School 

 

Introduction: Liquid chromatography (LC)-mass spectrometry (MS)-based 

proteomic approaches have been applied to discover and develop biomarkers that are 

associated with specific diseases and disorders. Untargeted proteomics based on LC-

high resolution MS has enabled simultaneous identification and quantification of 

thousands of proteins and hundreds of differentially expressed proteins (DEPs) in 

small amounts of samples. Targeted proteomics including LC-multiple reaction 

monitoring (MRM)-MS has been used to quantify interesting proteins with high 

sensitivity, accuracy, and reproducibility. Numerous clinical proteomics studies 

employ pathological and clinical specimens collected from clinical cohorts such as 

formalin-fixed paraffin-embedded (FFPE) tissues, blood, and other body fluids,  

. For clinical proteomic analysis, LC-MS-based approaches are powerful 
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technologies in discovery and development of biomarkers with their high throughput 

and high sensitivity. In addition, proteomic studies based on LC-MS will contribute 

to understanding of biological and molecular features of specific diseases and 

disorders. 

 

Methods: In chapter I, an integrated untargeted proteomic approach that combined 

filter-aided sample preparation (FASP), tandem mass tag labeling (TMT), high pH 

fractionation, and LC-high resolution-MS was applied to acquire in-depth proteomic 

profiling data from FFPE tissues of distant metastatic breast cancer patients collected 

from a clinical cohort. Statistical analyses were performed to determine DEPs and 

discover candidate biomarkers for predicting distant metastatic breast cancer. 

Bioinformatics analyses were performed to examine molecular characteristics of 

distant metastatic breast cancer. In addition, in vitro assays were performed to 

validate distant metastatic potential of candidate biomarkers. In chapter II, targeted 

proteomic approach based on LC-MRM-MS was applied to quantify protein targets 

associated with major depressive disorder (MDD) and bipolar disorder (BD) in 

plasma samples collected from a clinical cohort. Batch-effect correction of LC-

MRM-MS data was performed to reduce technical variations. Subsequently, 

univariate analysis was performed to determine proteomic candidate features, and 

machine learning approaches were performed to develop a potential diagnostic 

model for discriminating MDD and BD. In addition, network analysis was performed 

to examine biological associations between proteins included in the model and mood 

disorders. 
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Results: In chapter I, a total of 9,441 and 8,746 proteins were identified from FFPE-

TMT pooled samples set and FFPE-TMT individual samples set comparing distant 

metastasis and non-distant metastasis groups, respectively. In addition, 7,823 

proteins were identified from the TMT-labeled breast cancer cell lines set comparing 

low invasive and high invasive cell lines. Two proteins (LTF and TUBB2A) were 

determined as candidate biomarkers. As a result, TUBB2A, which maintained 

consistent expression patterns between different quantitation platforms, was selected 

as a novel biomarker candidate. TUBB2A showed potential of distant metastatic 

activities. In addition, distinct alterations of proteome and molecular functions of 

distant metastatic breast cancer between breast cancer subtypes were demonstrated. 

In chapter II, 210 protein targets corresponding to 671 peptides pertinent to MDD 

and BD were stably and reproducibly quantified by LC-MRM-MS in individual 

plasma samples. In the training set, nine plasma protein biomarkers were developed 

and a generalizable model comprised of the nine proteins was constructed. The 

model demonstrated good performance (AUC > 0.8) in discriminating MDD from 

BD in the training (AUC = 0.84) and test sets (AUC = 0.81) and in distinguishing 

MDD from BD without current hypomanic/manic/mixed symptoms (AUC > 0.83). 

Subsequently, the model demonstrated excellent performance for drug-free MDD vs 

BD (AUC > 0.96) and good performance for MDD vs HC (AUC > 0.87) and BD vs 

HC (AUC > 0.86). Furthermore, the nine proteins were associated with neuro, 

oxidative and nitrosative stress, and immunity and inflammation-related biological 

functions. 

 

Conclusions: In chapter I, I constructed the largest FFPE tissue proteome of distant 
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metastatic breast cancer proteome using. The depth of our dataset allowed us to 

discover a novel biomarker candidate as well as the proteomic characteristics of 

distant metastatic breast cancer. Distinct molecular features of various breast cancer 

subtypes were also established. Thus, our proteomic data can serve as a valuable 

resource for research on distant metastatic breast cancer. In chapter II, the viability 

of discriminating MDD and BD patients using a targeted proteomic approach was 

proposed. Our results suggest that the nine plasma proteins and their combined 

model has the potential to discriminate between MDD and BD patients and help 

diagnostic decision-making. Through both studies, the potential of LC-MS-based 

proteomics in the discovery and development of biomarkers was demonstrated. 

 

Keywords: Untargeted and targeted proteomics; Liquid chromatography-high 

resolution mass spectrometry; Liquid chromatography-multiple reaction monitoring 

-mass spectrometry; Biomarker; Distant metastatic breast cancer; Mood disorder  
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GENERAL INTRODUCTION 

 

 

Biomarkers are substances of organisms that discriminate diseased 

individuals from other normal individuals, which are gradually modified or present 

at abnormal amounts in specific diseases, disorders, and other health conditions. 

Thus, biomarkers for diseases and disorders are significant for discriminating types 

of diseases and disorders or predicting the progression of diseases and disorders, or 

might contribute to the effect of a particular treatment on clinical outcomes. Even 

though there are various biomarker’s types, protein biomarkers are considered the 

most extensively influenced in disease, response, and recovery. Thus, protein 

biomarkers development has been needed because proteins directly affect the 

physiological status of the diseased cells. Although a lot of protein biomarkers have 

been reported to represent high accuracy, sensitivity, and specificity, there remain 

many diseases and disorders, which lack protein biomarkers. Because these diseases 

and disorders are regarded as highly devastating (e.g. distant metastatic breast cancer) 

or intractable (e.g. mood disorders), the requirement for efficient biomarkers is 

expanding in clinics. 

Several protein assays such as immunoassays for the discovery of disease 

and disorder-specific biomarkers have been developed. Recently, among them, 

Liquid chromatography (LC)-mass spectrometry (MS)-based proteomic approaches 

have become the preferred methods, proving their analytical accuracy, sensitivity, 

reproducibility, precision, and stability during high-throughput analysis. A 
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qualitative proteomic approach is a method of identifying proteins in untargeted 

proteomics to determine the proteome composition in a biological or clinical sample. 

Simultaneously, the identified proteins can be quantified by mass spectrometer 

signals. This approach has been applied to generating proteome map or discovering 

protein biomarkers associated with specific diseases and disorders. In this 

dissertation, an LC-high resolution MS-based untargeted proteomic approach 

combining proteomic sample preparation methods was used to discover protein 

biomarker candidates for specific diseases and disorders. Proteins were extracted 

from clinical samples such as formalin-fixed paraffin-embedded (FFPE) tissues. 

Peptides were extracted by enzymatic digestion based on filter-aided sample 

preparation (FASP). The peptide mixture was labeled using tandem mass tag (TMT) 

labeling method, and the labeled peptide mixture was desalted and fractionated in 

condition of high pH. The fractionated peptide samples were injected into high-

resolution MS and were scanned through data dependent acquisition (DDA) mode. 

Subsequently, statistical and bioinformatics analyses were performed in the collected 

proteomic profiling data for biomarker discovery. Overall scheme of LC-MS-based 

untargeted proteomics was presented in Figure 1. 
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Figure 1. Overall workflow of LC-MS-based untargeted proteomics. Graphical 

representation of the workflow for our LC-MS-based untargeted proteomics. 

 

A quantitative proteomic approach is a method for multiplexed 

quantification of protein targets of interest with high accuracy and reproducibility in 

a targeted proteomics. This approach has been applied to clinical research for reliable 

and stable quantification of existing biomarkers or for discovering protein biomarker 

candidates in clinical samples of a large cohort. In this dissertation, LC-MS-based 

targeted proteomic approach was used to quantify protein biomarker candidates of 

interest in clinical samples such as plasma. The protein biomarker candidates of 

interest were determined by various databases and references. High abundant 

proteins such as albumin were depleted and low abundant proteins were concentrated. 

Peptides were extracted by enzymatic in-solution digestion using commercial 
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detergent such as Rapigest-SF. The stable-isotope-labeled (SIL) peptides 

corresponding to the protein biomarker candidate of interest were spiked into 

peptides mixture as internal standards. The mixture of endogenous and (SIL) 

peptides was desalted and injected into triple quadrupole mass spectrometer. The 

injected peptides were scanned in multiple reaction monitoring (MRM) mode. 

Subsequently, statistical and machine learning analyses were performed in the 

collected targeted proteomic data for biomarker development. Overall scheme of 

LC-MS-based targeted proteomics was presented in Figure 2. 

 

Figure 2. Overall scheme of LC-MS-based targeted proteomics. Graphical 

representation of the workflow for our LC-MS-based targeted proteomics. 

 Proteomic analyses of clinical specimens allow screening of specific 

alteration of proteins (e.g. differentially expressed in protein abundance) under a 

disease or disorder, making them suitable approaches for biomarker discovery and 
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development. For clinical proteomic analysis, a proper proteomic approach based on 

LC-MS should be determined in accordance with the type and the number of clinical 

specimens.  

 In this dissertation, the application of LC-MS-based proteomic techniques 

to clinical specimens for biomarker discovery and development was described. The 

protein biomarkers of the diseases and disorders dealt with in this study have not 

been well examined because of technical limitations or analytical difficulties. 

Therefore, new-elaborate analytical procedures appropriate for the type of clinical 

sample to discover and develop protein biomarkers was established. In addition, 

novel protein biomarkers for diseases and disorders were discovered and developed 

through these established procedures. 

 In chapter I, distant metastatic breast cancer corresponds to stage 4 breast 

cancer that has spread to other areas of the body such as brain, bone, lung and liver. 

It is estimated that approximately 40,000 women die each year from invasive breast 

cancer (stage1-4 breast cancer) in the US. Approximately 90% of the deaths result 

from stage 4 breast cancer. Among breast cancers, stage 4 breast cancer that is not 

curable showed the lowest survival rate, representing a poor prognosis. Prediction of 

this breast cancer can reduce patient’s burden when considering the curability of the 

disease and quality of life for distant metastatic breast cancer patients. Thus, 

molecular biomarkers that can predict distant metastatic breast cancer is of critical 

interest. Through LC-MS-based untargeted proteomics, the proteome of the FFPE 

tissues of distant metastatic breast cancer and breast cancer without distant 
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metastasis were investigated. Overall scheme of chapter 1 was presented in Figure 

3.  

 

Figure 3. Overall scheme of the study of chapter 1. Graphical representation of 

the workflow of study of chapter 1 

The proteins that compose FFPE tissues of the distant metastatic breast cancers have 

not been well researched. To examine candidate biomarkers, qualitative proteomic 

analysis employing LC-high resolution-MS was performed using the FFPE tissues 

collected from 18 breast cancer patients with distant metastasis and 18 breast cancer 

patient without distant metastasis. Through statistical analyses and step-by-step 

criteria for the determination of candidate biomarkers, differentially expressed 

proteins (DEPs) including candidate biomarkers were determined. One final selected 

protein was selected, and its expression level and distant metastatic potential were 

validated by several in vitro assays. This protein was proposed as a novel candidate 

biomarker for the prediction of distant metastatic breast cancer. Furthermore, 
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bioinformatics analyses were performed regarding gene ontology, disease and 

functions, and canonical pathways using the DEPs to examine molecular 

characteristics of distant metastatic breast cancer. Through these analyses, biological 

functions of a novel candidate biomarker and distinct biological functions of distant 

metastatic breast cancer between molecular subtypes were examined. Therefore, this 

proteomic study will help predict distant metastatic breast cancer and understand 

molecular features of distant metastatic breast cancer.  

In chapter II, major depressive disorder (MDD) and bipolar disorder (BD) are 

common mood disorders. Although diagnosis of MDD and BD relies on subjective 

behavioral observations and symptoms, the complexity and commonality between 

MDD and BD complicate the diagnosis. Misdiagnosis of both disorders results in the 

erroneous prescription of medication, which aggravates the symptoms of the 

disorders. Thus, there is an unmet need for molecular biomarkers that can 

discriminate MDD and BD. Through LC-MS-based targeted proteomics, plasma 

protein biomarkers were developed and a proteomic-based diagnostic model 

comprising the biomarkers for discriminating MDD and BD was established. Overall 

scheme of chapter2 was presented in Figure 4.  
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Figure 4. Overall scheme of the study of chapter 2. Graphical representation of 

the workflow of study of chapter 2 

 The blood protein biomarkers for the diagnosis of MDD and BD have not 

been well studied in a large number of clinical samples. To develop candidate 

biomarkers, important protein targets associated with MDD and BD were stably 

quantified with high sensitivity and reproducibility using LC-multiple reaction 

monitoring (MRM)-MS in a total of 270 individual plasma samples consisting of 90 

MDD, 90 BD, and 90 healthy control (HC). Subsequently, 9-plasma protein 

diagnostic model was developed by machine learning approaches, resulting in good 

discriminatory and diagnostic performances. Furthermore, biological interactions 

between the 9 proteins, MDD and BD were investigated. This study proposes the 

potential of the developed plasma protein biomarkers and the proteomic-based 

diagnostic model for distinguishing MDD and BD. 
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CHAPTER I 

 

Identification of TUBB2A by 

Quantitative Proteomic Analysis as a 

Novel Biomarker for the Prediction of 

Distant Metastatic Breast Cancer 
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INTRODUCTION 

 

Breast cancer is one of the most prevalent and lethal cancers in women 

worldwide [1]. In particular, its annual incidence—currently 17 million cases—is 

increasing at an alarming rate [2, 3]. There are approximately 232,000 new cases of 

invasive breast cancer each year in the US, and approximately 40,000 women die 

each year from the disease; furthermore, roughly 90% of these deaths are caused by 

the most malignant form of breast cancer: distant metastatic breast cancer [2, 4]. 

Distant metastatic breast cancer, which preferentially metastasizes to distal organs, 

such as the bone, liver, lung, and brain, has a poor prognosis [5, 6]. In addition, this 

type of breast cancer causes various complications at the affected sites, such as 

pericardial effusion, pleural effusion, bone fracture, hypercalcemia, and red blood 

cell anemia, which worsens survival outcomes [7-9]. 

Distant metastatic breast cancer is assessed, based on various factors, such 

as tumor size, lymphovascular invasion, histological grade, nodal involvement, and 

hormone receptor status—all of which are independent risk factors for distant 

metastatic breast cancer [10-13]. Among these factors, breast cancer molecular 

subtypes are associated with various patterns of distant metastatic spread and related 

to differences in survival outcomes [10, 14]. For instance, the most widely known 

molecular subtypes, such as the luminal A, luminal B, HER2, and basal-like (triple-

negative) groups, have site-specific, cumulative metastatic incidence rates, 

demonstrating substantial differences in the distant metastatic behavior of and 
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overall survival between breast cancer subtypes [10].  

 Although various risks and molecular characteristics of distant metastatic 

breast cancer have been established, the prediction and diagnosis of distant 

metastasis in breast cancer with molecular biomarkers remain largely unexamined 

[4-6, 10-13]. Thus, characterizing the molecular signatures that are associated with 

distant metastasis using omics-based approaches, such as genomics, transcriptomics, 

and proteomics, might identify previously overlooked biomarker candidates. 

 Many genomic or transcriptomic studies have examined the molecular 

characteristics of distant metastatic breast cancer—for instance, genes that are 

associated with lung, brain, and bone metastasis from breast tumor [15-18, 20, 21]. 

In addition, genetic signatures that predict distant metastasis in breast cancer have 

been established through genomic profiling [19]. However, given the relatively low 

correlation between gene expression and protein expression, it is difficult to assume 

that the tendencies in genomic data will translate fully to proteomic data without 

verification [22-23]. Similarly, considering that transcriptomic and proteomic data 

have a moderate correlation, the molecular characteristics of the transcriptome could 

not perfectly represent those of the proteome [24-26]. In the case of breast cancer, 

recent large dataset-based proteomic approaches have reported an intermediate 

correlation between the breast tumor proteome and the corresponding transcript 

levels [27-28]. Furthermore, a recent report has described a low correlation between 

proteomes and transcriptomes in human breast cancer tissues, suggesting that a 

proteomic approach to human BC tissues could complement a transcriptomic method 
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[29]. 

Although proteomic studies have been performed for various diseases, 

including breast cancer, none has investigated the overall characteristics of distant 

metastatic breast cancer [29-37, 44]. Proteomic research is expected to provide 

greater insight into the pathogenesis of distant metastatic breast cancer, generating 

novel information about the molecular features of distant metastasis—for example, 

by discovering novel protein biomarkers for the prediction or diagnosis of distant 

metastatic breast cancer. Thus, an in-depth proteomic analysis is important for 

yielding valuable resources in distant metastatic breast cancer—data that have not 

been found in genomic and transcriptomic analyses. 

Recent advances in mass spectrometry (MS)-based proteomics have 

accelerated the development of high-throughput techniques for proteomic 

quantification [38, 39]. In addition, a tandem mass tag (TMT)-based strategy has 

facilitated relative protein quantification by comparing the reporter ion intensities 

that are obtained by MS/MS. Because this approach can quantify thousands of 

proteins precisely with high sensitivity, TMT-based techniques have been used 

widely to generate substantial datasets [40-43]. With a 6-plex TMT quantification 

technique, in combination with high-resolution MS, I constructed an in-depth 

proteomic map of distant metastatic breast cancer.  

In this study, I hypothesized that in-depth proteomic data would supply 

important proteins to profile the molecular signatures of distant metastatic breast 

cancer. Using our proteomic techniques, I identified by far the largest number of 
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proteins from FFPE distant and nondistant metastatic breast cancer tissues. 

Furthermore, I determined important protein targets to validate distant metastatic 

potential of breast cancer. The function of these targets was determined using several 

approaches, including RT-PCR and invasion/migration assays.  

Through our criteria to narrow down the important proteins, I discovered a 

novel protein biomarker candidate differentially expressed in distant metastatic 

breast cancer. Furthermore, I examined the distinct biological functions of distant 

metastatic breast cancer between molecular subtypes. In summary, I have proposed 

the first protein biomarker candidate that potentially be able to distinguish distant 

metastasis, derived from primary breast tumors using FFPE tissue samples. I 

performed the initial examination of its molecular features at the protein level, 

providing insights into the pathogenesis of distant metastatic breast cancer. 
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MATERIALS AND METHODS 

 

1. Materials and reagents 

Sodium dodecyl sulfate (SDS) and Trizma base were purchased from USB 

(Cleveland, OH), and sequencing-grade modified trypsin was purchased from 

Promega Corporation (Madison, WI). Dithiothreitol (DTT) and urea were obtained 

from AMRESCO (Solon, OH). POROS20 R2 beads were purchased from Applied 

Biosystems (Foster City, CA). High-purity (>97%) mass spectrometry (MS)-grade 

ovalbumin was obtained from Protea (Morgantown, WV), and HLB OASIS columns 

were purchased from Waters (Milford, MA). Tandem mass tag (TMT) 6-plex 

isobaric reagents; a bicinchoninic acid (BCA) assay kit; LC/MS-grade solvents, such 

as acetone, acetonitrile (ACN), and water; and reducing agents, such as tris (2-

carboxyethyl) phosphine (TCEP), were purchased from Thermo Fisher Scientific 

(Waltham, MA). All other reagents, if not noted otherwise, were obtained from 

Sigma-Aldrich (St. Louis, MO). 

 

2. Sample selection 

 All clinical samples were collected from the Department of Pathology, 

Seoul National University Hospital (Seoul, South Korea). The distant metastasis 

group (dis-meta) was defined as patients who developed distant metastasis with or 

without lymph node metastasis. The nondistant metastasis group (nondis-meta) 
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comprised patients who were not diagnosed as having distant metastasis with or 

without lymph node metastasis. All clinical specimens were collected from 18 

patients with dis-meta and 18 patients with nondis-meta. The 18 patients in each 

group were divided into 3 breast cancer molecular subtypes (HER2, TNBC, and 

luminal). Tissue samples for distant and nondistant metastatic breast cancer were 

derived from the primary breast tumor. Clinical information on the patient samples 

is detailed in Table 1. All patients consented to participate in the study per 

institutional review board guidelines (IRB No.1612-011-811).  
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Table 1. Clinical information on patients. Clinical information on all 36 patients is listed. 

        

        

        

The pooled 

sample set 

Sample 

ID 
Case Sex Age  

Molecular 

subtype 

Date of sample 

collection (year) 

Observation 

period (years) 

Distant metastasis-free 

period (years) 

Date of distant 

metastasis (year) 

Lymph node 

metastasis 

Organ of distant 

metastasis 

Tumor 

content (%) 

Tumor-infiltrating 

lymphocytes (%) 
Surgical therapy 

Chemo 

therapy 

Radiation 

therapy 

  S-1D 
Dis-
meta 

F 56 HER2 2007 12  x 2009  no bone  75 1 mastectomy FAC #6 no 

  S-2D 
Dis-

meta 
F 35 TNBC 2007 12  x 2008  yes lung 65 3 quadrantectomy 

AC #4, 

Taxol #4 
no 

  S-3D 
Dis-

meta 
F 37 Luminal 2008 11  x 2012  no bone  60 1 mastectomy FAC #6 no 

  S-4D 
Dis-
meta 

F 39 TNBC 2008 11  x 2010  yes lung 70 1 mastectomy 
AC #4, 

Taxol #4 
yes 

  S-5D 
Dis-

meta 
F 56 TNBC 2009 10  x 2011  no lung 80 2 quadrantectomy FAC #6 yes 

  S-6D 
Dis-

meta 
F 41 HER2 2009 10  x 2010  yes bone  80 2 mastectomy no yes 

  S-7D 
Dis-
meta 

F 43 Luminal 2009 10  x 2016  yes bone 70 1 quadrantectomy AC#4 yes 

  S-8D 
Dis-

meta 
F 31 HER2 2010 9  x 2011  no bone  85 3 quadrantectomy TCH#6,  yes 

  S-9D 
Dis-

meta 
F 48 Luminal 2009 10  x 2011  yes brain 65 1 mastectomy 

AC #4, 

genexol #4 
yes 

                                  

  S-1ND 
Non-
dis-

meta 

F 55 HER2 2006 13  13 x no no 75 3 mastectomy no no 

  S-2ND 
Non-
dis-

meta 

F 50 Luminal 2008 11  11 x yes no 55 1 mastectomy 
AC #4, 

docetaxel 

#2 

no 

  S-3ND 
Non-
dis-

meta 

F 59 HER2 2008 11  11 x yes no 80 1 mastectomy AC #4 no 

  S-4ND 

Non-

dis-

meta 

F 39 Luminal 2008 11  11 x yes no 60 5 mastectomy 
AC #4, 

genexol #4 
yes 

  S-5ND 
Non-
dis-

meta 

F 50 TNBC 2007 12  12 x yes no 70 1 mastectomy 
AC #4, 

Taxol #4 
yes 

  S-6ND 
Non-
dis-

meta 

F 43 HER2 2006 13  13 x yes no 80 1 quadrantectomy FAC #6 yes 

  S-7ND 
Non-
dis-

meta 

F 31 TNBC 2008 11  11 x yes no 65 1 mastectomy 
AC #4, 

Taxol #4 
yes 

  S-8ND 

Non-

dis-

meta 

F 40 TNBC 2007 12  12 x yes no 60 5 mastectomy 
AC #4, 

Taxol #4 
yes 

  S-9ND 

Non-

dis-

meta 

F 45 Luminal 2008 11  11 x yes no 80 1 mastectomy 
AC #4, 

Taxol #4 
yes 

                                  

The individual 

sample set 

Sample 

ID 
Case Sex Age  

Molecular 

subtype 

Date of sample 

collection (year) 

Observation 

period (years) 

Distant metastasis-free 

period (years) 

Date of distant 

metastasis (year) 

Lymph node 

metastasis 

Organ of distant 

metastasis 

Tumor 

content (%) 

Tumor-infiltrating 

lymphocytes (%) 
Surgical therapy 

Chemo 

therapy 

Radiation 

therapy 

  S-10D 
Dis-

meta 
F 41 HER2 2006 13  x 2008  yes bone  90 3 quadrantectomy 

AC #4, 

Taxol #4 
yes 

  S-11D 
Dis-
meta 

F 67 HER2 2007 12  x 2009  yes lung 85 1 mastectomy 
AC #4, 

Taxol #4 
no 

  S-12D 
Dis-

meta 
F 52 Luminal 2007 12  x 2010  yes lung 87 2 mastectomy 

AC #4, 

Taxol #4 
yes 

  S-13D 
Dis-

meta 
F 32 Luminal 2008 11  x 2011  yes bone, brain 55 3 quadrantectomy 

AC #4, 

Taxol #4 
yes 

  S-14D 
Dis-
meta 

F 40 TNBC 2008 11  x 2011  no bone, lung 90 1 quadrantectomy FAC #6 yes 

  S-15D 
Dis-

meta 
F 41 TNBC 2009 10  x 2014  no lung 87 2 mastectomy FAC #6 yes 
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  S-16D 
Dis-
meta 

F 48 Luminal 2009 10  x 2016  yes brain  80 3 mastectomy 

AC #4, 

Paclitaxel 

#4 

yes 

  S-17D 
Dis-

meta 
F 62 TNBC 2009 10  x 2011  no brain  50 10 quadrantectomy FAC #6 yes 

  S-18D 
Dis-
meta 

F 44 HER2 2010 9  x 2013  yes bone 65 3 mastectomy TCH #6 yes 

                                  

  S-10ND 

Non-

dis-
meta 

F 54 HER2 2009 10  10 x no no 90 3 mastectomy FAC #6 no 

  S-11ND 

Non-

dis-
meta 

F 49 Luminal 2008 11  11 x yes no 45 2 quadrantectomy 
AC #4, 

Taxol #4 
yes 

  S-12ND 

Non-

dis-
meta 

F 56 Luminal 2008 11  11 x yes no 75 2 mastectomy 
AC #4, 

Taxol #4 
yes 

  S-13ND 

Non-

dis-
meta 

F 46 TNBC 2008 11  11 x no no 85 2 quadrantectomy FAC #6 yes 

  S-14ND 

Non-

dis-
meta 

F 43 Luminal 2007 12  12 x yes no 80 2 mastectomy 
AC #4, 

Taxol #4 
no 

  S-15ND 

Non-

dis-
meta 

F 40 HER2 2006 13  13 x yes no 60 5 mastectomy 
AC #4, 

Taxol #4 
yes 

  S-16ND 

Non-

dis-
meta 

F 63 TNBC 2007 12  12 x no no 90 1 quadrantectomy FAC #6 yes 

  S-17ND 

Non-

dis-
meta 

F 38 HER2 2007 12  12 x yes no 80 2 mastectomy AC #4 yes 

  S-18ND 

Non-

dis-
meta 

F 38 TNBC 2007 12  12 x yes no 25 7 quadrantectomy 

AC #4, 

Paclitaxel 
#4 

yes 

 

AC: Adriamycin Cyclophosphamide  
                      

FAC: Fluorouracil Adriamycin Cyclophosphamide                        

TCH: Docetaxel Carboplatin 

Trastuzumab  
                        

#: The number of 

attempts of 

chemotherapy 
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3. Sample preparation of FFPE tissues for proteomic analysis 

FFPE sections (10 μm) were incubated twice in xylene (Sigma-Aldrich, St. 

Louis, MO)—once each for 5 and 2 minutes—and then twice in 100% (v/v) ethanol 

for 90 seconds. The sections were then hydrated in 75% (v/v) ethanol for 90 seconds 

and distilled water for 90 seconds [33, 44]. Next, the tissues were scraped off the 

glass slides into microfuge tubes, after which protein extraction buffer (4% SDS; 

0.3M Tris, pH 8.5; 2 mM TCEP) was added. Following sonication, the samples were 

incubated at 100°C for 2.5 hours. Protein concentrations were measured using a 

bicinchoninic acid (BCA) reducing agent-compatible kit (Thermo Fisher Scientific, 

Waltham, MA). 

Protein digestion was performed using a combination of acetone precipitation and 

filter-aided sample preparation (FASP) [45, 46]. Before the digestion step, 250 μg of 

extracted protein was precipitated with cold acetone at a buffer: acetone ratio of 1:5 

and incubated at -20°C for 18 hours. Next, the pellet was washed with 500 μl cold 

acetone, centrifuged at 15,000 rpm for 15 min, and air-dried for 1.5 hours. The 

proteins that had precipitated were dissolved in 35 μl denaturation buffer (4% SDS 

and 100 mM DTT in 0.3 M TEAB pH 8.5).  

After being heated at 100°C for 35 min, the denatured proteins were loaded 

onto 30 kDa spin filters (Merck Millipore, Darmstadt, Germany). The buffer was 

exchanged 3 times with UREA solution (8 M UREA in 0.1 M TEAB, pH 8.5). After 

SDS was removed, cysteine residues were treated with alkylation buffer (50 mM 

IAA, 8 M UREA in 0.1 M TEAB, pH 8.5) for 1 hour at room temperature in the dark. 
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UREA buffer was exchanged with TEAB buffer (40 mM TEAB, pH 8.5). The 

proteins were digested with trypsin (enzyme-to-substrate ratio [w/w] of 1:50) and 4% 

ACN at 37°C for 18 hours. The digested peptides were eluted by centrifugation, and 

their concentrations were measured, based on the fluorescence emission of 

tryptophan at 350 nm, using an excitation wavelength of 295 nm [47]. The external 

standard sample, ovalbumin, was digested in the same manner. 

 

4. 6-Plex Tandem Mass Tag (TMT) Labeling  

Because the number of samples exceeded that of the TMT channels, 2 

independent TMT 6-plex labeling experiments—using a pooled sample set and 

individual sample set—were performed. Each TMT experiment consisted of 18 

samples that were divided into 2 groups (dis-meta and non dis-meta). For the pooled 

sample set, equal amounts of 3 samples with identical molecular subtypes in each 

group were pooled, generating 6 pooled samples. Next, they were labeled with TMT 

6-plex: 126-non dis-meta (HER2), 127-non dis-meta (TNBC), 128-non dis-meta 

(Luminal), 129-dis-meta (HER2), 130-dis-meta (TNBC), and 131-dis-meta 

(Luminal). At this step, several technical replicates of the sample sets were prepared. 

For the individual sample set, 18 individual patients were positioned in 3 TMT 6-

plex sets: 126-non dis-meta (HER2), 127-non dis-meta (TNBC), 128-non dis-meta 

(Luminal), 129-dis-meta (HER2), 130-dis-meta (TNBC), and 131-dis-meta 

(Luminal). The detailed experimental workflow is described in Figure 1.  
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Prior to the TMT labeling step, 45 μg of each peptide sample was mixed 

with an equivalent volume of ovalbumin. Then, 40 mM TEAB buffer was added to 

each sample to equalize the volume. Next, TMT reagents were reconstituted in 110 

μl anhydrous ACN. Each sample was labeled using 25 μl of the reconstituted TMT 

reagent. Then, 45 μl ACN was added in varying volumes to a final concentration of 

30% and incubated at room temperature (25°C) for 1.25 hours. Hydroxylamine was 

added in various volumes to a concentration of 0.3% (v/v) to quench the reaction. 

TMT-labeled samples for each set were pooled at a ratio of 1:1. The pooled sample 

was lyophilized and desalted. 
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Figure 1. Detailed experimental workflow of TMT-based proteomic study. 

Graphical representation of the workflow for our TMT experiments. Three sample 

sets were analyzed using our TMT-based proteomic techniques. 
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5. Desalting and High-pH Reversed-Phase (HPRP) Peptide Fractionation 

The TMT-labeled samples were desalted on an HLB OASIS column per the 

manufacturer’s instructions. High-pH reversed-phase (HPRP) peptide fractionation 

was performed on an Agilent 1260 bioinert HPLC instrument (Agilent, Santa Clara, 

CA) with an Agilent 300 Extended-C18 column (4.6 mm I.D x 15 cm long, 5-μm 

C18 particle). TMT-labeled peptide samples were prefractionated at a flow rate of 1 

mL/min for 60 min on a linear gradient, which ranged from 5% to 40% ACN with 

15 mM ammonium hydroxide. The sample was separated into 96 fractions, which 

were then assembled into 12 fractions. The 12 fractions were lyophilized and stored 

at -80°C before MS analysis. 

 

6. Sample preparation of breast cancer cells for proteomic analysis 

MDA-MB-231 breast cancer cells were cultured in DMEM, and T47D cells 

were cultured in RPMI, containing 10% FBS and 1% penicillin and streptomycin. 

The cells were seeded in 75-cm2 culture plates. After a 24-hour incubation at 37°C 

with 5% CO2, the cells were scraped using a cell scraper and washed 3 times with 

1x PBS. The scraped cell pellets were centrifuged and washed again 3 times with 1x 

PBS. The pellets were then transferred to microfuge tubes and mixed with protein 

extraction buffer (4% SDS; 0.3 M Tris, pH 7.5; 2 mM TCEP). Following sonication, 

the samples were incubated at 100°C for 30 minutes. After protein extraction, the 

subsequent experimental procedures, such as protein digestion, TMT labeling, 
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desalting, and peptide fractionation, were performed in the same manner as the FFPE 

tissues. 

 

7. Reversed-Phase (RP)-nano LC-ESI-MS/MS Analysis  

The prefractionated peptides were analyzed on an LC-MS system with an 

Easy-nLC 1000 (Thermo Fisher Scientific, Waltham, MA) that was equipped with a 

nanoelectrospray ion source (Thermo Fisher Scientific, Waltham, MA) and coupled 

to a Q-Exactive mass spectrometer (Thermo Fisher Scientific, Waltham, MA), as 

described in our previous studies [45, 46]. The peptide samples were separated on a 

2-column system, comprising a trap column (Thermo Fisher Scientific, 75 μm I.D. 

x 2 cm long, 3-μm Acclaim PepMap100 C18 beads) and an analytical column 

(Thermo Fisher Scientific, 75 μm I.D. x 50 cm long, 3-μm ReproSil-Pur C18-AQ 

beads). Lyophilized peptide samples were dissolved in Solvent A (0.1% formic acid 

water and 2% ACN) prior to injection.  

The peptides were separated on a 180-min linear gradient, ranging from 6% 

to 26% Solvent B (100% ACN and 0.1% formic acid) for all peptide samples. The 

spray voltage was set to 2.2 kV in positive ion mode, and the heated capillary 

temperature was set to 320°C. Mass spectra were collected in data-dependent 

acquisition (DDA) mode by top 20 method. Xcaliber (version 2.5) was used to set 

the mass spectrometer parameters as follows: mass range to 350–1650 m/z, 

resolution of 70,000 at 200 m/z for detected precursor ions, automatic gain control 
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(AGC) at 3 x 106, isolation window for MS2 at 1.2 m/z, automatic gain control (AGC) 

for MS2 at 2 x 105, higher-energy collisional dissociation (HCD) scans at a 

resolution of 35,000, and normalized collision energy (NCE) of 32. The maximum 

ion injection time (maximum IT) for the full-MS and MS2 scans was 30 ms and 120 

ms, respectively. Dynamic exclusion with an exclusion time of 40 s was used. 

 

8. MS Data Search 

Proteome Discoverer, version 2.2 (Thermo Fisher Scientific, Waltham, MA) 

was used to search the resulting RAW files. The full-MS and MS/MS spectra search 

was conducted using the SEQUEST HT algorithm against a modified version of the 

Uniprot human database (December 2014, 88,717 protein entries; 

http://www.uniprot.org), which included chicken ovalbumin. The database search 

was performed using the target-decoy strategy. The search parameters were as 

follows: a precursor ion mass tolerance value of 20 ppm (monoisotopic mass); a 

fragment ion mass tolerance value of 0.02 Da (monoisotopic mass); full enzyme 

digest with trypsin (after KR/−) and up to 2 missed cleavages; static modification 

values of 229.163 Da for lysine residues and peptide N-termini for TMT labeling 

and 57.02 Da for cysteine residues with carbamidomethylation; and dynamic 

modification values of 42.01 Da for protein N-terminal acetylation, 0.984 Da for 

asparagine deamidation, and 15.99 Da for methionine oxidation.  

A false discovery rate (FDR) of less than 1% at the peptide and protein 
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levels was used as the confidence criteria. Proteins were quantified by computing 

reporter ion relative intensities with the “Reporter Ions Quantifier” node in Proteome 

Discoverer. The co-isolation threshold value was 70%. The mass spectrometry-based 

proteome data lists of all identified proteins and peptides have been deposited into 

ProteomeXchange (http://proteomecentral.proteomexchange.org) through the 

PRIDE partner repository: dataset identifier PXD016061 [48, 69-71]. 

 

9. Quantification of protein abundance and statistical analysis 

Protein levels were normalized, based on the ovalbumin content in each 

TMT channel. Fold-change values were calculated by dividing the average value of 

the normalized protein abundance in the dis-meta group by that of the non dis-meta 

group. Statistical analysis for the proteomic data was performed for the normalized 

protein levels using Perseus (version 1.5.8.5). Student’s t-test was used to identify 

differentially expressed proteins (DEPs) for selecting biomarker candidates that 

differentiate distant metastasis from nondistant metastasis of breast cancer. The 

statistical cutoff for the student’s t-test was a p-value < 0.05. In addition, ANOVA 

was used to determine DEPs for analyzing the molecular characteristics of distant 

metastatic breast cancer between molecular subtypes using bioinformatic tools. 

Specifically, 9 samples in each group were classified as HER2, TNBC, and luminal, 

resulting in 6 subtype groups (HER2 nondis-meta, TNBC nondis-meta, luminal 

nondis-meta, HER2 dis-meta, TNBC dis-meta, and luminal dis-meta). Next, the 

quantified proteins in these groups were analyzed to detect statistically significant 
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proteins. The statistical cutoff for the ANOVA was p-value < 0.05. Receiver 

operating characteristic (ROC) analyses of biomarker performance were performed 

using MedCalc (version 12.5.0) and Prism (version 6.0). 

 

10. Bioinformatics analysis 

The Gene Ontology (GO) of the proteins was classified using the DAVID 

bioinformatics tool (version 6.8). GO classification was assessed by Fisher’s exact 

test to obtain a series of p-values that were filtered, based on a statistical significance 

of 0.05. Canonical pathways and downstream biological functions were enriched by 

Ingenuity Pathway Analysis (IPA, QIAGEN, Redwood City, CA). The analytical 

algorithms in IPA were used to predict the downstream effects on known biological 

pathways and functions, based on the inputted list of DEPs. IPA allocates activation 

scores on activated or inhibited status to biological functions and pathways that 

underlie the quantitative values of proteins. Fisher’s exact test was used to acquire 

p-values, whereas the degree of activation was measured using Z-scores. The p-value 

cutoff was set to 0.05, and the predictive activation Z-score cutoff was set to a 

magnitude of 1.  

 

11. RNA extraction and real-time polymerase chain reaction (RT-PCR) 

 Total RNA was isolated from the following breast cancer cell lines using 

TRIzol (Invitrogen, Carlsbad, CA, USA) per the manufacturer’s instructions: 
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MCF10A, MCF7, T47D, BT474, skBR3, MDA-MB-453, BT-20, MDA-MB-468, 

HCC70, HCC38, MDA-MB-157, MDA-MB-436, MDA-MB-231, and HS578T. 

Two micrograms of total RNA from each cell line was used for the reverse-

transcription reaction. First-strand cDNA was synthesized by standard random 

priming with RNA inhibitor (Promega, Madison, WI) and Moleney murine leukemia 

virus reverse transcripts (Promega, Madison, WI). Following cDNA synthesis, target 

genes were amplified using specific primers and HIPI plus Master mix (ElpisBio, 

Daejeon, Korea).  

 

12. Cell lines and culture conditions for invasion and migration assays 

The MDA-MB-231 and Hs578T cell lines were obtained from American 

Type Culture Collection (ATCC; Manassas, VA, USA) and the Korean Cell Line 

Bank (KCLB, Seoul, Korea), respectively. The cells were cultured in DMEM (Gibco, 

CA, USA), containing 10% fetal bovine serum (FBS; Invitrogen, Carlsbad, CA, 

USA) and 1% penicillin/streptomycin (Gibco, CA, USA). The cells were maintained 

at 37°C in a humidified atmosphere of 95% air and 5% CO2 and screened 

periodically for mycoplasma contamination. Both cell lines were confirmed by DNA 

profiling of short tandem repeats (STRs) by the KCLB (Seoul, Korea).   

 

13. Small interfering RNA (siRNA) transfection  

siRNAs that targeted LTF and TUBB2A and AccuTarget Negative Control 
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siRNA were purchased from Bioneer (Daejeon, Korea). The siRNA sequences for 

LTF and TUBB2A were as follows: siLTF-1, 5’-GAGAUCAGACACUACCUU-3’; 

siLTF-2, 5’-CACACUGUUGAUGUAAUGA-3’; siTUBB2A-1, ’-

CUCAAGCAUGGUCUUUCA-3’; siTUBB2A-2, 5’-

CACACUGUUGAUGUAAUGA-3’. Cells were transfected using Lipofectamine 

RNAiMAX (Invitrogen, Carlsbad, CA, USA) per the manufacturer’s instructions. 

After a 48-hour incubation, silencing of LTF and TUBB2A was confirmed by 

measuring their respective mRNA levels.  

 

14. Cell migration and invasion assays  

Quantitative cell migration and invasion were assessed using 24-well 

inserts (Corning Incorporated, NY, USA) with 8-μm pores according to the 

manufacturer’s instructions. In brief, for the transwell migration assay, transfected 

cells (5×104 cells) were seeded into the upper chamber, and medium that contained 

10% FBS was added to the lower chamber. After a 24-hour incubation, the cells on 

the top of the membrane were removed using a cotton swab. The remaining migrant 

cells were washed with PBS, fixed in 4% paraformaldehyde, stained with 1% crystal 

violet for 10 min, and imaged and counted in 3 randomly selected fields under a 

microscope (Nikon, Tokyo, Japan). These experiments were performed in triplicate.  

For the in vitro invasion assay, the upper wells of Boyden chambers were 

coated with 2 mg/ml of Matrigel (Corning Incorporated, NY, USA) at 37°C in a 5% 
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CO2 incubator for 2 hours. The cells (1×105 cells) were seeded into the upper 

chamber, and medium that contained 10% FBS was added to the lower chamber. The 

rest of the assay was performed as described above. 

All experiments related to RT PCR, invasion, migration, and cell 

proliferation assays were performed by Dr. kyungmin Lee, Professor Han Suk Ryu’s 

laboratory, Department of Pathology, Seoul National University Hospital. 
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RESULTS 

 

1. Construction of distant metastatic breast cancer proteomic datasets 

In the pooled sample set, 9441 proteins were identified, and 7179 proteins 

were quantified across all samples. In the individual sample set, 8746 proteins were 

identified, and 6642 proteins were quantified in all samples (Figure 2 and Figure 3a). 

In addition, the number of identifications in each sample was calculated, resulting in 

a range from 7515 to 7798 identified proteins in the individual sample set and 8287 

to 8309 proteins in the pooled sample set. Overall, the numbers of proteins in the 

samples of each sample set were similar (Figure 3b-c).  

Our proteomic platform enabled us to perform an in-depth analysis of the 

distant metastatic breast cancer proteome, as evidenced by a dynamic range that 

spanned over 6 orders of magnitude (Figure 4). This comprehensive dataset included 

many established biomarkers for breast cancer, including the receptor tyrosine kinase 

erbB-2 (HER2), estrogen receptor (ESR1), progesterone receptor (PGR), and 

androgen receptor (AR). Notably, established protein biomarkers for metastatic 

breast cancer, such as EGFR, HSPD1, PRDX6, and TPM4, which are related to 

lymph node and regional metastasis, were also detected [50]. Moreover, this 

proteome encompassed most of the identified proteins in our previous study and 

included an additional 3757 and 3126 newly identified proteins in the pooled and 

individual sample sets, respectively (Figure 5) [44]. Consequently, our in-depth 
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proteomic profiling generated a comprehensive dataset that is suitable for biomarker 

discovery and analysis with regard to determining the underlying mechanisms of 

distant metastasis in breast cancer.  

 

Figure 2. Schematic of overall proteomic results of the TMT-based proteomic 

analysis. Number of identified proteins; pooled sample set: 9441, individual sample 

set: 8746, and cell line set: 7823. Number of DEPs by statistical analysis and the 

steps for selection of protein targets. Validation phase of protein targets; real-time 

polymerase chain reaction (RT-PCR) and migration/invasion assay. 
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Figure 3. Identified and quantified proteins in TMT experiments. (a) The 

number of identified and quantified proteins in the pooled sample set, individual 

sample set, and cell line set. (b) The number of identified proteins in each sample of 

the individual sample set. (c) The number of identified proteins in each sample of 
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the pooled sample set.  

 

Figure 4. Dynamic ranges of protein abundance in pooled sample set and 

individual sample set. The dynamic range of the pooled sample set is marked in 

yellow, and that of the individual sample set is marked in blue. Known metastatic 

biomarkers are indicated in red, and breast cancer markers are marked in black. 
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Figure 5. Comparative analysis between our FFPE tissue proteome and those of 

our previous studies. (a) Comparison of identified proteins between our pooled 

sample proteome data and those of MS Jin et al. (b) Comparison of identified 

proteins between our individual sample proteome data and those of MS Jin et al. 

 

2. Quality assessment of proteomic data 

The multiplexing feature of the TMT-based strategy allowed us to examine 

the quantitative variation within and between our samples. Interbatch and intrabatch 

variation was assessed using an internal standard, ovalbumin. As a result, the 

interbatch and intrabatch normalization produced coefficients of variation of 4.17% 

and 6.7% in the pooled and individual sample sets, respectively (Figure 6a). 

Although the variation in non-normalized intensities reflected excellent 

reproducibility, a slight improvement in reproducibility was observed when the 

levels of proteins were normalized to ovalbumin (Figure 6b-c). 
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Next, correlation values were calculated to assess the variation between 

technical replicates in the pooled sample set. MS analysis of the pooled sample set 

showed excellent correlation, with Pearson’s correlation values ranging from 0.993 

to 0.994 and averaging 0.993 (Figure 6d). In addition, the correlation between the 

quantitative levels of all samples was calculated to assess the variation across 

individual samples. MS analysis of the individual sample set revealed a wider range 

of correlation values than that of the pooled sample set, with Pearson’s correlation 

values ranging from 0.647 to 0.988 and averaging 0.927 (Figure 6e). One sample, a 

HER2 type in the non dis-meta group, had low correlation values when paired with 

other individual samples, resulting in a range of 0.647 to 0.778. Slight differences in 

protein abundance between individual samples were observed.  
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Figure 6. The quality assessment of MS analysis. (a) Abundance and technical 

variation of the external standard, ovalbumin. Ovalbumin was quantified in the 

middle-high abundance interval and had a CV of 4.2% and 6.7% in the pooled and 

individual sample sets in 18 TMT channels, respectively. (b), (c) The quantitative 

reproducibility of all proteins was improved slightly on normalization with the 
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external standard, ovalbumin; the median CV value of the biological replicates of 

the pooled and individual sample sets decreased by 0.36% and 1.54%, respectively. 

(d) Cross-correlation analysis using the protein levels to confirm the repeatability of 

the MS analyses between experimental sets of the pooled sample set. (e) Variabilities 

in individual samples in our MS analysis are depicted in a multiscatter plot. 

Reproducibility between individual samples is represented by Pearson’s correlation 

value. Values of correlation with HER2 ND-2 are marked in red. (ND; non dis-meta, 

D; dis-meta, LU; luminal, - #; number of TMT set)  
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3. Determination of protein targets to validate distant metastatic potential 

 To select important protein targets to verify distant metastatic potential of 

breast cancer, the quantified proteins in the BC FFPE tissues datasets (i.e., the pooled 

and individual sample sets) were examined separately by statistical analysis. For the 

proteomic datasets of BC FFPE tissues, student’s t-test was performed to determine 

differentially expressed proteins (DEPs) between the nondistant metastasis and 

distant metastasis groups. When a Benjamini-Hochberg false discovery rate (BH-

FDR) cutoff of 0.05 was applied to the proteins in the pooled and individual sample 

sets respectively, however, none of the proteins in nondis-meta and dis-meta was 

significantly differentially expressed. Nonetheless, to determine protein targets for 

validation of distant metastatic breast cancer, alternative criteria were applied to the 

datasets.  

The criteria were as follows: 1. The quantified proteins in our BC FFPE 

tissue proteomic datasets must pass a p-value (unadjusted for multiple comparison) 

cutoff of 0.05 by student’s t-test for determining DEPs in nondis-meta versus dis-

meta. 2. Overlapping DEPs in both BC FFPE tissue datasets were selected. 3. 

Overlapping DEPs that were also identified in the BC cell line proteomic dataset and 

demonstrated a consistent expression pattern in all 3 datasets were selected. 4. 

Overlapping DEPs that passed a fold-change cutoff of 1.2 were selected. 5. The most 

highly up-regulated and down-regulated DEPs were selected. Therefore, DEPs that 

satisfied all of the requirements were selected as protein targets for validation of 

distant metastatic potential (Figure 2). 
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Specifically, a total of 180 and 96 proteins were initially selected as DEPs 

by student’s t-test (p-value < 0.05) in the pooled and individual sample sets, 

respectively (Figure 2). Next, overlapping proteins in DEPs of each sample set were 

selected. 

As a result, 17 overlapping DEPs in both sets were selected. The results of 

the statistical analysis for these proteins are listed in Table 2. Of the 17 proteins, 5 

(HSPA9, PSMB4, CTNNA1, XPO5, and PAFAH1B3) functioned in the growth, 

proliferation, metastasis, and recurrence of cancer [51-56]. Specifically, HSPA9 was 

associated with metastasis of hepatocellular carcinoma (HCC), and overexpression 

of HSPA9 increased the malignancy and aggressive behavior of HCC [51, 52]. 

Overexpression of PSMB4 increases cellular growth and the viability of breast 

cancer and ovarian cancer, leading to a poor prognosis [53, 54]. The deletion of 

CTNNA1 effects the loss of cell-to-cell adhesion, enhancing the growth and mobility 

of breast cancer cells [55]. XPO5 exports pre-miRNAs through the nuclear 

membrane to the cytoplasm and is thus important in breast cancer tumorigenesis [56]. 

PAFAH1B3 is a critical driver of the pathogenicity of breast cancer by inhibiting 

tumor-suppressing signaling lipids [72]. These 5 proteins were upregulated in our 

distant metastasis group, which I propose stimulate the distant metastatic potential 

of breast cancer. 

 Subsequently, I examined whether the overlapping 17 proteins were also 

differentially expressed in the proteomic dataset of BC cell lines, comparing less-

invasive T47D and highly invasive MDA-MB-231 cells. This examination was 
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performed to identify proteins that might have molecular features that are related to 

the distant metastasis of breast cancer by comparing the BC FFPE and BC cell line 

proteomes. Five proteins had consistent expression patterns between all proteomic 

datasets: tubulin beta-2A chain (TUBB2A); lactotransferrin (LTF); acyl-coenzyme a 

dehydrogenase, C-4 to C-12 straight chain, isoform CRA_a (ACADM); proteasome 

subunit beta type-4 (PSMB4); and mitotic checkpoint protein BUB3 (BUB3) (Table 

1). Next, with regard to the five proteins, the fold-change in expression between 

nondistant metastatic and distant metastatic groups was calculated. When the fold-

change cutoff was set to 1.2, two proteins were selected: LTF was the most 

extensively downregulated protein, whereas TUBB2A was the most highly 

upregulated (Figure 2 and Table 2). The normalized abundance of LTF and TUBB2A 

distinguished the 2 sample groups significantly (Figure 7a). Based on the criteria, 

LTF and TUBB2A were selected as important protein targets for validation of their 

function in relation to distant metastasis of breast cancer. 
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Table 2. Detailed statistical analysis of 17 overlapping proteins. 

Protein name    
Dis-meta vs non dis-meta 

  
  Dis-meta vs non dis-meta    High invasive vs low invasive    

      
in pooled sample set   in individual sample set   in cell lines set   

      
t test 

significance 
p value 

Adjusted p 

value 
(BH FDR < 

0.05) 

Fold-

change 

 

t test 

significance 
p value 

Adjusted p 

value 
(BH FDR < 

0.05) 

Fold-

change 

 

t test 

significance 
p value 

Adjusted p 

value 
(BH FDR < 

0.05) 

Fold-

change 

 

Consistency of protein 

expression 

 

Fold-change 

> 1.2 

    

              

              

                                          

Glyceraldehyde-3-phosphate dehydrogenase  + 0.01308 1 1.211  + 0.03681 1 1.260  + 0.01580 0.02242 0.815   N   N 

Tubulin beta-2A chain  + 0.01730 1 1.219  + 0.01980 1 1.298  + 0.00076 0.00173 2.329   Y   Y 

Lactotransferrin  + 0.00000 9.269E-09 0.581  + 0.02619 1 0.546  + 0.00529 0.00866 0.551   Y   Y 

Stress-70 protein, mitochondrial  + 0.00251 0.85696 1.114  + 0.04264 1 1.160  + 0.00003 0.00019 0.742   N   N 

Catenin alpha-1  + 0.04027 1 1.137  + 0.03017 1 1.189  + 0.00000 0.00003 0.473   N   N 

Bifunctional purine biosynthesis protein PURH  + 0.03371 1 1.150  + 0.03078 1 1.180  + 0.00047 0.00119 0.710   N   N 

Heterogeneous nuclear ribonucleoprotein H  + 0.04529 1 1.046  + 0.02779 1 1.111  N/D N/D N/D N/D   N/D   N 

Isoform 2 of Multifunctional protein ADE2  + 0.01657 1 1.149  + 0.02412 1 1.147  + 0.00184 0.00355 0.742   N   N 

ADP/ATP translocase 3  + 0.01062 1 0.827  + 0.04718 1 0.833  + 0.00022 0.00068 1.416   N   N 

Exportin-5  + 0.00720 1 1.177  + 0.03871 1 1.227  + 0.00359 0.00619 0.868   N   N 

RNA-binding protein 39  + 0.04237 1 1.074  + 0.02435 1 1.119  + 0.00171 0.00334 0.916   N   N 

Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight 

chain, isoform CRA_a  

+ 0.04319 1 0.922  + 0.01636 1 0.834  + 0.00049 0.00124 0.889   Y   N 

Proteasome subunit beta type-4  + 0.00136 0.60958 1.111  + 0.03592 1 1.143  + 0.00066 0.00155 1.213   Y   N 

Beta-glucuronidase  + 0.00266 0.83128 0.643  + 0.02986 1 0.630  N/D N/D N/D N/D   N/D   N 

Mitotic checkpoint protein BUB3  + 0.00728 1 1.113  + 0.04702 1 1.112  + 0.03503 0.04592 1.057   Y   N 

Platelet-activating factor acetylhydrolase IB subunit 

gamma  

+ 0.04161 1 1.221  + 0.02117 1 1.266  + 0.01903 0.02649 0.850   N   N 

2-hydroxyacyl-CoA lyase 1  + 0.01337 1 1.258  + 0.04677 1 1.314  + 0.00001 0.00010 0.575   N   N 

(N/D- not detection, N- no, Y- yes)
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Figure 7. Validation of TUBB2A and LTF as protein targets. (a) Protein expression patterns 

of TUBB2A and LTF by mass spectrometry; expression pattern of reporter ion intensity of 

TUBB2A (upper panel) and LTF (lower panel) in pooled sample set (left panel) and individual 

sample set (right panel), respectively. The data in the interquartile range are displayed as black 

dots (* < p-value 0.05; **** < p-value 0.0001). (b) Expression patterns of TUBB2A and LTF in 

various breast cancer cell lines by RT PCR. Higher expression levels are lighter than lower levels 

(red line; higher invasive BC cell lines, blue line; lower invasive BC cell lines). (c) Results of 

invasion and migration assays for TUBB2A using Hs578T and MDA-MB-231 BC cell lines. RT-

PCR of TUBB2A, downregulated by siRNA transfection in both cell lines (upper panel). Images 

of invading and migrating cells (lower left panel) and percentage (%) of invading and migrating 

cells (lower right panel) (*** < p-value 0.001). The RT-PCR, invasion, and migration assays were 

performed by Dr. kyungmin Lee, Professor Han Suk Ryu’s laboratory, Department of Pathology, 

Seoul National University Hospital. 
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4. Expression levels of TUBB2A and LTF verified by RT-PCR 

 The difference in the expression of TUBB2A and LTF was validated by RT-PCR in 1 

normal breast cell line and 13 breast cancer cell lines, the relative invasiveness of which was 

determined per other studies [74-81]. The expression of LTF was lower in the higher invasive 

group than in the lower invasive group, except in 3 cell lines (BT20, MDA-MB-368, and HCC70). 

In particular, HCC70 expressed the most LTF (Figure 7b). The level of TUBB2A was generally 

higher in the higher invasive group compared with the lower invasive group. Specifically, MDA-

MB-231 had the highest expression of TUBB2A (Figure 7b). The expression level of TUBB2A 

by MS was consistent with that by RT-PCR. The patterns of LTF by MS were not consistent with 

the RT-PCR results. 

 

5. Distant metastatic potential of TUBB2A 

The correlation between TUBB2A and metastatic characteristics was validated by 

invasion and migration assay. Two highly invasive BC cell lines (Hs578T and MDA-MB-231) 

were used to examine invasion and migration, based on the levels of TUBB2A. As a result, by 

siRNA transfection, TUBB2A was downregulated in both cell lines by RT-PCR. The number of 

invading cells fell significantly by over 50% when TUBB2A was knocked down compared with 

the control group (siControl), as did the number of migrating cells (Figure 7c). Conversely, 

because the relative cell proliferation did not differ significantly on the day when the invasion and 

migration assays were conducted (Figure 8), the decreased invasiveness of the cells did not result 

from the altered cell proliferation. Thus, the distant metastatic potential of TUBB2A was verified, 

independent of the influence of cell proliferation. 

To determine the ability of TUBB2A as a novel protein biomarker candidate of distant 

metastatic breast cancer, its performance was evaluated in the individual sample set. The 

sensitivity, specificity, and positive predictive value (PPV) by receiver operating characteristic 
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(ROC) analysis were 78%, 100%, and 88%, respectively. Furthermore, the area under curve (AUC) 

value was 0.852, based on the ROC curve, and the threshold value, expressed as reporter ion 

intensity, that corresponded to the highest Youden’s index was 13,178 (Figure 9). Based on these 

results, we expected TUBB2A to perform well in the diagnosis and prediction of distant metastatic 

breast cancer. 

 

Figure 8. Cell proliferation of MDA-MB-231 and Hs578T cell lines. Relative cell proliferation 

was observed for 3 days, when TUBB2A was knocked down compared with the control group 

(siControl) (* < p-value 0.05; ** < p-value 0.01). The time point at which migration and invasion 

assays were performed is indicated in blue circle. Cell proliferation assay was performed by Dr. 

kyungmin Lee, Professor Han Suk Ryu’s laboratory, Department of Pathology, Seoul National 

University Hospital. 
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Figure 9. Performance of the novel biomarker TUBB2A in the individual sample set. Table 

of summary statistics in ROC analysis, ROC curve with AUC = 0.852, and interactive dot diagram 

with sensitivity = 78%, specificity = 100%, and reporter ion intensity threshold = 13,178. 

 

6. Biological functions of distant metastatic breast cancer 

 To examine the functional signatures of distant metastatic breast cancer, I performed a 

bioinformatics analysis using 259 DEPs from the 2 sample sets. By gene ontology (GO) 
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enrichment analysis, the 177 upregulated proteins in the distant metastasis group were assigned 

to various biological processes, such as cell-cell adhesion, proteolysis during cellular protein 

catabolism, NIK/NK-kappa B signaling, microtubule-based processes, and retrograde vesicle-

mediated transport,- Golgi-to-ER (Fisher’s exact test p-value < 0.05) (Figure 10a and Table 3). 

The most significant biological process in upregulated proteins was the regulation of mRNA 

stability (p-value = 7.82E-07). Conversely, the 82 downregulated proteins were allocated to 

various biological processes, including oxidation-reduction, organization of actin cytoskeleton, 

response to hydrogen peroxide, thrombin receptor signaling, sequestering of actin monomers, and 

positive regulation of toll-like receptor 4 signaling (Fisher’s exact test p-value < 0.05) (Figure 

10b and Table 3). The most significant biological process in downregulated proteins was 

oxidation-reduction (p-value = 2.89E-04).  

In the enrichment of biological functions and pathways, the 259 DEPs were assigned to 

6 canonical pathways and 11 downstream biological functions (Fisher’s exact test p-value < 0.05, 

and Z-score > 1). Canonical pathways included acute phase response signaling, ILK signaling, 

actin cytoskeletal signaling, leukocyte extravasation signaling, and tRNA charging (Figure. 11a, 

and Table 4). The most significant and activated canonical pathway was glycolysis I (p-value = 

1.74E-06, and activation Z-score = 2.236). Biological functions included polarization of tumor 

cell lines, orientation of cells, adhesion of BC cell lines, binding of NFkB sites, glycolysis in 

tumor cell lines, and proliferation of tumor/carcinoma cell lines (Figure. 11b, and Table 4). The 

most significant and activated biological function was cell proliferation of tumor cell lines (p-

value = 1.69E-08, and activation Z-score = 2.451). Based on our results, I propose that the 

interaction of various biological functions induces distant metastatic breast cancer. 

Of the 2 protein targets, the result showed that the TUBB2A has association with the 

proliferation of tumor/carcinoma cell lines, microtubule-based processes, epithelial adherens 

junction signaling, 14-3-3-mediated signaling, and phagosome maturation. The most significant 

function of TUBB2A was cell proliferation of tumor cell lines (p-value = 1.69E-08). LTF was 
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involved in the binding of NFkB sites, negative regulation of apoptotic process, positive 

regulation of I-KappaB kinase/NF-kappaB signaling, negative regulation of ATPase activity, and 

positive regulation of toll-like receptor 4 signaling pathway. Binding of NFkB sites was the most 

significant function (p-value = 2.17E-04) (Figure 12 and Table 5). Thus, these candidates had 

distinct and independent biological characteristics. 
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Figure 10. Gene ontology analysis of all 259 DEPs in the two sample sets using The Database 

for Annotation, Visualization and Integrated Discovery (DAVID). (a) Biological process terms 

of 177 upregulated DEPs. (b) Biological process terms of 82 downregulated DEPs (Fisher’s exact 

test p-value < 0.05). 
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Table 3. GO analysis using the DAVID bioinformatics tool. Biological processes of upregulated DEPs by student’s t-test are listed. The p-value (modified Fisher exact p-value) cutoff for the GO annotation was set to < 0.05. Genes that 

were associated with each GO term are represented as official gene symbols. ‘GO direct’ filters extensive GO terms, based on the measured specificity of each term.  

Category Terms Count % P-Value Genes 
Fold 

Enrichment 

GOTERM_BP

_DIRECT 

GO:0043488~regulation of mRNA stability 10 5.682 7.82E-07 P20618, P28074, P08107, Q13868, Q5RKV6, P28070, Q06265, P31946, P49720, Q99436 9.821 

GO:0061621~canonical glycolysis 6 3.409 4.80E-06 P04406, P08237, P52789, P04075, P06733, P14618 23.344 

GO:0006418~tRNA aminoacylation for protein translation 6 3.409 4.30E-05 P07814, Q12904, Q9P2J5, P26639, P41252, P54136 15.173 

GO:0098609~cell-cell adhesion 12 6.818 7.75E-05 
Q9H4G0, P31947, P06733, P04075, P31946, P31939, E9PL19, P54136, P08107, P22234, 

P62258, Q9UHX1, P14618 
4.479 

GO:0006096~glycolytic process 5 2.841 3.31E-04 P04406, P08237, P52789, P04075, P06733 14.876 

GO:0038061~NIK/NF-kappaB signaling 6 3.409 4.75E-04 P20618, P28074, P28070, P61081, P49720, Q99436 9.196 

GO:0051436~negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 6 3.409 6.65E-04 P20618, P28074, O43684, P28070, P49720, Q99436 8.548 

GO:0016032~viral process 11 6.250 7.60E-04 
P20618, P28074, Q16531, P28070, P62258, Q07021, P20340, P31946, Q8TAE8, P49720, 

Q99436 
3.721 

GO:0051437~positive regulation of ubiquitin-protein ligase activity involved in regulation of mitotic cell cycle 

transition 
6 3.409 9.08E-04 P20618, P28074, O43684, P28070, P49720, Q99436 7.986 

GO:0031145~anaphase-promoting complex-dependent catabolic process 6 3.409 0.00108 P20618, P28074, O43684, P28070, P49720, Q99436 7.683 

GO:0048025~negative regulation of mRNA splicing, via spliceosome 4 2.273 0.00109 Q15287, P26368, X6RAL5, Q07021 19.268 

GO:0051603~proteolysis involved in cellular protein catabolic process 5 2.841 0.00125 P20618, P28074, P28070, P49720, Q99436 10.537 

GO:0006364~rRNA processing 9 5.114 0.00127 P42285, Q13868, Q5RKV6, Q9NWS0, Q9UQ80, Q06265, P78346, P62244, Q9Y5J1 4.254 

GO:0006890~retrograde vesicle-mediated transport, Golgi to ER 6 3.409 0.00128 P42858, Q9BVK6, Q8WVM8, P20340, Q9H0N0, O43264 7.402 

GO:0006189~'de novo' IMP biosynthetic process 3 1.705 0.00140 P22234, P22102, P31939 50.578 

GO:0070125~mitochondrial translational elongation 6 3.409 0.00150 Q9Y2Q9, Q9Y3B7, Q9BYD3, Q8TAE8, Q9NRX2, Q9BYC9 7.140 

GO:0006521~regulation of cellular amino acid metabolic process 5 2.841 0.00157 P20618, P28074, P28070, P49720, Q99436 9.917 

GO:0070126~mitochondrial translational termination 6 3.409 0.00158 Q9Y2Q9, Q9Y3B7, Q9BYD3, Q8TAE8, Q9NRX2, Q9BYC9 7.057 

GO:0000398~mRNA splicing, via spliceosome 9 5.114 0.00160 Q15287, P42285, B8ZZ98, P26368, E9PB61, P62318, G8JLB6, P09234, Q15393 4.101 

GO:0034475~U4 snRNA 3'-end processing 3 1.705 0.00258 Q13868, Q5RKV6, Q06265 37.934 

GO:0034427~nuclear-transcribed mRNA catabolic process, exonucleolytic, 3'-5' 3 1.705 0.00330 Q13868, Q5RKV6, Q06265 33.719 

GO:0002479~antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent 5 2.841 0.00341 P20618, P28074, P28070, P49720, Q99436 8.028 

GO:0043161~proteasome-mediated ubiquitin-dependent protein catabolic process 8 4.545 0.00399 P20618, P28074, Q16531, O43684, P28070, P49720, P61077, Q99436 3.986 

GO:0007017~microtubule-based process 4 2.273 0.00524 Q71U36, Q13885, P43034, Q08426 11.240 

GO:0008380~RNA splicing 7 3.977 0.00600 Q15287, Q14498, Q9UHX1, X6RAL5, P62318, Q07021, Q15393, E9PL19 4.266 

GO:0009168~purine ribonucleoside monophosphate biosynthetic process 3 1.705 0.00697 P22234, P22102, P31939 23.344 

GO:0006094~gluconeogenesis 4 2.273 0.00919 P04406, P04075, P06733, P00505 9.196 

GO:0006635~fatty acid beta-oxidation 4 2.273 0.00919 P51659, O14975, Q08426, Q15067 9.196 

GO:0006450~regulation of translational fidelity 3 1.705 0.00927 Q9BTE6, Q9P2J5, P41252 20.231 

GO:0051897~positive regulation of protein kinase B signaling 5 2.841 0.00943 P52895, P36222, P10599, Q07021, P24593 6.021 

GO:0060071~Wnt signaling pathway, planar cell polarity pathway 5 2.841 0.01287 P20618, P28074, P28070, P49720, Q99436 5.498 

GO:0006749~glutathione metabolic process 4 2.273 0.01766 P0CG29, P82970, P09488, O43708 7.225 

GO:0021987~cerebral cortex development 4 2.273 0.01766 P22102, P62258, P43034, P31939 7.225 

GO:0000132~establishment of mitotic spindle orientation 3 1.705 0.01783 P42858, P43034, O43264 14.451 

GO:0007062~sister chromatid cohesion 5 2.841 0.01875 O43684, O75122, P43034, Q99623, O43264 4.911 

GO:0001649~osteoblast differentiation 5 2.841 0.01935 P51659, P35232, E9PB61, P41252, P24593 4.863 
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GO:0051259~protein oligomerization 4 2.273 0.01938 P08237, Q9UJ83, Q13263, Q32Q12 6.976 

GO:0002223~stimulatory C-type lectin receptor signaling pathway 5 2.841 0.01997 P20618, P28074, P28070, P49720, Q99436 4.817 

GO:0000715~nucleotide-excision repair, DNA damage recognition 3 1.705 0.02121 Q16531, Q99627, P09874 13.194 

GO:0015949~nucleobase-containing small molecule interconversion 3 1.705 0.02483 P10599, Q32Q12, P15531 12.139 

GO:0006369~termination of RNA polymerase II transcription 4 2.273 0.02508 Q15287, P26368, E9PB61, P62318 6.322 

GO:0006461~protein complex assembly 5 2.841 0.02756 P07814, Q9Y697, J3KNA0, Q15393, O43264 4.360 

GO:0033209~tumor necrosis factor-mediated signaling pathway 5 2.841 0.02910 P20618, P28074, P28070, P49720, Q99436 4.286 

GO:0090263~positive regulation of canonical Wnt signaling pathway 5 2.841 0.03069 P20618, P28074, P28070, P49720, Q99436 4.215 

GO:0043388~positive regulation of DNA binding 3 1.705 0.03069 P10599, Q13263, P15531 10.838 

GO:0098869~cellular oxidant detoxification 4 2.273 0.03158 P10599, P11678, Q7LBC6, O43708 5.780 

GO:0006397~mRNA processing 6 3.409 0.03196 Q14498, Q9UHX1, P26368, X6RAL5, Q07021, Q15393, E9PL19 3.391 

GO:0000226~microtubule cytoskeleton organization 4 2.273 0.03275 P04406, Q66K74, O75122, P43034 5.699 

GO:0043928~exonucleolytic nuclear-transcribed mRNA catabolic process involved in deadenylation-dependent 

decay 
3 1.705 0.03276 Q13868, Q5RKV6, Q06265 10.464 

GO:0006754~ATP biosynthetic process 3 1.705 0.03276 P04075, P14618, P36542 10.464 

GO:0045739~positive regulation of DNA repair 3 1.705 0.03487 Q9NQ88, P12004, Q13263 10.116 

GO:1900740~positive regulation of protein insertion into mitochondrial membrane involved in apoptotic 

signaling pathway 
3 1.705 0.03487 P62258, P31947, P31946 10.116 

GO:0000209~protein polyubiquitination 6 3.409 0.03532 P20618, P28074, P28070, P49720, P61077, Q99436 3.299 

GO:0007030~Golgi organization 4 2.273 0.03636 P42858, Q9BVK6, O75122, O43264 5.468 

GO:0006412~translation 7 3.977 0.03852 Q9BRX2, P26639, Q9Y3B7, Q9BYD3, Q9NRX2, P62244, Q9BYC9 2.799 

GO:0002762~negative regulation of myeloid leukocyte differentiation 2 1.136 0.03873 Q32Q12, P15531 50.578 

GO:0061024~membrane organization 3 1.705 0.03926 P62258, P31947, P31946 9.483 

GO:0007005~mitochondrion organization 4 2.273 0.04018 P35232, P09874, Q8WVM0, Q99623 5.255 

GO:0042060~wound healing 4 2.273 0.04419 P02751, P31431, P21860, Q5JRA6 5.058 

GO:0000165~MAPK cascade 7 3.977 0.04497 P20618, P28074, P28070, P21860, P31946, P49720, Q99436 2.703 

GO:0050821~protein stabilization 5 2.841 0.04525 P04406, P35232, P08107, P17987, Q99623 3.719 

GO:0071051~polyadenylation-dependent snoRNA 3'-end processing 2 1.136 0.04818 Q13868, Q5RKV6 40.463 

GO:0071038~nuclear polyadenylation-dependent tRNA catabolic process 2 1.136 0.04818 Q13868, Q06265 40.463 

GO:0009113~purine nucleobase biosynthetic process 2 1.136 0.04818 P22234, P22102 40.463 

GO:0010035~response to inorganic substance 2 1.136 0.04818 P22102, P31939 40.463 

GO:0042769~DNA damage response, detection of DNA damage 3 1.705 0.04862 Q16531, P09874, P12004 8.430 
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Figure 11. IPA analysis of total 259 proteins that were sum of DEPs in the two sample sets 

on canonical pathway and downstream biological functions. (a) Canonical pathway 

enrichment of all 259 DEPs in the two sample sets. (b) Hierarchical clustering of downstream 

biological functions assessed by IPA using the 259 DEPs. The significant pathways, and 

downstream biological functions (Fisher’s exact test p-value <0.05) were deduced using Ingenuity 

Pathway Analysis (IPA), and their activation and inhibition states are expressed as Z-score. 
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Table 4. Downstream biological functions and canonical pathways of DEPs by student t-test by IPA analysis. Downstream biological functions were examined using the IPA informatics tool. The p-value cutoff was set to < 0.05, and 

the activation Z-score was set to > 1. Proteins in each biological function and pathway are listed. P-values and Z-scores of biological functions and pathways are shown. 

Categories Disease and function annotation  -log(P value) Activation z-score Molecules # Molecules 

Cellular Development,Cellular Growth and 

Proliferation 
Cell proliferation of tumor cell lines 7.772 2.451 

ACTN4,ALOX15B,ANO1,BUB3,C1QBP,CNDP2,COPS8,CYP1B1,DCLK1,ERBB3,FKBP5,FN1,GAPDH,GGT1,GSTM1,HPGD,HTT,I
GFBP5,IQGAP2,ITGA3,LGALS3BP,MCM2,MUCL1,MYH14,NAMPT,NDUFAF2,NFS1,NME1,PA2G4,PAFAH1B1,PARP1,PCNA,P

KM,PPIF,PSMB7,PTPRF,RAC1,SDC1,SDC4,SFN,SLC25A6,SOD2,TGM2,TMSB10/TMSB4X,TRIM28,TRIO,TUBB2A,TXN,USP9X 

49 

DNA Replication, Recombination, and Repair DNA damage 6.542 -1.188 BUB3,FN1,GAPDH,HTT,IDH1,MCM2,PARP1,PCNA,SOD2,USP9X,YWHAE 11 

Cell Death and Survival Apoptosis of neuroblastoma cell lines 5.218 -1.029 ENO1,HTT,IGFBP5,IKBKB,PARP1,TGM2,TXN,UTP18 8 

Cell Morphology Orientation of cells 4.872 -1.408 ACTN4,FN1,ITGA3,NAMPT,PDLIM1,RAC1,SDC4 7 

Cell-To-Cell Signaling and Interaction Interaction of colorectal cancer cell lines 4.129 2.213 ERBB3,FN1,ITGA3,NME1,PKM,RAC1 6 

Cell Morphology Polarization of cells 4.012 -2.236 ACTN4,FN1,ITGA3,NAMPT,PDLIM1,RAC1 6 

Cell-To-Cell Signaling and Interaction Adhesion of colorectal cancer cell lines 3.869 2.219 FN1,ITGA3,NME1,PKM,RAC1 5 

Cellular Movement Migration of pancreatic cancer cell lines 3.798 1.109 CNDP2,FN1,PPIF,RAC1,SFN 5 

Cell Cycle,Gene Expression Binding of NFkB binding site 3.663 -1.067 FN1,LTF,RAC1,SOD2,TRIM28 5 

Cellular Development,Cellular Growth and 
Proliferation 

Cell proliferation of carcinoma cell lines 3.500 1.582 C1QBP,ERBB3,GAPDH,HPGD,LGALS3BP,MYH14,NAMPT,NDUFAF2,PKM,PTPRF,RAC1,SLC25A6,TGM2,TRIM28,TUBB2A 15 

Cell-To-Cell Signaling and Interaction Adhesion of melanoma cell lines 3.493 -1.067 ALCAM,ALOX15B,ERBB3,NME1 4 

Cell Morphology Polarization of tumor cell lines 3.493 -2 ACTN4,ITGA3,PDLIM1,RAC1 4 

Cancer,Organismal Injury and Abnormalities Cancer 3.444 -1.771 

AACS,ACADM,ACOX1,ACSM1,ACTN4,AIMP1,AKR1A1,AKR1C1/AKR1C2,ALCAM,ALDOA,ALOX15B,ANO1,ANXA4,APOD,
APOL3,ARFRP1,ARHGAP1,ATIC,BCAM,BPNT1,BST1,BUB3,C1QBP,CALB2,CAPS,CEP152,CHI3L1,CLSTN2,CNDP2,COL2A1,C

OPS8,CORO1B,CRABP1,CROT,CTNNA1,CTSZ,CXCL17,CYP1B1,CYP4X1,DCLK1,EHHADH,EML2,ENO1,EPB41L1,EPRS,EPX,

ERBB3,ERP29,ETF1,EXOSC6,FABP7,FKBP5,FN1,GALM,GAPDH,GART,GGT1,GOT2,GSTM1,GSTT2/GSTT2B,GUSB,HAAO,HA
CL1,HAGHL,HBD,HEXB,HLA-

DRB1,HMGN5,HNRNPH1,HPGD,HSD17B4,HSPA4,HSPA9,HTT,IARS,IDH1,IGFBP5,IKBKB,IQGAP2,ISYNA1,ITGA3,KRT15,LA

NCL1,LARS,LBP,LGALS3BP,LOXL2,LRBA,LTF,LYPLA1,MAP1S,MBLAC2,MCM2,MCM6,MIA3,MTHFD1,MUCL1,MYH14,NA
MPT,NANS,NDUFAF2,NFS1,NME1,NME1-

NME2,OPTN,PA2G4,PAFAH1B1,PAFAH1B3,PAICS,PARP1,PCNA,PDIA4,PDLIM1,PDLIM5,PEA15,PELO,PFDN4,PFKM,PGLS,P

KM,PLIN3,PPIF,PRRC1,PSMB4,PSMB7,PTPRF,RAB6C/RAB6D,RAC1,RARS,RBM39,RCN2,SAP18,SCARB2,SCFD1,SCP2,SDC1,
SDC4,SDR16C5,SEC11C,SEC23B,SELENBP1,SF3B3,SFN,SLC25A1,SLC25A6,SLC27A2,SOD2,SRP54,STAU2,SUSD2,TARS,TGM

2,TM7SF2,TMED9,TMSB10/TMSB4X,TRIM28,TRIO,TRIP13,TUBA1A,TUBB2A,TXN,USP14,USP9X,UTP18,VWA5A,XPO5,YBX
3,YWHAB,YWHAE,ZW10 

170 

Carbohydrate Metabolism,Cellular Function and 

Maintenance 
Glycolysis of tumor cell lines 3.284 1.091 C1QBP,IKBKB,PFKM,PKM 4 

Cell-To-Cell Signaling and Interaction Adhesion of breast cancer cell lines 3.204 -1.091 ALOX15B,ERBB3,ERP29,FN1,NME1 5 
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Cancer,Organismal Injury and Abnormalities Extracranial solid tumor 3.169411331 -1.201 

AACS,ACADM,ACOX1,ACSM1,ACTN4,AIMP1,AKR1A1,AKR1C1/AKR1C2,ALCAM,ALDOA,ALOX15B,ANO1,ANXA4,APOD,

APOL3,ARFRP1,ARHGAP1,ATIC,BCAM,BPNT1,BST1,BUB3,C1QBP,CALB2,CAPS,CEP152,CHI3L1,CLSTN2,CNDP2,COL2A1,C
OPS8,CORO1B,CRABP1,CROT,CTNNA1,CTSZ,CXCL17,CYP1B1,CYP4X1,DCLK1,EHHADH,EML2,ENO1,EPB41L1,EPRS,EPX,

ERBB3,ERP29,ETF1,EXOSC6,FABP7,FKBP5,FN1,GALM,GAPDH,GART,GGT1,GOT2,GSTM1,GSTT2/GSTT2B,GUSB,HAAO,HA

CL1,HAGHL,HBD,HEXB,HLA-
DRB1,HMGN5,HNRNPH1,HPGD,HSD17B4,HSPA4,HSPA9,HTT,IARS,IDH1,IGFBP5,IKBKB,IQGAP2,ISYNA1,ITGA3,KRT15,LA

NCL1,LARS,LBP,LGALS3BP,LOXL2,LRBA,LTF,LYPLA1,MAP1S,MBLAC2,MCM2,MCM6,MIA3,MTHFD1,MUCL1,MYH14,NA

MPT,NANS,NDUFAF2,NFS1,NME1,NME1-
NME2,OPTN,PA2G4,PAFAH1B1,PAFAH1B3,PAICS,PARP1,PCNA,PDIA4,PDLIM1,PDLIM5,PEA15,PELO,PFDN4,PFKM,PGLS,P

KM,PLIN3,PPIF,PRRC1,PSMB4,PSMB7,PTPRF,RAC1,RARS,RBM39,RCN2,SAP18,SCARB2,SCFD1,SCP2,SDC1,SDC4,SDR16C5,

SEC11C,SEC23B,SELENBP1,SF3B3,SFN,SLC25A1,SLC25A6,SLC27A2,SOD2,SRP54,STAU2,SUSD2,TARS,TGM2,TM7SF2,TME
D9,TMSB10/TMSB4X,TRIM28,TRIO,TRIP13,TUBA1A,TUBB2A,TXN,USP14,USP9X,UTP18,VWA5A,XPO5,YBX3,YWHAB,YW

HAE,ZW10 

169 

Cancer,Organismal Injury and Abnormalities Malignant solid tumor 3.137868621 -1.926 

AACS,ACADM,ACOX1,ACSM1,ACTN4,AIMP1,AKR1A1,AKR1C1/AKR1C2,ALCAM,ALDOA,ALOX15B,ANO1,ANXA4,APOD,
APOL3,ARFRP1,ARHGAP1,ATIC,BCAM,BPNT1,BST1,BUB3,C1QBP,CALB2,CAPS,CEP152,CHI3L1,CLSTN2,CNDP2,COL2A1,C

OPS8,CORO1B,CRABP1,CROT,CTNNA1,CTSZ,CXCL17,CYP1B1,CYP4X1,DCLK1,EHHADH,EML2,ENO1,EPB41L1,EPRS,EPX,

ERBB3,ERP29,ETF1,EXOSC6,FABP7,FKBP5,FN1,GALM,GAPDH,GART,GGT1,GOT2,GSTM1,GSTT2/GSTT2B,GUSB,HAAO,HA
CL1,HAGHL,HBD,HEXB,HLA-

DRB1,HMGN5,HNRNPH1,HPGD,HSD17B4,HSPA4,HSPA9,HTT,IARS,IDH1,IGFBP5,IKBKB,IQGAP2,ISYNA1,ITGA3,KRT15,LA

NCL1,LARS,LBP,LGALS3BP,LOXL2,LRBA,LTF,LYPLA1,MAP1S,MBLAC2,MCM2,MCM6,MIA3,MTHFD1,MUCL1,MYH14,NA
MPT,NANS,NDUFAF2,NFS1,NME1,NME1-

NME2,OPTN,PA2G4,PAFAH1B1,PAFAH1B3,PAICS,PARP1,PCNA,PDIA4,PDLIM1,PDLIM5,PEA15,PELO,PFDN4,PFKM,PGLS,P

KM,PLIN3,PPIF,PRRC1,PSMB4,PSMB7,PTPRF,RAC1,RARS,RBM39,RCN2,SAP18,SCARB2,SCFD1,SCP2,SDC1,SDC4,SDR16C5,
SEC11C,SEC23B,SELENBP1,SF3B3,SFN,SLC25A1,SLC25A6,SLC27A2,SOD2,SRP54,STAU2,SUSD2,TARS,TGM2,TM7SF2,TME

D9,TMSB10/TMSB4X,TRIM28,TRIO,TRIP13,TUBA1A,TUBB2A,TXN,USP14,USP9X,UTP18,VWA5A,XPO5,YBX3,YWHAB,YW

HAE,ZW10 

169 

Cellular Development,Cellular Growth and 
Proliferation 

Proliferation of pancreatic cancer cell lines 3.096910013 1.617 CNDP2,ERBB3,NAMPT,PARP1,SFN,SOD2,USP9X 7 
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Figure 12. Biological functions and canonical pathways related to two biomarker candidates 

by IPA and DAVID analysis. Biological functions and pathways of TUBB2A (upper panel) and 

LTF (lower panel) (Fisher’s exact test p-value < 0.05 for DAVID and IPA analysis). 
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Table 5. Biological functions of TUBB2A and LTF. Biological functions of TUBB2A and LTF were examined using the IPA and DAVID bioinformatics tools. Biological processes and canonical pathways of TUBB2A and LTF are listed. 

The p-value cutoff was set to < 0.05 for the IPA analysis. The p-value (modified Fisher exact p-value) cutoff for the GO annotation was set to < 0.05. Proteins in each biological function are listed. 

TUBB2A     

Diseases or Functions Annotation(IPA) p-value Molecules 

Cell proliferation of tumor cell lines 1.69E-08 

ACTN4,ALOX15B,ANO1,BUB3,C1QBP,CNDP2,COPS8,CYP1B1,DCLK1,ERBB3,FKBP5,FN1,GAPDH,GGT1,GSTM1,HPGD,HTT,IGFBP5,IQ

GAP2,ITGA3,LGALS3BP,MCM2,MUCL1,MYH14,NAMPT,NDUFAF2,NFS1,NME1,PA2G4,PAFAH1B1,PARP1,PCNA,PKM,PPIF,PSMB7,PT

PRF,RAC1,SDC1,SDC4,SFN,SLC25A6,SOD2,TGM2,TMSB10/TMSB4X,TRIM28,TRIO,TUBB2A,TXN,USP9X 

Cell proliferation of carcinoma cell lines 0.00032 C1QBP,ERBB3,GAPDH,HPGD,LGALS3BP,MYH14,NAMPT,NDUFAF2,PKM,PTPRF,RAC1,SLC25A6,TGM2,TRIM28,TUBB2A 

Canonical Pathways(IPA) p-value Molecules 

Epithelial Adherens Junction Signaling 0.00200 ACTN4,CTNNA1,MYH14,RAC1,TUBA1A,TUBB2A 

14-3-3-mediated Signaling 0.00501 SFN,TUBA1A,TUBB2A,YWHAB,YWHAE 

Phagosome Maturation 0.00759 CTSZ,HLA-DRB1,HLA-DRB3,TUBA1A,TUBB2A 

Biological Process(GO) p-value Molecules 

microtubule cytoskeleton organization 0.03275 P04406, Q66K74, O75122, P43034 

  

LTF     

Diseases or Functions Annotation(IPA) p-value Molecules 

Binding of NFkB binding site 0.00022 FN1,LTF,RAC1,SOD2,TRIM28 

Biological Process(GO) p-value Molecules 

negative regulation of apoptotic process 0.01600 P02788, P21980, P14625, P09525, P04179, O14920, P30405 

positive regulation of I-kappaB kinase/NF-kappaB signaling 0.03537 O95236, P02788, P21980, O14920 

negative regulation of ATPase activity 0.04379 P02788, P30405 

positive regulation of toll-like receptor 4 signaling pathway 0.04806 P02788, P18428 
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7. Proteomic alterations in distant metastatic breast cancer between molecular subtypes  

 According to the results of a previous study, pooling biological groups can reduce the 

variation that originates from the sample while retaining the defining features of the group itself 

[57]. I expected our pooled samples for each molecular subtype to reveal distinct information on 

the molecular characteristics between the HER2, TNBC, and luminal groups. For these reasons, 

a pooled sample set was used to identify the changes in proteins between distinct breast cancer 

molecular subtypes in the distant metastasis and nondistant metastasis groups.  

By ANOVA, 1086 proteins were differentially expressed between breast cancer 

molecular subtypes (p-value < 0.05) (Figure 13a). These DEPs were then analyzed by hierarchical 

clustering to determine their expression patterns between breast cancer molecular subtypes, 

resulting in 6 groups: upregulated proteins in HER2-non-distant metastasis (cluster 1; 176 DEPs), 

upregulated proteins in HER2-distant metastasis (cluster 2; 124 DEPs), upregulated proteins in 

TNBC-non-distant metastasis (cluster 3; 193 DEPs), upregulated proteins in TNBC-distant 

metastasis (cluster 4; 342 DEPs), upregulated proteins in luminal-non-distant metastasis (cluster 

5; 29 DEPs), and upregulated proteins in luminal-distant metastasis (cluster 6; 184 DEPs). 

 

8. Biological functions of distant metastatic breast cancer between molecular subtypes  

To gain greater insight into the molecular features of distant metastatic breast cancer 

between molecular subtypes, pathway enrichment analysis was conducted for clusters 2, 4, and 6, 

which comprised proteins that were upregulated in the distant metastasis group of each molecular 

subtype. By Ingenuity Pathway Analysis (IPA), 2 canonical pathways were derived for cluster 2, 

versus 14 for cluster 4 and 11 for cluster 6 (p-value < 0.05, Z-score > 1) (Figure 13b-d and Table 

6). Specifically, in cluster 2, only PI3K/AKT signaling and BAG signaling were deduced and 

activated between three subtypes. PI3K/AKT signaling was the most highly activated pathway 

(Z-score = 2) in the HER2 type (Figure 13b and Table 6). In cluster 4, all 14 pathways were 
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activated—glycolysis 1, gluconeogenesis 1, and tRNA charging were extensively activated in the 

TNBC types (Figure 13c and Table 6). tRNA charging was the most highly activated pathway (Z-

score = 2.828), whereas EIF2 signaling was the least activated (Z-score = 0.333) in TNBC types 

(Figure 13c and Table 6). In cluster 6, most pathways were activated, such as actin cytoskeleton 

signaling, acute phase response signaling, intrinsic prothrombin activation, and GP6 signaling, in 

the luminal type. Among them, GP6 signaling was the most highly activated (Z-score = 3.464). 

However, LXR/RXR signaling was inhibited in the luminal type (Z-score = -0.707) (Figure 13d 

and Table 6). Based on our results, distinct activation states exist between the HER2, TNBC, and 

luminal types. 
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Figure 13. Proteomic alteration in distant metastatic breast cancer between molecular 

subtypes. (a) Hierarchical clustering of differentially expressed proteins (DEPs) between distant 

metastatic breast cancer molecular subtypes (ANOVA, p-value<0.05). The DEPs (1086) from the 
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pooled sample set were divided into 6 groups. Clusters of upregulated proteins are marked in red. 

(b)-(d) Canonical pathway enrichment of clusters 2, 4, and 6. The significant pathways (Fisher’s 

exact test p-value <0.05) were deduced using Ingenuity Pathway Analysis (IPA), and their 

activation and inhibition states are expressed as Z-scores.  
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Table 6. Canonical pathways of clusters enriched by IPA analysis. Canonical pathways in clusters 2, 4, and 6 of the pooled sample set were investigated using the IPA informatics tool. Canonical pathways between molecular subtypes 

are listed. The p-value cutoff was set to < 0.05, and the activation Z-score was set to > 1. P-values and Z-scores of the canonical pathways are listed. 

Cluster 2 Canonical Pathway 
HER2 (Dis-meta/Non dis-

meta)_Activation Z-score 

TNBC (Dis-meta/Non dis-

meta)_Activation Z-score 

Luminal (Dis-meta/Non dis-

meta)_Activation Z-score 
-log(P value) 

  PI3K/AKT Signaling 2 2 1 2.093 

  
BAG2 Signaling Pathway 1 1 2 

3.923 

Cluster 4 Canonical Pathway 
HER2 (Dis-meta/Non dis-

meta)_Activation Z-score 

TNBC (Dis-meta/Non dis-

meta)_Activation Z-score 

Luminal (Dis-meta/Non dis-

meta)_Activation Z-score 
-log(P value) 

  tRNA Charging 2.121 2.828 1.414 6.733 

  EIF2 Signaling 3 0.333 3 9.190 

  Gluconeogenesis I 0.816 2.449 0.816 5.535 

  Glycolysis I 0.816 2.449 0.816 5.648 

  Rac Signaling -1.342 1.342 1.342 1.403 

  PFKFB4 Signaling Pathway 1.342 1.342 0.447 2.993 

  Agrin Interactions at Neuromuscular Junction 0 2 1 1.407 

  TCA Cycle II (Eukaryotic) 0 2 1 3.195 

  Induction of Apoptosis by HIV1 -1 1 -1 1.738 

  Actin Cytoskeleton Signaling 1.134 0.378 1.134 1.542 

  Oxidative Phosphorylation 0.447 1.342 -0.447 1.507 

  Integrin Signaling 0 0.707 1.414 1.627 

  GPCR-Mediated Integration of Enteroendocrine Signaling Exemplified by an L Cell 0 1 1 1.481 

  
Glutathione Redox Reactions I 1 0 0 

3.345 

Cluster 6 Canonical Pathway 
HER2 (Dis-meta/Non dis-

meta)_Activation Z-score 

TNBC (Dis-meta/Non dis-

meta)_Activation Z-score 

Luminal (Dis-meta/Non dis-

meta)_Activation Z-score 
-log(P value) 

  GP6 Signaling Pathway 1.732 -3.464 3.464 9.305 

  Intrinsic Prothrombin Activation Pathway 1.633 -2.449 2.449 5.835 

  Acute Phase Response Signaling 1.897 -1.897 1.897 10.272 

  LXR/RXR Activation 2.121 -2.121 -0.707 4.934 

  Apelin Liver Signaling Pathway 1 -2 1 4.132 

  Ethanol Degradation II 1 -1 1 4.066 

  Coagulation System 1 -1 1 3.615 

  Actin Cytoskeleton Signaling -1 0 2 1.390 

  Glutathione-mediated Detoxification 1 -1 1 4.202 

  ILK Signaling -0.816 0 1.633 3.613 

  Neuroprotective Role of THOP1 in Alzheimer's Disease 0 -1 1 3.395 
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DISCUSSION 

 

One of the goals of our study was to discover novel protein biomarker candidates of 

distant metastatic breast cancer. Initially, I considered the potential problem with multiple 

comparisons, which can generate false positives if unaddressed, in selecting the protein targets. 

Therefore, I applied a multiple testing correction to our datasets. However, none of proteins was 

able to pass the BH FDR cutoff. Thus, we proposed alternative criteria to compensate for the 

statistically insufficient significance of proteins in determining the protein targets.  

When the criteria were applied to our in-depth proteome data, LTF (p-value < 0.001) and 

TUBB2A (p-value < 0.05) appeared as important protein targets for validation of distant 

metastatic potential. TUBB2A was upregulated and LTF was downregulated in the distant 

metastasis group. TUBB2A was upregulated in more invasive breast cancer cell lines (i.e., BC 

cell lines in the higher invasive group), whereas the expression patterns of LTF were perturbed 

across breast cancer cell lines by RT-PCR. Considering the expression level of TUBB2A in the 

higher-invasiveness group and the high malignancy of distant metastatic breast cancer [4, 58, 59], 

the upregulation of TUBB2A might promote the invasion of breast cancer cells, inducing the 

potential of distant metastatic breast cancer. In addition, based on the results of the invasion and 

migration assay, we verified that the high expression of TUBB2A increases the mobility of breast 

cancer cells, providing further support for TUBB2A as a novel biomarker candidate of distant 

metastatic breast cancer. 

Regarding performance of TUBB2A, TUBB2A could distinguish between distant 

metastasis and nondistant metastasis (i.e., 78% sensitivity, 100% specificity, and an AUC value 

of 0.852) and might predict distant metastasis (i.e., 88% PPV) in the individual sample set. 

However, because our TMT-based data were obtained from a small cohort (n=36), future studies 

should evaluate the performance of TUBB2A by absolute quantitation in a large cohort to assess 
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its clinical applicability, which lies beyond the scope of our current study. One possible design 

would be to quantify TUBB2A using targeted proteomic techniques, such as multiple reaction 

monitoring (MRM) and parallel reaction monitoring (PRM). 

Another goal was to determine the overall biological functions that exist in distant 

metastatic breast cancer. Biological functions that are related to proliferation and movement of 

cancer cells were activated. Specifically, cell polarization/orientation was related to cell adhesion, 

and actin-based signaling was associated with migration [60-62]. NF-kappa B modulates the 

immune response, but its inhibition and dysregulation are linked to improper immune 

development [63, 64]. Thus, the inhibition of polarization of tumor cell lines and adhesion of BC 

cell lines might weaken the adhesion between cells in primary breast tumors, and the activation 

of actin cytoskeletal signaling and proliferation of tumor cell lines might enhance the movement 

of breast cancer cells. In addition, blocking NF kappa B binding sites might allow breast cancer 

cells to migrate to other distal sites without activating the immune system. 

I noted proteins that were associated with distant metastatic breast cancer, based on our 

bioinformatics analysis. By GO analysis, ‘cell-cell adhesion’ terms were observed in upregulated 

and downregulated DEPs. However, each term consisted of different proteins. Furthermore, 

proteins in ‘adhesion of BC cell lines’ term did not overlap with those in the ‘cell-cell adhesion’ 

term. Thus, adhesion between breast cancer cells in primary tumors might be weakened, but that 

between breast cancer cells and cells in other organs could be strengthened, due to various proteins 

with potentially distinct functions in cell adhesion. In our pathway enrichment analysis, FN1 

overlapped between activated leukocyte extravasation signaling and inhibited acute phase 

response signaling. Considering the opposing states of these pathways, the former might enhance 

the mobility of breast cancer cells to other organs, shuttling leukocytes out of the circulatory 

system. In parallel, inhibition of acute phase response signaling might suppress the immune 

response. Thus, FN1 might create a suitable microenvironment that is conducive to distant 

metastasis of breast cancer.  
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With regard to our protein targets, TUBB2A was associated with cellular proliferation, 

movement, and adhesion, and LTF was involved in cell death, the immune response, and 

metabolism. The exact role TUBB2A plays in distant metastasis of breast cancer remain unclear 

to our knowledge. However, based on these functions, TUBB2A might control the mobility of 

distant metastatic breast cancer by regulating the adhesion and proliferation of breast cancer cells, 

and LTF might govern the death of breast cancer cells and the immune system during distant 

metastasis. Thus, TUBB2A might be a key protein that controls the migration of breast cancer 

cells from a primary tumor. LTF might be an auxiliary protein that helps breast cancer cells survive 

during movement toward distal sites by disrupting the immune system. A schematic model of 

biological regulation of distant metastasis of breast cancer according to alterations of the 

expression level of TUBB2A (a novel biomarker candidate of this study) was presented in Figure 

14.  

Figure 14. A schematic model of regulation of distant metastasis of breast cancer.  

Another goal was to determine the characteristics of distant metastatic breast cancer 

between molecular subtypes. In cluster 2, the most highly activated pathway was PI3K/AKT 

signaling in the HER2 type. A previous study that used transcriptome data revealed that 

PI3K/AKT kinases are expressed in circulating breast tumor cells and that the activation of this 
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signal regulates their metastatic and malignant state [68]. Compared with our proteomic results, 

the activation states of PI3K/AKT signaling were consistent. Thus, our PI3K/AKT signaling 

proteins might be associated with the regulation of distant metastatic potential and function as 

targets for the eradication of HER2-type distant metastatic breast cancer.  

In cluster 4, the most highly activated pathway was tRNA charging signaling in the 

TNBC type. The exact functions of this pathway in distant metastatic breast cancer have not been 

determined. However, based on a previous study, tRNA overexpression in breast tumor cells 

might increase the translational efficiency of genes that are related to the progression and 

development of breast cancer [67]. The tRNA charging-related proteins that I recorded might be 

upregulated and translationally modified products of such genes, influencing the distant 

metastatic potential and progression of breast cancer. Thus, these proteins might be targets for 

removal or suppression in slowing the malignancy of TNBC-type distant metastatic breast cancer. 

In cluster 6, the most highly activated pathway was glycoprotein 6 (GP6) signaling in 

the luminal type. GP6 is a platelet membrane glycoprotein that functions as a receptor for collagen 

and regulates the collagen-induced activation and aggregation of platelets [65, 66]. The detailed 

functions of this pathway in distant metastatic breast cancer have not been described. However, 

based on its functions, breast cancer cells could migrate easily to distal sites, masking their 

aggregate forms with platelet-combined forms. Furthermore, breast cancer cell complexes might 

adhere to collagen and subsequently to platelets, leading to additional platelet aggregation. Thus, 

GP6 signaling and its factors might facilitate the circulation of breast cancer cells with little 

activation of the immune systems due to their disguised forms, allowing them to settle at distal 

sites. Furthermore, the expression level of these proteins could be used to monitor the progression 

of luminal-type distant metastatic breast cancer. 

Although I performed pathway enrichment analysis using the upregulated DEPs in the 3 

clusters, one of the benefits of our study was that it could have considered the downregulated 

DEPs in the remaining 3 clusters (clusters 1, 3, and 5) in the analysis. These proteins might be 

related to distinct biological activities that suppress the activation of distant metastatic breast 
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cancer between subtypes. Consequently, our proteomic clusters might expand our understanding 

of the effects of molecular subtype on distant metastatic breast cancer. 

 Without our in-depth proteomic data, most of our DEPs might be unable to be identified 

or detected in other studies, because I are the first to collect proteomic data in distant metastatic 

breast cancer, analyzing clinical FFPE tissues from primary breast tumors. Our results indicate 

that the pathological relevance of our FFPE tissues in BC research is valid at the proteomic level 

and in severe breast cancer pathologies. Through our latent data, I discovered a novel protein 

biomarker candidate that has the potential to distinguish distant metastatic breast cancer and 

demonstrated distinct molecular features between BC subtypes. I expect that the discoverd 

biomarker candidate can be used to diagnose and predict distant metastatic breast cancer. 

Furthermore, our molecular pathways should provide insights into the relationship between 

molecular subtypes and distant metastatic breast cancer. 

In conclusion, I have constructed a comprehensive proteome of distant metastatic breast 

cancer by analyzing FFPE tissue slides using TMT-based mass spectrometric techniques. Our 

study demonstrates that the TMT-based approach is beneficial, because its greater quantitative 

ability generates a larger selection of proteins from which to choose novel biomarker candidates. 

This finding was verified by our proteomic dataset, which comprised the largest number of 

proteins in distant metastatic breast cancer. Through our criteria, I selected 2 important protein 

targets for distant metastatic breast cancer and performed functional studies to validate them. 

Finally, I was able to determine a novel protein biomarker candidate. Furthermore, our 

bioinformatics analysis revealed specific molecular characteristics between molecular subtypes. 

Thus, our in-depth proteomic data and analyses can be an important resource for distant metastatic 

breast cancer research. In future studies, I hope to assemble a larger cohort of breast cancer FFPE 

samples to test the performance of our novel biomarker candidate using targeted proteomics 

techniques, such as parallel reaction monitoring (PRM) and multiple reaction monitoring (MRM). 
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INTRODUCTION 

 

Major depressive disorder (MDD) and bipolar disorder (BD) are common psychiatric 

disorders, with overall prevalence rates of 3% to 10% and 2% to 4%, respectively [82, 83]. Both 

disorders are debilitating, with the highest and fourth-highest Disability-Adjusted Life Year 

values in the Korean population for MDD and BD among all mental and substance use disorders 

[84]. 

Distinguishing MDD and BD has been challenging, because their diagnosis relies on 

behavioral observations and subjective symptoms. The complexity, heterogeneity, and 

commonality between these disorders further complicate the diagnosis. Nearly 40% of BD 

patients are initially misdiagnosed with MDD [85-87]. Thus, their misdiagnosis represents as 

serious problem, because it leads to the erroneous prescription of antidepressant monotherapy, 

which can worsen outcomes by inducing hypomanic/manic states and rapid cycling during the 

course of the disorder [88, 89]. For these reasons, the discovery of biomarkers that differentiate 

MDD and BD has garnered significant interest from clinicians and researchers alike. 

In the research of mood disorders, proteomics, which studies proteins that reflect 

functions and phenotypes, has focused on discovering candidate biomarkers, given the limitations 

of genomic studies in this endeavor [90]. Although traditional proteomic studies have centered 

on proteomic alterations in the central nervous system, several limitations, such as invasiveness 

and accessibility issues, have impeded the collection of brain and cerebrospinal fluid (CSF) 

samples [90, 91]. Thus, the application of quantitative proteomic studies to analyze peripheral 

blood in mood disorders has increased. Among such studies, most have focused on differentiating 

MDD from healthy controls (HCs) or BD from HCs [90, 92, 93].  

Recently, studies have attempted to differentiate MDD from BD using various proteomic 

technologies [94-97]. An immunoassay-based proteomic approach has proposed a predictive 
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model to distinguish MDD from BD by quantifying multiple proteins [97]. Furthermore, based 

on recent advances in mass spectrometry (MS)-based proteomics in improving high-throughput 

techniques for proteomic quantitation [98, 99], such techniques (eg, MALDI-TOF/TOF MS and 

LC-MS/MS) have also contributed to discriminating between MDD and BD by examining 

proteomic profiles or identifying biomarker candidates [94-96]. Although these studies proposed 

many candidates, such as C3, C4BPA, CFI, B2RAN2, ENG, RAB7A, ROCK2, XPO7, PDGF-

BB, and TSP-1, their clinical relevance and significance remain unknown, necessitating further 

validation of these biomarkers [94-97]. Moreover, although MS-based targeted proteomic 

techniques have been used in studies to differentiate mood disorders from HCs or between HCs 

and severity of a specific mood disorder [100, 101], no study has attempted to discriminate MDD 

from BD using MS-based quantitative targeted proteomic methods, such as LC-MRM-MS, at 

least to our knowledge. 

LC-MRM-MS is a highly selective and sensitive targeted proteomic technology for 

quantifying targeted proteins or peptides in biological samples [102, 103]. In contrast to 

conventional technologies, such as immunoassays, this technology can measure at least 300 

protein targets per sample simultaneously, with precision [104]. In addition, LC-MRM-MS 

generates consistent and reproducible data from highly complex samples between laboratories 

[105]. Furthermore, high-throughput LC-MRM-MS technology has been used to quantify 

potential protein or peptide targets that are associated with diseases or disorders [100, 101, 105-

112]. Recently, LC-MRM-MS has been applied in research on psychiatric disorders [100, 105, 

112]. Consequently, the LC-MRM-MS-based proteomic approach has also necessitated in the 

efforts of discriminating between MDD and BD. 

In this study, using LC-MRM-MS technology, I developed a model for distinguishing 

MDD from BD patients, based on proteomic data on their blood specimens. I performed several 

methods to reduce model overfitting and considered the generalizability of the model, with regard 

to feature extraction and model averaging. In addition, I determined the performance of the model 

for patients without current hypomanic/manic/mixed symptoms and those who were drug-free 
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and compared its performance for MDD or BD patients against HCs. Furthermore, I studied the 

biological interactions across the proteins that constituted the model with MDD and BD patients. 

As a result, I propose the application of quantitative targeted proteomics to blood samples in mood 

disorders, supporting the applicability of MS-based proteomic approaches in the diagnosis of 

MDD and BD. 
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MATERIALS AND METHODS 

 

1. Study design 

Overall, this study comprised five steps—sample collection from matched groups, 

MRM-MS analysis, model development in the training set, model evaluation in the test set and 

combined set, and model application to different subgroups of patients and HC group. First, 

plasma samples of 270 individuals (90 MDD, 90 BD, and 90 HCs) whose gender, age, and BMI 

were matched were collected. Second, protein targets for MDD and BD were quantified by MRM-

MS in plasma samples of 270 individuals. Third, a model for discriminating MDD and BD was 

developed in the training set. Fourth, the model was evaluated in the test and combined sets. 

Lastly, the developed model was applied to MRM-MS data of patients’ subgroups and that of 

HCs. The overall scheme of this study was presented in Figure 1. 

 

Figure 1. Overall scheme of this study. This study consists of “sample collection”, “MRM-MS 

analysis”, “model development”, “model evaluation” and “model application”. The number of 
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subjects of this study and methods corresponding to each step are illustrated. MDD, major 

depressive disorder; BD, bipolar disorder; LASSO, least absolute shrinkage and selection 

operator; AUROC, area under receiver operating characteristics. 

 

2. Clinical samples 

The cohort comprised 180 patients and 90 HCs, matched for age and sex. The patients 

and HCs were enrolled from August 2018 to November 2019, aged 19 to 65 years. Within the 

cohort, 90 patients had BD [43 BD-I, 43 BD-II, and 4 BD-not otherwise specified (NOS)], and 

90 patients had MDD. BD-I, formerly known as manic-depressive disorder, is characterized by 

episodes of mania and depression. Although BD-II is similar to BD-I, it is hallmarked by episodes 

of depression and hypomania that never reach the severity of mania. BD-NOS is known as 

subthreshold BD or a type that does not fulfill the criteria of BD-I or BD-II. MDD is characterized 

by at least 1 episode of depression, with no mania/hypomania episodes to rule out BD-I and BD-

II and no subthreshold hypomanic episodes to rule out BD-NOS. 

Patients were enrolled from 1) Seoul National University Hospital, 2) Seoul 

Metropolitan Government Seoul National University Boramae Medical Center, 3) Nowon Eulji 

Medical Center, Eulji University, 4) Hanyang University Seoul Hospital, 5) Cha University 

Bundang Medical Center, and 6) Inha University Hospital. The diagnoses of the patients were 

made per the Diagnosis and Statistical Manual of Mental Disorders 5th version (DSM-5) and 

confirmed using the Mini-International Neuropsychiatric Interview (MINI). HCs were recruited 

from Seoul National University Hospital by advertisement. HCs had to have no psychiatric 

diagnosis according to the MINI and no psychiatric history in second-degree relatives. 

Patients and HCs were excluded per the following criteria: those who took anti-

inflammatory analgesics, including non-steroidal anti-inflammatory drugs (NSAIDs) and steroids 

(acetaminophen was allowed) for the past 2 weeks; those who had received intensive 

psychotherapy for the past 2 months; history of neuromodulation [electroconvulsive therapy 
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(ECT), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), 

or deep brain stimulation (DBS)]; neurosurgery; central nervous system disease, including 

epilepsy, stroke, parkinsonism, and meningitis; cancer; tuberculosis; history of substance abuse 

(exception for nicotine, caffeine, and alcohol); pregnancy/lactation; and those who were predicted 

to have an intellectual disability or had difficulty interpreting the Korean language. Patients who 

were on anti-inflammatory analgesics and steroids were excluded, because immune and 

inflammatory pathways are linked to mood disorders [113, 114], and those who were undergoing 

intensive psychotherapy were excluded to confine treatment influences to psychotropic 

medications. Most of the other exclusion criteria were based on previous studies of certain 

diseases and conditions and their association with altered protein expression [115-121]. 

The study was carried out in accordance with the Declaration of Helsinki, and the study 

design was reviewed by the institutional review boards of Seoul National University Hospital 

(IRB No. 1806-106-951) and all other participating hospitals. Informed consent was obtained 

from each participant. 

Plasma samples were collected from each subject in a 6-ml EDTA tube (Ref. 367863, 

Becton Dickinson and Company, Trenton, NJ, USA) and centrifuged at 1100-1300 g for 10-15 

minutes at room temperature or 4℃; the supernatant was collected and stored in Eppendorf tubes 

at < -70℃ until use. 

 

3. Demographics and clinical features 

Demographics, such as gender, age, body mass index (BMI), current smoking status, 

current exercise status, current alcohol use, blood collection time, fasting time, duration from first 

onset (years), and duration from first medication (years), were considered. Age, BMI, duration 

from first onset (years), and duration from first medication (years) were analyzed as continuous 

variables. Gender (male/female), current smoking status (yes/no), current exercise status (yes/no), 

current alcohol use (yes/no), blood collection time (AM, PM), and fasting time (< 8 hours, ≥ 8 

hours) were analyzed as dichotomous variables. Current exercise status (yes/no) was based on the 
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World Health Organization (WHO) recommendation for moderate-intensity physical activity at 

least once per week, for 30 minutes [122]. Current alcohol use (yes/no) was defined as at least 

one drink, once per week.  

Symptom severity was assessed using the Brief Psychiatric Rating Scale (BPRS) [123], 

Young Mania Rating Scale (YMRS) [124], Montgomery-Asberg Depression Rating Scale 

(MADRS) [125], and Hamilton Anxiety Scale (HAM-A) [126]. Because bipolar disorder has 

several mood states, we classified those whose YMRS scores were over 12 points as having 

current hypomanic/manic/mixed symptoms [127] and excluded them from the secondary analysis. 

Medication use was analyzed as a dichotomous variable with the following classifications: 

antipsychotics (AP), mood stabilizer (MS), antidepressants (AD), and benzodiazepines/hypnotics 

(BZD/HNT). Patients who had been drug-free for at least 1 month (11 MDD and 10 BD) were 

included in the secondary analysis.  

 

4. Protein quantification by quantitative targeted proteomic approach (MRM-MS) 

 

4.1. Determination of quantifiable targets for MRM-MS analysis 

In this study, 210 proteins, corresponding to 671 peptides, were analyzed using targeted 

MRM-MS. These proteins and corresponding peptides were derived from various sources [92, 

94-97, 128-137] and determined per the criteria in Figure 2. Specifically, three types of sources 

were compiled to generate the list of initial protein targets: 1) proteins that were obtained from 

our previous study that profiled the proteome of MDD and BD, 2) proteins that originated from 

previous proteomic studies on mood disorders, including significantly differentially expressed 

proteins between MDD and BD, between MDD and HC, and between BD and HC, and 3) proteins 

that have been approved by the US Food and Drug Administration (FDA) and designated as 

laboratory developed test (LDT). In total, 686 proteins were selected as initial targets after 

redundant entries were removed. 
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To investigate targets that had matching MS/MS spectra and unique peptides, 3 MS/MS 

spectral libraries—the Institute for Systems Biology (https://www.systemsbiology.org), National 

Institute of Standards and Technology (https://www.nist.gov), and the SWATHAtlas database 

(www. SWATHAtlas.org)—were used. In total, 648 proteins, corresponding to 7369 unique 

peptides, were selected.  

To examine targets that were detected in blood samples reproducibly, MRM-MS 

analysis was performed on a pooled plasma sample that consisted of 51 healthy controls (HCs), 

40 MDD, and 50 BD samples, which did not overlap with individual samples in our current study 

(90 MDD, 90 BD, and 90 HCs). Specifically, plasma samples of 3 HCs were collected twice at 

various time points—once each for the analysis of the pooled sample and the individual samples. 

Targets were considered detectable if: 1) at least 5 transitions for MRM-MS were observed; 2) 

they had the same elution patterns within the predictive retention time; and 3) the ratio of 

transition peaks was obtained as in the spectral library (dot product > 0.8). The dot product score 

represents the correlation between the peak intensities of transitions that originated from the 

endogenous peptides of interest and the corresponding entries in the spectral library. Regarding 

the 648 proteins that corresponded to 7369 unique peptides, 240 MRM-MS methods were 

generated, and 240 MS runs were performed in total. Reproducibility between MS runs was 

examined using indexed Retention Time (iRT) standard peptides. The technical reproducibility 

was evaluated, based on coefficient of variation (CV) values of the intensities and retention time 

(RT) of iRT peptides—CV value < 15% for intensity and < 1% for RT, respectively. 

Consequently, 412 proteins, corresponding to 1052 unique peptides, were selected as detectable 

targets in blood.  

A total of 1052 SIS peptides, representing 1052 detectable endogenous peptides (412 

proteins), were used to examine quantifiable targets. The targets were considered to be 

quantifiable, based on the following criteria: 1) co-elution of endogenous peptides of interest and 

corresponding SIS peptides; 2) top 5 peptides per protein, based on rank of peptide intensity; and 

3) 1 representative transition per peptide, based on rank of intensity and Automated Detection of 
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Inaccurate and Imprecise Transitions (AuDIT) [138]. Consequently, 210 proteins, corresponding 

to 671 unique peptides and 671 transitions, were determined to be quantifiable targets (Table 1). 

These targets were applied to MRM-MS analysis of individual plasma samples of major 

depressive disorder (MDD) and bipolar disorder (BD) patients and healthy controls (HCs). 

 

Figure 2. Determination of quantifiable targets for MDD and BD. Overall process, including 

integration of initial protein targets, selection of targets by public spectrum libraries, selection of 

MS detectable targets, and determination of final quantifiable targets. The number of selected 

targets for each step is represented. The final quantifiable targets were applied to MRM-MS 

analysis of individual blood samples of MDD patients, BD patients, and healthy controls. MS, 

mass spectrometry; MRM, multiple reaction monitoring; MDD, major depressive disorder; BD, 

bipolar disorder; HC, healthy control; FDA, US Food and Drug Administration; LDT, laboratory 

developed test; AuDIT, automated detection of inaccurate and imprecise transitions. 
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Table 1. The 671 peptides (210 proteins) examined by LC-MRM-MSa 

The final quantifiable targets information Mass Information 

Uniprot 

accession 

number 

Protein Peptide 
Precursor ion. 

Light (m/z) 

Precursor ion. 

Heavy (m/z) 

Precursor 

ion charge 

Product ion. 

Light (m/z) 

Additional product 

ion.Light (m/z)b 

Product 

ion. Heavy 

(m/z) 

Product ion 

charge 

Additional 

product ion 

chargeb 

Product ion 

type 

Additional 

product ion 

typeb 

Product ion 

Quantifierc 

Collision 

energy (volt) 

P02763 A1AG1 EQLGEFYEALDCLR 871.9 876.9 2 258.1 876.4 258.1 1 1 b2 y7 Y 28 

P02763 A1AG1 SDVVYTDWK 556.8 560.8 2 712.3   720.3 1   y5   Y 18.3 

P19652 A1AG2 EQLGEFYEALDCLCIPR 1057 1062 2 272.2 933.4 282.2 1 1 y2 y7 Y 33.8 

P04217 A1BG ATWSGAVLAGR 544.8 549.8 2 730.4   740.4 1   y8   Y 17.9 

P04217 A1BG CEGPIPDVTFELLR 823.4 828.4 2 1089.6   1099.6 1   y9   Y 26.5 

P04217 A1BG ELLVPR 363.7 368.7 2 272.2 484.3 282.2 1 1 y2 y4 Y 12.3 

P04217 A1BG LLELTGPK 435.8 439.8 2 644.4   652.4 1   y6   Y 14.5 

P04217 A1BG VTLTCVAPLSGVDFQLR 938.5 943.5 2 1131.6   1141.6 1   y10   Y 30.1 

P08697 A2AP DFLQSLK 425.7 429.7 2 588.4   596.4 1   y5   Y 14.2 

P08697 A2AP LCQDLGPGAFR 617.3 622.3 2 547.3   557.3 1   y5   Y 20.1 

P08697 A2AP LFGPDLK 395.2 399.2 2 529.3   537.3 1   y5   Y 13.3 

P08697 A2AP QEDDLANINQWVK 786.9 790.9 2 674.4   682.4 1   y5   Y 25.4 

P01023 A2MG ALLAYAFALAGNQDK 783.4 787.4 2 561.3   569.3 1   y5   Y 25.3 

P01023 A2MG EQAPHCICANGR 471.5 474.9 3 494.2   499.2 2   y8   Y 12.2 

P01023 A2MG HNVYINGITYTPVSSTNEK 1069 1073 2 861.4   869.4 1   y8   Y 34.1 

P01023 A2MG NEDSLVFVQTDK 697.8 701.9 2 737.4   745.4 1   y6   Y 22.6 

P01023 A2MG QGIPFFGQVR 574.8 579.8 2 850.5   860.5 1   y7   Y 18.8 

P01023 A2MG TEVSSNHVLIYLDK 809.4 813.4 2 231.1 538.3 231.1 1 1 b2 y4 Y 26.1 

P01023 A2MG VTAAPQSVCALR 424.9 428.2 3 519.3   529.3 1   y4   Y 10.5 

P01023 A2MG VYDYYETDEFAIAEYNAPCSK 1274.5 1278.6 2 491.2   499.2 1   y4   Y 40.5 

Q15848 ADIPO GDIGETGVPGAEGPR 706.3 711.3 2 839.4   849.4 1   y9   Y 22.9 

P43652 AFAM FTFEYSR 475.2 480.2 2 701.3   711.3 1   y5   Y 15.7 

P43652 AFAM HFQNLGK 422.2 426.2 2 204.1 527.2 212.1 1 1 y2 b4 Y 14.1 

P43652 AFAM IAPQLSTEELVSLGEK 572 574.7 3 632.4   640.4 1   y6   Y 15.8 

P43652 AFAM TNFAFR 378.2 383.2 2 540.3   550.3 1   y4   Y 12.7 

P43652 AFAM YHYLIR 432.7 437.7 2 351.2   356.2 2   y5   Y 14.4 

P02768 ALBU LVNEVTEFAK 575.3 579.3 2 937.5   945.5 1   y8   Y 18.8 

P04075 ALDOA ALQASALK 401.2 405.3 2 157.1   157.1 2   b3   Y 13.4 

P35858 ALS ANVFVQLPR 522.3 527.3 2 759.5   769.5 1   y6   Y 17.2 

P35858 ALS DFALQNPSAVPR 657.8 662.8 2 626.4   636.4 1   y6   Y 21.4 

P35858 ALS LAELPADALGPLQR 732.4 737.4 2 314.2   314.2 1   b3   Y 23.7 
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P35858 ALS LEALPNSLLAPLGR 732.4 737.4 2 1037.6   1047.6 1   y10   Y 23.7 

P35858 ALS LHSLHLEGSCLGR 493.6 496.9 3 614.8   619.8 2   y11   Y 13 

P02760 AMBP CVLFPYGGCQGNGNK 835.9 839.9 2 260.1 373.2 260.1 1 1 b2 b3 Y 26.9 

P02760 AMBP ECLQTCR 483.7 488.7 2 436.2   446.2 1   y3   Y 16 

P02760 AMBP ETLLQDFR 511.3 516.3 2 565.3   575.3 1   y4   Y 16.8 

P02760 AMBP GVCEETSGAYEK 665.3 669.3 2 884.4   892.4 1   y8   Y 21.6 

P02760 AMBP TVAACNLPIVR 607.3 612.3 2 484.3   494.3 1   y4   Y 19.8 

P15144 AMPN AQIINDAFNLASAHK 538.3 541 3 200.1 313.7 200.1 1 2 b2 y6 Y 14.6 

P54802 ANAG DFCGCHVAWSGSQLR 593.9 597.3 3 759.3   764.3 2   y13   Y 16.6 

P01019 ANGT DPTFIPAPIQAK 649.4 653.4 2 724.4   732.4 1   y7   Y 21.1 

P01019 ANGT LQAILGVPWK 562.8 566.9 2 883.5   891.6 1   y8   Y 18.4 

P01019 ANGT QPFVQGLALYTPVVLPR 633.4 636.7 3 680.4   690.5 1   y6   Y 18 

P01019 ANGT SLDFTELDVAAEK 719.4 723.4 2 316.2   316.2 1   b3   Y 23.3 

P01019 ANGT TSPVDEK 388.2 392.2 2 587.3   595.3 1   y5   Y 13 

P01019 ANGT VLSALQAVQGLLVAQGR 575 578.3 3 530.3   540.3 1   y5   Y 15.9 

P01008 ANT3 ENAEQSR 417.2 422.2 2 390.2   400.2 1   y3   Y 13.9 

P01008 ANT3 FATTFYQHLADSK 764.9 768.9 2 234.1 961.5 242.2 1 1 y2 y8 Y 24.7 

P01008 ANT3 FDTISEK 420.2 424.2 2 692.3   700.4 1   y6   Y 14 

P01008 ANT3 LQPLDFK 430.7 434.8 2 619.3   627.4 1   y5   Y 14.4 

P01008 ANT3 VAEGTQVLELPFK 715.9 719.9 2 391.2   399.2 1   y3   Y 23.2 

P01008 ANT3 VANPCVK 394.2 398.2 2 503.3   511.3 1   y4   Y 13.2 

P01008 ANT3 VWELSK 381.2 385.2 2 476.3   484.3 1   y4   Y 12.8 

P08519 APOA LFLEPTQADIALLK 524.6 527.3 3 743.5   751.5 1   y7   Y 14.1 

P08519 APOA NPDAVAAPYCYTR 749.3 754.3 2 859.4   869.4 1   y6   Y 24.2 

P08519 APOA NPDPVAAPYCYTR 762.4 767.4 2 859.4   869.4 1   y6   Y 24.6 

P02647 APOA1 AHVDALR 391.2 396.2 2 573.3   583.3 1   y5   Y 13.1 

P02647 APOA1 DLATVYVDVLK 618.3 622.4 2 736.4   744.4 1   y6   Y 20.2 

P02647 APOA1 EQLGPVTQEFWDNLEK 967 971 2 258.1 951.5 258.1 1 1 b2 y7 Y 31 

P02647 APOA1 LLDNWDSVTSTFSK 806.9 810.9 2 971.5   979.5 1   y9   Y 26 

P02647 APOA1 QGLLPVLESFK 410.9 413.6 3 623.3   631.4 1   y5   Y 10 

P02647 APOA1 VQPYLDDFQK 626.8 630.8 2 228.1 765.4 228.1 1 1 b2 y6 Y 20.4 

P02647 APOA1 VSFLSALEEYTK 693.9 697.9 2 853.4   861.4 1   y7   Y 22.5 

P02652 APOA2 EPCVESLVSQYFQTVTDYGK 1175.5 1179.6 2 583.3   591.3 1   y5   Y 37.4 

P02652 APOA2 SPELQAEAK 486.8 490.8 2 443.2   447.2 2   y8   Y 16.1 

P06727 APOA4 GNTEGLQK 423.7 427.7 2 675.4   683.4 1   y6   Y 14.1 

P06727 APOA4 IDQNVEELK 544.3 548.3 2 974.5   982.5 1   y8   Y 17.9 
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P06727 APOA4 IDQTVEELR 551.8 556.8 2 746.4   756.4 1   y6   Y 18.1 

P06727 APOA4 ISASAEELR 488.3 493.3 2 775.4   785.4 1   y7   Y 16.1 

P06727 APOA4 LGEVNTYAGDLQK 704.4 708.4 2 794.4   802.4 1   y7   Y 22.8 

P06727 APOA4 VEPYGENFNK 598.8 602.8 2 484.7   488.7 2   y8   Y 19.6 

P04114 APOB ALVDTLK 380.2 384.2 2 575.3   583.4 1   y5   Y 12.8 

P04114 APOB FSVPAGIVIPSFQALTAR 937.5 942.5 2 1103.6   1113.6 1   y10   Y 30.1 

P04114 APOB ITLPDFR 431.2 436.2 2 534.3   544.3 1   y4   Y 14.4 

P04114 APOB LATALSLSNK 509.3 513.3 2 185.1 548.3 185.1 1 1 b2 y5 Y 16.8 

P04114 APOB QGFFPDSVNK 569.8 573.8 2 659.3   667.4 1   y6   Y 18.7 

P04114 APOB TSSFALNLPTLPEVK 808.9 813 2 472.3   480.3 1   y4   Y 26.1 

P02655 APOC2 ESLSSYWESAK 643.8 647.8 2 957.4   965.4 1   y8   Y 21 

P02655 APOC2 TAAQNLYEK 519.3 523.3 2 865.4   873.5 1   y7   Y 17.1 

P02655 APOC2 TYLPAVDEK 518.3 522.3 2 658.3   666.4 1   y6   Y 17.1 

P02656 APOC3 DALSSVQESQVAQQAR 858.9 863.9 2 573.3   583.3 1   y5   Y 27.6 

P02656 APOC3 DYWSTVK 449.7 453.7 2 620.3   628.4 1   y5   Y 14.9 

P02656 APOC3 GWVTDGFSSLK 598.8 602.8 2 244.1 854.4 244.1 1 1 b2 y8 Y 19.6 

P05090 APOD CPNPPVQENFDVNK 829.4 833.4 2 643.8   647.8 2   y11   Y 26.7 

P05090 APOD IPTTFENGR 517.8 522.8 2 461.2   466.2 2   y8   Y 17.1 

P05090 APOD NILTSNNIDVK 615.8 619.8 2 228.1 890.5 228.1 1 1 b2 y8 Y 20.1 

P05090 APOD NPNLPPETVDSLK 712.4 716.4 2 985.5   993.5 1   y9   Y 23.1 

P05090 APOD VLNQELR 436.3 441.3 2 659.3   669.4 1   y5   Y 14.5 

P02649 APOE AATVGSLAGQPLQER 749.4 754.4 2 827.4   837.4 1   y7   Y 24.2 

P02649 APOE AQAWGER 409.2 414.2 2 618.3   628.3 1   y5   Y 13.7 

P02649 APOE EQVAEVR 415.7 420.7 2 474.3   484.3 1   y4   Y 13.9 

P02649 APOE LAVYQAGAR 474.8 479.8 2 665.3   675.3 1   y6   Y 15.7 

P02649 APOE LQAEAFQAR 517.3 522.3 2 792.4   802.4 1   y7   Y 17 

P02649 APOE QQTEWQSGQR 624.3 629.3 2 761.4   771.4 1   y6   Y 20.4 

P02649 APOE QWAGLVEK 465.8 469.8 2 616.4   624.4 1   y6   Y 15.4 

Q13790 APOF SLPTEDCENEK 661.3 665.3 2 1121.4   1129.5 1   y9   Y 21.5 

P02749 APOH ATVVYQGER 511.8 516.8 2 652.3   662.3 1   y5   Y 16.9 

P02749 APOH CSYTEDAQCIDGTIEVPK 696 698.6 3 244.2 512.2 252.2 1 1 y2 b4 Y 20.3 

P02749 APOH FICPLTGLWPINTLK 887 891 2 421.2   421.2 1   b3   Y 28.5 

P02749 APOH VCPFAGILENGAVR 751.9 756.9 2 260.1 928.5 260.1 1 1 b2 y9 Y 24.3 

P02749 APOH VSFFCK 394.2 398.2 2 688.3   696.3 1   y5   Y 13.2 

O14791 APOL1 ALDNLAR 386.7 391.7 2 588.3   598.3 1   y5   Y 13 

O14791 APOL1 LNILNNNYK 553.3 557.3 2 228.1 652.3 228.1 1 1 b2 y5 Y 18.2 
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O14791 APOL1 VTEPISAESGEQVER 815.9 820.9 2 804.4   814.4 1   y7   Y 26.3 

O95445 APOM AFLLTPR 409.3 414.3 2 599.4   609.4 1   y5   Y 13.7 

O95445 APOM DGLCVPR 408.7 413.7 2 531.3   541.3 1   y4   Y 13.7 

O95445 APOM FLLYNR 413.2 418.2 2 565.3   575.3 1   y4   Y 13.8 

O95445 APOM SLTSCLDSK 505.7 509.8 2 810.4   818.4 1   y7   Y 16.7 

O95445 APOM WIYHLTEGSTDLR 530.9 534.3 3 288.2 648.3 298.2 1 1 y2 y6 Y 14.3 

P00966 ASSY IDIVENR 429.7 434.7 2 630.4   640.4 1   y5   Y 14.3 

Q76LX8 ATS13 LFINVAPHAR 379.9 383.2 3 480.3   490.3 1   y4   Y 8.9 

P61769 B2MG VNHVTLSQPK 374.9 377.6 3 512.3   516.3 2   y9   Y 8.7 

P02730 B3AT LSVPDGFK 431.7 435.7 2 563.3   571.3 1   y5   Y 14.4 

Q8TDL5 BPIB1 ALGFEAAESSLTK 662.3 666.4 2 806.4   814.4 1   y8   Y 21.5 

P43251 BTD LSSGLVTAALYGR 654.4 659.4 2 751.4   761.4 1   y7   Y 21.3 

P43251 BTD SHLIIAQVAK 360.6 363.2 3 451.3   451.3 1   b4   Y 8.2 

P43251 BTD VDLITFDTPFAGR 484.6 487.9 3 274.2   279.2 2   y5   Y 12.6 

Q06187 BTK LVQLYGVCTK 590.8 594.8 2 727.3   735.4 1   y6   Y 19.3 

P02745 C1QA SLGFCDTTNK 571.8 575.8 2 942.4   950.4 1   y8   Y 18.7 

P02746 C1QB IAFSATR 383.2 388.2 2 652.3   662.3 1   y6   Y 12.9 

P02746 C1QB LEQGENVFLQATDK 531.3 533.9 3 822.4   830.4 1   y7   Y 14.3 

P02746 C1QB TINVPLR 406.8 411.8 2 598.4   608.4 1   y5   Y 13.6 

P02747 C1QC FNAVLTNPQGDYDTSTGK 964.5 968.5 2 333.2   333.2 1   b3   Y 30.9 

P02747 C1QC FQSVFTVTR 542.8 547.8 2 809.5   819.5 1   y7   Y 17.8 

P02747 C1QC QTHQPPAPNSLIR 486.9 490.3 3 350.2   355.2 2   y6   Y 12.7 

P02747 C1QC TNQVNSGGVLLR 629.3 634.4 2 815.5   825.5 1   y8   Y 20.5 

P02747 C1QC VVTFCGHTSK 379.2 381.9 3 199.1 689.3 199.1 1 1 b2 y6 Y 8.9 

P00736 C1R FCGQLGSPLGNPPGK 764.9 768.9 2 398.2   406.3 1   y4   Y 24.7 

P00736 C1R GYGFYTK 418.2 422.2 2 615.3   623.3 1   y5   Y 14 

P00736 C1R NIGEFCGK 462.7 466.7 2 697.3   705.3 1   y6   Y 15.3 

P00736 C1R QDACQGDSGGVFAVR 783.9 788.9 2 964.5   974.5 1   y10   Y 25.3 

P00736 C1R VLNYVDWIK 575.3 579.3 2 937.5   945.5 1   y7   Y 18.8 

P00736 C1R YTTEIIK 434.2 438.3 2 603.4   611.4 1   y5   Y 14.5 

Q9NZP8 C1RL GSEAINAPGDNPAK 670.8 674.8 2 698.3   706.4 1   y7   Y 21.8 

Q9NZP8 C1RL WILTAAHTIYPK 707.4 711.4 2 1114.6   1122.6 1   y10   Y 22.9 

P09871 C1S CEYQIR 434.7 439.7 2 579.3   589.3 1   y4   Y 14.5 

P09871 C1S IIGGSDADIK 494.8 498.8 2 762.4   770.4 1   y8   Y 16.3 

P09871 C1S LQVIFK 374.2 378.2 2 506.3   514.3 1   y4   Y 12.6 

P09871 C1S SNALDIIFQTDLTGQK 882.5 886.5 2 273.1   273.1 1   b3   Y 28.4 
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P09871 C1S SSNNPHSPIVEEFQVPYNK 729.4 732 3 521.3   529.3 1   y4   Y 21.5 

P09871 C1S TNFDNDIALVR 639.3 644.3 2 915.5   925.5 1   y8   Y 20.8 

P04003 C4BPA FSAICQGDGTWSPR 791.4 796.4 2 875.4   885.4 1   y8   Y 25.5 

P04003 C4BPA LSCSYSHWSAPAPQCK 626.9 629.6 3 700.3   708.4 1   y6   Y 17.8 

P04003 C4BPA YTCLPGYVR 564.8 569.8 2 591.3   601.3 1   y5   Y 18.5 

P54289 CA2D1 VLLDAGFTNELVQNYWSK 699.7 702.4 3 825.4   833.4 1   y6   Y 20.4 

P00915 CAH1 ESISVSSEQLAQFR 790.9 795.9 2 1065.5   1075.5 1   y9   Y 25.5 

P00915 CAH1 GGPFSDSYR 493.2 498.2 2 774.3   784.3 1   y6   Y 16.3 

P00915 CAH1 YSSLAEAASK 513.8 517.8 2 776.4   784.4 1   y8   Y 16.9 

P00918 CAH2 YGDFGK 343.7 347.7 2 523.3   531.3 1   y5   Y 11.7 

P27797 CALR FVLSSGK 369.2 373.2 2 491.3   499.3 1   y5   Y 12.4 

P27797 CALR QIDNPDYK 496.7 500.7 2 522.3   530.3 1   y4   Y 16.4 

P08185 CBG HLVALSPK 432.8 436.8 2 251.2 614.4 251.2 1 1 b2 y6 Y 14.4 

P08185 CBG ITQDAQLK 458.8 462.8 2 702.4   710.4 1   y6   Y 15.2 

P08185 CBG QINSYVK 426.2 430.2 2 610.3   618.3 1   y5   Y 14.2 

P22681 CBL GTEPIVVDPFDPR 721.4 726.4 2 577.8   582.8 2   y10   Y 23.4 

Q96IY4 CBPB2 DTGTYGFLLPER 684.8 689.8 2 401.2   411.2 1   y3   Y 22.2 

Q96IY4 CBPB2 YPLYVLK 448.3 452.3 2 366.7   370.7 2   y6   Y 14.9 

P15169 CBPN IVQLIQDTR 543.3 548.3 2 873.5   883.5 1   y7   Y 17.8 

P15169 CBPN VQNECPGITR 587.3 592.3 2 946.4   956.4 1   y8   Y 19.2 

P15169 CBPN VYSIGR 347.7 352.7 2 432.3   442.3 1   y4   Y 11.8 

P15169 CBPN YDDLVR 390.7 395.7 2 502.3   512.3 1   y4   Y 13.1 

P15169 CBPN YGGPNHHLPLPDNWK 582.3 585 3 659.3   667.3 1   y5   Y 16.2 

P30279 CCND2 ACQEQIEAVLLNSLQQYR 721.7 725 3 908.5   918.5 1   y7   Y 21.2 

P08571 CD14 ATVNPSAPR 456.7 461.8 2 527.3   537.3 1   y5   Y 15.2 

P08571 CD14 VLAYSR 354.7 359.7 2 496.3   506.3 1   y4   Y 12 

P08571 CD14 VLDLSCNR 488.7 493.8 2 764.3   774.3 1   y6   Y 16.2 

O43866 CD5L CYGPGVGR 433.2 438.2 2 542.3   552.3 1   y6   Y 14.4 

O43866 CD5L LVGGDNLCSGR 574.3 579.3 2 935.4   945.4 1   y9   Y 18.8 

P06731 CEAM5 TLTLFNVTR 532.8 537.8 2 850.5   860.5 1   y7   Y 17.5 

P00450 CERU DIASGLIGPLIICK 735.4 739.4 2 800.5   808.5 1   y7   Y 23.8 

P00450 CERU EVGPTNADPVCLAK 735.9 739.9 2 802.4   810.4 1   y7   Y 23.8 

P00450 CERU EYTDASFTNR 602.3 607.3 2 624.3   634.3 1   y5   Y 19.7 

P00450 CERU GAYPLSIEPIGVR 457.9 461.3 3 541.3   551.4 1   y5   Y 11.7 

P00450 CERU IGGSYK 312.7 316.7 2 511.3   519.3 1   y5   Y 10.7 

P00450 CERU QSEDSTFYLGER 716.3 721.3 2 637.3   647.3 1   y5   Y 23.2 
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P00751 CFAB CLVNLIEK 494.8 498.8 2 715.4   723.4 1   y6   Y 16.3 

P00751 CFAB DISEVVTPR 508.3 513.3 2 787.4   797.4 1   y7   Y 16.8 

P00751 CFAB STGSWSTLK 483.7 487.8 2 778.4   786.4 1   y7   Y 16 

P00751 CFAB VSEADSSNADWVTK 754.8 758.9 2 248.2 920.4 256.2 1 1 y2 y8 Y 24.4 

P00751 CFAB YGLVTYATYPK 638.3 642.3 2 843.4   851.4 1   y7   Y 20.8 

P08603 CFAH CVEISCK 448.2 452.2 2 636.3   644.3 1   y5   Y 14.9 

P08603 CFAH DGWSAQPTCIK 631.8 635.8 2 904.5   912.5 1   y8   Y 20.6 

P08603 CFAH EYHFGQAVR 369.5 372.9 3 274.2 530.3 284.2 1 1 y2 y5 Y 8.5 

P08603 CFAH TGDEITYQCR 621.8 626.8 2 727.3   737.3 1   y5   Y 20.3 

P08603 CFAH TGESVEFVCK 578.3 582.3 2 682.3   690.3 1   y5   Y 18.9 

P08603 CFAH VGEVLK 322.7 326.7 2 545.3   553.3 1   y5   Y 11 

P08603 CFAH WQSIPLCVEK 630.3 634.3 2 745.4   753.4 1   y6   Y 20.5 

P05156 CFAI ACDGINDCGDQSDELCCK 706.3 708.9 3 467.2   475.2 1   y3   Y 20.6 

P05156 CFAI AQLGDLPWQVAIK 719.9 723.9 2 200.1 841.5 200.1 1 1 b2 y7 Y 23.3 

P05156 CFAI EANVACLDLGFQQGADTQR 698.3 701.7 3 775.4   785.4 1   y7   Y 20.3 

P05156 CFAI GLETSLAECTFTK 728.9 732.9 2 856.4   864.4 1   y7   Y 23.6 

P05156 CFAI HGNTDSEGIVEVK 462.2 464.9 3 644.4   652.4 1   y6   Y 11.8 

P06276 CHLE AEEILSR 409.2 414.2 2 617.4   627.4 1   y5   Y 13.7 

P06276 CHLE IFFPGVSEFGK 614.3 618.3 2 820.4   828.4 1   y8   Y 20 

P06276 CHLE TQILVGVNK 486.3 490.3 2 230.1 629.4 230.1 1 1 b2 y6 Y 16.1 

P10909 CLUS ASSIIDELFQDR 697.4 702.4 2 922.4   932.4 1   y7   Y 22.6 

P10909 CLUS EIQNAVNGVK 536.3 540.3 2 701.4   709.4 1   y7   Y 17.6 

P10909 CLUS ELDESLQVAER 644.8 649.8 2 802.4   812.5 1   y7   Y 21 

P10909 CLUS TLLSNLEEAK 559.3 563.3 2 215.1 790.4 215.1 1 1 b2 y7 Y 18.3 

Q96KN2 CNDP1 AIHLDLEEYR 420.2 423.6 3 467.2   477.2 1   y3   Y 10.3 

Q96KN2 CNDP1 EWVAIESDSVQPVPR 856.4 861.4 2 468.3   478.3 1   y4   Y 27.5 

P02452 CO1A1 VLCDDVICDETK 733.8 737.8 2 627.8   631.8 2   y10   Y 23.7 

P06681 CO2 AVISPGFDVFAK 625.8 629.8 2 880.5   888.5 1   y8   Y 20.4 

P06681 CO2 CSSNLVLTGSSER 705.3 710.3 2 749.4   759.4 1   y7   Y 22.9 

P06681 CO2 EILNINQK 486.3 490.3 2 616.3   624.4 1   y5   Y 16.1 

P06681 CO2 GALISDQWVLTAAHCFR 649 652.3 3 242.1   242.1 1   b3   Y 18.6 

P06681 CO2 HAFILQDTK 536.8 540.8 2 209.1 864.5 209.1 1 1 b2 y7 Y 17.6 

P06681 CO2 LNINLK 357.7 361.7 2 601.4   609.4 1   y5   Y 12.1 

P06681 CO2 SSGQWQTPGATR 638.3 643.3 2 501.3   511.3 1   y5   Y 20.8 

P01024 CO3 ACEPGVDYVYK 650.8 654.8 2 940.5   948.5 1   y8   Y 21.2 

P01024 CO3 DSCVGSLVVK 532.3 536.3 2 602.4   610.4 1   y6   Y 17.5 
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P01024 CO3 IWDVVEK 444.7 448.8 2 589.3   597.3 1   y5   Y 14.8 

P01024 CO3 NEQVEIR 444.2 449.2 2 644.4   654.4 1   y5   Y 14.8 

P01024 CO3 VLLDGVQNPR 555.8 560.8 2 898.5   908.5 1   y8   Y 18.2 

P0C0L4 CO4A ANSFLGEK 433.2 437.2 2 446.3   454.3 1   y4   Y 14.4 

P0C0L4 CO4A DSSTWLTAFVLK 684.4 688.4 2 791.5   799.5 1   y7   Y 22.2 

P08572 CO4A2 IAVQPGTVGPQGR 427.2 430.6 3 457.3   467.3 1   y4   Y 10.6 

P01031 CO5 AFDICPLVK 531.8 535.8 2 844.5   852.5 1   y7   Y 17.5 

P01031 CO5 EYVLPHFSVSIEPEYNFIGYK 844.4 847.1 3 1130.6   1138.6 1   y9   Y 25.6 

P01031 CO5 IDTALIK 387.2 391.2 2 660.4   668.4 1   y6   Y 13 

P01031 CO5 IDTQDIEASHYR 483.2 486.6 3 667.8   672.8 2   y11   Y 12.6 

P01031 CO5 ITHYNYLILSK 455.6 458.3 3 460.3   468.3 1   y4   Y 11.6 

P01031 CO5 NFEITIK 432.7 436.8 2 603.4   611.4 1   y5   Y 14.4 

P01031 CO5 QLPGGQNPVSYVYLEVVSK 1039.1 1043.1 2 837.5   845.5 1   y7   Y 33.2 

P01031 CO5 TLLPVSKPEIR 418.3 421.6 3 463.3   468.3 2   y8   Y 10.3 

P01031 CO5 VFQFLEK 455.8 459.8 2 664.4   672.4 1   y5   Y 15.1 

P13671 CO6 ALNHLPLEYNSALYSR 621 624.3 3 538.3   548.3 1   y4   Y 17.6 

P13671 CO6 DLHLSDVFLK 593.8 597.8 2 479.8   483.8 2   y8   Y 19.4 

P13671 CO6 ENPAVIDFELAPIVDLVR 1005.5 1010.6 2 811.5   821.5 1   y7   Y 32.2 

P13671 CO6 GEVLDNSFTGGICK 748.9 752.9 2 286.1   286.1 1   b3   Y 24.2 

P13671 CO6 GFVVAGPSR 445.2 450.3 2 487.3   497.3 1   y5   Y 14.8 

P13671 CO6 SEYGAALAWEK 612.8 616.8 2 845.5   853.5 1   y8   Y 20 

P13671 CO6 TLNICEVGTIR 638.3 643.3 2 834.4   844.4 1   y7   Y 20.8 

P10643 CO7 AASGTQNNVLR 565.8 570.8 2 143.1 743.4 143.1 1 1 b2 y6 Y 18.5 

P10643 CO7 DSCTLPASAEK 589.8 593.8 2 602.3   610.3 1   y6   Y 19.3 

P10643 CO7 ELSHLPSLYDYSAYR 605.3 608.6 3 774.3   784.3 1   y6   Y 17 

P10643 CO7 SCVGETTESTQCEDEELEHLR 837 840.4 3 248.1 425.3 248.1 1 1 b2 y3 Y 25.3 

P10643 CO7 VLFYVDSEK 550.3 554.3 2 887.4   895.4 1   y7   Y 18.1 

P10643 CO7 YSAWAESVTNLPQVIK 903.5 907.5 2 584.4   592.4 1   y5   Y 29 

P07357 CO8A AIDEDCSQYEPIPGSQK 968.9 972.9 2 516.3   524.3 1   y5   Y 31 

P07357 CO8A LGSLGAACEQTQTEGAK 860.9 864.9 2 275.2   283.2 1   y3   Y 27.7 

P07357 CO8A LYYGDDEK 501.7 505.7 2 726.3   734.3 1   y6   Y 16.6 

P07357 CO8A STITYR 370.7 375.7 2 552.3   562.3 1   y4   Y 12.5 

P07358 CO8B CEGFVCAQTGR 642.8 647.8 2 692.3   702.3 1   y6   Y 20.9 

P07358 CO8B IPGIFELGISSQSDR 809.9 814.9 2 849.4   859.4 1   y8   Y 26.1 

P07358 CO8B LPLEYSYGEYR 695.3 700.3 2 211.1 774.3 211.1 1 1 b2 y6 Y 22.6 

P07358 CO8B QALEEFQK 496.8 500.8 2 680.3   688.3 1   y5   Y 16.4 
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P07358 CO8B SGFSFGFK 438.7 442.7 2 585.3   593.3 1   y5   Y 14.6 

P07358 CO8B SVFLHAR 415.2 420.2 2 643.4   653.4 1   y5   Y 13.9 

P07360 CO8G AGQLSVK 351.7 355.7 2 631.4   639.4 1   y6   Y 11.9 

P07360 CO8G LDGICWQVR 573.8 578.8 2 748.4   758.4 1   y5   Y 18.8 

P07360 CO8G QLYGDTGVLGR 589.8 594.8 2 774.4   784.4 1   y8   Y 19.3 

P07360 CO8G SLPVSDSVLSGFEQR 810.9 815.9 2 836.4   846.4 1   y7   Y 26.1 

P07360 CO8G YGFCEAADQFHVLDEVR 686 689.3 3 221.1 403.2 221.1 1 1 b2 y3 Y 19.9 

P02748 CO9 CLCACPFK 528.2 532.2 2 782.3   790.3 1   y6   Y 17.4 

P02748 CO9 FEGIACEISK 577.3 581.3 2 877.4   885.5 1   y8   Y 18.9 

P02748 CO9 SIEVFGQFNGK 613.3 617.3 2 797.4   805.4 1   y7   Y 20 

P02748 CO9 TSNFNAAISLK 583.3 587.3 2 716.4   724.4 1   y7   Y 19.1 

P02748 CO9 VVEESELAR 516.3 521.3 2 833.4   843.4 1   y7   Y 17 

Q03692 COAA1 GTHVWVGLYK 387.2 389.9 3 480.3   488.3 1   y4   Y 9.1 

Q9UMD9 COHA1 QAAYNADSGLK 569.3 573.3 2 704.4   712.4 1   y7   Y 18.6 

P49747 COMP DTDLDGFPDEK 626.3 630.3 2 488.2   496.2 1   y4   Y 20.4 

P49747 COMP EITFLK 375.7 379.7 2 508.3   516.3 1   y4   Y 12.6 

P20815 CP3A5 DTINFLSK 469.3 473.3 2 721.4   729.4 1   y6   Y 15.5 

P22792 CPN2 DHLGFQVTWPDESK 553.6 556.3 3 575.3   583.3 1   y5   Y 15.1 

P22792 CPN2 GQVVPALNEK 527.8 531.8 2 671.4   679.4 1   y6   Y 17.4 

P22792 CPN2 LTVSIEAR 444.8 449.8 2 575.3   585.3 1   y5   Y 14.8 

P22792 CPN2 QLVCPVTR 486.8 491.8 2 731.4   741.4 1   y6   Y 16.1 

P02741 CRP ESDTSYVSLK 564.8 568.8 2 347.2   355.2 1   y3   Y 18.5 

P02741 CRP GYSIFSYATK 568.8 572.8 2 716.4   724.4 1   y6   Y 18.6 

P02775 CXCL7 GTHCNQVEVIATLK 523.9 526.6 3 773.5   781.5 1   y7   Y 14.1 

P02775 CXCL7 ICLDPDAPR 528.8 533.8 2 783.4   793.4 1   y7   Y 17.4 

P02775 CXCL7 NIQSLEVIGK 550.8 554.8 2 873.5   881.5 1   y8   Y 18.1 

P02775 CXCL7 TTSGIHPK 420.7 424.7 2 638.4   646.4 1   y6   Y 14 

P01034 CYTC ALDFAVGEYNK 613.8 617.8 2 780.4   788.4 1   y7   Y 20 

O95822 DCMC LCAWYLYGEK 651.8 655.8 2 772.4   780.4 1   y6   Y 21.2 

P09172 DOPO VISTLEEPTPQCPTSQGR 1000.5 1005.5 2 1228.6   1238.6 1   y11   Y 32 

Q14126 DSG2 ILDVNDNIPVVENK 528 530.6 3 685.4   693.4 1   y6   Y 14.2 

P32926 DSG3 LAEISLGVDGEGK 644.3 648.4 2 861.4   869.4 1   y9   Y 21 

Q16610 ECM1 ELPSLQHPNEQK 473.9 476.6 3 540.8   544.8 2   y9   Y 12.3 

Q16610 ECM1 EVGPPLPQEAVPLQK 801.4 805.5 2 485.3   493.3 1   y4   Y 25.8 

Q16610 ECM1 FCEAEFSVK 558.8 562.8 2 809.4   817.4 1   y7   Y 18.3 

Q16610 ECM1 FSCFQEEAPQPHYQLR 679.6 683 3 519.8   524.8 2   y8   Y 19.7 
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Q16610 ECM1 LTFINDLCGPR 653.3 658.3 2 831.4   841.4 1   y7   Y 21.3 

Q16610 ECM1 NVALVSGDTENAK 659.3 663.3 2 821.4   829.4 1   y8   Y 21.4 

Q16610 ECM1 QHVVYGPWNLPQSSYSHLTR 790.4 793.7 3 588.3   593.3 2   y10   Y 23.7 

P00533 EGFR CNLLEGEPR 544.3 549.3 2 272.2 501.2 282.2 1 1 y2 b4 Y 17.9 

Q01780 EXOSX SGPLPSAER 457.2 462.2 2 559.3   569.3 1   y5   Y 15.2 

P00488 F13A CGPASVQAIK 515.8 519.8 2 813.5   821.5 1   y8   Y 17 

P00488 F13A FQEGQEEER 576.3 581.3 2 876.4   886.4 1   y7   Y 18.9 

P00488 F13A GTYIPVPIVSELQSGK 844.5 848.5 2 322.1   322.1 1   b3   Y 27.2 

P00488 F13A LSIQSSPK 430.2 434.3 2 746.4   754.4 1   y7   Y 14.3 

P00488 F13A STVLTIPEIIIK 663.9 667.9 2 712.5   720.5 1   y6   Y 21.6 

P05160 F13B GDTYPAELYITGSILR 885 890 2 922.5   932.5 1   y8   Y 28.4 

P05160 F13B IQTHSTTYR 369.5 372.9 3 433.2   438.2 2   y7   Y 8.5 

P05160 F13B SGYLLHGSNEITCNR 574.3 577.6 3 550.2   560.2 1   y4   Y 15.9 

P05160 F13B VACEEPPFIENGAANLHSK 695 697.7 3 171.1 797.4 171.1 1 1 b2 y8 Y 20.2 

P05160 F13B VLHGDLIDFVCK 472.6 475.3 3 635.4   635.4 1   b6   Y 12.2 

P05160 F13B VQYECATGYYTAGGK 834.4 838.4 2 228.1 433.2 228.1 1 1 b2 y5 Y 26.9 

P00742 FA10 ACIPTGPYPCGK 660.8 664.8 2 976.5   984.5 1   y9   Y 21.5 

P00742 FA10 GYTLADNGK 469.7 473.7 2 504.2   512.3 1   y5   Y 15.6 

P00742 FA10 NCELFTR 470.2 475.2 2 536.3   546.3 1   y4   Y 15.6 

P00742 FA10 QEDACQGDSGGPHVTR 571.9 575.2 3 405.7   410.7 2   y8   Y 15.8 

P00742 FA10 TGIVSGFGR 447.2 452.2 2 622.3   632.3 1   y6   Y 14.9 

P00742 FA10 TNEFWNK 469.7 473.7 2 723.3   731.4 1   y5   Y 15.6 

P03951 FA11 ALSGFSLQSCR 613.3 618.3 2 750.4   760.4 1   y6   Y 20 

P03951 FA11 GGISGYTLR 462.3 467.3 2 696.4   706.4 1   y6   Y 15.3 

P03951 FA11 SCALSNLACIR 632.8 637.8 2 319.1   319.1 1   b3   Y 20.6 

P03951 FA11 TAAISGYSFK 522.8 526.8 2 688.3   696.3 1   y6   Y 17.2 

P03951 FA11 VVSGFSLK 418.7 422.8 2 638.4   646.4 1   y6   Y 14 

P00748 FA12 CFEPQLLR 531.8 536.8 2 626.4   636.4 1   y5   Y 17.5 

P00748 FA12 LHEAFSPVSYQHDLALLR 699.4 702.7 3 251.2 837.5 251.2 1 1 b2 y7 Y 20.4 

P00748 FA12 NGPLSCGQR 494.7 499.7 2 409.2   414.2 2   y7   Y 16.3 

P00748 FA12 NWGLGGHAFCR 425.5 428.9 3 487.7   492.7 2   y9   Y 10.5 

P00748 FA12 TEQAAVAR 423.2 428.2 2 615.4   625.4 1   y6   Y 14.1 

P00748 FA12 VVGGLVALR 442.3 447.3 2 685.4   695.4 1   y7   Y 14.7 

P12259 FA5 AVQPGETYTYK 628.8 632.8 2 299.2   299.2 1   b3   Y 20.5 

P12259 FA5 EFNPLVIVGLSK 658.4 662.4 2 925.6   933.6 1   y9   Y 21.4 

P12259 FA5 EVIITGIQTQGAK 679.4 683.4 2 903.5   911.5 1   y9   Y 22.1 
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P12259 FA5 GEYEEHLGILGPIIR 566 569.3 3 668.4   678.5 1   y6   Y 15.6 

P12259 FA5 LAAALGIR 392.8 397.8 2 600.4   610.4 1   y6   Y 13.2 

P12259 FA5 NFFNPPIISR 602.8 607.8 2 796.5   806.5 1   y7   Y 19.7 

P08709 FA7 LHQPVVLTDHVVPLCLPER 741.4 744.7 3 251.2 585.3 251.2 1 1 b2 b5 Y 21.9 

P00740 FA9 NCELDVTCNIK 683.3 687.3 2 275.1 404.1 275.1 1 1 b2 b3 Y 22.2 

P00740 FA9 SALVLQYLR 531.8 536.8 2 692.4   702.4 1   y5   Y 17.5 

P00740 FA9 SCEPAVPFPCGR 688.8 693.8 2 1000.5   1010.5 1   y9   Y 22.4 

P00740 FA9 VSVSQTSK 418.2 422.2 2 550.3   558.3 1   y5   Y 14 

P00740 FA9 VVCSCTEGYR 615.8 620.8 2 1032.4   1042.4 1   y8   Y 20.1 

P23142 FBLN1 CVDVDECAPPAEPCGK 902.4 906.4 2 855.4   863.4 1   y8   Y 29 

P23142 FBLN1 SQETGDLDVGGLQETDK 896.4 900.4 2 847.4   855.4 1   y8   Y 28.8 

P23142 FBLN1 TGYYFDGISR 589.8 594.8 2 694.4   704.4 1   y6   Y 19.3 

Q12805 FBLN3 NPCQDPYILTPENR 858.9 863.9 2 515.3   525.3 1   y4   Y 27.6 

Q12805 FBLN3 SGNENGEFYLR 643.3 648.3 2 784.4   794.4 1   y6   Y 20.9 

P35556 FBN2 FNLSHLGSK 501.8 505.8 2 262.1 628.3 262.1 1 1 b2 y6 Y 16.6 

P22087 FBRL NGGHFVISIK 536.3 540.3 2 706.4   714.5 1   y6   Y 17.6 

P08637 FCG3A AVVFLEPQWYR 704.4 709.4 2 749.4   759.4 1   y5   Y 22.8 

Q9Y6R7 FCGBP AIGYATAADCGR 613.3 618.3 2 821.4   831.4 1   y8   Y 20 

Q9Y6R7 FCGBP LASVSVSR 409.7 414.7 2 634.4   644.4 1   y6   Y 13.7 

Q9Y6R7 FCGBP VNGVLTALPVSVADGR 784.4 789.4 2 913.5   923.5 1   y9   Y 25.3 

O75636 FCN3 YAVSEAAAHK 349.5 352.2 3 235.1 497.3 235.1 1 1 b2 y5 Y 7.8 

O75636 FCN3 YGIDWASGR 512.7 517.8 2 691.3   701.3 1   y6   Y 16.9 

P02765 FETUA CNLLAEK 424.2 428.2 2 573.4   581.4 1   y5   Y 14.2 

P02765 FETUA EATEAAK 360.2 364.2 2 289.2   297.2 1   y3   Y 12.2 

P02765 FETUA EHAVEGDCDFQLLK 554.3 556.9 3 147.1   155.1 1   y1   Y 15.2 

P02765 FETUA FSVVYAK 407.2 411.2 2 666.4   674.4 1   y6   Y 13.6 

P02765 FETUA TVVQPSVGAAAGPVVPPCPGR 672.7 676 3 342.2   347.2 2   y6   Y 19.4 

P02765 FETUA VVHAAK 312.7 316.7 2 426.2   434.3 1   y4   Y 10.7 

Q9UGM5 FETUB DGYVLR 361.7 366.7 2 387.3   397.3 1   y3   Y 12.2 

Q9UGM5 FETUB SQASSCSLQSSDSVPVGLCK 1049 1053 2 673.4   681.4 1   y6   Y 33.5 

Q9UGM5 FETUB VNDAQEYR 497.7 502.7 2 781.3   791.4 1   y6   Y 16.4 

Q03591 FHR1 STDTSCVNPPTVQNAHILSR 733 736.4 3 618.3   623.4 2   y11   Y 21.6 

Q03591 FHR1 TGESAEFVCK 564.3 568.3 2 840.4   848.4 1   y7   Y 18.5 

Q02985 FHR3 AQTTVTCTEK 569.8 573.8 2 200.1 638.3 200.1 1 1 b2 y5 Y 18.7 

Q9BXR6 FHR5 IAGVNIK 357.7 361.7 2 601.4   609.4 1   y6   Y 12.1 

Q9BXR6 FHR5 LQGSVTVTCR 560.8 565.8 2 879.4   889.4 1   y8   Y 18.4 
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Q9BXR6 FHR5 TGDAVEFQCK 577.8 581.8 2 274.1   274.1 1   b3   Y 18.9 

P02671 FIBA DLLPSR 350.7 355.7 2 359.2   369.2 1   y3   Y 11.9 

P02671 FIBA DNTYNR 391.7 396.7 2 553.3   563.3 1   y4   Y 13.1 

P02671 FIBA ESSSHHPGIAEFPSR 819.4 824.4 2 973.5   983.5 1   y9   Y 26.4 

P02671 FIBA GDFSSANNR 484.2 489.2 2 648.3   658.3 1   y6   Y 16 

P02671 FIBA GLIDEVNQDFTNR 760.9 765.9 2 894.4   904.4 1   y7   Y 24.6 

P02671 FIBA GSESGIFTNTK 570.8 574.8 2 610.3   618.3 1   y5   Y 18.7 

P02671 FIBA VQHIQLLQK 553.8 557.8 2 879.5   887.6 1   y7   Y 18.2 

P02675 FIBB DNENVVNEYSSELEK 884.9 888.9 2 572.2   572.2 1   b5   Y 28.4 

P02675 FIBB HQLYIDETVNSNIPTNLR 1064 1069 2 600.3   610.4 1   y5   Y 34 

P02675 FIBB NYCGLPGEYWLGNDK 893.4 897.4 2 1178.5   1186.6 1   y10   Y 28.7 

P02675 FIBB QGFGNVATNTDGK 654.8 658.8 2 706.3   714.4 1   y7   Y 21.3 

P02675 FIBB SILENLR 422.7 427.8 2 644.4   654.4 1   y5   Y 14.1 

P02679 FIBG ASTPNGYDNGIIWATWK 947.5 951.5 2 804.4   812.5 1   y6   Y 30.4 

P02679 FIBG DNCCILDER 597.7 602.8 2 532.3   542.3 1   y4   Y 19.5 

P02679 FIBG EGFGHLSPTGTTEFWLGNEK 736.4 739 3 447.2   455.2 1   y4   Y 21.7 

P02679 FIBG VELEDWNGR 559.3 564.3 2 229.1 776.3 229.1 1 1 b2 y6 Y 18.3 

P02679 FIBG YEASILTHDSSIR 746.4 751.4 2 815.4   825.4 1   y7   Y 24.1 

P02679 FIBG YLQEIYNSNNQK 757.4 761.4 2 867.4   875.4 1   y7   Y 24.5 

P02751 FINC DLQFVEVTDVK 646.8 650.8 2 789.4   797.4 1   y7   Y 21.1 

P02751 FINC FLATTPNSLLVSWQPPR 964 969 2 369.2   379.2 1   y3   Y 30.9 

P02751 FINC GEWTCIAYSQLR 742.4 747.4 2 503.3   513.3 1   y4   Y 24 

P02751 FINC HTSVQTTSSGSGPFTDVR 622 625.3 3 734.4   744.4 1   y6   Y 17.6 

P02751 FINC IGDTWR 374.2 379.2 2 634.3   644.3 1   y5   Y 12.6 

P02751 FINC ISCTIANR 467.7 472.7 2 734.4   744.4 1   y6   Y 15.5 

P02751 FINC IYLYTLNDNAR 678.4 683.4 2 277.2 803.4 277.2 1 1 b2 y7 Y 22 

P02751 FINC LLCQCLGFGSGHFR 551.3 554.6 3 660.3   670.3 1   y6   Y 15 

P02751 FINC LTVGLTR 380.2 385.2 2 545.3   555.3 1   y5   Y 12.8 

P02751 FINC QDGHLWCSTTSNYEQDQK 733 735.7 3 810.4   818.4 1   y6   Y 21.6 

P02751 FINC QYNVGPSVSK 539.8 543.8 2 574.3   582.3 1   y6   Y 17.7 

P02751 FINC SSPVVIDASTAIDAPSNLR 957 962 2 586.3   596.3 1   y5   Y 30.7 

P02751 FINC SYTITGLQPGTDYK 772.4 776.4 2 680.3   688.3 1   y6   Y 24.9 

P02751 FINC TYLGNALVCTCYGGSR 896.4 901.4 2 960.4   970.4 1   y8   Y 28.8 

P02751 FINC VPGTSTSATLTGLTR 731.4 736.4 2 761.5   771.5 1   y7   Y 23.7 

P02751 FINC YSFCTDHTVLVQTR 576.3 579.6 3 782.4   787.4 2   y13   Y 15.9 

Q06787 FMR1 EPCCWWLAK 625.3 629.3 2 218.1 863.4 226.2 1 1 y2 y6 Y 20.4 
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O95954 FTCD SDLQVAAK 416.2 420.2 2 629.4   637.4 1   y6   Y 13.9 

P06396 GELS EVQGFESATFLGYFK 861.9 865.9 2 875.5   883.5 1   y7   Y 27.7 

P06396 GELS HVVPNEVVVQR 425.9 429.2 3 501.3   511.3 1   y4   Y 10.5 

P06396 GELS QTQVSVLPEGGETPLFK 915.5 919.5 2 1074.5   1082.6 1   y10   Y 29.4 

P06396 GELS SEDCFILDHGK 660.8 664.8 2 569.3   577.3 1   y5   Y 21.5 

P06396 GELS TGAQELLR 444.3 449.3 2 159.1 658.4 159.1 1 1 b2 y5 Y 14.8 

P06396 GELS TPSAAYLWVGTGASEAEK 919.5 923.5 2 849.4   857.4 1   y9   Y 29.5 

P06396 GELS YIETDPANR 539.8 544.8 2 802.4   812.4 1   y7   Y 17.7 

Q92820 GGH YLESAGAR 433.7 438.7 2 590.3   600.3 1   y6   Y 14.4 

P22352 GPX3 FYTFLK 409.7 413.7 2 508.3   516.3 1   y4   Y 13.7 

P22352 GPX3 NSCPPTSELLGTSDR 817.4 822.4 2 636.8   641.8 2   y12   Y 26.3 

P22352 GPX3 TTVSNVK 374.7 378.7 2 203.1 546.3 203.1 1 1 b2 y5 Y 12.6 

Q14520 HABP2 FCEIGSDDCYVGDGYSYR 1081.9 1086.9 2 817.3   827.4 1   y7   Y 34.5 

Q14520 HABP2 IYGGFK 342.7 346.7 2 408.2   416.2 1   y4   Y 11.6 

Q14520 HABP2 LIANTLCNSR 581.3 586.3 2 1048.5   1058.5 1   y9   Y 19 

Q14520 HABP2 LPGFDSCGK 490.7 494.7 2 434.2   438.2 2   y8   Y 16.2 

P69905 HBA VGAHAGEYGAEALER 510.6 513.9 3 617.3   627.3 1   y5   Y 13.6 

P08397 HEM3 ELEHALEK 484.8 488.8 2 726.4   734.4 1   y6   Y 16 

P02790 HEMO ELISER 373.7 378.7 2 391.2   401.2 1   y3   Y 12.6 

P02790 HEMO GGYTLVSGYPK 571.3 575.3 2 650.4   658.4 1   y6   Y 18.7 

P02790 HEMO LLQDEFPGIPSPLDAAVECHR 788.7 792.1 3 676.3   681.3 2   y12   Y 23.6 

P02790 HEMO LYLVQGTQVYVFLTK 886.5 890.5 2 277.2 390.2 277.2 1 1 b2 b3 Y 28.5 

P02790 HEMO NFPSPVDAAFR 610.8 615.8 2 775.4   785.4 1   y7   Y 19.9 

P02790 HEMO SGAQATWTELPWPHEK 613.3 616 3 793.4   801.4 1   y6   Y 17.3 

P02790 HEMO YYCFQGNQFLR 748.3 753.3 2 862.5   872.5 1   y7   Y 24.2 

P05546 HEP2 NFGYTLR 435.7 440.7 2 609.3   619.3 1   y5   Y 14.5 

P05546 HEP2 NYNLVESLK 540.3 544.3 2 802.5   810.5 1   y7   Y 17.7 

P05546 HEP2 QFPILLDFK 560.8 564.8 2 845.5   853.5 1   y7   Y 18.4 

P05546 HEP2 SVNDLYIQK 540.3 544.3 2 893.5   901.5 1   y7   Y 17.7 

P05546 HEP2 TLEAQLTPR 514.8 519.8 2 814.4   824.5 1   y7   Y 17 

Q04756 HGFA LCNIEPDER 573.3 578.3 2 872.4   882.4 1   y7   Y 18.8 

Q04756 HGFA LEACESLTR 539.8 544.8 2 836.4   846.4 1   y7   Y 17.7 

Q04756 HGFA SQFVQPICLPEPGSTFPAGHK 766.4 769.1 3 216.1 499.8 216.1 1 2 b2 y10 Y 22.8 

Q04756 HGFA TTDVTQTFGIEK 670.3 674.3 2 923.5   931.5 1   y8   Y 21.8 

Q04756 HGFA VANYVDWINDR 682.8 687.8 2 818.4   828.4 1   y6   Y 22.2 

P00738 HPT VGYVSGWGR 490.8 495.8 2 562.3   572.3 1   y5   Y 16.2 
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P00738 HPT VSVNER 352.2 357.2 2 604.3   614.3 1   y5   Y 11.9 

P00738 HPT VTSIQDWVQK 602.3 606.3 2 1003.5   1011.5 1   y8   Y 19.7 

P00739 HPTR VVLHPNYHQVDIGLIK 615.7 618.4 3 698.9   702.9 2   y12   Y 17.4 

P04196 HRG ADLFYDVEALDLESPK 609 611.6 3 688.4   696.4 1   y6   Y 17.1 

P04196 HRG DGYLFQLLR 562.8 567.8 2 676.4   686.4 1   y5   Y 18.4 

P04196 HRG GGEGTGYFVDFSVR 745.8 750.9 2 869.5   879.5 1   y7   Y 24.1 

P04196 HRG QIGSVYR 411.7 416.7 2 581.3   591.3 1   y5   Y 13.8 

P04196 HRG YWNDCEPPDSR 719.8 724.8 2 571.3   581.3 1   y5   Y 23.3 

P18065 IBP2 GECWCVNPNTGK 711.3 715.3 2 516.3   524.3 1   y5   Y 23.1 

P18065 IBP2 LIQGAPTIR 484.8 489.8 2 742.4   752.4 1   y7   Y 16 

P17936 IBP3 ALAQCAPPPAVCAELVR 912 917 2 1208.6   1218.7 1   y11   Y 29.3 

P17936 IBP3 ETEYGPCR 506.2 511.2 2 489.2   499.2 1   y4   Y 16.7 

P17936 IBP3 FLNVLSPR 473.3 478.3 2 685.4   695.4 1   y6   Y 15.7 

P17936 IBP3 YGQPLPGYTTK 612.8 616.8 2 876.5   884.5 1   y8   Y 20 

P24593 IBP5 AVYLPNCDR 554.3 559.3 2 661.3   671.3 1   y5   Y 18.2 

P24593 IBP5 GVCLNEK 410.2 414.2 2 663.3   671.3 1   y5   Y 13.7 

P05155 IC1 FQPTLLTLPR 395.9 399.2 3 486.3   496.3 1   y4   Y 9.5 

P05155 IC1 GVTSVSQIFHSPDLAIR 914 919 2 771.4   781.4 1   y7   Y 29.3 

P05155 IC1 LLDSLPSDTR 558.8 563.8 2 575.3   585.3 1   y5   Y 18.3 

P05155 IC1 TLYSSSPR 455.7 460.7 2 696.3   706.3 1   y6   Y 15.1 

P05155 IC1 TNLESILSYPK 632.8 636.8 2 216.1 807.5 216.1 1 1 b2 y7 Y 20.6 

P05155 IC1 TTFDPK 354.7 358.7 2 244.2 375.6 252.2 1 2 y2 b3 Y 12 

P05362 ICAM1 VELAPLPSWQPVGK 760.9 764.9 2 342.2   342.2 1   b3   Y 24.6 

P22304 IDS QSTEQAIQLLEK 694.4 698.4 2 814.5   822.5 1   y7   Y 22.5 

P01344 IGF2 GIVEECCFR 585.3 590.3 2 900.3   910.3 1   y6   Y 19.1 

P01344 IGF2 SCDLALLETYCATPAK 906.9 910.9 2 315.2   323.2 1   y3   Y 29.1 

P01857 IGHG1 TPEVTCVVVDVSHEDPEVK 713.7 716.4 3 472.3   480.3 1   y4   Y 20.9 

P01860 IGHG3 SCDTPPPCPR 593.8 598.8 2 723.4   733.4 1   y6   Y 19.4 

P01871 IGHM QIQVSWLR 515.3 520.3 2 788.4   798.4 1   y6   Y 17 

P01871 IGHM QVGSGVTTDQVQAEAK 809.4 813.4 2 1090.5   1098.6 1   y10   Y 26.1 

P01871 IGHM YAATSQVLLPSK 639.4 643.4 2 331.2   339.2 1   y3   Y 20.8 

P01834 IGKC DSTYSLSSTLTLSK 751.9 755.9 2 836.5   844.5 1   y8   Y 24.3 

P01834 IGKC VDNALQSGNSQESVTEQDSK 1068.5 1072.5 2 707.3   715.3 1   y6   Y 34.1 

P05113 IL5 ETLALLSTHR 570.8 575.8 2 613.3   623.3 1   y5   Y 18.7 

P06213 INSR VCHLLEGEK 542.8 546.8 2 413.2   417.2 2   y7   Y 17.8 

P05154 IPSP AAAATGTIFTFR 613.8 618.8 2 214.1   214.1 1   b3   Y 20 
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P05154 IPSP AVVEVDESGTR 581.3 586.3 2 763.4   773.4 1   y7   Y 19 

P05154 IPSP DFTFDLYR 538.8 543.8 2 814.4   824.4 1   y6   Y 17.7 

P05154 IPSP FSIEGSYQLEK 650.8 654.8 2 953.5   961.5 1   y8   Y 21.2 

P05154 IPSP TLYLADTFPTNFR 779.9 784.9 2 634.3   644.3 1   y5   Y 25.2 

P08514 ITA2B IVLLDVPVR 512.3 517.3 2 811.5   821.5 1   y7   Y 16.9 

P19827 ITIH1 AAISGENAGLVR 579.3 584.3 2 902.5   912.5 1   y9   Y 19 

P19827 ITIH1 FAHYVVTSQVVNTANEAR 669.3 672.7 3 775.4   785.4 1   y7   Y 19.3 

P19827 ITIH1 GSLVQASEANLQAAQDFVR 1002.5 1007.5 2 806.4   816.4 1   y7   Y 32.1 

P19827 ITIH1 QAVDTAVDGVFIR 695.9 700.9 2 706.4   716.4 1   y6   Y 22.6 

P19827 ITIH1 QLVHHFEIDVDIFEPQGISK 784.4 787.1 3 667.3   667.3 2   b11   Y 23.4 

P19827 ITIH1 QYYEGSEIVVAGR 735.9 740.9 2 887.5   897.5 1   y9   Y 23.8 

P19823 ITIH2 AEDHFSVIDFNQNIR 902.9 907.9 2 791.4   801.4 1   y6   Y 29 

P19823 ITIH2 IYLQPGR 423.7 428.7 2 570.3   580.3 1   y5   Y 14.1 

P19823 ITIH2 TEVNVLPGAK 514.3 518.3 2 231.1 698.4 231.1 1 1 b2 y7 Y 16.9 

P19823 ITIH2 TQVADAK 366.7 370.7 2 503.3   511.3 1   y5   Y 12.4 

P19823 ITIH2 VVNNSPQPQNVVFDVQIPK 1061.6 1065.6 2 244.2 514.3 252.2 1 1 y2 b5 Y 33.9 

Q06033 ITIH3 EHLVQATPENLQEAR 867.9 872.9 2 267.1 380.2 267.1 1 1 b2 b3 Y 27.9 

Q06033 ITIH3 EVSFDVELPK 581.8 585.8 2 700.4   708.4 1   y6   Y 19 

Q06033 ITIH3 SLPEGVANGIEVYSTK 555.3 558 3 726.4   734.4 1   y6   Y 15.2 

Q14624 ITIH4 GPDVLTATVSGK 572.8 576.8 2 663.4   671.4 1   y7   Y 18.8 

Q14624 ITIH4 ILDDLSPR 464.8 469.8 2 702.3   712.3 1   y6   Y 15.4 

Q14624 ITIH4 LALDNGGLAR 500.3 505.3 2 815.4   825.4 1   y8   Y 16.5 

Q14624 ITIH4 NPLVWVHASPEHVVVTR 970.5 975.5 2 424.3   424.3 1   b4   Y 31.1 

Q14624 ITIH4 NVVFVIDK 467.3 471.3 2 720.4   728.4 1   y6   Y 15.5 

O60674 JAK2 SDNIIFQFTK 606.8 610.8 2 670.4   678.4 1   y5   Y 19.8 

P35527 K1C9 FSSSGGGGGGGR 491.7 496.7 2 748.3   758.3 1   y10   Y 16.2 

P35527 K1C9 FSSSSGYGGGSSR 618.3 623.3 2 520.2   530.3 1   y6   Y 20.2 

P35527 K1C9 TLLDIDNTR 530.8 535.8 2 215.1 733.3 215.1 1 1 b2 y6 Y 17.5 

P35527 K1C9 VQALEEANNDLENK 793.9 797.9 2 917.4   925.4 1   y8   Y 25.6 

P04264 K2C1 SLDLDSIIAEVK 651.9 655.9 2 874.5   882.5 1   y8   Y 21.2 

P04264 K2C1 SLVNLGGSK 437.8 441.8 2 674.4   682.4 1   y7   Y 14.6 

P04264 K2C1 TLLEGEESR 517.3 522.3 2 819.4   829.4 1   y7   Y 17 

P13647 K2C5 ISISTSGGSFR 556.3 561.3 2 798.4   808.4 1   y8   Y 18.2 

P29622 KAIN GDATVFFILPNQGK 753.9 757.9 2 543.3   551.3 1   y5   Y 24.4 

P29622 KAIN GFQHLLHTLNLPGHGLETR 714.1 717.4 3 866.4   876.5 1   y8   Y 20.9 

P29622 KAIN WADLSGITK 495.8 499.8 2 733.4   741.4 1   y7   Y 16.4 
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P06732 KCRM ELFDPIISDR 602.8 607.8 2 350.7   355.7 2   y6   Y 19.7 

O75037 KI21B AQEQGVAGPEFK 630.8 634.8 2 294.2 648.3 302.2 1 1 y2 y6 Y 20.6 

P03952 KLKB1 FGCFLK 386.2 390.2 2 624.3   632.3 1   y5   Y 13 

P03952 KLKB1 IAYGTQGSSGYSLR 730.4 735.4 2 826.4   836.4 1   y8   Y 23.6 

P03952 KLKB1 LCNTGDNSVCTTK 735.3 739.3 2 509.2   517.3 1   y4   Y 23.8 

P03952 KLKB1 LVGITSWGEGCAR 703.3 708.4 2 1023.4   1033.4 1   y9   Y 22.8 

P03952 KLKB1 VNIPLVTNEECQK 772.4 776.4 2 214.1 908.4 214.1 1 1 b2 y7 Y 24.9 

P01042 KNG1 AATGECTATVGK 583.3 587.3 2 204.1 736.4 212.1 1 1 y2 y7 Y 19.1 

P01042 KNG1 ENFLFLTPDCK 692.3 696.3 2 880.4   888.4 1   y7   Y 22.5 

P01042 KNG1 QVVAGLNFR 502.3 507.3 2 677.4   687.4 1   y6   Y 16.6 

P01042 KNG1 TVGSDTFYSFK 626.3 630.3 2 173.1   173.1 2   b4   Y 20.4 

P01042 KNG1 YNSQNQSNNQFVLYR 625.6 629 3 697.4   707.4 1   y5   Y 17.7 

P05455 LA IGCLLK 352.2 356.2 2 590.3   598.3 1   y5   Y 11.9 

P11279 LAMP1 ALQATVGNSYK 576.3 580.3 2 839.4   847.4 1   y8   Y 18.9 

P13473 LAMP2 IPLNDLFR 494.3 499.3 2 777.4   787.4 1   y6   Y 16.3 

P18428 LBP GLQYAAQEGLLALQSELLR 691.7 695.1 3 617.4   627.4 1   y5   Y 20.1 

P18428 LBP ITLPDFTGDLR 624.3 629.3 2 215.1 460.3 215.1 1 1 b2 y4 Y 20.4 

P18428 LBP LAEGFPLPLLK 599.4 603.4 2 680.5   688.5 1   y6   Y 19.6 

P18428 LBP VQLYDLGLQIHK 476.3 478.9 3 228.1 695.4 228.1 1 1 b2 y6 Y 12.3 

P04180 LCAT LAGYLHTLVQNLVNNGYVR 715.4 718.7 3 821.4   831.4 1   y7   Y 21 

P04180 LCAT SSGLVSNAPGVQIR 692.9 697.9 2 669.4   679.4 1   y6   Y 22.5 

P04180 LCAT STELCGLWQGR 653.8 658.8 2 876.4   886.4 1   y7   Y 21.3 

P04180 LCAT TYSVEYLDSSK 646.3 650.3 2 1027.5   1035.5 1   y9   Y 21 

P07195 LDHB IVVVTAGVR 457.3 462.3 2 701.4   711.4 1   y7   Y 15.2 

P07195 LDHB SADTLWDIQK 588.8 592.8 2 689.4   697.4 1   y5   Y 19.3 

P51884 LUM FNALQYLR 512.8 517.8 2 763.4   773.5 1   y6   Y 16.9 

P51884 LUM ILGPLSYSK 489.3 493.3 2 751.4   759.4 1   y7   Y 16.2 

P51884 LUM ISNIPDEYFK 613.3 617.3 2 798.4   806.4 1   y6   Y 20 

P51884 LUM LPSGLPVSLLTLYLDNNK 653 655.7 3 766.4   774.4 1   y6   Y 18.7 

P51884 LUM NIPTVNENLENYYLEVNQLEK 1268.6 1272.6 2 631.3   639.4 1   y5   Y 40.3 

P51884 LUM SLEDLQLTHNK 433.2 435.9 3 201.1 612.3 201.1 1 1 b2 y5 Y 10.8 

P14151 LYAM1 AEIEYLEK 497.8 501.8 2 794.4   802.4 1   y6   Y 16.4 

Q86UE4 LYRIC WNSVSPASAGK 552.3 556.3 2 803.4   811.4 1   y9   Y 18.1 

P61626 LYSC STDYGIFQINSR 700.8 705.8 2 764.4   774.4 1   y6   Y 22.7 

P61626 LYSC WESGYNTR 506.7 511.7 2 697.3   707.3 1   y6   Y 16.7 

P11226 MBL2 FQASVATPR 488.8 493.8 2 701.4   711.4 1   y7   Y 16.2 
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P11226 MBL2 TEGQFVDLTGNR 668.8 673.8 2 231.1 774.4 231.1 1 1 b2 y7 Y 21.7 

P11226 MBL2 WLTFSLGK 476.3 480.3 2 765.5   773.5 1   y7   Y 15.8 

O43772 MCAT EGITGLYR 454.7 459.7 2 609.3   619.3 1   y5   Y 15.1 

Q16674 MIA GQVVYVFSK 513.8 517.8 2 186.1 480.3 186.1 1 1 b2 y4 Y 16.9 

P43246 MSH2 DIYQDLNR 518.8 523.8 2 808.4   818.4 1   y6   Y 17.1 

P61916 NPC2 SEYPSIK 412.2 416.2 2 607.3   615.4 1   y5   Y 13.8 

Q13093 PAFA ASLAFLQK 439.3 443.3 2 606.4   614.4 1   y5   Y 14.6 

P36955 PEDF ALYYDLISSPDIHGTYK 652.7 655.3 3 185.1 468.2 185.1 1 1 b2 y4 Y 18.7 

P36955 PEDF ELLDTVTAPQK 607.8 611.8 2 859.5   867.5 1   y8   Y 19.8 

P36955 PEDF LQSLFDSPDFSK 692.3 696.4 2 242.1 942.4 242.1 1 1 b2 y8 Y 22.5 

P36955 PEDF VLTGNPR 378.7 383.7 2 544.3   554.3 1   y5   Y 12.7 

P36955 PEDF YGLDSDLSCK 579.3 583.3 2 824.3   832.4 1   y7   Y 19 

P05164 PERM VFFASWR 456.7 461.7 2 666.3   676.3 1   y5   Y 15.2 

P05164 PERM VVLEGGIDPILR 640.9 645.9 2 840.5   850.5 1   y8   Y 20.9 

P09619 PGFRB LPGFHGLR 448.8 453.8 2 392.2   397.2 2   y7   Y 14.9 

Q96PD5 PGRP2 DGSPDVTTADIGANTPDATK 973.5 977.5 2 874.4   882.4 1   y9   Y 31.2 

Q96PD5 PGRP2 EFTEAFLGCPAIHPR 872.9 877.9 2 907.5   917.5 1   y8   Y 28.1 

Q96PD5 PGRP2 TDCPGDALFDLLR 746.9 751.9 2 1116.6   1126.6 1   y10   Y 24.2 

Q96PD5 PGRP2 TFTLLDPK 467.8 471.8 2 244.2 686.4 252.2 1 1 y2 y6 Y 15.5 

P80108 PHLD FGSSLITVR 490.3 495.3 2 205.1 775.5 205.1 1 1 b2 y7 Y 16.2 

P80108 PHLD HVSSPLASYFLSFPYAR 648 651.3 3 740.4   750.4 1   y6   Y 18.5 

P80108 PHLD IADVTSGLIGGEDGR 730.4 735.4 2 590.3   600.3 1   y6   Y 23.6 

P80108 PHLD NQVVIAAGR 464.3 469.3 2 586.4   596.4 1   y6   Y 15.4 

P80108 PHLD SWITPCPEEK 623.8 627.8 2 274.1 759.3 274.1 1 1 b2 y6 Y 20.3 

P80108 PHLD TLLLVGSPTWK 607.9 611.9 2 215.1 774.4 215.1 1 1 b2 y7 Y 19.8 

Q6UXB8 PI16 WDEELAAFAK 590.3 594.3 2 878.5   886.5 1   y8   Y 19.3 

P02776 PLF4 ICLDLQAPLYK 667.4 671.4 2 274.1 832.5 274.1 1 1 b2 y7 Y 21.7 

P00747 PLMN EAQLPVIENK 570.8 574.8 2 699.4   707.4 1   y6   Y 18.7 

P00747 PLMN LSSPAVITDK 515.8 519.8 2 743.4   751.4 1   y7   Y 17 

P00747 PLMN NPDGDVGGPWCYTTNPR 953.4 958.4 2 499.2   499.2 1   b5   Y 30.6 

P00747 PLMN VIPACLPSPNYVVADR 886 891 2 1117.6   1127.6 1   y10   Y 28.5 

P00747 PLMN WEYCNLK 506.7 510.7 2 697.3   705.3 1   y5   Y 16.7 

P00747 PLMN YEFLNGR 449.7 454.7 2 606.3   616.3 1   y5   Y 14.9 

P55058 PLTP ATYFGSIVLLSPAVIDSPLK 1046.1 1050.1 2 1026.6   1034.6 1   y10   Y 33.4 

P55058 PLTP AVEPQLQEEER 664.3 669.3 2 514.8   519.8 2   y8   Y 21.6 

P55058 PLTP FLEQELETITIPDLR 606.3 609.7 3 500.3   510.3 1   y4   Y 17 
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P55058 PLTP TGLELSR 388.2 393.2 2 504.3   514.3 1   y4   Y 13 

P27169 PON1 IFFYDSENPPASEVLR 942.5 947.5 2 868.5   878.5 1   y8   Y 30.2 

P27169 PON1 IHVYEK 394.7 398.7 2 338.2   342.2 2   y5   Y 13.2 

P27169 PON1 IQNILTEEPK 592.8 596.8 2 242.1 716.4 242.1 1 1 b2 y6 Y 19.4 

P27169 PON1 SFNPNSPGK 474.2 478.2 2 599.3   607.3 1   y6   Y 15.7 

P27169 PON1 STVELFK 412.2 416.2 2 635.4   643.4 1   y5   Y 13.8 

P27169 PON1 VVAEGFDFANGINISPDGK 975.5 979.5 2 503.2   511.3 1   y5   Y 31.2 

P32119 PRDX2 TDEGIAYR 462.7 467.7 2 217.1 579.3 217.1 1 1 b2 y5 Y 15.3 

P04070 PROC DTEDQEDQVDPR 723.8 728.8 2 272.2 858.4 282.2 1 1 y2 y7 Y 23.4 

P04070 PROC GDSPWQVVLLDSK 722.4 726.4 2 592.8   596.8 2   y10   Y 23.4 

P04070 PROC TFVLNFIK 491.3 495.3 2 733.5   741.5 1   y6   Y 16.2 

P07737 PROF1 STGGAPTFNVTVTK 690.4 694.4 2 1006.6   1014.6 1   y9   Y 22.4 

P07225 PROS FSAEFDFR 509.7 514.7 2 784.4   794.4 1   y6   Y 16.8 

P07225 PROS HCLVTVEK 493.3 497.3 2 848.5   856.5 1   y7   Y 16.3 

P07225 PROS NNLELSTPLK 564.8 568.8 2 787.5   795.5 1   y7   Y 18.5 

P07225 PROS QSTNAYPDLR 582.8 587.8 2 500.3   510.3 1   y4   Y 19.1 

P07225 PROS SCEVVSVCLPLNLDTK 917.5 921.5 2 800.5   808.5 1   y7   Y 29.4 

P07225 PROS SFQTGLFTAAR 599.8 604.8 2 836.5   846.5 1   y8   Y 19.6 

P07225 PROS VYFAGFPR 478.8 483.8 2 694.4   704.4 1   y6   Y 15.8 

P20742 PZP ASPAFLASQNTK 617.8 621.8 2 648.3   656.3 1   y6   Y 20.2 

P20742 PZP GSFALSFPVESDVAPIAR 932 937 2 1153.6   1163.6 1   y11   Y 29.9 

P20742 PZP HQDGSYSTFGER 461.9 465.2 3 508.3   518.3 1   y4   Y 11.8 

P20742 PZP IQHPFTVEEFVLPK 562 564.6 3 244.2 732.4 252.2 1 1 y2 y6 Y 15.4 

P20742 PZP LPSNVVK 378.7 382.7 2 322.2   326.2 2   y6   Y 12.7 

P20742 PZP NALFCLESAWNVAK 811.9 815.9 2 299.2   299.2 1   b3   Y 26.2 

P00797 RENI LFDASDSSSYK 610.3 614.3 2 959.4   967.4 1   y9   Y 19.9 

P02753 RET4 LIVHNGYCDGR 652.3 657.3 2 489.7   494.7 2   y8   Y 21.2 

P02753 RET4 LLNLDGTCADSYSFVFSR 689 692.3 3 742.4   752.4 1   y6   Y 20 

P02753 RET4 QEELCLAR 509.8 514.8 2 519.3   529.3 1   y4   Y 16.8 

P02753 RET4 YWGVASFLQK 599.8 603.8 2 849.5   857.5 1   y8   Y 19.6 

P06702 S10A9 LGHPDTLNQGEFK 485.9 488.6 3 621.3   621.3 1   b6   Y 12.7 

P0DJI8 SAA1 FFGHGAEDSLADQAANEWGR 726.7 730 3 732.3   742.4 1   y6   Y 21.4 

P02743 SAMP AYSLFSYNTQGR 703.8 708.8 2 825.4   835.4 1   y7   Y 22.8 

P02743 SAMP DNELLVYK 497.3 501.3 2 522.3   530.3 1   y4   Y 16.4 

P02743 SAMP IVLGQEQDSYGGK 697.4 701.4 2 1068.5   1076.5 1   y10   Y 22.6 

P02743 SAMP QGYFVEAQPK 583.8 587.8 2 572.3   580.3 1   y5   Y 19.1 
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P02743 SAMP VFVFPR 382.7 387.7 2 518.3   528.3 1   y4   Y 12.9 

P02743 SAMP VGEYSLYIGR 578.8 583.8 2 871.5   881.5 1   y7   Y 18.9 

Q9BYB0 SHAN3 FEDHEIEGAHLPALTK 603 605.6 3 529.3   537.3 1   y5   Y 16.9 

P04278 SHBG DIPQPHAEPWAFSLDLGLK 712 714.7 3 892.5   900.5 1   y8   Y 20.8 

P04278 SHBG IALGGLLFPASNLR 721.4 726.4 2 804.4   814.4 1   y7   Y 23.4 

P04278 SHBG LPLVPALDGCLR 662.4 667.4 2 901.5   911.5 1   y8   Y 21.5 

P04278 SHBG TSSSFEVR 456.7 461.7 2 724.4   734.4 1   y6   Y 15.2 

P04278 SHBG VVLSQGSK 409.2 413.2 2 619.3   627.4 1   y6   Y 13.7 

Q13103 SPP24 DYYVSTAVCR 617.3 622.3 2 693.3   703.3 1   y6   Y 20.1 

P22105 TENX LQGLIPGAR 462.8 467.8 2 683.4   693.4 1   y7   Y 15.3 

P05452 TETN CFLAFTQTK 558.3 562.3 2 695.4   703.4 1   y6   Y 18.3 

P05452 TETN EQQALQTVCLK 659.3 663.4 2 748.4   756.4 1   y6   Y 21.4 

P05452 TETN LDTLAQEVALLK 657.4 661.4 2 871.5   879.5 1   y8   Y 21.4 

P05452 TETN TENCAVLSGAANGK 696.3 700.3 2 717.4   725.4 1   y8   Y 22.6 

P05452 TETN TFHEASEDCISR 484.5 487.9 3 375.2   385.2 1   y3   Y 12.6 

P05543 THBG AQWANPFDPSK 630.8 634.8 2 200.1 446.2 200.1 1 1 b2 y4 Y 20.6 

P05543 THBG FLNDVK 368.2 372.2 2 475.3   483.3 1   y4   Y 12.4 

P05543 THBG GWVDLFVPK 530.8 534.8 2 244.1 718.4 244.1 1 1 b2 y6 Y 17.5 

P05543 THBG NALALFVLPK 543.3 547.3 2 787.5   795.5 1   y7   Y 17.8 

P05543 THBG SILFLGK 389.2 393.3 2 577.4   585.4 1   y5   Y 13.1 

P00734 THRB ELLESYIDGR 597.8 602.8 2 710.3   720.4 1   y6   Y 19.5 

P00734 THRB HQDFNSAVQLVENFCR 655.3 658.6 3 824.4   834.4 1   y6   Y 18.8 

P00734 THRB LAVTTHGLPCLAWASAQAK 665.7 668.4 3 832.4   840.4 1   y8   Y 19.2 

P00734 THRB NPDSSTTGPWCYTTDPTVR 1078 1083 2 472.3   482.3 1   y4   Y 34.4 

P00734 THRB VTGWGNLK 437.7 441.7 2 674.4   682.4 1   y6   Y 14.6 

P00734 THRB YTACETAR 486.2 491.2 2 707.3   717.3 1   y6   Y 16.1 

P25942 TNR5 YCDPNLGLR 554.3 559.3 2 669.4   679.4 1   y6   Y 18.2 

P02787 TRFE ASYLDCIR 499.2 504.2 2 563.3   573.3 1   y4   Y 16.5 

P02787 TRFE CSTSSLLEACTFR 766.3 771.4 2 783.3   793.4 1   y6   Y 24.8 

P02787 TRFE FDEFFSEGCAPGSK 526.6 529.2 3 676.3   684.3 1   y7   Y 14.2 

P02787 TRFE HQTVPQNTGGK 389.5 392.2 3 351.2   355.2 2   y7   Y 9.2 

P02787 TRFE IECVSAETTEDCIAK 863.4 867.4 2 742.3   746.3 2   y13   Y 27.8 

P02787 TRFE SAGWNIPIGLLYCDLPEPR 724.4 727.7 3 498.3   508.3 1   y4   Y 21.3 

P02787 TRFE SASDLTWDNLK 417.2 419.9 3 675.3   683.4 1   y5   Y 10.2 

P02788 TRFL CSTSPLLEACEFLR 561.6 564.9 3 795.4   805.4 1   y6   Y 15.4 

P02766 TTHY AADDTWEPFASGK 697.8 701.8 2 606.3   614.3 1   y6   Y 22.6 
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P02766 TTHY GSPAINVAVHVFR 456.3 459.6 3 558.3   568.3 1   y4   Y 11.6 

P02766 TTHY VLDAVR 336.7 341.7 2 460.3   470.3 1   y4   Y 11.4 

P07911 UROM SGSVIDQSR 474.7 479.7 2 618.3   628.3 1   y5   Y 15.7 

P07911 UROM VLNLGPITR 491.8 496.8 2 770.5   780.5 1   y7   Y 16.2 

Q86UX7 URP2 VVLAGGVAPALFR 635.4 640.4 2 887.5   897.5 1   y9   Y 20.7 

Q6EMK4 VASN LAGLGLQQLDEGLFSR 573 576.3 3 823.4   833.4 1   y7   Y 15.8 

Q6EMK4 VASN SLTLGIEPVSPTSLR 785.4 790.5 2 856.5   866.5 1   y8   Y 25.3 

Q6EMK4 VASN YLQGSSVQLR 575.8 580.8 2 746.4   756.4 1   y7   Y 18.9 

P35916 VGFR3 SGVDLADSNQK 567.3 571.3 2 662.3   670.3 1   y6   Y 18.6 

P18206 VINC QVATALQNLQTK 657.9 661.9 2 844.5   852.5 1   y7   Y 21.4 

P02774 VTDB FEDCCQEK 558.2 562.2 2 839.3   847.3 1   y6   Y 18.3 

P02774 VTDB HLSLLTTLSNR 418.9 422.2 3 590.3   600.3 1   y5   Y 10.3 

P02774 VTDB THLPEVFLSK 585.8 589.8 2 239.1 819.5 239.1 1 1 b2 y7 Y 19.2 

P02774 VTDB VCSQYAAYGEK 638.3 642.3 2 1016.5   1024.5 1   y9   Y 20.8 

P02774 VTDB YTFELSR 458.2 463.2 2 651.3   661.4 1   y5   Y 15.2 

P04004 VTNC CTEGFNVDK 535.2 539.2 2 808.4   816.4 1   y7   Y 17.6 

P04004 VTNC DVWGIEGPIDAAFTR 823.9 828.9 2 458.2   458.2 1   b4   Y 26.5 

P04004 VTNC FEDGVLDPDYPR 711.8 716.8 2 647.3   657.3 1   y5   Y 23.1 

P04004 VTNC GSQYWR 398.7 403.7 2 524.3   534.3 1   y3   Y 13.4 

P04004 VTNC VDTVDPPYPR 579.8 584.8 2 629.3   639.3 1   y5   Y 19 

P04275 VWF CHPLVDPEPFVALCEK 637.6 640.3 3 722.3   722.3 1   b6   Y 18.2 

P04275 VWF VTVFPIGIGDR 587.3 592.3 2 727.4   737.4 1   y7   Y 19.2 

P25311 ZA2G AGEVQEPELR 564.3 569.3 2 771.4   781.4 1   y6   Y 18.5 

P25311 ZA2G AYLEEECPATLR 726.3 731.3 2 235.1 846.4 235.1 1 1 b2 y7 Y 23.5 

P25311 ZA2G CLAYDFYPGK 617.3 621.3 2 301.2   309.2 1   y3   Y 20.1 

P25311 ZA2G QDPPSVVVTSHQAPGEK 592.6 595.3 3 766.9   770.9 2   y15   Y 16.5 

P25311 ZA2G SSGAFWK 391.7 395.7 2 608.3   616.3 1   y5   Y 13.1 

P25311 ZA2G YSLTYIYTGLSK 704.9 708.9 2 781.4   789.5 1   y7   Y 22.9 

a UniProt accession number, protein ID, and information pertaining to mass spectra are listed for each peptide. 

b For quantifiers (product ions) that are less than 300 m/z, additional quantifiers (>300 m/z) and their corresponding ion charge and type are listed. 

c All product ions are specified as quantifiers. Y, yes. 

 

 

 

 



97 

4.2. Plasma sample preparation 

 Plasma samples were thawed on ice and centrifuged at 10,000 g for 10 min at 4°C. 

Supernatants were transferred to fresh tubes and vortexed. For each sample, a volume of 44 μl 

was diluted 1:4 with MARS buffer A (Agilent Technologies, Santa Clara, CA, USA) and passed 

through 0.22 µm Spin-X filters (Corning Costar, NY, USA). A volume of 176 μl of buffer A was 

added to each sample, and each diluted sample was centrifuged through a 0.22 μm filter (12,000 

g, room temperature). Each plasma sample was depleted of 6 high-abundance human plasma 

proteins—albumin, IgG, IgA, transferrin, haptoglobin, and antitrypsin—using a multiple affinity 

removal system (MARS) column (Hu-6HC, 4.6 × 100 mm, Agilent Technologies, Santa Clara, 

CA, USA), loaded onto a high-performance liquid chromatography (HPLC) system (Shimadzu 

Co, Kyoto, Japan). A total of 200 μl was injected for each sample. Depleted plasma samples were 

concentrated by centrifugal filtration for 6 hours at 4°C using a 3000-Da molecular weight cutoff 

(MWCO) filter (Amicon Ultra-4 3K, Millipore, Burlington, MA, USA). Concentrated proteins of 

plasma samples were quantified by bicinchoninic acid assay (BCA assay) using the Pierce™ BCA 

Protein Assay Kit (Thermo Scientific, Rockford, IL, USA). BCA assay was performed to measure 

the concentration of individual samples. A 6-point standard curve was generated by serially 

diluting an initial concentration of 2 mg/mL BSA by a factor of 2. Standards and samples were 

placed on a 96-well plate, and a mixture of copper solution and BCA solution (1:50) was added. 

The proteins were digested using RapiGest surfactant and trypsin. A total of 40 μl solution of 0.2% 

RapiGest, 20 mM dithiothreitol (DTT), and 100 mM ABC buffer, pH 8.0 was added to the 40-μl 

plasma samples, adjusted with HPLC-grade water for a 100-μg digestion. After 1 hour in 60°C, 

20 μl 100 mM iodoacetamide (IAA) was added. The samples were incubated in the dark for 30 

min at room temperature. Following the incubation, the samples were incubated for 4 hours at 

37°C after adding trypsin (Sequencing-grade modified, Promega, Madison, WI, USA), dissolved 

in 50 mM ABC, pH 8.0. Then, 10% formic acid was added to the samples to stop the enzymatic 

reaction (final concentration of formic acid: 1%), followed by incubation for 30 min at 37° to 

hydrolyze RapiGest surfactant in the acidified condition of the samples. After centrifugation at 



98 

15,000 rpm at 4°C for 1 hour, the precipitation of cleaved RapiGest surfactant was observed. 

Then, the supernatant without the precipitation was transferred to a new clean tube. The plasma 

peptide samples (the transferred supernatant for each sample) were spiked with crude stable 

isotope-labeled internal standard (SIS) peptide, with a C-terminal lysine or arginine heavy-

isotope-labeled (13C615N2 or 13C615N4) [purity: crude (>70%), JPT, Berlin, Germany]. 

However, in this study, SIS peptide should have been added as early as possible after the 

enzymatic reaction in order to correct for any variability in the MS runs as well as any variation 

associated with sample preparation after the digestion step. The samples were randomly 

distributed in blocked batches and labeled with identification numbers to blind the researchers 

throughout the sample preparation. 

 

4.3. LC-MRM-MS analysis 

In this study, 671 peptides, representing 210 proteins (Supplementary Table 1), were 

analyzed by targeted multiple reaction monitoring-mass spectrometry (MRM-MS) analysis. 

MRM-MS analysis was performed on an Agilent 6490 triple quadrupole (QQQ) mass 

spectrometer (Agilent Technologies, Santa Clara, CA, USA), equipped with a Jetstream 

electrospray source that was coupled to a 1260 Infinity HPLC system (Agilent Technologies, 

Santa Clara, CA, USA). Solvents A and B for the HPLC consisted of 0.1% formic acid/water (v/v) 

and 0.1% formic acid/acetonitrile (v/v), respectively. Glass vials of the samples in the 

autosampler were maintained at 4°C. A total of 40 μl of digested sample was injected into a guard 

column (2.1 × 15.0 mm, 1.8 µm, 80 Å) (Agilent Technologies, Santa Clara, CA, USA). Online 

desalting was conducted with the effluent toward waste at 50 μl/min for 10 min in 3% solvent B, 

consisting of 0.1% formic acid/acetonitrile (v/v), at 40°C. After the position of valve was 

switched, the desalted sample was transferred from the guard column to the analytical column 

(0.5 × 35.0 mm, 3.5 µm, 80 Å) (Agilent Technologies, Santa Clara, CA, USA) in 3% solvent B, 

at a flow rate of 40 µL/min for 5 min. The analytical column was heated and maintained at 40°C 

by an oven. 
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The total run time per LC-MRM-MS analysis was 70 min. Approximately 10 μg of 

digested peptides was injected per LC-MRM-MS run. The peptides were separated on the column 

and eluted with a linear gradient of 3% to 35% acetonitrile (ACN) with 0.1% formic acid (FA) 

for 50 min at 40 µL/min. The mass spectra were generated in positive ion mode, based on the 

following parameters; 2500 V for the ion spray capillary voltage, 2000 V for the nozzle voltage, 

5 V for the cell accelerator voltage, 200 V for the delta EMV, and 380 V for the fragmented 

voltage. The drying gas was sprayed at 15 L/min at 250°C, and the sheath gas flow was 12 L/min 

at 350°C. Collision energy (CE) was optimized by adding the intensities of individual transitions 

that resulted in the largest peak area. The default value of CE was calculated as follows: CE = 

0.031 × (m/z of precursor) + 1 for double-charged precursor ions and CE = 0.036 × (m/z of 

precursor) – 4.8 for triple-charged ions. Five additional steps of adding or subtracting 2 V on each 

side of the default value of CE were predicted.  

Five to 10 transition pairs (Q1 and Q3) were selected for each peptides. Subsequently, 

1 representative transition for each peptide was determined by rank of intensity of transition and 

AuDIT [138]. All 671 SIS peptides, representing 210 proteins, were pooled and analyzed to check 

their retention time (RT). The RTs of the SIS peptides were compared with those of endogenous 

target peptides by spiking 100 fmol of the pooled mixture of SIS peptides. Subsequently, the final 

targets—210 proteins/671 peptides/671 transitions—were quantified in 270 individual blood 

samples, comprising 90 MDD, 90 BD, and 90 HCs. The 270 individual samples were randomly 

listed in blocked batches with an identification number for each sample. Subsequently, the LC-

MRM-MS analysis was performed once per sample (1 replicate for each sample). A total of 270 

LC-MRM-MS runs were performed. 

 

4.4. Analysis of demographics and clinical variables of study subjects 

Demographics and clinical differences between patient groups and HCs were analyzed 

by an unpaired Student’s T-test for continuous variables and Fisher’s exact test for dichotomous 
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variables using SPSS, version 25.0 (IBM, Armonk, NY, USA). Statistical tests performed were 

two-tailed and P-value < 0.05 was considered statistically significant. 

 

5. LC-MRM-MS data processing 

The raw LC-MRM-MS data were processed using Skyline, version 19.1.0 (MacCoss 

Lab, Seattle, WA, USA). The quantification of each target was based on the peak area value of 

endogenous (light) and SIS (heavy) peptide transitions. Peak integrations were performed for a 

single representative transition for each respective peptide. Peak area ratio (PAR)—the 

light/heavy (L/H) ratio—was calculated for each target. This process, known as ratio 

normalization, was used to address any technical variation that occurred across MS runs. The 

ComBat algorithm—a nonparametric adjustment for reducing batch effects using an 

empirical Bayes framework—was used to counteract potential batch effects due to technical 

variabilities, such as sample collection, between institutions. PAR values were inserted into a 

web-based public server (https://genepattern.broadinstitute.org). 

Then, all PAR values were log2-transformed to develop the model. There were no 

peptides with missing values. All LC-MRM-MS data for the 90 MDD and 90 BD patients were 

designated as the combined set. Subsequently, through the R package caret, the LC-MRM-MS 

data of the combined set were divided randomly at a ratio of 8:2 to determine the training set for 

development of the model and a test set for evaluation of its performance. 

 

6. Selection of candidate features for development of the model 

Regarding the LC-MRM-MS data for MDD and BD patients in the training set, area 

under the receiver operating characteristics (AUROC) analysis (for two groups) was performed 

to determine 1 representative peptide per protein, with the highest AUROC value, among 671 

quantifiable peptides, using SPSS, version 25.0 (IBM, Armonk, NY, USA). In this analysis, the 
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MDD and BD groups were labeled “0” and “1” to indicate binary variables, respectively. Peptides 

with AUROC values greater than 0.5 could discriminate more elaborately BD group compared 

with MDD. Conversely, peptides with AUROC values below 0.5 could distinguish MDD group 

more precisely versus BD. For example, an AUROC value of 0.7 indicates that the BD group can 

be classified as the BD group itself, with a probability of 70%. In contrast, an AUROC value of 

0.3 signifies that the MDD group can be categorized as MDD itself, with a probability of 70%, 

equivalent to an AUROC value of 0.7 (1-0.3) when the BD and MDD groups are designated 0 

and 1, respectively. Thus, if the AUROC values of the peptides per protein are 0.3, 0.4, 0.5, and 

0.6, respectively, the peptide with an AUROC value of 0.3 will be selected as the representative 

peptide per protein. The selected candidate features (210 proteins/210 peptides) by the AUROC 

analysis are presented in Table 2.  
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Table 2. The 210 proteins (210 peptides) selected as candidate features in the training seta  

Uniprot accession 

number 
Protein Peptide 

AUROC valueb       (MDD vs 

BD) 

P02763 A1AG1 SDVVYTDWK 0.426 

P19652 A1AG2 EQLGEFYEALDCLCIPR 0.467 

P04217 A1BG CEGPIPDVTFELLR 0.564 

P08697 A2AP QEDDLANINQWVK 0.557 

P01023 A2MG VYDYYETDEFAIAEYNAPCSK 0.55 

Q15848 ADIPO GDIGETGVPGAEGPR 0.521 

P43652 AFAM HFQNLGK 0.402 

P02768 ALBU LVNEVTEFAK 0.509 

P04075 ALDOA ALQASALK 0.386 

P35858 ALS LHSLHLEGSCLGR 0.461 

P02760 AMBP CVLFPYGGCQGNGNK 0.6 

P15144 AMPN AQIINDAFNLASAHK 0.39 

P54802 ANAG DFCGCHVAWSGSQLR 0.49 

P01019 ANGT LQAILGVPWK 0.425 

P01008 ANT3 VWELSK 0.442 

P08519 APOA NPDAVAAPYCYTR 0.577 

P02647 APOA1 QGLLPVLESFK 0.416 

P02652 APOA2 SPELQAEAK 0.406 

P06727 APOA4 GNTEGLQK 0.564 

P04114 APOB ITLPDFR 0.441 

P02655 APOC2 ESLSSYWESAK 0.444 

P02656 APOC3 DYWSTVK 0.405 

P05090 APOD VLNQELR 0.399 

P02649 APOE EQVAEVR 0.453 

Q13790 APOF SLPTEDCENEK 0.473 

P02749 APOH ATVVYQGER 0.441 

O14791 APOL1 LNILNNNYK 0.555 

O95445 APOM FLLYNR 0.39 

P00966 ASSY IDIVENR 0.487 

Q76LX8 ATS13 LFINVAPHAR 0.542 

P61769 B2MG VNHVTLSQPK 0.573 

P02730 B3AT LSVPDGFK 0.432 

Q8TDL5 BPIB1 ALGFEAAESSLTK 0.496 
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P43251 BTD VDLITFDTPFAGR 0.476 

Q06187 BTK LVQLYGVCTK 0.417 

P02745 C1QA SLGFCDTTNK 0.568 

P02746 C1QB LEQGENVFLQATDK 0.629 

P02747 C1QC QTHQPPAPNSLIR 0.619 

P00736 C1R NIGEFCGK 0.527 

Q9NZP8 C1RL GSEAINAPGDNPAK 0.564 

P09871 C1S CEYQIR 0.604 

P04003 C4BPA LSCSYSHWSAPAPQCK 0.596 

P54289 CA2D1 VLLDAGFTNELVQNYWSK 0.514 

P00915 CAH1 GGPFSDSYR 0.486 

P00918 CAH2 YGDFGK 0.454 

P27797 CALR FVLSSGK 0.411 

P08185 CBG HLVALSPK 0.498 

P22681 CBL GTEPIVVDPFDPR 0.461 

Q96IY4 CBPB2 YPLYVLK 0.433 

P15169 CBPN VQNECPGITR 0.538 

P30279 CCND2 ACQEQIEAVLLNSLQQYR 0.445 

P08571 CD14 VLDLSCNR 0.574 

O43866 CD5L CYGPGVGR 0.619 

P06731 CEAM5 TLTLFNVTR 0.481 

P00450 CERU EYTDASFTNR 0.393 

P00751 CFAB VSEADSSNADWVTK 0.454 

P08603 CFAH CVEISCK 0.576 

P05156 CFAI EANVACLDLGFQQGADTQR 0.53 

P06276 CHLE AEEILSR 0.525 

P10909 CLUS EIQNAVNGVK 0.521 

Q96KN2 CNDP1 AIHLDLEEYR 0.46 

P02452 CO1A1 VLCDDVICDETK 0.518 

P06681 CO2 HAFILQDTK 0.458 

P01024 CO3 DSCVGSLVVK 0.556 

P0C0L4 CO4A ANSFLGEK 0.468 

P08572 CO4A2 IAVQPGTVGPQGR 0.55 

P01031 CO5 IDTALIK 0.427 

P13671 CO6 GFVVAGPSR 0.57 

P10643 CO7 VLFYVDSEK 0.545 

P07357 CO8A AIDEDCSQYEPIPGSQK 0.474 
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P07358 CO8B CEGFVCAQTGR 0.572 

P07360 CO8G AGQLSVK 0.503 

P02748 CO9 TSNFNAAISLK 0.586 

Q03692 COAA1 GTHVWVGLYK 0.41 

Q9UMD9 COHA1 QAAYNADSGLK 0.482 

P49747 COMP DTDLDGFPDEK 0.524 

P20815 CP3A5 DTINFLSK 0.516 

P22792 CPN2 QLVCPVTR 0.536 

P02741 CRP ESDTSYVSLK 0.491 

P02775 CXCL7 NIQSLEVIGK 0.359 

P01034 CYTC ALDFAVGEYNK 0.474 

O95822 DCMC LCAWYLYGEK 0.455 

P09172 DOPO VISTLEEPTPQCPTSQGR 0.577 

Q14126 DSG2 ILDVNDNIPVVENK 0.448 

P32926 DSG3 LAEISLGVDGEGK 0.328 

Q16610 ECM1 FCEAEFSVK 0.605 

P00533 EGFR CNLLEGEPR 0.52 

Q01780 EXOSX SGPLPSAER 0.572 

P00488 F13A STVLTIPEIIIK 0.427 

P05160 F13B VLHGDLIDFVCK 0.537 

P00742 FA10 QEDACQGDSGGPHVTR 0.593 

P03951 FA11 SCALSNLACIR 0.572 

P00748 FA12 CFEPQLLR 0.547 

P12259 FA5 GEYEEHLGILGPIIR 0.574 

P08709 FA7 LHQPVVLTDHVVPLCLPER 0.515 

P00740 FA9 NCELDVTCNIK 0.563 

P23142 FBLN1 CVDVDECAPPAEPCGK 0.646 

Q12805 FBLN3 NPCQDPYILTPENR 0.553 

P35556 FBN2 FNLSHLGSK 0.516 

P22087 FBRL NGGHFVISIK 0.575 

P08637 FCG3A AVVFLEPQWYR 0.478 

Q9Y6R7 FCGBP AIGYATAADCGR 0.602 

O75636 FCN3 YGIDWASGR 0.474 

P02765 FETUA CNLLAEK 0.548 

Q9UGM5 FETUB SQASSCSLQSSDSVPVGLCK 0.443 

Q03591 FHR1 TGESAEFVCK 0.482 

Q02985 FHR3 AQTTVTCTEK 0.595 
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Q9BXR6 FHR5 TGDAVEFQCK 0.528 

P02671 FIBA VQHIQLLQK 0.46 

P02675 FIBB QGFGNVATNTDGK 0.527 

P02679 FIBG ASTPNGYDNGIIWATWK 0.465 

P02751 FINC VPGTSTSATLTGLTR 0.458 

Q06787 FMR1 EPCCWWLAK 0.439 

O95954 FTCD SDLQVAAK 0.498 

P06396 GELS QTQVSVLPEGGETPLFK 0.549 

Q92820 GGH YLESAGAR 0.487 

P22352 GPX3 NSCPPTSELLGTSDR 0.352 

Q14520 HABP2 FCEIGSDDCYVGDGYSYR 0.612 

P69905 HBA VGAHAGEYGAEALER 0.509 

P08397 HEM3 ELEHALEK 0.395 

P02790 HEMO SGAQATWTELPWPHEK 0.441 

P05546 HEP2 TLEAQLTPR 0.419 

Q04756 HGFA LEACESLTR 0.602 

P00738 HPT VGYVSGWGR 0.492 

P00739 HPTR VVLHPNYHQVDIGLIK 0.518 

P04196 HRG QIGSVYR 0.546 

P18065 IBP2 LIQGAPTIR 0.415 

P17936 IBP3 YGQPLPGYTTK 0.543 

P24593 IBP5 GVCLNEK 0.529 

P05155 IC1 LLDSLPSDTR 0.556 

P05362 ICAM1 VELAPLPSWQPVGK 0.56 

P22304 IDS QSTEQAIQLLEK 0.467 

P01344 IGF2 GIVEECCFR 0.586 

P01857 IGHG1 TPEVTCVVVDVSHEDPEVK 0.529 

P01860 IGHG3 SCDTPPPCPR 0.538 

P01871 IGHM QVGSGVTTDQVQAEAK 0.598 

P01834 IGKC DSTYSLSSTLTLSK 0.563 

P05113 IL5 ETLALLSTHR 0.443 

P06213 INSR VCHLLEGEK 0.539 

P05154 IPSP AAAATGTIFTFR 0.596 

P08514 ITA2B IVLLDVPVR 0.383 

P19827 ITIH1 GSLVQASEANLQAAQDFVR 0.404 

P19823 ITIH2 IYLQPGR 0.403 

Q06033 ITIH3 EVSFDVELPK 0.536 
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Q14624 ITIH4 NVVFVIDK 0.386 

O60674 JAK2 SDNIIFQFTK 0.535 

P35527 K1C9 TLLDIDNTR 0.453 

P04264 K2C1 SLVNLGGSK 0.404 

P13647 K2C5 ISISTSGGSFR 0.469 

P29622 KAIN GFQHLLHTLNLPGHGLETR 0.58 

P06732 KCRM ELFDPIISDR 0.455 

O75037 KI21B AQEQGVAGPEFK 0.442 

P03952 KLKB1 LVGITSWGEGCAR 0.442 

P01042 KNG1 QVVAGLNFR 0.55 

P05455 LA IGCLLK 0.402 

P11279 LAMP1 ALQATVGNSYK 0.435 

P13473 LAMP2 IPLNDLFR 0.526 

P18428 LBP GLQYAAQEGLLALQSELLR 0.554 

P04180 LCAT SSGLVSNAPGVQIR 0.607 

P07195 LDHB SADTLWDIQK 0.366 

P51884 LUM LPSGLPVSLLTLYLDNNK 0.464 

P14151 LYAM1 AEIEYLEK 0.53 

Q86UE4 LYRIC WNSVSPASAGK 0.488 

P61626 LYSC STDYGIFQINSR 0.479 

P11226 MBL2 WLTFSLGK 0.545 

O43772 MCAT EGITGLYR 0.511 

Q16674 MIA GQVVYVFSK 0.464 

P43246 MSH2 DIYQDLNR 0.478 

P61916 NPC2 SEYPSIK 0.447 

Q13093 PAFA ASLAFLQK 0.426 

P36955 PEDF ALYYDLISSPDIHGTYK 0.538 

P05164 PERM VVLEGGIDPILR 0.421 

P09619 PGFRB LPGFHGLR 0.557 

Q96PD5 PGRP2 EFTEAFLGCPAIHPR 0.527 

P80108 PHLD TLLLVGSPTWK 0.468 

Q6UXB8 PI16 WDEELAAFAK 0.562 

P02776 PLF4 ICLDLQAPLYK 0.351 

P00747 PLMN YEFLNGR 0.435 

P55058 PLTP AVEPQLQEEER 0.431 

P27169 PON1 IHVYEK 0.518 

P32119 PRDX2 TDEGIAYR 0.475 
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P04070 PROC GDSPWQVVLLDSK 0.39 

P07737 PROF1 STGGAPTFNVTVTK 0.403 

P07225 PROS VYFAGFPR 0.459 

P20742 PZP HQDGSYSTFGER 0.507 

P00797 RENI LFDASDSSSYK 0.515 

P02753 RET4 QEELCLAR 0.542 

P06702 S10A9 LGHPDTLNQGEFK 0.434 

P0DJI8 SAA1 FFGHGAEDSLADQAANEWGR 0.558 

P02743 SAMP IVLGQEQDSYGGK 0.445 

Q9BYB0 SHAN3 FEDHEIEGAHLPALTK 0.517 

P04278 SHBG TSSSFEVR 0.468 

Q13103 SPP24 DYYVSTAVCR 0.373 

P22105 TENX LQGLIPGAR 0.558 

P05452 TETN CFLAFTQTK 0.612 

P05543 THBG NALALFVLPK 0.53 

P00734 THRB VTGWGNLK 0.443 

P25942 TNR5 YCDPNLGLR 0.469 

P02787 TRFE CSTSSLLEACTFR 0.62 

P02788 TRFL CSTSPLLEACEFLR 0.498 

P02766 TTHY AADDTWEPFASGK 0.391 

P07911 UROM VLNLGPITR 0.394 

Q86UX7 URP2 VVLAGGVAPALFR 0.36 

Q6EMK4 VASN LAGLGLQQLDEGLFSR 0.556 

P35916 VGFR3 SGVDLADSNQK 0.476 

P18206 VINC QVATALQNLQTK 0.364 

P02774 VTDB YTFELSR 0.448 

P04004 VTNC CTEGFNVDK 0.616 

P04275 VWF VTVFPIGIGDR 0.447 

P25311 ZA2G CLAYDFYPGK 0.561 

a Uniprot accession number, protein ID, and AUROC value for each corresponding peptide.
 

Abbreviations: AUROC, area under the receiver operating characteristics; MDD, major 

depressive disorder; BD, bipolar disorder. 

b Because MDD and BD were labeled 0 and 1, proteins and their corresponding peptides in 

the range of AUROC values (0.5-1) indicate that they can more elaborately classify BD as 

BD itself compared with MDD (light yellow). Proteins and their corresponding peptides in 



108 

the range of AUROC values (0-0.5) signify that they can more precisely classify MDD as 

MDD itself compared with BD (light blue). The AUROC values (0-0.5) are the same as those 

(0.5-1) when BD and MDD are designated 0 and 1, respectively. 

 

7. Development of model for discriminating MDD from BD 

A total of 210 candidate features were used to develop the model. Least absolute 

shrinkage and selection operator (LASSO) was used to decrease overfitting by simultaneous 

shrinkage of the coefficients and model selection. Features with poor discriminatory power were 

excluded from the model because their coefficients converged to 0. Conversely, features with a 

non-zero coefficient were selected for the model. LASSO regression was performed using the R 

package glmnet [139]. Ten-fold crossvalidation was used to determine the optimized value of the 

shrinkage parameter, lambda, which resulted in the most standardized model.  

LASSO with ten-fold crossvalidation (100 repetitions) was applied to the training set. 

Using this method, uncertainty of the model selection was assessed by examining the fluctuation 

in model selection regarding small changes in the data that originated from the random division 

in the ten-fold crossvalidation. For each feature, the proportion of models of the 100 from which 

it was selected was calculated and defined as the proportion of feature selected, assigned a value 

from 0 to 1. The proportion of feature selected was used to examine the relative significance of 

the features. Unique models that were based on the combination of selected features were 

generated. In addition, the frequency and probability of each unique model were measured. 

Feature extraction and model averaging across all 100 models were performed to obtain a 

generalizable and reproducible model for discriminating between MDD and BD. Only features 

with a proportion of feature selected ≥ 0.9 were combined in the final model—ie, feature 

extraction. These features constituted the combined features (proteins) in the following analysis. 

Subsequently, the coefficients of the extracted features were averaged across 100 models—ie, 

model averaging, based on Akaike’s information criterion (AIC), the bias-corrected version of 
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AIC (AICc), and Akaike weight (w). These methods thoroughly referred to those of preceding 

studies [100, 105, 112]. 

 

8. Discriminatory performance of the model 

The performance of the model was evaluated by examining its AUROC value (R 

package ROCR) [140]. For this model, the AUROC value is the probability that a randomly 

chosen individual patient with major depressive disorder (MDD) is ranked higher or lower than 

one with bipolar disorder (BD). Because the MDD and BD groups were designated 0 and 1, 

respectively, AUROC values larger than 0.5 reflect probabilities that the BD group can be 

classified as BD itself compared with the MDD group. Conversely, AUROC values less than 0.5 

are probabilities that the MDD group can be categorized as MDD itself versus the BD group. In 

particular, these probabilities are the same as those for AUROC values above 0.5 when the MDD 

and BD groups are designated as 0 and 1. In the case of the model’s discriminatory performance 

between the patient groups and HCs, this is the probability that a randomly selected individual in 

each patient group is ranked higher than HC. AUROC values for the model performance were 

classified as follows: 0.5–0.6 = fail; 0.6–0.7 = poor; 0.7–0.8 = fair; 0.8–0.9 = good; 0.9–1 = 

excellent [141]. The optimal cutoff point of the model for discriminating 90 MDD and 90 BD 

patients was determined per the Youden Index, as follows: J = max (Sensitivity + Specificity – 1) 

[142]. The sensitivity, specificity, and accuracy for distinguishing 90 MDD from 90 BD patients 

were calculated at the optimal cutoff point. 

 

9. Differences in abundance of the combined features (proteins) in the model 

Differences in protein abundance were examined using SPSS, version 25.0 (IBM, Armonk, NY, 

USA). An unpaired Student’s T-test (for two groups) was performed between MDD and BD in 

the training set. One-way analysis of variance (ANOVA) (for three groups) was performed for 

the study population, consisting of 90 MDD, 90 BD, and 90 HCs. Subsequently, post hoc analysis 

for each specific comparison between the groups was performed using Tukey's honestly 
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significant difference (HSD). P-value < 0.05 was considered to be statistically significant in these 

statistical tests, which were two-tailed. 

 

10. Covariate analysis of the combined features (proteins) in the model 

Correlations between demographic/clinical variables and features in the model were 

examined by Pearson’s correlation between continuous variables and by point-biserial correlation 

between dichotomous variables. Subsequently, for features and demographic/clinical variables 

that had a mutually and statistically significant correlation, influences of covariates on the features 

were examined by a blend of analysis of variance and regression (ANCOVA) using SPSS, version 

25.0 (IBM, Armonk, NY, USA). P-value of less than 0.05 was regarded as statistical significance. 

 

11. Bioinformatics analysis of the combined features (proteins) in the model 

The top protein network with the highest score was examined by Ingenuity Pathway 

Analysis (IPA, QIAGEN, Hilden, Germany), based on the features (proteins) that were included 

in the developed model, with matched gene names [143]. Subsequently, diseases and functions 

categories and canonical pathways that were associated with the top network were examined. The 

analytical algorithms in IPA use lists of proteins to predict protein networks, diseases/functions, 

and canonical pathways. Statistical significance in this analysis was determined by Fisher’s exact 

test and P-value of less than 0.05 was thought of as statistically significant.  
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RESULTS 

 

1. Demographics and clinical characteristics 

In total, 90 patients with MDD, 90 patients with BD, and 90 HCs were included in this 

study. There was no significant difference between patient’s groups regarding demographics. 

However, compared with the BD group, MDD patients had higher MADRS and HAM-A scores 

and lower YMRS scores. The BD group had a higher proportion of AP and MS use, and MDD 

patients had a higher proportion of AD use. Whereas there was no significant difference in 

duration from first onset between MDD and BD patients, duration from first medication differed 

significantly between these groups. The statistical significance was identical after the groups were 

divided into training and test sets, with the exception of the loss of statistical significance in the 

test set for HAM-A and BZD/HNT use and duration from first medication. Comparing patient 

groups with HCs, there were significant differences in current smoking status, current exercise 

status, blood collection time, and fasting time. In addition, all clinical assessments and medication 

use differed significantly. A summary of these characteristics is presented in Table 3. 
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Table 3. Demographics and clinical characteristics of the study subjectsa 

Characteristics  N (%) or value  P-valueb  N (%) or value  P-valueb 

    
MDD 

(n=90) 

BD 

(n=90)             

HC 

(n=90) 

 
MDD  

vs BD 

MDD  

vs HC 

BD  

vs HC 

 Training set  Test set  
Training  

set 
 

Test  

set 

      
MDD  

(n=72) 

BD  

(n=72) 
 

MDD            

(n=18) 

 BD       

(n=18) 
 

MDD vs 

BD 
 

MDD vs 

BD 

                              

Gender   Male N (%) 33 (36.7%) 24 (26.7%) 33 (36.7%)  0.20 1.00 0.20  26 (36.1%) 22 (30.6%)  7 (38.9%) 7 (38.9%) 0.60  1.00 

                    

Age   Mean (s.d) 37.6 (12.9) 34.5 (12.2) 35.1 (10.6)  0.10 0.15 0.76  37.4 (12.5) 34.7 (11.6)  38.5 (16.0) 34.1 (15.5) 0.19  0.40 

                    

BMI   Mean (s.d) 23.8 (4.5) 24.3 (4.1) 23.7 (2.5)  0.43 0.88 0.25  24.2 (4.5) 24.5 (4.0)  26.3 (5.9) 25.8 (4.0) 0.69  0.80 

                    

Current smoking status  Yes N (%) 33 (36.7%) 29 (32.2%) 5 (5.6%)  0.64 < 0.001 < 0.001  26 (36.1%) 23(31.9%)  8 (44.4%) 6 (33.3%) 0.73  0.73 

                    

Current exercise status  Yes N (%) 28 (31.1%) 38 (42.2%) 67 (74.4%)  0.16 < 0.001 < 0.001  22 (30.6%) 29 (40.3%)  5 (27.8%) 8 (44.4%) 0.30  0.49 

                    

Current alcohol use  Yes N (%) 37 (41.1%) 30 (33.3%) 38 (42.2%)  0.36 1.00 0.28  31 (43.1%) 24 (33.3%)  6 (33.3%) 6 (33.3%) 0.30  1.00 

                    

Blood collection time  AM N (%) 28 (31.1%) 23 (25.6%) 42 (46.7%)  0.51 0.046 0.005  25 (34.7%) 19 (26.4%)  3 (16.7%) 4 (22.2%) 0.37  1.00 

                    

Fasting time   ≥ 8 hours N (%) 11 (12.2%) 10 (11.1%) 41 (45.6%)  1.00 < 0.001 < 0.001  11 (15.3%) 9 (12.5%)  0 (0%) 1 (5.6%) 0.81  1.00 

                    

Duration from first onset (years)   Mean (s.d) 7.0 (8.4) 7.9 (8.5) N/A  0.48 N/A N/A  7.1 (8.8) 8.4 (7.4)  8.7 (7.5) 13.7 (13.4) 0.32  0.19 

                    

Duration from first medication (years)   Mean (s.d) 3.8 (6.2) 7.4 (8.9) N/A  0.002 N/A N/A  3.4 (5.5) 6.5 (6.8)  5.5 (8.5) 10.9 (14.4) 0.003  0.18 

                       

Clinical assessments                            

 BPRS Mean (s.d.) 27.4 (4.7) 28.3 (5.3) 20.9 (1.5)  0.26 < 0.001 < 0.001  27.6 (4.9) 28.4 (5.1)  26.6(3.8) 27.9(6.4) 0.39  0.45 

 MADRS Mean (s.d.) 26.9 (10.7) 17.2 (9.9) 3.6 (4.1)  < 0.001 < 0.001 < 0.001  27.4 (9.8) 17.8 (10.5)  25.2 (13.9) 15.0 (7.4) < 0.001  0.01 

 YMRS Mean (s.d.) 2.1 (2.5) 6.1 (7.4) 1.2 (1.9)  < 0.001 0.017 < 0.001  2.3 (2.6) 5.5 (6.4)  1 (1.9) 8.11 (10.7) < 0.001  0.01 

 HAM-A Mean (s.d.) 15.7 (7.5) 9.7 (5.7) 2.1 (1.8)  < 0.001 < 0.001 < 0.001  16.2 (7.0) 9.6 (5.7)  14.0 (9.3) 10.1 (5.9) < 0.001  0.15 

                             

Medications                            

 Antipsychotics (AP) N (%) 41 (46%) 66 (73%) 0 (0%)  < 0.001 < 0.001 < 0.001  34 (47.2%) 55 (76.4%)  7 (38.9%) 11 (66.1%) 0.002  0.318 

 Mood stabilizer (MS) N (%) 15 (17%) 63 (70%) 0 (0%)  < 0.001 < 0.001 < 0.001  11 (15.3%) 51 (70.8%)  4 (22.2%) 12 (66.7%) < 0.001  < 0.001 

 Antidepressants (AD) N (%) 74 (82%) 26 (29%) 0 (0%)  < 0.001 < 0.001 < 0.001  59 (81.9%) 23 (31.9%)  15 (83.3%) 3 (16.7%) < 0.001  < 0.001 

Benzodiazepines/hypnotics (BZD/HNT) N (%) 63 (70%) 53 (59%) 0 (0%)  0.16 < 0.001 < 0.001  41 (56.9%) 47 (65.3%)  12 (66.7%) 14 (77.8%) 0.39  0.71 

 
a Abbreviations: MDD, major depressive disorder; BD, bipolar disorder; HC, healthy control; BMI, body mass index; BPRS, Brief Psychiatric Rating Scale; MADRS, Montgomery-Asberg Depression Rating Scale; YMRS, 

Young Mania Rating Scale; HAM-A, Hamilton Anxiety Rating Scale; AP, antipsychotics; MS, mood stabilizer; AD, antidepressants; BZD/HNT, benzodiazepines/hypnotics; N/A, not applicable. 
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b Statistically significant differences between groups (MDD, BD, and HC) were examined regarding demographics and clinical variables. Student’s T-test was performed for continuous variables and Fisher’s exact test was 

conducted for dichotomous variables. P-value < 0.05 was considered statistically significant, which is denoted by Bold font. 
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2. Construction of model to distinguish MDD from BD 

When all 210 candidate features were considered in developing the model, the number 

of selected features ranged from 8 to 25, representing a fluctuation in model selection (Figure 3A). 

Twenty-six features were selected at least once, and 9 were selected at least 90 times (Figure 3B 

and Table 4). The most frequent model that was generated comprised 11 features, with a model 

probability value of 0.70. A total of 10 unique models were generated, but the model frequency 

was not necessarily associated with the model probability for the data that were used (Table 5). 

Due to the fluctuation in the number of selected features and the fact that there is no unique model 

that was absolutely supported, feature extraction and model averaging were performed for all 100 

models. 

 

Figure 3. Feature selection and extraction across 100 models generated by repeated 

application of LASSO regression with ten-fold crossvalidation on the training set. A. 

Frequency of selected features for the 100 obtained models. Perturbed distribution between model 

frequency and number of selected features was showed. B. Proportion of features selected with 

respect to the 210 candidate features. A total of 26 features among 210 candidate features had 

more than 0 of the value of proportion of feature selected. Total 9 features had more than 0.9 of 

the value of proportion of feature selected value. 
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Table 4. Proportion of features selected for the 210 candidate features (210 proteins/210 

peptides) used to determine the model for discriminating MDD from BDa  

Feature Proportion of feature selected 

Protein_Peptide sequence  

A1AG1_SDVVYTDWK 0 

A1AG2_EQLGEFYEALDCLCIPR 0 

A1BG_CEGPIPDVTFELLR 0 

A2AP_QEDDLANINQWVK 0 

A2MG_VYDYYETDEFAIAEYNAPCSK 0 

ADIPO_GDIGETGVPGAEGPR 0 

AFAM_HFQNLGK 0 

ALBU_LVNEVTEFAK 0 

ALDOA_ALQASALK 0.87 

ALS_LHSLHLEGSCLGR 0 

AMBP_CVLFPYGGCQGNGNK 0 

AMPN_AQIINDAFNLASAHK 0.12 

ANAG_DFCGCHVAWSGSQLR 0 

ANGT_LQAILGVPWK 0 

ANT3_VWELSK 0 

APOA_NPDAVAAPYCYTR 0 

APOA1_QGLLPVLESFK 0 

APOA2_SPELQAEAK 0 

APOA4_GNTEGLQK 0 

APOB_ITLPDFR 0 

APOC2_ESLSSYWESAK 0 

APOC3_DYWSTVK 0 

APOD_VLNQELR 0 

APOE_EQVAEVR 0 

APOF_SLPTEDCENEK 0 

APOH_ATVVYQGER 0 

APOL1_LNILNNNYK 0 

APOM_FLLYNR 0 

ASSY_IDIVENR 0 

ATS13_LFINVAPHAR 0 

B2MG_VNHVTLSQPK 0 

B3AT_LSVPDGFK 0 

BPIB1_ALGFEAAESSLTK 0 

BTD_VDLITFDTPFAGR 0 

BTK_LVQLYGVCTK 0 

C1QA_SLGFCDTTNK 0 
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C1QB_LEQGENVFLQATDK 1 

C1QC_QTHQPPAPNSLIR 0 

C1R_NIGEFCGK 0 

C1RL_GSEAINAPGDNPAK 0 

C1S_CEYQIR 0 

C4BPA_LSCSYSHWSAPAPQCK 0 

CA2D1_VLLDAGFTNELVQNYWSK 0 

CAH1_GGPFSDSYR 0 

CAH2_YGDFGK 0 

CALR_FVLSSGK 0 

CBG_HLVALSPK 0 

CBL_GTEPIVVDPFDPR 0 

CBPB2_YPLYVLK 0 

CBPN_VQNECPGITR 0 

CCND2_ACQEQIEAVLLNSLQQYR 0 

CD14_VLDLSCNR 0 

CD5L_CYGPGVGR 0 

CEAM5_TLTLFNVTR 0 

CERU_EYTDASFTNR 0.03 

CFAB_VSEADSSNADWVTK 0 

CFAH_CVEISCK 0 

CFAI_EANVACLDLGFQQGADTQR 0 

CHLE_AEEILSR 0 

CLUS_EIQNAVNGVK 0 

CNDP1_AIHLDLEEYR 0 

CO1A1_VLCDDVICDETK 0 

CO2_HAFILQDTK 0 

CO3_DSCVGSLVVK 0 

CO4A_ANSFLGEK 0 

CO4A2_IAVQPGTVGPQGR 0 

CO5_IDTALIK 0 

CO6_GFVVAGPSR 0 

CO7_VLFYVDSEK 0 

CO8A_AIDEDCSQYEPIPGSQK 0 

CO8B_CEGFVCAQTGR 0 

CO8G_AGQLSVK 0 

CO9_TSNFNAAISLK 0 

COAA1_GTHVWVGLYK 0.22 

COHA1_QAAYNADSGLK 0 

COMP_DTDLDGFPDEK 0 

CP3A5_DTINFLSK 0 

CPN2_QLVCPVTR 0 

CRP_ESDTSYVSLK 0 
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CXCL7_NIQSLEVIGK 0.04 

CYTC_ALDFAVGEYNK 0 

DCMC_LCAWYLYGEK 0 

DOPO_VISTLEEPTPQCPTSQGR 0 

DSG2_ILDVNDNIPVVENK 0 

DSG3_LAEISLGVDGEGK 1 

ECM1_FCEAEFSVK 0 

EGFR_CNLLEGEPR 0 

EXOSX_SGPLPSAER 0 

F13A_STVLTIPEIIIK 0 

F13B_VLHGDLIDFVCK 0 

FA10_QEDACQGDSGGPHVTR 0.37 

FA11_SCALSNLACIR 0 

FA12_CFEPQLLR 0 

FA5_GEYEEHLGILGPIIR 0 

FA7_LHQPVVLTDHVVPLCLPER 0 

FA9_NCELDVTCNIK 0.87 

FBLN1_CVDVDECAPPAEPCGK 1 

FBLN3_NPCQDPYILTPENR 0 

FBN2_FNLSHLGSK 0 

FBRL_NGGHFVISIK 0 

FCG3A_AVVFLEPQWYR 0 

FCGBP_AIGYATAADCGR 1 

FCN3_YGIDWASGR 0 

FETUA_CNLLAEK 0 

FETUB_SQASSCSLQSSDSVPVGLCK 0 

FHR1_TGESAEFVCK 0 

FHR3_AQTTVTCTEK 1 

FHR5_TGDAVEFQCK 0 

FIBA_VQHIQLLQK 0 

FIBB_QGFGNVATNTDGK 0 

FIBG_ASTPNGYDNGIIWATWK 0 

FINC_VPGTSTSATLTGLTR 0 

FMR1_EPCCWWLAK 0 

FTCD_SDLQVAAK 0 

GELS_QTQVSVLPEGGETPLFK 0 

GGH_YLESAGAR 0 

GPX3_NSCPPTSELLGTSDR 0.97 

HABP2_FCEIGSDDCYVGDGYSYR 0 

HBA_VGAHAGEYGAEALER 0 

HEM3_ELEHALEK 0 

HEMO_SGAQATWTELPWPHEK 0 

HEP2_TLEAQLTPR 0 
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HGFA_LEACESLTR 0.22 

HPT_VGYVSGWGR 0 

HPTR_VVLHPNYHQVDIGLIK 0 

HRG_QIGSVYR 0 

IBP2_LIQGAPTIR 0 

IBP3_YGQPLPGYTTK 0 

IBP5_GVCLNEK 0 

IC1_LLDSLPSDTR 0 

ICAM1_VELAPLPSWQPVGK 0 

IDS_QSTEQAIQLLEK 0 

IGF2_GIVEECCFR 0 

IGHG1_TPEVTCVVVDVSHEDPEVK 0 

IGHG3_SCDTPPPCPR 0 

IGHM_QVGSGVTTDQVQAEAK 1 

IGKC_DSTYSLSSTLTLSK 0 

IL5_ETLALLSTHR 0 

INSR_VCHLLEGEK 0.47 

IPSP_AAAATGTIFTFR 0 

ITA2B_IVLLDVPVR 0 

ITIH1_GSLVQASEANLQAAQDFVR 0 

ITIH2_IYLQPGR 0.96 

ITIH3_EVSFDVELPK 0.22 

ITIH4_NVVFVIDK 0.03 

JAK2_SDNIIFQFTK 0 

K1C9_TLLDIDNTR 0 

K2C1_SLVNLGGSK 0 

K2C5_ISISTSGGSFR 0 

KAIN_GFQHLLHTLNLPGHGLETR 0.22 

KCRM_ELFDPIISDR 0 

KI21B_AQEQGVAGPEFK 0 

KLKB1_LVGITSWGEGCAR 0 

KNG1_QVVAGLNFR 0 

LA_IGCLLK 0 

LAMP1_ALQATVGNSYK 0 

LAMP2_IPLNDLFR 0 

LBP_GLQYAAQEGLLALQSELLR 0 

LCAT_SSGLVSNAPGVQIR 0 

LDHB_SADTLWDIQK 0.14 

LUM_LPSGLPVSLLTLYLDNNK 0 

LYAM1_AEIEYLEK 0 

LYRIC_WNSVSPASAGK 0 

LYSC_STDYGIFQINSR 0 

MBL2_WLTFSLGK 0 
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MCAT_EGITGLYR 0 

MIA_GQVVYVFSK 0 

MSH2_DIYQDLNR 0 

NPC2_SEYPSIK 0 

PAFA_ASLAFLQK 0.12 

PEDF_ALYYDLISSPDIHGTYK 0 

PERM_VVLEGGIDPILR 0 

PGFRB_LPGFHGLR 0 

PGRP2_EFTEAFLGCPAIHPR 0 

PHLD_TLLLVGSPTWK 0 

PI16_WDEELAAFAK 0 

PLF4_ICLDLQAPLYK 1 

PLMN_YEFLNGR 0 

PLTP_AVEPQLQEEER 0.03 

PON1_IHVYEK 0 

PRDX2_TDEGIAYR 0 

PROC_GDSPWQVVLLDSK 0.47 

PROF1_STGGAPTFNVTVTK 0 

PROS_VYFAGFPR 0 

PZP_HQDGSYSTFGER 0 

RENI_LFDASDSSSYK 0 

RET4_QEELCLAR 0 

S10A9_LGHPDTLNQGEFK 0 

SAA1_FFGHGAEDSLADQAANEWGR 0 

SAMP_IVLGQEQDSYGGK 0 

SHAN3_FEDHEIEGAHLPALTK 0 

SHBG_TSSSFEVR 0 

SPP24_DYYVSTAVCR 0 

TENX_LQGLIPGAR 0 

TETN_CFLAFTQTK 0 

THBG_NALALFVLPK 0 

THRB_VTGWGNLK 0 

TNR5_YCDPNLGLR 0 

TRFE_CSTSSLLEACTFR 0.23 

TRFL_CSTSPLLEACEFLR 0 

TTHY_AADDTWEPFASGK 0 

UROM_VLNLGPITR 0 

URP2_VVLAGGVAPALFR 0 

VASN_LAGLGLQQLDEGLFSR 0 

VGFR3_SGVDLADSNQK 0 

VINC_QVATALQNLQTK 0 

VTDB_YTFELSR 0 

VTNC_CTEGFNVDK 0 
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VWF_VTVFPIGIGDR 0 

ZA2G_CLAYDFYPGK 0 
a The proportion of feature selected for the 210 candidate features are listed. The 9 selected 

features chosen for the developed model are shown in bold. Protein_peptide sequence is 

listed for each feature. 
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Table 5. Summary of unique models originating from combinations of selected featuresa  

Model # Unique model (combination of selected features) 

Number of 

features 

combined 

Model 

Frequency 

Model 

probability 

 Model 1 

ALDOA_ALQASALK + AMPN_AQIINDAFNLASAHK + C1QB_LEQGENVFLQATDK + COAA1_GTHVWVGLYK + DSG3_LAEISLGVDGEGK + 

FA10_QEDACQGDSGGPHVTR + FA9_NCELDVTCNIK + FBLN1_CVDVDECAPPAEPCGK+FCGBP_AIGYATAADCGR + FHR3_AQTTVTCTEK + 

GPX3_NSCPPTSELLGTSDR + HGFA_LEACESLTR + IGHM_QVGSGVTTDQVQAEAK + INSR_VCHLLEGEK + ITIH2_IYLQPGR + ITIH3_EVSFDVELPK + 

KAIN_GFQHLLHTLNLPGHGLETR + PAFA_ASLAFLQK + PLF4_ICLDLQAPLYK + PROC_GDSPWQVVLLDSK + TRFE_CSTSSLLEACTFR + (intercept)   

21 9 0.0010  

 Model 2 

ALDOA_ALQASALK + C1QB_LEQGENVFLQATDK + DSG3_LAEISLGVDGEGK + FA9_NCELDVTCNIK + FBLN1_CVDVDECAPPAEPCGK + 

FCGBP_AIGYATAADCGR + FHR3_AQTTVTCTEK + GPX3_NSCPPTSELLGTSDR + IGHM_QVGSGVTTDQVQAEAK + ITIH2_IYLQPGR + 

PLF4_ICLDLQAPLYK + (intercept) 

11 40 0.7018  

 Model 3 

ALDOA_ALQASALK + C1QB_LEQGENVFLQATDK + DSG3_LAEISLGVDGEGK + FA10_QEDACQGDSGGPHVTR + FA9_NCELDVTCNIK + 

FBLN1_CVDVDECAPPAEPCGK+FCGBP_AIGYATAADCGR + FHR3_AQTTVTCTEK + GPX3_NSCPPTSELLGTSDR + IGHM_QVGSGVTTDQVQAEAK + 

INSR_VCHLLEGEK + ITIH2_IYLQPGR + PLF4_ICLDLQAPLYK + PROC_GDSPWQVVLLDSK + (intercept) 

14 14 0.1229  

 Model 4 

ALDOA_ALQASALK + AMPN_AQIINDAFNLASAHK + C1QB_LEQGENVFLQATDK + CERU_EYTDASFTNR + COAA1_GTHVWVGLYK 

+DSG3_LAEISLGVDGEGK + FA10_QEDACQGDSGGPHVTR + FA9_NCELDVTCNIK + FBLN1_CVDVDECAPPAEPCGK + FCGBP_AIGYATAADCGR + 

FHR3_AQTTVTCTEK + GPX3_NSCPPTSELLGTSDR + HGFA_LEACESLTR + IGHM_QVGSGVTTDQVQAEAK + INSR_VCHLLEGEK + ITIH2_IYLQPGR + 

ITIH3_EVSFDVELPK + ITIH4_NVVFVIDK + KAIN_GFQHLLHTLNLPGHGLETR + LDHB_SADTLWDIQK + PAFA_ASLAFLQK + PLF4_ICLDLQAPLYK + 

PLTP_AVEPQLQEEER + PROC_GDSPWQVVLLDSK + TRFE_CSTSSLLEACTFR + (intercept)        

25 3 8.13E-06 

 Model 5 
C1QB_LEQGENVFLQATDK + DSG3_LAEISLGVDGEGK + FBLN1_CVDVDECAPPAEPCGK + FCGBP_AIGYATAADCGR + FHR3_AQTTVTCTEK + 

GPX3_NSCPPTSELLGTSDR +IGHM_QVGSGVTTDQVQAEAK + ITIH2_IYLQPGR + PLF4_ICLDLQAPLYK + (intercept)  
10 9 0.0761  

 Model 6 

ALDOA_ALQASALK + C1QB_LEQGENVFLQATDK + DSG3_LAEISLGVDGEGK + FA9_NCELDVTCNIK + FBLN1_CVDVDECAPPAEPCGK + 

FCGBP_AIGYATAADCGR +FHR3_AQTTVTCTEK + GPX3_NSCPPTSELLGTSDR + IGHM_QVGSGVTTDQVQAEAK + INSR_VCHLLEGEK + 

ITIH2_IYLQPGR + PLF4_ICLDLQAPLYK + PROC_GDSPWQVVLLDSK + (intercept)  

13 10 0.0885  

 Model 7 
C1QB_LEQGENVFLQATDK + CXCL7_NIQSLEVIGK + DSG3_LAEISLGVDGEGK + FBLN1_CVDVDECAPPAEPCGK + FCGBP_AIGYATAADCGR + 

FHR3_AQTTVTCTEK +IGHM_QVGSGVTTDQVQAEAK + PLF4_ICLDLQAPLYK + (intercept)    
8 3 0.0043  

 Model 8 

ALDOA_ALQASALK + C1QB_LEQGENVFLQATDK + DSG3_LAEISLGVDGEGK + FA10_QEDACQGDSGGPHVTR + FA9_NCELDVTCNIK + 

FBLN1_CVDVDECAPPAEPCGK + FCGBP_AIGYATAADCGR + FHR3_AQTTVTCTEK + GPX3_NSCPPTSELLGTSDR + IGHM_QVGSGVTTDQVQAEAK + 

INSR_VCHLLEGEK + ITIH2_IYLQPGR + LDHB_SADTLWDIQK +PLF4_ICLDLQAPLYK + PROC_GDSPWQVVLLDSK + TRFE_CSTSSLLEACTFR + 

(intercept) 

16 1 0.0024  

 Model 9 

ALDOA_ALQASALK + C1QB_LEQGENVFLQATDK + COAA1_GTHVWVGLYK + DSG3_LAEISLGVDGEGK + FA10_QEDACQGDSGGPHVTR + 

FA9_NCELDVTCNIK + FBLN1_CVDVDECAPPAEPCGK + FCGBP_AIGYATAADCGR + FHR3_AQTTVTCTEK + GPX3_NSCPPTSELLGTSDR + 

HGFA_LEACESLTR +IGHM_QVGSGVTTDQVQAEAK + INSR_VCHLLEGEK + ITIH2_IYLQPGR + ITIH3_EVSFDVELPK +  

KAIN_GFQHLLHTLNLPGHGLETR + LDHB_SADTLWDIQK + PLF4_ICLDLQAPLYK + PROC_GDSPWQVVLLDSK + TRFE_CSTSSLLEACTFR + (intercept)    

20 10 4.56E-04 

 Model 10 
C1QB_LEQGENVFLQATDK + CXCL7_NIQSLEVIGK + DSG3_LAEISLGVDGEGK + FBLN1_CVDVDECAPPAEPCGK + FCGBP_AIGYATAADCGR + 

FHR3_AQTTVTCTEK +GPX3_NSCPPTSELLGTSDR + IGHM_QVGSGVTTDQVQAEAK + PLF4_ICLDLQAPLYK + (intercept)     
9 1 0.0025  

a Ten unique models were generated. Number of features, frequency, and model probability for each unique model are listed. Protein_peptide sequence of the components is listed for each combination. 
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The generating average model consisted of 9 features, which had a proportion of feature 

selected ≥ 0.9 (Figure 4A). The 9 selected features were as follows: complement C1q 

subcomponent subunit B (C1QB), desmoglein-3 (DSG3), fibulin-1 (FBLN1), IgG Fc-binding 

protein (FCGBP), complement factor H-related protein 3 (FHR3), glutathione peroxidase 3 

(GPX3), immunoglobulin heavy constant mu (IGHM), inter-alpha-trypsin inhibitor heavy chain 

H2 (ITIH2), and platelet factor 4 (PLF4). The average coefficients for the 9 features across the 

100 models are presented in Figure 4B and Table 6. Five features—C1QB, FBLN1, FCGBP, 

FHR3, and IGHM—had average coefficients greater than 0, which were higher in BD versus 

MDD patients. In contrast, 4 features—DSG3, GPX3, ITIH2, and PLF4—had average 

coefficients of less than 0, which were higher in MDD versus BD patients. The 9-feature average 

model showed good discriminatory performance between MDD and BD when applied to the 

training set (AUC = 0.84) (Figure 5A) and when extrapolated to the test set (AUC = 0.81) (Figure 

5B). In addition, the model showed good discriminatory power when applied to the combined set 

(AUC = 0.83), resulting in 72% sensitivity, 82% specificity, and 77% accuracy at the optimal 

cutoff (Youden Index) of 0.54 (Figure 5C). Furthermore, the discriminatory performance was 

similar when the model was applied to the MRM-MS data of only young BD and MDD patients 

(age <35 years) (AUC = 0.84) (data not shown). 

The average model was applied to the data on MDD and BD without current h

ypomanic/manic/mixed symptoms, performing well (AUC = 0.83) (Figure 6A), and to on

ly drug-free patients (11 MDD and 10 BD), showing excellent performance (AUC = 0.9

6) (Figure 6B). When the model was applied to the data on the patient groups and HC

s, the AUC value was 0.87 (MDD vs HC) and 0.86 (BD vs HC) (Figure 6C-D). 
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Figure 4. The nine features of the developed model. Proportion of the features that were 

selected and the average coefficients for the nine features are shown. A. The proportion of each 

feature that was selected across the 100 models. The minimum value is indicated by the dotted 

line (red). Features are designated by the corresponding protein_peptide sequence. B. Average 

coefficient value for each feature across the 100 models. C1QB, complement C1q subcomponent 

subunit B; DSG3, desmoglein-3; FBLN1, fibulin-1; FCGBP, IgG Fc-binding protein; FHR3, 

complement factor H-related protein 3; GPX3, glutathione peroxidase 3; IGHM, immunoglobulin 

heavy constant mu; ITIH2, inter-alpha-trypsin inhibitor heavy chain H2; PLF4, platelet factor 4. 
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Table 6. Confidence interval of weighted average coefficient for the nine features of the 

developed model 

 

Combined features 

Weighted 

average 

coefficient 

Standard 

deviation 

Lower 

bound 

Upper 

bound 

95% 

confidence 

interval (CI) 

C1QB_LEQGENVFLQATDK 0.0623 0.0090 0.0606 0.0641 0.0035 

DSG3_LAEISLGVDGEGK -4.5171 0.3162 -4.5791 -4.4551 0.1240 

FBLN1_CVDVDECAPPAEPCGK 0.0070 0.0015 0.0067 0.0073 0.0006 

FCGBP_AIGYATAADCGR 0.1425 0.0627 0.1302 0.1548 0.0246 

FHR3_AQTTVTCTEK 0.0751 0.0190 0.0714 0.0788 0.0075 

GPX3_NSCPPTSELLGTSDR -0.2740 0.1811 -0.3095 -0.2385 0.0710 

IGHM_QVGSGVTTDQVQAEAK 0.0097 0.0022 0.0093 0.0102 0.0008 

ITIH2_IYLQPGR -0.0247 0.0219 -0.0290 -0.0204 0.0086 

PLF4_ICLDLQAPLYK -0.1086 0.0111 -0.1108 -0.1064 0.0043 
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Figure 5. Performance of model in discriminating between MDD and BD based on AUROC 

curves. The developed model consisted of nine proteins. A. The performance of the model in the 

training set (72 MDD patients vs 72 BD patients) (Table 1) and B. test set (18 MDD patients vs 

18 BD patients) (Table 1). C. Performance of the model (left panel) and its corresponding 

confusion matrix (right panel) in the combined set (90 MDD patients vs 90 BD patients) (Table 

1). The optimal cutoff [Youden Index (J)] is presented in red font and as a dotted line in the 

AUROC curve (left panel). Sensitivity, specificity, and accuracy corresponding to the optimal 

cutoff are presented in the confusion matrix (right panel). AUC, area under the curve; MDD, 

major depressive disorder; BD, bipolar disorder; AUROC, area under receiver operating 

characteristics; J, Youden index. 
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Figure 6. AUROC curves representing model performance in discriminating between MDD 

and BD (without current hypomanic/manic/mixed symptoms), between MDD and BD 

(drug-free patients), and between patient groups and HC. The developed model for 

discriminating MDD from BD was applied to data on patient groups and HCs in all study subjects. 

A. The model’s performance in the patient groups (90 MDD patients vs 75 BD patients without 

current hypomanic/manic/mixed symptoms). B. The model’s performance in drug-free MDD and 

BD patients (11 MDD vs 10 BD). C. The model’s performance in the MDD group and HC (90 

MDD patients vs 90 HCs). D. The model’s performance in the BD group and HC (90 BD patients 

vs 90 HCs). AUC, area under the curve; MDD, major depressive disorder; BD, bipolar disorder; 

HC, healthy control; AUROC, area under receiver operating characteristics. 
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3. Nine features in the model 

The levels of protein abundances for the 9 features in the training set are shown in Figure 

7. All 9 features differed significantly between MDD and BD. C1QB, FBLN1 FCGBP, FHR3 

and IGHM were upregulated in BD, whereas DSG3, GPX3, ITIH2, and PLF4 were upregulated 

in MDD. C1QB showed the most statistically significant difference (P-value = 5.27E-04) among 

features that were upregulated in BD. Conversely, DSG3 had the most significant difference (P-

value = 1.43E-04) among those that were upregulated in BD (Table 6). The expression patterns 

of the 9 features (ie, fold-change between MDD and BD) corresponded with the direction of the 

average coefficients (Figure 4 and Table 6). 

The levels of the 9 features were also measured in all study subjects (90 MDD, 90 BD, and 90 

HCs) (Figure 8 and Table 7). All 9 features differed significantly between MDD and BD, and the 

distributions of levels for each feature were similar to those in the training set. Only DSG3 

differed significantly between MDD, BD, and HCs. DSG3 was upregulated in MDD but 

downregulated in BD versus HCs. Whereas PLF4 was upregulated in MDD compared with HCs, 

C1QB and FBLN1 were downregulated in MDD versus HCs. FCGBP was upregulated and GPX3 

was downregulated in BD compared with HC. The remaining features—FHR3, IGHM, and 

ITIH2—did not differ significantly between patient groups and HCs.  
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Figure 7. Protein levels of the nine features in the developed model. The distribution of protein 

levels for MDD and BD patients in the training set. Protein levels are shown as log
2
-transformed 

peak area ratio (light/heavy ratio). An unpaired Student’s T-test was performed to examine 

statistically significant differences. L/H ratio, light/heavy ratio; MDD, major depressive disorder; 

BD, bipolar disorder; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0005. 
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Table 7. Differences in protein abundance of the nine selected features between MDD and BD in the training seta  

 

Features  Protein name Gene names  Fold-change (MDD/BD) Student's t-test statistics P-valueb 

Protein_peptide sequence        

C1QB_LEQGENVFLQATDK Complement C1q subcomponent subunit B C1QB 0.785 3.548 5.27.E-04 

DSG3_LAEISLGVDGEGK Desmoglein-3 DSG3 1.291 -3.909 1.43.E-04 

FBLN1_CVDVDECAPPAEPCGK Fibulin-1 FBLN1 0.776 2.903 4.29.E-03 

FCGBP_AIGYATAADCGR IgGFc-binding protein FCGBP 0.837 2.516 1.30.E-02 

FHR3_AQTTVTCTEK Complement factor H-related protein 3 FHR3 0.718 2.714 7.48.E-03 

GPX3_NSCPPTSELLGTSDR Glutathione peroxidase 3 GPX3 1.120 -2.487 1.41.E-02 

IGHM_QVGSGVTTDQVQAEAK Immunoglobulin heavy constant mu IGHM 0.415 2.967 3.53.E-03 

ITIH2_IYLQPGR Inter-alpha-trypsin inhibitor heavy chain H2 ITIH2 1.115 -2.640 9.21.E-03 

PLF4_ICLDLQAPLYK Platelet factor 4 PF4 2.382 -3.692 3.17.E-04 

a Abbreviations: MDD, major depressive disorder BD, bipolar disorder. 

b Statistically significant differences across the 9 selected features were analyzed by student's T-test. Bold font denotes statistical difference at P-value < 0.05. Protein_peptide sequence is listed for each feature. 
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Figure 8. Box-and-whisker plots representing protein abundance of the nine features in all 

subjects of this study. The distributions of protein abundance between the MDD, BD, and HC 

groups are shown in all study subjects. Protein abundance is represented by the log
2
-transformed 

peak area ratio (Light/Heavy ratio). One-way ANOVA (for three groups) was performed to 

examine statistically significant differences between the 3 groups. Subsequently, post hoc 

analysis was performed by Tukey’s HSD. L/H ratio, Light/Heavy ratio; HC, healthy control; 

MDD, major depressive disorder; and BD, bipolar disorder; HSD, honestly significant difference; 

ANOVA, analysis of variance; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0005; n.s., no 

significance. 
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Table 8. Differences in protein abundance of the nine selected features between MDD, BD, and HC in the study population (90 MDD, 90 BD, and 90 HC)a 

Features  Protein names 
Gene 

names  

MDD vs BD vs HC               MDD vs BD            MDD vs HC   BD vs HC  

F-statistics 
P-valueb 

(ANOVA) 

 

Fold-change 

(MDD/BD) 

Mean 

difference 

P-valueb 

(Tukey's 

HSD) 

 

Fold-change 

(MDD/HC)  

Mean 

difference           

P-valueb 

(Tukey's 

HSD)           

 

Fold-change 

(BD/HC) 

Mean 

difference           

P-valueb 

(Tukey's  

HSD)           

   

   

   

Protein_peptide sequence                        

C1QB_LEQGENVFLQATDK Complement C1q subcomponent subunit B C1QB 5.741 3.62.E-03  0.822 -1.965 2.50.E-03  0.886 -1.474 1.12.E-02  1.077 0.792 3.65.E-01 

DSG3_LAEISLGVDGEGK Desmoglein-3 DSG3 10.326 4.79.E-05  1.291 0.037 2.54.E-05  1.139 0.020 3.94.E-02  0.882 -0.030 3.20.E-02 

FBLN1_CVDVDECAPPAEPCGK Fibulin-1 FBLN1 7.660 5.82.E-04  0.763 -2.881 5.55.E-04  0.816 -2.097 1.72.E-02  1.069 0.784 5.58.E-01 

FCGBP_AIGYATAADCGR IgGFc-binding protein FCGBP 5.010 7.31.E-03  0.837 -0.276 9.32.E-03  0.967 -0.048 8.65.E-01  1.155 0.228 3.96.E-02 

FHR3_AQTTVTCTEK Complement factor H-related protein 3 FHR3 3.228 4.22.E-02  0.820 0.231 3.89.E-02  0.978 -0.028 9.79.E-01  1.192 0.238 2.16.E-01 

GPX3_NSCPPTSELLGTSDR Glutathione peroxidase 3 GPX3 6.389 1.95.E-03  1.147 0.106 1.24.E-03  1.061 0.048 2.50.E-01  0.925 -0.079 2.07.E-02 

IGHM_QVGSGVTTDQVQAEAK Immunoglobulin heavy constant mu IGHM 4.027 1.89.E-02  0.511 -2.597 1.36.E-02  0.667 -1.357 3.01.E-01  1.304 1.240 3.66.E-01 

ITIH2_IYLQPGR Inter-alpha-trypsin inhibitor heavy chain H2 ITIH2 3.055 4.88.E-02  1.092 0.700 3.82.E-02  1.037 0.297 5.50.E-01  0.950 -0.403 3.33.E-01 

PLF4_ICLDLQAPLYK Platelet factor 4 PF4 27.651 1.22.E-11  2.589 1.171 2.26.E-07  4.619 1.495 5.14.E-09  1.784 0.324 2.78.E-01 

a Protein_peptide sequence is listed for each feature. Abbreviations: MDD, major depressive disorder; BD, bipolar disorder; HC, healthy control; ANOVA, analysis of variation; HSD, honestly significant difference. 

b Statistically significant differences across the 9 selected features were analyzed by ANOVA. Post hoc analysis was performed by Tukey's HSD. Bold font denotes statistical significance at P-value < 0.05. 
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4. Covariate analysis of the nine features 

Correlations between the 9 selected features in the model and clinical/demographic 

variables were examined (Table 8). DSG3 was associated significantly with MADRS and HAM-

A scores, GPX3 correlated with HAM-A scores and AP use, IGHM was linked to MS and AD 

use, and FHR3 correlated significantly with AD use. These 4 features and 5 clinical variables 

were examined by ANCOVA to evaluate the influence of the clinical variables as covariates on 

the features. Whereas no significant differences were found regarding the covariates, such 

differences were seen between groups (Table 9), indicating that the levels of the 9 features were 

associated with differences between groups rather than clinical state or medication use.  
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Table 9. Correlations between the nine selected features and demographic/clinical variables in the training seta  

MDD & BD (n=144)    Gender Age BMI 
Current 

smoking status 
Current 

exercise status 
Current 

alcohol use 

Blood 
collection 

time 

Fasting 
time 

Duration from  
first onset 

Duration from first 
medication 

BPRS  MADRS  YMRS  HAM-A  AP  MS AD BZD/HNT 

Protein_peptide sequence                    

                    

C1QB_LEQGENVFLQATDK Correlation value (r)b 0.139 0.122 0.035 -0.041 0.083 -0.073 0.057 -0.029 0.073 0.131 -0.036 0.071 0.071 -0.112 -0.011 0.125 -0.007 -0.044 

 P-valuec 0.097 0.145 0.678 0.625 0.324 0.383 0.497 0.733 0.387 0.120 0.668 0.424 0.395 0.182 0.896 0.136 0.933 0.600 

                    

DSG3_LAEISLGVDGEGK Correlation value (r)b 0.067 0.126 -0.015 -0.064 0.128 -0.044 0.060 -0.018 -0.127 -0.114 -0.086 0.169 -0.157 -0.165 -0.121 0.013 0.005 0.052 

 P-valuec 0.428 0.158 0.859 0.445 0.125 0.601 0.476 0.828 0.131 0.152 0.303 0.043 0.061 0.052 0.149 0.124 0.952 0.534 

                    

FBLN1_CVDVDECAPPAEPCGK Correlation value (r)b 0.101 -0.047 -0.136 -0.033 0.051 -0.071 -0.034 0.100 0.055 0.047 -0.033 -0.122 0.089 0.103 0.010 0.042 -0.132 -0.031 

 P-valuec 0.229 0.576 0.102 0.699 0.541 0.401 0.688 0.232 0.513 0.573 0.695 0.253 0.288 0.164 0.904 0.619 0.119 0.712 

                    

FCGBP_AIGYATAADCGR Correlation value (r)b 0.065 -0.067 -0.138 -0.051 0.102 -0.099 -0.007 0.026 -0.028 0.036 -0.016 -0.002 -0.084 -0.139 0.035 0.132 -0.157 -0.068 

 P-valuec 0.441 0.425 0.100 0.544 0.223 0.237 0.936 0.758 0.740 0.673 0.852 0.982 0.317 0.096 0.681 0.115 0.060 0.417 

                    

FHR3_AQTTVTCTEK Correlation value (r)b 0.042 0.101 0.126 0.010 -0.029 -0.100 -0.001 -0.049 -0.006 0.124 0.139 -0.088 0.127 -0.037 0.077 0.088 -0.182 0.131 

 P-valuec 0.614 0.226 0.133 0.908 0.733 0.233 0.987 0.559 0.942 0.142 0.097 0.293 0.129 0.658 0.358 0.296 0.028 0.117 

                    

GPX3_NSCPPTSELLGTSDR Correlation value (r)b 0.081 -0.101 -0.159 -0.035 -0.046 0.063 0.090 0.110 0.013 -0.107 -0.055 0.110 -0.047 -0.154 -0.233 -0.092 -0.010 -0.047 

 P-valuec 0.333 0.226 0.057 0.674 0.581 0.455 0.281 0.188 0.876 0.204 0.514 0.188 0.572 0.049 0.017 0.353 0.904 0.574 

                    

IGHM_QVGSGVTTDQVQAEAK Correlation value (r)b 0.156 -0.149 -0.124 -0.061 0.125 -0.127 0.011 0.128 0.052 0.067 -0.022 -0.082 0.026 -0.127 0.005 0.202 -0.253 -0.044 

 P-valuec 0.062 0.074 0.173 0.465 0.134 0.128 0.897 0.127 0.535 0.424 0.793 0.330 0.756 0.128 0.954 0.014 0.002 0.598 

                    

ITIH2_IYLQPGR Correlation value (r)b -0.006 0.024 0.056 0.002 0.081 -0.062 -0.013 0.040 -0.124 -0.104 0.041 0.013 -0.053 0.027 -0.136 -0.154 0.163 -0.059 

 P-valuec 0.946 0.715 0.502 0.981 0.337 0.457 0.875 0.637 0.138 0.202 0.622 0.879 0.524 0.753 0.081 0.068 0.050 0.482 

                    

PLF4_ICLDLQAPLYK Correlation value (r)b 0.067 0.092 0.077 0.044 -0.103 -0.004 0.088 -0.148 0.161 -0.043 -0.127 0.128 0.011 -0.013 -0.148 -0.125 0.049 -0.146 

 P-valuec 0.428 0.274 0.360 0.604 0.219 0.958 0.296 0.077 0.054 0.609 0.124 0.127 0.872 0.881 0.220 0.178 0.561 0.058 
                    

a Protein_peptide sequence is listed for each feature. Abbreviations: MDD, major depressive disorder; BD, bipolar disorder; BMI, body mass index; AP, antipsychotics; MS, mood stabilizer; AD, antidepressants; BZD/HNT, 

benzodiazepines/hypnotics; BPRS, Brief Psychiatric Rating Scale; MADRS, Montgomery-Asberg Depression Rating Scale; YMRS, Young Mania Rating Scale; HAM-A Hamilton Anxiety Rating Scale. 

b Correlations between the 9 selected features and continuous variables were examined based on Pearson's correlation. Correlation values between the 9 selected features and dichotomous variables were analyzed by point-biserial 

correlation. 

c Bold font denotes statistical significance at P-value < 0.05. 
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Table 10. Covariate analysis of the four features that showed statistically significant 

correlation with clinical variables in the training seta  

Features  

 

Covariates 
P-valueb 

(ANCOVA) 

 

Protein_peptide seqeunce    

DSG3_LAEISLGVDGEGK    

 Group (MDD vs BD) 0.004 

 MADRS 0.812 

 HAM-A 0.280 

FHR3_AQTTVTCTEK     

 Group (MDD vs BD) 0.025 

 AD 0.327 

GPX3_NSCPPTSELLGTSDR    

 Group (MDD vs BD) 0.031 

 AP 0.854 

 HAM-A 0.102 

IGHM_QVGSGVTTDQVQAEAK    

 Group (MDD vs BD) 0.026 

 MS 0.313 

 AD 0.100 

a Protein_peptide sequence is listed for each feature. Abbreviations: MDD, major depressive 

disorder; BD, bipolar disorder; MADRS, Montgomery-Asberg.  

b Analysis of covariance (ANCOVA) was performed to assess the potential influence of 

covariates that correlated significantly with the 4 features (DSG3_LAEISLGVDGEGK, 

FHR3_AQTTVTCTEK, GPX3_NSCPPTSELLGTSDR, and 

IGHM_QVGSGVTTDQVQAEAK). Bold font denotes statistical significance at P-value < 

0.05. 
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5. Bioinformatics analysis of the nine features  

The nine features that were included in the final model were subjected to network 

analysis. Seven (FBLN1, C1QB, FCGBP, ITIH2, DSG3, GPX3, and PLF4) were included in the 

top network (score = 17), which consisted of 35 molecules (Figure 9). Diseases and functions that 

were associated with the top network included cell-to-cell signaling and interaction (29 molecules, 

P-value = 5.49E-17 to 1.2E-6), hematological system development and function (27 molecules, 

P-value = 1.19E-15 to 1.12E-2), immune cell trafficking (23 molecules, P-value = 1.19E-15 to 

2.11E-7), and psychological disorders (2 molecules, P-value = 2.28E-3 to 4.49E-2). In addition, 

the network was associated with canonical pathways, such as LXR/RXR activation, FXR/RXR 

activation, neuro-inflammation signaling pathway, acute phase response signaling, NF-kB 

signaling, production of nitric oxide and reactive oxygen species in macrophages, NRF2-

mediated oxidative stress response, synaptic long-term potentiation, synaptic long-term 

depression, and CREB signaling in neurons. 
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Figure 9. The top protein network and associated canonical pathways generated by IPA for 

the nine selected features (proteins). Seven [DSG3, FBLN1, FCGBP, C1QB, GPX3, ITIH2, 

and PF4 (PLF4)] of the 9 selected features (proteins) were included in the top protein network. 

Direct and indirect interactions are represented by solid and dashed lines, respectively. Shapes 

signify the molecular classes of proteins defined in the legend. Canonical pathways associated 

with proteins in the network are represented by dotted lines (light pink). Differences in protein 

expression of the 7 features between MDD and BD are represented by fold-change. MDD, major 

depressive disorder; BD, bipolar disorder; CP, canonical pathway; IPA, Ingenuity Pathway 

Analysis. 
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DISCUSSION 

 

In this study, I developed a model for discriminating MDD from BD using an MRM-

MS-based quantitative targeted proteomics approach. Our model performed well in both the 

training and test sets. There was no difference in demographics between MDD and BD, including 

gender, age, BMI, smoking, exercise, alcohol, blood collection time, and fasting, all of which are 

recommended in biomarker studies [90-92]. However, because the overall symptom severity and 

medication use differed, I also tested our model on patients without current 

hypomanic/manic/mixed symptoms and those who were drug-free, which demonstrated that its 

performance did not decrease. Furthermore, by ANCOVA, the features remained related to mood 

disorder type when significant covariates of symptom severity and medication use were controlled 

for. Thus, our model has potential clinical applicability and implications, enabling objective 

discrimination between MDD and BD patients. In addition to relying on subjective clinical 

interviews, the model could serve as a reference during decision-making regarding the diagnosis 

or treatment of patients. Furthermore, the model has potential in differentiating patient groups and 

HCs. 

In light of our high-dimensional data, which were drawn from a small sample relative to 

the number of features [144], the reproducibility of the performance of our model could be limited 

by overfitting. Overfitting can occur when the model selects noise, as well as important signals 

in the data, resulting in fluctuations in model selection—ie, when no single model is supported 

absolutely by the data [145]. I considered the effects of overfitting when developing a 

generalizable model. Consequently, I demonstrated that feature extraction and model averaging, 

based on LASSO regression with repeated ten-fold crossvalidation, yielded a generalizable model, 

taking into account the fluctuation of the model selection. Recently, the applicability of these 

methods was demonstrated in previous studies of psychiatric disorders [100, 105, 112].  
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I identified 9 features as being important targets of MDD and BD. The level of DSG3 differed 

significantly between all 3 groups, increasing in MDD and declining in BD compared with HCs. 

DSG3 is a calcium-dependent adhesion protein in epithelial cells [146], and its association with 

mood disorders is novel. However, in animal models, other types of DSG proteins are known to 

be expressed in the corpus callosum, and there is evidence that subtypes of DSG are upregulated 

in oligodendrocytes after chronic stress exposure [147]. Further study is needed to determine its 

function in mood disorders.  

The level of PLF4 was higher, and those of C1QB and FBLN were decreased in MDD 

versus BD and HCs. PLF4 is released from platelet alpha granules during platelet activation and 

is known to be upregulated in the plasma of MDD patients with coronary artery diseases versus 

those with coronary artery diseases without depression [148, 149]. In addition, considering that 

serotonin is the main monoamine considered in MDD and given that platelet serotonin receptors 

are prone to increase in depression [150], PLF4 could be upregulated specifically in mood 

disorders, especially MDD. C1Q initiates the classical complement cascade and is essential for 

synaptic elimination [151]. The level of C1Q in peripheral blood was reported to be elevated in 

MDD [152] and BD [153] versus HC. Regarding C1QB, polymorphisms in the C1QB are 

associated with SZ in the Armenian population [154]. In addition, C1QC, which was included in 

the list of candidate features but was not selected in our model, was upregulated in peripheral 

blood in MDD [155] and manic BD [156]. C1QB was probably chosen over C1QC by LASSO 

due to multi-collinearity of both proteins that share biological functions and structure [157-159], 

and as the discrimination ability of C1QB was higher than C1QC. This implies that combining 

other potential proteins by manual selection of previously determined candidate features might 

need consideration. FBLN1 is an extracellular glycoprotein that is involved in cell adhesion and 

motility along fibers in the extracellular matrix [160]. The SNP located in FBLN1 has been 

associated with hyperthymic temperament in a GWAS of BD [161], which is also a risk factor for 

BD itself. 
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FCGBP levels were higher, and GPX3 was decreased in BD, compared with MDD and 

HC. GPX3 is a selenoprotein with peroxidase activity [162]. Its level in the CSF is increased in 

MDD, BD, and SZ compared with HC, but there is no significant difference between MDD and 

BD [163]. It is also differentially expressed in bipolar disorder brains versus HCs, based on the 

Stanley Medical Research Institute Online Genomics database [164]. Finally, a variant of this 

gene correlates with adolescent BD compared with HCs [165]. FCGBP is a well-known protein 

that is associated with the maintenance of mucosal structures [166]. In a transcriptome sequencing 

study of postmortem dorsal striatum brains, FCGBP was upregulated in BD versus HCs [167].  

The levels of FHR3 (upregulated in BD), IGHM (upregulated in BD), and ITIH2 

(upregulated in MDD) were significant only between MDD and BD and, as such, were only 

associated with the differentiation between MDD and BD. IGHM is a membrane-bound or 

secreted glycoprotein that is produced by B lymphocytes, which are associated with primary 

defense mechanisms [168]. IGHM was the only protein to show differential expression in blood 

between MDD and BD consistently from previous studies. However, its expression pattern was 

the opposite from that in our study [94]. In addition, its levels in lymphoblastoid cell lines are 

upregulated in schizophrenia (SZ) compared with HCs [169]. ITIH proteins are serine protease 

inhibitors and have significant functions as anti-inflammatory molecules [170]. The serum level 

of ITIH2 is decreased in MDD versus HCs [171]. However, there are several reports on the 

association of ITIH1 and ITIH4 with mood disorders [155, 156, 171]. FHR3 is related to 

complement factor H, which is a major alternative complement pathway regulator [172], and has 

been linked to SZ [173]. 

Although previous studies[13-16] have proposed potential biomarker candidates (ie, C3, 

C4BPA, CFI, B2RAN2, ENG, RAB7A, ROCK2, XPO7, PDGF-BB, and TSP-1) to discriminate 

MDD and BD, their clinical significance and relevance must be validated in a large cohort. 

Specifically, considering that these candidates were discovered based on proteomic profiling 

studies that used different techniques (MALDI-TOF/TOF MS, LC-MS/MS, and immunoassay), 

their statistical significance and expression patterns between MDD and BD must be validated in 
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large cohort studies, as do the 9 plasma proteins in our study. Although the 7 candidates (C3, 

C4BPA, CFI, B2RAN2, ENG, RAB7A, ROCK2, and XPO7) differed significantly between 

MDD and BD, their accuracies were not provided [94-96]. Conversely, 2 combined candidates 

(PDGF-BB and TSP-1) in the immunoassay-based panel had an accuracy of 67% in 

discriminating MDD and BD [97]. However, the 9 proteins of the previous studies were not 

included in our MRM-MS analysis of individual samples, having been excluded during the 

selection of MS-detectable targets, failing to satisfy the criteria, despite being integrated into our 

initial target list for MDD and BD. Thus, their discriminatory power could not be validated in our 

study. 

Compared with candidate biomarkers that have been proposed in previous studies [94-

97], there was only 1 replicated protein, IGHM, and its expression pattern was opposite to that in 

a previous study [94]. These discrepancies are likely due to different study designs with disparate 

techniques to quantify proteins and heterogeneous inclusion and exclusion criteria for patients, 

which might have led to heterogeneous groups. Specifically, regarding study design and 

techniques to quantify proteins, Chen et al. (2015) [94] compared proteomic profiles between 

MDD and BD using pooled samples for each group—using pooled samples of 15 MDD and 15 

BD-II plasma samples each. Conversely, in our study, 270 individual samples (90 MDD, 90 BD, 

and 90 HCs) were used to quantify the targets. The inconsistency of alterations in IGHM between 

MDD and BD could have resulted from the disparate number of samples and characteristics of 

pooled and individual samples. In addition, Chen et al. (2015) [94] performed proteomic analyses, 

based on 2-dimensional gel electrophoresis (2-DE), coupled with MALDI-TOF/TOF MS. 

Specifically, after the proteins were separated by 2DE, which was repeated in triplicate, 25 distinct 

spots were selected using PDQuest, and 25 DEPs were identified by MALDI-TOF/TOF MS. 

However, in our study, no separation of proteins was performed, and our targets were quantified 

directly by MRM-MS in a single run. Subsequently, the MRM-MS data were processed in Skyline 

to yield quantitative levels of the targets. I propose that the various MS-based quantitation 

methods for proteomic profiling or targeted proteomics and the inconsistency in data-processing 
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methods between tools influenced the opposite expression pattern of IGHM. Furthermore, with 

regard to the heterogeneous criteria for patients, drug-free MDD and BD patients were selected 

in Chen et al. (2015) [94]. But, in our study, most patients were medicated. Although IGHM was 

only related to the differential diagnosis by ANCOVA, it correlated with the use of MS and AD 

use in the univariate analysis. Thus, medication might have affected the inconsistency of the 

IGHM expression patterns. Disease subtype and episodes should also be considered. Although 

Chen et al. (2015) was based solely on BD-II depressive patients, our study was based on BD-I, 

BD-II, BD-NOS, and various episodes. Thus, the heterogeneity of BD in our study could have 

influenced these results.  

In summary, several proteins (ie, C1QB, DSG3 and FHR3) were discovered to 

differentiate MDD from BD, in addition to known proteins that were identified in relation to MDD 

or BD. However, due to the heterogeneity of these diseases, it is unlikely that a single plasma 

protein differentiates MDD from BD and explains the disorder [90-92]. In addition, several 

proteins were associated with other psychiatric disorders, because different psychiatric disorders 

share genetic susceptibilities [104] and biological pathways [91]. A recent study reported that the 

same proteins were identified as blood biomarkers in 1 or more psychiatric disorders between 

MDD, BD, and SZ [92]. Thus, it is likely that the combination of certain key proteins 

differentiates MDD from BD. 

Our bioinformatics analysis of the 9 features revealed the following. The first network, 

which comprised interactions between our features and other molecules, was associated with 

several biological functions (cell-to-cell signaling and interaction, hematological system 

development and function, and immune cell trafficking) and psychiatric diseases (psychological 

disorder). With regard to canonical pathways that were associated with the network, previous 

research demonstrated that LXR/RXR activation, FXR/RXR activation, and acute phase response 

signaling were enriched in MDD and BD [92]. In particular, LXR/RXR activation was significant 

in a previous study that compared MDD and BD [96]. Immunity and inflammation-related 

pathways—NF-kB signaling and neuro-inflammation signaling pathways—have also been 
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examined in MDD and BD [113, 114]. Although the 25 differentially expressed proteins (DEPs) 

in Chen et al. (2015) [94] and the 14 DEPs in Rhee et al. (2020) [96] differed except for IGHM, 

the analysis of biological functions in previous studies also revealed that immune and 

inflammatory pathways were related to the DEPs. Notably, there were other pathways that lacked 

known associations with discriminatory proteins between MDD and BD, perhaps revealing 

collateral evidence for the pathogenesis of MDD and BD.  

Several studies have reported that neuro-related signaling pathways—CREB signaling 

in neurons, synaptic long-term depression, and synaptic long-term potentiation—influence the 

pathogenesis of MDD and BD [175-179]. Furthermore, other studies reported that oxidative and 

nitrosative stress-related pathways are involved in the pathogenesis of mood disorders and might 

be biological mechanisms for therapeutic strategies of depressive disorders [180-182]. In 

conclusion, the activation or inhibition status of neuro-related, oxidative and nitrosative stress-

related, and immunity/inflammation-related pathways, which are well known in mood disorders, 

might differ between MDD and BD, leading to disparate protein expression patterns in plasma. 

However, because these pathways were deduced from peripheral blood proteins, not the central 

nervous system, caution is necessary when interpreting the results. 

There were several limitations of our study. First, the sample size was a major limitation, 

due to the difficulty in collecting the appropriate patient and healthy control samples. In addition, 

our model performance should be evaluated using an independent validation set in future 

studies—I examined its performance in an individual test set. Second, there could have been 

significant confounders that influenced our results. We classified medication use broadly, and 

specific dosages/durations of medication were not controlled for. Although I performed several 

analyses to determine whether certain covariates influenced the results, other covariates might 

have affected the discriminatory ability. Third, because it was a cross-sectional study, the 

interpretation for causality is limited. Longitudinal studies would enable observations of the 

diagnostic conversion from MDD to BD, and serial measures of proteins in an individual would 

allow differentiation between proteins that are associated with the trait and state of both disorders. 
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Lastly, although I tried to select important proteins regarding MDD and BD during the initial 

target integration and determined quantifiable protein targets based on our criteria, other targets 

might have been overlooked. 

However, our study has several strengths. It was the first report to differentiate MDD 

from BD by MRM-MS. Through our high-throughput MRM-MS method, multiple protein targets 

in MDD and BD were able to be quantified stably and reproducibly. In addition, these potential 

targets could be analyzed simultaneously in 270 individual samples, which was larger than in 

other proteomic studies [94-97]. Second, to decrease overfitting and develop a generalizable 

model, feature extraction and model averaging were used, resulting in good performance (AUC 

> 0.8), which was similar in the training and test sets. Third, the features in our model had 

biologically important relationships with MDD and BD. Finally, when our model was applied to 

several conditions, its discriminatory performance did not decrease. I propose that our model has 

applicability in data from various conditions. 

In conclusion, I examined the viability of discriminating MDD and BD patients using a 

targeted proteomic approach (MRM-MS). I developed a 9-feature generalizable model for 

distinguishing MDD from BD using feature extraction and model averaging. Our results suggest 

that these disorders can be differentiated using our model. Furthermore, I propose that the 9 

plasma proteins that were used as features have biologically important associations with these 

disorders. Although our model performed well, further studies need to be conducted in a large 

cohort that consists of drug-free MDD and BD patients to verify whether its performance can be 

replicated. This proof-of-concept study also demonstrates the potential of the proteomic-based 

model for discriminating mood disorders. 
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GENERAL CONCLUSION 

 

 

Liquid chromatography (LC)-mass spectrometry (MS)-based proteomics has evolved 

tremendously over the past few years. Therefore, expectations for discovery and development of 

biomarkers in specific diseases and disorders using proteomics have expanded. Recently high-

throughput LC-MS-based proteomic profiling and targeted proteomics have been implemented in 

the research of various diseases and disorders including breast cancer and mood disorders for 

discovery and development of protein biomarkers. Nonetheless, efficient biomarkers have not yet 

been discovered and developed for various lethal diseases and disorders. First, sample preparation 

methods for the LC-MS-based proteomic analysis of clinical and pathological specimens have 

not been established, robustly. In some cases, protein biomarker researches have not been 

performed at all because sample preparation methods of particular specimens are exceedingly 

difficult. Second, the untargeted proteomic method based on LC-high resolution-MS for increase 

of the depth of protein identification and targeted proteomic method based on LC-MRM-MS for 

stable multiplexed protein quantification have not been actively exploited. Lastly, collaborative 

studies between proteomics and clinics have been partially successful. In order to challenge these 

limitations, I have established proteomic analytical strategies for clinical and pathological 

specimens using appropriate LC-MS in protein biomarker discovery and development. 

In this study, biomarkers of specific diseases and disorders were discovered and 

developed by employing state-of-the-art untargeted and targeted proteomics technologies to 

respective clinical and pathological samples in order to overcome these limitations. FFPE tissue 

slides and blood plasma were used for untargeted and targeted proteomic analysis of distant 

metastatic breast cancer and mood disorders, respectively. Particularly, proteomic analysis of 

central nervous system-related specimens such as human brain tissue or cerebrospinal fluid is the 



145 

best way to develop protein biomarkers reflecting the molecular mechanisms of mood disorders. 

However, there are restrictions on the academic use of these specimens (especially brain) in Korea, 

making it strenuous to use in mood disorder researches. Therefore, as an alternative, the peripheral 

blood plasma samples, which are non-invasive and accessible in a number of patients, were used 

in this study. Taking advantage of the blood plasma, a large number of samples of patients and 

healthy controls were analyzed, and diagnostic protein biomarkers for discriminating mood 

disorders and biological interactions between these biomarkers and both disorders were 

developed and investigated, respectively.  

 The methods for protein biomarker discovery and development of these clinical and 

pathologic specimens have been reported to be particularly necessary or have not yet been 

established. Therefore, I have established proper analytical procedures relying on the type of 

specimens and analyzed them using untargeted and targeted LC-MS-based proteomic 

technologies. As a result, in Chapter I, a novel protein candidate biomarker was discovered for 

the prediction of distant metastatic breast cancer. Through investigation of the expression level 

of TUBB2A in stage1-3 breast cancer patients, clinicians are likely to predict distant metastatic 

breast cancer by monitoring the progression of breast cancer from stage1-3 to stage. However, 

for clinical use of the discovered biomarkers, substantial validation in larger samples is required 

by using non-MS platforms such as immunohistochemistry and ELISA. Whether TUBB2A 

expression is consistent between different quantitation platforms including LC-MS should be 

examined. In-depth functional analyses for TUBB2A are required to reveal molecular mechanism 

of regulating distant metastatic breast cancer. Nonetheless, the constructed distant metastatic 

breast cancer FFPE proteome, which is the largest data, will be advantageous as pivotal proteomic 

data for other breast cancer researchers. In Chapter II, nine novel plasma protein biomarkers for 

discriminating mood disorders were developed, and 9-plasma protein-based diagnostic model was 

also constructed. These findings demonstrated the potential of protein biomarkers in diagnosis of 

mood disorders. However, there were several limitations. The sample size is a major limitation 

due to the difficulty in collecting appropriate patients and HC samples. Secondly, there were 
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potential confounders that could have affected the performance of the model. Specifically, we 

categorized medication use dichotomously, and specific dosages and durations of medication 

were not controlled for. This was not enough to restrict medication effects on expression levels 

of plasma proteins, thus demanding analysis of plasma samples of first-episode and drug-naive 

patients. Third, the interpretation of causality is limited because the study was cross-sectional. 

Thus, longitudinal studies are required to observe diagnostic alterations of MDD and BD. Fourth, 

additional experimental validation of the proteins should be performed to examine whether the 

plasma proteins are correlated with the central nervous system. Lastly, the potential of our LC-

MS-based proteomic approaches should be validated using conventional immunoassays such as 

ELISA in order to evaluate consistency between different analytical platforms. 

 Through a series of LC-MS-based proteomic analyses, these studies emphasize the role 

of proteomics in the translational medicine. In addition, these analyses demonstrated that LC-MS-

based proteomics remains one of the most robust and powerful research fields to discover and 

develop biomarkers for specific diseases and disorders. However, obviously, there remains still a 

tremendous demand for protein biomarkers available for various diseases and disorders. To 

resolve this issue, proteomic methods and technologies appropriate for clinical and pathologic 

specimens should be developed and applied via ceaseless proteomic research. Providing that 

robust analytical procedures of proteomic technique for almost all clinical and pathological 

specimens are established, researchers will be aided in discovering and developing protein 

biomarkers.  

 Although I focused on proteomics technologies and protein biomarkers in this 

dissertation, integration of multi-omics data including proteomics, genomics, transcriptomics, and 

metabolomics is expected to provide useful insight into biomarker discovery and development 

for specific diseases and disorders. Provided that multi-omics techniques are optimized in clinical 

practice and integration of multi-omics and clinical data is achieved, it will contribute to 

facilitating discovery and development of robust biomarkers. Therefore, the multi-omics 
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approach should be considered in further study to rationalize the results of biomarkers in this 

study.  
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국문초록 

 

서론: 액체 크로마토그래피 및 질량 분석법 기반 단백체 접근법이 특정 질병 및 

장애와 관련된 바이오 마커를 발굴하고 개발하기 위해 적용되었다. 액체 

크로마토그래피 고해상도 질량 분석법을 기반으로하는 비표적 단백체학은 수천 

개의 단백질의 식별과 정량을 동시에 가능하게 하여 소량의 샘플에서 수백 개의 

차등 발현 단백질을 생성한다. 액체 크로마토그래피 다중반응겁지 질량 분석법을 

포함한 표적 단백체학은 높은 민감도, 정확도 및 재현성을 기반으로 표적 단백질을 

정량하는데 사용된다. 임상 단백체학 연구에서 포르말린 고정 파라핀 포매조직절편 

(FFPE), 혈액 및 기타 체액과 같은 임상 코호트에서 수집된 병리 및 임상 검체가 

분석되었다. 임상 단백체학 분석의 경우 액체 크로마토그래피 및 질량 분석법 기반 

접근법은 생체표지자의 발굴 및 개발과 높은 처리량과 높은 민감도로 임상 진단에 

기여하는 강력한 기술이다. 또한, 액체 크로마토그래피 및 질량 분석법에 기반한 

단백체학 연구는 특정 질병과 장애의 생물학적 및 분자적 특징에 대한 이해에 

기여할 것이다. 

 

방법: 1 장에서는 필터 보조 검체 준비 (FASP), 연속 질량 꼬리 표지, 높은 산도 

분획 및 액체 크로마토그래피-고분해능-질량분석법을 결합하여 원격 전이성 

유방암 및 비원격 전이성 유방암의 포르말린 고정 파라핀 포매조직절편(FFPE)을 

사용하여 심층 단백질 프로파일링 데이터를 획득하기 위한 통합 비표적 단백질 

접근법이 적용되었다. 통계 분석은 차등 발현 단백질을 결정하고 원격 전이성 

유방암을 예측하기 위한 후보 생체표지자를 발굴하기 위해 수행되었다. 원격 

전이성 유방암의 분자 특성을 조사하기 위해 차등 발현 단백질 사용하여 유전자 

온톨로지, 질병 및 기능, 표준 경로와 관련하여 생물정보학 분석이 수행되었다. 
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또한 후보 생체표지자의 원격 전이 가능성을 검증하기 위해 실시간 중합효소 연쇄 

반응과 침입/이주 분석을 수행했다. 제 2 장에서는 크로마토그래피-다중반응검지-

질량분석법에 기반한 표적 단백질 접근 방식을 적용하여 임상 코호트의 혈장 검체 

에서 주요 우울 장애 및 양극성 장애와 관련된 단백질 후보 생체표지자를 정량 

했다. 기술적 편차를 줄이기 위해 크로마토그래피-다중반응검지-질량분석법 

데이터의 배치 효과 보정이 수행되었다. 이후 발현 양에 차이를 보이는 후보 

단백질 생체표지자를 결정하기 위해 통계분석이 수행되었고, 특징 추출, 교차 검증 

및 가중 모델 평균화를 결합한 최소 절대 수축 및 선택 연산자에 기반한 머신 러닝 

접근법이 주요 우울 장애 와 양극성 장애를 구별하기 위한 잠재적 진단 모델을 

개발하기 위해 수행되었다. 또한, 모델에 포함된 단백질과 기분 장애 사이의 

생물학적 관계를 조사하기 위해 생물정보학 기반 네트워크 분석을 수행하였다. 

 

결과: 1 장에서 포르말린 고정 파라핀 포매조직절편-연속 질량 꼬리 표지 풀링 

샘플 세트와 포르말린 고정 파라핀 포매조직절편-연속 질량 꼬리 표지 개별 샘플 

세트로부터 각각 원격 전이 및 비원격 전이 그룹을 비교한 총 9,441 개 및 

8,746 개의 단백질이 동정 되었다. 또한, 저침습성 및 고침습성 세포주를 비교한 

유방암 세포주-연속 질량 꼬리 표지 샘플 세트에서 총 7,823 개의 단백질이 동정 

되었다. 후보 생체표지자의 단계별 결정 기준에 따라 2 개의 단백질(LTF, 

TUBB2A)을 유방암 원격전이 예측을 위한 후보 생체표지자로 결정하였다. 14 개 

유방암 세포주의 RT-PCR 데이터의 LTF 와 TUBB2A 발현 패턴을 

크로마토그래피-질량분석 데이터의 발현 패턴과 비교했을 때, TUBB2A 만이 두 

데이터 사이에서 일관된 발현 패턴을 보였다. 그 결과, TUBB2A 는 이후 원격 전이 

활성이 검증되는 새로운 생체표지자 후보로 선정되었다. 또한 생물정보학적 결과를 

통해 원격 전이의 전반적인 분자적 특징을 도출하였으며, 유방암 아형 간 원격 

전이성 유방암의 분자 기능 차이를 입증하였다. 제 2 장에서는 270 명의 혈장 

샘플[90 명의 주요 우울 장애, 90 명의 양극성 장애, 90 명의 정상 대조군]에서 주요 

우울 장애 및 양극성 장애 에 관한 671 펩타이드에 해당하는 총 210 개의 
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단백질표적을 크로마토그래피-다중반응검지-질량분석법을 사용하여 안정적으로 

정량 하였다. 훈련 세트(72 명의 주요 우울 장애 및 72 명의 양극성 장애)에서는 

9 개의 혈장 단백질로 구성된 일반화 가능한 모델이 개발되었다. 모델은 테스트 

세트(18 명의 주요 우울 장애 및 18 명의 양극성 장애)에서 평가되었다. 이 모델은 

훈련 (곡선 아래의 면적 = 0.84)과 테스트 세트(곡선 아래의 면적 = 0.81)에서 

MDD 를 BD 와 구별하고 현재 고조증/저조증/혼합 증상 (90 명의 주요 우울 장애 

및 75 명의 양극성 장애)(곡선 아래의 면적 = 0.83)에서 우수한 성능(곡선 아래의 

면적 > 0.8)을 보였다. 그 후, 이 모델은 약물 투여 경험이 없는 주요 우울 장애와 

양극성 장애 환자 (11 명의 주요 우울 장애 및 10 명의 양극성 장애)(곡선 아래의 

면적 = 0.96)에서 우수한 성능을 보였고, 주요 우울 장애 대 정상 대조군(곡선 

아래의 면적 = 0.87) 및 양극성 장애 대 정상 대조군 (곡선 아래의 면적 = 

0.86)에서 우수한 성능을 보였다. 또한, 9 개의 단백질은 신경, 산화/질소 스트레스, 

면역/염증 관련 생물학적 기능과 관련이 있었다. 

 

결론: 제 1 장에서, 본 연구는 포르말린 고정 파라핀 포매조직절편 조직을 사용하여 

가장 큰 원격 전이성 유방암 단백체를 처음으로 구축하였다. 깊이 있는 단백체 

데이터를 통해 새로운 생체표지자 후보와 원격 전이성 유방암의 단백체 특성을 

발견할 수 있었다. 다양한 유방암 아형에서 원격 전이성 유방암의 뚜렷한 분자적 

특징도 확립되었다. 우리의 단백체 데이터는 원격 전이성 유방암 연구에 귀중한 

자원을 제공한다. 제 2 장에서는 표적 단백체학 접근방식을 사용하여 주요 우울 

장애 및 양극성 장애 환자를 구별 가능성을 제안했다. 우리는 주요 우울 장애와 

양극성 장애를 구별하기 위해 9 개 혈장 단백질로 구성된 일반화 가능한 모델을 

개발했다. 우리의 결과는 이러한 장애가 개발된 모델을 사용하여 구별 및 진단 할 

수 있음을 시사한다. 또한, 우리는 9 개의 혈장 단백질이 우울 장애와 양극성 

장애와 생물학적으로 중요한 연관성을 가질 것을 제안한다.  
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