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Abstract 

 

Deep learning-based approach for the 

prediction of post-stroke dementia  

using brain FDG PET 

Reeree Lee 

Department of Nuclear Medicine 

The Graduate School 

Seoul National University 

 

Post-stroke cognitive impairment can affect up to one-third of stroke survivors. Since cognitive 

function greatly contributes to patients’ quality of life, an objective quantitative biomarker for early 

prediction of dementia after stroke is required. Brain [18F]fluorodeoxyglucose (FDG) positron emission 

tomography (PET) has been widely used for evaluating cognitive function with typical hypometabolic 

patterns. Here, a deep-learning (DL)-based signature using brain FDG PET was developed to 

objectively evaluate post-stroke dementia. Additionally, an association between DL-derived cognitive 

signature and gene co-expression network analysis (WGCNA)-based gene expression signature was 

evaluated to elucidate the imaging phenotype-genomics relation regarding the cognitive function. 

A DL model was built to differentiate Alzheimer’s disease (AD) from normal controls (NC) using 

brain FDG PET from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The model 

was directly transferred to a prospectively enrolled cohort of patients with stroke to differentiate patients 

with dementia from those without dementia. The accuracy of the model was evaluated by the area under 
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the curve values of receiver operating characteristic curves (AUC-ROC). The distribution of DL-based 

features and brain regions that the model weighted for classification was visualized. Correlations 

between cognitive signature from the DL model and clinical variables were evaluated, and survival 

analysis for post-stroke dementia was performed in patients with stroke.  

Microarray gene expression data from blood samples of the ADNI whole genome sequencing 

(WGS) cohort participants was used for WGCNA. After preprocessing of gene expression profile, 

weighted correlation network analysis was performed and gene modules, clusters of highly 

interconnected genes, were identified. Then, relationships between module gene expression and clinical 

features, including DL-derived cognitive signature, were estimated to determine relevant modules. To 

apprehend the underlying biological meaning of the relevant modules, pathway/process enrichment 

analyses were applied. 

The classification of AD vs. NC subjects was performed with AUC-ROC of 0.94 (95% confidence 

interval [CI], 0.89–0.98). The transferred model discriminated stroke patients with dementia (AUC-

ROC = 0.75). The score of cognitive decline signature from the DL-model was positively correlated 

with age, neutrophil–lymphocyte ratio and platelet-lymphocyte ratio and negatively correlated with 

body mass index in patients with stroke. The cognitive decline score was an independent risk factor for 

dementia following stroke after adjustment for other key variables. 

Total of 24,198 genes were divided into 14 modules on WGCNA with hierarchical clustering 

algorithm. Among 14 modules, black, greenyellow, pink, red, tan, and brown modules showed a 

significant correlation with DL-based cognitive signature. Among them, black, greenyellow, and brown 

modules were significantly correlated with dementia status, as well. And these three modules were also 

associated with amyloid deposition, TAU/PTAU, and risk factors for stroke. On enrichment analyses, 

most of the enriched ontology terms in black and brown modules were related to inflammation, 

leukocyte, especially neutrophil, while greenyellow module was associated with lymphocyte, B-cell 

activation. 

The DL-based cognitive signature using FDG PET was successfully transferred to an independent 

stroke cohort. It is suggested that DL-based cognitive evaluation using FDG PET could be utilized as 

an objective biomarker for post-stroke dementia. Furthermore, this study confirmed that inflammatory 
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condition measured by gene expression profile of peripheral blood as well as complete blood counts are 

deeply related to the DL-based imaging phenotype of cognitive function and risk factors for stroke. 

 

--------------------------------------------------------------------------------------------------------------------------- 

Keywords: Post-stroke dementia, Post-stroke cognitive impairment, [18F]FDG, Deep learning, gene co-

expression network 

Student number: 2019-32281 
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Introduction 

Post-stroke dementia (PSD) 

Post-stroke dementia (PSD) or post-stroke cognitive impairment in patients with stroke can affect up 

to one-third of stroke survivors (1). Physical disability after stroke onset tends to improve; however, 

cognitive decline generally worsens over time for unclear reasons (2). Since cognitive function is greatly 

responsible for patients’ functional outcomes and quality of life, early detection of cognitive decline is 

expected to help reduce the social and economic burden. Therefore, an objective quantitative biomarker for 

predicting dementia after stroke is required. 

 

Brain FDG PET for dementia evaluation 

Brain [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) is a functional imaging 

modality that reflects glucose metabolism in the brain. Patterns of brain FDG PET related to dementia, 

particularly Alzheimer’s disease (AD), have also been widely studied, with representative findings of 

diffuse and symmetric decreased uptake in the neocortical association areas, medial temporal lobe and 

posterior cingulate cortex (3). These hypometabolic patterns in the brain are not specific to AD. 

Hypometabolism in the posterior cingulate, precuneus and prefrontal areas is common in various types of 

dementia, including vascular dementia and AD (4). This supports the common pathophysiology of cognitive 

impairment affected by degeneration of neurons in several types of dementia. Furthermore, vascular disease 

and AD share common risk factors, including hypertension, obesity, diabetes and atherosclerosis, with a 

bidirectional relationship (5, 6). In this regard, in patients with stroke, evidence of cognitive impairment is 

likely to be detected via the brain FDG PET pattern of AD. 
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The necessity of applying a deep learning model for PSD prediction 

However, since patients with stroke often already have a decrease in metabolism/blood flow in the 

affected brain region, it is challenging to predict dementia by recognizing the FDG PET pattern of dementia 

through visual inspection. Additionally, in stroke patients with significant physical impairment, it may be 

difficult to assess limitations in daily living autonomy related to cognitive function (7). Thus, there is a 

considerable need for an imaging biomarker to objectively and non-invasively evaluate cognitive function 

in such patients. To this end, a brain metabolic signature based on a deep convolutional neural network 

(CNN) model was applied to predict dementia using FDG PET. The bottleneck of actively applying deep 

learning to medical imaging modalities is a limitation of data. To overcome this, transfer learning was 

adopted. Transfer learning can utilize the learned knowledge of feature maps, from trained model to 

untrained dataset which is even different domain of images (8, 9). It is hypothesized that the CNN model 

that classifies AD extracts cognitive function-related patterns from the brain FDG PET and could transfer 

those to other disorders to reflect cognitive function. The brain metabolic signature representing cognitive 

impairment was derived from the model trained using a large dataset of FDG PET from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) and directly transferred (10, 11) to a PET dataset of patients with 

stroke. Whether the suggested model could predict not only AD but also dementia after a stroke in survivors 

was investigated. It is clarified that Part I. of this thesis has been published in peer-review journal (12). 

 

Investigation of the imaging phenotype–genomics association 

Additionally, a correlation between imaging phenotypes of cognition derived from deep CNN model 

and gene expression signature using co-expression network analysis was evaluated. Standard analysis of 

differential expression compares gene expression by dichotomizing given conditions (e.g., imaging 

phenotypes), requiring pre-defined hypothesis or prioritization, in which loss of information may occur.  
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Co-expression networks have been found to be useful to describe the pairwise relationships among gene 

transcripts by exploring system-level intercorrelation of genes, based on application of graph theory, and 

vigorous statistical methods (13, 14). Investigating the imaging phenotype–genomics association may 

provide insight into cognition-related genomic events at cellular level, and furnish useful details with 

respect to the diagnosis, prognosis, and treatment of cognitive impairment. 
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Methods 

Patients for deep learning model 

The Cerebral Atherosclerosis Research with Positron Emission Tomography (CARPET) is a 

prospective registry for understanding the pathophysiology of cerebral atherosclerosis by applying FDG 

PET in patients with acute cerebral infarction or transient ischemic attack. This study was reviewed and 

approved by the Institutional Review Board of Chung-Ang University Hospital (C2015061) and all subjects 

signed an informed consent form. The current study was registered in the Clinical Research Information 

Service (registration no.: KCT0002462) as a part of the International Clinical Trials Registry Platform of 

the World Health Organization supported by the Korea Centers for Disease Control and Prevention. All 

eligible patients underwent brain computed tomography angiography (CTA) at admission. Patients with 

carotid atherosclerosis ≥ 50% on brain CTA were included. To understand the relationship between cerebral 

atherosclerosis burden and hematopoietic organ activities, stroke patients with mild carotid stenosis or 

without carotid atherosclerosis concurrently were also included. Exclusion criteria were as follows: patients 

with overt cancer or autoimmune diseases, advanced renal impairment with an estimated glomerular 

filtration rate < 30 mL/min/1·73 m 2, uncontrolled diabetes mellitus, or other unstable medical conditions. 

The enrolled patients underwent a comprehensive stroke etiology workup, including brain magnetic 

resonance imaging, cardiac evaluation and bone mineral density evaluation using dual-energy X-ray 

absorptiometry. Finally, a total of 110 patients with stroke (mean age, 72.1 ± 9.9 years; female: male, 43: 

67) were included in this study, and 13 patients with pre-stroke (11.8%) and 19 with post-stroke (17.3%) 

dementia were classified as stroke patients with dementia (29.1%). Pre-stroke dementia was designated 

when a patient had been diagnosed with dementia before index stroke. Post-stroke dementia was diagnosed 

when a patient or caregiver complained of continued cognitive decline hampering everyday life, and 

objective neuropsychological tests including, but not limited to, mini-mental status examination (MMSE) 
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and clinical dementia rating (CDR) confirmed decreased cognitive function at least 6 months after index 

stroke (12). 

Baseline FDG PET images acquired from participants recruited in the ADNI (N = 693; 292 AD, and 

401 normal controls [NC]) were used to train a model (http://adni.loni.usc.edu). Demographics of the 

individuals are listed in Table 1.
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Table 1. Patient characteristics 

 

ADNI cohort Stroke cohort 

AD NC Pre-stroke dementia Post-stroke dementia Non-dementia 

Subject number 292 401 13 19 78 

Age (y, mean ± SD) 74.9 ± 8.0 73.8 ± 6.0 79.5 ± 4.8 75.5 ± 6.7 70.1 ± 10.5 

Sex (F:M) 119:173 204:197 8:5 6:13 29:49 

MMSE (mean ± SD) 23.2 ± 2.2 29.0 ± 1.2 9.8 ± 8.1 13.1 ± 8.7 NA 

SD, standard deviation; AD, Alzheimer’s disease; NC, normal controls 
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FDG PET Image acquisition and processing 

Once a patient was stabilized after an index stroke event, whole-body FDG PET/CT was conducted 

using a combined scanner (Gemini TF 16, Philips Medical Systems, Cleveland, OH, USA). All patients 

fasted for at least 6 h, and blood glucose levels were confirmed to be < 150 mg/dL. After the intravenous 

injection of 259–370 MBq (7–10 mCi) of FDG, patients waited in a quiet room for approximately 60 

min with their eyes open. A low-dose CT scan (120 kVp, 50 mAs) was performed first for attenuation 

correction and anatomical localization, and PET images were acquired from the vertex to the proximal 

thigh for 1 min per bed position (6–7 bed positions for a patient). The size of field of view of PET 

images was 576 × 576 (mm). Images were reconstructed with BLOB-OS-TF algorithm (three iterations, 

33 subsets) and the reconstructed matrix size was 144 × 144 with final voxel size of 4 × 4 mm2. Then, 

the images were spatially normalized to MNI space using SPM8 (University College of London, UK) 

with additional smoothing with an 8-mm Gaussian filter. Finally, the spatially normalized images were 

79 × 95 × 68 matrix size. 

 

Deep CNN model architecture and training 

The architecture of the proposed network is shown in Figure 1. This architecture is the result which 

showed best accuracy in multiple model experiments. Four 3D convolutional layers used rectified linear 

unit (ReLU) activation as an activation function. A global average pooling layer (GAP) summarized 

the feature maps (10 × 12 × 9), which were extracted from convolutional layers, into a 128-dimensional 

vector. The vectors were finally connected to an output layer with sigmoid function as an activation 

function. If a dense layer is used instead of the GAP, the feature maps are flattened and their spatial 

information is lost, which prevents from applying class activation map (CAM) method, to be described 

later. Therefore, the output of the GAP layer was connected to the last layer in this study. 

FDG PET images of AD (N = 292) and NC (N = 401) participants were used to train the CNN 

model. And the trained model was tested by the accuracy on the internal validation set (N = 70, 
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randomly selected for internal validation).  Adam optimizer with a learning rate of 0.001, binary 

crossentropy loss function, and batch size of 16 were used for model training. Iterative training was 

stopped by monitoring crossentropy loss function and accuracy of the internal validation set (12).  

Data preparation, CNN modeling, and model experiments were conducted in Python (version 3.7.7.) 

using a GPU-enabled Google Colaboratory environment, Keras (version 2.4.0) and TensorFlow 

(version 2.4.1) frameworks. The modeling codes can be found in 

https://colab.research.google.com/drive/11Aff2AnbZGLgaV4AN8cXj4RuUIHm08Z1?usp=sharing. 

 

  

https://colab.research.google.com/drive/11Aff2AnbZGLgaV4AN8cXj4RuUIHm08Z1?usp=sharing
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Figure 1. The architecture of the network. 

The model contains four three-dimensional convolutional layers with 3 × 3 × 3 convolutional filters, 

and features of PET images are hierarchically extracted. A total of 128 feature maps of size 10 × 12 × 

9 are vectorized by the global average pooling layer and connected to output for differentiating AD 

from NC. 
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Metabolic cognitive signature based on a deep CNN model 

The accuracy of the model was evaluated by the area under the curve (AUC) values of receiver 

operating characteristic (ROC) curves (AUC-ROC). A ROC curve to differentiate between AD and NC 

in the internal validation set was drawn. The model was transferred, and the AUC-ROC was measured 

to test accuracy for discriminating stroke patients with dementia (pre-stroke or post-stroke) from those 

without dementia. 

A nonlinear activation function is inevitable for classification of DL model. However, the current 

study was focused on the representative value of cognition rather than classification of AD vs. NC. For 

this reason, the metabolic cognitive signature score was obtained from the output of the CNN model 

without the activation function (sigmoid function) of the last layer (Figure 1). Thus, a one-dimensional 

score vector, named metabolic cognitive signature score, was obtained from a given PET volume. 

 

Model visualization and interpretation 

To visualize the CNN-based features, a heatmap and parametric t-distributed stochastic neighbor 

embedding (t-SNE) model were used. t-SNE method is a non-linear dimensionality reduction technique, 

aimed at preserving as much meaningful structure of the high-dimensional data as possible in the low-

dimensional space. Using this technique, very similar datapoints can be preserved in low-dimensional 

presentation, which is practically impossible in traditional linear mapping methods (e.g., principal 

component analysis [PCA] or multidimensional scaling [MDS]). In t-SNE, the pairwise distances 

between points of the data are converted into probability and points with similar characteristics are 

assigned a higher probability. The probability distribution is constructed using Gaussian distribution in 

the high dimensional space, while t-Student distribution in the lower dimensional space. Finally, the 

dissimilarity between probability distributions of pairwise distance in the lower dimensional space is 

minimized by using Kullback-Leibler divergence (15). In this study, 128-dimensional vectors from 

global average pooling layer were inputted to the t-SNE model that was carried out by using scikit-learn 
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package, TSNE function to intuitively visualize the distribution of CNN derived features.  

Class activation map (CAM) method was used to interpret decisions of the model. This method 

projects back the weights of the output layer on to the convolutional feature maps which allows for 

identifying which regions of an image are being used for discrimination by generating heatmap (16). 

Global average pooling spatially averages output feature maps of the last convolutional layer (in this 

study, the fourth convolutional layer). A weighted sum of the feature maps of the fourth convolutional 

layer is used to generate a CAM. By simply upsampling the CAM to the size of the original FDG PET 

volume, the image regions most relevant to AD can be identified. CAM visualization was performed 

with information extracted from the model using tensorflow. keras.function, and get_weights (for 

feature maps values, and weights, respectively) functions. 

 

Gene expression data preprocessing 

Microarray gene expression data from blood samples of the 744 ADNI whole genome sequencing 

(WGS) cohort participants was obtained from 

https://utilities.loni.usc.edu/download/files/genetic/c5992db7-4650-4ca7-9f3e-

27931ed9b80c/adni/ADNI_Gene_Expression_Profile.zip and imputed for WGCNA. The details of the 

processing methods for microarray gene expression dataset can be found in 

https://utilities.loni.usc.edu/download/files/genetic/c5992db7-4650-4ca7-9f3e-

27931ed9b80c/adni/ADNI_Microarry_Gene_Expression_Methods_Final_20150427.pdf. Of 49,386 

transcripts, 24,198 genes with a log-2 transformed mean expression level greater than 4 were selected 

for the WGCNA to remove the lowly expressed genes that are not relevant to the study by visualizing 

the distribution of gene expression level for each sample (before filtering, Figure 2a; after filtering, 

Figure 2b). Among 744 participants, 639 subjects underwent brain FDG PET on the same visit as blood 

sampling for gene expression profiling. The metabolic cognitive signature score was obtained from 

brain FDG PET images of those 639 participants to evaluate a correlation between DL-based imaging 

phenotype for cognitive function and WGCNA-based gene expression signature. 

https://utilities.loni.usc.edu/download/files/genetic/c5992db7-4650-4ca7-9f3e-27931ed9b80c/adni/ADNI_Gene_Expression_Profile.zip
https://utilities.loni.usc.edu/download/files/genetic/c5992db7-4650-4ca7-9f3e-27931ed9b80c/adni/ADNI_Gene_Expression_Profile.zip
https://utilities.loni.usc.edu/download/files/genetic/c5992db7-4650-4ca7-9f3e-27931ed9b80c/adni/ADNI_Microarry_Gene_Expression_Methods_Final_20150427.pdf
https://utilities.loni.usc.edu/download/files/genetic/c5992db7-4650-4ca7-9f3e-27931ed9b80c/adni/ADNI_Microarry_Gene_Expression_Methods_Final_20150427.pdf
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Figure 2. Density plots of log-2 transformed mean expression level of ADNI WGS cohort. 

Of 49,386 transcripts, 24,198 genes with a log-2 transformed mean expression level greater than 4 were 

selected for the WGCNA to remove the lowly expressed genes that are not relevant to the study. The 

distributions of before (a) and after (b) filtering gene expression level for each sample are visualized.  
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Weighted correlation network 

Weighted correlation network analysis was performed using R package, WGCNA (ver. 1.70-3) (14). 

Firstly, the co-expression similarity between gene i and j was defined as the correlation coefficient, Sij 

= cor(i, j). Using a soft-thresholding procedure, the co-expression similarity is transformed into the 

weighted adjacency matrix, aij = power(Sij, β) = Sij 
β (β >= 1), with allowing to weigh by a continuous 

values between 0 and 1 rather than the binary number 0 or 1. By raising correlation to a power, disparity 

between strong and weak correlations can be amplified. To choose a power term, scale-free topology 

fitting method was tested with ranging the power value from 1 to 20. A common characteristic of real 

world networks is a small-world property of which few nodes that are highly connected to other nodes 

(k) in the network. Scale-free networks are a type of network characterized by the existence of large 

hubs. A scale-free network is one with a power-law degree distribution, the probability that a node is 

connected with k other node decays as a power law p(k) ∼ k −γ  (17). Because there is a trade-off between 

mean connectivity (maintaining mean number of connections) and maximizing scale-free topology fit, 

the lowest power at which the saturation of scale-free topology above 0.80 was picked as recommended 

(18). Then, the adjacency matrix was transformed into a topological overlap matrix to make use of a 

topological information as well as gene expression information (19, 20), and fed into unsupervised 

hierarchical clustering to identify gene modules, clusters of highly interconnected genes. 

 

Identification of key modules related to the DL-based signature and clinical 

features 

To incorporate clinical information into the co-expression network, gene significance (GS) 

measures, defined as correlation coefficient between clinical trait and gene expression value across 

samples, were used.  

After the modules were identified, the module eigengene (ME), which is a representative value 

characterizing each module, was defined by the first principal component within each module. To 
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identify relevant modules, relationships between module gene expression and clinical features were 

estimated using the correlation between MEs and clinical variables. Modules with high correlation 

significance may represent pathways related to the clinical characteristics (14). 

 

Enrichment analyses for key modules 

Pathway/process enrichment analysis was applied to understand the underlying biological meaning 

of the modules by loading gene information of each modules on Metascape (http://metascape.org) with 

several ontology categories including GO Biological Process/Molecular functions/Cellular 

Components, Hallmark Gene Sets, Reactome Gene Sets, KEGG Pathway, Canonical Pathways, and 

BioCarta Gene Sets. The analysis applies standard accumulative hypergeometric statistical test to 

identify ontology terms. All resultant terms with a p-value < 0.01, a minimum hit count of 3, and an 

enrichment factor > 1.5 were automatically clustered into groups based on their similarities (Kappa 

similarity > 0.3) to reduce the degree of redundancy of ontology terms. The most enriched pathway was 

chosen as the representative term of the cluster (21). 

 

Statistical Analysis 

Values are expressed as mean ± standard deviation. Pearson’s correlation test was performed to 

evaluate the correlations between the metabolic cognitive signature score and various clinical features 

in patients with stroke. A general linear model was used to compare the scores between stroke patients 

with dementia and those without dementia with age, neutrophil–lymphocyte ratio (NLR) and body mass 

index (BMI) as cofactors. Survival was calculated from the date of visit due to index stroke to that of 

the occurrence of dementia or the last follow-up visit at the hospital. The log-rank test and Cox 

regression were used for survival analysis. The specific cut-off values for clinical parameters and the 

metabolic cognitive signature score in patients with stroke were determined using the Cantal and 

http://metascape.org/


15 

 

O’Quigley method (22). The data were analyzed using the R program (version 3.4.5, R Foundation for 

Statistical Computing, Vienna, Austria). Statistical significance was set at P < 0.05. 
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Results 

Part I. Development of DL-based cognitive signature 

Model training and accuracies 

Figure 3 shows the results of model training. The model fitting process was stopped after 120 

epochs by monitoring the loss function and accuracy of internal validation dataset. The accuracy of the 

model to distinguish between AD and NC was assessed by the AUC-ROC and was 0.94 (95% CI, 0.89–

0.99) in the internal validation set (N = 70). The model was directly transferred to differentiate stroke 

patients with dementia from those without dementia. The AUC-ROC for this transferred model was 

0.75 (95% CI, 0.64–0.85) (Figure 4). 
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Figure 3. Results of model training process. 

During the fitting process, accuracies tend to increase continuously, while loss values (crossentropy) 

tend to decrease in both training and internal validation datasets. The process is automatically stopped 

after 120 epochs.  
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Figure 4. Accuracies of deep CNN models measured by AUC-ROC. 

The AUC for differentiating AD from NC is 0.94 (95% confidence interval [CI], 0.89–0.99) for the 

internal validation set. The model is directly transferred to differentiating stroke patients with 

dementia from those without dementia with an AUC of 0.75 (95% CI, 0.64–0.85) 
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Visualization of CNN-based features and model interpretation 

To visualize participants according to the similarity of brain FDG PET features extracted from the 

deep CNN model, those were projected onto the two-dimensional axes using parametric t-SNE. Each 

point corresponds to individual PET data, and data with similar metabolic characteristics are indicated 

by near points (Figure 5). All PET images from the ADNI and stroke cohorts were plotted, and dementia 

and non-dementia were clustered and located on the right and left sides, respectively (Figure 5a). When 

patients with stroke were highlighted, a similar clustering pattern (blue and red dots in the right and left 

sides, respectively) was observed (Figure 5b), and the metabolic cognitive signature score derived from 

the model was greater in the right upper area than in the left lower area (Figure 5c). Moreover, most 

patients with post-stroke dementia were concentrated in the right upper area, while those with pre-stroke 

dementia showed a scattered distribution (Figure 5d). 

Regions related to dementia were visualized. CAMs generated heatmaps of brain metabolic features 

associated with dementia, as determined by the model. Heatmaps were drawn on individual FDG PET 

images of patients with stroke (Figure 6a-b), and averaged CAMs of AD patients in the ADNI cohort 

(Figure 7a) and PSD patients in the stroke cohort (Figure 7b) were generated. 
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Figure 5. Visualization of 128 features extracted from four convolutional layers on two-dimensional axes. 

Each point represents individual PET data, and near points indicate data with similar brain metabolic 

characteristics. (a) When all PET images (ADNI and stroke cohorts) are inputted, dementia (red) and 

non-dementia (blue) are clustered, located on the right and left side, respectively. (b) A similar 

clustering pattern in the highlighted patients with stroke is noted. (c) The metabolic cognitive signature 

score derived from the model is greater in the right upper area than in the left lower area. (d) The 

distribution of most patients with post-stroke dementia (red) is concentrated in the right upper area, 

while that of patients with pre-stroke dementia (orange) is scattered. 
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Figure 6. Representative brain FDG PET images of two post-stroke dementia patients with heatmaps 

showing regions associated with cognitive decline. 

Although metabolic cognitive signature scores (a, 0.629; b, 0.661) are similar to each other, the 

presumed affected areas are different. The model weighted on bilateral parietal and right frontal 

cortices (a) and on bilateral parietal, left temporal and posterior cingulate cortices (b).   
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Figure 7. Averaged class activation map results in patients with AD and PSD. 

The averaged brain regions weighted by the model exhibit more severe asymmetry in images of 

patients with AD (a) than those of patients with PSD (b). AD, Alzheimer’s disease; PSD, post-stroke 

dementia 
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Metabolic cognitive signature based on CNN correlated with clinical 

features 

Associations between metabolic cognitive signatures and clinical features were evaluated. Age, 

NLR and platelet-lymphocyte ratio (PLR) of patients with stroke were significantly correlated with 

higher metabolic cognitive signature scores (R = 0.22, P = 0.02, Figure 8a; R = 0.32, P < 0.001, Figure 

8b; and R = 0.29, P = 0.003, Figure 8c, respectively). BMI was negatively correlated with metabolic 

cognitive signature score (R = − 0.3, P = 0.002, Figure 8d). The score was significantly higher in stroke 

patients with dementia than in those without dementia, with age, NLR and BMI as cofactors (0.6 ± 0.2 

vs. 0.4 ± 0.2, P < 0.001, Figure 8e). 
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Figure 8. Correlations between the metabolic cognitive signature score and clinical features. 

Age (a), NLR (b) and PLR (c) of patients with stroke are significantly correlated with a higher score. 

BMI is negatively correlated with score (d). The p-values are calculated using Pearson correlation 

analysis. (e) A significant difference is observed between dementia and non-dementia stroke patients, 

with age, NLR and BMI as cofactors in the general linear model (*** P < 0.001). 
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Survival analysis for post-stroke dementia 

The median follow-up period was 18 months (interquartile range, 9 − 32 months), and the median 

overall survival for post-stroke dementia was not reached. The optimal cut-off value for the metabolic 

cognitive signature score was 0.48, as determined by the Cantal and O’Quigley method. A score of less 

than 0.48 yielded a significant survival advantage over the score of ≥ 0.48 (Figure 9). On univariable 

analysis using Cox proportional hazards regression, the metabolic cognitive signature score, age, LNR 

and BMI were significant factors for PSD. On multivariable analysis, the metabolic cognitive signature 

score was found to be independent of age, NLR and BMI. The results indicated that only the metabolic 

cognitive signature score increased the risk of PSD (hazard ratio, 10.12; 95% CI, 3.3 − 31.02; P < 0.001) 

after adjustment for other key variables (Table 2). 
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Figure 9. Kaplan–Meier plot and log-rank test. 

The metabolic cognitive signature score less than 0.48 (blue) yields a significant survival advantage 

over the score of ≥ 0.48 (red).



27 

 

Table 2. Cox proportional hazard model for determining risk factors of dementia after stroke 

 

Univariable analysis Multivariable analysis (backward deletion) 

Hazard ratio (95% CI) P Hazard ratio (95% CI) P 

Age (≥ 71 y vs. < 71 y) 3.8 (1.11 – 13.03) 0.034 2.54 (0.73 – 8.86) 0.064 

Sex (women vs. men) 0.86 (0.32 – 2.25) 0.751 NA NA 

NLR (≥ 1.94 vs. < 1.94) 3.45 (1 – 11.86) 0.049 3.92 (1.13 – 13.66) 0.077 

BMI (≥ 23.6 vs. < 23.6) 0.29 (0.1 – 0.87) 0.028 0.46 (0.15 – 1.42) Eliminated 

Diabetes (positive vs. negative) 1.71 (1.09 – 4.26) 0.248 NA NA 

Hypertension (positive vs. negative) 1.8 (0.42 – 7.8) 0.431 NA NA 

Metabolic cognitive signature score (≥ 0.48 vs. < 0.48) 10.90 (3.59 – 33.09) < 0.001 10.12 (3.3 – 31.02) < 0.001 



28 

 

Part II. Gene expression signature related to DL-based cognitive signature 

Conventional differential gene expression analysis 

Before constructing weighted correlation network, conventional differential gene expression was 

performed with pre-processed microarray data. With threshold of 0.48 for DL-based cognitive signature, 

no differentially expressed gene was confirmed to show false discovery rate (FDR)-adjusted p-values less 

than 0.05. Table 3 and Table 4 listed 10 top-ranked genes by descending FDR-adjusted p-values and 

descending log fold change (logFC), respectively. 

 

Construction of weighted correlation network 

Four outliers were detected in the microarray dataset of ADNI WGS cohort by sample clustering of the 

distance between samples, thus a total of 24,198 genes from 740 samples were used to construct a weighted 

correlation network. 

Then, a scale-free topology method determined the soft-thresholding power β = 8, lowest possible β 

that leads to an approximately scale-free network topology (Figure 10). Finally, 24,198 genes were divided 

into 14 modules using the hierarchical clustering algorithm (Figure 11); 1,031 genes in the black, 4,403 

genes in the blue, 3,282 genes in the brown, 1,143 genes in the green, 114 genes in the greenyellow,  3,664 

genes in the grey, 193 genes in the magenta,  571 genes in the pink,  147 genes in the purple,  1,118 genes 

in the red,  31 genes in the salmon, 98 genes in the tan, 6,829 genes in the turquoise, and 1,573 genes in the 

yellow modules. The genes that were not grouped into a module fell into the grey module, and were 

removed from subsequent analyses. 
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Table 3. 10 top-ranked genes by descending FDR-adjusted p-values 

Probe Set Symbol LogFC AveExpr P FDR adjusted P 

11717482_at PDHA1 0.09983678 6.127200 4.430370E-05 0.4841542 

11741086_x_at APLP2 -0.06372404 10.811135 4.909628E-05 0.4841542 

11718158_a_at NMI -0.10769525 8.469821 9.089896E-05 0.4841542 

11739526_a_at LPP -0.11243598 7.934156 1.020640E-04 0.4841542 

11743431_at LYRM9 0.08813719 7.574373 1.117055E-04 0.4841542 

11736631_a_at APOBEC3H -0.09818174 4.449792 1.516659E-04 0.5477919 

11730791_at SVIP 0.10954025 5.076255 1.886217E-04 0.5839458 

11730788_a_at APLP2 -0.05379736 10.822330 2.639093E-04 0.5869283 

11741085_a_at APLP2 -0.08425409 8.782874 2.727038E-04 0.5869283 

11718896_x_at SPAG9 -0.13226716 8.588381 2.784574E-04 0.5869283 

LogFC, estimate of the log2-fold-change corresponding to the effect or contrast; AveExpr, average log2-expression for the probe over all arrays and channels; 

FDR, False discovery rate 
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Table 4. 10 top-ranked genes by descending absolute LogFCs 

Probe Set Symbol LogFC AveExpr P FDR adjusted P 

11756083_x_at ENSG00000206239 0.8459395 6.445175 0.0037434283 0.6235441 

11716411_x_at RPS4Y1 -0.6905994 7.621648 0.0188327911 0.6235441 

11757733_s_at XIST 0.6668309 6.180074 0.0390940015 0.6354166 

11757857_s_at XIST 0.6589034 6.223420 0.0245057450 0.6257225 

11754194_s_at XIST 0.6548379 5.831351 0.0317420346 0.6334085 

11726814_x_at KDM5D -0.5190415 5.746248 0.0219669687 0.6235441 

11724075_a_at DDX3Y -0.5139931 5.359906 0.0165533320 0.6235441 

11720807_x_at EIF1AY -0.4990122 5.599486 0.0333203140 0.6347627 

11745012_a_at KDM5D -0.4655602 5.040483 0.0191147760 0.6235441 

11725295_s_at USP9Y -0.4393577 4.083355 0.0104322307 0.6235441 

LogFC, estimate of the log2-fold-change corresponding to the effect or contrast; AveExpr, average log2-expression for the probe over all arrays and channels; 

FDR, False discovery rate
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Figure 10. Scale free topology model fitting and mean connectivity by raising the power value from 1 to 20. 

Since there is a trade-off between scale-free topology model fit and a high mean number of connections, 

the lowest power at which the saturation of scale-free topology above 0.80 is 8 was picked to prevent loss 

of information.   
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Figure 11. Hierarchical cluster dendrogram to divide genes into modules. 

24,198 genes are divided into 14 modules; black, blue, brown, green, greenyellow, grey, magenta, pink, 

purple, red, salmon, tan, turquoise, yellow modules by hierarchical clustering algorithm. 
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Identification of module–trait relationships and key modules 

GS for DL-based cognitive signature of each module was observed to be high as a positive value in the 

black and brown modules and as a negative value in the greenyellow module (Figure 12). Modules of which 

ME showed a significant correlation with DL-based cognitive signature were black, greenyellow, pink, red, 

tan, and brown modules (Figure 13). Among them, black, greenyellow, and brown modules were 

significantly correlated with dementia status, as well (black, R = 0.079, P = 0.03; greenyellow, R = −0.19, 

P < 0.001; brown, R = 0.095, P = 0.009, Figure 13). Whether ME, the first principal component, is eligible 

for the representative value of each module, was confirmed by the scatter plot and there was a significant 

positive correlation between the ME and GS for DL-based cognitive signature in all three modules (black, 

R = 0.42, P < 0.001; greenyellow, R = 0.62, P < 0.001; brown, R = 0.066, P < 0.001, Figure 14). Since the 

purpose of this study is to discover a gene expression signature related to cognitive function, these three 

modules were used for further analysis. Black and brown modules, which showed a positive correlation 

with the metabolic signature and dementia status, significantly correlated with amyloid deposition evaluated 

by AV45 PET, serum TAU, and PTAU. Additionally, the brown module was associated not only with the 

patient's age, but also with the history of hypertension and cardiovascular disorder, which are risk factors 

for stroke. On the contrary, the greenyellow module, which showed a negative correlation with the 

metabolic signature and dementia status, also negatively correlated with age, history of hypertension, 

metabolic disease, and amyloid deposit (Figure 13). 
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Figure 12. Gene − DL-based cognitive signature significance of each module. 

Gene significance for DL-based cognitive signature is high as a positive value in the black and brown 

modules and as a negative value in the greenyellow module. 
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Figure 13. Heatmap presenting module – clinical features relationships. 

The black, greenyellow, and brown modules are significantly correlated with both DL-based cognitive 

signature and dementia status. The black and brown modules significantly correlate with amyloid 

deposition evaluated by AV45 PET, serum TAU, and PTAU. Furthermore, the brown module is 

associated with age, history of hypertension and cardiovascular disorder. The greenyellow module 

negatively correlates with age, history of hypertension, metabolic disease, and amyloid deposit.  
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Figure 14. Module eigengene (membership) vs. gene significance for DL-based cognitive signature of black, 

greenyellow, and brown modules. 

There is a significant positive correlation between the ME and GS for DL-based cognitive signature in all 

three modules. Therefore, the MEs of the three modules are considered to be representative value for gene 

expression in each module.  



37 

 

Enrichment analyses of genes in the black, greenyellow, and brown modules 

Enrichments analyses were conducted for genes of black, greenyellow, and brown modules which 

showed significant correlation with CNN-derived metabolic cognitive signature and dementia status. The 

20 top-score clusters of terms were visualized in the Figure 15a, b, and c (black, greenyellow, and brown, 

respectively) by descending p-values. Most of the enriched ontology terms in black and brown modules 

were related to inflammation, leukocyte, especially neutrophil (Figure 15a and c), while greenyellow 

module was associated with lymphocyte, B-cell activation (Figure 15b). 
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Figure 15. Enrichments analyses for genes of black, greenyellow, and brown modules. 

The 20 top-score clusters of terms of black (a), greenyellow (b), and brown (c) are visualized by 

descending p-values. Most enriched ontology terms are related to the neutrophil degranulation in black and 

brown modules and B-cell activation in greenyellow module. 
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Discussion 

 

In this study, it was suggested that a metabolic cognitive signature predicts cognitive outcomes in 

patients with stroke. The transferred model trained by patients with AD could differentiate dementia from 

non-dementia in patients with stroke. When CNN-derived similarity of FDG PET patterns was visualized 

in the two-dimensional space, PET images of post-stroke dementia were found to be clustered, while those 

of pre-stroke dementia were not. Furthermore, it was found that the metabolic cognitive signature score 

from the model was related to patients’ clinical features and was the only independent risk factor for the 

occurrence of post-stroke dementia. Additionally, the DL-based cognitive signature derived from the 

current study was related to the subjects’ inflammatory condition, which was measured by gene expression 

profile of peripheral blood as well as complete blood count. 

FDG PET imaging has been used in a large number of studies to investigate brain glucose metabolism 

in neurodegenerative diseases. And recently, several studies have adopted deep learning for the PET 

modality to find evidence of neurodegenerative diseases (8, 23–29). However, no published study has 

evaluated PSD using FDG PET or deep learning in patients with stroke.  The metabolic cognitive signature 

developed in the current study was able to distinguish patients with pre-/post-stroke dementia after learning 

the FDG PET pattern of cognitive dysfunction in patients with AD. 

To aid the interpretation of the CNN model that has an intrinsic black-box problem, the current study 

visualized CNN-derived features using dimension reduction and CAM methods. Through dimension 

reduction of 128 features, which are outputs of the global average pooling layer of the model, the parametric 

t-SNE could visualize the distribution of all participants’ cognitive states based on glucose metabolism. As 

expected, individuals with dementia and non-dementia were separately clustered in the ADNI and stroke 

cohort dataset, respectively. However, the distribution of stroke cohort is relatively located on borders and 

clustered compared to that of ADNI cohort because stroke cohort dataset is unseen data (out-of-distribution 

samples) for the model. However, the overall distribution patterns are similar to each other (right dementia, 
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left non-dementia), and no outlier was identified. Notably, most patients with post-stroke dementia were 

clustered with a greater metabolic cognitive signature score, while those with pre-stroke dementia were 

dispersed across the two-dimensionally embedded plot. 

This difference suggests a difference in brain metabolism and neuronal dysfunction in PSD compared 

with pre-stroke dementia. Owing to the relatively small number of patients with pre-and post-stroke 

dementia, further studies with a larger cohort are warranted to evaluate the metabolic differences between 

the two subgroups. By generating a heatmap from the CAM, this study could visualize which brain region 

contributes the most to decision of the model for classification. It was observed that the extent and location 

of the regions associated with cognitive decline differed among patients. 

The current study demonstrated the clinical feasibility of deep learning-based cognitive signature by 

evaluating its relationship with stroke survivors’ clinical variables and identifying it as an independent risk 

factor for post-stroke dementia. It is a well-recognized fact that older age is associated with cognitive 

decline. Similarly, a higher metabolic cognitive signature score was significantly correlated with a higher 

age of patients with stroke. It was also found that a higher metabolic cognitive signature score was 

associated with higher LNR and PLR, which suggests that the inflammatory process might play a role in 

cognitive dysfunction.  

The metabolic cognitive signature score exhibited a significant difference between stroke patients with 

dementia and those without dementia, with age, NLR and BMI as cofactors in the general linear model. 

Moreover, in the multivariable Cox regression analysis, a high metabolic cognitive signature score was the 

only significant risk factor for post-stroke dementia. These findings suggest that FDG PET can be a useful 

screening tool for cognitive dysfunction in patients with stroke. Additionally, the metabolic cognitive 

signature might be used as an objective biomarker for cognitive impairment in clinical trials of 

cerebrovascular diseases as well as neurodegenerative disorders. 

Dementia after a stroke often consists of a mixture of vascular insults and neurodegenerative processes 

(30). The processes associated with neurodegenerative and ischemic vascular disease precipitate 

overlapping pathogenic and molecular changes that eventually prompt neuronal damage and cognitive 
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impairment (31). Therefore, rather than distinguishing dementia as vascular vs. neurodegenerative, it is 

worth noting that the capture of metabolic alterations in the brain, which are derived from complex 

pathological processes, might predict dementia in patients with stroke by using brain FDG PET images 

taken at the stroke onset. Although there is no established medical practice for preventing cognitive 

impairment after stroke, patients at risk of cognitive dysfunction assessed by objective deep CNN-based 

biomarkers could benefit from intensified secondary prevention schemes, including medical interventions 

and lifestyle modification. 

Conventional differential gene expression analysis, which was performed prior to WGCNA application, 

compared logFCs in groups dichotomized by the threshold of DL-based cognitive signature of 0.48, found 

no differentially expressed gene. This may be due to the loss of information and is a limitation of 

conventional methods. Then, WGCNA was applied to investigate the relationship between DL-based 

imaging cognitive signature and gene expression signature of peripheral blood. The widely used 

unweighted network defines the network adjacency of gene-expression similarity using hard thresholding, 

which does not reflect the continuous nature of the co-expression of the gene expression profile. In contrast, 

the weighted network introduced in this study could prevent informational loss by taking continuous 

variables between 0 and 1 for the adjacency matrix by using soft thresholding.  

A total of 13 modules were identified as a result of WGCNA analysis, of which black, brown, and 

greenyellow modules showed significant relationships with both DL-based cognitive signature and 

dementia status. Unlike other modules, the three modules were also related to amyloid deposition, 

TAU/PTAU, and risk factors for stroke; thus, they can be considered to be modules related to post-stroke 

dementia. In the enrichment analysis of these three modules, the black/brown modules, which showed a 

positive correlation with DL-based cognitive signature and dementia status, were associated with 

degranulation of neutrophil; and the greenyellow module, which showed a negative correlation with DL-

based cognitive signature and dementia status, exhibited marked enrichment in lymphocyte activation. 

These results are consistent with the positive correlation between DL-based cognitive signature and NLR 

in the stroke cohort of this study. 
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Several investigations have demonstrated that sustained inflammation is a critical characteristic of 

neurodegenerative diseases (31–34). Furthermore, inflammation and/or inflammatory signaling is 

associated with risk factors for AD, including age, cardiovascular diseases and metabolic diseases (35). In 

this study, the CNN-derived cognition-related imaging phenotype was significantly correlated with patients’ 

inflammatory condition (specifically, high neutrophil and low-lymphocyte) which was identified not only 

in the complete blood counts but also in the gene expression profile of peripheral blood. 

This study has several limitations. First, since this was a post hoc analysis conducted to confirm the 

recurrence of vascular events after stroke, the current study did not perform systematic monitoring of 

cognitive function in all patients, but in patients diagnosed with dementia before stroke or suspected 

dementia after stroke. Second, all FDG PET images of ADNI/stroke cohort used for training/test of the 

model had been spatially normalized, and the image of stroke cohort with wide range of metabolic defects 

caused by ischemic burden may give rise to inaccuracy in the spatial normalization process which used 

brain template. Third, despite successful transfer learning, there is still an issue of data size. However, as 

the similarity of the institution’s dataset to the ADNI dataset is outstanding compared with that of natural 

image databases, such as ImageNet, the CNN model appears to appropriately transfer the image pattern of 

AD learned from the ADNI dataset to the stroke dataset. 

 

Case review regarding the survival analysis 

Representative images of true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) for PSD diagnosis were examined by setting the threshold of the metabolic cognitive 

signature score as 0.48, as applied by the Log rank test and Cox regression analysis. The spatially 

normalized FDG PET images of the highest score among positive cases with a score of 0.48 or higher and 

the lowest score among negative cases were visualized, respectively. As confirmed in the Figure 7a, the 

averaged CAM of ADNI cohort, a symmetric hypometabolism in the bilateral parieto-temporal lobe was 
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confirmed in the TP (Figure 16a) and FP (Figure 16b) cases as well. On the other hand, in the TN (Figure 

16c) case, the glucose metabolism of the brain was preserved without a corresponding pattern. Interestingly, 

although Figure 16e is the same TN case, right cerebral hemisphere showed asymmetric metabolic decrease, 

and in this patient, acute recurrence of stroke developed 16 days later. In image of FN case (Figure 16d) 

where model tested negative but PSD occurred, asymmetric hypometabolism also appeared in the right 

cerebral hemisphere, while the metabolism of the left parietal lobe was preserved. Taken together, since 

this model learned the metabolic pattern of AD patients in ADNI cohort, TP/FP cases can be considered 

closer to the AD-like pattern, and TN cases, particularly stroke recurrence case and FN case can be deemed 

closer to the vascular dementia-like pattern. However, as confirmed by survival analysis, the model 

successfully predicted post-stroke dementia using the brain FDG PET obtained at the onset of stroke, and 

FP cases may be high-risk patients who may develop PSD in further follow-up. 
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Figure 16. Spatially normalized FDG PET images of TP, FP, TN, FN cases 

(a) TP case, DL-based score of 0.899; a 78-year-old woman with both pICA and dICA stenosis 

presented with left MCA infraction. 18 months after the stroke onset, post-stroke dementia developed.  

(b) FP case, DL-based score of 1.0; a 81-year-old man with left pICA mild stenosis presented with BA 

occlusion. The follow-up period was 9 months. 

(c) TN case, DL-based score of 0.043; a 64-year-old woman with right MCA occlusion hospitalized 

due to transient ischemic attack. The follow-up period was 13 months. 

(d) FN case, DL-based score of 0.239; a 72-year-old man with right pICA occlusion presented with 

right MCA infarction. Post-stroke dementia developed after 5 months of stroke onset.  

(e) TN case, DL-based score of 0.055; a 41-year-old man with right MCA occlusion presented with 

right MCA infarction. 16 days later, he underwent stroke recurrence. The follow-up period was 5 months. 

 

TP, true positive; FP, false positive; TN, true negative; FN, false negative; DL, deep learning; pICA, 

proximal internal carotid artery; dICA, distal internal carotid artery; BA, basilar artery; MCA, middle 

cerebral artery 
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Conclusions 

 

The proposed CNN model differentiating AD from NC was successfully transferred to an independent 

stroke cohort. The deep learning-based cognitive signature is associated with clinical variables in patients 

with stroke and is an independent risk factor for dementia following stroke. Furthermore, this study 

confirmed that inflammatory condition measured by gene expression profile of peripheral blood as well as 

complete blood counts are deeply related to the DL-based imaging phenotype of cognitive function. CNN-

based cognitive evaluation using FDG PET may be utilized as an objective biomarker for cognitive 

dysfunction in patients with cerebrovascular diseases as well as neurodegenerative disorders. 
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뇌 FDG PET을 이용한 딥러닝 기반 뇌졸중 후 

치매 예측 연구 

이리리 

서울대학교 대학원 

핵의학 전공 

 

뇌졸중후 치매는 뇌졸중을 겪은 환자의 약 3분의 1에서 발생한다.  인지 기능은 환자의 삶의 

질에 지대한 영향을 끼치므로, 뇌졸중 후 치매의 조기 예측을 위한 객관적이고 정량화 가능한 

바이오마커가 필요하다. 뇌 플루오데옥시글루코스(F-18 fluorodeoxyglucose, FDG) 

양전자방출촬영(positron emission tomography, PET)은 그 전형적인 대사감소 패턴으로 인지 기능 

평가에 널리 이용되어 왔다. 본 연구에서는, 뇌졸중 후 치매를 평가하기 위해 뇌 FDG PET를 이용한 

딥러닝 기반의 시그니처를 개발했다. 또한, 딥러닝 유래 인지기능 시그니처와 유전자 공발현 
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네트워크 분석(gene co-expression network analysis, WGCNA) 기반 유전자 발현 시그니처간의 

연관성을 평가하여 인지 기능과 관련된 영상표현형-유전자형 관계를 설명하였다. 

알츠하이머병 신경영상화 이니셔티브 (Alzheimer’s Disease Neuroimaging Initiative, ADNI) 

데이터베이스의 뇌 FDG PET를 이용해 알츠하이머병과 정상 대조군을 구별하도록 딥러닝 모델을 

개발했다. 그 모델은 곧바로 전향적으로 모집된 뇌졸중 환자 코호트로 전이(transfer)되어, 치매가 

있는 환자와 없는 환자를 구별하였다. 모델의 정확도는 수신자 조작 특성 곡선(Receiver operating 

characteristic curve, ROC)의 곡선 아래 면적(area under the curve, AUC)으로 평가하였다. 딥러닝 

기반의 특징의 분포와 모델이 분류를 위해 가중치를 준 뇌의 영역을 시각화 하였다. 딥러닝 

모델로부터 나온 인지 시그니처와 임상 변수들 간의 상관관계를 평가했으며, 뇌졸중 환자를 

대상으로 뇌졸중 후 치매에 대한 생존분석을 수행했다. 

ADNI의 whole genome sequencing (WGS) 코호트 참가자의 혈액 샘플에서 얻은 마이크로어레이 

유전자 발현(microarray gene expression) 데이터를 WGCNA에 이용하였다. 유전자 발현 프로파일을 

전처리 한 후 가중 상관관계 네트워크 분석(weighted correlation network analysis)을 수행하였고, 상호 

연관성이 높은 유전자의 클러스터인 유전자 모듈(module)을 확인하였다. 그런 다음, 모듈 유전자 

발현과 딥러닝 유래 인지 시그니처를 포함한 임상 특성들 사이의 관계를 평가하여 인지기능 

영상표현형과 관련된 모듈을 결정하였다. 관련된 모듈의 내재적인 생물학적 의미를 파악하기 위해 

pathway/process enrichment 분석을 적용하였다. 

알츠하이머병과 정상 대조군 참가자를 분류하는 AUC-ROC는 0.94 (95% 신뢰수준, 089-0.98)로 

확인되었다. 전이된 모델은 치매를 가진 뇌졸중 환자를 식별하였다(AUC-ROC = 0.75). 딥러닝 

모델의 인지기능 감소 시그니처의 점수는 연령, 호중구-림프구 비율 및 혈소판-림프구 비율과 양의 

상관관계가 있었으며, 뇌졸중 환자의 체질량 지수와는 음의 상관관계를 보였다. 인지기능 감소 

점수는 다른 주요 변수에 대한 보정 후에도 뇌졸중 후 치매에 대한 독립적인 위험인자로 확인되었다. 

총 740 명의 참가자의 혈액 샘플의 24,198 개의 유전자가 WGCNA 에서 계층적 클러스터링 
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알고리즘을 통해 14개의 모듈로 나뉘었다. 14개 모듈 중 검은색, 연두색, 분홍색, 빨간색, 황갈색, 

갈색 모듈은 딥러닝 기반 인지 시그니처와 유의한 상관관계를 보였다. 이 가운데 검은색, 연두색, 

갈색 모듈은 참가자의 치매 상태와도 유의한 상관관계가 있었다. 또한 이 세 모듈은 참가자의 뇌 

아밀로이드 침착, TAU/PTAU 농도, 그리고 뇌졸중의 위험인자들과 관계가 있었다.  Enrichment 

분석에서, 검은색과 갈색 모듈의 풍부한 온톨로지 용어(enriched ontology term)의 대부분은 염증, 

백혈구, 특히 호중구와 관련이 있는 반면, 연두색 모듈은 림프구, B세포 활성화와 관련이 있었다. 

FDG PET 를 사용한 딥러닝 기반 인지 시그니처는 독립적인 뇌졸중 코호트로 성공적으로 

전이되었다. FDG PET 를 이용한 딥러닝 기반 인지기능 평가가 뇌졸중 후 치매의 객관적인 

바이오마커로 활용될 수 있을 것이라 제안한다. 나아가, 본 연구에서는 일반 혈액 검사(complete 

blood count) 뿐만 아니라 말초혈액의 유전자 발현 프로파일에서 측정된 염증 상태가 인지기능의 

딥러닝 기반 영상표현형 및 뇌졸중 위험인자와 깊은 관련이 있음을 확인하였다. 

------------------------------------------------------------------------------------------------------------------------------- 

주요어 : 뇌졸중 후 치매, 뇌졸중 후 인지 장애, [18F]FDG, 딥러닝, 유전자 공발현 네트워크 

학번 : 2019-32281 
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