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Abstract

Deep learning-based approach for the
prediction of post-stroke dementia

using brain FDG PET

Reeree Lee
Department of Nuclear Medicine
The Graduate School

Seoul National University

Post-stroke cognitive impairment can affect up to one-third of stroke survivors. Since cognitive
function greatly contributes to patients’ quality of life, an objective quantitative biomarker for early
prediction of dementia after stroke is required. Brain [*®F]fluorodeoxyglucose (FDG) positron emission
tomography (PET) has been widely used for evaluating cognitive function with typical hypometabolic
patterns. Here, a deep-learning (DL)-based signature using brain FDG PET was developed to
objectively evaluate post-stroke dementia. Additionally, an association between DL-derived cognitive
signature and gene co-expression network analysis (WGCNA)-based gene expression signature was
evaluated to elucidate the imaging phenotype-genomics relation regarding the cognitive function.

A DL model was built to differentiate Alzheimer’s disease (AD) from normal controls (NC) using
brain FDG PET from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The model
was directly transferred to a prospectively enrolled cohort of patients with stroke to differentiate patients

with dementia from those without dementia. The accuracy of the model was evaluated by the area under



the curve values of receiver operating characteristic curves (AUC-ROC). The distribution of DL-based
features and brain regions that the model weighted for classification was visualized. Correlations
between cognitive signature from the DL model and clinical variables were evaluated, and survival
analysis for post-stroke dementia was performed in patients with stroke.

Microarray gene expression data from blood samples of the ADNI whole genome sequencing
(WGS) cohort participants was used for WGCNA. After preprocessing of gene expression profile,
weighted correlation network analysis was performed and gene modules, clusters of highly
interconnected genes, were identified. Then, relationships between module gene expression and clinical
features, including DL-derived cognitive signature, were estimated to determine relevant modules. To
apprehend the underlying biological meaning of the relevant modules, pathway/process enrichment
analyses were applied.

The classification of AD vs. NC subjects was performed with AUC-ROC of 0.94 (95% confidence
interval [CI], 0.89-0.98). The transferred model discriminated stroke patients with dementia (AUC-
ROC = 0.75). The score of cognitive decline signature from the DL-model was positively correlated
with age, neutrophil-lymphocyte ratio and platelet-lymphocyte ratio and negatively correlated with
body mass index in patients with stroke. The cognitive decline score was an independent risk factor for
dementia following stroke after adjustment for other key variables.

Total of 24,198 genes were divided into 14 modules on WGCNA with hierarchical clustering
algorithm. Among 14 modules, black, greenyellow, pink, red, tan, and brown modules showed a
significant correlation with DL-based cognitive signature. Among them, black, greenyellow, and brown
modules were significantly correlated with dementia status, as well. And these three modules were also
associated with amyloid deposition, TAU/PTAU, and risk factors for stroke. On enrichment analyses,
most of the enriched ontology terms in black and brown modules were related to inflammation,
leukocyte, especially neutrophil, while greenyellow module was associated with lymphocyte, B-cell
activation.

The DL-based cognitive signature using FDG PET was successfully transferred to an independent
stroke cohort. It is suggested that DL-based cognitive evaluation using FDG PET could be utilized as
an objective biomarker for post-stroke dementia. Furthermore, this study confirmed that inflammatory
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condition measured by gene expression profile of peripheral blood as well as complete blood counts are

deeply related to the DL-based imaging phenotype of cognitive function and risk factors for stroke.

Keywords: Post-stroke dementia, Post-stroke cognitive impairment, [*®F]FDG, Deep learning, gene co-
expression network

Student number: 2019-32281
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Introduction

Post-stroke dementia (PSD)

Post-stroke dementia (PSD) or post-stroke cognitive impairment in patients with stroke can affect up
to one-third of stroke survivors (1). Physical disability after stroke onset tends to improve; however,
cognitive decline generally worsens over time for unclear reasons (2). Since cognitive function is greatly
responsible for patients’ functional outcomes and quality of life, early detection of cognitive decline is
expected to help reduce the social and economic burden. Therefore, an objective quantitative biomarker for

predicting dementia after stroke is required.

Brain FDG PET for dementia evaluation

Brain [*8F]fluorodeoxyglucose (FDG) positron emission tomography (PET) is a functional imaging
modality that reflects glucose metabolism in the brain. Patterns of brain FDG PET related to dementia,
particularly Alzheimer’s disease (AD), have also been widely studied, with representative findings of
diffuse and symmetric decreased uptake in the neocortical association areas, medial temporal lobe and
posterior cingulate cortex (3). These hypometabolic patterns in the brain are not specific to AD.
Hypometabolism in the posterior cingulate, precuneus and prefrontal areas is common in various types of
dementia, including vascular dementia and AD (4). This supports the common pathophysiology of cognitive
impairment affected by degeneration of neurons in several types of dementia. Furthermore, vascular disease
and AD share common risk factors, including hypertension, obesity, diabetes and atherosclerosis, with a
bidirectional relationship (5, 6). In this regard, in patients with stroke, evidence of cognitive impairment is

likely to be detected via the brain FDG PET pattern of AD.



The necessity of applying a deep learning model for PSD prediction

However, since patients with stroke often already have a decrease in metabolism/blood flow in the
affected brain region, it is challenging to predict dementia by recognizing the FDG PET pattern of dementia
through visual inspection. Additionally, in stroke patients with significant physical impairment, it may be
difficult to assess limitations in daily living autonomy related to cognitive function (7). Thus, there is a
considerable need for an imaging biomarker to objectively and non-invasively evaluate cognitive function
in such patients. To this end, a brain metabolic signature based on a deep convolutional neural network
(CNN) model was applied to predict dementia using FDG PET. The bottleneck of actively applying deep
learning to medical imaging modalities is a limitation of data. To overcome this, transfer learning was
adopted. Transfer learning can utilize the learned knowledge of feature maps, from trained model to
untrained dataset which is even different domain of images (8, 9). It is hypothesized that the CNN model
that classifies AD extracts cognitive function-related patterns from the brain FDG PET and could transfer
those to other disorders to reflect cognitive function. The brain metabolic signature representing cognitive
impairment was derived from the model trained using a large dataset of FDG PET from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and directly transferred (10, 11) to a PET dataset of patients with
stroke. Whether the suggested model could predict not only AD but also dementia after a stroke in survivors

was investigated. It is clarified that Part I. of this thesis has been published in peer-review journal (12).

Investigation of the imaging phenotype—genomics association

Additionally, a correlation between imaging phenotypes of cognition derived from deep CNN model
and gene expression signature using co-expression network analysis was evaluated. Standard analysis of
differential expression compares gene expression by dichotomizing given conditions (e.g., imaging

phenotypes), requiring pre-defined hypothesis or prioritization, in which loss of information may occur.



Co-expression networks have been found to be useful to describe the pairwise relationships among gene
transcripts by exploring system-level intercorrelation of genes, based on application of graph theory, and
vigorous statistical methods (13, 14). Investigating the imaging phenotype—genomics association may
provide insight into cognition-related genomic events at cellular level, and furnish useful details with

respect to the diagnosis, prognosis, and treatment of cognitive impairment.



Methods

Patients for deep learning model

The Cerebral Atherosclerosis Research with Positron Emission Tomography (CARPET) is a
prospective registry for understanding the pathophysiology of cerebral atherosclerosis by applying FDG
PET in patients with acute cerebral infarction or transient ischemic attack. This study was reviewed and
approved by the Institutional Review Board of Chung-Ang University Hospital (C2015061) and all subjects
signed an informed consent form. The current study was registered in the Clinical Research Information
Service (registration no.: KCT0002462) as a part of the International Clinical Trials Registry Platform of
the World Health Organization supported by the Korea Centers for Disease Control and Prevention. All
eligible patients underwent brain computed tomography angiography (CTA) at admission. Patients with
carotid atherosclerosis > 50% on brain CTA were included. To understand the relationship between cerebral
atherosclerosis burden and hematopoietic organ activities, stroke patients with mild carotid stenosis or
without carotid atherosclerosis concurrently were also included. Exclusion criteria were as follows: patients
with overt cancer or autoimmune diseases, advanced renal impairment with an estimated glomerular
filtration rate < 30 mL/min/1-73 m 2, uncontrolled diabetes mellitus, or other unstable medical conditions.
The enrolled patients underwent a comprehensive stroke etiology workup, including brain magnetic
resonance imaging, cardiac evaluation and bone mineral density evaluation using dual-energy X-ray
absorptiometry. Finally, a total of 110 patients with stroke (mean age, 72.1 + 9.9 years; female: male, 43:
67) were included in this study, and 13 patients with pre-stroke (11.8%) and 19 with post-stroke (17.3%)
dementia were classified as stroke patients with dementia (29.1%). Pre-stroke dementia was designated
when a patient had been diagnosed with dementia before index stroke. Post-stroke dementia was diagnosed
when a patient or caregiver complained of continued cognitive decline hampering everyday life, and

objective neuropsychological tests including, but not limited to, mini-mental status examination (MMSE)



and clinical dementia rating (CDR) confirmed decreased cognitive function at least 6 months after index
stroke (12).

Baseline FDG PET images acquired from participants recruited in the ADNI (N = 693; 292 AD, and
401 normal controls [NC]) were used to train a model (http://adni.loni.usc.edu). Demographics of the

individuals are listed in Table 1.



Table 1. Patient characteristics

ADNI cohort Stroke cohort
AD NC Pre-stroke dementia Post-stroke dementia Non-dementia
Subject number 292 401 13 19 78
Age (y, mean = SD) 749+80 73.8+6.0 795+4.38 75.5+6.7 70.1+10.5
Sex (F:M) 119:173 204:197 8:5 6:13 29:49
MMSE (mean £ SD) 23.2+2.2 29.0+£1.2 9.8+8.1 13.1+£8.7 NA

SD, standard deviation; AD, Alzheimer’s disease; NC, normal controls



FDG PET Image acquisition and processing

Once a patient was stabilized after an index stroke event, whole-body FDG PET/CT was conducted
using a combined scanner (Gemini TF 16, Philips Medical Systems, Cleveland, OH, USA). All patients
fasted for at least 6 h, and blood glucose levels were confirmed to be < 150 mg/dL. After the intravenous
injection of 259-370 MBq (7-10 mCi) of FDG, patients waited in a quiet room for approximately 60
min with their eyes open. A low-dose CT scan (120 kVp, 50 mAs) was performed first for attenuation
correction and anatomical localization, and PET images were acquired from the vertex to the proximal
thigh for 1 min per bed position (6—7 bed positions for a patient). The size of field of view of PET
images was 576 x 576 (mm). Images were reconstructed with BLOB-OS-TF algorithm (three iterations,
33 subsets) and the reconstructed matrix size was 144 x 144 with final voxel size of 4 x 4 mm?2. Then,
the images were spatially normalized to MNI space using SPM8 (University College of London, UK)
with additional smoothing with an 8-mm Gaussian filter. Finally, the spatially normalized images were

79 x 95 x 68 matrix size.

Deep CNN model architecture and training

The architecture of the proposed network is shown in Figure 1. This architecture is the result which
showed best accuracy in multiple model experiments. Four 3D convolutional layers used rectified linear
unit (ReLU) activation as an activation function. A global average pooling layer (GAP) summarized
the feature maps (10 x 12 x 9), which were extracted from convolutional layers, into a 128-dimensional
vector. The vectors were finally connected to an output layer with sigmoid function as an activation
function. If a dense layer is used instead of the GAP, the feature maps are flattened and their spatial

information is lost, which prevents from applying class activation map (CAM) method, to be described

later. Therefore, the output of the GAP layer was connected to the last layer in this study.
FDG PET images of AD (N = 292) and NC (N = 401) participants were used to train the CNN
model. And the trained model was tested by the accuracy on the internal validation set (N = 70,
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randomly selected for internal validation). Adam optimizer with a learning rate of 0.001, binary
crossentropy loss function, and batch size of 16 were used for model training. Iterative training was
stopped by monitoring crossentropy loss function and accuracy of the internal validation set (12).

Data preparation, CNN modeling, and model experiments were conducted in Python (version 3.7.7.)
using a GPU-enabled Google Colaboratory environment, Keras (version 2.4.0) and TensorFlow
(version 2.4.1) frameworks. The modeling codes can be found in

https://colab.research.google.com/drive/11Aff2AnbZGLgaV4AN8cXj4RuUIHMO08Z1?usp=sharing.



https://colab.research.google.com/drive/11Aff2AnbZGLgaV4AN8cXj4RuUIHm08Z1?usp=sharing
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Figure 1. The architecture of the network.
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The model contains four three-dimensional convolutional layers with 3 x 3 x 3 convolutional filters,

and features of PET images are hierarchically extracted. A total of 128 feature maps of size 10 x 12 x

9 are vectorized by the global average pooling layer and connected to output for differentiating AD

from NC.
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Metabolic cognitive signature based on a deep CNN model

The accuracy of the model was evaluated by the area under the curve (AUC) values of receiver
operating characteristic (ROC) curves (AUC-ROC). A ROC curve to differentiate between AD and NC
in the internal validation set was drawn. The model was transferred, and the AUC-ROC was measured
to test accuracy for discriminating stroke patients with dementia (pre-stroke or post-stroke) from those
without dementia.

A nonlinear activation function is inevitable for classification of DL model. However, the current
study was focused on the representative value of cognition rather than classification of AD vs. NC. For
this reason, the metabolic cognitive signature score was obtained from the output of the CNN model
without the activation function (sigmoid function) of the last layer (Figure 1). Thus, a one-dimensional

score vector, named metabolic cognitive signature score, was obtained from a given PET volume.

Model visualization and interpretation

To visualize the CNN-based features, a heatmap and parametric t-distributed stochastic neighbor
embedding (t-SNE) model were used. t-SNE method is a non-linear dimensionality reduction technique,
aimed at preserving as much meaningful structure of the high-dimensional data as possible in the low-
dimensional space. Using this technique, very similar datapoints can be preserved in low-dimensional
presentation, which is practically impossible in traditional linear mapping methods (e.g., principal
component analysis [PCA] or multidimensional scaling [MDS]). In t-SNE, the pairwise distances
between points of the data are converted into probability and points with similar characteristics are
assigned a higher probability. The probability distribution is constructed using Gaussian distribution in
the high dimensional space, while t-Student distribution in the lower dimensional space. Finally, the
dissimilarity between probability distributions of pairwise distance in the lower dimensional space is
minimized by using Kullback-Leibler divergence (15). In this study, 128-dimensional vectors from

global average pooling layer were inputted to the t-SNE model that was carried out by using scikit-learn
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package, TSNE function to intuitively visualize the distribution of CNN derived features.

Class activation map (CAM) method was used to interpret decisions of the model. This method
projects back the weights of the output layer on to the convolutional feature maps which allows for
identifying which regions of an image are being used for discrimination by generating heatmap (16).
Global average pooling spatially averages output feature maps of the last convolutional layer (in this
study, the fourth convolutional layer). A weighted sum of the feature maps of the fourth convolutional
layer is used to generate a CAM. By simply upsampling the CAM to the size of the original FDG PET
volume, the image regions most relevant to AD can be identified. CAM visualization was performed
with information extracted from the model using tensorflow. keras.function, and get weights (for

feature maps values, and weights, respectively) functions.

Gene expression data preprocessing

Microarray gene expression data from blood samples of the 744 ADNI whole genome sequencing
(WGS) cohort participants was obtained from

https://utilities.loni.usc.edu/download/files/genetic/c5992db7-4650-4ca7-9f3e-

27931ed9b80c/adni/ADNI_Gene Expression_Profile.zip and imputed for WGCNA. The details of the

processing methods for microarray gene expression dataset can be found in

https://utilities.loni.usc.edu/download/files/genetic/c5992db7-4650-4ca7-9f3e-

27931ed9b80c/adni/ADNI Microarry Gene Expression Methods Final 20150427.pdf. Of 49,386

transcripts, 24,198 genes with a log-2 transformed mean expression level greater than 4 were selected
for the WGCNA to remove the lowly expressed genes that are not relevant to the study by visualizing
the distribution of gene expression level for each sample (before filtering, Figure 2a; after filtering,
Figure 2b). Among 744 participants, 639 subjects underwent brain FDG PET on the same visit as blood
sampling for gene expression profiling. The metabolic cognitive signature score was obtained from
brain FDG PET images of those 639 participants to evaluate a correlation between DL -based imaging

phenotype for cognitive function and WGCNA-based gene expression signature.
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Figure 2. Density plots of log-2 transformed mean expression level of ADNI WGS cohort.
Of 49,386 transcripts, 24,198 genes with a log-2 transformed mean expression level greater than 4 were
selected for the WGCNA to remove the lowly expressed genes that are not relevant to the study. The

distributions of before (a) and after (b) filtering gene expression level for each sample are visualized.

12 . H E ] ¢



Weighted correlation network

Weighted correlation network analysis was performed using R package, WGCNA (ver. 1.70-3) (14).
Firstly, the co-expression similarity between gene i and j was defined as the correlation coefficient, Sj;
= cor(i, j). Using a soft-thresholding procedure, the co-expression similarity is transformed into the
weighted adjacency matrix, ai; = power(Si, B) = Sij * (B >= 1), with allowing to weigh by a continuous
values between 0 and 1 rather than the binary number 0 or 1. By raising correlation to a power, disparity
between strong and weak correlations can be amplified. To choose a power term, scale-free topology
fitting method was tested with ranging the power value from 1 to 20. A common characteristic of real
world networks is a small-world property of which few nodes that are highly connected to other nodes
(K) in the network. Scale-free networks are a type of network characterized by the existence of large
hubs. A scale-free network is one with a power-law degree distribution, the probability that a node is
connected with k other node decays as a power law p(k) ~ k ™" (17). Because there is a trade-off between
mean connectivity (maintaining mean number of connections) and maximizing scale-free topology fit,
the lowest power at which the saturation of scale-free topology above 0.80 was picked as recommended
(18). Then, the adjacency matrix was transformed into a topological overlap matrix to make use of a
topological information as well as gene expression information (19, 20), and fed into unsupervised

hierarchical clustering to identify gene modules, clusters of highly interconnected genes.

Identification of key modules related to the DL-based signature and clinical

features

To incorporate clinical information into the co-expression network, gene significance (GS)
measures, defined as correlation coefficient between clinical trait and gene expression value across
samples, were used.

After the modules were identified, the module eigengene (ME), which is a representative value

characterizing each module, was defined by the first principal component within each module. To
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identify relevant modules, relationships between module gene expression and clinical features were
estimated using the correlation between MEs and clinical variables. Modules with high correlation

significance may represent pathways related to the clinical characteristics (14).

Enrichment analyses for key modules

Pathway/process enrichment analysis was applied to understand the underlying biological meaning

of the modules by loading gene information of each modules on Metascape (http://metascape.org) with

several ontology categories including GO Biological Process/Molecular functions/Cellular
Components, Hallmark Gene Sets, Reactome Gene Sets, KEGG Pathway, Canonical Pathways, and
BioCarta Gene Sets. The analysis applies standard accumulative hypergeometric statistical test to
identify ontology terms. All resultant terms with a p-value < 0.01, a minimum hit count of 3, and an
enrichment factor > 1.5 were automatically clustered into groups based on their similarities (Kappa
similarity > 0.3) to reduce the degree of redundancy of ontology terms. The most enriched pathway was

chosen as the representative term of the cluster (21).

Statistical Analysis

Values are expressed as mean + standard deviation. Pearson’s correlation test was performed to
evaluate the correlations between the metabolic cognitive signature score and various clinical features
in patients with stroke. A general linear model was used to compare the scores between stroke patients
with dementia and those without dementia with age, neutrophil-lymphocyte ratio (NLR) and body mass
index (BMI) as cofactors. Survival was calculated from the date of visit due to index stroke to that of
the occurrence of dementia or the last follow-up visit at the hospital. The log-rank test and Cox
regression were used for survival analysis. The specific cut-off values for clinical parameters and the

metabolic cognitive signature score in patients with stroke were determined using the Cantal and
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O’Quigley method (22). The data were analyzed using the R program (version 3.4.5, R Foundation for

Statistical Computing, Vienna, Austria). Statistical significance was set at P < 0.05.
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Results

Part I. Development of DL-based cognitive signature

Model training and accuracies

Figure 3 shows the results of model training. The model fitting process was stopped after 120
epochs by monitoring the loss function and accuracy of internal validation dataset. The accuracy of the
model to distinguish between AD and NC was assessed by the AUC-ROC and was 0.94 (95% ClI, 0.89—
0.99) in the internal validation set (N = 70). The model was directly transferred to differentiate stroke
patients with dementia from those without dementia. The AUC-ROC for this transferred model was

0.75 (95% Cl, 0.64-0.85) (Figure 4).

16 3 ]



1.0
—e— accuracy

0.8 loss
0.6 pr
0.4
0.2
0 20 40 60 80 100 120
epoch
0.9
0.8
0.7 -u_.'.:.rJ‘,
0.6 ™ot
0.5
0.4 —— val_accuracy
0.3 ~— val_loss
0 20 40 60 80 100 120
epoch

Figure 3. Results of model training process.
During the fitting process, accuracies tend to increase continuously, while loss values (crossentropy)
tend to decrease in both training and internal validation datasets. The process is automatically stopped

after 120 epochs.
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internal validation set. The model is directly transferred to differentiating stroke patients with

dementia from those without dementia with an AUC of 0.75 (95% ClI, 0.64-0.85)
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Visualization of CNN-based features and model interpretation

To visualize participants according to the similarity of brain FDG PET features extracted from the
deep CNN model, those were projected onto the two-dimensional axes using parametric t-SNE. Each
point corresponds to individual PET data, and data with similar metabolic characteristics are indicated
by near points (Figure 5). All PET images from the ADNI and stroke cohorts were plotted, and dementia
and non-dementia were clustered and located on the right and left sides, respectively (Figure 5a). When
patients with stroke were highlighted, a similar clustering pattern (blue and red dots in the right and left
sides, respectively) was observed (Figure 5b), and the metabolic cognitive signature score derived from
the model was greater in the right upper area than in the left lower area (Figure 5c). Moreover, most
patients with post-stroke dementia were concentrated in the right upper area, while those with pre-stroke
dementia showed a scattered distribution (Figure 5d).

Regions related to dementia were visualized. CAMs generated heatmaps of brain metabolic features
associated with dementia, as determined by the model. Heatmaps were drawn on individual FDG PET
images of patients with stroke (Figure 6a-b), and averaged CAMs of AD patients in the ADNI cohort

(Figure 7a) and PSD patients in the stroke cohort (Figure 7b) were generated.
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Figure 5. Visualization of 128 features extracted from four convolutional layers on two-dimensional axes.

Each point represents individual PET data, and near points indicate data with similar brain metabolic

characteristics. (a) When all PET images (ADNI and stroke cohorts) are inputted, dementia (red) and

non-dementia (blue) are clustered, located on the right and left side, respectively. (b) A similar

clustering pattern in the highlighted patients with stroke is noted. (c) The metabolic cognitive signature

score derived from the model is greater in the right upper area than in the left lower area. (d) The

distribution of most patients with post-stroke dementia (red) is concentrated in the right upper area,

while that of patients with pre-stroke dementia (orange) is scattered.

20

BEL LT



Figure 6. Representative brain FDG PET images of two post-stroke dementia patients with heatmaps
showing regions associated with cognitive decline.

Although metabolic cognitive signature scores (a, 0.629; b, 0.661) are similar to each other, the
presumed affected areas are different. The model weighted on bilateral parietal and right frontal

cortices (a) and on bilateral parietal, left temporal and posterior cingulate cortices (b).
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Figure 7. Averaged class activation map results in patients with AD and PSD.
The averaged brain regions weighted by the model exhibit more severe asymmetry in images of
patients with AD (a) than those of patients with PSD (b). AD, Alzheimer’s disease; PSD, post-stroke

dementia
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Metabolic cognitive signature based on CNN correlated with clinical

features

Associations between metabolic cognitive signatures and clinical features were evaluated. Age,
NLR and platelet-lymphocyte ratio (PLR) of patients with stroke were significantly correlated with
higher metabolic cognitive signature scores (R = 0.22, P = 0.02, Figure 8a; R = 0.32, P < 0.001, Figure
8b; and R = 0.29, P = 0.003, Figure 8c, respectively). BMI was negatively correlated with metabolic
cognitive signature score (R =—0.3, P=0.002, Figure 8d). The score was significantly higher in stroke
patients with dementia than in those without dementia, with age, NLR and BMI as cofactors (0.6 + 0.2

vs. 0.4 £0.2, P <0.001, Figure 8e).
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Figure 8. Correlations between the metabolic cognitive signature score and clinical features.

Age (a), NLR (b) and PLR (c) of patients with stroke are significantly correlated with a higher score.
BMI is negatively correlated with score (d). The p-values are calculated using Pearson correlation
analysis. (e) A significant difference is observed between dementia and non-dementia stroke patients,

with age, NLR and BMI as cofactors in the general linear model (*** P < 0.001).
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Survival analysis for post-stroke dementia

The median follow-up period was 18 months (interquartile range, 9 — 32 months), and the median
overall survival for post-stroke dementia was not reached. The optimal cut-off value for the metabolic
cognitive signature score was 0.48, as determined by the Cantal and O’Quigley method. A score of less
than 0.48 yielded a significant survival advantage over the score of > 0.48 (Figure 9). On univariable
analysis using Cox proportional hazards regression, the metabolic cognitive signature score, age, LNR
and BMI were significant factors for PSD. On multivariable analysis, the metabolic cognitive signature
score was found to be independent of age, NLR and BMI. The results indicated that only the metabolic
cognitive signature score increased the risk of PSD (hazard ratio, 10.12; 95% CI, 3.3 —31.02; P <0.001)

after adjustment for other key variables (Table 2).
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Figure 9. Kaplan—Meier plot and log-rank test.

The metabolic cognitive signature score less than 0.48 (blue) yields a significant survival advantage

over the score of > 0.48 (red).
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Table 2. Cox proportional hazard model for determining risk factors of dementia after stroke

Univariable analysis Multivariable analysis (backward deletion)
Hazard ratio (95% CI) P Hazard ratio (95% CI) P

Age (7lyvs.<71y) 3.8 (1.11-13.03) 0.034 2.54 (0.73 — 8.86) 0.064
Sex (women vs. men) 0.86 (0.32 — 2.25) 0.751 NA NA

NLR (> 1.94 vs. < 1.94) 3.45 (1 —11.86) 0.049 3.92 (1.13 - 13.66) 0.077

BMI (> 23.6 vs. < 23.6) 0.29 (0.1 - 0.87) 0.028 0.46 (0.15 — 1.42) Eliminated
Diabetes (positive vs. negative) 1.71 (1.09 — 4.26) 0.248 NA NA
Hypertension (positive vs. negative) 1.8(0.42-7.8) 0.431 NA NA
Metabolic cognitive signature score (> 0.48 vs. < 0.48) 10.90 (3.59 — 33.09) <0.001 10.12 (3.3 -31.02) <0.001
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Part 11. Gene expression signature related to DL-based cognitive signature

Conventional differential gene expression analysis

Before constructing weighted correlation network, conventional differential gene expression was
performed with pre-processed microarray data. With threshold of 0.48 for DL-based cognitive signature,
no differentially expressed gene was confirmed to show false discovery rate (FDR)-adjusted p-values less
than 0.05. Table 3 and Table 4 listed 10 top-ranked genes by descending FDR-adjusted p-values and

descending log fold change (logFC), respectively.

Construction of weighted correlation network

Four outliers were detected in the microarray dataset of ADNI WGS cohort by sample clustering of the
distance between samples, thus a total of 24,198 genes from 740 samples were used to construct a weighted
correlation network.

Then, a scale-free topology method determined the soft-thresholding power p = 8, lowest possible B
that leads to an approximately scale-free network topology (Figure 10). Finally, 24,198 genes were divided
into 14 modules using the hierarchical clustering algorithm (Figure 11); 1,031 genes in the black, 4,403
genes in the blue, 3,282 genes in the brown, 1,143 genes in the green, 114 genes in the greenyellow, 3,664
genes in the grey, 193 genes in the magenta, 571 genes in the pink, 147 genes in the purple, 1,118 genes
in the red, 31 genes in the salmon, 98 genes in the tan, 6,829 genes in the turquoise, and 1,573 genes in the
yellow modules. The genes that were not grouped into a module fell into the grey module, and were

removed from subsequent analyses.
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Table 3. 10 top-ranked genes by descending FDR-adjusted p-values

Probe Set Symbol LogFC AveExpr P FDR adjusted P
11717482 _at PDHA1 0.09983678 6.127200 4.430370E-05 0.4841542
11741086_x_at APLP2 -0.06372404 10.811135 4.909628E-05 0.4841542
11718158_a_at NMI -0.10769525 8.469821 9.089896E-05 0.4841542
11739526 _a_at LPP -0.11243598 7.934156 1.020640E-04 0.4841542
11743431 _at LYRM9 0.08813719 7.574373 1.117055E-04 0.4841542
11736631_a_at APOBEC3H -0.09818174 4.449792 1.516659E-04 0.5477919
11730791_at SVIP 0.10954025 5.076255 1.886217E-04 0.5839458
11730788 _a_at APLP2 -0.05379736 10.822330 2.639093E-04 0.5869283
11741085_a_at APLP2 -0.08425409 8.782874 2.727038E-04 0.5869283
11718896 x_at SPAG9Y -0.13226716 8.588381 2.784574E-04 0.5869283

LogFC, estimate of the log2-fold-change corresponding to the effect or contrast; AveExpr, average log2-expression for the probe over all arrays and channels;

FDR, False discovery rate
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Table 4. 10 top-ranked genes by descending absolute LogFCs

Probe Set Symbol LogFC AveExpr P FDR adjusted P
11756083_x_at ENSG00000206239 0.8459395 6.445175 0.0037434283 0.6235441
11716411 x_at RPS4Y1 -0.6905994 7.621648 0.0188327911 0.6235441
11757733_s_at XIST 0.6668309 6.180074 0.0390940015 0.6354166
11757857_s_at XIST 0.6589034 6.223420 0.0245057450 0.6257225
11754194 s _at XIST 0.6548379 5.831351 0.0317420346 0.6334085
11726814 x_at KDM5D -0.5190415 5.746248 0.0219669687 0.6235441
11724075_a_at DDX3Y -0.5139931 5.359906 0.0165533320 0.6235441
11720807_x_at EIFIAY -0.4990122 5.599486 0.0333203140 0.6347627
11745012_a_at KDM5D -0.4655602 5.040483 0.0191147760 0.6235441
11725295 s _at USPOY -0.4393577 4.083355 0.0104322307 0.6235441

LogFC, estimate of the log2-fold-change corresponding to the effect or contrast; AveExpr, average log2-expression for the probe over all arrays and channels;

FDR, False discovery rate
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Figure 10. Scale free topology model fitting and mean connectivity by raising the power value from 1 to 20.

Since there is a trade-off between scale-free topology model fit and a high mean number of connections,

the lowest power at which the saturation of scale-free topology above 0.80 is 8 was picked to prevent loss

of information.
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Figure 11. Hierarchical cluster dendrogram to divide genes into modules.

24,198 genes are divided into 14 modules; black, blue, brown, green, greenyellow, grey, magenta, pink,

purple, red, salmon, tan, turquoise, yellow modules by hierarchical clustering algorithm.
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Identification of module—trait relationships and key modules

GS for DL-based cognitive signature of each module was observed to be high as a positive value in the
black and brown modules and as a negative value in the greenyellow module (Figure 12). Modules of which
ME showed a significant correlation with DL-based cognitive signature were black, greenyellow, pink, red,
tan, and brown modules (Figure 13). Among them, black, greenyellow, and brown modules were
significantly correlated with dementia status, as well (black, R = 0.079, P = 0.03; greenyellow, R =—0.19,
P < 0.001; brown, R =0.095, P = 0.009, Figure 13). Whether ME, the first principal component, is eligible
for the representative value of each module, was confirmed by the scatter plot and there was a significant
positive correlation between the ME and GS for DL-based cognitive signature in all three modules (black,
R =0.42, P <0.001; greenyellow, R = 0.62, P < 0.001; brown, R = 0.066, P < 0.001, Figure 14). Since the
purpose of this study is to discover a gene expression signature related to cognitive function, these three
modules were used for further analysis. Black and brown modules, which showed a positive correlation
with the metabolic signature and dementia status, significantly correlated with amyloid deposition evaluated
by AV45 PET, serum TAU, and PTAU. Additionally, the brown module was associated not only with the
patient's age, but also with the history of hypertension and cardiovascular disorder, which are risk factors
for stroke. On the contrary, the greenyellow module, which showed a negative correlation with the
metabolic signature and dementia status, also negatively correlated with age, history of hypertension,

metabolic disease, and amyloid deposit (Figure 13).
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Figure 13. Heatmap presenting module —clinical features relationships.
The black, greenyellow, and brown modules are significantly correlated with both DL-based cognitive
signature and dementia status. The black and brown modules significantly correlate with amyloid
deposition evaluated by AV45 PET, serum TAU, and PTAU. Furthermore, the brown module is
associated with age, history of hypertension and cardiovascular disorder. The greenyellow module

negatively correlates with age, history of hypertension, metabolic disease, and amyloid deposit.
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Figure 14. Module eigengene (membership) vs. gene significance for DL-based cognitive signature of black,
greenyellow, and brown modules.

There is a significant positive correlation between the ME and GS for DL-based cognitive signature in all
three modules. Therefore, the MEs of the three modules are considered to be representative value for gene

expression in each module.
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Enrichment analyses of genes in the black, greenyellow, and brown modules

Enrichments analyses were conducted for genes of black, greenyellow, and brown modules which
showed significant correlation with CNN-derived metabolic cognitive signature and dementia status. The
20 top-score clusters of terms were visualized in the Figure 15a, b, and ¢ (black, greenyellow, and brown,
respectively) by descending p-values. Most of the enriched ontology terms in black and brown modules
were related to inflammation, leukocyte, especially neutrophil (Figure 15a and c), while greenyellow

module was associated with lymphocyte, B-cell activation (Figure 15b).
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Figure 15. Enrichments analyses for genes of black, greenyellow, and brown modules.
The 20 top-score clusters of terms of black (a), greenyellow (b), and brown (c) are visualized by
descending p-values. Most enriched ontology terms are related to the neutrophil degranulation in black and

brown modules and B-cell activation in greenyellow module.
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Discussion

In this study, it was suggested that a metabolic cognitive signature predicts cognitive outcomes in
patients with stroke. The transferred model trained by patients with AD could differentiate dementia from
non-dementia in patients with stroke. When CNN-derived similarity of FDG PET patterns was visualized
in the two-dimensional space, PET images of post-stroke dementia were found to be clustered, while those
of pre-stroke dementia were not. Furthermore, it was found that the metabolic cognitive signature score
from the model was related to patients’ clinical features and was the only independent risk factor for the
occurrence of post-stroke dementia. Additionally, the DL-based cognitive signature derived from the
current study was related to the subjects’ inflammatory condition, which was measured by gene expression
profile of peripheral blood as well as complete blood count.

FDG PET imaging has been used in a large number of studies to investigate brain glucose metabolism
in neurodegenerative diseases. And recently, several studies have adopted deep learning for the PET
modality to find evidence of neurodegenerative diseases (8, 23-29). However, no published study has
evaluated PSD using FDG PET or deep learning in patients with stroke. The metabolic cognitive signature
developed in the current study was able to distinguish patients with pre-/post-stroke dementia after learning
the FDG PET pattern of cognitive dysfunction in patients with AD.

To aid the interpretation of the CNN model that has an intrinsic black-box problem, the current study
visualized CNN-derived features using dimension reduction and CAM methods. Through dimension
reduction of 128 features, which are outputs of the global average pooling layer of the model, the parametric
t-SNE could visualize the distribution of all participants’ cognitive states based on glucose metabolism. As
expected, individuals with dementia and non-dementia were separately clustered in the ADNI and stroke
cohort dataset, respectively. However, the distribution of stroke cohort is relatively located on borders and
clustered compared to that of ADNI cohort because stroke cohort dataset is unseen data (out-of-distribution

samples) for the model. However, the overall distribution patterns are similar to each other (right dementia,
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left non-dementia), and no outlier was identified. Notably, most patients with post-stroke dementia were
clustered with a greater metabolic cognitive signature score, while those with pre-stroke dementia were
dispersed across the two-dimensionally embedded plot.

This difference suggests a difference in brain metabolism and neuronal dysfunction in PSD compared
with pre-stroke dementia. Owing to the relatively small number of patients with pre-and post-stroke
dementia, further studies with a larger cohort are warranted to evaluate the metabolic differences between
the two subgroups. By generating a heatmap from the CAM, this study could visualize which brain region
contributes the most to decision of the model for classification. It was observed that the extent and location
of the regions associated with cognitive decline differed among patients.

The current study demonstrated the clinical feasibility of deep learning-based cognitive signature by
evaluating its relationship with stroke survivors’ clinical variables and identifying it as an independent risk
factor for post-stroke dementia. It is a well-recognized fact that older age is associated with cognitive
decline. Similarly, a higher metabolic cognitive signature score was significantly correlated with a higher
age of patients with stroke. It was also found that a higher metabolic cognitive signature score was
associated with higher LNR and PLR, which suggests that the inflammatory process might play a role in
cognitive dysfunction.

The metabolic cognitive signature score exhibited a significant difference between stroke patients with
dementia and those without dementia, with age, NLR and BMI as cofactors in the general linear model.
Moreover, in the multivariable Cox regression analysis, a high metabolic cognitive signature score was the
only significant risk factor for post-stroke dementia. These findings suggest that FDG PET can be a useful
screening tool for cognitive dysfunction in patients with stroke. Additionally, the metabolic cognitive
signature might be used as an objective biomarker for cognitive impairment in clinical trials of
cerebrovascular diseases as well as neurodegenerative disorders.

Dementia after a stroke often consists of a mixture of vascular insults and neurodegenerative processes
(30). The processes associated with neurodegenerative and ischemic vascular disease precipitate
overlapping pathogenic and molecular changes that eventually prompt neuronal damage and cognitive
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impairment (31). Therefore, rather than distinguishing dementia as vascular vs. neurodegenerative, it is
worth noting that the capture of metabolic alterations in the brain, which are derived from complex
pathological processes, might predict dementia in patients with stroke by using brain FDG PET images
taken at the stroke onset. Although there is no established medical practice for preventing cognitive
impairment after stroke, patients at risk of cognitive dysfunction assessed by objective deep CNN-based
biomarkers could benefit from intensified secondary prevention schemes, including medical interventions
and lifestyle modification.

Conventional differential gene expression analysis, which was performed prior to WGCNA application,
compared logFCs in groups dichotomized by the threshold of DL-based cognitive signature of 0.48, found
no differentially expressed gene. This may be due to the loss of information and is a limitation of
conventional methods. Then, WGCNA was applied to investigate the relationship between DL-based
imaging cognitive signature and gene expression signature of peripheral blood. The widely used
unweighted network defines the network adjacency of gene-expression similarity using hard thresholding,
which does not reflect the continuous nature of the co-expression of the gene expression profile. In contrast,
the weighted network introduced in this study could prevent informational loss by taking continuous
variables between 0 and 1 for the adjacency matrix by using soft thresholding.

A total of 13 modules were identified as a result of WGCNA analysis, of which black, brown, and
greenyellow modules showed significant relationships with both DL-based cognitive signature and
dementia status. Unlike other modules, the three modules were also related to amyloid deposition,
TAU/PTAU, and risk factors for stroke; thus, they can be considered to be modules related to post-stroke
dementia. In the enrichment analysis of these three modules, the black/brown modules, which showed a
positive correlation with DL-based cognitive signature and dementia status, were associated with
degranulation of neutrophil; and the greenyellow module, which showed a negative correlation with DL-
based cognitive signature and dementia status, exhibited marked enrichment in lymphocyte activation.
These results are consistent with the positive correlation between DL-based cognitive signature and NLR
in the stroke cohort of this study.
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Several investigations have demonstrated that sustained inflammation is a critical characteristic of
neurodegenerative diseases (31-34). Furthermore, inflammation and/or inflammatory signaling is
associated with risk factors for AD, including age, cardiovascular diseases and metabolic diseases (35). In
this study, the CNN-derived cognition-related imaging phenotype was significantly correlated with patients’
inflammatory condition (specifically, high neutrophil and low-lymphocyte) which was identified not only
in the complete blood counts but also in the gene expression profile of peripheral blood.

This study has several limitations. First, since this was a post hoc analysis conducted to confirm the
recurrence of vascular events after stroke, the current study did not perform systematic monitoring of
cognitive function in all patients, but in patients diagnosed with dementia before stroke or suspected
dementia after stroke. Second, all FDG PET images of ADNI/stroke cohort used for training/test of the
model had been spatially normalized, and the image of stroke cohort with wide range of metabolic defects
caused by ischemic burden may give rise to inaccuracy in the spatial normalization process which used
brain template. Third, despite successful transfer learning, there is still an issue of data size. However, as
the similarity of the institution’s dataset to the ADNI dataset is outstanding compared with that of natural
image databases, such as ImageNet, the CNN model appears to appropriately transfer the image pattern of

AD learned from the ADNI dataset to the stroke dataset.

Case review regarding the survival analysis

Representative images of true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) for PSD diagnosis were examined by setting the threshold of the metabolic cognitive
signature score as 0.48, as applied by the Log rank test and Cox regression analysis. The spatially
normalized FDG PET images of the highest score among positive cases with a score of 0.48 or higher and
the lowest score among negative cases were visualized, respectively. As confirmed in the Figure 7a, the

averaged CAM of ADNI cohort, a symmetric hypometabolism in the bilateral parieto-temporal lobe was
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confirmed in the TP (Figure 16a) and FP (Figure 16b) cases as well. On the other hand, in the TN (Figure
16c) case, the glucose metabolism of the brain was preserved without a corresponding pattern. Interestingly,
although Figure 16e is the same TN case, right cerebral hemisphere showed asymmetric metabolic decrease,
and in this patient, acute recurrence of stroke developed 16 days later. In image of FN case (Figure 16d)
where model tested negative but PSD occurred, asymmetric hypometabolism also appeared in the right
cerebral hemisphere, while the metabolism of the left parietal lobe was preserved. Taken together, since
this model learned the metabolic pattern of AD patients in ADNI cohort, TP/FP cases can be considered
closer to the AD-like pattern, and TN cases, particularly stroke recurrence case and FN case can be deemed
closer to the vascular dementia-like pattern. However, as confirmed by survival analysis, the model
successfully predicted post-stroke dementia using the brain FDG PET obtained at the onset of stroke, and

FP cases may be high-risk patients who may develop PSD in further follow-up.
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Figure 16. Spatially normalized FDG PET images of TP, FP, TN, FN cases

(a) TP case, DL-based score of 0.899; a 78-year-old woman with both pICA and dICA stenosis
presented with left MCA infraction. 18 months after the stroke onset, post-stroke dementia developed.

(b) FP case, DL-based score of 1.0; a 81-year-old man with left pICA mild stenosis presented with BA
occlusion. The follow-up period was 9 months.

(c) TN case, DL-based score of 0.043; a 64-year-old woman with right MCA occlusion hospitalized
due to transient ischemic attack. The follow-up period was 13 months.

(d) FN case, DL-based score of 0.239; a 72-year-old man with right pICA occlusion presented with
right MCA infarction. Post-stroke dementia developed after 5 months of stroke onset.

(e) TN case, DL-based score of 0.055; a 41-year-old man with right MCA occlusion presented with

right MCA infarction. 16 days later, he underwent stroke recurrence. The follow-up period was 5 months.
TP, true positive; FP, false positive; TN, true negative; FN, false negative; DL, deep learning; pICA,

proximal internal carotid artery; dICA, distal internal carotid artery; BA, basilar artery; MCA, middle

cerebral artery
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Conclusions

The proposed CNN model differentiating AD from NC was successfully transferred to an independent
stroke cohort. The deep learning-based cognitive signature is associated with clinical variables in patients
with stroke and is an independent risk factor for dementia following stroke. Furthermore, this study
confirmed that inflammatory condition measured by gene expression profile of peripheral blood as well as
complete blood counts are deeply related to the DL-based imaging phenotype of cognitive function. CNN-
based cognitive evaluation using FDG PET may be utilized as an objective biomarker for cognitive

dysfunction in patients with cerebrovascular diseases as well as neurodegenerative disorders.
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