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Abstract 
 

Protein phosphorylation is required for numerous biological 

processes. Especially, it participates in synaptic plasticity which is 

basis of learning and memory. Although it has been well known that 

protein tyrosine phosphatases are involved in mGluR-LTD, which 

specific phosphatases are critical for this type of synaptic plasticity 

is not clear yet. In this study, I discovered that protein tyrosine 

phosphatase Shp2 is critically involved in mGluR-LTD in mouse 

hippocampus by using extracellular field recording. Interestingly, 

Shp2 inhibitor did not block the NMDAR-LTD. Interestingly, Shp2 

inhibitor blocked NMDAR-LTP in an induction protocol dependent 

manner: Inhibition of Shp2 did not block TBS-induced LTP, while it 

blocks HFS-induced LTP. In all, my data demonstrate that Shp2 is 

a key molecule regulating mGluR-LTD and HFS-induced LTP in 

mouse hippocampus, albeit the detailed mechanism remains to be 

investigated. 
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Introduction 
 

1.1. Study Background 
 

Protein phosphorylation, a type of post-translational 

modification, is a remarkable process that controls cellular signal 

transduction and even synaptic plasticity. In terms of long-term 

potentiation (LTP), protein kinase such as CaMKII react to strong 

and fast Ca2+ influx through N-Methyl-D-Aspartate (NMDA) 

receptor and phosphorylate α–amino–3–hydroxy–5–methyl–4-

isoxazolepropionic acid (AMPA, GluA) receptor to induce an 

exocytosis of AMPA receptor (Barria, Derkach, & Soderling, 1997; 

Yang, Tang, & Zucker, 1999). In long-term depression (LTD), 

protein phosphatase such as Calcineurin perform dephosphorylation 

on AMPA receptor for its endocytosis(Yan et al., 1999; Yang et al., 

1999).  

Src homology region 2 (SH2)-containing protein tyrosine 

phosphatase 2 (Shp2) is a non-receptor protein tyrosine 

phosphatase which is involved in several cell signaling such as 

RAS/MAPK pathway, PI3K/AKT pathway, and JAK/STAT pathway. 

Although Ptpn11 (gene name of Shp2) is the first identified proto-

oncogene that encodes protein tyrosine phosphatase, it acts not 

only as a factor of cancer but also as a factor of 

neurodevelopmental disease (Chan & Feng, 2007; Tartaglia et al., 

2001). Hyperactivation of Shp2 results in Noonan syndrome 

(Tartaglia et al., 2001).  
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Shp2 consists of three characteristic domains which are N-SH2, 

C-SH2, PTP domain (Hof, Pluskey, Dhe-Paganon, Eck, & Shoelson, 

1998). In normal state, N-SH2 blocks PTP domain to block 

phosphatase activity (Hof et al., 1998). After combining p-Y motif 

with N-SH2 and C-SH2, their autoinhibition within Shp2 is 

disrupted and PTP is freely released (Hof et al., 1998; Qiu et al., 

2014). Shp2 also has two tyrosine sites (Y542 and Y580). 

Phosphorylation of those tyrosine site indicates active state of Shp2 

and even can be provided as the p-Y motif to N-SH2 and C-SH2 

(Neel, Gu, & Pao, 2003). 

There are two distinctive types of LTD – NMDAR-LTD and 

metabotropic glutamate receptor (mGluR)-LTD. As the receptors 

managing those two types of LTD are disparate, the phosphatases 

involved in each LTD are different. For instance, serine/threonine 

phosphatases are involved in NMDAR-LTD and tyrosine 

phosphatases are involved in mGluR-LTD (Gladding et al., 2009). 

Although it has been reported that nonspecific protein tyrosine 

phosphatase (PTP) inhibitors (phenylarsine oxide and 

orthovanadate) reverse mGluR-LTD by (S)-3, 5-

dihydroxyphenylglycine (DHPG), discerning the identity of a 

specific protein tyrosine phosphatase involved in mGluR-LTD 

(Huang & Hsu, 2006). So far, only two PTPs are reported - a 

striatal-enriched protein tyrosine phosphatase (STEP) in 

hippocampus and a megakaryocyte protein tyrosine phosphatase 

(PTPMEG) in cerebellum (Kohda et al., 2013; Y. Zhang et al., 

2008).  
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STEP is the first identified PTP which is involved in mGluR-LTD. 

Translation of STEP is facilitated by dose-dependent DHPG 

stimulation (Y. Zhang et al., 2008). In addition, STEP substrate-

trapping construct blocks an internalization of GluA1 and GluA2 (Y. 

Zhang et al., 2008). In STEP knock-out mice, DHPG-induced 

GluA1 and GluA2 internalization is absent (Y. Zhang et al., 2008). 

Similarly, it has been reported that PTPMEG-induced GluA2 

dephosphorylation is important in mGluR-LTD (Kohda et al., 2013). 

PTPMEG binds to C-terminal of GluD2 and dephosphorylate Y876 

of GluA2 (Kohda et al., 2013). Dephosphorylation of Y876 enables 

phosphorylation of GluA2 S880 and it changes S880 anchoring 

protein GRIP to PICK1 allowing AMPAR endocytosis (Kohda et al., 

2013). 

Recently, it has been reported that Shp2 takes part in LTP via 

AMPA receptor trafficking (B. Zhang et al., 2016). While LTP, Shp2 

moves to PSD with GluA1, leading the increased number of 

activated Shp2. Additionally, inhibition or knock out of Shp2 

suppresses the trafficking of GluA1 to membrane and disrupts LTP 

(B. Zhang et al., 2016). However, it remains unclear whether Shp2 

regulates other synaptic plasticity except LTP.  

 

1.2. Purpose of Research 
 

In this study, I investigated the role of Shp2 in synaptic plasticity 

using extracellular field recording. Treatment of Shp2 inhibitor 

blocks DHPG and PP-LFS induced mGluR-LTD. In terms of 
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synaptic plasticity, mutation form of Shp2 was well studied, but 

wild-type form was not well understood. Therefore, I aimed to find 

the new role of wild-type shp2 in synaptic plasticity  
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Materials and Methods 

 

Mice  

Male wild-type mice (C57Bl/6J) were purchased from Orient Bio 

Inc. (South Korea). 7~8 weeks-old mice were used for mGluR-

LTD, NMDAR-LTP and 3~4 weeks-old mice were used for 

NMDAR-LTD. Mice were housed under Specific pathogen free 

(SPF) condition with controlling humidity (40～60 %) and 

temperature (23 ℃ ± 3 ℃). Around 4 mice share one cage which 

is applied with individually ventilated cage systems (IVC systems) 

and each room undergoes 12 h light/dark cycle. Food and water 

were provided to mice ad libitum. All animal experiments in this 

study were approved by Institutional Animal Care and Use 

Committee (IACUC) of Seoul National University (Registration 

number: SNU-191203-3-4). 

 

Materials 

(S)-3,5-DHPG, D-AP5, MPEP were obtained from Hello bio 

(Bristol, UK). The Shp2 inhibitor NSC87877 were purchased from 

Tocris Bioscience (Bristol, UK).  

 

Hippocampal slice preparation  

Mouse was quickly decapacitated following isoflurane anesthesia. 

Dorsal hippocampal sagittal slices were obtained by a vibratome 

(Campden, 7000 smz-2) in ice-cold artificial cerebrospinal fluid 
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(ACSF; 120 mM NaCl, 3.5 mM KCl, 2.5 mM CaCl2, 1.3 mM MgSO4, 

1.25 mM NaH2PO4, 10 mM D-glucose, and 26 mM NaHCO3, 

oxygenated with mix gas containing 95% oxygen and 5% carbon 

dioxide). Slices were incubated in room temperature ACSF for more 

than 1 hour. 

 

Extracellular field recording 

Field excitatory postsynaptic potential (fEPSP) was recorded in the 

CA1 region with platinum-iridium microelectrode (FHC, 

UEPMECSEDN3M). Schaffer collaterals were targeted with bipolar 

stimulating electrode (FHC, CE2C55). Recorded signal was 

amplified (WPI, DAM80), filtered at 1 kHz and acquired using 

WinLTP software (WinLTP Ltd., Bristol, UK).  

For basal synaptic transmission, Input-output ratio was measured 

by increasing the stimulation intensity (0 to 100 μA). Paired pulse 

facilitation (PPF) ratio was measured by calculating the ratio of 

P2/P1 with 10, 25, 50, 100, 200, 400 ms interpulse interval (IPI) 

and identified presynaptic function.  

All recordings are conducted in stratum radiatum (SR) layer of CA1 

region in hippocampus. 

In mGluR-LTD, DHPG-LTD was induced by 100 μM DHPG and 

PP-LFS was induced by 900 paired pulse with 50 ms IPI at 1Hz.  

For NMDAR-LTD, another ACSF (124 mM NaCl, 5 mM KCl, 2.5 

mM CaCl2, 1.5 mM MgCl2, 1.25 mM NaH2PO4, 10 mM D-glucose, 

and 26 mM NaHCO3) and sucrose-based dissection buffer (5 mM 
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KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 10 mM D-glucose, 0.5 

mM CaCl2, 10 mM MgCl2, and 212.5 mM sucrose) were used. CA3 

region was removed shortly after obtaining the slices to eliminate 

the CA3-CA3 recurrent synapse. In recording chamber, another 

ACSF but containing 4 mM CaCl2 was circulated at 25~26 ℃. 

NMDAR-LTD protocol was modified to 3 trains of 300 pulse at 1 

Hz and each train was separated by 5 minutes.  

In high frequency stimulation (HFS), the protocol is made up with 

100 pulses at 100 Hz. For 4x theta burst stimulation (4XTBS), the 

protocol is made up with 4 theta bursts in 100 Hz separated by 200 

ms. 

All LTD protocols were executed at specific stimulation intensity 

which can induce the 60 % of maximum response at 100 μA. On 

the other hand, all LTP protocols are stimulated at the intensity that 

can induce 40% of maximum response. 

 

Statistical analysis 

Unpaired two-tailed t test was used in comparing average of last 

10 minutes and paired pulse ratio after LTD induction. 

Statistical analyses were implemented using GraphPad Prism 7.0 

(GraphPad software). All data are represented as the mean ± SEM. 
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Results 
 

Role of Shp2 in basal synaptic transmission and 

presynaptic function 

I first treated Shp2 inhibitor while input/output (I-O) and paired-

pulse facilitation (PPF) are recorded. I-O relationship was obtained 

by increasing stimulation intensity gradually. PPF was calculated by 

dividing second pulse (P2) to first pulse (P1). The ratio is 

increased until 50 ms IPI and decreased after it. NSC87877, a Shp2 

inhibitor, does not affect the input-output relationship or paired-

pulse ratio (Fig. 1A and B). This result represents Shp2 does not 

affect the basal synaptic transmission and presynaptic function. 

 

Inhibiting Shp2 activity impairs mGluR-LTD 

Prior to recording mGluR-LTD with Shp2 inhibitor, I first confirmed 

a solid PP-LFS protocol to induce mGluR-dependent LTD when 

treated with the mGluR antagonist, MPEP (Fig. 2). mGluR-

dependent LTD was demonstrated by blocked PP-LFS using MPEP 

(Fig. 2).  

Next, I treated NSC87877, the Shp2 inhibitor, and it blocks PP-LFS 

(Fig. 3). DHPG-LTD, another form of mGluR-LTD which is 

induced by application of DHPG, was also blocked by NSC87877 

(Fig. 4).  
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Increase in PPR is associated with presence of mGluR-LTD. The 

concomitant change is observed in normal conditions, but not in 

Shp2 inhibitor conditions (Fig. 5). 

 

Shp2 is not required for NMDAR-LTD 

Because NMDAR-LTD is difficult to induce, instead of delivering 

consecutive 900 pulses (1 Hz), I delivered 3 blocks of 300 pulses 

(1 Hz) with 5 min interval. I then confirmed that the new protocol 

induces NMDAR dependent LTD by treating NMDAR antagonist 

AP5 (Fig. 6). Unlike in mGluR-LTD (Fig. 3-4), NSC87877 does 

not block the NMDAR-LTD (Fig. 7).   

 

Induction protocol-dependent effect of Shp2 

inhibition on NMDAR-LTP 

Lastly, I test the effect of Shp2 on NMDAR-LTP. Two different 

protocols were used: 4XTBS-LTP and HFS-LTP. NSC87877 

treatment had no effect on 4XTBS-LTP (Fig. 8), whereas it 

impaired HFS-LTP (p = 0.0556) (Fig. 9). It is also consistent with 

a previous study (B. Zhang et al., 2016).  
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Figure 1. NSC87877 does not affect input/output relationship and paired 

pulse facilitation. 

(A) I-O relationship is unchanged when NSC87877 is treated. Stimulation 

intensity was 0~100 μA with 10 μA interval. Pulse was injected every 20s. (B) 

Paired pulse ratio was observed with 10~400 ms of interpulse interval. Control 

group and treated group show almost same ratio in the graph. (Control, n = 7; 

NSC87877, n = 6) 
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Figure 2. MPEP blocks PP-LFS induced LTD.  

(A) PP-LFS was blocked by mGluR antagonist MPEP, while it was not blocked by 

NMDAR antagonist AP5. (PP-LFS, n = 6; PP-LFS (+AP5), n = 8; PP-LFS 

(+AP5, +MPEP), n = 4) (Collaboration with Dr. Hyun-Hee Ryu) 
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Figure 3. NSC87877 treatment impairs PP-LFS.  

(A) NSC87877 (10 μM) blocks PP-LFS (900 paired pulse, 1Hz). (B) Average of 

last 10 minutes of fEPSP slope (% Baseline) is significantly decreased in 

NSC87877 treated group. (PP-LFS (+AP5), 87.13 ± 3.488, n=16; PP-LFS 

(+AP5, +NSC), 103.1 ± 4.443, n=12; unpaired t test, **P = 0.0081) 

(Collaboration with Dr. Hyun-Hee Ryu) 
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Figure 4. NSC87877 treatment impairs DHPG-LTD.  

(A) NSC87877 (10 μM) blocks DHPG-LTD (100 μM, 5 min). (B) Average of 

last 10 minutes of fEPSP slope (% Baseline) is significantly decreased in 

NSC87877 treated group. (DHPG, 85.85 ± 1.679, n=7; DHPG (+NSC), 96.93 ± 

4.123, n=7; unpaired t test, *P = 0.0285) 
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Figure 5. Treating NSC87877 does not alter PPR associated with mGluR-

LTD.  

(A) PPR is increased after PP-LFS induction in control group, but not in 

NSC87877 treated group. (***P = 0.0006) (B) PPR is increased after DHPG-LTD 

induction in control group, but not in NSC87877 treated group. (**P = 0.0011) 
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Figure 6. AP5 blocks NMDAR-LTD.  

(A) LFS was blocked by NMDAR antagonist AP5. (LFS, n = 2; LFS (+AP5), n = 

2) 
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Figure 7. NSC87877 treatment does not block NMDAR-LTD.  

(A) NSC87877 (10 μM) has no effect on LFS (900 pulse, 1 Hz). (B) Average of 

last 10 minutes of fEPSP slope (% Baseline) is roughly same between control 

group and NSC87877 treated group. (LFS, 86.61 ± 4.418, n=16; LFS (+NSC), 

87.81 ± 4.611, n=15) 
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Figure 8. NSC87877 treatment does not block 4XTBS-LTP.  

(A) NSC87877 (10 μM) has no effect on 4XTBS-LTP. (B) Average of last 10 

minutes of fEPSP slope (% Baseline) is roughly same between control group and 

NSC87877 treated group (4XTBS, 131.2 ± 4.16, =7; 4XTBS (+NSC), 130.3 ± 

7.437, n=7) 
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Figure 9. NSC87877 treatment impairs HFS-LTP.  

(A) NSC87877 (10 μM) blocks HFS-LTP. (B) Average of last 10 minutes of 

fEPSP slope (% Baseline) is decreased in NSC87877 treated group (HFS, 127.3 ± 

6.197, n=9; HFS (+NSC), 108.6 ± 6.651, n=9; unpaired t test, P = 0.0556) 
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Discussion 
 

Recent studies reported that protein tyrosine phosphatases 

participate in mGluR-LTD, but specific molecules are not fully 

discovered. Here, I found that: (1) protein tyrosine phosphatase 

Shp2 is participated in mGluR-LTD, especially maintenance of the 

mGluR-LTD. (2) However, Shp2 does not affect to basal synaptic 

transmission and presynaptic function. (3) As Shp2 is not required 

for NMDAR-LTD, Shp2 is selectively involved in LTD according to 

type of LTD. (4) Similar to the result of NDMAR-LTD, Shp2 has 

not involved in NMDAR-LTP. 

 

Functional studies of Shp2 

Shp2 is well known in field of cancer and neurodevelopmental 

disease (Nussinov, Tsai, & Jang, 2022). In tumor cell, Shp2 binds 

with many molecules such as GRB2-associated-binding protein 1 

(GAB1), Growth factor receptor-bound protein 2 (GRB2), Son of 

Sevenless (SOS) and promote cell proliferation or metastasis (J. 

Zhang, Zhang, & Niu, 2015). For suppressing the tumor growth, 

Shp2 inhibitors are actively investigated (L. Chen et al., 2006; Y. N. 

Chen et al., 2016). In addition to small molecule inhibitors, 

Proteolysis-targeting chimeras (PROTACs) targeting Shp2 are also 

discovered (Zheng et al., 2021). In field of neurodevelopmental 
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disease, mutations in Shp2 are well researched. It is well known 

that Noonan syndrome which is a kind of RASophathies is caused by 

hyperactivation of Shp2 (Tartaglia et al., 2001). Mutation in Shp2 

shows impaired synaptic plasticity(Lee et al., 2014). However, 

functions of wild-type Shp2 in synaptic plasticity are unclear. 

There are two reports that explain the role of Shp2 in synaptic 

plasticity (B. Zhang et al., 2016; B. Zhang & Lu, 2017). Shp2 is 

activated while LTP induction and it phosphorylate GluA1 to 

promote the exocytic trafficking (B. Zhang et al., 2016). In addition 

to LTP, Shp2 is also involved in synaptic homeostasis (B. Zhang & 

Lu, 2017). Recently, there is a report that Shp2 is involved in 

NMDAR-LTD (Zhou et al., 2022). It is incompatible with my data, 

but there are some differences in methods and approaches.   

 

Mechanism for regulating synaptic plasticity of Shp2 

According to the report that Shp2 is involved in LTP (B. Zhang et 

al., 2016), Shp2 ultimately controls two different types of synaptic 

plasticity. As I mentioned in introduction, calcium can be an 

example that is involved in two types of synaptic plasticity(Yang et 

al., 1999). Calcium has different kinetics according to LTP and 

LTD(Yang et al., 1999). Shp2 also has several kinetics, not only 

open and closed form. There is a report that Shp2 acts like 

“multiple gear” and it suggests that Shp2 have three conformational 

forms (Tao et al., 2021). So, Shp2 can participate in bi-directional 
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synaptic plasticity. Different kinetics of Shp2 can be measured by 

Fluorescence Resonance Energy Transfer (FRET) system(Sun et 

al., 2013). In this report (Sun et al., 2013), engineered Shp2 

reporter represents activity of Shp2 and there would be differences 

between LTP and LTD situations. Protein tyrosine phosphatases 

commonly regulate mGluR-LTD by dephosphorylate GluA2 AMPAR 

subunit, while protein serine/threonine phosphatases 

dephosphorylate GluA1. Likewise, shp2 may also dephosphorylate 

GluA2 to trigger AMPAR endocytosis. Several kinases would 

phosphorylate the Shp2 for activation in these processes. They can 

be Src-family protein tyrosine kinases (SFKs) because SFKs are 

highly expressed in nervous system and related with glutamate 

receptors (Hayashi & Huganir, 2004; Hayashi, Umemori, Mishina, & 

Yamamoto, 1999; Salter & Kalia, 2004; Wagner, Mei, & Huganir, 

1991). Therefore, it is possible that Shp2 phosphorylate GluA2 by 

means of SFKs. 

 

Importance of mGluR-LTD in hippocampus 

There are numerous mGluR subtypes, but mGluR5 is abundantly 

expressed in hippocampus (Ferraguti & Shigemoto, 2006). In 

hippocampus, excessive mGluR-LTD indicates fragile X syndrome 

(FXS) (Huber, Gallagher, Warren, & Bear, 2002). Fragile X mental 

retardation protein (FMRP) suppresses mRNA translation which is 

associated with mGluR signaling. In the FXS, translation of FMRP is 
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absent and mGluR-LTD is increased which is the result of 

exaggerated protein synthesis. Therefore, chemical (Levenga et al., 

2011; Michalon et al., 2012; Stoppel, McCamphill, Senter, Heynen, 

& Bear, 2021) or genetic (Dölen et al., 2007) inhibition of mGluR 

reverses the phenotype of FXS such as increased dendritic spine 

density (Levenga et al., 2011), impaired learning and memory 

(Stoppel et al., 2021), exaggerated mGluR-LTD (Michalon et al., 

2012). Also, there are some evidence that mGluR-LTD encodes 

spatial memory. For example, mice lacking mGluR5 show impaired 

performance in Morris water maze task or radial arm maze (Lu et 

al., 1997; Manahan-Vaughan & Braunewell, 2005). Likewise, 

mGluR-LTD has an important role for disease and learning in 

hippocampus.  

 

Mechanism of PPR change in DHPG-LTD 

It is controversial that PPR change in DHPG-LTD is presynaptic 

mechanism or postsynaptic mechanism. The paper that discovered 

PTPs are involved in mGluR-LTD also tested PPR change (Moult et 

al., 2006). By PTPs inhibitors, PPR change which is caused by 

DHPG-LTD was also blocked. They tried to figure out expression 

mechanism of DHPG-LTD by treating actin stabilizing drug 

jasplakinolide to postsynaptic neuron. As a result, PPR change 

produeced by DHPG-LTD was also blocked. In other word, PPR 

change caused by DHPG-LTD is postsynaptic mechanism. However, 
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there is issue of DHPG concentration that high (100 µM) 

concentration DHPG induces postsynaptic LTD, whereas low (30 

µM) DHPG induces presynaptic LTD with NMDAR activation 

(Sanderson et al., 2022). 

 

Determining the concentration of chemicals 

The concentration of NSC87877 was determined by cell culture 

study (L. Chen et al., 2006). At least concentration that fully 

reduces pERK protein level which is increased by EGF stimulation 

was 10 µM. (S)-3,5-DHPG concentration was determined by two 

conditions. One is the condition that LTD is well performed until 

after induction 60 minutes, the other is the condition that can be 

blocked by mGluR antagonist MPEP. 

 

Concluding remarks 

All the results account for the role of wild-type Shp2 in synaptic 

plasticity, especially in mGluR-LTD. Inhibition of Shp2 by 

NSC87877 had effects on mGluR-LTD, but not on NMDAR-LTD. It 

is important that Shp2 is the protein tyrosine phosphatase that 

involves in mGluR-LTD. When it comes to NMDAR-LTP, inhibition 

of Shp2 had no effect on 4XTBS-LTP but had blocking effect on 

HFS-LTP. Almost kinds of synaptic plasticity were screened and it 



 

 ２５ 

is discovered that Shp2 selectively involves in synaptic plasticity. 

However, research on underlying mechanisms is not conducted in 

this paper. Further studies are required for explaining how Shp2 is 

involved in mGluR-LTD. 
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국 문 초 록 
 

 

단백질 인산화는 수많은 생물학적 과정에 필요하다. 특히, 단백질 인산

화는 학습과 기억의 기반이 되는 시냅스 가소성에도 또한 관여한다. 티

로신 탈인산화효소는 mGluR-LTD에 관여하는 후보로 잘 알려져 있다. 

그러나, 그것에 관여하는 특정한 분자가 무엇인지는 아직까지 완전히 밝

혀지지 않았다. 이 연구에서 세포 외 기록 및 Shp2 저해제를 사용함으

로써 티로신 탈인산화효소 Shp2가 mGluR-LTD에 관여한다는 것을 밝

혀냈다. 반면에, Shp2 저해제는 NMDAR-LTD를 억제할 수 없었다. 결

론적으로 Shp2는 특히 mGluR-LTD에 필요하며 NMDAR-LTD, 기본

적인 시냅스 전달 및 시냅스 전 기능에는 필요하지 않았다. Shp2는 단

순히 mGluR-LTD만을 억제하지 않고 그것에 수반되는 변화인 PPR의 

증가 또한 억제하였다. 종합적으로, Shp2 가 mGluR-LTD에 중요한 분

자라는 사실을 확립하였다. 

 

 

 

 

 

 

 

 

주요어: 시냅스 가소성, Shp2, 전기생리학, 대사성 글루타메이트 수용체 

의존적 장기 시냅스 약화, NMDA 수용체 의존적 장기 시냅스 약화, 

NMDA 수용체 의존적 장기 시냅스 강화 
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