
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


의학박사 학위논문

Multi-omics Analysis of

Cancers with Epithelial Origin Reveals

Multi-faceted Dysregulation of Genes

Associated with Tumorigenesis

상피성 세포암의 다중오믹스 분석을 통한

종양 발달 관련 유전자의

다층적 조절 장애에 관한 연구

2022 년 7 월

서울대학교 대학원

의과학과 의과학 전공

손  민  환



상피성 세포암의 다중오믹스 분석을 통한

종양 발달 관련 유전자의

다층적 조절 장애에 관한 연구

지도교수 김 종 일

이 논문을 의학박사 학위논문으로 제출함

2022년 4월

서울대학교 대학원

의과학과 의과학전공

손 민 환

손민환의 의학박사 학위논문을 인준함

2022년 7월

위 원 장                          (인)

부위원장                         (인)

위    원                       (인)

위    원                         (인)

위    원                       (인)



Multi-omics Analysis of

Cancers with Epithelial Origin Reveals

Multi-faceted Dysregulation of Genes

Associated with Tumorigenesis

by

Min-Hwan Sohn

A thesis submitted to the Department of Biomedical Sciences

in partial fulfilment of the requirement of the

Degree of Doctor of Philosophy in Biomedical Science

at Seoul National University College of Medicine

July 2022

Approved by Thesis Committee:

Professor                            Chairman

Professor                            Vice chairman

Professor

Professor

Professor



i

ABSTRACT

Multi-omics Analysis of

Cancers with Epithelial Origin Reveals

Multi-faceted Dysregulation of Genes

Associated with Tumorigenesis

Min-Hwan Sohn

Major in Biomedical Science

Department of Biomedical Science

Seoul National University Graduate School

A high-throughput sequencing technology, so called next-generation 

sequencing (NGS) has enabled the simultaneous interrogation of thousands 

and even millions of molecular targets consituting numerous biological 

processes and progression of a variety of diseases in multi-omics fashion. 

Particularly by its exceptional capability in clinical application, NGS has 

made it possible at last to resolve the multi-layered hallmarks of cancer, which 

have been indicated universally in different types of the diseases.
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Here, using NGS technology, we investigated the distinct molecular 

characteristics and multi-faceted dysfunction of gene expression program 

from two types of cancers with epithelial origin: High-grade serous ovarian 

cancer (HGSOC) and stomach adenocarcinoma (STAD). 

In the first part of the thesis, we characterized molecular profiles of HGSOC

through comprehensive analysis of multi-layered data made up of whole-

exome sequencing (WES) and RNA sequencing (RNA-seq). Investigation of 

genomic and transcriptomic landscapes of the HGSOC demonstrated that 

genomic scars and epithelial-to-msenchymal transition (EMT) play an 

important role in our cancer cohorts and that they can be divided into two 

distinct molecular subtypes: homologous recombination repair (HRR)-

activated type and mesenchymal type. Patients with activated EMT 

transcriptional program showing low genomic alteration and diverse cell type 

properties, exhibited poor prognosis compared to HRR-activated type 

HGSOC did. Further validation of our findings using the cancer genome atlas 

(TCGA) HGSOC data verified significant worse overall survival of patients 

with high EMT transcriptional profiles.

In the second part of the thesis, we utilized integrative, high-dimensional

multi-omics approaches to outline the DNA methylome landscape and to 

describe the putative oncogenic drivers of STAD using whole-genome 

bisulfite sequencing (WGBS) and RNA-seq. We discovered that almost 95% 

of cytosine-phosphate-guanine (CpG) sites were hypomethylated in STAD, 
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while remaining hypermethylated CpGs were enriched in promoters, super 

enhancers and polycomb repressive complex (PRC) binding sites. Altered 

methylation in these elements were associated with cancer-specific gene 

dysregulation. Speicifically, as a putative STAD oncogenic driver, 

hypermethylation-mediated stimulation of canonical WNT/β-catenine/MMP 

signaling is discovered. Moreover, we could identify the relationship of 

downregulation of super enhancer related genes and re-activation of 

homeobox cluster genes with DNA hypermethylation. Thus, beyond classical 

genomic and trasncriptomic ablation-driven STAD formation, we 

demonstrated STAD tumorigenesis owing to epigenetic dysregulation through 

multi-factorial mechanisms.

Considering the high incidence rate and mortality of epithelial-origin cancers, 

it is imperative to elucidate the complex lanscape of their molecular 

disruption that bring about tumor formation. These studies provide a 

comprehensive multi-omics-centered analysis and a resource for novel 

diagnostic and therapeutic targets to epithelial-origin cancers.

* The first part of this thesis was published in Genes [1].

----------------------------------------------------------------------------------------------

Keywords: Epithelial neoplasm; High-grade serous ovarian carcinoma; 

Whole-exome sequencing; Transcriptome sequencing; Epithelial-to-

Mesenchymal Transition; Stomach adenocarcinoma; Whole-genome bisulfite 
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General Introduction
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The era of routine clinical application of next-generation sequencing

A high-throughput and massively parallel sequencing technology, so called 

next-generation sequencing (NGS) [2, 3] has enabled the simultaneous 

interrogation of many targets on the range of hundreds of thousands and even

remarkably millions of targets since it is invented. These advancements have 

permitted read lengths as long as some complete genomes [2], lowered the 

cost of sequencing a human genome to almost under US $1,000, and allowed 

sequencing to be used as a clinical tool. Several limitations for this new 

technology exist, such as slightly higher error rates and generally shorter read 

lengths than those of conventional sanger sequencing platforms [2] however, 

in fact, NGS has been utilized or is being developed in routine clinical setting 

for genetic screening, diagnostics, and clinical evaluation [4] especially for 

cancer specimen.

Multi-omics analysis as a powerful tool to investigate the hallmarks of 

cancer

Hallmarks of cancer [5] were presented as a set of functional capabilities 

acquired by human cells as they progress from normality to neoplastic 

development states, with a focus on characteristics critical for the formation of 

malignant tumors [6]. Originally, the hallmarks of cancers were initially 

divided into four subcategories [5] and as our understanding of knowledge of 
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cancer mechanisms has immensely progressed, extended into eight hallmarks 

and two enabling features [6]: (1) sustaining proliferative signaling (2) 

evading growth suppressors (3) avoiding immune destruction (4) enabling 

replicative immortality (5) tumor-promoting inflammation (6) activating 

invasion and metastasis (7) inducing or accessing vasculature (8) genome 

instability and mutation (9) resisting cell death (10) deregulating cellular 

metabolism. Furthermore, following continued efforts to incorporating 

additional features of prospective brand-new hallmarks and enabling 

characteristics of cancer, “polymorphic microbiomes”, “senescent cells”, 

“unlocking phenotypic plasticity” and “nonmutational epigenetic 

reprogramming” are proposed to be capable of positioning in the parameters 

of hallmarks [6]. Herein, we mainly addressed the latter two features. 

First, the repression of genes associated with the previous cell type, as well as 

the activation of genes associated with the new cell type, are both the 

examples of phenotypic and cellular plasticity [6]. While undergoing de-

differentiation, blocked differentiation or transdifferentiation, cells may 

inhabit out-of-cells-of-origin identity states. Such modifications may be 

reversible and implicated in various cancer types [7]. Secondly, the global 

erasure and remodeling of epigenetic markers throughout the normal 

development is referred to as epigenetic reprogramming [8] and it is also 

studied thoroughly around cancer studies. For these two newly suggested 
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hallmarks and enabling features of cancers, it is cumbersome to detect them 

with a single univariate marker, because they exhibit fairly multi-layered 

features [6]. In this regard, elucidation of cancers in multi-omics fashion 

cannot be too emphasized.

Carcinoma – a malignant neoplasm of cells with epithelial origin

Carcinoma is a cancer that begins in epithelial tissue cells throughout the body 

that make up the external surface and lining of cavities of internal organs and 

form glandular tissues, such as the ovary or the stomach [9, 10]. Carcinoma

develops when mutations and other alterations in the DNA, histones, and 

other biological substances that make up the cell's genome accumulate in a 

single progenitor cell [9]. The structure of the cell's biochemical components, 

the biochemical events that occur within the cell, and the cell's biological 

relationships with other cells are all controlled by the genomic, transcriptomic 

and epigenomic states of the cells and various environmental factors. Certain 

mutations in a progenitor cell (also known as a cancer stem cell [11]) 

eventually cause that to exhibit a number of aberrant, malignant cellular 

features that, when combined, are considered indicative of carcinoma. There 

are various different subtypes of carcinoma [12], notably including 

adenocarcinoma, basal cell carcinoma, squamous cell carcinoma and 

adenosquamous carcinoma, and anaplastic carcinoma each by the cell of 

origin from which they arise respectively. Given the fact that the rapid surge 
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in burden of cancer incidence and mortality rate is reflected globally [13] and 

that as many as 90% of all human cancers are accounted for carcinomas 

arising from epithelial tissue cells [10], one should note that it is crucial to 

delineate their complex network of organization and function.

Objective of the studies

Cancers originated form epithelial cell have highly heterogeneous properties 

and have multifaceted features, which act as obstacles for clinicians to treat 

them. With the advent of the $1,000 genome, there is no doubt that various 

multilayer analyses will be feasible and suitable strategies to tackle the 

heterogeneous daunting nature of epithelial-cell-of-origin cancers. Therefore, 

two types of epithelial cell-derived cancers were thoroughly investigated in 

terms of aforementioned emerging hallmarks of cancer by means of multi-

omics, first by understanding ovarian cancers with homologous recombination 

repair (HRR) and epithelial-to-mesenchymal transition (EMT) by leveraging 

genomic and transcriptomic information, and second by analyzing stomach 

adenocarcinoma (STAD) through epigenomic and transcriptomic analysis 

from whole-genome bisulfite sequencing (WGBS) and RNA sequencing.
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Part 1

Classification of High-Grade Serous 

Ovarian Carcinoma by

Epithelial-to-Mesenchymal 

Transition Signature
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Abstract

High-grade serous ovarian cancer (HGSOC) is one of the deadliest cancers 

that can occur in women. This study aimed to investigate the molecular 

characteristics of HGSOC through integrative analysis of multi-omics data. 

We used fresh-frozen, chemotherapy-naive primary ovarian cancer tissues and

matched blood samples of HGSOC patients and conducted next-generation 

whole-exome sequencing (WES) and RNA sequencing (RNA-seq). Genomic 

and transcriptomic profiles were comprehensively compared between patients 

with germline BRCA1/2 mutations and others with wild-type BRCA1/2. 

HGSOC samples initially divided into two groups by the presence of germline

BRCA1/2 mutations showed mutually exclusive somatic mutation patterns, yet 

the implementation of high-dimensional analysis of RNA-seq and application 

of epithelial-to-mesenchymal (EMT) index onto the HGSOC samples 

revealed that they can be divided into two subtypes; homologous

recombination repair (HRR)-activated type and mesenchymal type. Patients 

with mesenchymal HGSOC, characterized by the activation of the EMT 

transcriptional program, low genomic alteration, and diverse cell-type 

compositions, exhibited significantly worse overall survival than those with 

HRR-activated HGSOC did (p = 0.002). In validation with the cancer genome 
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atlas (TCGA) HGSOC data, patients with a high EMT index (≥the median) 

showed significantly worse overall survival than did those with a low EMT 

index (<the median) (p = 0.030). In conclusion, through a comprehensive 

multi-omics approach towards our HGSOC cohorts, two distinctive types of 

HGSOC (HRR-activated and mesenchymal) were identified. Our novel EMT 

index could be a potential prognostic biomarker for HGSOC.

* This work was published in Genes [1].

----------------------------------------------------------------------------------------------

Keywords: Epithelial neoplasm; ovarian cancer; High-grade serous ovarian 

carcinoma; Next-generation sequencing; epithelial-to-mesenchymal transition; 

homologous recombination repair

Student number: 2014-25063
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Introduction

Ovarian cancer, one of the deadliest gynecologic malignancies, is a global 

burden with an estimated 313,959 new cases and 207,252 cancer deaths in 

2020 alone [14]. The majority of ovarian cancers are epithelial ovarian 

cancers, and high-grade serous ovarian carcinoma (HGSOC) is the most 

prevalent histologic type [15]. In patients with HGSOC, germline or somatic 

mutations in BRCA1 or BRCA2 gene are frequently observed, and women 

harboring germline BRCA1/2 mutations are at high risk of developing 

HGSOC [16]. 

The patients’ BRAC1/2 mutational status is of high interest because several 

poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors are 

currently available for the treatment of primary and recurrent HGSOC, based 

on the phase 3 clinical trials, which have demonstrated the significant survival 

benefit brought by PARP inhibitors [17-21]. However, beyond focusing on 

BRCA1/2 gene mutations, there is an urgent need to discover other genetic 

mutations and altered gene expression programs that might potentially be

prognostic biomarkers or therapeutic targets.
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One important feature of HGSOCs is that they are commonly diagnosed at an 

advanced stage, therefore showing high disease recurrence and mortality rates 

despite the primary treatment [22]. Researchers have noted epithelial-to-

mesenchymal transition (EMT), a process referring to the conversion of an 

epithelial cell to a mesenchymal cell, as the mechanism for invasion and 

metastasis of ovarian cancer cells [23], as well as for achieving

chemoresistance [24]. Interestingly, in breast cancer, loss of BRCA1 protein is 

associated with EMT [25]. However, such a relationship has been poorly 

investigated in ovarian cancer. Broadening the molecular understanding of 

HGSOC and elucidating the underlying mechanisms for EMT as well as

BRCA1/2 gene alterations is expected to open a new horizon in the treatment 

of HGSOC [26].

In this regard, we carried out next-generation whole-exome sequencing (WES) 

and RNA sequencing (RNA-seq) to find the causal variants that bring about 

HGSOC in terms of homologous recombination repair (HRR) and EMT.
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Materials and methods

Study Population

Inclusion criteria for the study population were as follows: (1) diagnosed with 

HGSOC between January 2013 and December 2016; (2) having undergone 

primary debulking surgery; (3) having donated their blood samples, obtained 

one day before surgery, and fresh-frozen primary ovarian cancer tissues, 

obtained at the time of surgery, for scientific purposes after providing written 

informed consent; and (4) having an identifiable germline BRCA1/2

mutational status. In addition, patients were excluded if (1) they had any 

malignancy other than HGSOC; (2) received neoadjuvant chemotherapy; or (3) 

had insufficient clinical data or were lost to follow-up.

Among patients who met these criteria, we further selected patients referring 

to their germline BRCA1/2 genetic test results as follows: (1) five patients 

harboring germline deleterious BRCA1 mutations and wild-type BRCA2

(gBRCA1mut); (2) five patients harboring germline deleterious BRCA2

mutations and wild-type BRCA1 (gBRCA2mut); and (3) 10 patients with wild-

type BRCA1/2 genes (gBRCA1/2wt). Details of the germline BRCA1/2 gene 

testing methods at our institution were described in a previous study [27].
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We collected the patients’ baseline clinicopathologic characteristics, such as 

age at diagnosis, International Federation of Gynecology and Obstetrics 

(FIGO) stage, initial serum CA-125 levels, and residual tumor size after 

surgery. In terms of survival outcomes, progression-free survival (PFS) was 

defined as the time interval between the date of diagnosis to the date of 

disease progression, while overall survival (OS) was defined as the time 

interval between the date of diagnosis to the date of cancer-related death or 

last visit.

Whole-exome library preparation, sequencing, and data analysis

The fresh-frozen, primary ovarian cancer tissues and blood samples of 20 

patients were retrieved from Seoul National University Hospital Human 

Biobank. One expert gynecologic pathologist (Cheol Lee) in Seoul National 

University Hospital reviewed and confirmed all the HGSOC cases in our 

study population according to the World Health Organization Classification of 

Tumors, 5th edition.

We obtained DNA from primary ovarian cancer tissue samples and matched 

normal blood samples using Puregene Core kit and QIAamp DNA Blood Mini 

kit, respectively. Then, we captured human exon regions using SureSelect 

Human All Exon V6 kit following standard protocols. Subsequently, we 

performed 101X2 paired-end WES using HiSeq2500 instrument (Illumina, 

San Diego, CA, USA), according to the manufacturer’s instruction. Raw 
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FASTQ files were aligned onto GRCh37 using Burrow-wheeler Aligner 

(BWA) mem algorithms [28], and the resulting bam files were subjected to 

duplicate removal using the Genome Analysis Tool Kit (GATK) version 

4.1.4.1 [29]. After base quality score recalibration and applying it to each bam 

file using GATK, we proceeded to the discovery of somatic single nucleotide 

variants (SNVs) and small insertions and deletions (indels) for each tumor 

sample using Strelka2 [30] and a paired-normal sample as a control. For 

germline variant discovery of the WES from normal samples, we applied 

GATK’s HaplotypeCaller. All of the above variants were annotated by 

Oncotator [31] and ANNOVAR [32]. To accurately pinpoint the actually 

harmful ones, we only retained exonic variants (i.e. Missense, Nonsense, 

Frameshift insertion, Frameshift deletion, In-frame insertion, In-frame 

deletion and Splice site mutation) with at least 10x coverage of alternate allele, 

predicted to be deleterious by SIFT [33] and having minor allele frequency 

below 0.1% in 1000 Genomes Project phase 3 data [34], EXome Aggregation 

Consortium data [35], and Northeast Asian Reference Database [36]. Then, 

we only kept genes that are overlapped with cancer consensus genes from the 

Catalogue of Somatic Mutations in Cancer database [37]. Tumor mutational 

burden (TMB) was estimated by the total somatic mutations for each sample 

divided by the length of the captured exon regions (61 Mb).

Copy number alteration detection from Whole-exome sequencing data
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In order to discover somatic copy number alterations (SCNAs), we used 

CNVkit with default parameters [38]. Specifically, bin-level log2 ratio (.cnr) 

and segmented log2 ratio (.cns) files, generated from bam files by a separate 

reference for each matched tumor-normal pair, were processed into the 

residual bin-level log2 ratio estimates (segmetrics command). Then, GISTIC2 

[39] was implemented to identify frequently altered chromosomal regions 

with a confidence level of 0.90 and a Q-value threshold of 0.05. The purity of 

the tumor samples was calculated via Sequenza algorithm [40]. We also used 

seqz files generated by Sequenza as an input to scarHRD [41] for HRD score 

estimation. To discover germline SCNAs by using the CNVkit, we 

constructed a pooled reference from 20 normal blood samples and followed 

the same approach as that used for detecting somatic SCNAs using the 

CNVkit.

RNA-seq library preparation, sequencing, and general analysis

We extracted RNA from primary ovarian cancer tissue samples and prepared 

sequencing library using TruSeq RNA Access Library Prep Kit under standard 

protocol. Then we conducted RNA-seq on 20 HGSOC tumor samples by 

101X2 paired-end mode using Illumina HiSeq2500 (Illumina, San Diego, 

California), in accordance with the manufacturer’s instruction. For RNA-seq 

data analysis, each transcript expression was first quantified by 

pseudoalignment algorithm implicated in kallisto [42] version 0.46.1 using 
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RefSeq annotation release 105 for GRCh37. Quantified transcript-level 

transcripts per million (TPM) values were collapsed to give gene-level 

expression, and only the protein-coding genes were processed for the rest of 

the analysis. TPM values were implemented for comparison among different 

groups and for inputs to cell type enrichment analysis. With regard to 

discovering differentially expressed genes (DEG) among sample groups ((i) 

gBRCA1mut, gBRCA2mut and gBRCA1/2wt and (ii) homologous 

recombination repair (HRR)-activated and mesenchymal), we used DESeq2 

[43] version 1.24.0. Raw counts of the RNA-seq were transformed using 

variance stabilizing transformations (vst), which were later used as inputs to 

principal component analysis (PCA), unsupervised hierarchical clustering 

(HC) and identification of gene co-expression modules and interaction 

networks [44]. With respect to PCA, the top 5,000 variable genes among 

19,023 genes were used as inputs. Samples were then grouped into two 

clusters according to K-means clustering with k=2. For HC, we used 

euclidean distance measure and uncentered correlation measure for epithelial-

to-mesenchymal transition transcription factors (EMT-TFs) and HRR genes, 

respectively. Each gene expression was centered to the average intensity of 

samples, along with pair-wise complete-linkage for clustering of both samples 

and genes using Cluster 3.0 [45]. We visualized the resulting distance 

measures and dendrograms through Java Treeview [46].

Transcription Factor Enrichment Analysis
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Adding to the DEG analysis, PCA, K-means clustering, and unsupervised 

hierarchical clustering, we performed transcription factor enrichment analysis 

(TFEA) for a particular set of genes by using ChIP-X Enrichment Analysis 

version 3 [47]. Particularly, we used a complete list of transcription factors 

and their target gene-set libraries from ARCHS4 [48], which is a compendium 

of publicly available, processed RNA-seq data 

(https://maayanlab.cloud/chea3/assets/tflibs/ARCHS4_Coexpression.gmt, 

accessed on 14 April 2021). We only used the top 10 enriched TFs with false 

discovery rate <0.05 for subsequent analyses.

Calculation of EMT Index

To analyze RNA-seq data in relation to EMT, we manually coined an index, 

the “EMT index”. Specifically, the EMT index was calculated for each sample 

based on the geometric mean of TPM values for five core EMT-TFs (TWIST1, 

SNAI1, SNAI2, ZEB1, and ZEB2) and 33 EMT-related TFs (KLF4, GSC, 

TCF7L2, ALX1, GATA6, RUNX2, TCF3, SOX4, FOXC2, NFKB1, KLF2, 

KLF6, TBX3, TCF4, PRRX1, HOXB7, JUN, FOS, TAZ, TGIF1, ATF1, ERG, 

ETS1, ID1, TEAD1, YAP1, NFYA, KLF8, SOX9, SIX1, TBXT, GATA4, and

TWIST2) according to the consensus statement on EMT led by the EMT 

International Association (TEMTIA) [49].



17

Deriving other EMT intensity measures 

EMT index from Cristescu et al. [50] which derive its EMT index from 

Loboda et al. [51], was calculated for each sample based on the geometric 

mean of TPM values for total of 149 EMT-related genes, similar to our 

calculation of EMT index. EMT score from Guo et al. [52] was calculated in 

terms of the expression signature of 76 EMT-related genes as follow:

EMT score of sample n = ∑ WmGm, n��
��� where, Wm represents the pearson 

correlation coefficient between the expression of mth gene and that of CDH1, 

while Gm,n represents the expression of mth gene of sample n.

Identification of Co-Expressed Gene Modules and Interaction Networks

To identify gene co-expression modules and interaction networks from RNA-

seq data, we used CEMiTool [44] version 1.14.0. In total, 19,023 genes, upon 

which was applied variance-stabilizing transformation implemented in

DESeq2 [43], were used as inputs and samples were divided into two pre-

annotated clusters by K-means clustering, namely, cluster A and cluster B, 

with the following settings: corr_method = “spearman”, network type = 

“signed”, tom_type = “signed”, rank_method = “mean”, gsea_max_size = 

2000. Calculated modules were considered significant only if the absolute 

value of normalized enrichment scores (NES) for both cluster A and cluster B 

was above 4 and with a Benjamini–Hochberg adjusted p value < 0.0001. For 
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the input-constructing interaction network of each co-expressed gene module, 

we retrieved TFs target gene-set libraries from ARCHS4 [48] as a Gene 

Matrix Transposed (gmt) file format with a minor modification, putting TF 

genes and their target genes in the first column and the second column, 

respectively (https://github.com/ryansohny/HGSOC/blob/main/RNA-

seq/ARCHS4_Coexpression_interaction.csv). Then, we performed 

overrepresentation analysis implemented in CEMiTool using HALLMARK 

gene sets from the Molecular Signature Database (MSigDB) [53].

Cell-Type Enrichment Analysis

To further validate our findings regarding classification of our samples into 

two groups based on their genomic and transcriptomic profiles, we performed 

cell-type enrichment analysis from gene expression data. An expression 

profile of samples was uploaded to XCell [54] web interface with default 

parameters using “xCell (N = 64)” gene signature.

Analysis of TCGA Data

We downloaded The Cancer Genome Atlas (TCGA) RNA-seq data of 376 

HGSOC samples and corresponding clinicopathological profiles from the 

National Cancer Institute Genomic Data Commons Data Portal 

(https://portal.gdc.cancer.gov/, accessed on 22 February 2018) and cBioPortal 
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for Cancer Genomics (https://www.cbioportal.org, accessed on 22 February 

2018) website. TPM values were calculated by dividing each gene’s 

fragments per kilobase per million (FPKM) value with the sum of FPKM of 

that particular sample. To divide the TCGA cohort in terms of EMT index, the 

median value of the EMT indices of all samples was used; samples having a 

higher EMT index than the median value (11.999) were classified as EMT-

high, while the remainders were classified as EMT-low. Similar approach was 

applied to sample classification based on EMT index from Cristescu et al. 

[50]. For EMT score-based classification of samples, samples with negative 

EMT score were classified as “Mesenchymal” and with positive score as 

“Epithelial”.

Statistical Analysis

Differences in baseline characteristics and genomic or transcriptomic profiles 

between two groups (gBRCA1mut and gBRCA1/2wt) or among three 

(gBRCA1mut, gBRCA2mut, and gBRCA1/2wt) were assessed: Pearson’s chi-

square or Fisher’s exact tests were used for categorical variables, while 

Student’s t-, Mann–Whitney U, analysis of variance (ANOVA), or Kruskal–

Wallis tests were used for continuous variables. Tukey’s HSD was used for 

multiple comparisons. Pearson correlation coefficients were calculated 

between patient characteristics and somatically mutated genes. Survival 

outcomes were compared using Kaplan-Meier analysis with log-rank test. R 



20

statistical software version 4.0.2 (R Foundation for Statistical Computing, 

Vienna, Austria) was used for the statistical analyses. P values < 0.05 were 

considered statistically significant unless otherwise noted.

Code Availability 

The codes to reproduce our results and algorithms implemented in this study 

are available in Github repository at https://github.com/ryansohny/HGSOC.



21

Results

Characteristics and Survival Outcomes of Patients with HGSOC

Between the gBRCA1/2mut and gBRCA1/2wt groups, no differences were 

observed in baseline clinicopathologic characteristics (Table 1-1). None of the 

study population received PARP inhibitors at their primary treatment, whereas 

three patients in the gBRCA1/2mut group received PARP inhibitor 

maintenance therapy to treat relapsed disease. A median observation period 

was 63.4 months. The two groups showed a similar PFS (median, 26.0 vs. 

24.6 months; p = 0.895) and OS (mean, 76.8 vs. 71.6 months; p = 0.519; 

Figure 1-1). 

Genomic Profiling of HGSOC

WES of 20 blood samples revealed the same germline BRCA1/2 mutations as 

those identified by our in-house gene testing (Figure 1-2). In detail, samples 

from the gBRCA1mut group had a frameshift insertion (gBRCA1mut_1), a 

frameshift deletion (gBRCA1mut_3, gBRCA1mut_4), and a stop-gain SNV 

(gBRCA1mut_2) in the BRCA1 gene, which were all heterozygous, and a 
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hemizygous deletion of exon 1 through 14 of the BRCA1 gene 

(gBRCA1mut_5). All samples from the gBRCA2mut group had the frameshift 

deletion of a single BRCA2 gene in five different sites (gBRCA2mut_1 

through gBRCA2mut_5). Next, we investigated somatic mutations and 

putative drivers of HGSOC progression from tumor–normal pairs (Figure 1-

3). Interestingly, we observed a mutually exclusive variants pattern with few 

co-occurring somatic single nucleotide variants (SNVs) and indels across our 

samples, except for the TP53 mutation (pairwise Fisher’s exact test p > 0.05).

The lack of TP53 somatic mutations in some of our samples, which is rare in 

HGSOC, might originate from their low tumor purity. In particular, two 

gBRCA1/2wt samples lacked any apparent driver mutations of SNVs or indels. 

Tumor mutational burden (TMB) was assessed for each sample, but no 

significant difference was detected among the gBRCA1mut, gBRCA2mut, and 

gBRCA1/2wt groups (one-way ANOVA test p = 0.313) (Figure 1-4). In terms 

of somatic copy number alterations (SCNAs), we observed amplification of 

genes, such as CSF3R, LCK, MPL, MUTYH, SFPQ, STIL, and TAL1, and loss 

of genes, such as GNA11, MLLT1, MAP2K2, and SH3GL1 (Figure 1-5).

Transcriptomic Profiling of HGSOC in terms of HRR and EMT

Based on the RNA-seq data from 20 HGSOC samples, we conducted PCA to 

cluster the samples on the basis of the top 5000 variable genes out of 19,023 

genes and observed highly similar transcriptomic profiles between the 
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gBRCA1mut and gBRCA2mut groups (Figure 1-6). Six out of 10 samples in 

the gBRCA1/2wt group were clustered into “cluster A” together with the 

gBRCA1mut and gBRCA2mut groups, with the exception of one gBRCA2mut 

sample. Meanwhile, the remaining four samples in the gBRCA1/2wt group 

and the gBRCA2mut sample were segregated into “cluster B” (Figure 1-6). To 

determine the causal or regulatory variants for clusters A and B, we first 

performed TFEA [47] for genes exhibiting a negative correlation (r < −0.9, n 

= 60) with the first principal component (PC1) and that were upregulated in 

cluster A rather than in cluster B. The most significantly enriched TF gene 

was GRHL2 (Table 1-2), known as an EMT suppressor in various cancers

[55-57].

Next, considering that cluster A included most samples of the gBRCA1/2mut 

group, we investigated transcriptomic aberration of the HRR genes (Table 1-3)

[21]. Unsupervised hierarchical clustering of 30 HRR genes recapitulated the 

PCA result, and 18 out of 30 HRR genes (e.g., ATR, FANCA, and FANCD2) 

were significantly upregulated in cluster A rather than in cluster B (Figure 1-

7). The activation of HRR pathways might be explained by a genetic 

compensation for the dysfunction of BRCA1 or BRCA2 in the gBRCA1/2mut 

group, which accounts for a large part of cluster A. Furthermore, six samples 

from the gBRCA1/2wt group that fell into cluster A had several somatic 

alterations in HRR genes: missense mutations in BRCA1, ATRX, and ATR, 

copy number loss of BRCA2, FANCC, FANCG, and RAD50, and copy number 
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gain of RAD51B and RAD54L (Figure 1-8). Then, in order to find specific 

TFs regulating the expression of HRR genes, we again conducted TFEA for 

the 18 upregulated HRR genes and discovered that E2F8, E2F2, E2F3, 

PRDM9, CENPA, and TGIF were the core regulators or components of the 

gene networks overexpressed in cluster A (Table 1-4).

Focusing on genes upregulated in cluster B compared to their expression in 

cluster A, we also performed TFEA for genes exhibiting a positive correlation 

(r > 0.9, n = 180) with PC1. Interestingly, among the enriched TFs (Table 1-5), 

TCF21, TWIST2, MEOX2, OSR1, PRRX1, PRRX2, and TWIST1 were 

associated with EMT [58]. Investigation of the RNA expression of these TFs 

indicated that 6 out of 7 genes were upregulated (Mann-Whitney U test P

value < 0.05) in cluster B rather than in cluster A (Figure 1-9).

Analyzing RNA-seq data in relation to EMT, we manually coined the method 

and term “EMT index” (Table 1-6) which is defined as a geometric mean of 

gene expression values (TPM) across 5 core EMT transcription factor genes

and 33 EMT-related transcription factor genes from the The EMT 

International Association (TEMTIA) [49]. First, unsupervised hierarchical 

clustering of samples with these 38 TFs accurately separated 20 HGSOC 

tissue samples into clusters A and B (Figure 1-10). Between the two clusters, 

the EMT index was significantly higher in cluster B than in cluster A (p = 

0.001; Figure 1-10).
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In addition to the 38 genes used to calculate the EMT index, CDH1 (coding 

E-cadherin), known to be highly expressed in epithelial tissue and 

downregulated in mesenchymal tissue [49], was downregulated in cluster B 

(Figure 1-11, left). In contrast, VIM (coding vimentin), another key indicator 

of EMT highly expressed in mesenchymal rather than in epithelial tissue [59], 

was upregulated in cluster B (Figure 1-11, middle). In addition, TGFB1

(TGFβ), known as a key accelerator of EMT [60], was also upregulated in 

cluster B (Figure 1-11, right).

Interestingly, homologous recombination deficiency (HRD) score [41], a 

genomic scar estimate combining three measures (loss of heterozygosity, 

telomeric allelic imbalance, and large-scale state transitions) was higher in 

cluster A, compared to that of cluster B (Figure 1-12, left). Moreover, EMT 

index was found to be negatively correlated with the genomic scar estimate 

(Figure 1-12, right).

To dissect variation in the transcriptional network of our samples and further 

validate the transcriptional nature of two groups, cluster A and cluster B, we 

performed gene co-expression network analysis [44]. With this approach, we 

were able to identify one module (Co-expression Module 1) enriched in 

samples from cluster B, and two modules (Co-expression Modules 2 and 3) 

enriched in samples from cluster A (Figure 1-13). Co-expression Module 1 
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had EMT-TFs (e.g., KLF2 and PRRX1) as interaction hub genes, consistent 

with the finding that EMT gene signature was enriched in cluster B. Co-

expression Modules 2 and 3 were characterized by distinctive hub genes such 

as SLC2A1, which is known to be regulated by estrogens [61], and MYBL2, a 

core regulator of cellular differentiation [62], was among the main 

components of the complex network of gene expression in cluster A.

Meanwhile, we found a negative correlation between PC1 and tumor purity, 

derived from WES data (r = −0.84, p < 0.001; Figure 1-14), consistent with 

the finding that mesenchymal-type ovarian cancers tend to have lower tumor 

purity than do other types [63, 64]. Using the gene expression data, we also 

conducted cell-type enrichment analysis [54], and the mesenchymal stromal 

cell, the intra-tumoral cancer-associated fibroblast (CAF), and epithelial cell 

signature were investigated (Figure 1-15). Samples in cluster B were enriched 

in mesenchymal stromal cells and CAFs compared to samples in cluster A 

enriched in epithelial cells. Consistently, we also observed that two CAF 

marker genes, DCN and PDPN, were significantly upregulated in cluster B 

compared to their expression in cluster A (Figure 1-16). Taken together, we 

could classify 20 HGSOC tissue samples into two categories: (1) HRR-

activated HGSOC (cluster A) and (2) mesenchymal HGSOC (cluster B).

EMT Index and Survival Outcomes
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We performed survival analysis between patients with mesenchymal HGSOC 

(n = 5) and those with HRR-activated HGSOC (n = 15). While the two groups 

showed similar PFS (Log-rank P value = 0.708), patients with mesenchymal 

HGSOC exhibited significantly worse OS than those with HRR-activated 

HGSOC (Log-rank P value = 0.002) (Figure 1-17).

Next, we investigated the reproducibility of our study findings using TCGA 

HGSOC data [65]. Processing 379 RNA-seq samples, we calculated each 

sample’s EMT index (Figure 1-18, left) and examined its correlation with 

known EMT markers (Figure 1-18, right). Although the expression of CDH1, 

which was expected to be decreased with the increasing EMT index, had a 

weak positive correlation with the EMT index (Pearson r = 0.177, P < 0.001), 

its presence in EMT-high samples might indicate epithelial/mesenchymal 

intermediate states or reflect transient activation and repression of the EMT 

program [66, 67]. CDH2, encoding N-cadherin and serving as an indicator of 

EMT [68], was positively correlated with the EMT index (Pearson r = 0.255, 

P < 0.001), suggesting the possibly increased mesenchymal population within 

the EMT-high samples. VIM and TGFB1 also increased in direct proportion as

EMT index increased (Pearson r = 0.582, P < 0.001; and r = 0.591, P < 0.001, 

respectively).

Then, we analyzed the survival outcomes by the level of EMT index in TCGA 

HGSOC samples for which survival data were available (n = 374) (Figure 1-
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19). The OS of patients whose samples had a high EMT index (≥the median, n 

= 187) was significantly worse than that of patients whose samples had a low 

EMT index (<the median, n = 187) (median, 44.0 vs. 47.4 months; Log-rank 

P = 0.030). As we checked how the EMT-high and -low groups were 

distributed in the four subtypes of TCGA HGSOC (Figure 1-20), we observed 

that the EMT-high samples were mostly enriched in the TCGA-defined 

mesenchymal HGSOC subtype (Chi-square test P < 0.001; Benjamini-

Hochberg corrected P < 0.001 for all pairwise Fisher’s Exact test between 

mesenchymal and others). Moreover, among the four subtypes of TCGA 

HGSOC, the mesenchymal subtype exhibited the highest level of EMT index 

(one-way ANOVA test P < 0.001; adjusted P < 0.05 for all Tukey’s HSD).

Comparing EMT index method with other EMT intensity measures

To quantify the degree and intensity of state transition that cells in a given 

sample have gone through, a number of different scoring schemes using 

transcriptome data have been devised [69]. Since our newly developed EMT 

index is one of the transcriptome-based scoring systems, we compared our

EMT index method with other EMT intensity measures. Specifically, we 

selected the method from Guo et al. [52] termed “EMT score” which is a 

weighted sum of 76 EMT-related genes, and the method from Cristescu et al. 

[50] which uses similar approach to our EMT index in terms of using 

geometric mean of EMT-related gene expression, yet using their own different 
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set of 149 genes (see Materials and methods). First, we applied these two 

EMT intensity measures to 20 HGSOC. As a result, we found out that both 

measures were capable of discriminating Cluster A (HRR-activated) and 

Cluster B (Mesenchymal) similar to our EMT index from 38 EMT-TF method

(Figure 1-22). Next, extending our analysis further, we applied these two 

methods to TCGA HGSOC cohort (Figure 1-23). We observed that there was 

a weak positive correlation between EMT score and EMT index (PCC=0.231, 

P=5.50E−06). In light of the fact that sample with a negative EMT score is 

classified as “Mesenchymal” according to Guo et al. method [52], this 

positive correlation is quite unexpected. Conversely, our EMT index and EMT 

index from Cristescu et al. showed high similarity in terms of correlation 

(PCC=0.886, P=6.76E−128). EMT score and EMT index from Cristescu et al. 

showed no correlation as expected (PCC=0.100, P=0.053). Next, in order to 

evaluate the capability of each EMT intensity measure of inferring epithelial 

or mesenchymal marker gene expression, we examined the correlation of 

known EMT marker gene expression with each EMT scoring system. EMT 

score was positively correlated with epithelial cell marker, CDH1 expression

(PCC=0.687, P=3.61E−54), which means it was possible for EMT score to 

infer the intensity of CDH1 expression of each TCGA HGSOC sample. This 

is largely due to intrinsic nature of EMT score derived from computing it 

based on CDH1 expression (Figure 1-24, left, see Materials and methods). 

Nevertheless, it didn’t capture the expression of mesenchymal marker genes

such as CDH2 (PCC=0.018, P=0.722), VIM (PCC=−0.021, P=0.722) and 
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TGFB1 (PCC=0.272, P=7.74E−8), all of which should be negatively 

correlated because a sample with mesenchymal feature should have a negative 

EMT score value by the method from Guo et al. [52]. In contrast, EMT index 

from Cristescu et al. performed relatively well in terms of inferring the 

expression of known mesenchymal marker genes (Figure 1-24, right). 

Additionally, we observed that “Mesenchymal” types defined by using EMT 

score were not enriched in the TCGA-defined mesenchymal subtype (Figure 

1-25, Chi-square test P=0.034; Benjamini-Hochberg corrected P > 0.05 for all 

pairwise Fisher’s exact test between TCGA mesenchymal-type and others). 

When we analyzed the OS of patients in the “Mesenchymal” groups and of 

those in the “Epithelial” group, “Epithelial” group exhibit worse OS than 

“Mesenchymal” group (Figure 1-25). Given the fact that tumor with 

mesenchymal cell-like feature generally has worse prognosis in HGSOC

compared to that with different molecular feature [70, 71], EMT score from 

Guo et al. failed to show the expected prognosis of the mesenchymal-type 

HGSOC. On the other hand, EMT index from Cristescu et al. was largely 

similar to our results based on EMT index in terms of recapitulating the 

TCGA 4 subtypes, especially the TCGA-defined mesenchymal subtype 

(Figure 1-26, Chi-square test P < 0.005; Benjamini-Hochberg corrected P < 

0.05 for all pairwise Fisher’s exact test between TCGA mesenchymal-type 

and others). Yet, it also failed to show the tendency of worse OS of samples 

with mesenchymal features (Log-rank P=0.093). Overall, we showed, through 

multiple approaches, that our EMT index had relatively better capability in 
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examining the mesenchymal feature of the ovarian cancer sample than other 

methods did.
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Table 1-1. Patients’ clinicopathologic characteristics

Characteristics
All

(n=20, %)
BRCA mutation

(n=10, %)
BRCA wild-type

(n=10, %)
P

Age, years

  Mean±SD 52.8±8.4 54.2±9.4 51.4±7.4 0.705

Family History of breast cancer 1 (5.0) 1 (10.0) 0 >0.999

Family History of ovarian cancer 1 (5.0) 1 (10.0) 0 >0.999

FIGO stage 0.779

  IIIA 2 (10.0) 1 (10.0) 1 (10.0)

  IIIB 1 (5.0) 1 (10.0) 0

  IIIC 11 (55.0) 5 (50.0) 6 (60.0)

  IV 6 (30.0) 3 (30.0) 3 (30.0)

CA-125, IU/ml

Median (range) 798.5 (5.1-3545.0) 798.0 (5.1-3545.0) 798.5 (47.0-2433.0) 0.940

Lymphovascular space invasion 16 (80.0) 8 (80.0) 8 (80.0) >0.999

Lymph node metastasis 12 (60.0) 6 (60.0) 6 (60.0) >0.999

Residual tumor after surgery 0.139

No gross 14 (70.0) 9 (90.0) 5 (50.0)

<1 cm 5 (25.0) 1 (10.0) 4 (40.0)

≥1 and <2 cm 1 (5.0) 0 1 (10.0)

Abbreviations: CA-125, cancer antigen 125; FIGO, International Federation of Gynecology and Obstetrics; SD, standard deviation.
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Table 1-1. continued

Characteristics All
(n=20, %)

BRCA mutation
(n=10, %)

BRCA wild-type
(n=10, %)

P

Chemotherapy at primary treatment 0.628

6 cycles of paclitaxel-carboplatin 14 (70.0) 6 (60.0) 8 (80.0)

9 cycles of paclitaxel-carboplatin 6 (30.0) 4 (40.0) 2 (20.0)

Recurrence 16 (80.0) 9 (90.0) 7 (70.0) 0.582

Treatment-free interval, months

  Median (range) 20.4 (3.0-73.0) 20.9 (13.5-73.0) 19.6 (3.0-67.9) 0.496

Germline BRCA1 mutational status 0.033

  Wild-type 15 (75.0) 5 (50.0) 10 (100.0)

  Mutation 5 (25.0) 5 (50.0) 0

Germline BRCA2 mutational status 0.033

  Wild-type 15 (75.0) 5 (50.0) 10 (100.0)

  Mutation 5 (25.0) 5 (50.0) 0

Abbreviations: CA-125, cancer antigen 125; FIGO, International Federation of Gynecology and Obstetrics; SD, standard deviation.
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Table 1-2. TFEA results from genes negatively correlated with PC1 

(Pearson r < -0.9).

Transcription Factor Overlapping Genes FDR Q value
GRHL2 28 4.02E-27
SPDEF 27 4.85E-26
FOXA1 26 7.58E-25
OVOL1 24 1.91E-22
ELF3 24 1.91E-22
IRF6 24 1.91E-22
EHF 23 3.50E-21
KLF5 22 5.07E-20
GATA3 22 5.07E-20
TFCP2L1 22 5.07E-20
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Table 1-3. List of 30 homologous recombination repair genes used in this 

study

Homologous recombination repair genes

BRCA1

BRCA2

ATM

ATR

ATRX

BARD1

BLM

BRIP1

CHEK1

CHEK2

FANCA

FANCC

FANCD2

FANCE

FANCF

FANCG

FANCI

FANCL

FANCM

MRE11

NBN

PALB2

RAD50

RAD51

RAD51B

RAD51C

RAD51D

RAD52

RAD54L

RPA1
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Table 1-4. TFEA results from 18 out of 30 HRR genes upregulated in 

cluster A compared to those in cluster B

Transcription Factor Overlapping Genes FDR Q value

E2F8 8 4.18E-06

E2F2 6 8.68E-04

ZNF227 4 4.10E-02

ZNF107 4 4.10E-02

PRDM9 4 4.10E-02

ZNF45 4 4.10E-02

E2F3 4 4.10E-02

CENPA 4 4.10E-02

ZNF689 4 4.10E-02

TGIF2 4 4.10E-02
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Table 1-5. TFEA results from genes negatively correlated with PC1 

(Pearson r < -0.9)

Transcription Factor Overlapping Genes FDR Q value

TCF21 20 1.86E-08

TWIST2 17 3.11E-06

MEOX2 16 1.09E-05

OSR2 16 1.09E-05

OSR1 15 3.41E-05

PRRX1 15 3.41E-05

PRRX2 15 3.41E-05

BCL6B 14 1.35E-04

ATOH8 14 1.35E-04

TWIST1 14 1.35E-04
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Table 1-6. List of 38 genes used to calculate the EMT index

Core EMT-TFs Other EMT-related TFs

SNAI1 KLF4

SNAI2 GSC

ZEB1 TCF7L2

ZEB2 ALX1

TWIST1 GATA6

RUNX2

TCF3

SOX4

FOXC2

NFKB1

KLF2

KLF6

TBX3

TCF4

PRRX1

HOXB7

JUN

FOS

TAZ

TGIF1

ATF1

ERG

ETS1

ID1

TEAD1

YAP1

NFYA

KLF8

SOX9

SIX1

TBXT

GATA4

TWIST2
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Figure 1-1. Schematic diagram of our study design.
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Figure 1-2. Comparisons of survival outcomes between germline BRCA1/2 mutation and wild-type groups in terms of progression-free 

survival (PFS, left), and overall survival (OS, right).
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Figure 1-3. Germline BRCA1/2 mutations across gBRCA1/2mut samples validated by whole-exome sequencing. Integrative Genomics 

Viewer alignment views (a copy number scatterplot for gBRCA1/2mut_5) of germline mutations across 10 gBRCA1/2mut samples show next-

generation-sequencing-validated hemizygous mutations in the BRCA1 or BRCA2 gene.
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Figure 1-4. Genomic mutational characterization of 20 HGSOC samples. 

The distribution of somatic mutations among three categories of samples is 

presented here as oncoplot. Each column displayed here represents an 

individual case. LN, LVSI, TMB, and SCNA stand for lymph node, 

lymphovascular space invasion, tumor mutational burden, and somatic copy 

number alteration, respectively.
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Figure 1-5. Boxplots showing TMBs across different groups of patients.

There were no statistical differences in TMBs (one-way ANOVA, p = 0.313) 

among gBRCA1mut, gBRCA2mut, and gBRCA1/2wt samples. Each dot 

represents each TMB value of an HGSOC sample, while the average TMB 

values for each group are connected with a line. Boxplots show the 95% 

confidence interval for each group
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Figure 1-6. Somatic copy number alteration profiles of 20 HGSOC 

samples. Highly amplified or deleted genes are presented here as a heatmap. 

Each column represents an individual patient.
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Figure 1-7. Transcriptional landscape of HGSOC samples through 

principal component analysis. Samples are represented by different shapes 

and colors by their origin and grouped according to K-means clustering with k 

= 2 (cluster A and cluster B).
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Figure 1-8. Hierarchical clustering of samples represents the expression 

profile of 30 HRR genes.
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Figure 1-9. Aberration of HRR genes across gBRCA1/2wt samples. The 

distribution of HRR gene alterations across 10 gBRCA1/2wt tumor samples is 

represented. Each row corresponds to each tumor sample, and each row 

corresponds to an altered HRR gene.
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Figure 1-10. Boxplot showing the expression of TFs related to EMT 

across cluster A and cluster B. Boxplot shows the expression of EMT-related 

TF genes derived from TF enrichment analysis of genes displaying positive 

correlation (Pearson r > 0.9) with the PC1 value of the principal component 

analysis.
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Figure 1-11. Expression dynamics of EMT-TFs represented by Hierarchical clustering (left) and distribution of EMT index between 

cluster A and cluster B (right). Hierarchical clustering of samples with the expression profile of 38 EMT-TFs recapitulated the result from 

PCA analysis. Violin plot shows the difference in EMT index between cluster A and cluster B.
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Figure 1-12. Violin plots showing differences in gene expression of CDH1 (epithelial cell marker), VIM and TGFB1 (mesenchymal cell 

markers). Each P value was calculated via Mann-Whitney U test.
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Figure 1-13. A violin plot-view of HRD score distribution between cluster 

A and cluster B and relationship between EMT-index and HRD sum 

scores. HRD scores between cluster A and cluster B (left) were compared 

using Mann–Whitney U test. Statistical dependence between EMT index and 

HRD scores (right) were computed through Spearman’s rank correlation 

coefficients. LoH, NtAI, and LST stand for loss of heterozygosity, number of 

telomeric allelic imbalances, and large-scale transition, respectively.
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Figure 1-14. Co-expression gene module idenfication for cluster A and cluster B. Network of identified gene modules for cluster B (top) 

and cluster A (bottom) and gene-set enrichment analysis results for module genes in each network displayed on the right panel respectively.
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Figure 1-15. Correlation between PC1 and tumor purity. Significant 

negative correlation between PC1 from RNA-seq and tumor purity derived 

from whole-exome sequencing (Pearson r = −0.843 and P < 0.001).
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Figure 1-16. Cell-type enrichment analysis results. Heatmap of EMT index and cell-type enrichment analysis results across 20 HGSOC 

samples divided by cluster A and cluster B by order of increasing EMT index. *Mann-Whitney U test P < 0.05 between cluster A and cluster B.
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Figure 1-17. Expression of two CAF marker genes for cluster A and cluster B. Mann-Whitney U test P value for each observation is

represented above each violin plot.
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Figure 1-18. Kaplan-Meier curves of Progression-free and overall 

survival for patients between HRR-activated and Mesenchymal type.
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Figure 1-19. Application of EMT index onto TCGA HGSOC data and association between EMT index and known markers of EMT.  

Distribution of EMT index of TCGA HGSOC is displayed on a box plot (left). Scatter plots illustrates the relationship between EMT index 

and EMT-related gene expression in the TCGA HGSOC cohort. Each dot represents each sample analyzed, and linear trend between EMT 

index and each marker gene expression is shown respectively.
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Figure 1-20. Kaplan-Meier plot depicting overall survival of TCGA HGSOC samples falling into EMT-high and EMT-low groups.

EMT-high groups show worse prognosis compared to EMT-low groups (Log-rank P = 0.030) 
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Figure 1-21. EMT index distribution for four TCGA HGSOC subtypes. EMT index for four different TCGA-defined HGSOC molecular 

subtypes was compared, and the TCGA mesenchymal subtype exhibited the highest EMT index (one-way ANOVA test P < 0.001; Tukey’s 

HSD adjusted P < 0.005** and P < 0.05*). Red dots and blue dots inside the violin plots represent EMT-high and EMT-low samples, 

respectively.
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Figure 1-22. Association between the EMT index and other EMT intensity measures identified in 20 HGSOC cohort. All three EMT 

intensity measures were performing well in terms of discriminating Cluster A and Cluster B. 
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Figure 1-23. Association between the EMT index and other EMT intensity measures identified in each sample in TCGA.
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Figure 1-24. Scatter plots illustrating the relationship between two distinctive EMT intensity measures and the expression of known 

markers of EMT.



63

Figure 1-25. Distribution of EMT score from Guo et al. for four TCGA HGSOC subtypes and Kaplan-Meier plot of overall survival 

between two groups of TCGA HGSOC falling into EMT score-based categories. EMT index for four different TCGA-defined HGSOC 

molecular subtypes was compared (left). Red dots and blue dots inside the violin plots represent Mesenchymal and Epithelial samples, 

respectively. Epithelial group shows worse prognosis compared to Mesenchymal group (Log-rank P = 0.0069).
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Figure 1-26. Distribution of EMT index from Cristescu et al. for four TCGA HGSOC subtypes and Kaplan-Meier plot of overall 

survival between two groups of TCGA HGSOC falling into EMT index (from Gou et al.)-based categories. EMT index from Cristescu et 

al. for four different TCGA-defined HGSOC molecular subtypes was compared (left), and the TCGA mesenchymal subtype exhibited the 

highest EMT index (one-way ANOVA test P < 0.001; Tukey’s HSD adjusted P < 0.005** and P < 0.05*). Red dots and blue dots inside the 

violin plots represent EMT(+) and EMT(−) samples, respectively. There were no significant OS difference between the two groups (right).
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Figure 1-27. Schematic diagram of our findings.
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Discussion

In this study, we investigated the molecular characteristics of HGSOC 

through an integrative analysis of genomic and transcriptomic data obtained 

from chemotherapy-naive primary HGSOC tissues. Consequently, we could 

simplify the molecular classification of HGSOC to HRR-activated and 

mesenchymal types (Figure 1-27). The prognostic value of the EMT index 

was also validated using TCGA HGSOC data. Our study results demonstrate 

that the EMT index would be a potential prognostic biomarker for HGSOC. 

Of two distinctive types of HGSOC, HRR-activated HGSOC was 

characterized by a malfunction of the HRR program caused by deficient 

BRCA1/2 or HRR genes and the transcriptomic aberration of other HRR genes. 

Furthermore, we revealed that genes regulating or co-expressed with HRR 

genes are members of the E2F family (E2F8, E2F2, and E2F3), known as cell 

cycle regulators [72]; PRDM9, related to the process of meiosis and 

responsible for directing the positions of HRR [73]; CENPA, involved in 

accurate chromosome segregation [74]; and TGIF, reported to be over-

expressed among ovarian cancer cell lines [75]. 
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The other type, mesenchymal HGSOC, was characterized by low genomic 

alteration, transcriptional activation of EMT-TFs, decreased epithelial cell 

marker expression, increased mesenchymal cell marker expression, and 

diverse cell type composition. Regarding activation of EMT-TFs, a previous 

study in colorectal cancer reported that ZEB1, one of the core EMT-TFs, was 

activated through the β-catenin/TCF4 complex [76]. Similarly, we also 

observed upregulation of both β-catenin (CTNNB1) and TCF4 and of their 

target ZEB1 in mesenchymal HGSOCs. However, we could only infer the 

association of these three genes, but not their causal relationship.

EMT is currently known as one of the cancer hallmarks, being involved in 

tumorigenesis, metastasis, and obtaining chemoresistance [5, 24, 26, 77]. In 

our understanding, unlike in breast cancer, the link between BRCA1 and EMT 

has not been thoroughly investigated in HGSOC. The relationship between 

expression profiles of HRR and EMT genes might be explained by the 

following hypotheses: (1) the co-existence of deficient BRCA1/2 or HRR 

genes and altered expression of EMT genes together lead cancer cells to 

extinction; or (2) altered expression of EMT genes may contribute to the 

tumor microenvironment being nonviable for cancer cells with defects in 

BRCA1/2 or HRR genes. To confirm these hypotheses, additional experiments

using ovarian cancer cell lines are warranted.

In the current study, we leveraged the EMT index, composed of 38 genes—
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five for core EMT-TFs and 33 for EMT-related TFs—which can be utilized in 

identifying mesenchymal HGSOC. In addition, it may be used as a prognostic 

marker in HGSOC; both in our samples and TCGA HGSOC data, a high EMT 

index was associated with significantly worse OS. At the same time, it should 

be noted that the proportion of stromal cells within samples might be reflected 

in the EMT index. Indeed, a higher proportion of stromal cells in HGSOC is 

known to be associated with worse OS [78]. 

Furthermore, various molecules, such as E-cadherin, N-cadherin, EpCAM, 

and vimentin, are involved in the EMT process [24]. A complex network of 

TFs is known to regulate EMT, leading to the downregulation of epithelial 

genes and the upregulation of mesenchymal genes [24, 79]. We also observed

various molecules or genes related to the EMT index and regulators of EMT, 

including VIM (vimentin) and TGFB1 (TGFβ), which were differentially 

expressed between the two types of HGSOC.

In terms of anti-EMT therapy, TGFβ is one of the best-studied therapeutic 

targets in cancer. Phase I and II clinical trials of fresolimumab (a monoclonal 

anti-TGFβ antibody) have been conducted in renal cell carcinoma, melanoma, 

mesothelioma, and breast cancer [80-82]. In ovarian cancer, blockade of 

TGFβ signaling with antibodies reversed EMT in epithelial ovarian cancer 

ascites-derived cell spheroids [83] and increased platinum sensitivity in a 

xenograft mouse model [84]. More research is needed to elucidate the
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therapeutic strategy of anti-EMT therapies in HGSOC.

Based on our study results, if an individual is identified to have a high-EMT-

index HGSOC, so poor prognosis is expected, clinicians might prescribe 

additional targeted agents (e.g., bevacizumab) more actively. Clinicians might 

also consider dose-dense chemotherapy or extended chemotherapy cycles. 

After primary treatment, a more intensive surveillance schedule might be 

administered for an individual. Incorporating the EMT index with the well-

known clinicopathologic risk factors of HGSOC, researchers might develop 

models predicting treatment response and prognosis more accurately. In this 

manner, we believe that precision cancer medicine can be facilitated in 

ovarian cancer with a relatively poorer prognosis than any other cancer.

Our study has several limitations. First, the small sample size might be one of 

the most problematic issues. In survival analysis, we could not conduct 

multivariate analysis adjusting for clinicopathologic factors. Thus, our study 

results should be validated in a large, multi-institutional HGSOC cohort. 

Second, our study results were only derived from bulky specimens composed 

of various malignant and non-malignant cells. Therefore, specific gene 

signatures of the mesenchymal HGSOC samples might be a mixed result

originating from malignant epithelial or mesenchymal cells and non-

malignant cells, such as CAFs, endothelial cells, and immune cells [64] To 

elucidate the exact cellular compositions and heterogeneity in tumor cells, as 
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well as the cell-to-cell interactions within the tumor microenvironment, 

further singe-cell-level studies should be conducted. Such studies might 

supplement and enhance our study results. Nevertheless, we believe that the 

methodology of our study, especially the step-by-step integrative analysis 

methods, can be also used in other malignant types of cancers.
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Part 2

DNA Methylation-driven

Dysregulation of Gene Expression in 

84 Stomach Adenocarcinoma 

Revealed by Multi-omics Analysis 
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Abstract

Stomach adenocarcinoma (STAD) is a leading contributor to global cancer 

incidence and mortality and is responsible for over 700,000 deaths annually. 

In spite of the mapping of multiple molecular aberrations over STAD, our 

understanding of this deadly disease remains poor owing to its heterogeneous 

and multi-dimensional nature. Here, we addressed this challenge by using an 

integrated multi-omics analysis to delineate the molecular alterations of 

STAD in terms of genome-wide cytosine-phosphate-guanine (CpG) DNA 

methylation profiles and RNA expression dynamics. DNA methylation-centric 

analysis combined with public regulatory element data enabled us to identify 

multiple ablated gene pathways including activation of canonical WNT/β-

catenin signaling, downregulation of super-enhancer proximal genes and 

reactivation of pattern specification genes in homeobox clusters upon DNA 

hypermethylation. This study underscores the context-dependent epigenetic 

dysregulation in STAD, and pinpoints various epigenetically dysregulated 

sites for potential biomarkers and therapeutic targets.

----------------------------------------------------------------------------------------------

Keywords: Epithelial neoplasm; Stomach adenocarcinoma; Transcriptome 
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sequencing; Whole-genome bisulfite sequencing; WNT/β-catenin signaling

Student number: 2014-25063



74

Introduction

Stomach adenocarcinoma (STAD), defined as neoplasia of glandular 

epithelial cells of the gastric mucosa, is one of the major histological types of 

stomach cancer, and is responsible for > 750,000 deaths worldwide [14]. 

STAD has a high incidence rate particularly in East Asia, with South Korea 

having the second highest incidence rate behind Japan [14]. 

Manifestation of STAD has been ascribed to various environmental risk 

factors such as smoking, obesity, and a diet high in smoked, salted foods. 

Furthermore, viral or bacterial infection is another risk factor for this disease. 

In fact, long-term infection with the bacteria helicobacter pylori (H. pylori) in 

the stomach has been proven to be one of the main determinants of stomach 

cancer, as this bacterium can cause inflammation and pre-cancer growth [85]. 

Infection with the Epstein-Barr virus, a herpes virus best known for causing 

mononucleosis, has also been linked to stomach cancer.

Prior to the advent of genomics era, histological classification of stomach 

adenocarcinoma was first proposed by Lauren et al., in the name of Lauren’s

classification [86] which classified STAD into intestinal and diffuse categories.
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In addition, other histopathological categorization of STAD have been 

proposed, one of which being WHO classification [87], which is comprised of

papillary, tubular, mucinous, poorly cohesive and mixed adenocarcinoma. 

Nonetheless, unlike clinical staging (e.g., TNM stage) routinely applied to 

treatment and management of STAD, utilization of aforementioned 

histopathological variabilities is currently challenging [88].

In the middle of 2014, amidst extensive application of NGS into identifying 

STAD biology, TCGA [89] categorized the stomach adenocarcinoma, through 

one of the pioneering multi-omics studies, into four distinct genomic subtypes 

which comprised of the Epstein-Barr virus (EBV) subtype, the microsatellite 

instability (MSI) subtype, the genomically stable (GS) subtype, and lastly a 

chromosomal instability (CIN) subtype. In other group, the Asian cancer 

research group (ACRG), by using RNA expression profile from microarray 

data of STAD, classified gastric tumors with four distinct subtypes including 

MSI, microsatellite stability with the characteristics of epithelial-to-

mesenchymal transition (MSS/EMT) and MSS/epithelial tumors further 

divided into two by the presence of TP53 signatures (MSS/TP53+ and 

MSS/TP53−) [50]. Although the above mentioned studies are sufficiently 

valuable, they somewhat lacked epigenetic-centered analysis. Particularly, 

ACRG subtypes were focused on RNA expression level and lacked complete 

information on epigenetics in terms of DNA methylation as they inferred its 

signature using pre-defined sets of gene expression, and TCGA group
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concerted their efforts only on CpG island methylator phenotype (CIMP, 

which often associated with transcriptional gene silencing) assayed through 

DNA methylation microarray technology.

The term “epigenome” refers to the epigenetic information in a cell, which 

includes DNA methylation, post-translational modifications of histones, and 

higher-order chromatin structure [8]. Addressed as one of the key epigenetic 

elements governing the cellular identity, DNA methylation and its changes 

have long been recognized as a crucial factor in cancer formation [8].

Here, to elucidate the pivotal role of epigenetic change and subsequent 

aberration of gene expression in the process of STAD tumorigenesis, the 

tumor and matched normal samples from 84 Korean gastric adenocarcinoma 

patients were collected, and both WGBS and RNA-seq were performed. In 

addition to this bi-modality, to highlight the exertion of complex regulatory 

elements governing STAD formation, we obtained publicly available 

candidate cis-regulatory element (cCRE) and five histone modification 

datasets of normal from a healthy individual and putative transcription factor 

binding sites (TFBS) from ENCODE [90-92] and super enhancer elements

from SEdb [93]. Along with these multi-modal data, we set out to extend our 

understanding of comprehensive epigenetic alteration and their consequent 

aberration of gene expression in STAD.
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Materials and methods

Primary STAD specimens

Matched clinical samples of STAD and their adjacent normal stomach mucosa 

tissues are obtained from 84 patients as fresh frozen specimens at Bundang 

Seoul National University Hospital. Written informed consents were obtained 

from patients before surgery. These specimens were used for two different 

sequencing assays; WGBS (n=168) and RNA-seq (n=168).

RNA-seq library preparation and sequencing

We prepared RNA libraries using the Illumina TruSeq Stranded Total RNA kit 

according to the manufacturer’s protocol. First, ribosomal RNA (rRNA)

depletion was performed followed by fragmentation and conversion to RNA 

molecule to complementary DNA (cDNA) using reverse transcriptase. Single-

stranded cDNAs were then converted to double-stranded cDNAs and end-

repaired and adenosine-tailed, and adaptor-ligated. The libraries constructed 

were amplified using polymerase chain reaction (PCR). Subsequently we 



78

sequenced cDNA libraries using NovaSeq 6000 (Illumina, San Diego, CA, 

USA) with 151bp paired-end configuration.

WGBS library preparation and sequencing

WGBS libraries were prepared using Accel-NGS Methyl-Seq DNA Library 

kit (Swift Biosciences) according to manufacturer's instructions. The DNA 

was treated with the sodium bisulfite using EZ DNA methylation GOLD kit 

(Zymo Research). After the adapter ligation step, prepared libraries were 

amplified using PCR. Reads were sequenced using NovaSeq 6000 (Illumina, 

San Diego, CA, USA) 151bp paired-end configuration.

RNA-seq data processing

RNA-seq reads were first checked for low-quality bases and adapter 

contamination and those reads were trimmed using TrimGalore, followed by 

pseudoalignment by Kallisto v0.46.2 [42] (with default option except for --rf-

stranded --bias) onto transcriptome indices generated from GENCODE [94]

V24 transcripts fasta. After read trimming and pseudoalignment, we checked 

for QC metrics using percentage of pseudoaligned reads, uniquely 

pseudoaligned reads and reads mapped onto rRNA for each individual sample.



79

Raw read counts were batch adjusted by “ComBat_seq” function in sva [95]

package version 3.42.0 using sequencing run information as batch covariates, 

leaving tumor and normal sample information untouched. Briefly, sva 

package, by using negative binomial regression to model batch effects, 

provides the adjusted data by comparing the original count data distribution to 

an expected distribution if there were no batch effects in the first place.

Next, we performed discovery of differentially expressed genes (DEGs) using 

DESeq2 1.34.0 [43] onto raw count matrix after filtering genes of which sum 

of counts across samples were below 10. We modeled a raw count matrix 

using patient and condition (~patient + condition). Then, log fold change 

shrinkage was performed from apeglm package version 1.16.0 [96]. 

Normalized counts transformed using variance stabilized transformation (vst) 

were analyzed for downstream analysis such as PCA, hierarchical clustering.

WGBS data processing

Owing to the nature of WGBS library preparation technology using adaptase, 

in order to accurately identify DNA methylation information from WGBS 

reads, it is imperative to perform read trimming procedure off the first 

10~15bp as well as adapter and low-quality bases. Thus, we implemented 

trimming using TrimGalore
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(www.bioinformatics.babraham.ac.uk/projects/trim_galore/; --clip_R1 10 --

clip_R2 15 --three_prime_clip_R1 12 --three_prime_clip_R2 13 --illumina --

paired). WGBS reads were then aligned onto C>T and G>A converted hg38 

reference genome (bismark_genome_preparation) using bismark v0.21.0 [97]

(bismark --maxins 700 --dovetail) with bowtie2 v2.4.2 [98]. After removal of 

duplicate reads (deduplicate_bismark --paired), methylation states under CpG, 

CHH (where H stands for one of cytosine (C), thymine (T) and Adenine (A) 

base) and CHG contexts were extracted (bismark_methylation_extractor --

paired-end --no_overlap --cutoff 1 --cytosine_report). After selecting CpGs 

from 22 autosomes and X chromosome, we combined the CpG calls on each 

Watson and Crick strand and only the CpG site where total coverage is 5 or 

more is considered valid in the downstream analysis. Quality of the DNA 

methylation data was evaluated by bisulfite conversion rate inferred from 

lambda genome spike-in, non-CpG methylation (e.g., cytosines in CHH and 

CHG contexts) percentage and genomic coverage of CpG sites. 

Subtyping based on TCGA STAD molecular classification

Based on molecular classification for STAD from TCGA consortium [89], we 

attempted to categorize our 84 STAD samples into 4 distinct subtypes. With 

the lack of somatic DNA copy number alteration profiles needed to 

distinguish GS type from CIN type, we only managed to classify our 84 

STAD samples into 3 categories of which comprise EBV, MSI and GS/CIN. 
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Briefly, EBV positivity of specific sample based on clinical information were 

first used to identify EBV type (N=4) and subsequently MSI groups were 

categorized using the level of MSI (N=10). Remaining samples were 

categorized into GS/CIN types (N=70).

Epimutation Burden calculation

The epimutation burden calculation was adopted from previously described 

method [99]. Briefly, we count the number of CpG sites, where read coverage 

above 5 and the difference between tumor DNA methylation and normal DNA 

methylation is 20% or more. Then we divided this by the total number of CpG 

sites, resulting in an epimutation burden measure for each sample. Difference 

of epimutation burden between samples belonging to the TCGA classification 

were identified using Mann-Whitney U test.

Discovery of differentially methylated regions (DMR) and downstream 

analysis

Combined CpG coverage files for each site for each sample were converted to 

bedGraph format followed by identification of differentially methylated 

regions (DMR) between tumor and normal using metilene v0.2-8 [100] from 

the merged bedGraph file as an input. We restricted our downstream DMR 

analysis on those which absolute methylation difference between tumor and 
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normal is above 10%, 15% or on those which adjusted P value is below 0.05 

according to the different circumstances. Then, smooth DNA methylation 

percentage for each sample inside DMRs was calculated using BSmooth 

algorithm [101]. Hierarchical clustering was performed using clustermap 

function in Seaborn version 0.11.2. We transformed DNA methylation 

bedGraph files to bigWig then to tdf format for visualizing CpG methylation 

information using Integrative Genomics Viewer (IGV) [102]. Genomic 

coordinate bed file of each hyper-DMR (Tumor-Normal >15%) and of hypo-

DMR (Tumor-Normal< −15%) was uploaded to GREAT tool [103] version 

4.0.4 to perform functional analysis with a default parameter. 

DMR annotation using various publicly available regulatory elements

We first downloaded the various histone modification call sets retrieved from

a reference epigenome for a healthy human stomach (ENCSR949WGV, a 53 

year old female) in ENCODE portal (Table 2-2) [91] with the following 

identifiers: H3K4me3 (ENCFF588TFE), H3K27ac (ENCFF910HDI), 

H3K27me3 (ENCFF313RCC), H3K4me1 (ENCFF712YGW), H3K9me3 

(ENCFF152CYD) and H3K36me3 (ENCFF927MLI). In order to annotate 

DMR with promoter element, we opted not to define arbitrarily sized 

promoter according to distance with TSS. Instead, we defined promoter 

utilizing promoter-like signatures (PLS) subcategory constituting cis-

regulatory elements (cCREs) [90]. These elements (PLS, PLS-CTCF-bound) 
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were downloaded from the Search Candidate cis-Regulatory Elements by 

ENCODE (SCREEN) website (screen.encodeproject.org). If there were 

transcripts with no PLS element present in the vicinity of TSS (NO-PLS), 

only then we applied arbitrarily defined promoter, upstream 500bp and 

downstream 500bp of TSS. If there were identical gene name present in both 

PLS and NO-PLS, we filtered out NO-PLS element and used only the 

assigned PLS. Next, we annotated PLS with histone modification marks with 

the following criteria: (1) PLS were merged if they were close to 100bp each 

other using bedtools merge -d 100 (2) merged PLS region were extended 

100bp both upstream and downstream using bedtools slop -b 100 (3) annotate

extended PLS with 5 different histone marks (H3K4me3, H3K27ac, 

H3K27me3, H3K4me1, H3K9me3) using bedtools intersect. PLSs were 

further filtered according to their assigned gene_biotype in GENCODE. We 

only used the if they are one of ‘protein_coding’, ‘lincRNA’, 

‘3prime_overlapping_ncRNA’, ‘antisense’, ‘bidirectional_promoter_lncRNA’, 

‘macro_lncRNA’, ‘non_coding’, ‘processed_transcript’, ‘sense_intronic’, and 

‘sense_overlapping’. Then, PLS overlapped with DMR (adjusted P value < 

0.05) were selected.

Uniform TFBS from ENCODE

(https://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeRe

gTfbsClustered/wgEncodeRegTfbsClusteredV3.bed.gz) were lifted over from 

hg19 to hg38 using LiftOver tool [104].
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Calculating DNA methylation inside gene body, SE element and HOX 

clusters

The DNA methylation levels inside each of the gene bodies, ENCODE 

stomach tissue SE element [93] were calculated using the weighted average 

DNA methylation using a custom Python script. In order to generate heatmap 

of the DNA methylation inside HOX clusters, we segmented four HOX 

clusters (HOXA, HOXB, HOXC and HOXD) with the 1000bp window from 

the start to the end of each cluster and calculated weighted DNA methylation 

using a custom Python script.

Discovery and analysis of partially methylated domains (PMD)

PMDs were identified using MethPipe v4.1.1 [105] (pmd -i 1000 -b 1000 -s

42) separately for each sample. Methylated and unmethylated CpG read 

counts were used as input as previously described [99]. Only the CpG sites 

with total coverage above 5 were used to identify PMDs. Identified PMDs 

were further filtered by the score given by MethPipe (below 100) and by the 

length (below 100kb). Then, PMDs from individual tumor were subsequently 

merged using bedtools unionbedg to make a union set of 2,282 PMDs. The 

average PMD methylation level was calculated using the weighted average 

DNA methylation using a custom Python script.
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CpG island methylator phenotype (CIMP) detection and analysis

The CpG island methylator phenotype was investigated based on recurrently 

methylated promoter CGIs similar to previously described method [106]. 

Briefly, the average methylation level for 27,755 CGIs was calculated for 

each sample using smoothed CpG methylation level using BSmooth [101]. 

The CGIs determining the CIMP (CIMP-CGIs) were selected based on the 

following three criteria: (1) CGI overlapped with promoter-like signatures 

(PLS) (2) mean methylation level across normal samples below 40%; (3) 

difference in CpG methylation level between tumor and matched normal 

samples above 10%. We identified total of 239 CIMP-CGIs in this manner 

and performed hierarchical clustering using CpG DNA methylation difference 

between tumor and normal samples. CIMP (+) tumors were then selected 

using hierarchical clustering tree structure.

Code Availability

All codes used in this study are publicly available at 

https://github.com/ryansohny/STAD.
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Results

DNA methylation landscape in STAD revealed by WGBS

Initially, we collected 84 pairs of primary STAD tissues and their adjacent 

normal tissues (Table 2-1) and performed WGBS and RNA-seq (Figure 2-1).

We achieved WGBS with 30X coverage per sample, and over 99% bisulfite 

conversion rates across all samples and moreover, the average non-CpG 

methylation in our samples were 0.66% and 0.64% for CHG context and 

CHH context respectively, ascertaining the great quality of our WGBS 

samples (Figure 2-2). Comparison of the average DNA methylation of the 

individual CpG between tumors and normal samples revealed global CpG 

hypomethylation is present in STAD (Figure 2-3, paired t-test P value = 

3.87E-08) which is one of the general characteristics of tumor [107]. 

Consistent with this finding, partially methylated domains (PMD) which refer 

to long stretches of genomic areas of hundreds of kilobase pairs (kb) with 

highly disorganized methylation levels and which were known to frequently 

observed in various types of tumors and cultured cell lines [108], were 

recurrently detected in our STAD samples compared to normal counterparts 

(Figure 2-4). The overall global hypomethylation could be accounted for by 
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these recurring PMD present in our tumor samples. In terms of detected PMD, 

several tumor samples were affected by PMD up to almost half of their cancer 

genomes (Figure 2-5). Furthermore, we assayed CIMP-CGI (Figure 2-6) 

which is implicated in numerous cancers and especially well characterized in 

STAD [88, 89]. We found out that the DNA methylation level of CIMP-CGIs 

displayed negative correlation with the PMD methylation level (Spearman’s 

rho=−0.60, Figure 2-7). CIMP(+) tumors (N=35) showed higher tendency to 

exhibit global hypomethylation compared to CIMP(−) tumors (N=49).

Applying TCGA classification method to our STAD cohort

Using six different molecular assays, TCGA consortium characterized 

stomach cancers into four subtypes of which comprise of EBV, MSI, GS and 

CIN [89]. As MSI-type, and particularly EBV-type stomach cancers exhibited 

extreme abnormalities in DNA methylation compared to that of GS and CIN, 

we checked if DNA methylation aberration of the two aforementioned types, 

EBV and MSI, was relatively pronounced compared to that of GS and CIN.

We first categorized 14 out of 84 samples into two categories based on EBV-

positivity (EBV; N=4) and MSI-high status (MSI; N=10). Due to the lack of 

somatic copy number alteration information which is needed to discern GS-

type from CIN-type, we labeled the remaining samples GS/CIN (N=70). A 

flowchart outlining how our 84 samples were categorized into these 3 

subtypes is illustrated in Figure 2-8. Then, epimutation burden [99], which 
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accounts for the intensity of DNA methylation aberration for a given sample,

was calculated and compared among these 3 subtypes (Figure 2-9). No 

statistical difference was observed among the epimutation burden of these 

TCGA subtypes, meaning the classification method proposed by TCGA study, 

is failed to be replicated in our STAD cohort in terms of ablation of DNA 

methylation.

Differentially methylated regions (DMR) associated with chromatin 

modifications

Hence, to better understand the distinct characteristics of our STAD cohort 

compared to TCGA cohort in terms of DNA methylation, we extended our 

analysis into differentially methylated regions (DMR) defined as the regions 

of DNA methylation-dysregulated sites in tumors compared to those of 

normal tissues (Figure 2-10). We found 263,337 number of DMR (FDR q 

value < 0.05) between tumor and normal tissues, 5.13% (N=13,503) of which 

were hypermethylated DMR (hyper-DMR) while 94.87% (N=249,834) were

hypomethylated DMR (hypo-DMR), consistent with the global decrease of 

average DNA methylation in tumors. Using principal component analysis 

(PCA, Figure 2-11) and unsupervised hierarchical clustering (Figure 2-12), 

we discovered that DNA methylation inside the DMR (absolute DNA 

methylation difference between Tumor and Normal > 10%) can distinguish 

normal tissues from malignant tissues. Examining the CpG density in the 
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region where DMR occurred, we discovered that hyper-DMRs were located in 

areas with higher CpG density than hypo-DMR were (Figure 2-13), in 

accordance with the fact that the sites where gene regulation occurs are CpG-

rich regions which typically characterized by low DNA methylation in normal 

cells [109]. Next, we performed functional enrichment analysis [103] onto 

each hyper-DMR (difference in methylation[Tumor-Normal] > 20%) and 

hypo-DMR (difference in methylation[Tumor-Normal] < −20%) using gene-

sets in gene ontology biological process (Figure 2-14). We found out that 

hyper-DMRs were enriched in terms such as “digestive tract development” 

and “digestive system development”, suggesting hyper-DMRs generally 

occurred on sites where nearby genes govern normal stomach physiology. 

Also, a “canonical WNT signaling pathway” term of which its dysregulation

implicated in human cancer malignancies [110] was significantly enriched in 

hyper-DMR regions.

When we evaluated the enrichment of regulatory elements in DMR relative to 

the background whole genome by fold enrichment test similar to method from 

Lee et al [111]. and Kundaje et al. [112], we found out that the trimethylation 

at the 4th lysine residue of the histone H3 protein (H3K4me3) and 

trimethylation at the 27th residue of the H3 protein (H3K27ac), both of which 

are promoter marks of active genes, were enriched in Hyper-DMR more than 

10-fold compared to the expected values (Figure 2-15). Super enhancer 

element was the third-highest category in hyper-DMR followed by promoter 
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(promoter-like signature (PLS) in ENCODE cis-regulatory elements (cCREs)), 

and CpG islands. H3K27me3, which is a repressive gene mark showed ~6 

fold enrichment, followed by transcription factor binding sites (TFBS). In

terms of TFBS enrichment, we found that binding sites for polycomb group 

genes (e.g. SUZ12, EZH2 and CTBP2) responsible for transcriptional 

repression were enriched in hyper-DMR regions (Figure 2-16). Hypo-DMR 

enriched TFBS (Figure 2-17) consisted mainly of ATP-dependent chromatin 

remodeler, SWI/SNF components [113, 114] (e.g. SMARCC1, SMARCC2 and 

SMARCB1) implicated in transcriptional regulation [115] and tumor formation 

[116]. 

Gain of DNA methylation at the WNT2 Promoter region associated with 

WNT2 activation

As we observed the apparent enrichment of histone modification marks 

demarcating promoter from other elements (H3K4me3, H3K27ac and 

H3K27me3) within DMR, we set out to investigate the association between 

the change of promoter DNA methylation level and the respective gene 

dysregulation. Notably, among this association, we found a wingless-type 

MMTV integration site family member 2 (WNT2), a member of the WNT 

gene family which is made up of structurally related genes that code for 

signaling proteins that are part of the canonical WNT signaling pathway [110, 

117]. WNT2 proteins have been linked to tumorigenesis and a variety of 
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developmental processes. Normally, WNT2 expression is silenced by EZH2-

mediated H3K27me3 of the respective gene promoter. In our data, WNT2

promoter hypermethylation was associated with the increased expression in 

STAD (Figure 2-18, left). Interestingly, the CTNNB1 which together with 

WNT2, makes up the WNT/β-catenin signaling, was also upregulated in 

STAD, and known targets of β-catenin, extracellular metalloproteins MMP3

and MMP9 were significantly upregulated in STAD as well. Furthermore, the 

hypermethylation of WNT2 promoter and upregulation of WNT2 is implicated 

in esophageal cancer and colorectal cancer [118, 119]. Moreover, WNT5A

which is also one of the components of canonical WNT pathways, exhibited

promoter hypermethylation and respective gene upregulation (Figure 2-18, 

right), implicating activation of general WNT pathways and downstream 

signaling in our STAD cohorts.

Ablation of DNA methylation in Super Enhancers and HOX clusters

Increasing evidence suggests that the DNA methylation aberration of the 

super enhancer [120, 121] which is defined as large clusters of active 

transcription enhancer histone marks (e.g. H3K27ac) is prevalent in 

tumorigenesis [122]. As we observe over ~6-fold enrichment of hyper-DMR 

in super enhancer region, this led us to explore the hyper-methylated super 

enhancers and concomitant dysregulation of their nearby genes (Figure 2-19). 

Among DEGs between tumor and normal, 19 out of 30 (~63%) super-
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enhancer hypermethylated genes were upregulated in tumors and negatively 

correlated with the DNA methylation of respective super enhancer. Notably, 

super-enhancer nearby FOXA2, one of the pioneer transcription factors 

identified to recruit coactivators and interact with other transcription factors at 

functional enhancers [123] and implicated in lung cancers as a putative tumor 

suppressor [124], was marked by significant DNA hypermethylation, and 

FOXA2 expression was significantly reduced in STAD compared to in normal 

tissues (Figure 2-20). Another notable gene associated with super-enhancer 

hypermethylation, and subsequent downregulation was CASZ1 (Figure 2-21), 

a candidate tumor suppressor gene in neuroblastoma [125]. Among genes 

upregulated upon super enhancer hypermethylation, we found out that several 

HOXA genes (HOXA1, HOXA3, HOXA6, HOXA9, HOXA10, HOXA11, 

HOXA13) were significantly upregulated in STAD. Intriguingly we observed 

that four homeobox gene clusters (HOXA, HOXB, HOXC and HOXD

clusters) involved in developmental patterning process [126, 127] were all 

marked with significant DNA hypermethylation across H3K27me3 repressive 

histone modification marks and associated with the respective gene 

upregulation (Figure 2-22). Given that these homeobox clusters were 

enriched with binding sites for polycomb repressive complex 2 such as EZH2 

and SUZ12, we assumed that DNA hypermethylation-associated detachment 

of repressive factors is related to homeobox gene activation and STAD 

manifestation in our cohort.
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Table 2-1. The STAD patients’ clinical characteristics

Characteristics N
Number of subjects 84

Sex
Male 65 (77.38%)
Female 19 (22.62%)

Median age 63.0 (37-93)

WHO classification
Poorly cohesive 27 (32.14%)
Well-differentiated and Moderately-differentiated tubular 27 (32.14%)
Poorly-differentiated tubular 16 (19.04%)
Papillary 5 (5.95%)
Mucinous 1 (1.19%)
Mixed 2 (2.38%)
Others 6 (7.14%)

Lauren's classification
Intestinal 39 (46.43%)
Diffuse 37 (44.05%)
Indeterminate 8 (9.52%)

pT stage
T1a 5 (5.95%)
T1b 13 (15.48%)
T2 18 (21.43%)
T3 21 (25.00%)
T4a 25 (29.76%)
T4b 2 (2.38%)

pN stage
N0 26 (30.95%)
N1 11 (13.10%)
N2 17 (20.24%)
N3a 13 (15.48%)
N3b 17 (20.24%)

pM stage
M0 79 (94.05%)
M1 5 (5.95%)

Lymphatic invasion
Positive 58 (69.05%)
Negative 26 (30.95%)

Vascular invasion
Positive 23 (27.38%)
Negative 61 (72.62%)

Perineural invasion
Positive 43 (51.19%)
Negative 41 (48.81%)

EBV
Positive 4 (4.76%)
Negative 80 (95.24%)

MSI
High 10 (11.90%)
Low 74 (88.10%)

HER2 immunohistochemistry
0 45 (53.57%)
1+ 25 (29.76%)
2+ 9 (10.71%)
3+ 4 (4.76%)

Abbreviations: pT stage, pathological assessment of the primary tumor; pN stage, pathological assessment 
of the regional lymph nodes; pM stage, pathological assessment of metastasis; EBV, Epstein Barr Virus; 
HER2, Human epidermal growth factor receptor 2
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Table 2-2. Public regulatory element data used in this study

Assay Reference Epigenome Experiment Accession Links

H3K4me3 ENCSR949WGV ENCSR489ZLL ENCFF588TFE https://www.encodeproject.org/experiments/ENCSR489ZLL/

H3K27ac ENCSR949WGV ENCSR133NBJ ENCFF910HDI https://www.encodeproject.org/experiments/ENCSR133NBJ/

H3K27me3 ENCSR949WGV ENCSR357ROS ENCFF313RCC https://www.encodeproject.org/experiments/ENCSR357ROS/

H3K4me1 ENCSR949WGV ENCSR903QBX ENCFF712YGW https://www.encodeproject.org/experiments/ENCSR903QBX/

H3K9me3 ENCSR949WGV ENCSR546HZF ENCFF152CYD https://www.encodeproject.org/experiments/ENCSR546HZF/

H3K36me3 ENCSR949WGV ENCSR166CNR ENCFF927MLI https://www.encodeproject.org/experiments/ENCSR166CNR/
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Figure 2-1. A summary of the study design. Total of 168 WGBS and 168 RNA-seq (84 each for tumor tissues and normal tissues) were 

performed.
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Figure 2-2. Quality metrics of WGBS samples. Boxplot representation of percentage of bisulfite conversion rate inferred from lambda 

genome spike-in (left), cytosine methylated in CHG context (middle) and CHH context (right).
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Figure 2-3. Global hypomethylation in STAD. Comparison of average CpG 

DNA methylation in each sample show that tumor samples exhibit lower 

DNA methylation profile compared to normal counterparts.
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Figure 2-4. Hierarchical clustering of 2,282 union PMD. Highly 

disorganized methylation levels in terms of PMD were detected recurrently in 

tumor tissues.
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Figure 2-5. Fraction of PMDs in the genome for normal tissues and tumor 

tissues.
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Figure 2-6. CIMP-CGI detection and analysis. 
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Figure 2-7. Correlation of CIMP-CGI DNA methylation with PMD DNA 

methylation. Each dot represents a sample (Blue; Normal samples, Red; 

CIMP-positive samples and Salmon; CIMP-negative samples)
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Figure 2-8. The schematic flowchart outlining how 84 STAD tumors were 

classified into TCGA molecular subtypes.
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Figure 2-9. Distribution of epimutation burden among TCGA STAD 

subtypes. No significant difference of epimutation burden was observed for 

all pair-wise comparison. Each dot represents the individual tumor sample 

corresponding to TCGA subtypes assigned.
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Figure 2-10. A flowchart depicting identification of differentially 

methylated regions (DMR) between tumor tissues and normal 

counterparts.
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Figure 2-11. Principal component analysis using DNA methylation inside 

DMR for each sample. Normal and malignant tissues can be distinguished by 

DNA methylation inside the DMR (absolute DNA methylation difference 

between Tumor and Normal > 10%).
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Figure 2-12. Hierarchical clustering sample-to-sample distance by DNA 

methylation within DMR using Pearson correlation coefficients. Black; 

Tumor samples, Grey; Normal samples. PCC; Pearson correlation coefficient.
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Figure 2-13. Distribution of normalized CpG density between hyper-

DMR and hypo-DMR.
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Figure 2-14. Functional enrichment of hyper-DMR and hypo-DMR using Gene ontology Biological Process. 
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Figure 2-15. Fold enrichment of the chosen regulatory elements within 

DMR.
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Figure 2-16. Fold enrichment of the top 10 most enriched transcription factor binding sites within hyper-DMR.
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Figure 2-17. Fold enrichment of the top 10 most enriched transcription factor binding sites within hypo-DMR.
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Figure 2-18. Promoter hypermethylation of WNT2 and WNT5A. Integrative genomic viewer’s view of DNA methylation and other 

regulatory elements around WNT2 and WNT5A respectively. Representative 8 samples each with tumor and normal counterparts were used as 

an example to show promoter hypermethylation (red bars: tumor DNA methylation, blue bars; normal DNA methylation)
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Figure 2-19. Heatmap depicting super enhancer DNA methylation profiles across samples and respective gene expression dynamics.
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Figure 2-20. A long stretches of DNA hypermethylation in SE element related to FOXA2.
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Figure 2-21. A long stretches of DNA hypermethylation in SE element related to CASZ1.
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Figure 2-22. Heatmaps showing hypermethylation of the 4 homeobox clusters. Most respective genes in the hypermethylated homeobox 

clusters were upregulated upon DNA hypermethylation. A color bar on the right-hand side represents a percentage of DNA methylation.
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Figure 2-23. Comparison of the gene expression of DNMTs between 

STAD and normal tissues. Maintenance (DNMT1) and de novo (DNMT1, 

DNMT3A and DNMT3B) methyltransferase genes were all upregulated in 

STAD compared to in normal tissues. 
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Discussion

Understanding of complex and dynamic molecular process in the progression 

of STAD in terms of genetic, epigenetic and transcriptomic regulations has

been delineated in numerous studies. However, the DNA methylation 

landscape of STAD manifestation, despite its defining attribute of regulating 

cellular identity in formation of the cancer [8], remained obscure.

Here, we performed WGBS, RNA-seq on 84 STAD samples and their 

matched normal samples to elucidate how the epigenetic landscape 

contributes to STAD tumorigenesis. We observed global DNA 

hypomethylation and local hypermethylation across the epigenomes of STAD, 

consistent with studies in other types of cancers [99, 107, 108, 118]. 

Interestingly, in our STAD cohorts, three DNA methyltransferase (DNMT) 

genes, coding enzymes that catalyze DNA methylation of CpG sites (DNMT1, 

DNMT3A and DNMT3B), were all upregulated (Figure 2-23). The activation 

of DNMT genes is in fact implicated in several other cancers [128]. These 

observations seem paradoxical, given DNMTs’ ability to methylate cytosines,

because our STAD cohorts exhibited global hypomethylation, that is, 

demethylation. This phenomenon may be present in part due to the fact that 

tumors have infinite replicative potentials [5, 6, 129] causing passive DNA 
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demethylation upon replication and consequent activation of compensational 

expression of DNMT program. Furthermore, it hints at the possibility of 

selective exertion of DNMT on several tumor-associated gene promoter that 

brings their hypermethylation considering that there have been a few evident 

studies that DNMTs are recruited by transcriptional regulators [130].

Moreover, with multi-omics analysis approach, we observed a highly 

methylated promoter region and upregulated expression of WNT2 constituting 

canonical WNT/β-catenin/MMP signaling. Interestingly, in the study of 

esophageal squamous cell carcinoma [118], they found out that WNT2

promoter hypermethylation and upregulation of its expression and then, they

experimentally validated that decreased binding of EZH2 to the 

hypermethylated promoter region of WNT2 was associated with higher 

expression of WNT2 in cancer compared to that in normal counterpart. Our 

study also found that this process was applicable to WNT5A re-activation. In 

fact, upon querying TFBS within DNA methylation-affected gene promoters, 

we observed that binding sites for EZH2 and SUZ12 proteins, subunits of 

PRC2 were present in hypermethylated WNT2 and WNT5A promoters 

respectively. This suggests that higher expression of WNT2 and WNT5A upon 

dysregulation of respective promoter methylation can be putative biomarkers 

for STAD progression.

Furthermore, super enhancer hypermethylation and its nearby gene 

dysregulation was evident in our STAD cohorts. We proposed that local 
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changes in transcription factor binding acted on DNA methylation profiles of 

super enhancer element with subsequent effects on target gene dysregulation.

Of note, downregulation of FOXA2, and CASZ1 which individually play a 

role as a tumor-suppressing factor, was associated with nearby super-enhancer

epigenetic dysregulation. We also found out that the hypermethylation of 

homeobox gene clusters was related to their downregulation. Given that 

binding signatures of polycomb group proteins, a set of transcriptional 

repressors that recognize and bind to H3K27me3 repressive marks and best 

known for restricting homeobox gene expression [131], were enriched in 

these areas, we believe that targeted DNA methylation assaying approach in 

homeobox clusters could be a potential STAD detection method. Indeed, 

homeobox genes have been shown to play their parts in oncogenesis [132].

Overall, our study on STAD using DNA methylation and RNA expression 

provides a roadmap for delineating the functional roles of epigenetic 

dysregulation. Owing to the bulk nature of our samples, we believe that 

further single-cell level analysis would provide a better understanding of the 

impact on epigenetic dysregulation in STAD. 
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General Discussion
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In the first part of the thesis, we characterized molecular profiles of HGSOC 

using multi-omics data. Investigation of genomic and transcriptomic 

landscapes of the HGSOC demonstrated that alteration of genome and 

epithelial-to-mesenchymal transition (EMT) play an important role in our 

cancer cohorts and that they can be divided into two distinct molecular

subtypes; homologous recombination repair (HRR)-activated type and 

mesenchymal type. 

In the second part of the thesis, we used integrative, high-dimensional multi-

omics approaches to outline the DNA methylome landscape and describe the 

putative oncogenic drivers of STAD using whole-genome bisulfite sequencing 

(WGBS) and RNA-seq. Altered DNA methylation were associated with 

cancer-specific gene dysregulation including canonical WNT/β-catenin/MMP 

signaling, super enhancer related genes such as FOXA2 and CASZ1 and genes

for four homeobox clusters. We showed that epigenetic dysregulation 

promotes STAD tumorigenesis through multi-factorial mechanisms.

In summary, these studies advances our understanding of how multi-faceted 

molecular landscapes shape cancer pathogenesis and provides a resource for 

biomarker and target discovery.



123

References

1. Sohn, M.H., et al., Classification of High-Grade Serous Ovarian 

Carcinoma by Epithelial-to-Mesenchymal Transition Signature and 

Homologous Recombination Repair Genes. Genes (Basel), 2021. 

12(7).

2. Goodwin, S., J.D. McPherson, and W.R. McCombie, Coming of age: 

ten years of next-generation sequencing technologies. Nat Rev 

Genet, 2016. 17(6): p. 333-51.

3. Metzker, M.L., Sequencing technologies - the next generation. Nat 

Rev Genet, 2010. 11(1): p. 31-46.

4. Kircher, M. and J. Kelso, High-throughput DNA sequencing--

concepts and limitations. Bioessays, 2010. 32(6): p. 524-36.

5. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next 

generation. Cell, 2011. 144(5): p. 646-74.

6. Hanahan, D., Hallmarks of Cancer: New Dimensions. Cancer Discov, 

2022. 12(1): p. 31-46.

7. Yuan, S., R.J. Norgard, and B.Z. Stanger, Cellular Plasticity in Cancer.

Cancer Discov, 2019. 9(7): p. 837-851.

8. Feinberg, A.P., The Key Role of Epigenetics in Human Disease 

Prevention and Mitigation. N Engl J Med, 2018. 378(14): p. 1323-

1334.

9. Weinberg, R.A., The biology of cancer. Second edition. ed. 2014, 

New York: Garland Science, Taylor & Francis Group. xx, 876, A 6, G 

30, I 28 pages.

10. Hinck, L. and I. Nathke, Changes in cell and tissue organization in 

cancer of the breast and colon. Curr Opin Cell Biol, 2014. 26: p. 87-

95.

11. Ayob, A.Z. and T.S. Ramasamy, Cancer stem cells as key drivers of 



124

tumour progression. J Biomed Sci, 2018. 25(1): p. 20.

12. Berman, J.J., Tumor taxonomy for the developmental lineage 

classification of neoplasms. BMC Cancer, 2004. 4: p. 88.

13. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates 

of Incidence and Mortality Worldwide for 36 Cancers in 185 

Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249.

14. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates 

of incidence and mortality worldwide for 36 cancers in 185 

countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.

15. Cho, K.R. and M. Shih Ie, Ovarian cancer. Annu Rev Pathol, 2009. 4: 

p. 287-313.

16. Kuchenbaecker, K.B., et al., Risks of Breast, Ovarian, and 

Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation 

Carriers. Jama, 2017. 317(23): p. 2402-2416.

17. Moore, K., et al., Maintenance Olaparib in Patients with Newly 

Diagnosed Advanced Ovarian Cancer. N Engl J Med, 2018. 379(26): 

p. 2495-2505.

18. González-Martín, A., et al., Niraparib in Patients with Newly 

Diagnosed Advanced Ovarian Cancer. N Engl J Med, 2019. 381(25): 

p. 2391-2402.

19. Pujade-Lauraine, E., et al., Olaparib tablets as maintenance therapy 

in patients with platinum-sensitive, relapsed ovarian cancer and a 

BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, 

randomised, placebo-controlled, phase 3 trial. Lancet Oncol, 2017. 

18(9): p. 1274-1284.

20. Del Campo, J.M., et al., Niraparib Maintenance Therapy in Patients 

With Recurrent Ovarian Cancer After a Partial Response to the Last 

Platinum-Based Chemotherapy in the ENGOT-OV16/NOVA Trial. J 

Clin Oncol, 2019. 37(32): p. 2968-2973.

21. Coleman, R.L., et al., Bevacizumab and paclitaxel-carboplatin 

chemotherapy and secondary cytoreduction in recurrent, platinum-

sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology 

Group study GOG-0213): a multicentre, open-label, randomised, 

phase 3 trial. Lancet Oncol, 2017. 18(6): p. 779-791.



125

22. Vaughan, S., et al., Rethinking ovarian cancer: recommendations for 

improving outcomes. Nat Rev Cancer, 2011. 11(10): p. 719-25.

23. Vergara, D., et al., Epithelial-mesenchymal transition in ovarian 

cancer. Cancer Lett, 2010. 291(1): p. 59-66.

24. Dongre, A. and R.A. Weinberg, New insights into the mechanisms 

of epithelial-mesenchymal transition and implications for cancer.

Nat Rev Mol Cell Biol, 2019. 20(2): p. 69-84.

25. Sengodan, S.K., et al., Regulation of epithelial to mesenchymal 

transition by BRCA1 in breast cancer. Crit Rev Oncol Hematol, 2018. 

123: p. 74-82.

26. Loret, N., et al., The Role of Epithelial-to-Mesenchymal Plasticity in 

Ovarian Cancer Progression and Therapy Resistance. Cancers (Basel), 

2019. 11(6).

27. Kim, S.I., et al., Effect of BRCA mutational status on survival 

outcome in advanced-stage high-grade serous ovarian cancer. J 

Ovarian Res, 2019. 12(1): p. 40.

28. Li, H. and R. Durbin, Fast and accurate short read alignment with 

Burrows-Wheeler transform. Bioinformatics, 2009. 25(14): p. 1754-

60.

29. DePristo, M.A., et al., A framework for variation discovery and 

genotyping using next-generation DNA sequencing data. Nat

Genet, 2011. 43(5): p. 491-8.

30. Kim, S., et al., Strelka2: fast and accurate calling of germline and 

somatic variants. Nat Methods, 2018. 15(8): p. 591-594.

31. Ramos, A.H., et al., Oncotator: cancer variant annotation tool. Hum 

Mutat, 2015. 36(4): p. E2423-9.

32. Wang, K., M. Li, and H. Hakonarson, ANNOVAR: functional 

annotation of genetic variants from high-throughput sequencing 

data. Nucleic Acids Res, 2010. 38(16): p. e164.

33. Ng, P.C. and S. Henikoff, SIFT: Predicting amino acid changes that 

affect protein function. Nucleic Acids Res, 2003. 31(13): p. 3812-4.

34. Genomes Project, C., et al., A global reference for human genetic 

variation. Nature, 2015. 526(7571): p. 68-74.

35. Lek, M., et al., Analysis of protein-coding genetic variation in 60,706 



126

humans. Nature, 2016. 536(7616): p. 285-91.

36. Yoo, S.K., et al., NARD: whole-genome reference panel of 1779 

Northeast Asians improves imputation accuracy of rare and low-

frequency variants. Genome Med, 2019. 11(1): p. 64.

37. Tate, J.G., et al., COSMIC: the Catalogue Of Somatic Mutations In 

Cancer. Nucleic Acids Res, 2019. 47(D1): p. D941-D947.

38. Talevich, E., et al., CNVkit: Genome-Wide Copy Number Detection 

and Visualization from Targeted DNA Sequencing. PLoS Comput 

Biol, 2016. 12(4): p. e1004873.

39. Mermel, C.H., et al., GISTIC2.0 facilitates sensitive and confident 

localization of the targets of focal somatic copy-number alteration 

in human cancers. Genome Biol, 2011. 12(4): p. R41.

40. Favero, F., et al., Sequenza: allele-specific copy number and 

mutation profiles from tumor sequencing data. Ann Oncol, 2015. 

26(1): p. 64-70.

41. Sztupinszki, Z., et al., Migrating the SNP array-based homologous 

recombination deficiency measures to next generation sequencing 

data of breast cancer. NPJ Breast Cancer, 2018. 4: p. 16.

42. Bray, N.L., et al., Near-optimal probabilistic RNA-seq quantification.

Nat Biotechnol, 2016. 34(5): p. 525-7.

43. Love, M.I., W. Huber, and S. Anders, Moderated estimation of fold 

change and dispersion for RNA-seq data with DESeq2. Genome 

Biol, 2014. 15(12): p. 550.

44. Russo, P.S.T., et al., CEMiTool: a Bioconductor package for 

performing comprehensive modular co-expression analyses. BMC 

Bioinformatics, 2018. 19(1): p. 56.

45. de Hoon, M.J., et al., Open source clustering software.

Bioinformatics, 2004. 20(9): p. 1453-4.

46. Saldanha, A.J., Java Treeview--extensible visualization of microarray 

data. Bioinformatics, 2004. 20(17): p. 3246-8.

47. Keenan, A.B., et al., ChEA3: transcription factor enrichment analysis 

by orthogonal omics integration. Nucleic Acids Res, 2019. 47(W1): 

p. W212-W224.

48. Lachmann, A., et al., Massive mining of publicly available RNA-seq 



127

data from human and mouse. Nat Commun, 2018. 9(1): p. 1366.

49. Yang, J., et al., Guidelines and definitions for research on epithelial-

mesenchymal transition. Nat Rev Mol Cell Biol, 2020. 21(6): p. 341-

352.

50. Cristescu, R., et al., Molecular analysis of gastric cancer identifies 

subtypes associated with distinct clinical outcomes. Nat Med, 2015. 

21(5): p. 449-56.

51. Loboda, A., et al., EMT is the dominant program in human colon 

cancer. BMC Med Genomics, 2011. 4: p. 9.

52. Guo, C.C., et al., Dysregulation of EMT Drives the Progression to 

Clinically Aggressive Sarcomatoid Bladder Cancer. Cell Rep, 2019. 

27(6): p. 1781-1793 e4.

53. Liberzon, A., et al., The Molecular Signatures Database (MSigDB) 

hallmark gene set collection. Cell Syst, 2015. 1(6): p. 417-425.

54. Aran, D., Z. Hu, and A.J. Butte, xCell: digitally portraying the tissue 

cellular heterogeneity landscape. Genome Biol, 2017. 18(1): p. 220.

55. Chung, V.Y., et al., GRHL2-miR-200-ZEB1 maintains the epithelial 

status of ovarian cancer through transcriptional regulation and 

histone modification. Sci Rep, 2016. 6: p. 19943.

56. Werner, S., et al., Dual roles of the transcription factor grainyhead-

like 2 (GRHL2) in breast cancer. J Biol Chem, 2013. 288(32): p. 

22993-3008.

57. Chung, V.Y., et al., The role of GRHL2 and epigenetic remodeling in 

epithelial-mesenchymal plasticity in ovarian cancer cells. Commun 

Biol, 2019. 2: p. 272.

58. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal 

transition. J Clin Invest, 2009. 119(6): p. 1420-8.

59. Zeisberg, M. and E.G. Neilson, Biomarkers for epithelial-

mesenchymal transitions. J Clin Invest, 2009. 119(6): p. 1429-37.

60. Katsuno, Y., S. Lamouille, and R. Derynck, TGF-beta signaling and 

epithelial-mesenchymal transition in cancer progression. Curr Opin 

Oncol, 2013. 25(1): p. 76-84.

61. Wang, D.Y., et al., Identification of estrogen-responsive genes by 

complementary deoxyribonucleic acid microarray and 



128

characterization of a novel early estrogen-induced gene: EEIG1. Mol 

Endocrinol, 2004. 18(2): p. 402-11.

62. Musa, J., et al., MYBL2 (B-Myb): a central regulator of cell 

proliferation, cell survival and differentiation involved in 

tumorigenesis. Cell Death Dis, 2017. 8(6): p. e2895.

63. Aran, D., M. Sirota, and A.J. Butte, Systematic pan-cancer analysis of 

tumour purity. Nat Commun, 2015. 6: p. 8971.

64. Izar, B., et al., A single-cell landscape of high-grade serous ovarian 

cancer. Nat Med, 2020.

65. Cancer Genome Atlas Research, N., Integrated genomic analyses of 

ovarian carcinoma. Nature, 2011. 474(7353): p. 609-15.

66. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development 

and disease. Cell, 2009. 139(5): p. 871-90.

67. Yu, M., et al., Circulating breast tumor cells exhibit dynamic 

changes in epithelial and mesenchymal composition. Science, 2013. 

339(6119): p. 580-4.

68. Mrozik, K.M., et al., N-cadherin in cancer metastasis, its emerging 

role in haematological malignancies and potential as a therapeutic 

target in cancer. BMC Cancer, 2018. 18(1): p. 939.

69. Chakraborty, P., et al., Comparative Study of Transcriptomics-Based 

Scoring Metrics for the Epithelial-Hybrid-Mesenchymal Spectrum.

Front Bioeng Biotechnol, 2020. 8: p. 220.

70. Winterhoff, B., et al., Molecular classification of high grade 

endometrioid and clear cell ovarian cancer using TCGA gene 

expression signatures. Gynecol Oncol, 2016. 141(1): p. 95-100.

71. Konecny, G.E., et al., Prognostic and therapeutic relevance of 

molecular subtypes in high-grade serous ovarian cancer. J Natl 

Cancer Inst, 2014. 106(10).

72. Attwooll, C., E. Lazzerini Denchi, and K. Helin, The E2F family: 

specific functions and overlapping interests. EMBO J, 2004. 23(24): 

p. 4709-16.

73. Cheung, V.G., S.L. Sherman, and E. Feingold, Genetics. Genetic 

control of hotspots. Science, 2010. 327(5967): p. 791-2.

74. Regnier, V., et al., CENP-A is required for accurate chromosome 



129

segregation and sustained kinetochore association of BubR1. Mol 

Cell Biol, 2005. 25(10): p. 3967-81.

75. Imoto, I., et al., Amplification and overexpression of TGIF2, a novel 

homeobox gene of the TALE superclass, in ovarian cancer cell lines.

Biochem Biophys Res Commun, 2000. 276(1): p. 264-70.

76. Sanchez-Tillo, E., et al., beta-catenin/TCF4 complex induces the 

epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to 

regulate tumor invasiveness. Proc Natl Acad Sci U S A, 2011. 

108(48): p. 19204-9.

77. Skovierova, H., et al., Molecular regulation of epithelial-to-

mesenchymal transition in tumorigenesis (Review). Int J Mol Med, 

2018. 41(3): p. 1187-1200.

78. Schwede, M., et al., The Impact of Stroma Admixture on Molecular 

Subtypes and Prognostic Gene Signatures in Serous Ovarian Cancer.

Cancer Epidemiol Biomarkers Prev, 2020. 29(2): p. 509-519.

79. De Craene, B. and G. Berx, Regulatory networks defining EMT 

during cancer initiation and progression. Nat Rev Cancer, 2013. 

13(2): p. 97-110.

80. Morris, J.C., et al., Phase I study of GC1008 (fresolimumab): a 

human anti-transforming growth factor-beta (TGFbeta) monoclonal 

antibody in patients with advanced malignant melanoma or renal 

cell carcinoma. PLoS One, 2014. 9(3): p. e90353.

81. Stevenson, J.P., et al., Immunological effects of the TGFbeta-

blocking antibody GC1008 in malignant pleural mesothelioma 

patients. Oncoimmunology, 2013. 2(8): p. e26218.

82. Formenti, S.C., et al., Focal Irradiation and Systemic TGFbeta 

Blockade in Metastatic Breast Cancer. Clin Cancer Res, 2018. 24(11): 

p. 2493-2504.

83. Rafehi, S., et al., TGFbeta signaling regulates epithelial-

mesenchymal plasticity in ovarian cancer ascites-derived spheroids.

Endocr Relat Cancer, 2016. 23(3): p. 147-59.

84. Newsted, D., et al., Blockade of TGF-beta signaling with novel 

synthetic antibodies limits immune exclusion and improves 

chemotherapy response in metastatic ovarian cancer models.



130

Oncoimmunology, 2019. 8(2): p. e1539613.

85. Tan, P. and K.G. Yeoh, Genetics and Molecular Pathogenesis of 

Gastric Adenocarcinoma. Gastroenterology, 2015. 149(5): p. 1153-

1162 e3.

86. Lauren, P., The Two Histological Main Types of Gastric Carcinoma: 

Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt at a 

Histo-Clinical Classification. Acta Pathol Microbiol Scand, 1965. 64: 

p. 31-49.

87. Nagtegaal, I.D., et al., The 2019 WHO classification of tumours of 

the digestive system. Histopathology, 2020. 76(2): p. 182-188.

88. Yeoh, K.G. and P. Tan, Mapping the genomic diaspora of gastric 

cancer. Nat Rev Cancer, 2022. 22(2): p. 71-84.

89. Cancer Genome Atlas Research, N., Comprehensive molecular 

characterization of gastric adenocarcinoma. Nature, 2014. 

513(7517): p. 202-9.

90. Consortium, E.P., et al., Expanded encyclopaedias of DNA elements 

in the human and mouse genomes. Nature, 2020. 583(7818): p. 

699-710.

91. Davis, C.A., et al., The Encyclopedia of DNA elements (ENCODE): 

data portal update. Nucleic Acids Res, 2018. 46(D1): p. D794-D801.

92. Consortium, E.P., An integrated encyclopedia of DNA elements in 

the human genome. Nature, 2012. 489(7414): p. 57-74.

93. Jiang, Y., et al., SEdb: a comprehensive human super-enhancer 

database. Nucleic Acids Res, 2019. 47(D1): p. D235-D243.

94. Frankish, A., et al., GENCODE reference annotation for the human 

and mouse genomes. Nucleic Acids Res, 2019. 47(D1): p. D766-

D773.

95. Zhang, Y., G. Parmigiani, and W.E. Johnson, ComBat-seq: batch 

effect adjustment for RNA-seq count data. NAR Genom Bioinform, 

2020. 2(3): p. lqaa078.

96. Zhu, A., J.G. Ibrahim, and M.I. Love, Heavy-tailed prior distributions 

for sequence count data: removing the noise and preserving large 

differences. Bioinformatics, 2019. 35(12): p. 2084-2092.

97. Krueger, F. and S.R. Andrews, Bismark: a flexible aligner and 



131

methylation caller for Bisulfite-Seq applications. Bioinformatics, 

2011. 27(11): p. 1571-2.

98. Langmead, B. and S.L. Salzberg, Fast gapped-read alignment with 

Bowtie 2. Nat Methods, 2012. 9(4): p. 357-9.

99. Li, J., et al., A genomic and epigenomic atlas of prostate cancer in 

Asian populations. Nature, 2020. 580(7801): p. 93-99.

100. Juhling, F., et al., metilene: fast and sensitive calling of differentially 

methylated regions from bisulfite sequencing data. Genome Res, 

2016. 26(2): p. 256-62.

101. Hansen, K.D., B. Langmead, and R.A. Irizarry, BSmooth: from whole

genome bisulfite sequencing reads to differentially methylated 

regions. Genome Biol, 2012. 13(10): p. R83.

102. Robinson, J.T., et al., Integrative genomics viewer. Nat Biotechnol, 

2011. 29(1): p. 24-6.

103. McLean, C.Y., et al., GREAT improves functional interpretation of cis-

regulatory regions. Nat Biotechnol, 2010. 28(5): p. 495-501.

104. Lee, B.T., et al., The UCSC Genome Browser database: 2022 update.

Nucleic Acids Res, 2022. 50(D1): p. D1115-D1122.

105. Song, Q., et al., A reference methylome database and analysis 

pipeline to facilitate integrative and comparative epigenomics. PLoS 

One, 2013. 8(12): p. e81148.

106. Weisenberger, D.J., et al., CpG island methylator phenotype 

underlies sporadic microsatellite instability and is tightly associated 

with BRAF mutation in colorectal cancer. Nat Genet, 2006. 38(7): p. 

787-93.

107. Ehrlich, M., DNA hypomethylation in cancer cells. Epigenomics, 

2009. 1(2): p. 239-59.

108. Salhab, A., et al., A comprehensive analysis of 195 DNA 

methylomes reveals shared and cell-specific features of partially 

methylated domains. Genome Biol, 2018. 19(1): p. 150.

109. Deaton, A.M. and A. Bird, CpG islands and the regulation of 

transcription. Genes Dev, 2011. 25(10): p. 1010-22.

110. Katoh, M., Canonical and non-canonical WNT signaling in cancer 

stem cells and their niches: Cellular heterogeneity, omics 



132

reprogramming, targeted therapy and tumor plasticity (Review). Int 

J Oncol, 2017. 51(5): p. 1357-1369.

111. Lee, D.S., et al., An epigenomic roadmap to induced pluripotency 

reveals DNA methylation as a reprogramming modulator. Nat 

Commun, 2014. 5: p. 5619.

112. Roadmap Epigenomics, C., et al., Integrative analysis of 111 

reference human epigenomes. Nature, 2015. 518(7539): p. 317-30.

113. Phelan, M.L., et al., Reconstitution of a core chromatin remodeling 

complex from SWI/SNF subunits. Mol Cell, 1999. 3(2): p. 247-53.

114. Chen, G., et al., A heterotrimeric SMARCB1-SMARCC2 subcomplex 

is required for the assembly and tumor suppression function of the 

BAF chromatin-remodeling complex. Cell Discov, 2020. 6: p. 66.

115. Kowenz-Leutz, E. and A. Leutz, A C/EBP beta isoform recruits the 

SWI/SNF complex to activate myeloid genes. Mol Cell, 1999. 4(5): p. 

735-43.

116. Alver, B.H., et al., The SWI/SNF chromatin remodelling complex is 

required for maintenance of lineage specific enhancers. Nat 

Commun, 2017. 8: p. 14648.

117. Klaus, A. and W. Birchmeier, Wnt signalling and its impact on 

development and cancer. Nat Rev Cancer, 2008. 8(5): p. 387-98.

118. Cao, W., et al., Multi-faceted epigenetic dysregulation of gene 

expression promotes esophageal squamous cell carcinoma. Nat 

Commun, 2020. 11(1): p. 3675.

119. Jung, Y.S., et al., Wnt2 complements Wnt/beta-catenin signaling in 

colorectal cancer. Oncotarget, 2015. 6(35): p. 37257-68.

120. Flam, E.L., et al., Differentially Methylated Super-Enhancers Regulate 

Target Gene Expression in Human Cancer. Sci Rep, 2019. 9(1): p. 

15034.

121. Heyn, H., et al., Epigenomic analysis detects aberrant super-

enhancer DNA methylation in human cancer. Genome Biol, 2016. 

17: p. 11.

122. Hnisz, D., et al., Super-enhancers in the control of cell identity and 

disease. Cell, 2013. 155(4): p. 934-47.

123. Iwafuchi-Doi, M., et al., The Pioneer Transcription Factor FoxA 



133

Maintains an Accessible Nucleosome Configuration at Enhancers

for Tissue-Specific Gene Activation. Mol Cell, 2016. 62(1): p. 79-91.

124. Tang, Y., et al., FOXA2 functions as a suppressor of tumor 

metastasis by inhibition of epithelial-to-mesenchymal transition in 

human lung cancers. Cell Res, 2011. 21(2): p. 316-26.

125. Liu, Z., et al., CASZ1, a candidate tumor-suppressor gene, 

suppresses neuroblastoma tumor growth through reprogramming 

gene expression. Cell Death Differ, 2011. 18(7): p. 1174-83.

126. Luo, Z., S.K. Rhie, and P.J. Farnham, The Enigmatic HOX Genes: Can 

We Crack Their Code? Cancers (Basel), 2019. 11(3).

127. Duverger, O. and M.I. Morasso, Role of homeobox genes in the 

patterning, specification, and differentiation of ectodermal 

appendages in mammals. J Cell Physiol, 2008. 216(2): p. 337-46.

128. Subramaniam, D., et al., DNA methyltransferases: a novel target for 

prevention and therapy. Front Oncol, 2014. 4: p. 80.

129. Fouad, Y.A. and C. Aanei, Revisiting the hallmarks of cancer. Am J 

Cancer Res, 2017. 7(5): p. 1016-1036.

130. Hervouet, E., et al., Specific or not specific recruitment of DNMTs 

for DNA methylation, an epigenetic dilemma. Clin Epigenetics, 2018. 

10: p. 17.

131. Simon, J.A., Polycomb group proteins. Curr Biol, 2003. 13(3): p. R79-

80.

132. Shah, N. and S. Sukumar, The Hox genes and their roles in 

oncogenesis. Nat Rev Cancer, 2010. 10(5): p. 361-71.



134

국문 초록

상피성 세포암의 다중오믹스 분석을 통한

종양 발달 관련 유전자의

다층적 조절 장애에 관한 연구

서울대학교 대학원 의과학과 의과학 전공

손 민 환

차세대 서열분석 기술 (NGS) 이라고 일컬어지는 대용량

염기서열분석법은 수많은 생물학적 과정 및 다양한 질병의 발현을

구성하는 수천, 수백만 가지의 분자 표적을, 다중오믹스 (multi-

omics) 방식을 통하여 동시에 발굴하는 것을 가능케 하였다. 특히,

임상적 효용 면에서 특출 난 능력을 가진 차세대 서열분석 기술을

이용하여, 다양한 유형의 암 종에서 보편적으로 나타나는 암의 다층적

특징을 규명하는 것이 비로소 가능하게 되었다.
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본 연구에서는 대규모 병렬 차세대 서열분석 기술을 사용하여, 상피성

세포를 기원으로 가지는, 고등급 장액성 난소암 (HGSOC)과 위선암

(STAD) 두 가지 유형의 암종에서, 각기 특이적인 유전자 발현

프로그램과 다면적인 기능 조절 장애를 분석하였다.

첫 번째 연구에서는 전장 엑솜 서열분석 (WES) 데이터와 전사체

서열분석 (RNA-seq) 데이터의 포괄적인 분석을 통하여 고등급

장액성 난소암의 분자적 프로파일을 특성화하였다. 고등급 장액성

난소암의 유전체 및 전사체적 환경에 대한 분석은, 유전체 손상

(genome scar)과 상피 간엽 이행 (EMT)이 본 코호트에서 각기

중추적인 역할을 하며, 결과적으로 우리의 고등급 장액성 난소암

코호트가 상동 재조합 복구 (HRR) 활성화 유형과 중간엽

(mesenchymal) 유형이라는, 두 가지의 분자적 하위 유형으로

나누어질 수 있음을 보여주었다. 특히, 낮은 유전체적 변화와 다양한

세포 유형으로 구성되어 있다는 특성을 보이는 상피 간엽 이행 전사

프로그램이 활성화된 환자군은, 상동재조합 복구 활성화 환자군에

비해 예후가 좋지 않다는 것을 밝혔다. 마지막으로, 암 유전체

아틀라스 (TCGA)의 난소암 공개 데이터를 분석하여 우리의 발견을

추가로 검증한 결과 실제로, 높은 상피간엽이행 전사체 프로파일을

가진 환자의 전반적인 생존률이 악화되어 있음을 확인할 수 있었다.

두 번째 연구에서는, 전장 유전체의 중아황산염 처리 염기서열 분석

(WGBS)과 전사체 서열분석을 이용한, 통합적이고 고차원적인 다중체

방식으로 접근하여, 위선암 (STAD)의 DNA 메틸화 양상을 기술하고

발암 추정 요인을 설명하였다. 우리는 본 코호트의 위선암 환자

샘플에서 DNA 메틸화 감소를 보이는 지역이 95% 이상인 것을

발견하는 한편, 나머지 DNA 메틸화 증가를 보이는 지역이 프로모터

(promoter), 슈퍼 인핸서 (super enhancer)및 폴리콤브 억압 복합체
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(PRC) 결합 부위에서 풍부하다는 것을 발견하였다. 위 요소에서

변형된 DNA 메틸화는 암 특이적 유전자 조절 장애와 관련이 있었다.

특히 DNA 메틸화 증가로 매개된 WNT/β-카테닌/MMP 신호의

활성화는 잠재적인 위선암의 발암 원인이라는 것을 알 수 있었다. 또한,

슈퍼 인핸서 관련 유전자의 하향 조절과 호메오박스 군집 유전자들의

재활성화를 DNA 메틸화 증가와의 관계를 통하여 확인할 수 있었다.

이를 통하여, 고전적인 유전체 및 전사체적 조절장애로 말미암아

생기는 위선암 발생을 넘어, 후성체 유전학적 조절이 다중 인자

메커니즘을 통해 위선암 발생을 촉진한다는 것을 보여주었다.

상피성 세포 유래 암의 높은 발병률 및 사망률을 고려할 때, 해당

종양의 발생을 초래하는 분자 수준의 복잡한 상호작용을 이해하는

것이 필수적이라고 할 수 있다. 본 연구는 상피성 세포 유래 암에 대한

포괄적인 다중오믹스 중심 분석 방식과 새로운 진단 및 표적 치료

대상에 대한 귀중한 자원을 제공한다는 데 의의가 있다고 할 수 있다.

* 본 논문의 첫 번째 연구는 Genes 에 출판된 내용임 [1].

----------------------------------------------------------------------------------------------
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