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ABSTRACT

Research on Multiple Reaction Monitoring — Mass
Spectrometry (MRM-MS) for Large-scale Clinical
Proteomics: Development of Automated Workflow for Serum
Sample Preparation and Inclusive Quantification Assay for

DCP Proteoforms

Jihyeon Lee

Major in Biomedical Sciences
Department of Biomedical Sciences
Seoul National University

Graduate School

Introduction: Mass spectrometry (MS)-based proteomics can make high-
throughput analysis, based on its ability to detect and quantify thousands of proteins
simultaneously. Reproducible sample preparation remains a significant challenge in
large-scale clinical research using multiple reaction monitoring—mass spectrometry
(MRM—-MS), which enables a highly sensitive multiplexed assay. Although
automated liquid-handling platforms are specially designed to address this issue, the
high cost of their consumables is a drawback that renders routine operation
expensive and impractical. Meanwhile, the MS-based approach has great advantages

over antibody-based assays in terms of distinguishing and simultaneously



quantifying multiple proteoforms, including isoforms or posttranslational
modifications. A typical example of a protein biomarker containing posttranslational
modifications is des-y-carboxyprothrombin (DCP) which is a hepatocellular
carcinoma (HCC) serologic surveillance marker. DCP exists in the blood as a
mixture of proteoforms that are made from an impaired carboxylation process at
glutamic acid (Glu) residues within the N-terminal domain. The heterogeneity of
DCP may affect the accuracy of measurements because DCP levels are commonly
determined using an immunoassay that relies on antibody reactivity to an epitope in
the DCP molecule.

Methods: In chapter 1, I evaluated the reproducibility of quantification results of the
MRM-MS assay of 52 peptides in serum samples prepared by the automated
workflow. Further, I performed a collateral systematic evaluation of the possibility
of a cost-reduced workflow in a liquid-handling platform. In chapter 2, I aimed to
improve the DCP measurement assay by applying a mass spectrometry (MS)-based
approach for a more inclusive quantification of various DCP proteoforms. I
developed an MRM-MS assay to quantify multiple non-carboxylated peptides
included in the various des-carboxylation states of DCP. I performed the MRM-MS
assay on 300 patients and constructed a robust diagnostic model that simultaneously
monitored three non-carboxylated peptides.

Results: In chapter 1, I evaluate the feasibility of the automated workflow of serum
sample preparation. I demonstrated that the automated workflow ensures stable
serum sample preparation as evidenced by the average value of total CVs (15.3%).
In collateral comparison, I found it possible to save 37% of the total experimental

cost with the automated workflow with a cost-optimized method when compared to



the standard procedure, while maintaining nearly equivalent reproducibility. In
chapter 2, the MS-based quantitative assay for DCP had reliable surveillance power,
which was evident from the area under the receiver operating characteristic curve
(AUROC) values of 0.874 and 0.844 for the training and test sets, respectively. It
was equivalent to conventional antibody-based quantification, which had AUROC
values at the optimal cutoff (40 mAU/mL) of 0.743 and 0.704 for the training and
test sets, respectively. The surveillance performance of the MS-based DCP assay was
validated using an independent validation set consisting of 318 patients from an
external cohort, resulting in an AUROC value of 0.793.

Conclusions: In chapter 1, the routine operation of liquid-handling platforms can
enable researchers to process large-scale samples with high throughput, adding
credibility to their findings by minimizing human error. In chapter 2, due to higher
diagnostic performance and high reproducibility, the quantitative DCP assay using

the MRM-MS method is superior to the antibody-based quantification assay.
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GENERAL INTRODUCTION

Biomarkers are evaluated as indicators of biological processes or pathological
conditions, or drug responses. In recent years, the importance of biomarkers as tools
for disease diagnosis, personalized medicine, and drug discovery has increased (3,
4). As proteins are the main functional components of biological pathways which are
altered during disease conditions, protein-based biomarkers are key players in
identifying and understanding the biological mechanism of diseases. Thus, clinical
proteomics is a promising approach to the discovery of biomarkers for disease
diagnosis or predictions through the systematic analysis of protein structure,
expression, interactions, and posttranslational modifications (PTMs).

Clinical proteomics requires large-scale analysis for the discovery or validation
of disease biomarkers to increase the statistical power. One of the powerful
proteomic technologies is mass spectrometry (MS)-based proteomics, which has
tremendous potential in the clinical field. Multiple reaction monitoring-mass
spectrometry (MRM-MS) assay, which is a targeted MS-based method for accurately
quantifying thousands of proteins simultaneously, can enable high-throughput
analysis. Thus, thousands of proteins in biological materials can be multiplexed into
a single MRM-MS assay and precisely quantified at femtomole levels with low
coefficients of variation (CVs). A single MRM-MS assay for multiple proteins
enables large cohorts to be analyzed at high throughput. Analysis through
bioinformatics methods such as machine learning for large-scale MS-based
proteomics data can make a great opportunity for elucidating complex disease-

related mechanisms.



Reproducible quantification results of MRM-MS assay are mandatory for large-
scale analysis of clinical proteomics. In this regard, the reproducible sample
preparation process for MRM-MS analysis is the fundamental step in obtaining
reliable results. Proteins are digested by a protease to generate peptides before MS
analysis. A series of steps for proteomic sample preparation is very labor-intensive
and time-consuming. Also, the proficiency of researchers affects the quality of
proteomic results. Therefore, securing the reproducibility of sample preparation for
high-throughput proteomic analysis in large-scale cohorts remains a bottleneck. To
address this, the utilization of robotic liquid handling platforms is an emerging
innovation to improve the throughput and reproducibility of protein sample
preparation while also reducing human labor. The automated workflows in
proteomics will enhance the consistency and precision, which is crucial to making
accurate and reliable quantification results for validated clinical assays.

Currently, many efforts have been made to utilize liquid handling platforms for
various proteomic sample preparation methods, such as in-gel, in-solution, or in-tip
digestion (5-15). However, few studies have been focusing on the automated protein
sample preparation for targeted quantitative assay using MRM-MS analysis. In this
aspect, | evaluated the feasibility of introducing a highly automated sample
preparation workflow to MRM-MS assay for large-scale clinical proteomic analysis.
In chapter 1, I developed a high-throughput in-solution protein digestion method for
serum samples using an Agilent Bravo liquid handling platform with a 96-well
format. To assess the robustness of the automated system, identical pooled samples
were analyzed as technical replications over three consecutive days. The automated

in-solution digested samples displayed high reproducibility, whose coefficient of



variation (CV) was under 20%. Thus, the introduction of automation could open a
new era for clinical proteomics studies.

In further optimization, I evaluated the potential for cost reduction to relieve the
expenses of an automated workflow for their routine operation in large-scale studies,
for which automation is sorely needed. Therefore, a systematic evaluation of the
digestion in a liquid-handling platform was conducted while reducing the cost of
consumables. I compared the targeted proteins quantification results obtained from
the cost-optimized method with results obtained by the standard method operated at
the maximum cost of consumables. As a result, I found that the cost-optimized
method with reduced total cost by 37% and maintained comparable levels of
reproducibility. Overall, the automated in-solution protein sample preparation
workflow is a step closer to realizing high-throughput applications that enable robust
and reliable large-scale proteomics analysis.

Meanwhile, immunoassays have been regarded as standard techniques for
measuring proteomic biomarkers. For example, alpha-fetoprotein (AFP) and des-y-
carboxyprothrombin (DCP), which are protein biomarkers for hepatocellular
carcinoma (HCC) surveillance, have been quantified by fluorescence immunoassay
(FTIA). However, immunoassays are prone to producing false-negative results due to
their antibody-dependency and limit of quantification. Furthermore, the proteoforms
containing PTMs in the epitope region of antibodies show decreased binding affinity
which could result in inaccuracy and imprecise protein quantification. Overcoming
these limitations is imperative in ensuring reproducible protein quantification results
in large-scale clinical cohorts. In this regard, targeted MS-based quantitative

proteomics can supplement the limitations of the immunoassays. MS-based assays



have great advantages over immunoassays in terms of distinguishing and
simultaneously quantifying multiple proteoforms, including isoforms or PTMs (16).

In chapter 2, I developed the powerful diagnostic MS-based assay of des-y-
carboxyprothrombin (DCP) by inclusively quantifying a wider range of proteoforms
with various des-carboxylation states. DCP is a biomarker for hepatocellular
carcinoma (HCC) surveillance, also known as a protein induced by vitamin K
absence or antagonist-1I (PIVK A-II) or abnormal prothrombin. Normal prothrombin
is synthesized as a precursor containing 10 glutamic acid (Glu) residues in the N-
terminal domain (Gla domain), and then undergoes posttranslational carboxylation
of the Glu residues resulting in the conversion of Glu to y-carboxylated glutamic
acid (Gla) by vitamin K-dependent glutamyl gamma-carboxylase. Meanwhile, when
carboxylation is impaired under conditions of vitamin K deficiency, warfarin
treatment, or liver dysfunction, DCP is released into the bloodstream as a mixture of
10 proteoforms with up to 10 des-carboxylated Glu residues.

The conventional assay for measuring DCP concentrations is an antibody-based
assay using a monoclonal antibody produced by the MU3 cell line, which binds
predominantly with DCP molecules containing 9-10 Glu residues. It had been
identified that their binding affinity is weak against proteoforms possessing 6-8 Glu
residues, and rarely binds with those that have less than 5 Glu residues. Recently,
several studies aimed to develop discriminative quantification immunoassays for the
detection of DCP proteoforms with lower Glu content using additional
immunoassays that feature other antibodies, which recognize different epitopes than
those that are detected by the MU3 antibody. Although these studies reported the

value of assays for the detection of lower Glu residues containing DCP proteoforms,



these immunoassays are costly and susceptible to batch effects because of the
additional immunoassays required. Therefore, I examined potential non-
carboxylated peptides (referred to as Glu-peptides) within the Gla domain. A robust
MRM-MS assay that can quantify four Glu-peptides was developed and analyzed
618 serum samples, which were obtained from patients with HCC and at-risk control
patients. As a result of machine learning analysis in these large cohorts, I could
achieve reliable HCC surveillance power of the MRM-MS assay for inclusively
quantifying DCP proteoforms with lower Glu residues.

From the results of chapters 1 and 2, I generated a significant step toward
reproducible large-scale clinical proteomics through the utilization of high-

throughput MRM-MS assays, as illustrated below.
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CHAPTER 1

Feasibility Study on the Automated
Workflow of Serum Sample Preparation
for Reproducible Quantitative Clinical

Proteomics



1.1. INTRODUCTION

Multiple reaction monitoring (MRM) is a targeted mass spectrometry (MS) method
for accurately quantifying proteins (17-19). MRM—-MS has advantages over
antibody-based assays that rely on the recognition of epitopes because it can
distinguish variants and isoforms of proteins that cannot be recognized by antibodies
(20-22). In addition, many proteins can be multiplexed into a single MRM—MS assay,
with most proteins detected at femtomole levels and, in most cases, with low
coefficients of variation (CVs) (17, 23-30). Thus, quantitative multiplexed assays
that are based on MRM—MS are an established technology in the research of protein
biomarkers in complex biofluids and have recently been translated into a clinical
application (31-36).

MRM—-MS-based multiplexed assays that allow the precise quantification of
peptides of widely varying masses. The MRM-MS assays are applicable to a large
number of samples, which is necessary for clinical verification and validation, and
are only achievable with highly reproducible digestion steps (37). However, parallel
digestion of large-scale samples by manual preparation takes longer to process and
requires highly skilled manpower. Manual handling of large numbers of samples can
lead to handling errors during pipetting that can result in a significant loss of
biological information. Moreover, the time that is required for processing the first
and last samples cannot be controlled when handling a large number of samples,
requiring them to be split into batches, which, in turn, can increase the time that is

required for sample processing. This implies that not all samples are provided with



the ideal conditions for reproducibility.

Thus, MRM-MS methods must secure reproducibility of the sample
preparation process with high throughput for their widespread adoption in biomarker
validation and clinical application, while maintaining high precision during routine
operation. To address this issue, many efforts have been made to introduce automated
liquid handlers into various digestion protocols (38-43). The automation of sample
preparation can increase sample processing throughput, reduce inter-sample
variability, and eliminate the need for skilled labor in performing repetitive tasks
(44). Parallel sample processing in 96-well format using a robotic liquid handler has
been widely embraced for routine analysis in biomarker discovery and development
(45-47). In particular, the introduction of an automation system is a key task for
handling nanoliter scale samples with high throughput, such as single-cell
proteomics studies (48, 49). Employment of automation via liquid handling
platforms provides handling of accurate volume in a reproducible manner.

Currently, the evaluation of previous liquid-handling-based methods for sample
preparation has focused on determining whether they generate results equivalent to
those of manual processing and improve the reproducibility and throughput of
protein sample preparation (10, 14, 46). One of the previous studies that quantified
600 peptides from 367 E.coli proteins presented comparable reproducibility for the
automated sample preparation workflow to the manual workflow (8). The median
CV for peptide measurement was 15.8 and 14.3% for the automated and manual
workflow, respectively. Also, the median CV for protein measurement was 13.8 and
13.6% for the automated and manual workflow, respectively. However, few studies

have focused on the automated protein sample preparation for targeted quantitative



assay using MRM-MS analysis for clinical assay. In this regard, the goal of this study
was to develop an automated in-solution protein digestion method for serum samples
using a liquid-handling platform for the clinical application of MRM—MS-based
peptide quantification. As a result, the automated in-solution digestion process met
the general CV value of 20%, which is often considered to be desirable or sufficient
for clinical requirements. Despite their comparability, the high cost of liquid-
handling platforms, directed toward exclusive tips or plates, is a major obstacle to
their routine use in large-scale studies, for which automation is sorely needed.
Therefore, I additionally performed a systematic evaluation of the possibility of a
cost-reduced digestion workflow in a liquid-handling platform. The cost-reduced
workflows were compared with standard experiments that were performed in parallel
and operated at the maximum cost of consumables. As a result, I found that the total
cost can be reduced by 37%, while nearly equivalent levels of reproducibility are
maintained.

In summary, the automated workflow of in-solution digestion for serum sample
preparation can increase throughput in a less labor-intensive manner, and reduce
inter-sample variability in performing MRM-MS analysis in large-scale clinical
cohorts. I expect that this automated workflow can be adopted for the automation of
certain aspects of clinical studies in other human samples, such as tissue and

formalin-fixed paraffin-embedded (FFPE) samples, with little modification.



1.2. MATERIALS AND METHODS

1.2.1. Materials

Pooled normal serum was purchased from a U.S. Food and Drug Administration
(FDA)-approved facility (Innovative Research, Novi, MI). All high-performance
liquid chromatography (HPLC)-grade solutions were purchased from Fisher
Scientific (Loughborough, U.K.), including water, acetonitrile, formic acid, 0.1%
formic acid in water, and 0.1% formic acid in acetonitrile. RapiGest surfactant was
purchased from Waters (Milford, MA). Ammonium bicarbonate (ABC) solution was
acquired from iNtRON Biotechnology (Sungnam, Korea). Dithiothreitol (DTT) was
obtained from Amresco (Solon, OH). lodoacetamide (IAA) was purchased from
Sigma Aldrich (St. Louis, MO). Trypsin was obtained from Promega (sequencing-
grade modified, Fitchburg, WI). Unpurified stable isotope-labeled standard (SIS)
peptides that contained isotopically labeled (**C and ’N) arginine or lysine were
obtained from JPT (Berlin, Germany) (30—70% purity, according to the
manufacturer).

The Bravo Automated Liquid-Handling Platform (G5409A), with a 96-large-
transfer tip head (Series IIl) and controlled using VWorks, was purchased from
Agilent Technologies (Santa Clara, CA). The platform includes an orbital shaking
station and a Peltier thermal station that was operated using an Inheco Single TEC
Controller. Nunc DeepWell plates (I mL) were purchased from Thermo Fisher
Scientific (Waltham, MA) as reagent stock plates, and 96-well twin.tec PCR plates

(150 pL, skirted) were purchased from Eppendorf (Hamburg, Germany) as sample
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plates.

1.2.2. Establishing an automated in-solution digestion workflow utilizing
liquid handling platform

The Bravo liquid-handling platform (Agilent), which is widely used in many
laboratories, is comprised of nine decks that were accessible by the liquid-handling
head, as shown in Figure 1-1(A). The liquid-handling head can transfer an accurate
volume of liquid or move plates from one deck to another. The nine deck locations
were numbered and fixed from 1 to 9. I arranged certain stationary hardware, plates,
and lids in consideration of their accessibility (Figure 1-1(B)). Deck location 5 was
used for the sample plate and orbital shaking station because it was the only position
that was accessible under every configuration of pipette channels. The Peltier
thermal station had to be installed at deck location 4 or 6 due to its height, per the
user guide. I installed a Peltier thermal station at deck location 4 to prevent collision
with the liquid-handling head when it dispensed the reagent into the sample plate.
The new tip box had to be positioned at deck location 2 to use the tips in the box
effectively (Figure 1-1(C)). Other deck locations were arranged efficiently, taking
into accounts the flow of the liquid-handling head movements.

The automated in-solution digestion workflow was operated by using three
protocol files consecutively, as shown in Figure 1-2. The automated workflow
begins with transferring serum samples into a 96-well sample plate (protocol file 1).
Then, the main reaction for in-solution digestion was performed by protocol file 2:
denaturation, alkylation, proteolysis, and quench steps. After the quench step,

protocol file 3 was used for spiking SIS peptides. Based on the configuration and
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operating principle of the Bravo liquid handling platform, dispense of each reagent
was conducted through sequential 7 tasks: delid two plates, tips on the head, aspirate,
dispense, tips off from the head, relid two plates, and shake sample plate (Figure 1-
3). In case of reaction steps where specific temperature conditions existed, task 8
(place plate) should be conducted additionally.

The conditions and parameters of reaction for entire automated workflow are
summarized in Table 1-1. Samples were prepared by sequentially loading 3 pL of
HPLC-grade water and 2 pL of pooled serum sample onto a sample plate using
individual pipet tips for each well. The plate was covered with a homemade lid and
shaken at 1000 rpm for 10 s. Samples were denatured with 10 pL of denaturant (0.15%
RapiGest, 10 mM DTT, 75 mM ABC, pH 8.0) at 60 °C for 60 min. Denatured
samples were alkylated with 10 pL of reducing agent (50 mM IAA) at room
temperature in the dark for 30 min. Tryptic digestion was performed with 10 pL of
trypsin solution (1:50 (w/w)) at 37 °C for 4 h and stopped with 10 uL of 4.50%
formic acid (final concentration of 1%) at 37 °C for 30 min. The plate was covered
and shaken at 1000 rpm for 10 s after each reagent was added. Following the
quenching step, 5 uL. of SIS peptides (100 fmol/uL.) was added to each well of the
sample plate with individual tips. The plate was covered and shaken at 1000 rpm for
15 s. Each sample was moved manually to an individual microcentrifuge tube and
centrifuged at 15000 rpm for 30 min at 4 °C to remove insoluble chemicals, such as
byproducts of RapiGest surfactant. The supernatant (50 uL) was transferred to a new

tube and subjected to online desalting and analysis by the MRM assay.
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(A) (B) (Back) © (Back)

1 2 3 1 2 3
Used New Tip
Boxw Box
4 5 6 4 5 6
Orbital Sample Sample

Heater 5,...‘..: ohits ey Lid Hotel 1

7 8 9 7 8 9

Reagent stock
s Lid Hotel 2
L J

(Front) (Front)
Figure 1-1. Arrangement of the 9 decks in the Bravo liquid handling platform.
(A) The Bravo platform has 9 decks into which a user can install an accessory, such
as a heater and shaker. (B) The 2 fixed positions in the platform are shown. The
heater station was installed at deck location 4 (pink), whereas the orbital shaking
station was fixed at deck location 5 (blue). (C) Other positions are used according to
the efficiency of management, as described. The pink decks were the positions at
which the sample plate could be moved according to the reaction step. The tip boxes
are located at deck locations 1 and 2 due to their height (dark gray decks). The lid
hotel is the position for placing plate lids temporarily during aspiration and
dispensing of reagents (blue decks). The reagent stock plate was prepared at deck

location 8 (green deck). Deck locations 3 and 7 (gray decks) are empty positions.

Protocol file 1 Protocol file 2 Protocol file 3
DTT, RapiGest IAA Trypsin Formic Acid SIS peptides
I I
B ]
W m» ' ! ' v !
Lo el el
Large-scale 96-well plate %
cohort Samples &-‘\";?
(Serum or Plasma)
D i ylati P i Quench Spiking

SIS peptides

Figure 1-2. A schematic overview of automated in-solution digestion of human
blood samples

The automated in-solution sample preparation is conducted on the Bravo liquid
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handling platform by implementing three protocol files sequentially. Protocol file 1:
transferring serum samples into a 96-well sample plate. Protocol file 2: in-solution
digestion process (denaturation, alkylation, proteolysis, and quench steps). Protocol

file 3: spiking SIS peptides into digested samples.

Index
Sample Sample Reagents Reagents
plate plate plate plate
lid lid lid lid
Tip box filled  Empty tip box Sample plate Reagent plate
with tips Sample plate covered with lid Reagent plate covered with lid

E Task 1 : Delid D Task 2 : Tips on _’\i’
6 2 -

Sample F Sample B Sample
plate B plate plate
lid - lid lid

N

Reagents B 7 - Reagents ¥ 5 i Reagents
plate plate : plate
lid lid 5 lid

Task 3 : Aspirate
Task 4 : Dispense

' Task 5 : Tips off

Task 8:
3
Place plate Task 6 :
(Temperature Relid
Sample 5 6 4 Sample 6 Sample
lid lid lid
: Reagents 9 7 Reagents 9 Reagents
plate plate plate
lid lid lid

Task 7 : Shake plate
Figure 1-3. Sequential tasks required in the reagents dispensing procedure
Dispense of each reagent was conducted through seven sequential tasks (red fonts).
Task 1: delid two plates. Task 2: tips on the head. Task 3: aspirate reagents. Task 4:
dispense reagents into wells. Task 5: tips off from the head. Task 6: relid two plates.

Task 7: shake sample plate. Task 8 (blue fonts, optional): place a plate at the thermal

station.
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1.2.3. Optimization of aspiration height to minimize wasted reagents

The amount of reagent in the plate wells needed for reproducible aspiration of
accurate volume depends on the distance between the end of the tips and the bottom
of the wells. Thus, I determined the smallest such distance that minimizes the reagent
volume to reduce the cost incurred by wasted reagents. The experiment was designed
to test the accuracy and variation of three repeated aspiration steps by measuring the
weight of the aspirated volume. This test was conducted with six aspiration
parameter settings, encompassing all combinations of three distances from the
bottom of the well (0.1, 0.3, and 0.5 mm) and two aspiration volumes (5 and 10 pL).
The volume that remained in the plate well after aspiration was 0—25 pL at 5 pL
intervals (Figure 1-4). I performed this experiment for two types of fluids: water
with high surface tension and serum with high viscosity.

The accuracy and precision of the aspiration task were calculated as follows.
First, I dispensed the fluids (water or serum) into wells from 5 to 30 pL at 5 pL
intervals and repeated this step twice to establish three sets of six wells. Then, the 5
uL aspiration task was implemented for the three sets, adjusting the height of the tip
that was mounted on the liquid handler to 0.1, 0.3, and 0.5 mm. The aspirated volume
was transferred to an empty tube. After the fluids had been dispensed, the weights of
the tubes that contained fluid were measured. The weight of the aspirated volume
was calculated as the difference between the weights of the empty tube and fluid-
containing tube. This procedure was repeated three times. The average CV value was
calculated and represented the precision of the aspiration. The weight of the
aspiration volume was divided by the theoretically expected weight and converted

into a percentage to represent the accuracy of aspiration. This procedure was
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repeated for the 10 puL aspiration, except the fluids were dispensed into the six wells

in the range of 10—35 pL at 5 pL intervals.

(C) Dispense into empty tube

(A) Aspirate Y pL (Y = 5, 10)

N

S e—

(B) After Aspiration
[

I X mm (X = 0.1, 0.3, 0.5) (D) Measuring weight
B of aspirated volume

3 different X mm
(Increasing by 0.2 mm) ZuL(Z =0, 5, 10, 15, 20, 25)

6 different Z pL
(Increasing by 5 pL)

Reagent stock plate

Figure 1-4. Three factors for optimizing the aspiration height to minimize
wasted volumes.

Workflow of aspiration. Y pL (A) of fluid is aspirated from the well containing (Y +
Z) uL of fluid at X mm (height) from the bottom of the well. After aspiration, Z pL
of fluid remains in the well, and the aspirated fluid is transferred to an empty tube,
previously measured for weight. The weight of the tube containing dispensed fluid
is measured to calculate the weight of the fluid alone (D). The results from 3
replicates were used to optimize the combination of height (X mm) and the extra
volume in the well (Z pL) after aspiration, with high reproducibility. I repeated this

process for 2 types of fluid (water and serum).
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1.2.4. Target peptides for MRM-MS assay

An MRM-MS assay of 52 peptides in identical pooled samples prepared by the
automated sample preparation workflow was conducted to assess the feasibility of
the process in the aspect of reproducibility of targeted quantification results. 52
peptides from 26 human serum proteins with varying hydrophobicities and
molecular weights (50) were selected from the SRM Atlas (51) and CPTAC portal
(52) as MRM—MS assay targets (Figure 1-5). All 52 peptides were detectable in a
nondepleted normal pooled serum sample; Six transitions for each peptide were
observed to confirm their detectability and to choose the best transition for each
peptide. Transitions with high intensity and reproducibility (CV < 0.2) and low
interference based on the AuDIT data were selected (53). Detailed information on

the target peptides and transitions are presented in Table 1-2.

(A) (B)
6 16 % 1
5 14
5
4 4 4 12
- 4 . 10 9
c 3 3 5
é 3 3 8
2 6 5
2 4
I 1 : I :
1 : l
¥ B
: [ .
<20 20-30 30-40 40-50 50-60 60-70 70-80 100 < <20 20-25 25-30 30-35 35-40 40-45 45-50 50-55
Molecular Weight (kDa) Retention time (min.)

Figure 1-5. Distribution of molecular weights of target proteins and retention
times for target peptides.

The molecular weights of target proteins were distributed evenly over the entire
range (A). The diversity of the hydrophobicity of target peptides is shown as the

diversity in retention time (B).
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1.2.5. Quantitative MRM—MS analysis

Target peptides were quantified on an Agilent 6490 triple quadrupole (QQQ) mass
spectrometer (Agilent) with a Jetstream electrospray source that was equipped with
a 1260 Infinity HPLC system (Agilent). Ten microliters of tryptic peptides were
injected into a guard column (2.1 mm id x30 mm, 1.8 pm particle size, Agilent
Zorbax SB-C18) for online desalting and then passed through to a reverse-phase
analytical column (150 mm x 0.5 mm id, 3.5 pm particle size, Agilent Zorbax SB-
C18) that was maintained at 40 °C. The total run time for the liquid chromatography
(LC) step was 70 min. Mobile phases A (water 0.1% (v/v) formic acid) and B
(acetonitrile 0.1% (v/v) formic acid) were used to create a binary gradient of 3 to 35%
acetonitrile/0.1% formic acid through the column for 45 min at 10 pL/min to separate
the peptides. The column was equilibrated for the next run by ramping the gradient
to 70% B for 5 min and 3% B for 10 min.

MassHunter (vB06.01, Agilent Technologies) was used to establish an MRM—MS
scheduling method and control the LC-MS system for data acquisition. The ion
spray capillary voltage and nozzle voltage were 2500 and 2000 V, respectively. The
temperature and flow rate of the gas were set to 250 °C at 15 L/min for the drying
gas and 350 °C at 12 L/min for the sheath gas. The voltage of the cell accelerator
was adjusted to 5 V, the fragment voltage was 380 V, and the delta electron multiplier
voltage (EMV) was 200 V. A total of three batches were sequentially analyzed in
order of preparation, whereas samples in each batch were analyzed in random
sequence. All raw data files from the MRM—MS were imported into and aligned by

Skyline (McCoss Lab, University of Washington) for quantitative analysis (54).
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1.2.6. Evaluation of feasibility for automated in-solution digestion
workflow

As shown in Figure 1-6, the identical pooled serum samples were prepared by the
automated sample preparation process established in the study. To evaluate the
possibility of obtaining significant reproducibility when introducing automation, the
same assay was performed over three consecutive days. Also, I performed a
systematic evaluation of digestion for further optimization by exploring the
possibility of re-using pipette tips for reagent dispense tasks to reduce cost (Figure
1-7). A total of 96 identical samples was divided into four sets of 24 samples,
according to the number of wells that were to be dispensed with a tip. Thus Set 1
used 24 tips for transferring each reagent to 24 wells (1 well/tip), Set 2 used 8 tips
(3 wells/tip), Set 3 used 4 tips (6 wells/tip), and Set 4 used 1 tip (24 wells/tip). In
Sets 1 and 3, the 24 samples were arranged in 4 x 6 format, whereas the 24 samples
were arranged in 3 X 8 format for Sets 2 and 4. In each set, the volume that was
aspirated in each tip included an additional 5 pL of reagent that was successively
dispensed in each well.

In Set 1, which is the standard method, the reagents were aspirated with 24 tips
and dispensed into 24 wells simultaneously. For Set 2, eight tips were mounted
simultaneously and aspirated the reagents that were to be dispensed to three wells by
each tip. The reagents were then dispensed into eight wells at the same time. This
procedure was repeated two additional times to dispense the reagents into 24 wells.
Similarly, for Set 3, four tips were equipped concurrently and aspirated the reagents
that were to be dispensed to six wells by each tip. Then, the reagent was dispensed

into four wells at the same time. This process was repeated five additional times for
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dispensing into 24 wells. In the experiment for Set 4, one tip was equipped and
aspirated the reagents that were to be dispensed to 24 wells. The reagent was
dispensed into one well. This procedure was repeated 23 additional times by
advancing it sequentially toward the adjacent well, resulting in 24 wells that received
reagent. To avoid cross-contamination, the liquid dispensing heights in each task
were adjusted such that the tips never touch the sample plate or the surface.

The Set 1 experiment used the most tips, and thus its sample preparation was
the fastest and most accurate, but its cost for consumables was also the highest. For
this reason, I examined cost-effective methods of using fewer tips while maintaining

comparable precision levels with Set 1.

Pooled serum sample

}
U U niu alam's
Day 1 Day 2 Day 3
$ 4 4
MRM-MS MRM-MS MRM-MS
BT RS EETNE
4 . 3

Figure 1-6. Experimental scheme for evaluation of feasibility of automated in-

solution digestion process.



The automated sample preparation process established in the study was evaluated in
aspects of reproducibility obtained over three successive days. The identical pooling
serum samples were prepared by the automated process and analyzed by MRM-MS
assay. The quantification results were assessed whether the automated workflow

could achieve reasonable levels of variations.

(A)
Set1 Set2 Set3 Set4

S
UOU || UWUUWJ || UUU - U
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@ 90012
® 1415161718
i

20212223 24
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Figure 1-7. A systematic evaluation of feasibility for automated digestion
process and further optimization through exploring the possibility of re-using
pipette tips to reduce cost

(A) Set 1 is the standard method dispensing reagents to 24 samples with individual
tips. The other three sets are cost-saving methods of dispensing reagents with re-used
tips. Dispensing reagents began from the first column and moved to the right side of
each dataset in Sets 2 and 3. Set 4 dispensed reagents from the first to last well
sequentially (the well number in Set 4 corresponds to the dispensed order) (B) The
96-well plate was divided into 4 sets of 24 identical pooled serum samples for
dispensing reagents with varying numbers of tips. Set 1 (green) was dispensed using

24 tips, versus 8, 4, and 1 tip for sets 2 (blue), 3 (purple), and 4 (pink). The red circle
29
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shows the position of the tips at the initial dispensing in each dataset. (C) The entire
workflow was replicated over three days, wherein the location of the four sets in a
plate varied daily. The plate compartment varied on each day to exclude compound
effects from positional differences in one plate. The green box represents Set 1, and
the blue box represent Set 2. Sets 3 and 4 are represented by a purple and pink box,
respectively. Finally, the variation of each of the 4 sets was calculated and compared

with each other.

1.2.7. Assess reproducibility of the automated sample preparation
process

The peak area ratio (PAR) was calculated by dividing the peak areas of endogenous
peptides by those of the SIS peptides for each peptide in all individual samples. The
results over the 3 days were used to analyze CVs to compare the variability according
to the number of tips that were used to prepare 24 samples. The PAR values for the
24 samples that were prepared daily were averaged, and the results for the 3 days
were calculated as the average CV value to represent the intraday variation of each
data set (Figure 1-8 (A)). The interday variation was expressed as the CV of the 24
PAR values that were obtained using the average PAR value over the 3 days from

the same well location in the plate (Figure 1-8 (B)).

30 ~



(A) (B)

24 Samples 24 Samples

2aa L Average Day 1 o]
Day 1 [ 000 | 9S,
—) Average Day 2
Day 2 [ ® 000 | age,
Day 3
= | Average
v [ it | Average T
cv ( ] cv

Figure 1-8. Visualization of the formation to calculate intra- and inter-CV.

The 24 navy circles represent samples prepared by one dispensing method on each
day. Intraday variation was calculated as the coefficient of variation (CV) of three
average values of 24 samples on each day for each dataset (A). The samples prepared
on different days and with the same well position in 1 dataset were averaged. The
variation between the 24 averaged values over 3 days was calculated as the interday

variation (B).

31 : ’H _Q'I:r_ ]_._” &



1.3. RESULTS

1.3.1. Optimization of aspiration height

I optimized the distance between the ends of the tips and the bottom of the well to
minimize the cost of the volume that remained after aspiration. A test was conducted
to determine the minimum distance and extra volume for which an accurate volume
could be reproducibly aspirated into the tip. As shown in Figure 1-9, an accurate
volume could be reproducibly aspirated 0.1 mm from the bottom of the well when it
contained at least 5 pL of fluid as extra reagent, regardless of the fluid type or the
aspiration amount. As the height of aspiration rose by 0.2 mm, an extra 5 pL of fluid
was needed to reproducibly aspirate an accurate volume. On the basis of these results,
the protocol was set to aspirate each reagent at 0.1 mm from the bottom of the well,
containing an extra 5 plL over the total aspiration volume to minimize cost.

The total volume that was aspirated in the tip was set to contain an additional 5
uL of reagent volume, considering the loss of reagent that remained in the tip after
the dispensing (See Table 1-3). Thus, greater tip consumption accompanies the
increased use of reagents to supply this extra volume in each well of the reagent
stock plates. The aspiration of water was generally less accurate and reproducible
than that of serum samples, due to the higher surface tension and static repulsion of
the former (55, 56). Thus, when aspirating a fluid with high surface tension and
relatively low cost, such as water, over 5 pL of fluid should be placed in the plate

well.
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Figure 1-9. Optimization of aspiration height for water and serum.

The accuracy (bar graphs) and reproducibility (point graphs) were calculated for
each dataset according to aspirated volume: 5 pulL (A) and 10 pL. (B). The exactness
of the aspiration is calculated by comparing the measured weight of the aspirated
volume with its expected weight. The reproducibility is presented as CV values
(points with CV values over 20% are not shown). (A) The graphs on the left represent
the 5 pL. of water aspirated from the well containing 5 pL plus extra reagent volume
(x-axis). The graphs on the right represent the 5 pL of serum aspirated from the well
containing 5 pL plus extra reagent volume. (B) The graphs on the left represent the
10 pL of water aspirated from the well containing 10 pL plus extra reagent volume
(x-axis). The graphs on the right represent the 10 pL of serum aspirated from the well
containing 10 pL plus extra reagent volume. The results of aspiration at 0.1 mm from
the bottom of the well (red color) showed reasonable exactness and reproducibility
when the plate well contained at least 5 pL of fluid as extra reagent. The minimum
extra volume increased to 10 pL as the height of aspiration rose to 0.3 mm (blue).
The most cost-consuming height was 0.5 mm (gray), requiring at least 15 pL of
additional reagent for reproducible aspiration of an accurate volume. After
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considering all combination of parameters synthetically, aspiration at 0.1 mm from
the well containing an additional 5 pL with aspiration volume (red bar with edge) is
the ideal means of reducing the wasted volume, maintaining high exactness and low

variation of aspiration. The optimization process is detailed in Figure 1-4.

Table 1-3. Volumes needed when dispensing 10 pL of reagents for each set.

Dispensed Aspiration Well Total extra

#of Tips Well/Tip volume volume  volume  volume
(uL)" (L)’ (uL)* (L)
Set 1 24 1 10 15 20 240
Set 2 8 3 10 35 40 80
Set 3 4 6 10 65 70 40
Set 4 1 24 10 245 250 10

* Volume dispensed to each sample well.
® Volume aspirated in each tip.
° Minimum volume of reagent in each well considering the aspiration height.

4 Volume disposed after dispensing.

1.3.2. Reproducibility assessment of the automated in-solution digestion
process

The robustness of the automated workflow was evaluated by the reproducibility of
results for all samples prepared daily. The CV values of standard method (Set 1, 1
well/tip) for the 52 peptides are shown in Figure 1-10. The intra-, inter-, and total-
CV values were under 20% for all peptides, except for seven peptides that had high
variation (total-CV >20%). Thus, the standard method (Set 1, 1 well/tip) had
reasonable reproducibility, with an average intra-CV of 7.9%, an average inter-CV

of 12.0%, and an average total-CV of 15.3% (Figure 1-10 (D)).
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Figure 1-10. Variations of the automated sample preparation process

The variations in the 52 peptides in Set 1 (standard method) are shown. (A) The 52
peptides showed intra-CV values under 20%, except for four outliers. (B) All the 52
peptides showed inter-CV values under 20%. (C) The 52 peptides showed total-CV
values under 20%, except for seven outliers with a CV of >20%. (D) The graph was
plotted by mean with SD of CV values of 52 peptides. The average CV values of 52
peptides was 7.9% (red bar graph) for intra-CV, 12.0% (blue bar graph) for inter-
CV, and 15.3% (gray bar graph) for total-CV. CV, coefficient of variation. SD,

standard deviation.

1.3.3. Evaluate the possibility of cost-saving automated processes

The possibility of reducing experimental costs was evaluated by comparing
variations obtained from other three cost-saving methods that reduced consumables

(Figure 1-11). Total variation results are detailed in Table 1-4. The CVs of Sets 2
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and 3 had equivalent intra- and inter-CV as Set 1. The average intra-CV and inter-
CV were 8.5 and 13.5%, respectively, for Set 2 and 9.0 and 13.5% for Set 3. Thus,
reducing the number of tips is a means of minimizing the cost incurred by expensive
consumables of automation while maintaining reproducibility.

Set 4, which was prepared with only one tip for 24 wells, had an average intra-
CV of 24.2% and an average inter-CV of 26.4%, higher than in the other three sets,
likely due to the inaccurate dispensing of each reagent, resulting from the long time
that it took to dispense into all 24 wells with one tip (Figure 1-12). It took nearly
twice as much time to complete the dispensing to the 24 wells, whereas this time
differed slightly between the other three sets.

The PAR of each peptide is shown as the average value of 24 samples for each
set in Table 1-5. I compared the quantification results for each set with those of Set
1, the standard experiment with regard to bias values. The bias indicates that the
quantification results of Sets 2 (0.8% on average) and 3 (—3.4% on average) are
similar to those of Set 1. Set 4 showed higher bias than the other sets (—15.5% on
average). These differences appear to be attributed to the difference in digestion
efficiency for each set because SIS peptide was spiked equally in all sets. The
digestion efficiency was generally lower in Sets 3 and 4. The quantification results

for Set 2 were nearly equivalent to those of Set 1 based on their low bias.
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Figure 1-11. Box and whisker plots of intraday and interday variation testing
for each set.

Each CV value was calculated for 52 peptides in each dataset. Experiments for Sets
1, 2, 3, and 4 were conducted with 24, 8, 4, and 1 tip for dispensing to the 24 wells,
respectively. The well/tip on the x-axis was calculated for each dataset, dividing the
number of wells by the number of tips used for dispensing the reagent. Sets 1 (1
well/tip), 2 (3 well/tip), and 3 (6 well/tip) had similar levels of intraday variation,
with average intra-CVs lower than 15% (7.9%, 8.5%, 9.0%, respectively), whereas
Set 4 (24 well/tip) had a higher average intra-CV (24.2%) (A). Also, the inter-CVs
were similar in Sets 1-3 (B). The average inter-CVs were lower than 15% in the first
3 sets (12.0% for Set 1, 13.5% for Set 2, 13.5% for Set3), whereas Set 4 had an inter-

CV of 26.4%.
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Figure 1-12. Time spent for dispensing 10 pL of reagent to every 24 wells.

The well/tip on the x-axis was calculated, dividing the number of wells by the
number of tips used for dispensing the reagent. The total time required for dispensing
10 pL of reagent to all 24 wells is presented for each set. Dispensing a reagent takes
more time when fewer tips are used for the same amounts of wells. The blue line

presents the time required for dispensing 10 pL of reagent to all 24 wells manually.
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1.3.4. Evaluation of feasibility for the introduction of the automated in-
solution digestion workflow in clinical fields

In a series of analyses so far, I have confirmed that the introduction of
automation yields high reproducible results. For general application in the clinical
field, the validity of the automated process was evaluated in terms of time and cost.
As shown in Figure 1-12, more time is needed for dispensing reagents with fewer
tips for the same number of wells. However, it remains shorter compared with the
time that is required for manual dispensing of reagents. Although it takes longest
with one tip, it takes less than one-third of the time to dispense each reagent to 24

samples by manual preparation (~500 s.). Those methods have a tremendous

advantage over manual preparation because automation can minimize the variation
in reaction times for each sample and prevent protein degradation.

Meanwhile, for daily operations of the assay in clinical practice, the cost aspect
should be considered to reduce the patient's financial burden. The total experimental
cost per sample preparation for each set and the manual preparation are shown in
Table 1-6. The cost per sample preparation was calculated for measurable
consumables, such as tips, plates, sample vials, expensive reagents (RapiGest and
trypsin), and so on. The total cost for the automated workflow was twice as high as
that of the manual workflow. Thus, despite the comparable reproducibility, the total
cost of the automation system should be optimized to increase utility. Therefore, I
evaluated the potential for minimizing cost, by analyzing the relationship between
reproducibility and experimental cost based on the number of tips (Figure 1-13). As
a result, the methods that used eight or four tips in preparing the 24 wells had high

reproducibility (CVs <15%), similar to the method in which reagents were dispensed
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using an individual tip for each well (Set 1 experiment). The variation increased as
reagents were dispensed to more wells with one tip. Thus, greater use of consumable
items raises the cost, but higher reproducibility is ensured. I found that a considerable
amount of cost for the automated platform could be saved by methods with eight or
four tips (29 and 37% reduction in total experimental cost, respectively). The bulk
of the cost reduction comprised trypsin and RapiGest reagent. Therefore, reducing
wasted volumes by using fewer tips could be a key factor in lowering costs (see
Table 1-6). It is most effective to use one tip for five wells— the point at which the
cost and variation (CV value) graphs intersect (Figure 1-13); this method minimizes

the variability in sample preparation while keeping expenditures low.
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Table 1-6. Approximate experimental cost per sample for in-solution digestion.

Setl Set2 Set3 Set4 | Manual
Consumables
24 Tips 8Tips 3Tips 1Tip | 24 Tips
Tip 0.551 0.184  0.092  0.023 0.040
Reagent stock plate (or tube) 0.089  0.030  0.015  0.004 0.010
Sample plate (or tube) 0.075 0.075  0.075  0.075 0.079
RapiGest 1.867 1.244 1.089  0.972 0.933
Trypsin 6.277 4185  3.662  3.269 3.139
Glass vial for LC 1.884 1.884 1.884 1.884 1.884
Total 10.74 7.60 6.82 6.23 6.08
Savings against Manual (%) -76.56 -24.93 -12.02 -2.34
Savings against Set 1 (%) - 29.24  36.55  42.03

The cost unit is USS$. The price is based on 2019 index. Prices for other consumables
and reagents are excluded when negligible against the total experimental cost. Labor
and facility costs for the instrument are also excluded, because these costs vary

depending on the region. LC, liquid chromatograph.

-&- CV (%)
- Costand CV - Cost
Y]
T 12 - 40
£
3
‘Z’— USSR -30
2 |\ T 2
2 g \ .- £20 —
T N E
") -
5 61" | v 10
<% i
v :
S a4 . . . . . 0
o 0 5 10 15 20 25 30

Well / Tip

Figure 1-13. The relationship between variation and cost.
The well/tip on the x-axis was calculated for each dataset, dividing the number of

wells by the number of tips used for dispensing the reagent. The total experimental
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cost per sample in each set is represented as a dotted line (details in Table 1-6). The
CVs were plotted based on the average interday CV value of 52 peptides. Since
optimal balance between reasonable reproducibility and the cost is obtained at the

intersection of the graph, using 1 tip for 5 wells.

48



1.4. DISCUSSION

Automated sample preparation is essential for the development of routine clinical
MRM-MS assays. Furthermore, automated processing can reduce the systematic
biases that are associated with transferring a multistep assay between laboratories
and even between technicians in the same laboratory, thereby increasing
reproducibility and facilitating the wider adoption of MRM—MS protein assays. This
work focused on developing a robust sample processing workflow that facilitates the
development of high-confidence clinical MRM—MS assays while reducing human
labor. When combined with online diversion for the final cleanup step, the CV for
the entire procedure was under 20%.

Although automated platforms are attractive concerning their high
reproducibility, the tremendous cost of consumables is one of the obstacles to the
routine application of the MRM—MS assay in clinical practice. There have been few
endeavors to reduce the costs that arise during the digestion process, although many
automated digestion processes have been optimized. Therefore, this research is a
meaningful initial attempt to automate the digestion process with a lower cost burden.
Based on the comparison of reproducibility, I have found a potential for the
automated workflow with the cost-optimized method by using fewer tips, reagents,
and plates for preparation, ensuring stable automated serum sample preparation. It is
most effective to use one tip for five wells— this method minimizes the variability in
sample preparation while keeping expenditures low. Although this automated

workflow was tested and constructed with an Agilent Bravo apparatus, it can be
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adopted by other similar liquid-handling systems, such as those for which tips can
be placed on specific pipet channels, 96-well plates can be used, and the aspiration
height can be adjusted. With slight adaptations, the platform is expected to perform
well for various sample types, other than serum, to cope with a massive number of
samples.

Despite their comparability evaluated here, there are several limitations to this
study. First, the robustness of the automated preparation workflow was evaluated
only in the analysis of the technical replication experiment using identical pooled
samples. Therefore, the feasibility of this automated process should be verified in
the analysis of the biological replication experiment using individual samples or
samples obtained from various origins. Second, this study was focused on the
feasibility of the automated serum sample preparation for MRM-MS assays, the
reproducibility was evaluated for the targeted quantification results for 52 peptides.
Also, the absence of cross-contamination was not evaluated. To overcome these
limitations, further study is required to evaluate the robustness of the automated
sample preparation method in biological replication experiments for additional target
peptides as well as to determine whether cross-contamination has occurred between

samples placed within the 96-well plate (Figure 1-14).
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Human Bacteria
(n=3) (n=3)

Manual . O O ‘ Q O Automated

Standard Cost saving
method : method

Tips used f j
L. 0000000

IO mON®>

Replicate over three days Replicate over three days

Figure 1-14. The overall scheme for further evaluation of the robustness of the
automated sample preparation method in biological replication experiments.
The robustness of the automated workflows (standard and cost-saving methods) can
be evaluated in biological replication experiments using individual samples of
humans and bacteria. Three individual samples per each sample origin (humans and
bacteria) are prepared by the automated workflow and the manual process over three
successive days. Three human-derived and three bacterial samples are placed
alternately in each row of Set A in random order, while the sequence is inverted in
Set B. The robustness of the automated workflow for biological replications can be
assessed by comparing the reproducibility and accuracy obtained from each
preparation method. For the cost-saving automated method, the cross-contamination

can be determined by quantification results for bacterial proteome in human samples
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prepared immediately next to the bacteria samples, and vice versa. Thus, the
robustness of the automated workflow and the cross-contamination can be evaluated

within a single experiment.
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1.5. CONCLUSION

The reproducibility of the technical replication experiment identified in the
identical pooled samples is meaningful in that it can be applied to the analytical
method validation process for biomarkers. The analytical method validation
processes are requiring labor-intensive steps to prepare an identical matrix digested
from the pooled samples, as well as individual sample preparation for each validation
criteria (Figure 1-15). Thus, it can significantly reduce human labor and increase the
throughput and reliability of the analytical validation study after further evaluation
of the robustness of the automated process in biological replication experiments. |
hope that this automated platform will help implement MRM—MS protein assays in

clinical practice.
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CHAPTER 2

Development of the Inclusive
Quantification MRM-MS Assay of Des-y-
Carboxyprothrombin (DCP) Proteoforms
for Hepatocellular Carcinoma (HCC)

Surveillance

56



2.1. INTRODUCTION

Liver cancer is the seventh most prevalent cancer worldwide and is the second
leading cause of cancer-related deaths (57, 58). The most common type of primary
liver cancer is hepatocellular carcinoma (HCC), which accounts for approximately
75% of all liver cancer cases (58-61). A primary risk factor for HCC is chronic liver
cirrhosis due to chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection
(62, 63).

The prognosis for HCC remains poor, with a 5-year survival rate of less than
20% in most countries (58, 64-66). Consequently, diagnosing HCC at earlier stages
is the treatment strategy due to it is related with better survival rates in early-stage
HCC (70%) (67-69). Currently, ultrasonography (US) and serum alpha-fetoprotein
(AFP) detection are widely used to surveil at-risk individuals for the development of
HCC (70-72). However, these methods can often result in misdiagnosis due to the
imprecise identification of small tumors in liver cirrhosis backgrounds using US or
fluctuations in AFP levels that are caused by benign liver diseases (72-75). Further,
certain HCCs with normal AFP levels can contribute to the low sensitivity of serum
AFP. Therefore, ongoing research has attempted to develop more effective
surveillance methods with enhanced sensitivity that can be used independently from
or in conjunction with US or serum AFP (35, 76-78).

Another available marker for HCC surveillance is des-y-carboxyprothrombin
(DCP), also known as protein induced by vitamin K absence or antagonist-II, or

abnormal prothrombin, which is found at elevated levels in patients with HCC (79,
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80). Several studies have reported that DCP can be used to complement AFP for the
early diagnosis of HCC (77, 81). Normal prothrombin is synthesized as a precursor
containing 10 glutamic acid (Glu) residues in the N-terminal domain (Gla domain),
at positions 6, 7, 14, 16, 19, 20, 25, 26, 29, and 32 (82). Under normal conditions,
the precursors undergo posttranslational carboxylation of the Glu residues resulting
in the conversion of Glu to y-carboxylated glutamic acid (Gla) by vitamin K-
dependent glutamyl gamma-carboxylase in the specific order of 26, 25, 16, 29, 20,
19, 14, 32, 7, and 6 (83, 84). Carboxylation is impaired under conditions of vitamin
K deficiency, warfarin treatment, or liver dysfunction, (85, 86) resulting in DCP
being released into the bloodstream as a mixture of proteoforms with up to 10 des-
carboxylated Glu residues (87).

Concentrations of DCP have been determined using a conventional antibody-
based assay featuring a monoclonal antibody produced by the MU3 cell line (88).
The DCP epitope that is recognized by the MU3 antibody is located within the Gla
domain at amino acids 17-27, which includes four Glu residues (19, 20, 25, and 26).
Thus, the DCP proteoforms containing some Gla residues at the antibody epitope
could have reduced affinity for the MU3 antibody compared with that of the totally
non-carboxylated DCP. According to previous studies, the MU3 antibody binds
predominantly with DCP molecules containing 9-10 Glu residues, weakly with those
that possess 6-8 Glu residues, and rarely with those that have less than 5 Glu residues
(88, 89). Recently, several studies aimed to develop discriminative quantification
immunoassays for the detection of DCP proteoforms with lower Glu content to
overcome this limitation and improve the diagnostic performance of DCP

measurement (87, 90, 91). These studies used additional immunoassays that feature
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other antibodies, such as 19B7, P-11, and P-16, which recognize different epitopes
than those that are detected by the MU3 antibody. Although these studies reported
the value of these assays for the detection of DCP proteoforms that contain fewer
Glu resides, the performance of extra and separate immunoassays is costly and
subject to batch effects.

Multiple-reaction monitoring—mass spectrometry (MRM-MS) is a powerful
analytical method that can be used to accurately quantify peptides and proteins with
high throughput. Recently, the MRM-MS assay has been shown to be advantageous
compared with conventional antibody-based assays in terms of throughput and the
ability to distinguish protein isoforms with common epitopes (20, 22, 32). In the
previous study, they developed an MRM-MS assay to quantify DCP using a
surrogate peptide; this found that the MRM-MS assay had comparable diagnostic
power compared with the conventional immunoassay (36, 92). However, this MRM-
MS assay remains limited because it only quantifies a surrogate peptide that
represents just a small portion of the existing DCP proteoforms.

The objective of the present study was to improve the diagnostic power of the
MRM-MS assay for DCP by inclusively quantifying a wider range of proteoforms
with various des-carboxylation states. In brief, I examined potentially non-
carboxylated peptides (referred to as Glu-peptides) within the Gla domain and
developed a robust MRM-MS assay to quantify multiple Glu-peptides for the

inclusive quantification of DCP proteoforms.
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2.2. MATERIALS AND METHODS

2.2.1. Chemicals and reagents

High-performance liquid chromatography (HPLC)-grade solutions, including water,
acetonitrile, formic acid, 0.1% formic acid in water, and 0.1% formic acid in
acetonitrile, were purchased from Fisher Scientific (Loughborough, United
Kingdom). Ammonium bicarbonate (200 mM) solution was purchased from iNtRON
Biotechnology (Sungnam, Korea). Dithiothreitol and iodoacetamide were obtained
from Merck Co. (Darmstadt, Germany) and Sigma-Aldrich (St. Louis, MO).
RapiGest surfactant was obtained from Waters Corp. (Milford, MA,). Sequencing-
grade chymotrypsin and trypsin were obtained from Promega (Madison, WI).
Formic acid was purchased from Fisher Scientific. Stable isotope-labeled standard
(SIS) peptides (heavy peptides) were synthesized by SynPeptide Co., Ltd. (Shanghai,
China) (with >99% isotope purity and about >60% purity for individual peptides).
Heavy peptides for two tryptic peptides were labeled (*C and ""N) at a C-terminal
arginine (Arg) and lysine (Lys). The SIS peptides for three chymotryptic peptides
were labeled (*C and ""N) at C-terminal tyrosine (Tyr), phenylalanine (Phe), and

leucine (Leu).

2.2.2. Clinical specimens and study design
A total of 618 serum samples were obtained from patients with HCC and at-risk
control patients with chronic hepatitis B (CHB), chronic hepatitis C (CHC), or liver

cirrhosis (LC). All patients were recruited from two medical centers in Korea (Asan
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Medical Center and Samsung Medical Center) and provided informed consent
before enrollment. This study was approved by the institutional review boards of the
Asan (IRB No. 2017-1049) and Samsung (IRB No. 2017-08-164) Medical Centers.
The cohort of 300 patients that was used for model construction and assessment was
recruited from Asan Medical Center (cohort A) and included 100 cases of HCC and
200 at-risk controls (Figure 2-1). Seventy percent of the patients were randomly
defined as the training set (n = 210), and the remaining patients were defined as the
test set (n = 90). The training set was used to construct a diagnostic model, while the
test set was used to assess model performance. To validate the model performance
in an external cohort, an independent validation set was recruited comprising 318
samples collected from Samsung Medical Center (cohort B), including 184 cases of
HCC and 134 at-risk controls.

The HCC diagnosis was confirmed by the results of a histological examination
or typical imaging features obtained by US, computed tomography, or magnetic
resonance imaging, according to regular clinical practice guidelines (93). The stages
of HCC were defined according to the Barcelona Clinic Liver Cancer (BCLC)
classification as follows: very-early-stage (BCLC stage 0, single nodule <2 cm) and
early-stage (BCLC stage A, a single 2-5 cm lesion or two to three lesions that are
each <3 cm). Cirrhosis was defined clinically or radiologically using the following
criteria: coarse liver echotexture and nodular liver surface on US, clinical features of
portal hypertension (e.g., ascites, splenomegaly, or varices), or thrombocytopenia
(platelet count <150 x 1,000/mm’®). CHB was defined as the presence of serum
hepatitis B surface antigen for more than 6 months. Patients with persistent anti-

HCV and HCV RNA for more than 6 months were defined as CHC. Ages and sex
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distributions were matched between the control and case groups to the greatest extent
possible; the clinical information for each data set and reference values (94) are

detailed in Table 2-1.

Cohort A
Model Construction and Assessment

Cohort B
External validation

300 patients enrolled from
Asan Medical Center

| |

Training set Test set Independent validation set
(n=210) (n=90) (n=318)

318 patients enrolled from
Samsung Medical Center

*+ HV=70,LC=70,HCC=70

+ Logistic regression
- Stepwise elimination

*+ HV=30,LC=30,HCC =30
* ROC curve analysis

« HV=105,LC =29, HCC = 184
* ROC curve analysis

* Subgroup analysis

- 10 fold cross validation :

- 100-times repeats » Evaluation of » External validation of

the Multi-Glu-peptide panel the Multi-Glu-peptide panel

» Establishment of
the Multi-Glu-peptide panel

Figure 2-1. Design of the study.

The 618 patients were enrolled in this study from two cohorts (Asan and Samsung
Medical Center). The 300 patients from cohort A were randomly divided into the
training and test sets to construct the diagnostic model and assess its performance.
The diagnostic model was established by stepwise logistic regression in the training
set, consisting of serum samples from 70 HCC patients and 140 high-risk controls
(70 with HV and 70 with LC). The diagnostic performance of the established model
was assessed using the test set, comprised of 90 serum samples from 30 HCC patients
and 60 high-risk controls (30 with HV and 30 with LC), by ROC curve analysis.
Then, the model performance was validated in an independent validation set from

cohort B, including 318 patients, consisting of 184 HCC patients and 134 high-risk
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patients (105 with HV and 29 with LC). Additional evaluations for HCC surveillance
performance of the model were conducted using subgroups of independent
validation sets, such as patients with AFP- and DCP-negative, or early-stage and
very-early-stage HCC. Abbreviations: HV, patients with hepatitis virus infections;

LC, patients with liver cirrhosis; HCC, hepatocellular carcinoma.
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2.2.3. Candidate non-carboxylated peptides within the Gla domain of
DCP

The Gla domain of prothrombin consists of 46 amino acids at the N-terminus,
including 10 sporadic Gla sequences. I identified potential non-carboxylated
peptides (Glu-peptides) that originated from the Gla domain through an in silico
proteolytic digestion using Skyline (McCoss Laboratory, University of Washington).
Due to the decarboxylation (neutral loss of CO,) that occurred in the fragmentation
process, | have considered only the non-carboxylated peptides to obtain reproducible
quantification results (95). The in silico digestion was performed separately with
trypsin and chymotrypsin, and peptides with six to 30 amino acids and without
methionine residues were selected to ensure reproducible quantification. Two tryptic
peptides (ANTFLEEVR, ECVEETCSYEEAFEALESSTATDVFWAK) and three
chymotryptic peptides (EEVRKGNL, ERECVEETCSY, ESSTATDVF) remained as
potential targets representing the partially non-carboxylated state of the Gla domain
(Figure 2-2). MRM-MS analysis was then performed to verify the detectability of
these five peptides by MS analysis, using corresponding SIS peptides (also referred
to as heavy peptides). Among the five Glu-peptides, the longest tryptic peptide
(ECVEETCSYEEAFEALESSTATDVFWAK) did not have any discernable signal
due to its long length and hydrophobicity. The other four Glu-peptides were detected

by MRM-MS and were chosen for further analysis.
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|- Chymotryptic peptides I Tryptic peptides
© Glutamic acid (Glu)
@ ©) ®
lwcarboxyla(ion o= L & = I
Gla domain ( g y-carboxylated 0) =
glutamic acid (Gla) ®
Prothrombin

* : Not detectable by mass spectrometry

c
‘ @ In silico trypsin/chymotrypsin digestion

Gla domain 6-30 amino acids except for Met

Prothrombin

Sequence containing Glu in Gla domain

o

Mass spectrometry detectability check |, ECVEETCSYEEAFEALESSTATDVFWAK

ponding SIS peptid:
4 Target Glu peptides for
Individual sample analysis
EEVRKGNL
ERECVEETCSY

ESSTATDVF
ANTFLEEVR

Figure 2-2. Candidate non-carboxylated peptides (Glu-peptides) within the Gla
domain identified by in silico digestion with chymotrypsin and trypsin.
(A) The Gla domain is the N-terminal region of prothrombin, consisting of 46 amino

acids and containing 10 sporadic Gla residues. The Gla residues at the Gla domain

are generated by the y-carboxylation of the Glu residues in the prothrombin precursor.

(B) The in silico digestion, based on the Gla domain sequences following
chymotrypsin and trypsin digestion, derived three- and two-Glu-peptide sequences,
respectively. The asterisked (*) tryptic peptide was non-detectable by mass
spectrometry due to the long length. (C) The overall scheme to identify the candidate

non-carboxylated peptides in Gla domain.

68 : .!H _.;‘I:r_ ]__-” 3



2.2.4. Multienzyme digestion for sample preparation

All serum samples were randomized within each set before preparation. The
complete sample preparation workflow is shown in Figure 2-3 and detailed in Table
2-2. The six most abundant proteins (albumin, immunoglobulin [Ig]G, antitrypsin,
IgA, transferrin, and haptoglobin) were depleted using a multiple affinity-removal
system column (Hu-6, 4.6 x 100 mm; Agilent Technologies, CA) and their exclusive
buffers (buffers A and B). The depleted serum was concentrated using a 3-kDa
molecular weight cutoff concentrator (Amicon Ultra-4 3K; Millipore, MA). The
proteins in depleted and concentrated serum samples were quantified by the
bicinchoninic acid assay, and 200 pg of proteins were denatured, alkylated, and
divided into two equal fractions. Each sample pair was separately digested with
trypsin and chymotrypsin to obtain peptides without competing for cleavage sites in
a single run while minimizing variations due to prior steps. The incubation was
performed at 37°C for 4 hours and was stopped by the addition of formic acid. The
supernatant was transferred to clean tubes after centrifugation at 16,602g at 4°C for
1 hour to remove the by-products of RapiGest-SF. The individual enzymatic digests
were mixed evenly and spiked with corresponding heavy peptides before the MRM-

MS analysis.
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| Human Serum ‘

l

| Depletion of 6 most abundant proteins |
v

| BCA assay for concentrated proteins |

Starting with 200 ug of proteins

| Denaturation and alkylation |
v

Split into two fractions for
different protease reaction

'
| 100 pug of proteins | | 100 pg of proteins |
Digestion Digestion

with Chymotrypsin with Trypsin

[ J

v
LC-MS/MS analysis
< Target Glu-peptides >
< Chymotryptic % Tryptic

EEVRKGNL ANTFLEEVR

ERECVEETCSY

ESSTATDVF

Figure 2-3. Scheme of the adapted sample preparation workflow using semi-
separate, multi-enzyme digestions for the simultaneous procurement and
analysis of tryptic and chymotryptic peptides in a single batch.

Human serum samples were depleted of the 6 most abundant proteins and
concentrated. The concentration of the concentrated sample was measured by BCA
assay, and 200 pg of protein was reduced with DTT and alkylated with TAA. The
denatured proteins were separated into two fractions and digested separately with
trypsin and chymotrypsin. After the digestion reactions were completed, the two
fractions were combined into one final vial and spiked with heavy isotope-labeled
peptides corresponding to the target peptides and subjected to liquid
chromatography-tandem mass spectrometry (LC-MS/MS). Abbreviations: BCA,

bicinchoninic acid; DTT, dithiothreitol; IAA, iodoacetamide.
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2.2.5. Selection of a quantifier ion for each target peptide

I experimentally screened the six intense transitions as an initial list of MRM-MS
transitions using the heavy peptides. The best transition was selected as a quantifier
ion, considering the results of the reversed response curve analysis and the
Automated Detection of Inaccurate and imprecise Transitions (AuDIT) algorithm
(53), according to the following criteria: (1) the best linearity of the response curve
(based on the correlation coefficient, R?); (2) the lower limit of quantification (LLOQ)
value was lowest among the transitions; and (3) interference-free status from AuDIT
results.

The background matrix for the response curves was prepared using 100 pg of
proteins from depleted pooled hepatitis serum for each enzyme fraction. The
calibration points were generated by mixing the background matrix with variable
amounts of heavy peptides from 78.13 fmol to 20 pmol, over a 100-fold range. All
calibration points were sequentially analyzed, followed by a blank sample (0.1%
formic acid in HPLC water), from zero sample (matrix only) to the highest
concentration point in triplicate. The peak area ratio (PAR) was calculated with the
peak area of heavy peptides normalized against that of corresponding endogenous
(light) peptides existing in a matrix. Linear regression analysis was conducted on the
plot in which the PAR of heavy peptides to light peptides was plotted against the
nominal concentration of heavy peptides on a logio scale.

The limit of detection (LOD) and limit of quantification (LOQ) were calculated
based on the averaged PAR, plus 3 times and 10 times the SD for a zero sample that
was analyzed in triplicate, respectively. The LLOQ was determined as the lowest

concentration at which the precision was under 20%, the accuracy was within 20%,
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and the signal-to-noise (S/N) ratio over 5, representing the first point of the response
curve. Similarly, the upper LOQ (ULOQ) was defined as the highest concentration
on the response curve showing the precision under 20% and the accuracy was within
20%, representing the last point of the response curve. The analytical information
and AuDIT results for the quantifier ion used for each peptide and their response

curves are shown in Tables 2-3 and 2-4, respectively.
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2.2.6. Quantitative MRM-MS Analysis

The quantification of target peptides for DCP was performed on an Agilent 6490
triple quadrupole MS (Agilent Technologies) with a Jetstream electrospray source
coupled with a 1260 Infinity HPLC system (Agilent Technologies). The liquid
chromatography—MS system was controlled by MassHunter (vB06.01; Agilent
Technologies) software for the establishment of a scheduled MRM-MS method and
data acquisition.

The total liquid chromatography assay was performed over 70 minutes, with a
binary gradient consisting of mobile phase A (water 0.1% volume [vol]/vol formic
acid) and mobile phase B (acetonitrile 0.1% vol/vol formic acid). Twenty microliters
of chymotryptic and tryptic peptides was injected into the guard column (2.1 mm x
30 mm internal diameter [id], 1.8 pum particle size; Agilent Zorbax SB-C18), which
was maintained at 40°C. After online desalting for 10 minutes at 5 pL/minute with
3% B, the peptides were subjected to a reversed-phase analytical column (150 mm
% 0.5 mm id, 3.5 pum particle size; Agilent Zorbax SB-C18) maintained at 40°C. The
separation of the peptides was conducted with a binary gradient of 3% to 35% B
through the column for 45 minutes at 40 pL/minute. Equilibration of the column for
the next run was performed by raising the gradient to 70% B for 5 minutes and then
lowering it to 3% B for 10 minutes.

The ion spray capillary voltage was 2,500 V, and the nozzle voltage was 2,000
V. The drying gas and sheath gas were set to flow at 15 L/minute at 250°C and 12
L/minute at 250°C, respectively. The voltage of the cell accelerator was adjusted to
5 V. The fragment voltage and the delta electron multiplier voltage were set to 380

V and 200 V, respectively. The resolution mode of the first and third quadrupoles
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was set to unit mode.

2.2.7. Data analysis

Quantitative analysis after MS analysis was performed using Skyline (McCoss
Laboratory), which handled the MRM-MS raw data files from import to alignment
and was used to conduct peak area calculations for transitions. The raw data were
processed in Skyline, and each data point was smoothed by the Savitzky-Golay
method. The PAR of the endogenous peptide to the heavy peptide for each peptide
was used to represent the relative abundance of the peptide in each sample.

In the training set, a DCP multi Glu-peptides panel was constructed to
discriminate cases from controls by stepwise backward logistic regression with 10-
fold cross-validation (repeated 100 times). The stepwise backward elimination
strategy was used to maximize the opportunity to identify the best combination of
Glu-peptides for the discriminative quantification of DCP proteoforms between
cases and control groups. The 10-fold cross-validation approach was used to avoid
the overfitting of the model. The logistic regression model was trained and tested
using the Classification and Regression Training (CARET) package in R statistical
software program (version 3.6.3; R Foundation, Vienna, Austria) (96). The method
used for stepwise backward elimination was the glmStepAIC method, which
performed automatic stepwise variable selection based on the Akaike information
criterion to train the model. Then, the optimal DCP multi Glu-peptides model was
selected based on its accuracy. The ‘Combined model’ was developed by combining
the multi-Glu-peptide panel with the serum AFP levels by the logistic regression

method in the ‘caretStack’ function of the ‘caretEnsemble’ package in the R as a
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stacked ensemble model. The overall scheme of model construction and evaluation
is shown in Figure 2-4.

Areceiver operating characteristic (ROC) curve was used to generate area under
the ROC curve (AUROC) values to evaluate the predictive ability of the DCP multi-
Glu-peptide panel in each data set. The cut-off point was identified by calculating
the Youden Index (J = max [sensitivity + specificity —1]) for the training set. The
relative differences in abundance for each peptide in the panel were compared
between the control and case groups using the Mann-Whitney U test. DeLong's tests
were conducted to compare the AUROC values. All reported P values are from two-
sided tests, and two-tailed P < 0.05 was considered significant.

All statistical analyses were performed using R (version 3.6.3; R Foundation,
Vienna, Austria), IBM SPSS (version 25.0; IBM, Chicago, IL), and GraphPad Prism

(version 6.0; GraphPad, San Diego, CA).

Model construction Model evaluation
Training set (n = 210) Test set (n = 90)
Logistic Regression # " P
1 =1
Train Test =] T
. —— , n
-- Combined model f

|| Serum AFP level
model
- Model validation
- The optimal model .
- with best accuracy Validation set (n = 318)
s 7
g
.

Stacking

10-fold cross validation

Repeated 100 times
Figure 2-4. The overall scheme of the optimal DCP model and combined model
construction and evaluation. In the training set, a DCP multi Glu-peptides panel

was constructed by stepwise backward logistic regression with 10-fold cross-
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validation repeated 100 times. Then, the optimal model was selected based on its
accuracy and the combined model was developed by stacking the DCP multi-Glu-
peptide panel with the serum AFP levels by the logistic regression method of the

caretStack function in the caretEnsemble package.
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2.3. RESULTS

2.3.1. Reversed response curves for four candidate Glu-peptides in
depleted human serum

The reversed response curves for four DCP Glu-peptides are shown in Figure 2-5.
Each curve satisfied the U.S. Food and Drug Administration guidelines for validating
response curves (35); more than six calibration points were composed in each curve,
and the coefficients of variance (CVs) of the measurements (n = 3) at all points in
the curve were below 20% (Table 2-4). All correlation coefficients (R’) of the
response curve were above 0.99, except that for the ESSTATDVF peptide, which
had an R’ value that was slightly lower than the others (0.9872). The LOD, LOQ,
LLOQ, and ULOQ values for the quantifier ion in each of the four Glu-peptides are
summarized in Figure 2-5, and the results of the linear regression analyses for the
response curve for each peptide are summarized in Table 2-5.

The analytical sensitivities of the target peptides at the LLOQ concentration
met the requirements for precision, accuracy, and S/N criteria described in the
Materials and Methods section (Table 2-6). The potential interferences of the
analytes in the biological samples were inspected as the analytical specificity of
individual serum samples from 6 patients with hepatitis. The interference values of
peptides satisfied the standard criteria in all samples (interference <20%), as shown
in Table 2-7. The average interference values of six matrices for the ANTFLEEVR,
ERECVEETCSY, ESSTATDVF, and EEVRKGNL peptides were 6.4%, 3.2%,

7.5%, and 6.8%, respectively. The carryovers were inspected to ensure that the
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ULOQ samples would not affect the subsequent sequential analysis of specimens.
The average carryover of the four analytes ranged from 3.28% to 12.10%, which met

the criteria (carryover <20%; Table 2-8).

A 2 ANTFLEEVR B 2.5 - ERECVEETCSY
_ )
Ti54Y= 1.(:309x -2.5052 . E y = 0.9244x - 1.6296
i R?=0.9991 . K 2 R?=0.9939 .
s 1 o 2 [ 3
-] o
2 o 2
2 05 215 - o
s 0 s
4 4 o
T »” LOD = 20.47 fmol Lk " LOD = 88.78 fmol
S 0.5 1 o LOQ = 44.41 fmol ] LOQ = 206.03 fmol
o LLOQ = 78.13 fmol o LLOQ = 312.50 fmol
uLoQ = 10 pmol [ ] uLOQ = 20 pmol
-1 t t t t t | 0.5 t + t t i
15 2 25 3 35 4 45 2 25 3 35 4 45
Concentration [fmol, log,e-scaled] Concentration [fmol, logy,-scaled]
c 1.5 ESSTATDVF o 2.5 q EEVRKGNL
L °
%‘ y = 0.89x - 2.4551 T y=0.9919x - 1.774
2 R?= 0.9872 o S 2 R?=0.9952
b ? -0
8 8151 P
) o 2 o
k] - k]
(4 x 4 -
] K J
§ 0.5 g
< < .
™ ¢ LOD = 43.43 fmol %05 4 LOD = 11.51 fmol
& LOQ = 61.90 fmol g . LOQ = 19.02 fmol
LLOQ = 625.00 fmol LLOQ = 78.13 fmol
o e ULOQ = 20 pmol o L ULOQ = 10 pmol
25 3 35 4 45 1.5 2 25 3 35 4 4.5
Concentration [fmol, log,,-scaled] Concentration [fmol, log,,-scaled]

Figure 2-5. Reversed response curves for the quantifier ions of ANTFLEEVR
(A), ERECVEETCSY (B), ESSTATDVF (C), and EEVRKGNL (D).

The response curves were generated by linear regression analysis with logio-scaled
values, and their equations are summarized in Table 2-5. Each curve consists of over
6 calibrators (blue points and red points), and the lowest calibrator (red point)

represents the lower limit of quantification (LLOQ) concentration.
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Table 2-5. Summary of reversed response curves for each Glu-peptide.

No. Peptide Sequence Slope Intercept R?

1 ANTFLEEVR 1.0309 —2.5052 0.9991

2 ERECVEETCSY 0.9244 -1.6296 0.9939

3 ESSTATDVF 0.8900 —2.4551 0.9872

4 EEVRKGNL 0.9919 -1.774 0.9952

Abbreviations: R, coefficient of determination

Each reversed response curve equation was generated with logl0-scaled values.
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2.3.2. Reproducibility of the MRM-MS assay using the multi-enzyme
digestion workflow

I evaluated the reproducibility of the total MRM-MS assay that used the
multienzyme digestion workflow with depleted pooled HCC serum. The serum was
prepared over 5 days and analyzed daily in triplicate. The average CV values of each
target peptide were under 20% in both the intra-assay and interassay analyses, as
shown in Table 2-9. The average CV values of the intra-assay analysis ranged from
7.03% to 17.35%. The corresponding values for the interassay analysis ranged from
14.81% to 17.67%. These results demonstrate that the total MRM-MS assay using
the multienzyme digestion workflow is stable for the quantitation of four peptides

over several days.
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2.3.3. Construction of the DCP multi Glu-peptides panel

As a result of the logistic regression analysis performed on the training set, a multi-
Glu-peptide panel containing three Glu-peptides (ANTFLEEVR, ERECVEETCSY,
and ESSTATDVF) was established as the best panel for predicting HCC, eliminating
a nonsignificant Glu-peptide (EEVRKGNL). The three Glu-peptides contributed
significantly to the panel (P < 0.005), as indicated by the final logistic model, which
is detailed in Table 2-10. The three Glu-peptides panel obtained an AUROC of 0.873
(95% confidence interval [CI], 0.818-0.928) (Figure 2-6A). The constructed panel
achieved a greater AUROC value than each individual Glu-peptide (AUROC values:
0.801 for ERECVEETCSY, 0.734 for ESSTATDVF, and 0.561 for ANTFLEEVR;
Figure 2-6A). The predictive performance of the three Glu-peptides panel was
consistent in the test set, with an AUROC value of 0.844 (95% CI, 0.761-0.928),
which was equivalent to the AUROC value of 0.873 obtained for the training set
(DeLong's test, P = 0.5722; Figure 2-6B).

The levels of three peptides in the 300 individual samples were plotted as scatter
dot plots with lines showing the mean and SD, separately for the training and test
sets (Figure 2-7). By the statistical tests, the levels of the three Glu-peptides were
significantly altered in cases compared with controls (P < 0.05), except for
ANTFLEEVR in the training set (P = 0.103). Notably, the level of the ANTFLEEVR
peptide was significantly decreased in the HCC case group compared with that in the
control group, whereas the levels of the other two peptides were significantly

elevated in the HCC case group.
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Table 2-10. Summary of the DCP 3-Glu-peptide logistic regression model

Estimate Standard error zvalue P-value

(Intercepts) —5.202 1.0066 —5.168 2.37E-07
ANTFLEEVR —0.9199 0.3111 —2.957 0.00311
ERECVEETCSY 11.1108 1.8697 5.942  2.81E-09
ESSTATDVF 2.1785 0.5023 4.337 1.44E-05

Note: A logistic regression model to predict the probability of having HCC (P) was
built with the following equation: logit(P) = log(P/(1 — P)) = —5.202 - 0.9199 x
ANTFLEEVR+11.1108x ERECVEETCSY+2.1785x ESSTATDVF. The numeric
values of each peptide in the equation were raw values for relative concentrations

(peak area ratio of endogenous light peptides to heavy SIS peptides). The optimal

cutoff value for the above equation is 0.432.

A Training set B 3 Glu-peptides panel
g =5
8 8
€84 g8
> 2z
2 2
® D
ca S 24
ANTFLEEVR : AUROC = 0.561
== ESSTATDVF : AUROC =0.734
< 4 - ERECVEETCSY : AUROC =0.801 &
4 —— Training set :
= 3 Glu-peptides panel : AUROC =0.873(0.818-0.928)
AUROC =0.873(0.818-0.928) s Test set :
o ¢ Optimal cutoff value = 0.432 o AUROC = 0.844 (0.761-0.928)
: - r r T : T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
100 - Specificity (%) 100 - Specificity (%)

Figure 2-6. Assessment of the diagnostic performance of the DCP 3 Glu-peptide

panel in the training and test sets
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(A) The ROCs for each Glu-peptide consisting of the 3 Glu-peptides panel were
analyzed. The ERECVEETCSY peptide (green line) and ESSTATDVF peptide
(blue line) showed acceptable AUROC values ranging from 0.7 to 0.8, whereas the
ANTFEEVR peptide (yellow line) had lower discrimination power alone. The
combination of all three Glu-peptides (red line) resulted in enhanced diagnostic
performance, as shown by the AUROC value of 0.873 (Delong’s test, P < 0.005 for
all comparisons to the AUROC values of each Glu-peptide individually). The
optimal cutoff value of the three Glu-peptides panel was 0.432 (red point), presented
by the Youden Index for the training set. (B) The ROC curves for the DCP 3 Glu-
peptide panel in the training (solid black line) and test sets (dotted black line). The
AUROC of the DCP 3-Glu-peptide panel was 0.873 in the training set, which was
consistent with the test set, which had an AUROC of 0.844 (DeLong's test, P =
0.5722). All of the AUROC values were summarized with 95% CI for ROC curves.
Abbreviations: AUROC, area under the ROC curve; CI, confidence interval; ROC,

receiver operating characteristic.
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Figure 2-7. Comparison of the relative peptide levels of the three Glu-peptides
for the training set (A) and the test set (B).

The relative concentrations of three Glu-peptides were plotted as peak area ratios of
light peptides to heavy SIS peptides for individual patients. Middle horizon lines and
error bars indicate the mean and the standard deviation, respectively. The relative
concentrations of ANTFLEEVR peptide were significantly lower in cases than in
controls, whereas those for ERECVEETCSY and ESSTATDVF were significantly
higher in cases than in controls. The Mann-Whitney U test was used to calculate P-
values for the comparisons of relative concentrations between the ANTFEEVR
peptide in the training set, the ERECVEETCSY peptide in the test set, and the
ESSTATDVF peptide in both the training and test sets. Welch’s t-test was used to
calculate P-values for comparisons of the relative concentrations of the
ERECVEETCSY peptide in the training set. The relative concentrations of the
ANTFEEVR peptide in the test set were compared by Student's t-test. NS is no

significant difference between groups, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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2.3.4. Comparison of the MRM-MS assay and the immunoassay

To assess whether the diagnostic performance of the DCP three Glu-peptides panel
based on the MRM-MS assay was comparable to the diagnostic performance of
measuring serum DCP levels using the immunoassay, the confusion matrixes were
analyzed at the optimal cutoff (Figure 2-8). The optimal cutoff of the serum DCP
level was 40 mAU/mL, whereas that of the three Glu-peptides panel was 0.432
(corresponding probability = 0.606), as determined by the Youden Index of the
training set. The MRM-MS assay provided higher sensitivity and accuracy than the
immunoassay. The sensitivities of the MRM-MS assay were 52.9% and 56.7% for
the training and test sets, respectively, whereas those for the immunoassay were 48.6%
and 43.3%. This suggests that the MRM-MS assay can work more favorably for
surveillance diagnosis than the conventional DCP assay. The accuracies of the
MRM-MS assay were 81.4% (95% CI, 75.5%-86.5%) and 80.0% (95% CIL, 70.3%-
87.7%) for the training and test sets, respectively, whereas those for the
immunoassay were 75.8% (95% CI, 68.2%-82.5%) and 73.9% (95% CI, 61.9%-
83.8%). Further, the DCP levels by immunoassay and the logit(P) values from the
DCP three-Glu-peptide panel correlated weakly (Pearson's correlation, R = 0.24; P

= 2.3e-05), as shown in Figure 2-9.
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Figure 2-8. Interactive dot plots for the HCC diagnosis performance of the
serum DCP level (measured by the immunoassay) and the DCP panel
(measured by the MRM-MS) in the training set (A) and the test set (B).

Horizontal dotted lines denote the optimal cutoff values. The serum DCP levels were
not available for 65 and 21 at-risk patients in the training set and the test set,
respectively. The DCP panel (3 Glu-peptides) could achieve the accuracy higher than

80% at the optimum cutoff which maximizes the sensitivity and specificity.




. R=024, p=23e05

logit(P) from the DCP 3-Glu-peptide panel

2 4 6 8 10
DCP concentration measured by immunoassay (log-scaled, mAU/mL)

Figure 2-9. Correlation between the DCP levels by immunoassay and logit(P)
values, calculated based on the DCP panel.

I analyzed the correlation of standard DCP values, measured by immunoassay, with
logit(P) values, calculated based on the DCP 3 Glu-peptides panel in the external
validation set. By Pearson’s correlation, there was a weak correlation between the
standard DCP and DCP 3 Glu-peptides panels (R = 0.24, P = 2.3e-05). The fitted
regression line and observations are presented as line and dots, respectively. The

grey area indicates the 95% confidence interval (CI).
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2.3.5. Combined model of the DCP 3 Glu-peptides panel and the serum
AFP levels

I conducted further logistic regression analyses to determine whether combining the
DCP panel with serum AFP levels could enhance the predictive power for HCC
detection. The combined model using both the three Glu-peptides panel and serum
AFP levels increased the AUROC values to 0.903 (95% CI, 0.855-0.952) for the
training set (Figure 2-10A). The combined model outperformed serum AFP levels
(AUROC, 0.770; 95% CI, 0.698-0.842) for the training set, based on DeL.ong"s test
(P < 0.05). Similarly, the AUROC value of the combined model significantly
increased from 0.844 to 0.913 (95% CI, 0.851-0.974) for the test set (Figure 2-10B).
The diagnostic performances including AUROC, sensitivity, specificity, and
diagnostic accuracy of each model in each data set were summarized in Figure 2-11.
Notably, the combined model had greater sensitivity in both the training and test sets
(68.9% and 76.7%, respectively) compared with the low sensitivity of serum AFP

levels alone (35.7% and 56.7%, respectively), as shown in Figure 2-11C.
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Figure 2-10. Comparison of the diagnostic performances of the DCP 3 Glu-
peptides panel, serum AFP levels, and a combined model (DCP 3 Glu-peptides
panel and serum AFP level) in the training (A) and test sets (B).

The AUROC values were presented with 95% CI for ROC curves. The combined
model (black lines) had a higher AUROC value than the DCP 3 Glu-peptides panel
(red lines) or serum AFP levels (blue lines) alone, for all data sets. (A) In the training
set, the combined model had a higher AUROC value (0.903) than either AFP levels
(0.770) or DCP 3 Glu-peptides panel (0.873) alone. The AUROC value for the
combined model was statistically different from that for AFP levels (DeLong's test,
P < 0.05) but not from that for the DCP 3 Glu-peptides panel (DeLong's test, P =
0.079). (B) In the test set, the combined model also had a higher AUROC value
(0.913) than both the AFP levels (0.889) and the DCP 3 Glu-peptides panel (0.844).
The AUROC value for the combined model was statistically different from that for
the DCP 3 Glu-peptides panel (DeLong's test, P < 0.05) but not from that for AFP
levels (DeLong's test, P = 0.484). Abbreviations: AUROC, area under the ROC

curve; CI, confidence interval; ROC, receiver operating characteristic.
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Figure 2-11. Diagnostic performances of the DCP 3 Glu-peptides panel, serum
AFP levels, and a combined model.

(A) Area under the receiver operating characteristic curve (AUROC) values, (B)
diagnostic accuracy, (C) sensitivity, and (D) specificity for the DCP 3 Glu-peptides
panel (red bars), serum AFP levels (blue bars), and the combined model of them
(black bars). All diagnostic performances were analyzed using the optimal cutoff

value derived from the training set.
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2.3.6. Validation of the DCP 3 Glu-peptides panel and the combined
model with AFP levels in an external cohort

I analyzed another 318 samples from an external cohort as an independent validation
set; this consisted of 134 controls and 184 cases (Table 2-1). The AUROC values of
the three Glu-peptides panel and the combined model with AFP levels were 0.793
(95% CI, 0.745-0.842) and 0.863 (95% CI, 0.822-0.903), respectively, for the
independent validation set (Figure 2-12A). The AUROC values for the three Glu-
peptides panel and the combined model were statistically equivalent to those
identified in the test set (0.844 and 0.913, respectively) based on the results of
DeLong's test (P > 0.05). Moreover, the Mann-Whitney U test revealed that the
levels of each peptide were also significantly different between the control and case
11 groups, as shown in Figure 2-12B (P < 0.0001). The combined model had greater
sensitivity compared with serum AFP levels alone in the independent validation set
(45.1% to 64.1%), whereas the other diagnostic performances of the panel remained
equivalent, as detailed in Table 2-11.

I examined the diagnostic abilities of the three Glu-peptides panel in the AFP-
negative and DCP-negative subgroup, consisting of 127 patients at risk and 39
patients with HCC, with AFP and DCP levels below the reference values. The
AUROC values of the three Glu-peptides panel and the combined model with AFP
levels were 0.803 (95% CI, 0.726-0.880) and 0.821 (95% CI, 0.739-0.903),
respectively, for the AFP-negative and DCP-negative subgroup (Figure 2-13).
Notably, the three Glu-peptides panel could discriminate 18 patients with HCC,
corresponding to approximately half of the 39 patients with HCC with AFP and DCP

levels below the reference values, reducing the false-negative rate.
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AFP- and DCP-negative subgroup

o
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3 Glu-peptides panel
: AUROC = 0.803 (0.726-0.880)
= Combined model (3 Glu-peptides panel + AFP)
o : AUROC = 0.821 (0.739-0.903)
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Figure 2-13. The HCC diagnostic abilities of the DCP 3 Glu-peptides panel and
the combined model (DCP 3 Glu-peptides panel and serum AFP level) in AFP-
and DCP-negative subgroup of the independent validation set.

The ROC curves for the AFP- and DCP-negative subgroup, consisting of 127 at-risk
patients and 39 HCC patients with <20 ng/mL for AFP and <40 mAU/mL for DCP.
All AUROC values are summarized with 95% CI for the ROC curves. The 3 Glu-
peptides panel (gray lines) and the combined model (black lines) with serum AFP
levels showed reliable performance for HCC patients with serum AFP and DCP
values under the corresponding reference values, as indicated by AUROC values
over 0.8. Abbreviations: AUROC, area under the ROC curve; CI, confidence interval;

ROC, receiver operating characteristic.
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2.3.7. HCC Surveillance abilities of the DCP 3 Glu-peptides panel and
the combined model (the DCP 3 Glu-peptides panel with the serum AFP
level)

To evaluate the surveillance abilities for HCC, the diagnostic performance of the
DCP 3 Glu-peptides panel for detecting very-early-stage HCC (BCLC 0, single
lesion <2 cm) or early-stage HCC (BCLC stage A, a single 2-5 cm lesion or two to
three lesions that are each <3 cm) were analyzed in the independent validation set
(Figure 2-14).

The subgroup of HCC very-early- or early-stage consisted of 159 cases (36
patients in BCLC 0 and 123 patients in BCLC stage A). According to the ROC
analysis results for the detection of very-early- or early-stage patients with HCC
from among the 134 at-risk controls, the AUROC value of the three Glu-peptides
panel was 0.795 (95% CI, 0.745-0.845). Further, a combined model using both
serum AFP levels and the three Glu-peptides panel had significantly greater
diagnostic power for under early-stage HCC, with an AUROC of 0.864 (95% CI,
0.822-0.906). According to the Del.ong's test, the diagnostic power of the three Glu-
peptides panel and combined model in discriminating very-early- or early-stage
HCC was comparable with the overall performance in the total validation set (P =
0.9708).

The very-early-stage HCC subgroup in the independent validation set consisted
of 36 cases. According to the ROC analysis results for the detection of very-early-
stage patients with HCC from among the 134 at-risk controls, the AUROC value of
the three Glu-peptides panel was 0.825 (95% CI, 0.748-0.902). Further, a combined
model using both serum AFP levels and the three Glu-peptides panel had
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significantly greater diagnostic power for very-early-stage HCC, with an AUROC
of 0.896 (95% CI, 0.840-0.953). According to the DelLong's test, the diagnostic
power of the three Glu-peptides panel and combined model in discriminating very-
early-stage HCC was comparable with the overall performance in the original
validation set (P = 0.4996). Further, no significant differences were observed
between the AUROC values of each panel for distinguishing very-early-stage HCC
from control subgroups that were stratified by etiology and the entire control group

(DeLong's test, P> 0.05), as shown in Table 2-12.

A Very-early- or Early-stage HCC vs. at-risk controls B Very-early-stage HCC vs. at-risk controls
o o
e =
o o
® - @®
- S
2 2
2 2
3 %7 S 9
o o
S 3 Glu-peptides panel O 3 Glu-peptides panel
: AUROC = 0.795 (0.745-0.845) : AUROC = 0.825 (0.748-0.902)
= Combined model (3 Glu-peptides panel + AFP) = Combined model (3 Glu-peptides panel + AFP)
&=l : AUROC = 0.864 (0.822-0.906) o | : AUROC = 0.896 (0.840-0.953)
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
100 - Specificity (%) 100 - Specificity (%)

Figure 2-14. The HCC surveillance abilities of the DCP 3 Glu-peptides panel
and the combined model (DCP 3 Glu-peptides panel and serum AFP level) in
the independent validation set.

(A) The ROC curves for the discrimination of very-early- or early-stage HCC
(BCLC 0 or A) cases, consisting of 159 patients from 134 at-risk controls. (B) The
ROC curves for the discrimination of very-early-stage HCC (BCLC 0, tumor size <

2 cm) cases, consisting of 36 patients from 134 at-risk controls. All AUROC values

114



are summarized with 95% CI for the ROC curves. The 3 Glu-peptides panel (gray
lines) and the combined model (black lines) with serum AFP levels showed reliable
surveillance performance for very-early-stage HCC patients as indicated by AUROC

values over 0.8.
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2.4. DISCUSSION

According to recent studies, the y-carboxylation of the 10 Glu residues in the N-
terminal Gla domain of DCP occurs in a specific order, resulting in blood DCP
populations consisting of a heterogeneous mixture of ten possible proteoforms
(Figure 2-15) (83, 84). To quantify the DCP proteoforms inclusively, I constructed
a quantitative assay for DCP measurement to simultaneously monitor three non-
carboxylated peptides within the Gla domain using the MRM-MS method. The three
monitored Glu-peptides could be obtained from different subgroups of DCP
proteoforms (Table 2-13). The ANTFLEEVR peptide (referred to as the ‘ANT
peptide’) contains the 9th and 10th carboxylated residues and represents the
subgroup of DCP containing more than two Glu residues (2 to 10 Glu residues).
Similarly, the ESSTATDVF peptide (referred to as the ‘ESS peptide’) contains the
8th carboxylated Glu residue and represents the subgroup of DCP with more than
three Glu residues (3 to 10 Glu residues). The ERECVEETCSY peptide (referred to
as ‘ERE peptide’) contains the 3rd, 5th, 6th, and 7th carboxylated Glu residues and
represents the subgroup of DCP with more than eight Glu residues (8 to 10 Glu
residues). Therefore, the quantification assay developed in this study is able to detect
both substantially des-carboxylated forms and less des-carboxylated forms within
the same batch, requiring lower cost and labor than immunoassay detection methods
and with the minimized potential for variations due to batch effects.

In the present study, the ERE peptide quantity significantly increased in the

HCC group, implying that DCP proteoforms with more than eight Glu residues (8 to

118 -



10 Glu residues) are elevated in HCC patients relative to the control group (fold
change = 1.70, P < 0.0001). The increasing tendency in DCP proteoforms observed
for the HCC group was consistent in the subgroup containing a wider range of DCP
proteoforms, as represented by the ESS peptide quantity (3 to 10 Glu residues; fold
change = 1.35, P < 0.0001). However, the ANT peptide was elevated in control
patients (fold change = 0.85, P < 0.0001). When considering that the ANT peptide
targets the DCP with 2 Glu residues as well as the DCP proteoforms that were
targeted by the ESS peptide (Table 2-13), the DCP with 2 Glu residues appeared to
constitute a higher proportion of the DCP population in the control versus case group.
Meanwhile, the DCP variants with 2 Glu residues have approximately half the
activity of normal prothrombin (97, 98). Presumably, a larger portion of DCP
variants with 2 Glu residues would be beneficial for benign liver diseases than for
the HCC group, although the direct impact of prothrombin activity in the progression
of HCC remains unknown. The combination of the relatively lower level of ANT
peptides and a higher level of ERE or ESS peptide could be used to characterize the
DCP proteoforms that are synthesized during HCC rather than benign liver diseases.

However, this study has some limitations. First, the assay was unable to cover
the three Glu residues at positions 25, 26, and 29, which are located within either a
long tryptic peptide with poor ionization or a short chymotryptic peptide with fewer
than 6 amino acids. If alternative proteolytic enzymes are available to generate an
appropriate peptide length for stable MS analysis, the quantification and discernment
of additional DCP proteoforms might be possible. Second, an investigation of the
missed cleavages should be performed, due to the abundance of glutamic acid

residues in the Gla domain. Previous studies had discussed the frequent occurrence
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of missed cleavage when there is a large amount of glutamic acid residue in the
proximity of cleavage sites (99-103). The information theory approach (103)
predicted the missed cleavage score for ANTFLEEVR peptide to be 0.2, which was
lower than the threshold of 0.25 for predicting missed cleavage sites. However, the
fidelity analysis of protease digestion is necessary to increase the credibility of
quantification results obtained from MRM-MS assay in further study as illustrated
in Figure 2-16. Further, the cohorts in this study consisted solely of individuals of
Korean ethnicity, primarily with an HBV etiology. Therefore, additional studies are
needed to validate the assay using different populations, consisting of other
ethnicities and etiologies. Analytical validations to confirm the robustness and
reproducibility of the MRM-MS assay should be evaluated using larger cohorts in

future studies.
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Figure 2-16. Possible experiment scheme for fidelity analysis of protease
digestion indirectly to increase the credibility of quantification results from the
MRM-MS assay

The fidelity analysis of protease digestion can be determined by response curve
analysis with isotope-labeled non-carboxylated DCP proteins (containing 10 Glu
residues). Each calibration point is prepared by spiking different amounts of non-
carboxylated DCP standard proteins and undergoing digestion separately in
triplicates. Then the quantification results of the MRM-MS assay are plotted with
expected concentrations for each point to analyze their linearity. Although missed
cleavages can occur at the cleavage sites in the Gla domain, it can be used as targets
for MRM-MS assay if the quantification results have sufficient linearity and

reproducibility. Therefore, the response curves of each peptide obtained from
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different concentrations of non-carboxylated DCP can be analyzed to inspect

whether the effect of missed cleavage can be deemed negligible.
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2.5. CONCLUSION

It is clear that the quantitative MRM-MS assay for DCP measurement that was
designed in this study shows equivalent diagnostic performance as the antibody-
based DCP immunoassay. The MRM-MS assay to quantify three Glu-peptides
enabled not only the extensive detection of DCP proteoforms but also a detailed
comparison of the DCP proteoform compositions between HCC and benign liver
diseases. This study indicates that the comprehensive measurement of DCP
proteoforms using the MRM-MS assay has great potential as a surveillance test for
the detection of HCC at the very-early-stage, even among patients with AFP and
DCP levels under the corresponding cutoff values. Further, this assay is
advantageous compared with the DCP immunoassay because it facilitates the high-
throughput analysis of large cohorts with increased diagnostic accuracy, while
requiring lower costs and sample volumes. The multiplexing ability of the MS-based
quantification approach has the potential to develop an HCC surveillance assay that
simultaneously analyzes the DCP proteoforms in combination with hundreds of
existing serological biomarkers in a high-throughput format that would be suitable

for routine check-ups.
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GENERAL CONCLUSION

Clinical proteomics is a promising approach for the discovery or validation of
biomarkers through the systematic analysis of proteomes in clinical samples. The
advent of the era of artificial intelligence increases the need to achieve datasets of
sufficient size in large-scale clinical proteomics. The quantitative MRM-MS assays
are the best alternative to enable the acquisition of large-scale proteomic data
including quantification results for proteoforms with high analytical sensitivity,
accuracy, precision, and reproducibility. However, the central obstacle for
reproducible MRM-MS assays in large-scale cohorts is the sample preparation.

The purpose of this research was to make the MRM-MS assays better-suited for
large-scale clinical proteomic analysis by: (1) evaluating of feasibility for the
automated workflow of sample preparation for high throughput MRM-MS analysis
in the large-scale proteomics experiments; (2) establishing the reproducible MRM-
MS assay for DCP proteoforms to increase HCC surveillance performances.

In chapter 1, I developed an automated workflow for serum sample preparation
with the robotic liquid handling system which is compatible with 96-well plate.
Further increment of throughput can be achieved by pipette channels with 384-well
format with little modifications. The automated workflow was assessed by preparing
the pooled serum samples and quantifying 52 peptides. The results from this study
proved that the automated workflow ensures stable serum sample preparation (an
average of total CVs of 15.3%). Further study is needed to evaluate the probable
variability in the automated preparation of heterogeneous clinical samples for the

MRM-MS analysis on the expanded target peptides. The automated preparation
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workflow can be adopted by other liquid-handling systems similar to an Agilent
Bravo apparatus. This automated preparation workflow is expected to perform well
to cope with a vast number of various sample types, such as cyst fluids, tissue or
FFPE samples, with some adaptation. Overall, the automated workflow developed
in this study is a significant step toward facilitating robust clinical MRM-MS assays
in large cohorts with high throughput.

In chapter 2, I developed a reproducible MRM-MS assay to inclusively quantify
DCP proteoforms. The assay quantifies the three non-carboxylated peptides obtained
from the Gla domain of the precursor of prothrombin. This MS-based quantitative
assay for DCP proteoforms enables the reproducible analysis of large cohorts with
enhanced diagnostic performances than the immunoassay. The great potential of the
MRM-MS assay for DCP proteoforms as HCC surveillance tests has been
demonstrated by its diagnostic power for the HCC at the very-early-stage or early-
stage. Current findings suggest that the comprehensive measurement of DCP
proteoforms can make a detailed comparison of the DCP proteoform compositions
between HCC and benign liver diseases with high throughput and reproducibility.
Future exploration into the difference in the composition of DCP proteoforms in the
well-characterized large-scale clinical cohorts can investigate the role of DCP
proteoforms in HCC progress by the herein MRM-MS assay for DCP. Furthermore,
the MRM-MS assay for DCP developed in this study has the potential for developing
a powerful HCC surveillance assay simultaneously analyzing the DCP proteoforms
with hundreds of existing serological biomarkers with high throughput.

Based on the analysis conveyed, it can be concluded that (1) development of

the automated workflow for serum sample preparation for MRM-MS assay can
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reduce the human labor and errors while increasing the throughput of the clinical
assay; (2) development of a single quantitative MRM-MS assay for multiple
proteoforms of DCP can improve HCC surveillance performances. Consequently, I
expect that the automated sample preparation workflow and the quantitative MRM-
MS assay for inclusive measurement of biomarker proteoforms will contribute to
routine implementations of MS-based assays in clinical practice.

However, several challenges remain unaddressed; in order to implement the
developed automated workflow of sample preparation for MRM-MS assay in
clinical practice, the analytical method validation of the system should be conducted
in a future study: not only for in-depth inspection of the robustness of the assay, but
also for determining the limitation of the quantification results from the automated
workflow. It is not feasible to apply the novel workflow into practice without
addressing the credibility of quantification results from the system. Meanwhile, the
MRM-MS assay of DCP proteoforms requires a more simplified and automated
sample preparation workflow to implement the assay in clinical practice.

Despite these limitations, the research on the MRM-MS for large-scale clinical
proteomics demonstrated that a reproducible MRM-MS assay has potential to be a
powerful technique for high throughput biomarker quantification to increase
diagnostic performance. Further research on the application of the MRM-MS assay
through the automated sample preparation workflow for quantification of existing or
candidate biomarkers in large cohorts will enable credible clinical assays for various

diseases, as described below.
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