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초    록 

 
예상하지 못한 어려운 후두경은 심각한 기도관련 합병증과 연관되어 있다. 본 

연구는 후향적으로 수집된 갑상선 수술을 받은 총 14,135명 환자의 경추 측면 

X선을 통해 어려운 후두경 (Cormack-Lehane 등급 3-4)를 예측하는 딥러닝 

모델을 개발 및 검증하였다. 개발 모델의 성능은 기존의 6개의 딥러닝 모델과 

비교하였다. 개발 모델에서 어려운 후두경 예측의 민감도는 95.6%, 특이도 

91.2%를 나타냈다. Area Under ROC curve의 경우 개발 모델에서 

0.972(0.955~0.988), 기존 모델의 경우 각각 VGG-Net: 0.842, ResNet: 0.841, 

Xception: 0.863, ResNext: 0.825, DenseNet: 0.889, SENet: 0.875를 나타냈다. 

어려운 후두경과 관련된 해부학적 특징을 설명하기 위해 클래스 활성화 맵(Class 

Activation Map)을 사용하였다. 클래스 활성화 맵에서 설골, 인두 및 경추 주변이 

강조되었다. 본 연구를 통해 개발된 딥러닝 모델은 경추 측면 X선 영상을 이용한 

어려운 후두경 예측에 높은 성능을 보였다. 

 

주요어 : 기관내 삽관, 기도 평가, 딥러닝, 어려운 후두경, 인공 지능 
학  번 : 2020-24809 
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1. Introduction 

 

Patients undergoing general anesthesia often require endotracheal intubation via 

laryngoscopy. Unanticipated difficult laryngoscopy is associated with serious airway-related 

complications, such as brain damage, cardiopulmonary arrest, or death [1]. The incidence of 

difficult laryngoscopy is known to be 6% [2], therefore, predicting difficult laryngoscopy is 

important for patient safety. Clinical airway evaluation and image-based indicators have been 

used to predict difficult laryngoscopy. Although clinical predictors, such as the modified 

Mallampati classification, thyromental distance, inter-incisor gap, and the upper lip bite test, 

can be used for airway evaluation before laryngoscopy, they require patient cooperation and 

have limitations of low sensitivity and large inter-assessor variability [3,4]. 

Image-based indicators, such as tongue size, the distance from the hyoid bone to the 

mandibular body, the angle between the hyoid bone, thyroid cartilage, and arytenoid cartilage, 

have been proposed as predictors of difficult laryngoscopy [5–7]. Previous studies have shown 

that image-based indicators have advantages of high predictive power and lower inter-assessor 

variability [6,7]. However, because image-based indicators usually rely on features extracted 

manually from images, the time and effort for feature extraction have limited their clinical 

application. 

Recent advances in machine learning techniques have been widely adapted to many tasks in 

the field of medicine. In particular, deep learning techniques, such as convolutional neural 

networks (CNN), have shown excellent performance in the task of automatic interpretation of 

radiological images [8]. Moreover, the features extracted by the CNN models can be 

visualized using explainable artificial intelligence methods, such as the class activation map. 

Therefore, using these techniques, we can not only develop an accurate prediction model 

without labor-intensive feature extraction, but also understand more about the anatomical 

structures associated with the outcome. 

In this study, we aimed to develop and validate a CNN-based deep learning model that can 

predict difficult laryngoscopy based on a cervical spine lateral X-ray image. Our hypothesis 

was that an accurate deep learning model for predicting difficult laryngoscopy based on a 

cervical spine lateral X-ray image can be developed, and insights into appropriate indicators 

for airway evaluation can be obtained by analyzing the features identified by the model.



 

 2 

2. Materials and Methods 

 

This single-center retrospective study was approved by the Institutional Review Board of 

Seoul National University Hospital (No.1706-071-859). The requirement of obtaining written 

informed consent was waived owing to the retrospective nature of the study design. 

 

2.1 Inclusion and Exclusion Criteria 

Patients who received thyroid surgery under general anesthesia at Seoul National University 

Hospital between November 2004 and November 2020 were eligible for this study. Patients 

with the following features were excluded: 1) age <18 years; 2) no cervical spine lateral X-ray 

image obtained within six months before surgery; 3) no record of Cormack‒Lehane grade on 

the anesthesia record; 4) use of other intubating devices such as lighted stylet from the first 

intubation attempt; 5) intubation into a tracheostomy site (Figure 1). In these patients, only 

data from the first surgery during the study period were used for the training and test datasets. 

 

2.2 Anesthesia Management 

In our institution, tracheal intubation for thyroid surgery was typically performed as follows. 

Without premedication, general anesthesia was induced with propofol (1–2 mg/kg), 

remifentanil (effect-site concentration of 3 ng/mL), and rocuronium (0.6–1.0 mg/kg). After 

adequate muscle relaxation, tracheal intubation was performed by an anesthesiologist. A 

reinforced tube with an internal diameter of 7.5 mm was used in male patients, with a 

Macintosh blade size 4, and a reinforced tube with an internal diameter of 7.0 mm was used in 

female patients, with a blade size 3. 

 

2.3 Data Collection and Preprocessing 

Patient demographic data, such as age, sex, height, and weight, were collected from the 

electronic medical records. The American Society of Anesthesiologists (ASA) physical status 

classification, use of other airway devices during intubation, and the Cormack–Lehane grade 

were extracted from the anesthesia records. The easy laryngoscopy was defined as a 

combination of the Cormack–Lehane grades 1-2 and the difficult laryngoscopy was defined as 

grades 3-4. The cervical spine lateral X-ray images, taken in standing and neutral positions, 

were extracted from the Picture Archiving and Communication System workstation 

(INFINITT PACS Version 5.0.0, INFINITT Healthcare, Seoul, Korea) in the DICOM format 
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of 16-bit images. The images were resized from 4095 × 2047 to 256 × 256 pixels. To 

normalize the ranges of pixel values between images, all pixel values were subtracted by the 

mean value of the image and divided by the standard deviation. Therefore, the cervical spine 

X-ray pixel values were standardized with a mean of 0 and standard deviations of 1.  

 

2.4 Model Building 

A CNN-based deep learning model with a convolutional layer, pooling layer, self-attention 

layer, and final fully connected layer was developed to predict difficult laryngoscopy (Figure 

2). This model used the input of preprocessed cervical spine lateral X-ray image and outputs 

the difficulty of a laryngoscopy. Our model was composed of three main components: the 

convolutional path, attention path, and classifier. The convolutional path (the upper path in 

Figure 2) was motivated by the down-sampling architecture of the fully convolutional network 

[9], and input images were abstracted and reduced in dimension with five convolution and 

pooling layers. 

The attention path (the lower path in Figure 2) was designed by adding the class activation 

map attention module to VGG-Net [10] without pooling operations. The input images of the 

lower path were abstracted without dimensionality reduction, and normalized feature maps 

from each layer were extracted and used for class activation map (CAM) attention. The results 

from the two paths were merged by global averaging pooling and addition and fed into the 

classifier, which contained two fully connected layers and a SoftMax layer. In the end, our 

model has a structure in which a self-attention pathway is added to the CNN pathway to create 

the CAM that visualizes discriminative image regions classified by laryngoscope difficulty 

from cervical spine lateral X-ray images. 

We initialized the weights of the parameters of the CNN models using a Gaussian initializer. 

All of the CNN models were trained with the Adam optimizer with a loss function of 

balanced-binary cross-entropy loss and a learning rate of 0.001. The learning rate was halved 

every 30 epochs. Each model was trained using 300 epochs and a batch size of 30. More 

detailed explanations of our model are provided in Appendix A.  

For each training epoch, the CAM [11] was derived between the last layer and the input layer 

of the classifier and used for CAM attention. The CAM attention module, our original 

proposal for X-ray image interpretation, takes the input of normalized feature maps from the 

lower path and CAM images from the classifier. It computes the cosine similarity between the 

normalized feature maps of each layer and CAM images and updates the parameters of the 

lower path. 
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The training was performed using our custom-written program, prepared in Python 3.7, using 

TensorFlow 1.14 on a GPU server with 64-core (Intel Xeon Gold 6226R CPU @ 2.90 GHz) 

and 8 Nvidia GTX Titan XP. 

 

2.5 Model Validation 

For time-dependent hold-out validation, the data of the last three years were classified as the 

test dataset, and the remaining data were classified as the training dataset. Random down-

sampling for the major class was performed to solve issues with an imbalance in the data. 

Therefore, only one-third (4,044 cases) of the images were used for training in the easy 

laryngoscopy group of the training dataset. 

The performance of our model was evaluated with a test dataset and was compared with that 

of six other well-known convolutional neural network architectures: VGG-Net [10], ResNet 

[12], Xception [13], ResNext [14], DenseNet [15], and SENet [16]. 

The CAM was generated in each case of the test dataset to assess whether our CNN model 

made reasonable predictions. The CAM, as mentioned above, can visualize an attribution map 

in which the lesions in the X-ray image that are relevant for prediction are highlighted. 

 

2.6 Sensitivity Analysis 

A sensitivity analysis was performed to evaluate whether the value predicted from the 

cervical spine lateral X-ray image taken in the first operation had a high predictive 

performance in the next operation in the patient. Among the test datasets, patients who 

underwent tracheal intubation for the second operation during the study period were included 

in the sensitivity analysis. 

 

2.7 Statistical Analysis 

Baseline characteristics of patients were compared between the difficult and easy 

laryngoscopy groups for the datasets. The t-test or Mann–Whitney test was used for group 

comparisons of continuous variables, and the chi-square test or Fisher’s exact test was used for 

comparisons of categorical variables, as appropriate. 

We defined the classification threshold as 0.5. If the probability was ≥0.5, it was predicted 

as the difficult laryngoscope group, and if the probability was <0.5, it was predicted as the 

easy laryngoscope group. The receiver operating characteristic analysis was performed and the 

area under the receiver operating characteristic curve (AUC) was used to evaluate the 
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diagnostic value of each convolutional neural network architecture. The optimal cut-off point 

was determined by maximizing the sum of the sensitivity and specificity. Sensitivity, 

specificity, positive-predictive value (PPV), negative-predictive value (NPV), F1-score, and 

balanced accuracy were assessed to compare the performance of the CNN models. Balanced 

accuracy (mean of sensitivity and specificity) and F1 score, which is the harmonic mean of 

sensitivity (also called recall) and PPV (also called precision), were used for the performance 

comparison for imbalanced data. 

Data are expressed as mean (standard deviation) for normally distributed continuous 

variables, median (interquartile range) for non-normally distributed variables, and number 

(percent) or the number of each group for categorical variables. Statistical analysis was 

performed using SPSS 25 (IBM Corp., Armonk, NY, USA), R software (version 3.6.1; R 

Development Core Team, Vienna, Austria), and Python 3.7.0 (Python Software Foundation, 

Wilmington, DE, USA). In all analyses, statistical significance was set at P < 0.05.  
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3. Results 

 

3.1 Dataset Construction 

Data from 14,135 patients undergoing thyroid surgery were included in the study. Among 

these patients, 1,687 (11.9%) patients, the data of the last three years, were assigned to the test 

dataset. The data of the remaining participants were assigned to the training dataset. The 

incidence of difficult laryngoscopies, defined as Cormack–Lehane grades 3–4, was 1.7% in 

the training dataset and 2.7% in the test dataset (P=0.005, Figure 1). The demographic data of 

the patients in this study are shown in Table 1 and 2. The difficult laryngoscopy group showed 

higher body mass index (23.7 vs 25.1 kg/m2, P < 0.019) in the test dataset (Table 2). 

 

3.2 Performance of the Models 

The performances of the trained models are listed in Table 2. The AUC and 95% confidence 

interval for the VGG-Net [10], ResNet [12], Xception [13], ResNext [14], DenseNet [15], 

SENet [16], and our model were 0.842 (0.786–0.898), 0.841 (0.789–0.893), 0.863 (0.816–

0.911), 0.825 (0.762–0.889), 0.889 (0.848–0.931), 0.889 (0.848–0.931), 0.875 (0.848–0.927), 

and 0.972 (0.955–0.988), respectively (Table 3, Figure 3). Our model showed a larger AUC, 

compared with other models (P<0.001). In addition, the sensitivity, specificity, PPV, NPV, F1-

score, and balanced accuracy are shown in Table 2. Our model showed a sensitivity of 95.6%, 

specificity of 91.2%, PPV of 22.9%, NPV of 99.9%, F1-score of 36.9, and balanced accuracy 

of 93.4%. 

The CAM of difficult laryngoscopies are shown in Figure 4. The CAM demonstrated clear 

differences around the hyoid bone, pharynx, and cervical spine (Figure 4). 

 

 

3.3 Sensitivity Analysis 

A sensitivity analysis was performed on 83 patients who underwent two surgeries during the 

study period. The median interval between the first and the second laryngoscopic view was 

150 days. In a total of 83 patients, the incidence of difficult laryngoscopy (Cormack–Lehane 

grades 3-4) in the first operation and following operation were 2.4% (n = 2) and 2.4% (n = 2), 

respectively. Among the 81 patients with easy laryngoscopy in the first operation, 80 patients 

(98.8%) had easy laryngoscopy in the following operation. Among the 2 patients with difficult 

laryngoscopy in the first operation, one patient had difficult laryngoscopy in the next 
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operation. Both patients who had a change in the difficulty of laryngoscopy in the first 

operation and the following operation were predicted as difficult laryngoscopy by our model 

(Figure 5). 

The performance of our model was retained in the sensitivity analysis. The AUC and 95% 

confidence interval for the VGG-Net, ResNet, Xception, ResNext, DenseNet, SENet, and our 

model were 0.432 (0.077‒0.787), 0.620 (0.203‒1.000), 0.920 (0.836‒1.000), 0.889 

(0.781‒0.997), 0.676 (0.247‒1.000), 0.664 (0.237‒1.000), and 0.969 (0.927‒1.000), 

respectively (see table, Supplementary Digital Content 1, listing results of sensitivity analyses). 
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4. Discussion 

 

In this study, we developed a novel CNN-based deep learning model for predicting difficult 

laryngoscopy using a cervical spine lateral X-ray image. To our best knowledge, this is the 

first study to predict difficult laryngoscopy based on a cervical spine lateral X-ray image with 

visualization of the lesion associated with difficult laryngoscopy. The results showed that the 

deep learning-based model has excellent performance and reliability for predicting difficult 

laryngoscopy. 

In previous meta-analyses and prospective studies, clinical predictors for difficult 

laryngoscopy have a sensitivity, specificity, and AUC of 35%, 91%, and 0.75 for the modified 

Mallampati classification, 68%, 77%, and 0.72 for the inter-incisor distance, 77%, 89%, and 

0.83 for the upper lip bite test, 22%, and 74%, 82%, and 0.78 for thyromental distance, 

respectively [2,17,18]. These clinical predictors are generally less sensitive because they only 

evaluate a portion of factors associated with difficult laryngoscopy. Although combining 

multiple clinical predictors can increase the predictive power, they require more time for 

clinical examinations and need the patient’s cooperation [19]. 

The radiographic images, such as X-ray, computed tomography, magnetic resonance, and 

ultrasound images, can be used to evaluate the patient’s airway with higher sensitivity. In a 

previous study using a cervical spine lateral X-ray image, 100% sensitivity and specificity 

were reported using the angles between the upper airway structures such as the hyoid, 

epiglottis, and arytenoid [5]. In another study using the location of the vocal cord on magnetic 

resonance images, the sensitivity and specificity were 60% and 96%, respectively [6]. In other 

studies using tongue thickness and the hyo-mental distances measured by ultrasound, the 

AUCs were 0.9320 and 0.758 [21], respectively. However, although radiographic predictors 

have higher predictive power and are more objective than clinical predictors, they also require 

clinicians to extract features manually from the images [4–6,22]. 

Previous studies using machine learning algorithms to predict difficult laryngoscopy have 

also reported high predictive power [23–25], but they all required indicators that should be 

evaluated by clinicians. On the other hand, our method does not require any parameters 

evaluated by a human. Therefore, our model can be implemented on the Picture Archiving and 

Communication System for automated evaluation of the airways. Nevertheless, the 

performance of our model was higher than that of previous reports. The reason may be that 

our model can automatically extract many features from an image and use them together to 
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predict the outcome. 

The PPV of our model was 22.9%, which can be explained by the low incidence (2.5% in the 

test set) of difficult laryngoscopy. However, the sensitivity of our model is 95.6%, which is 

significantly higher than that of other CNN models (VGG 80.0%, ResNet 80.0%, Xception 

80.0%, ResNext 77.8%, DenseNet 82.2%, SENet 80.0%), as well as the aforementioned 

clinical predictors and radiologic indicators. In addition, in the sensitivity analysis, two 

patients had changes in the difficulty of laryngoscopy (easy ↔ difficult) in the next operation, 

and both patients were classified as difficult laryngoscopy in our model. Since unanticipated 

difficult laryngoscopy is critical, our model will have an advantage in being used as a 

screening tool for difficult laryngoscopy.  

In the CAM analysis, important areas for difficult laryngoscopies were mainly around the 

hyoid bone, pharynx, and cervical spine (Figure 4). These areas have already been reported as 

main anatomical landmarks associated with difficult laryngoscopy in other studies. In previous 

studies, a short distance from the skin to the hyoid bone and a long distance from the mandible 

to the hyoid bone were associated with difficult laryngoscopy [4,22,26]. If the hyoid bone is 

positioned caudally, a greater portion of the tongue is present in the hypopharynx, which 

interferes with tongue displacement, causing difficulty in direct laryngoscopy [26]. Pharyngeal 

space was also related to a large tongue in previous studies [20,22]. The atlanto-occipital gap 

and spinous processes associated with cervical spine mobility [27] were also reported as 

radiographic indicators of the difficult laryngoscopy. Compared with previous studies using 

the distance, size, and angle of the specific anatomical structures [4–6,22], our model has the 

advantage of being able to automatically evaluate the entire anatomical structures visible on 

the image. 

Although our model showed a high predictive performance, radiation exposure is an 

inevitable drawback in our approach. However, in the results of the sensitivity analysis, the 

performance of our model was maintained with the X-ray image taken in the past. This result 

can be interpreted as the anatomical structures associated with difficult laryngoscopy do not 

change in many cases. A previous study also showed that a “history of a difficult 

laryngoscopy” was a highly specific predictor of difficult laryngoscopy [28]. Therefore, we 

expect that patients who have undergone a cervical spine lateral X-ray at least once may not 

need to undergo another X-ray to use our model unless there are significant changes in their 

cervical structures. 

There were several limitations to our study. First, this study included only patients who 

underwent thyroid surgery with routine cervical spine X-rays taken before surgery. Therefore, 
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our results might not be applicable to other patient groups or imaging modalities. Second, 

because our dataset only includes patients who underwent a direct laryngoscopy, it might not 

be applicable to other intubation methods, such as video laryngoscopy. Third, due to several 

missing values in the clinical airway evaluations of the hospital’s anesthesia records, we could 

not compare the performance of clinical predictors to our predictive model. Fourth, our study 

used the Cormack‒Lehane grade recorded on the anesthesia records. Although external 

laryngeal manipulation should not be applied according to the definition of the 

Cormack‒Lehane grade [29,30], some practitioners rate the Cormack‒Lehane grade as the 

best laryngeal view obtained with external laryngeal pressure. This can potentially result in an 

underestimation of the incidence of difficult laryngoscopy in our results. Therefore, a 

prospective study is needed, including pre-laryngoscopy evaluation of clinical predictors and 

controlled Cormack-Lehane grade evaluation in patients undergoing various other surgeries. 

Fifth, in this study, the CAM classified three areas associated with difficult laryngoscopy. 

However, there were few cases classified as difficult, and we could not determine which 

regions were more associated with difficult laryngoscopy. Further studies with a large sample 

size are needed to develop a CNN-based deep learning model that automatically and 

quantitatively scores major areas related to difficult laryngoscopy in cervical spine X-ray 

images. Lastly, this study was conducted with time-dependent hold-out validation, with 

consideration of the importance to verify the predictive power of the deep learning model 

from recent data. However, in this validation, the date variability of cervical X-ray and 

Cormack-Lehane grade are not considered, which is a limitation of this study. In a further 

study, the performance of our model can be confirmed through multiple random selections, 

including date variability. 
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5. Conclusions 
 

In conclusion, our deep learning model for predicting difficult laryngoscopy based on a 

cervical spine lateral X-ray image showed excellent predictive performance. Our study also 

identified the hyoid bone, pharynx, and cervical spine as important areas in the class activation 

map for predicting difficult laryngoscopies. If future prospective validation studies confirm 

our results in other patient groups, this approach can be helpful in improving patient safety 

and preventing airway-related complications through objective and accurate airway evaluation. 
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Tables 
 

Table 1. Patient characteristics and laryngoscopic parameters in dataset. In total, 14,135 

eligible patients at the input data level, patients in the last three years were classified as the 

test dataset, and the remaining patients were classified as the training dataset.  

 
Training set 

(2004–2017, n = 12,448) 
Test set 

(2018–2020, n = 1,687) 
P–value 

Sex (male) 2,419 (19.4) 361 (21.4) 0.061 

Age 48.0 (39.0–57.0) 50.0 (39.7–59.0) <0.001 

Weight 59.5 (53.8–67.7) 61.1 (54.7–70.4) <0.001 

Height 159.7 (155.1–165.0) 160.5 (156.0–166.1) <0.001 

BMI 23.5 (21.5–25.8) 23.8(21.6–26.5) <0.001 

ASA    

1 6,934 (55.7) 503 (29.8) <0.001 

2 5,232 (42.0) 1,094 (64.8) <0.001 

≥3 282 (2.3) 90 (5.3) <0.001 

Cormack-Lehane grade   0.036 

1 11,429 (91.8) 1,534 (90.9)  

2 811 (6.5) 108 (6.4)  

3 201 (1.6) 43 (2.5)  

4 7 (0.1) 2 (0.1)  

Data are expressed as median (interquartile range) and number (percent). BMI, Body Mass Index; ASA, 
American Society of Anesthesiologists. 
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Table 2. Patient characteristics and laryngoscopic parameters in test set. The easy 

laryngoscopy was defined as a combination of the Cormack–Lehane grades 1–2 and the 

difficult laryngoscopy was defined as a combination of grades 3–4. 

 Easy laryngoscopy 
(n = 1,642) 

Difficult laryngoscopy 
(n = 45) 

P–value 

Sex (male) 349 (21.3) 12 (26.7) 0.491 

Age 50.0 (39.1–59.0) 54.0 (46.0–61.1) 0.076 

Weight 61.0 (54.6–70.2) 65.5 (55.8–74.9) 0.051 

Height 160.4(156.0–166.1) 161.5 (157.1–165.5) 0.530 

BMI 23.7(21.6–26.4) 25.1 (22.6–28.3) 0.019 

ASA    

1 498 (30.3) 5 (11.1) 0.009 

2 1,056 (64.3) 38 (84.4) 0.008 

≥3 88 (5.4) 2 (4.4) 0.999 

Cormack-Lehane grade   <0.001 

1 15.4 (93.4) 0 (0.0)  

2 108 (6.6) 0 (0.0)  

3 0 (0.0) 43 (95.6)  

4 0 (0.0) 2 (4.4)  

Data are expressed as median (interquartile range) and number (percent). BMI, Body Mass Index; ASA, 
American Society of Anesthesiologists. 
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Table 3. The performance of our model and other convolutional neural network architectures. 

The performance of each model is evaluated for the prediction of difficult laryngoscopy 

through the cervical spine lateral X-ray. 

Model 
Sensitivity 

Recall, 
TPR 

Specificity 
TNR 

Precision, 
PPV 

NPV 
F1  

score 
Balanced 
accuracy 

AUC 95% CI 

VGG 80.0 75.0 8.1 99.3 14.7 77.5 0.842 
0.786 –
0.898 

ResNet 80.0 76.0 8.4 99.3 15.2 78.0 0.841 
0.789 –
0.893 

Xception 80.0 77.1 8.7 99.3 15.8 78.6 0.863 
0.816 –
0.911 

ResNext 77.8 78.6 9.1 99.2 16.2 78.2 0.825 
0.762 –
0.889 

DenseNet 82.2 83.7 12.2 99.4 21.2 83.0 0.889 
0.848 –
0.931 

SENet 80.0 83.4 11.7 99.4 20.4 81.7 0.875 
0.848 –
0.927 

Ours 95.6 91.2 22.9 99.9 36.9 93.4 0.972 
0.955 –
0.988 

Data are expressed as number (percent). TPR, true positive rate; TNR, true negative rate; PPV, positive 
predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic 
curve; CI, Confidence intervals  
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Figure Legends 
 

Figure 1. Flow diagram of this study. C-spine, cervical spine. 
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Figure 2. Convolutional neural network-based deep learning model with a convolutional layer, 

pooling layer, self-attention layer, and final fully connected layer to predict difficult 

laryngoscopy. The preprocessed cervical spine lateral X-ray image is used as the input and the 

model outputs the difficulty of laryngoscopy along with a class activation map that visualizes 

discriminative image regions. 
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Figure 3. Receiver operating characteristic curves of each model. 
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Figure 4. The examples of the class activation map in each group by three parts. Darker colors 

indicate the highlight class-specific image regions. (a) Anatomical landmarks of a cervical X 

ray image (b) The class activation map of the easy laryngoscopy group. (c) The hyoid bone 

highlighted in difficult laryngoscopy. (d) The pharynx highlighted in difficult laryngoscopy. 

(e) The cervical spine highlighted in difficult laryngoscopy. 
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Figure 5. The changing Cormack–Lehane grade of laryngoscopy between the first operation 

and the next operation in the sensitivity analysis. The difficulty of laryngoscopy (easy ↔ 

difficult) was changed in 2 out of 83 patients in the following operation.  
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Supplementary Digital Content 1. The performance of models in the sensitivity analysis in 83 patients 
from the test set undergoing two surgeries during the study period.  

Model 
Sensitivity,  
Recall, TPR 

Specificity,  
TNR 

AUC 
95% confidence 

intervals 

VGG 0.0 86.4 0.432 0.077–0.787 

ResNet 50.0 74.1 0.620 0.203–1.000 

Xception 100.0 84.0 0.920 0.836–1.000 

ResNext 100.0 77.8 0.889 0.781–0.997 

DenseNet 50.0 85.2 0.676 0.247–1.000 

SENet 50.0 82.7 0.664 0.237–1.000 

Ours 100.0 93.8 0.969 0.927–1.000 

The median time interval between cervical spine X-ray imaging and intubation was 150 days. TPR, true 
positive rate; TNR, true negative rate; PPV, positive predictive value; NPV, negative predictive value; 
AUC, area under the receiver operating characteristic curve. 
 

 

Appendix A-1 

The class activation map has been reported previously.14 In essence, it attempts to identify which part of 

the image is more important than other parts by multiplying and adding the weights from the fully 

connected layer with the previous feature-map during the image classification task. If there are objects 

in an image that are classified as a specific class, the weights of the feature map containing the object 

related to the target class of the network will be larger than the weights of other feature maps. When 

these values are weights summed, the object related to the target class is highlighted. 

Let  indicate the point of  in the kth feature map and let the higher values of the points 

indicate highlighted activation. In the deep learning network, the global average pooling follows the 

fully connected layer, and the kth feature map is denoted as . At this point, the class 

score for a specific class (c) is calculated as , where  is the activation weight of the 

global average pooling value of the kth feature map for class c, which is a trainable parameter in the 

fully connected layer. That is, can be obtained. Here, 

let . Then, . Note that  directly represents the score of the 

 coordinates for class c, and  is the class activation map for class c. Because the calculated 

class activation map is smaller in size than the input image, the class activation map is resized to the 

input size by upsampling. Then, by using a heatmap of the class activation map, it is possible to identify 

which part affects classification. 
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Appendix A-2 

Our model was designed based on a fully convolutional network and VGG-Net, with the addition of a 

self-attention module. The baseline model extracts feature maps from the convolution, pooling, and 

fully connected layers by a single path. In contrast, our network contains two paths that extract different 

features individually. The upper path extracts general features, such as the fully convolutional network 

or VGG-Net model, while the other extracts highlighted feature maps using the attention module. The 

two paths are combined using a pixel-wise addition operation, which penetrates the fully connected 

operations. The SoftMax operation, which is the last layer of our network, generates the probability for 

each class.  

Each layer of our network is a three-dimensional tensor with the shape (h, w, c), where h, w, and c are 

the height, width, and channel, respectively. In the upper path, the layers are reconstructed to the feature 

maps by every convolutional operation, and the size of each layer is halved by pooling operations. Here, 

the convolution operation includes scaled exponential linear unit (SeLU) activation to add nonlinearity 

and batch normalization.  

The lower path of our network is constructed based on the VGG-Net, but without a pooling operation. 

Instead, each feature map is mutated by the self-attention module by adding a similarity-attention factor. 

A detailed description of the self-attention module is provided below: 

Let be the ith feature map whose shapes are  in the lower path, using the nth 

input image ( ), and let  be each feature of  in channel . Then, the mean 

features of all channels of  is calculated as follows: 

 

Here, we define the matrix , where  is a min‒max 

normalization. The normalized feature of , which is , implicates the integrated 

insight (attention) on the localization of an input image for each layer . Here, the shape of 

 is . Moreover, the class activation map, denoted as , whose shape is 

 is generated in the fully connected operation and SoftMax operation. Note that each 

element of and  is normalized to the range of [0, 1].  

In the self-similarity module, the similarity between  and  is calculated 

for the individual ith feature in the lower layer. Here, the similarity indicates the cosine similarity 

(pixel-wise outer product). That is, the following equation is utilized to calculate the similarity-

attention factor ( ): 
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The similarity-attention factor is designed to localize the attention of the individual layer to the 

same location as that of class activation map. Therefore, the similarity factor is multiplied by the 

feature maps, and the feature map for each layer is updated as follows: 

 

Because the similarity factor has an element that is normalized to the range of [0, 1], the 

regions that are similar to those of class activation map are emphasized, and the regions with low 

similarity are de-emphasized. 

Therefore, in the lower path, the forced and localized features are extracted. In addition, to utilize the 

highlighted features in the upper path, the highlighted features are resized and added to compensate for 

the features that are extracted in the lower path. 

Our model was designed by adding a self-attention module to existing basic models for classification 

tasks. The module extracts feature maps from the convolution operation without a pooling operation to 

maintain the dimensions of the input image.  

The modules of localization of attention are embedded in the developed convolutional neural network-

based model to integrate the laryngoscopy regions that most affect the classification results predicted by 

a deep learning network. In general, only fully optimized deep learning networks generate accurate 

predictions with integrated insight (attention) on the impact region in X-ray images when classification 

tasks are conducted. In contrast, our attention layers, and embedded modules force localization of 

laryngoscopy regions from the early training steps. Early localization of integrated attention to the 

laryngoscopy regions improves the directionality of the gradients of trainable variables of a deep 

learning network in the training step. The attention module-embedded ChestXNet-based developed 

networks were utilized to classify the difficulty of a laryngoscopy. 

 

Appendix A-3. 

To verify the feasibility of using a convolutional neural network to determine the level of difficulty of a 

laryngoscopy, the default values of the hyper-parameters were utilized. For instance, the Adam 

optimizer is used to train deep learning networks for the experiments.  and  were 0.9 and 0.99, 

respectively, and  was 1e-7. In addition, the learning rate for the optimizer was 0.001, and it was 

halved after every 30 epochs. The sizes of all convolution filters were  and the channels for the 

deep learning networks were 64, 128, 256, 512, and 1024 for each deeper step. Furthermore, the stride 

of the convolution filters was two. Mirror padding was applied to all the deep learning models. The 

initialization of deep learning models was performed using a Gaussian distribution with a mean value of 

0 and a standard deviation of 1. The batch normalization technique was applied after every convolution 

operation and activation function, which involved SeLU activation. Cross-validation was applied for the 

optimization of deep learning networks, and the ratio of the number of training images, validation 

images, and test images was set at 6:1:1 because the number of images for optimizing deep learning 

networks was insufficient.
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Abstract 

Deep Learning Model for Predicting Difficult 

Laryngoscopy in Thyroid Surgery Patients Based on a 

Cervical Spine Lateral X-Ray Image 

Hye-Yeon Cho 

Department of Anesthesiology and Pain Medicine 

The Graduate School 

Seoul National University 

 

   An unanticipated difficult laryngoscopy is associated with serious airway-related 

complications. We here developed and validated a deep learning-based model that predicts a 

difficult laryngoscopy (Cormack–Lehane grade 3–4) from a cervical spine lateral X-ray using 

data from 14,135 patients undergoing thyroid surgery. The performance of our model was 

compared with six representative deep learning architectures. A class activation map was 

created to elucidate the anatomical features associated with difficult laryngoscopy. Our model 

showed 95.6% sensitivity and 91.2% specificity for predicting difficult laryngoscopy. The area 

under the receiver operating characteristic curve of our model was 0.972 (0.955‒0.988), which 

was higher than that of other models (VGG-Net: 0.842, ResNet: 0.841, Xception: 0.863, 

ResNext: 0.825, DenseNet: 0.889, and SENet: 0.875, all P < 0.001). The class activation map 

demonstrated clear differences around the hyoid bone, pharynx, and cervical spine. The model 

showed excellent performance for predicting difficult laryngoscopy using a cervical spine 

lateral X-ray image. 

 

Keywords: airway evaluation, artificial intelligence, deep learning, difficult laryngoscopy, 

intubation, intratracheal 
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