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ABSTRACT 

 

Developing a deep learning model 

to diagnose metabolic bone 

disease of prematurity using wrist  

x-ray results of preterm infants 
 

Seul Gi Park 

Medicine, Pediatrics 

The Graduate School 

Seoul National University 

 

Background: Metabolic bone disease (MBD) of prematurity is an 

important complication of prematurity and accurate diagnosis and 

timely intervention should be made for preterm infants. 

 

Objective: To develop a diagnostic tool for MBD of prematurity via 

deep learning by using wrist x-rays of preterm infants. 

 

Methods: Study enrolled preterm infants whose birth weight was less 

than 1500g born at Seoul National University Children’s Hospital 

and admitted to Neonatal Intensive Care Unit from 2010 to 2020. 

Demographic and clinical information as well as wrist x-rays taken 

between 4-8 weeks of postnatal age were collected retrospectively. 

Two types of regions of interests (‘ROI 0’ and ‘ROI 1’) were 

annotated for deep learning model training. Demographic and clinical 

data was analyzed to determine the factors associated with MBD of 

prematurity, thus evaluating the representativeness of our study 

population. Wrist x-ray images were used to train and develop a 

diagnostic model via various deep learning algorithms, including 

AlexNet, DenseNet-121, ResNet-50, ResNext-50, VGG-19, 

CheXNet, and EfficientNet-b3. 
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Results: Fourteen percent (116/814) of enrolled patients were 

diagnosed with MBD of prematurity between 4-8 weeks of postnatal 

age. Analysis of clinical information revealed that birth weight less 

than 1000g (82.8% vs. 37.5%, p<0.001), gestational age less than 28 

weeks (75.0% vs. 29.5%, p<0.001), parenteral nutrition longer than 

or equal to 28 days (49.1% vs, 12.0%, p<0.001) were statistically 

significant risk factors of MBD of prematurity. These risk factors 

concurred with renowned risk factors of MBD, suggesting that our 

population could represent general preterm population and our 

ground truth is reliable. Deep learning models developed by 

EfficientNet-b3 and VGG-19 using ‘ROI 0’ appeared to show the 

best quality of performance demonstrated by highest F1-score 

(0.844 for both models) and AUROC (0.962 for EfficientNet-b3 and 

0.968 for VGG-19). ‘ROI 0’ EfficientNet-b3 model and VGG-19 

model both showed sensitivity of 0.907, specificity of 0.924, positive 

predictive value of 0.790, negative predictive value of 0.969, and 

accuracy of 0.915.  

 

Conclusion: Novel deep learning models to diagnose MBD of 

prematurity have been developed as a result. Our models showed 

sensitivity of 0.907, specificity of 0.924, and accuracy of 0.915. If 

applied to clinical settings, it would assist clinicians, especially for 

those who are novice, to detect MBD more accurately and 

conveniently, thereby enabling timely management to treat and 

prevent disease progression for preterm infants. 

 

 

…………………………………… 

Keywords: metabolic bone disease of prematurity, artificial 

intelligence, deep learning, prematurity, wrist x-rays 

Student Number: 2020-29040 
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INTRODUCTION 
 

Metabolic bone disease (MBD) of prematurity is also known 

as osteopenia or rickets of prematurity.1 It is prevalent in preterm 

infants especially whose gestational age is younger than 28 weeks. 

Among preterm infants whose birth weight is below 1500g (very low 

birth weight, VLBW) and below 1000g (extremely low birth weight, 

ELBW), about 16-40% are diagnosed with MBD of prematurity with 

the peak incidence at the postnatal age of 4-8 weeks.1-3 It is known 

to be attributable to calcium and phosphorus deficiency due to 

decreased intake or absorption in most cases.1,4,5,6 

Exact incidence of MBD of prematurity among preterm infants 

is still unknown partly due to the lack of consensus regarding the 

diagnostic definition of this disease.7 Therefore, several screening 

protocols exist instead, to select and evaluate infants who are at high 

risk of MBD of prematurity by using their biochemical markers and 

wrist x-rays.7 Clinicians suspect the presence of MBD if the serum 

levels of phosphorus and calcium are persistently low, while serum 

alkaline phosphatase (ALP) level is increasing.4,8 For more definitive 

diagnosis, wrist x-ray is often obtained which might demonstrate the 

cupping or fraying at radius metaphysis, the classical radiological 

findings of MBD of prematurity (Figure 1).3,7,9,10
 However, such 

radiological findings are known to appear only after bone 

mineralization has been reduced by 20-40% and identifying early 

stage of MBD on x-ray images is challenging.7 

In recent years, numerous articles about artificial intelligence 

(AI) revealed that hundreds of applications of deep learning to 

medical images have made that offered opportunities to improve the 

speed, accuracy, and quality of image interpretation and radiological 

diagnosis.11,12
 Since MBD of prematurity is one of many major 

complications of prematurity that should be prevented for better long 

term outcomes, this study aimed to develop a deep learning program 

for MBD of prematurity by using wrist x-rays obtained between 4-
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8 weeks of postnatal ages among preterm infants born less than 

1500g. Programmed diagnostic algorithm is expected to enhance the 

accuracy and efficacy of MBD diagnosis for preterm infants in clinical 

settings, thereby allowing earlier interventions and treatments to 

prevent disease progression. 
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MATERIAL AND METHODS 
 

Study Population and Setting 

 This study is designed as a retrospective study including 

preterm infants weighed less than 1500g at birth and were born at 

Seoul National University Children’s Hospital (SNUCH) from 2010 

to 2020 and admitted to neonatal intensive care unit (NICU) of 

SNUCH.  

 Patients were excluded if discharged, transferred to other 

hospitals, or died before 28 days of life, if malformations, 

chromosomal abnormalities, or metabolopathies were associated, or 

if there were no wrist x-rays taken between 4-8 weeks of life (25-

59 postnatal days). While reviewing the collection of wrist x-ray 

images of enrolled patients, few images difficult to be read correctly 

were excluded from the study, especially those that had intravenous 

catheter line positioned at metaphysis area and those that showed 

overlapped radius and ulna due to the improper position of patients. 

 

Data Collection and Interpretation 

 Department of neonatology, department of radiology, and 

transdisciplinary department of medicine and advanced technology 

cooperated throughout the study in data collection, interpretation, and 

development of a deep learning model.  

 First, neonatologists from SNUCH collected demographic and 

basic clinical information, including gestational age (GA), birth weight, 

birth weight percentage, gender, associated anomalies, duration of 

total parenteral nutrition (TPN) in days, and days taken to reach 

enteral nutrition (EN) full feeding (≥100mL/kg/day), by reviewing 

their electronic medical records (EMR). Wrist x-rays taken between 

4-8 weeks of life (25-59 days, giving a window period of 3 days) 

were collected. Data from SNUCH was utilized as an internal dataset.  

 Collected wrist x-rays were reviewed by professional 

pediatric radiologist (C.J.E. with 22 years of post-fellowship 
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experience) and neonatologist (K.E.K. with 19 years of post-

fellowship experience) who were blinded by clinical or laboratory 

conditions of patients. Images were denoted as ‘0’if normal, and 

‘1’if diagnosed with MBD of prematurity. Images with an 

indeterminate of discrepant categorization were jointly reviewed and 

discussed, then categorized by consensus. 

 Labelled images were used as ground truth,13 and 

transdisciplinary department of medicine and advanced technology 

team utilized this set of data to develop a deep learning model.  

 

Imaging Dataset Partitioning 

 Convolutional neural network (CNN) is a complex 

computational model using multiple algorithm layers to achieve high-

level interpretations of data. This is currently applied widely for 

classifying medical images,14
 generally based on a supervised 

approach.15
 For deep learning model training and testing, wrist x-ray 

images labeled by professional radiologists were used as a defined 

ground truth. 

 Considering the incidence of MBD of prematurity, collected 

raw image dataset from SNUCH showed a considerable imbalance 

between the number of normal images and the number of MBD images. 

Number of normal images outweighed that of MBD images, thus the 

majority class went through undersampling.  

 After undersampling of normal images, the final imaging 

dataset was split into training set, validation (tuning) set, and test set 

at 7:1:2 ratio. Images were split via stratified random sampling in 

order to reduce the potential for an uneven or nonrandom distribution 

of normal and MBD images. Images belonged to the same patients 

were stratified into the same set to minimize potential bias.  

  

Data Preprocessing 

 Wrist images were converted from Digital Imaging and 

Communications in Medicine (DICOM) to Portable Network Graphics 
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(PNG) images by using Python version 3.7.11.  

Annotation was performed for each image by drawing a 

labeled bounding box using the software tool roLabelImg version 

1.8.0. For each image, two region of interest (ROI) boxes were drawn. 

Directions of drawing ‘ROI 0’ and ‘ROI 1’are described in Figure 

2. As defined by Koo et al., metaphyseal alterations of radius are the 

key features determining the presence of MBD.10 Thus, ‘ROI 0’was 

drawn as a square surrounding the metaphyseal plate of radius. ‘ROI 

1’was drawn as a rectangle, which was extended downward from 

‘ROI 0’to cover more of trabecular bones of radius. Trabecular 

bones are known to respond to metabolic changes faster than cortical 

bones and changes are most prominent in the ends of the long tubular 

bones, particularly in the distal radius that have a relatively large 

proportion of trabecular bone. 16 Annotation data were saved to a 

single XML file with designated labels corresponded to the 

categorization of either normal or MBD of prematurity. ROIs were 

cropped then resized to a resolution of 300x300 matrix for 

EfficientNet-b3 and 224x224 matrix for other deep learning 

algorithms. All imaging data underwent normalization process using 

ImagNet. 

To overcome the volume discrepancy between normal images 

and MBD images, MBD images of the training data sets were 

augmented by various techniques; such as, random rotations between 

±15 degrees, random brightness contrast, GaussianBlur, and Gauss 

Noise methods, resulting in 3 times the image augmentation (Figure 

3). All types of augmentation were performed using Albumentation 

version 1.1.0 (https://albumentations.ai/docs/api_reference/ 

augmentations/transforms/). Rotation was made by 1 degree within 

the range between -15 and +15 degrees. Random brightness and 

contrast were both adjusted by -0.2 to +0.2 using default settings 

of Albumentation. For Gaussian Blur technique, a random sized kernel 

with center pixel of (3,7) was applied to obtain the new values for 

the center pixel of (3,3), (4,4), (5,5), (6,6), and (7,7). GuassNoise 
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method was done with variance range for noise having minimum and 

maximum values of 10 and 50, respectively. 

 

Model Development and Testing 

 In this study, we experimented with 7 algorithms: AlexNet17, 

DenseNet12118, ResNet5019, ResNext5020, ChexNet21, VGG1922, 

EfficientNet-B323. ImageNet-pretrained models were used as an 

initial parameter for algorithm training. All models were trained with 

the same hyper-parameters, such as Adam optimizer (learning rate: 

1e-4), epochs (early stopping), batch size (8), and input size of 

300x300 for EfficientNet-B3 and 224x224 for other algorithms.  

All image processing and CNN development work were 

performed on central processing unit (CPU) and graphics processing 

unit (GPU) nodes composed of the Intel Core i5-11400F CPU and 

NVIDIA RTX 3060 (12GB). All coding was performed using the 

Pytorch24 deep learning platform.  

Efficiency of developed diagnostic models using 

aforementioned neural network architectures as well as ‘ROI 0’ 

and ‘ROI 1’ were determined individually, then the most efficient 

model would be selected for further programming. 

  

Data Analysis 

 Patients were grouped into normal and MBD group. If patients 

had no evidence of MBD on wrist x-ray during 4-8 weeks of life, 

they were grouped as normal. On the other hand, when patients were 

diagnosed with MBD on wrist x-ray at least once during the study 

period, they were grouped as MBD.  

 Statistical comparison of demographic features and clinical 

information between the groups were made by SPSS IBM Statistics 

26.0. Chi-square test was used for categorical variables and 

student’s t-test was used for continuous variables. To reduce 

confounding effects of variables, multivariable logistic regression 

analysis was performed and adjustment for sex, gestational age, birth 
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weight, TPN period, full EN reaching period, length of hospital stays, 

1-minute Apgar score, and 5-minute Apgar score were made. 

Statistical significance was defined as p<0.05. 

  For deep learning model performance evaluation, ROC with 

area under curve (AUC) was generated to define test accuracy. 

Evaluation metrics; such as, accuracy, sensitivity, specificity, 

positive predictive value (PPV), negative predictive value (NPV), and 

F1-score were calculated.25  

 

Ethics Statement 

 This study protocol was reviewed and approved by the 

Institutional Review Board (IRB) of Seoul National University 

Hospital (IRB No. H-2104-056-1210). Requirement for informed 

consent was waived due to the retrospective design of the study. 
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RESULTS 
 

Study Population 

 During 2010-2020, 1110 preterm infants weighed less than 

1500g at birth were born at SNUCH and admitted to SNUCH NICU. 

Among these infants, 296 patients were excluded, in which 257 

infants were discharged, transferred to other hospitals or died before 

28 days of life, and 39 infants either did not take wrist x-rays 

between 4-8 weeks of postnatal age or did not have qualifying 

images. None had major congenital anomalies, metabolopathies, or 

chromosomal abnormalities. Total of 814 patients were enrolled and 

14.3% (116/814) were diagnosed radiologically with MBD of 

prematurity at least once between 4-8 weeks of life (Figure 4). 

 Among this population, the number of wrist x-ray files taken 

between 4-8 weeks of postnatal age was 1134, containing 2239 

wrist images. Of these, 114 files (271 images) were MBD images and 

remaining 990 files (1968 images) were categorized as normal.  

  

Demographic and Clinical Data of Study Population 

 814 preterm infants were finally enrolled in the study 

population in which 416 (51.1%) were male and 398 (48.9%) were 

female. Average values for our study population were summarized in 

Table 1. Gestational age and birth weight were 28.97 weeks and 

1033.48 grams, respectively. 18.47 days of TPN was given on 

average, while it took 16.01 days to reach full enteral feeding. 

Patients were admitted in NICU for 72.55 days on average and their 

mean Apgar score was 4.33 at 1 minute and 6.80 at 5 minutes. 

Enrolled patients were divided into two groups; MBD group 

or normal group. Patients were grouped as MBD if radiological 

diagnosis of MBD has been made at least once during the study period. 

Of 814 patients, 116 (14.3%) were classified as MBD and 698 

(85.7%) belonged to normal group.  

Since infants born at lower gestational age tend to be 
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associated with lower birth weight and these infants might also be 

associated with longer TPN period, longer duration to reach full 

enteral feeding, longer hospital days, and lower Apgar scores. 

Considering such confounding effects among the variables, 

multivariate logistic regression analysis was performed, in which 

adjustment for sex, GA, birth weight, TPN period, full EN reaching 

period, length of hospital stays, and Apgar scores was made (Table 

2). After adjustment, MBD group and normal group showed 

significant differences in gestational ages, birth weight, TPN period, 

and length of hospital stays. Lower GA (OR 0.751, 95% CI 0.658-

0.857, p=0.000), lower birth weight (OR 0.997, 95% CI 0.996-0.999, 

p=0.000), longer lengths of TPN period (OR 1.022, 95% CI 1.001-

1.044, p=0.040), and longer hospital stays (OR 1.007, 95% CI 

1.000-1.015, p=0.046) were associated with higher risk of MBD or 

prematurity.  

 

Risk Factors of MBD of prematurity 

 Small for gestational age, birth weight less than 1000g, 

gestational age less than 28 weeks, and TPN period longer than 28 

days are widely recognized risk factors of MBD,1,4,26,27 as also 

suggested from our data. The risk factors were analyzed by chi-

square tests and birth weight less than 1000g (82.8% vs. 37.5%, 

p<0.001), GA less than 28 weeks (75.0% vs. 29.5%, p<0.001), TPN 

longer than or equal to 28 days (49.1% vs, 12.0%, p<0.001) showed 

statistical significance in association with MBD of prematurity (Table 

3).  

 

Deep Learning Flow Using Internal Data 

 Total number of normal images was 1968 while MBD images 

were only 271. For proper training, such data size discrepancy in 

between normal and MBD groups was overcome by downsampling 

the majority class, the normal group. After randomly performing 

downsampling of the normal group, final internal dataset contained 
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833 normal images from 298 patients and 271 MBD images from 116 

patients. This final dataset was divided into training set, validation 

(tuning) set, and test set at 7:1:2 ratio by stratified random sampling. 

To overcome the insufficient number of MBD images available, 

imaging augmentation was performed which tripled the number of 

MBD images. Numerous types of deep learning algorithms, such as 

AlexNet17, DenseNet12118, ResNet5019, ResNext5020, ChexNet21, 

VGG1922, EfficientNet-B323, were applied to develop our model and 

the performance metrics of developed models were evaluated. The 

flowchart of deep learning process is summarized in Figure 5. 

 

Performance Evaluation 

 Various models to diagnose MBD of prematurity based on 

wrist x-rays were created by using both ‘ROI 0’ and ‘ROI 1’. 

Calculated performance metrics and ROC curves of each model are 

demonstrated in Table 4 and Figure 6.  

Overall, the models developed by EfficientNet-b3 and VGG-

19 using ‘ROI 0’ appeared to show the highest quality of 

performance, demonstrated by the highest F1-score. ‘ROI 0’ 

model by EfficientNet-b3 revealed the sensitivity of 0.907, 

specificity of 0.924, PPV of 0.790, NPV 0.969, F1-score of 0.844, 

accuracy of 0.915, and AUROC of 0.962. ‘ROI 0’ model created by 

VGG-19 showed the sensitivity of 0.907, specificity of 0.924, PPV 

of 0.790, NPV 0.969, F1-score of 0.844, accuracy of 0.915, and 

AUROC of 0.968, presenting similar performance efficacy.  

 The test dataset for ‘ROI 0’ EfficientNet-b3 model 

contained 171 normal images and 54 images. Our model made correct 

diagnosis for 92.4% of normal images (158/171, true negative, TN, 

specificity) and 90.7% of MBD images (49/54, true positive, TP, 

sensitivity). Reviewing the Gradcam images of TP and TN cases 

suggested that the model was focusing mainly on the area of 

metaphysis of radius as we intended. This model also made a few 

incorrect diagnoses, where 7.6% (13/171, false positive, FP) of 
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normal images were classified as MBD and 9.5% (5/54, false negative, 

FN) of MBD images were named normal. From the Gradcam images 

of FP and FN, it was noticed that the model focused less strongly on 

the metaphysis area of radius or focused on ulna or intravenous (IV) 

fluid line instead of radius. Figure 7 shows Gradcam images.  
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DISCUSSION 

 

MBD of prematurity is an important complication of 

prematurity which could even result in pathological fractures if left 

untreated.2,5 Thus in order to make MBD diagnosis more efficiently 

and accurately in clinical settings, even for those who lack clinical 

experience and for those who could not be supported by professional 

radiologists, we aimed to create a deep learning model to diagnose 

MBD of prematurity. As a result, novel diagnostic deep learning 

models for MBD of prematurity were developed showing sensitivity 

of 0.907 and specificity of 0.924.  

 Data was collected from January 2010 to December 2020 at 

SNUCH NICU. All included patients were very low birth weight 

infants (VLBW) whose birth weight was less than 1500g. Considering 

the fact that the peak incidence of MBD of prematurity occurs at 4-

8 weeks of postnatal age, their wrist x-ray data from this period was 

collected for each patient. At SNUCH NICU, weekly blood sampling 

and monthly wrist x-rays are taken according to our center’s MBD 

screening protocol. Thus, it was possible to collect feasible amount 

of wrist x-ray data.  

Finally included patients were 814 patients and 14.3% was 

diagnosed with MBD on their wrist x-ray during 4-8 weeks of life. 

The observed incidence of MBD in our study population was close to 

the reported incidence of MBD of prematurity, about 16-40% among 

VLBW and ELBW infants.2 Analysis of clinical findings and risk 

factors of our study population proved that lower GA, lower birth 

weight, and longer TPN period were associated with higher risk of 

MBD, which also concurred with the known risk factors of MBD of 

prematurity. These statistical findings strongly propose that our 

study population was appropriately representing general preterm 

population and that our ground truth is reliable. 

 After undersampling of majority class (normal images) then 

augmentation of minority class (MBD images), the final imaging 
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dataset was selected. Training set composed of 585 normal images 

and 573 MBD images and tuning set consisted of 77 normal images 

and 78 rickets images. Each images were annotated with both‘ROI 

0’ surrounding the metaphysis of radius and ulna and ‘ROI 1’ 

including metaphasis and trabecular bone of radius. Then the final 

dataset was applied to various deep learning algorithms to train and 

develop our deep learning diagnostic model.  

The models developed by EfficientNet-b3 and VGG-19 using 

‘ROI 0’ showed the best quality of performance. ‘ROI 0’ 

EfficientNet-b3 model showed sensitivity: 0.907, specificity: 0.924, 

PPV: 0.790, NPV: 0.969, F1-score: 0.844, accuracy: 0.915, AUROC: 

0.962. When tested using 171 normal images and 54 images, our 

model made correct diagnosis for 92.4% of normal and 90.7% of MBD 

cases. Reviewing the Gradcam images, our model mostly detected 

metaphysis area of radius correctly. However, in some cases, the 

program focused more on ulna metaphysis instead of radius. This 

might have decreased the accuracy of our model since radiological 

definition of MBD of prematurity should not be made for isolated 

cupping of distal ulna.28
 Other Gradcam images focused on artifacts, 

including IV catheter line placed on hands. Although this might have 

influenced the performance of the program, we decided to keep those 

images with artifacts in imaging dataset in order to reflect real clinical 

settings. It is essential to keep IV catheter lines for preterm infants 

to process medical practices in NICU. Also, it is nearly impossible to 

control the spontaneous movements of infants while taking wrist x-

rays in real settings. The final model was developed after including 

such images containing artifacts in the dataset, so it could be more 

suitable in real clinical settings. 

As the field of AI offered opportunities to improve the medical 

imaging interpretation, Meda et al. conducted a study already to 

establish AI diagnostic tool for MBD.29 This study used 104 MBD 

images and 264 normal medical images collected from patients 

younger than 7 years old. Until now, no researches have been made 
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to develop such model specifically for preterm infants. To the best of 

our knowledge, our study is the first study developing a deep learning 

model for MBD diagnosis among preterm infants. Unlike previous 

studies regarding the AI application to diagnose MBD of prematurity, 

our study used two different regions of interests in order to find the 

most ideal diagnostic algorithms. Also, the size of our imaging dataset 

was larger than other similarly designed studies and was obtained 

solely from the preterm population.  

Upon the completion of our model development, it was 

expected to help clinicians to diagnose MBD of prematurity more 

easily. We believe that the model would aid novice clinicians and 

clinicians working without a support from radiologist to detect the 

presence of MBD, so earlier intervention could be made to prevent 

disease progression. 

There also exist a few limitations. Deep learning is a data 

hunger program that always prefers bigger size of dataset. Thus, the 

performance of our model could be advanced if bigger dataset was 

available. Our dataset was collected retrospectively from a single 

center, so its generalizability to general preterm population is limited. 

Also, current model was developed to only detect whether the image 

is MBD or normal. It was not trained to differentiate the status of 

MBD, whether the disease is in its early stage or in healing state. 

Because the study was conducted in a single center, only internal 

dataset was available for training and testing. In order for our model 

to be applicable to general preterm infants, performing external 

validation test and user study to evaluate the efficacy should be 

considered.  

Serum levels of ALP, calcium, and phosphorus are most 

commonly used biochemical markers to determine infants who are at 

higher risk of MBD.2,3 Among these markers, high ALP level is the 

most well-known reliable biomarker suggesting the presence of 

MBD of prematurity and several studies already have reported the 

association between ALP levels and the radiological diagnosis of 
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MBD.30 Further studies incorporating the biochemical markers to the 

developed model could be considered so that more practical and 

sophisticated diagnostic model to be created. 

 Moreover, based on the diagnostic algorithm developed from 

this study, a subsequent study developing a new screening deep 

learning model for MBD of prematurity by using infantogram could 

also be considered. Since infantograms are taken routinely during 

NICU admission for clinical practices, if such model is developed, it 

could also decrease the number of wrist x-rays being taken, 

reducing the radiation exposure hazard for preterm infants. 

 

CONCLUSION 

 

 A novel diagnostic deep learning model for MBD of 

prematurity has been created having sensitivity of 0.907 and 

specificity of 0.924 at the end of the study. Further conduction of 

external validation and user study could enhance the quality of the 

developed model. This model would assist clinicians to detect MBD 

more accurately and conveniently, thereby enabling timely 

management to treat and prevent disease progression for preterm 

infants. 
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Figure 1. Wrist X-ray Images of Normal and MBD 

 

Normal MBD 
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Figure 2. Image Annotation – Region of Interest 

 

ROI 0 

(1) Draw a straight line on the metaphysis of radius, perpendicular to the y-axis of 

radius. Length of the line should cover the metaphysis of both radius and ulna.  

(2) Create a square box having the line drawn above as its side. 

(3) Adjust the box position to locate the metaphysis of radius at upper 1/3 (lower 2/3) 

of the box’s height. 

 
ROI 1 

(1) Draw another ‘ROI 0’ square around the metaphysis of radius and ulna as 

mentioned above.   

(2) Extent the length of the square to create a rectangle. Length of the rectangle 

should be 1.5 times longer than width. 

(3) Position the box to locate its top side as same as ROI 0.  
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Figure 3. Image Augmentation 

 

Original Rotation 

Random 

Brightness 

Contrast 

Gauss Noise Gaussian Blur 

     

 

  



 

 

19 

 

Figure 4. Flow Diagram – Cohort 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Preterm infants admitted to the SNUCH NICU with 

birth weight <1500g between 2010 and 2020

n=1110

814 patients included

116 patients diagnosed with MBD on wrist 

PA within study period

698 patients showed normal results 

throughout the study period

296 patients excluded :

Discharge / transfer / death before 28 days (n=257)

No wrist PA images taken between 25-59 days / 

images with poor qualities (n=39) 
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Table 1. Demographic and Clinical Characteristics 

 

Table 1. Demographic and clinical characteristics  

 Total (n=814) 

Sex (n, %)  

   Male 416 (51.1) 

   Female 398 (48.9) 

GA (weeks)  

   Average 28.97 

Birth weight (g)  

   Average 1033.48 

TPN period (days)  

   Average 18.47 

EN ≥100mL/kg/d (days)  

   Average 16.01 

Length of stay (days)  

   Average 72.55 

1 minute Apgar   

   Average 4.33 

5 minutes Apgar  

   Average 6.80 
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Table 2. Multivariable Logistic Regression of Clinical Data 

 

Table 2. Multivariable logistic regression analysis for MBD of prematurity  

Variables 

MBD of prematurity 

OR 95% CI P-value 

Sex (Female) 0.643 0.392-1.053 0.079 

GA (weeks in days) 0.751 0.658-0.857 <0.001 

Birth weight (g) 0.997 0.996-0.999 <0.001 

TPN period (days) 1.022 1.001-1.044 0.040 

EN ≥100mL/kg/d 

(days) 
0.997 0.972-1.022 0.796 

Length of stay 

(days) 
1.007 1.000-1.015 0.046 

1 minute Apgar  1.204 0.988-1.468 0.065 

5 minutes Apgar 0.999 0.891-1.218 0.993 

OR, odds ratio ; CI, confidence interval 

P-values are calculated by the analysis of multivariable logistic regression model for MBD of 

prematurity, after adjustment for sex, gestational age, birth weight, TPN period, full EN 

reaching period, length of stay, 1 minute and 5 minute Apgar scores. 
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Table 3. Risk Factors of MBD 

 

Table 4. MBD risk factors   

 
MBD 

(n=116) 

Normal 

(n=698) 
P-value 

SGA_10p (n, %)    

   <10 percentile 30 (25.9) 177 (25.4) 

0.908 

   ≥10 percentile  86 (74.1) 521 (74.6) 

SGA_3p (n, %)    

   <3 percentile 20 (17.2) 101 (14.5) 

0.437 

   ≥3 percentile  96 (82.8) 597 (85.5) 

Birth weight (n, %)    

   <1000g 96 (82.8) 262 (37.5) 

<0.001 

   ≥1000g 20 (17.2) 436 (62.5) 

GA (n, %)    

   < 28 weeks 87 (75.0) 206 (29.5) 

<0.001 

   ≥ 28 weeks 29 (25.0) 492 (70.5) 

TPN period (n, %)    

   ≥ 28 days 57 (49.1) 84 (12.0) 

<0.001 

   < 28 days 59 (50.9) 614 (88.0) 
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Figure 5. Deep Learning Flowchart 
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Table 4. Performance Metrics of Designed Models 
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Figure 6. ROC Curves of Designed Models 

 

ROI 0 

 
ROI 1 
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Figure 7. Gradcam Images 

 

True Positive (TP) True Negative (TN) 

  
False Positive (FP) False Negative (FN) 
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국문초록 

 

서론: 미숙아 대사성 골질환은 미숙아가 겪는 중요한 합병증 중 하나로 

정확한 진단 및 적절한 시점에서의 치료적 개입이 필요한 질환이다. 

 

목적: 본 연구는 미숙아 대사성 골질환의 진단을 용이하게 하고자 손목 

x-ray 영상 정보를 바탕으로 미숙아 대사성 골질환 진단 딥러닝 모델

을 구축하고자 한다. 

 

방법: 2010년부터 2020년 사이에 서울대학교 어린이병원에서 1500g 

미만으로 출생한 미숙아들 중 신생아중환자실에 입실한 환자들을 대상으

로 연구가 진행되었다. 인구학적 정보, 임상 정보, 생후 4-8주 사이에 

촬영된 손목 x-ray 영상들은후향적으로 수집되었다. 딥러닝 모델 학습

을 위해 두 가지 관심 영역 (‘ROI 0’과 ‘ROI 1’)의 어노테이션이 완료되

었다. 임상정보는 미숙아 대사성 골질환과 연관된 인자들을 분석하고자 

사용되었고, 이를 통해 연구 모집단의 대표성을 확인하고자 하였다. 수

집된 손목 x-ray 영상은 딥러닝을 통한 진단 프로그램을 개발하기 위

한 학습데이터로 사용되었다. 프로그램 개발을 위해 AlexNet, 

DenseNet-121, ResNet-50, ResNext-50, VGG-19, CheXNet, 

EfficientNet-b3 딥러닝 architecture 가 사용되었다. 

 

결과: 모집단 중 14.3% (116/814)가 생후 4-8주 사이에 미숙아 대사

성 골질환으로 진단되었다. 생후 4-8주 이내에 한 번이라도 손목 영상

에서 대사성 골질환으로 진단된 경우와 그렇지 않은 경우를 두 군으로 

비교하였고, 출생체중 1000g 미만 (82.8% vs. 37.5%, p=0.000), 재태

주수 28주 미만 (75.0% vs. 29.5%, p=0.000), 정맥영양 공급 기간 28

일 이상 (49.1% vs, 12.0%, p=0.000)이 질환을 겪은 군에서 유의미하

게 높은 빈도임이 확인되어, 대사성 골질환의 위험인자로 확인되었다. 

이는 이미 잘 알려진 미숙아 대사성 골질환의 위험인자와 일치하며, 이

를 통해 모집단이 일반적인 미숙아 집단을 대표할 수 있음을 확인하였다. 

더불어 학습에 사용된 ground truth의 신뢰도 또한 입증할 수 있었다. 

‘ROI 0’을 이용하여 EfficientNet-b3와 VGG-19를 통해 개발한 진

단 모델이 가장 뛰어난 성능을 나타내며, 최대값의 F1 스코어 (0.844)

와 AUROC 값 (EfficientNet-b3: 0.962, VGG-19: 0.968)을 보였다., 

두 모델의 민감도는 0.907, 특이도는 0.924, 양성 예측도는 0.790, 음

성 예측도는 0.969, 정확도는 0.915였다.  

 

결론: 본 연구를 통해 미숙아 대사성 골질환 진단을 위한 딥러닝 모델이 

개발되었고 민감도는 0.907, 특이도는 0.924, 정확도는 0.915이다. 향

후에 이러한 진단기법이 실제 임상에 적용된다면, 특히나 임상경력이 적
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은 임상의의 경우에도 질환의 진단이 정확하고 간편하게 이루어질 수 있

을 것으로 생각하며, 이를 통해 치료 및 예방을 위한 적절한 개입이 가

능해질 것으로 기대한다. 

 

…………………………………… 

주요어: 미숙아 대사성 골 질환, 인공지능, 딥러닝, 미숙아, 손목 x-선 
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