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Abstract 

 

Sang Jin Rhee 

Department of Medicine (Psychiatry) 

The Graduate School 

Seoul National University 

 
Background: Major depressive disorder (MDD), bipolar disorder (BD), and 

schizophrenia (SCZ) are representative major psychiatric disorders that are 

known to be associated with life-long disability and mortality. These disorders 

are difficult to distinguish, as their diagnosis is based on subjective symptoms 

and behavioral observations. Recent studies suggest that profiling and 

targeted quantification of proteomes might help in objective differentiation 

between these disorders. Thus, this study was conducted to compare and 

differentiate these disorders based on the quantification of peripheral proteins. 

Methods: Mass spectrometry-based proteomic profiling analysis was 

performed on serum samples from psychotropic drug-free 15 MDD and 10 

BD patients. T-tests were performed with pairwise comparisons to detect 

differentially expressed proteins (DEPs) (Study 1). The study was expanded 

to plasma samples of 174 MDD, 170 BD, 171 SCZ, and 160 healthy controls 

Both targeted proteomics and proteomic profiling were performed to quantify 

and verify proteomic candidate targets that differentiated these disorders. 

Through repeated LASSO regression with feature extraction and weighted 
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model averaging of targeted proteomics, multiprotein-marker (MPM) models 

were developed to differentiate MDD, BD, and SCZ. The performance of 

ensemble models that combined MPM models and the Symptom Checklist-

90-Revised was compared with clinician rater score-based models (Study 2). 

In both studies, functions and pathways related to differential proteins were 

predicted with bioinformatics analysis. 

Results: Fourteen DEPs were statistically significant between drug-free 

MDD and BD. RAB7A, ROCK2 were significantly overexpressed in MDD, 

and EPO7 was significantly overexpressed in BD (Study 1). Each MPM 

model developed for pairwise patients group comparison (MDD vs BD, MDD 

vs SCZ, BD vs SCZ) demonstrated reasonable or good differentiation 

performance in independent test sets (AUROC=0.74~0.82). In addition, the 

ensemble models performances (AUROC=0.77~0.90) were overall 

comparable to those of clinician rater score-based models 

(AUROC=0.74~0.94) in independent test sets (Study 2). Further, the 

differential proteins in both studies were associated with cellular functions 

and immune/inflammatory pathways.  

Conclusions: In this study, the viability of proteomic quantification and its 

integration with clinical data in comparing and differentiating major 

psychiatric disorders is proposed. The results indicate that these approaches 

have potential in differentiating MDD, BD and SCZ. Further studies with 

longitudinal designs are warranted. 
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Chapter 1. Introduction 
 

1.1. Study Background 
  

Major depressive disorder (MDD), bipolar disorder (BD), and 

schizophrenia (SCZ) are major psychiatric disorders that are known to be 

associated with life-long disability and morbidity, which poses substantial 

burdens on patients and economies (1-5). MDD is characterized by an episode 

of loss of interest and/or depressive mood. The diagnosis needs to exclude a 

history of (hypo)mania. BD is a chronic disorder with recurrent episodes of 

depression and (hypo)mania. SCZ is a heterogenous disorder that includes 

positive (hallucination/delusion) symptoms, negative symptoms, and 

cognitive impairment as core symptoms. All 3 disorders are common—MDD 

is known to have a lifetime prevalence of 16.6%, followed by BD of 3.9% 

and SCZ of 0.7% (6-8). The burden of these psychiatric disorders is 

increasing, and according to the Global Burden of Disease Study 2019, MDD, 

SCZ, and BD ranked first, third, and fifth, respectively, for the highest mental 

disorder burdens, based on the Years Lived with Disability (YLD) (9). All of 

these disorders ranked in the top 30 leading causes of disability when 

considering other conditions/diseases, and especially MDD was ranked 

second overall (9). Moreover, mortality rates including suicide are 

significantly increased than the general population (10). 

As the diagnosis of these disorders is based on subjective symptoms and 

behavioral observations, and as our knowledge of the biological basis of these 
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disorders is limited, differentiating them can be challenging. The complexity 

and heterogeneity of each disorder, and the shared symptoms between them 

further complicate accurate diagnosis. BD can be misdiagnosed as SCZ 

during a manic psychotic episode, and as MDD during a depressive episode. 

Additionally, for MDD or BD, a depressive episode with psychotic features 

can be misdiagnosed as SCZ. Nearly 40% of BD patients are known to be 

initially diagnosed as MDD (11-13). Additionally, around 30% of BD patients 

are known to be diagnosed as SCZ or other psychotic disorders (14). 

Misdiagnosis leads to delayed or inappropriate treatment, which can be a 

serious problem (15, 16). Therefore, researchers and clinicians have been 

interested in finding objective markers that can help to differentiate these 

disorders. As the diagnosis of these disorders depend on clinical evaluation 

of self-reported symptoms and behavioral observations, the integration of 

molecular biomarkers and clinical symptoms could further enable objective 

differential diagnosis. 

Considering the limitations of genomic and transcriptomic studies in 

previous research of psychiatric disorders, interests have increased in 

proteomics-based research, as proteomes can reflect biological function (17-

20). Especially, recent advances in mass spectrometry (MS)-based proteomic 

research have improved the development of high-throughput techniques for 

quantifying multiple proteins simultaneously (21, 22). Thus, MS-based 

proteomics is suitable for discovering and quantifying multiple proteins that 

are associated with certain disorders (23). MS-based proteomic profiling 
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analyzes global proteomes in biological samples and is performed to discover 

molecular biomarkers, while MS-based targeted proteomics, including 

multiple reaction monitoring (MRM), detects and quantifies proteins of 

interest with high accuracy and reproducibility (21-23).  

Traditional proteomic studies for psychiatric disorders have focused on 

the analysis of proteomes in the central nervous system (CNS) including post-

mortem brain tissues and cerebrospinal fluid, however accessibility and 

invasiveness remains a major challenge (17, 18, 24). Thus, quantitative 

proteomics has sought to analyze peripheral blood samples. Initial efforts 

focused on comparing psychiatric diseases and healthy controls (HC) (24-28). 

Recent studies have focused on differentiating MDD with BD (29-33), BD 

with SCZ (34-38), and SCZ with MDD (39). There was a previous report that 

compared the proteomes of MDD, BD and SCZ in peripheral blood 

mononuclear cells, however it was based on few samples (40).  

 

1.2. Purpose of Research 
 

Considering the current background, the study was conducted as 

follows. In Study 1, proteomic profiling was performed in psychotropic drug-

free MDD and BD patients. This was done to compare proteins that were 

significantly different in peripheral serum. In Study 2, the research protocol 

was expanded and both targeted quantification and protein profiling were 

performed in MDD, BD, SCZ patients and HC. Markers based on targeted 
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data quantification from plasma proteins were developed to differentiate 

MDD, BD, SCZ. Clinical variables were integrated to compare differentiative 

performances. Proteomic profiling was performed to compare significancy 

and consistency of expression patterns between the two types of proteomic 

data. Finally, biological function analysis was performed in both studies. 
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Chapter 2. Differentially expressed serum 

proteins between drug free major depressive 

disorder and bipolar disorder 
 

2.1. Methods 
 

Clinical samples 

 The study population initially comprised 18 MDD and 15 BD 

patients, who were enrolled between May 2012 and September 2017. Ages 

ranged from 16 to 42 years. The BD patients consisted of 4 BD-I (bipolar I 

disorder), 10 BD-II (bipolar II disorder), and 1 bipolar disorder not otherwise 

specified. Patients were recruited from Seoul National University Hospital 

(SNUH) and Seoul National University Bundang Hospital. Patients were 

diagnosed clinically with the Diagnostic and Statistical Manual of Mental 

Disorders, Fourth or Fifth edition (DSM-IV or DSM-5) by psychiatric 

specialists. Final statistical analysis was based on 25 subjects who were 

psychotropic drug free for at least 2 weeks, and with no missing values for 

clinical and demographic data. 

 Patients were excluded with the following criteria: co-diagnosis with 

substance-related disorders, history of physical illnesses such as hypertension, 

hypercholesteremia, liver diseases, epilepsy, and endocrine diseases including 

diabetes and thyroid diseases, evidence of intellectual disability, organic brain 

disease, and difficulties interpreting the Korean language. 

The study design was approved by the Institutional Review Board of 

SNUH (IRB No. 1704-075-846). The study was performed in accordance 
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with the Declaration of Helsinki. Written informed consent was obtained from 

each participant, and for those who were under 18, from both the participant 

and their parents/guardians. 

 Serum samples from each individual subject were obtained in the 

morning, after overnight fasting (> 8 h). Samples were centrifuged at 3000 

rpm for 10 min at 4 °C. The supernatant was collected and stored in Eppendorf 

tubes at < −70 °C until use. 

 

Demographics and clinical features  

The demographics that were considered for the patients in this study 

were age, sex, body mass index (BMI), and current smoking status. Age and 

BMI were analysed as continuous variables, and sex (men/women), current 

smoking status (yes/no) were analysed as dichotomous variables. Symptom 

severity was assessed with the Hamilton Depression Rating Scale (HAM-D) 

(41). All MDD patients were in mild/moderate depressive state, while the BD 

patients were depressed (n = 5), depressive with irritability (n = 4), or 

hypomanic (n = 1). The chronicity of the disease and medication was assessed 

as continuous variables; the duration from first onset (years), and the duration 

from first medication (years). 

 

Serum sample preparation 

Serum samples were prepared in line with the previous method 

reported by Geyer et al. (2016) (42) with some modifications. Briefly, 
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digestion buffer (8 M urea, 5 mM tris(2-carboxyethyhl)phosphate (TCEP), 20 

mM chloroacetaldehyde in 0.1 M avidin-biotin complex) was added to 2 µL 

of each serum sample. To denature and alkylate the proteins, the mixture was 

heated at 60 °C for 25 min, and then was cooled to room temperature. The 

first protein digestion was conducted at 37 °C, overnight with a trypsin/LysC 

mixture at a 100:1 protein-to-protease ratio. The second digestion was 

conducted at 37 °C, for 2 h with trypsin (enzyme-to-substrate ratio [w/w] of 

1:1000). All of the resulting peptides were acidified with 10% trifluoroacetic 

acid (TFA) and desalted with homemade C18-StageTips as described in 

previous studies (43, 44). The desalted samples were dried with a vacuum 

dryer, and stored at −80 °C. 

 

Construction of a matching library 

To establish a spectral library for matching between runs (45), the 

MARS-14 column (Agilent Technologies, Santa Clara, CA, USA) was used 

to deplete the 14 blood proteins with highest abundance, according to the 

manufacturer’s instructions. The depleted samples were processed with a 

two-step, filter-aided, sample preparation, as described in previous studies (43, 

44). All of the resulting peptides were desalted with homemade C18-

StageTips. For the deep serum data set, 25 µg of purified and digested 

peptides were fractionated with an Agilent 1260 bioinert HPLC (Agilent 

Technologies) equipped with an analytical column (4.6 × 250 mm, 5-µm 

particle). High-pH reversed-phase peptide fractionation was performed at a 
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flow rate of 0.8 mL/min over a 60-min gradient with two solvents (15 mm 

ammonium hydroxide in water, 15 mM ammonium hydroxide in 90% 

acetonitrile (ACN)). The fractions were desiccated in a vacuum centrifuge 

and stored at −80 °C until LC(liquid chromatography)-MS/MS analysis.  

 

LC-MS/MS analysis 

Profiling analysis was performed with a Quadrupole Orbitrap mass 

spectrometer; the Q-Exactive Plus (Thermo Fisher Scientific, Waltham, MA, 

USA) coupled with an Ultimate 3000 RSLC system (Dionex, Sunnyvale, CA, 

USA) equipped with a nano-electrospray ion source, as described in previous 

studies (43, 46). The peptide samples were separated on a two-column system, 

with a trap column (75 µm I.D. × 2 cm, C18 3 µm, 100 Å) and an analytical 

column (50 µm I.D. × 15 cm, C18 1.9 µm, 100 Å). The dried peptide samples 

were re-dissolved in Solvent A (2% ACN and 0.1% formic acid), prior to 

sample injection. 

The peptides separation on a 90-min gradient from 8% to 30% 

Solvent B (100% ACN and 0.1% formic acid) was applied to all samples. The 

spray voltage was set to 2.0 kV in positive ion mode, and the temperature of 

the heated capillary was set to 320 °C. Mass spectra were collected in data-

dependent mode with the top 15 method on the Q Exactive. The Orbitrap 

analyser scanned precursor ions with a mass range of 300–1650 m/z and 

resolution of 70,000 at 200 m/z. Higher-energy collisional dissociation (HCD) 

scans were acquired at a resolution of 17,500, and HCD peptide fragments 
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were acquired at a normalised collision energy (NCE) of 28. The maximum 

ion injection time for the full MS/MS scans was 20 and 120 ms, respectively.  

 

Data processing 

MaxQuant (version 1.5.3.1) was used to process mass spectra (47), 

The Andromeda engine was utilized to match MS/MS spectra with the  

Uniprot human database (December 2014, 88,657 entries) (48). For total 

protein level analysis, primary searches were done with a 6-ppm precursor 

ion tolerance. The search parameters were as follows; MS/MS ion tolerance 

at 20 ppm, N-acetylation, and methionine oxidation as variable modifications, 

cysteine carbamidomethylation as fixed modification, full enzymatic 

digestion with trypsin, peptides with a minimal length of six amino acids, and 

up to two missed cleavages. A false discovery rate (FDR) was set to less than 

1%, at peptide, protein, and modification levels. Matching between runs was 

performed with the depleted sample as a library, to maximize quantification 

events across samples. 

 

Statistical analysis 

Among the 33 patients, 25 were psychotropic drug free for at least 2 

weeks, with no missing values for demographic and clinical data. These drug 

free patients were considered for the following analysis. Demographic and 

clinical differences between MDD and BD were analysed with the Mann-

Whitney U-test for continuous variables and the Fisher’s exact test for 
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dichotomous variables. Statistical analyses for the data-dependent acquisition 

(DDA) data were performed using the Perseus software (49). At first, proteins 

which were identified as only identified by site, reverse, and contaminants 

were removed. Then, the expression levels were calculated with the 

Maxquant software by their Intensity Based Absolute Quantification (iBAQ) 

values. Log2 transformation was conducted to decrease the skewed 

distribution. Proteins with a minimum of 70% quantified values in at least the 

MDD group or the BDD group were considered valid. Missing values were 

imputed based on a normal distribution (width = 0.3, down-shift = 1.8). To 

detect differentially expressed proteins (DEPs), t-tests were performed for 

pairwise proteome comparisons. Protein abundances were subjected to z-

normalisation, followed by hierarchical clustering with the Pearson’s 

correlation distance. Linear regression was performed to control covariates 

that differed between patient groups. 

Canonical pathways and diseases/functions associated with the DEPs 

were evaluated by Ingenuity Pathway Analysis (IPA, QIAGEN, Hilden, 

Germany) (50) based on corresponding gene names. Additionally, the top 

protein network and associated diseases/functions were predicted. The 

analytical algorithms in IPA use lists of DEPs to predict biological processes 

and pathways with the Fisher’s exact test. 

All statistical tests were two-sided and P < 0.05 was considered 

statistically significant. 
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2.2. Results 

 

Demographic and clinical characteristics 

In total, 15 MDD patients and 10 BD patients who were psychotropic 

drug free for at least 2 weeks were included in the final analysis. There were 

no significant differences between MDD and BD regarding age, sex, BMI, 

smoking, duration from first onset, and duration from first medication. For 

depressive symptoms, the MDD group was more severe than the BD group 

(HAM-D score; 15.33 ± 4.61 vs 12.10 ± 3.54, P = 0.02). The summary of 

demographic and clinical characteristics is presented in Table 1-1. 

 

Quantitative analysis 

Comprehensive serum profiling with the depleted, pooled serum 

samples generated a peptide matching library, which consisted of 1616 

proteins/16,505 peptides. Thirty-three serum samples were analysed by 

unbiased single-shot approaches, and “match between runs” functionality 

with the constructed peptide library. This leaded to 481 quantified serum 

proteins with at least two peptides. The 268 proteins that were quantified at 

least 70% in either the drug-free MDD or BD group were subjected to 

statistical analysis. T-tests revealed 14 DEPs between drug-free MDD and BD 

(Figure 1-1). When adjusting for multiple comparisons (with the Benjamini-

Hochberg FDR adjusted p-value), the levels of RAB7A, ROCK2, and XPO7 

were still significantly different (Table 1-2). Hierarchical clustering revealed 
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that the two disorders generally clustered together (Figure 1-2). The 

association between expression levels of the 3 DEPs and diagnosis (MDD or 

BD) was still significant, after controlling the total HAMD score as a 

covariate in linear regression. 

 

Bioinformatics analysis 

The 14 DEPs were subjected to bioinformatics analysis. The tree-

map of the diseases/functions is presented in Figure 1-3. The DEPs were 

especially enriched in organismal injury and abnormalities, cell-to cell 

signalling and interaction, cellular function and maintenance, inflammatory 

response, and cellular assembly and organization. The top five canonical 

pathways were LXR/RXR activation, IL-12 signalling and production in 

macrophages, clathrin-mediated endocytosis signalling, actin cytoskeleton 

signalling, and the extrinsic prothrombin activation pathway (Figure 1-4).  

 The top network of the 14 DEPs consisted of six proteins (RAB7A, 

ROCK2, CD14, ANG, SELENOP, and KIF20B). The related 

diseases/functions with the network incorporated cellular movement, 

haematological system development and function, and immune cell 

trafficking (Figure 1-5). 
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2.3. Discussion 

 

In this preliminary study, 14 DEPs between psychotropic drug-free 

MDD and BD patients were detected. RAB7A and ROCK2 were 

overexpressed in MDD, and XPO7 was overexpressed in BD. Bioinformatics 

analysis revealed that cellular functions and inflammation/immune response 

pathways were significantly different between MDD and BD. 

Reviewing previous studies, Chen et al. (2015) analysed plasma 

samples of drug-naïve patients and identified 25 DEPs, whereas Ren et al. 

(2017) analysed plasma samples of drug-free patients and identified 9 DEPs 

(29, 30). Recently, Idemoto et al. (2021) analysed serum samples of drug-free 

patients and identified 44 DEPs (32). The present study found only one 

protein, ROCK2, as a duplicate protein (29) from these previous studies. The 

discrepancies are probably related to the different study designs, demographic 

and clinical characteristics of the population, and mass quantification 

platforms. The present study was based on serum samples, which can differ 

with plasma protein quantification (51). Moreover, the depressive symptoms 

were milder in this study, which might have led to different peripheral profiles. 

The most significant DEP based on fold-change and statistical 

significance was RAB7A. This protein is known to be a key regulator of endo-

lysosomal trafficking (52), and is found both in the CNS and peripheral blood 

(53, 54). Investigation of its expression in Alzheimer disease has revealed that 

it was increased in the cerebrospinal fluid (54), and its gene expression was 
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significantly changed in both the hippocampus and peripheral blood (53). A 

previous study revealed that its gene expression was upregulated in the post-

mortem brain of those with depression who committed suicide (55). Other 

functions of RAB7A, including endoplasmic reticulum stress modulation, 

growth-factor-mediated cell signalling, and lipid metabolism (56, 57), are all 

proposed pathophysiological mechanisms of mood disorders (58-61). 

ROCK2 was also overexpressed in MDD, and the direction of 

expression was consistent with the previous results of Chen et al. (29). ROCK 

is a serine/threonine kinase, and is known to be a crucial regulator of actin 

cytoskeleton and cell polarity (62). Specifically, the inhibition of ROCK 

increases neurite outgrowth and axonal regeneration, and activates pro-

survival protein kinase B in the CNS (62). The isoform ROCK2, is especially 

distributed in the brain, spinal cord, and heart (63). For mood disorders, there 

is a report that placental ROCK2 is downregulated in depressed women (64). 

Additionally, there is evidence that ROCK2 is upregulated during sleep 

deprivation (65) and is involved in the circadian variation of vascular 

contractility (66). Interestingly, circadian rhythm dysregulation is also a 

proposed marker specific for BD, when compared to MDD (67). 

XPO7 is known to mediate the nuclear export of proteins (68). A 

genome-wide association study of alcohol dependence identified XPO7 as a 

significant gene (69). However, in a confirmation study, it was significantly 

changed only in patients with BD and comorbid alcohol dependence, but not 

in those without alcohol dependence (70). Nevertheless, the specific 
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pathophysiology is currently unclear, because of the sparse literature between 

XPO7 and psychiatric manifestations. 

Bioinformatics analysis of the DEPs and its network revealed that 

cellular functions and inflammation/immune pathways were significantly 

altered between MDD and BD. The most significant canonical pathway was 

LXR/RXR (liver X receptor/retinoic acid receptor) activation. LXRs is 

known to form heterodimers with RXRs, which regulates the expression of 

genes that control lipid homeostasis (71). Interestingly, this pathway was 

reported to be significantly associated with plasma DEPs in an animal model 

of depression (72). Moreover, specific pathways of inflammation and immune 

dysfunction were significantly altered between MDD and BD, which are 

known to be involved in the pathophysiology of mood disorders (73-75). 

There were several limitations of this study. First, as the study 

focused on drug-free patients, the sample size was small. Larger sample sizes 

would increase statistical power to detect DEPs, which would increase the 

precision of bioinformatics analysis. Second, the study lacked a control group 

without mental disorders. This made it difficult to interpret the expression 

direction of DEPs between MDD and BD. Third, as the study was cross-

sectional, causal relationship between DEPs and mood disorders could not be 

determined. Additionally, the late manifestation or non-report of 

hypomanic/manic episodes might mislead the diagnosis of BD to MDD. 

Fourth, the study lacked validation. Validation in an independent set, or with 

other platforms like enzyme-linked immunosorbent assay (ELISA) would 
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confirm the reliability of the results. However, the insufficiency of samples 

limited validation in other populations and with alternative assays. Fifth, 

depressive symptom severity could have influenced the DEPs significance of 

the study. However, the association between expression levels of the three 

DEPs and diagnosis (MDD or BD) was still significant, after controlling the 

total HAMD score as a covariate in linear regression. Sixth, treatment 

histories could have influenced the results of the study. Even though only 

those whom were drug-free were analysed, prior treatment medication 

regimens could have influenced the results. Finally, other uncontrolled 

covariates such as exercise, and alcohol drinking might have influenced the 

protein profiles. However, despite these limitations, the study’s strength is 

that it focused on potential DEPs in the difference between MDD and BD, 

which is an understudied subject. Additionally, only drug-free patients were 

included, and blood collection time/fasting time was controlled. 

In conclusion, the preliminary study demonstrated that proteomic 

profiles in the serum differed between MDD and BD. RAB7A, ROCK2, and 

XPO7 proteins were differentially expressed between these disorders after 

controlling for multiple comparisons. These DEPs might enable 

differentiation, and expand the understanding of the pathophysiology of these 

disorders. Additional studies involving a larger sample size, with a control 

group, with more information on covariates that can influence the proteomic 

profiles, as well as including validation designs, are warranted. Furthermore, 

longitudinal designs to determine protein profiles from those whom are 
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initially diagnosed with MDD but develop hypomanic/manic symptoms later, 

are needed. 
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Chapter 3. Differentiation of major psychiatric 

disorders with plasma proteome and clinical 

data [Study 2] 
 

3.1. Methods 
 

Clinical samples 

The study population comprised 174 MDD, 170 BD, 171 SCZ 

patients and 160 HC, who were enrolled between August 2018 and December 

2020. Ages ranged from 19 to 65 years. The BD patients consisted of 75 BD-

I, 84 BD-II, and 11 other specified bipolar and related disorder. Patients were 

recruited from SNUH, Nowon Eulji Medical Center, Eulji University; Seoul 

Metropolitan Government Seoul National University Boramae Medical 

Center, Hanyang University Seoul Hospital, Inha University Hospital, and 

Cha University Bundang Medical Center. Patients were diagnosed with the 

DSM-5, confirmed by the Mini-International Neuropsychiatric Interview 

(MINI). HCs were recruited via advertisement at SNUH. HC had to have no 

psychiatric diagnosis confirmed by the MINI, and no known familial 

psychiatric history within second-degree relatives. Patients had to have a 

Clinical Global Impression - Severity ≥ 3 to participate. 

Patients and HC were excluded with the following criteria: use of  

anti-inflammatory analgesics including nonsteroidal anti-inflammatory drugs 

(NSAIDs) and steroids in the past two weeks (acetaminophen was permitted);  

history of neuromodulation including deep brain stimulation, 
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electroconvulsive therapy, transcranial direct current stimulation, and 

transcranial magnetic stimulation; history of neurosurgery; CNS diseases 

including epilepsy, meningitis, parkinsonism and stroke; cancer; tuberculosis; 

lactation/pregnancy; history of substance use disorder excluding alcohol, 

caffeine, and nicotine; intensive psychotherapy in the past two months; 

evidence of intellectual disability; and difficulty interpreting the Korean 

language. Exclusion criteria was based on previous evidence of the 

association between certain conditions/diseases and protein expression (76-

84). Those who were on psychotherapy were excluded to confine treatment 

effects to psychotropic medication. 

 The study design was approved by the Institutional Review Board of 

SNUH (IRB no. 1806-106-951) and all the other hospitals that participated. 

The study was performed in accordance with the Declaration of Helsinki. 

Written informed consent was obtained from each participant. 

 Plasma samples from each individual subject were obtained in a 6-

mL ethylenediaminetetraacetic acid (EDTA) tube (Ref 367863, Becton, 

Dickinson and Company, Trenton, NJ). Samples were centrifuged at 

1100−1300g for 10−15 min at 4°C or room temperature. The supernatant was 

collected and stored in Eppendorf tubes at < −70 °C until use. 

 

Demographics and clinical features  

The collected demographics that were considered for both patient 

groups and HC were age, sex, BMI, blood collection time, fasting time, 
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current exercise, alcohol and smoking status. Age and BMI were analyzed as 

continuous variables. Sex (men/women), blood collection time (AM, PM), 

fasting time (< 8 hours, ≥ 8 hours), current exercise status (yes/no), current 

alcohol use (yes/no), and current smoking status (yes/no), were analyzed as 

dichotomous variables. Current exercise status was defined as at least 30 min, 

once a week of moderate-intensity physical activity by the World Health 

Organization (WHO) recommendation (85). Current alcohol use was defined 

as at least 1 drink, once a week. 

Symptom severity was assessed with the Brief Psychiatric Rating 

Scale (BPRS) (86), Young Mania Rating Scale (YMRS) (87), Montgomery-

Asberg Depression Rating Scale (MADRS) (88), and Hamilton Anxiety Scale 

(HAM-A) (89). The subjective symptoms were checked with the Symptom 

Checklist-90-Revised (SCL-90-R) (90). As bipolar disorder has different 

mood states, patients with total YMRS score > 12 points were classified as 

having current hypomanic/manic/mixed symptoms (91). 

Medication use was analyzed as a dichotomous variable for 

antipsychotics (APs), mood stabilizers (MSs), antidepressants (ADs), and 

benzodiazepines/hypnotics (BZD/HNT). The chronicity of the disease or 

medication was assessed as continuous variables; the duration from first onset 

(years) and duration from first medication (years). 

 

Plasma sample preparation 



 

 ２１ 

For the targeted proteomic analysis, there were 5 preparation batches. 

In each batch, the samples were randomly distributed and assigned 

identification numbers to blind the researchers. The 6 highest abundance 

proteins from 44 μL of each plasma sample, was depleted with the MARS-6 

column (Agilent Technologies, Santa Clara, CA, USA). The depleted plasma 

was concentrated with a 3000-Da molecular weight cutoff (MWCO) filter 

(Amicon Ultra-4 3K, Millipore, Burlington, MA, USA), and quantified by 

the Pierce™ BCA Protein Assay Kit (Thermo Scientific, Rockford, IL, USA). 

100 μg of protein was reduced with 40 ul solution of 0.2% RapiGest, 20 mM 

dithiothreitol (DTT) at 60°C for 1h, and alkylated with 20 μL 100 mM 

iodoactamide (IAA) in the dark at room temperature for 30 min. Then the 

samples were digested with trypsin solution at 37°C for 4 h. Digestion was 

completed by adding 10% formic acid. The sample was centrifuged at 15,000 

rpm for 1h at 4°C to remove insoluble chemicals. The supernatants were 

spiked with crude stable isotope-labeled internal standard (SIS) peptides, in 

which a C-terminal lysine or arginine was heavy-isotope-labeled (13C6
15N2 or 

13C6
15N4) [purity: crude (>70%), JPT, Berlin, Germany].  

For proteomic profiling analysis, the remaining depleted individual 

plasma samples after targeted proteomic preparation were pooled for each 

group. In addition, equal amounts of pooled plasma samples for each group 

were integrated to generate a peptide spectral library. A total of 5 pooled 

samples were centrifuged at 15,000 rpm for 20 min at 4℃. The supernatant 

of 100 µl was dissolved in 300 μL lysis buffer (4% SDS; 0.1M TEAB, pH 8.5; 
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2 mM TCEP) and incubated at 100°C for 30 min. Protein concentrations were 

measured using a BCA reducing agent-compatible kit (Thermo Fisher 

Scientific, Waltham, MA, USA). A total of 300 μg of extracted protein was 

precipitated with cold acetone, denatured with 35 μL 100 mM DTT at 100°C 

for 35 min, and alkylated with 50 mM IAA in the dark at room temperature 

for 1 h. The proteins were digested at 37°C for 18 hours with trypsin 

(enzyme:substrate ratio [w/w] of 1:50) and 4% ACN. The digested peptides 

were measured and equalized. Then the equalized peptides were acidified 

with 10 μL 10% TFA, and desalted with homemade C18-StageTips (92). The 

desalted samples were dried with a vacuum dryer, and stored at −80 °C. To 

increase the number of identified proteins, high-pH reversed-phase peptide 

fractionation was performed for each pooled plasma sample (43, 93). The 

fractions were desiccated in a vacuum centrifuge and stored at −80 °C until 

LC-MS/MS analysis. 

 

Determination of detectable and quantifiable targeted proteins 

 For targeted proteomic analysis, three sources were integrated: 1) 

new targets for major psychiatric disorders (MDD, BD, and SCZ), 2) 

established targets for mood disorders (MDD and BD), and 3) laboratory-

established targets. 

New targets for major psychiatric disorders were collected from 5 

databases: PsyGeNET (http://www.psygenet.org), Schizophrenia Gene 

Resource 2 (https://bioinfo.uth.edu/SZGR/), Laboratory of Neurophenomics 
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(http://www.neurophenomics.info/), Comprehensive Database for 

Schizophrenia (http://www.SPRdb.org), and The Stanley Neuropathology 

Consortium Integrative Database (http://sncid.stanleyresearch.org) (94-97). 

As a result, 8081 genes were established as initial target proteins. After 

including targets that are known to be detectable in the blood with the Human 

Blood Proteins Atlas and Plasma Proteome Database (98, 99), 1462 proteins 

were selected. To further filter targets with matching MS/MS spectra and 

unique peptides, 8 MS/MS spectral libraries from the Institute for Systems 

Biology (https://www.systemsbiology.org), the National Institute of 

Standards and Technology (https://www.nist.gov), and the SWATHAtlas 

database (www. SWATHAtlas.org) were utilized. The peptide length was 

confined from 6 to 20 amino acids. Eventually, 407 proteins were selected; 

the highest intensity unique peptide for each protein, and the top 10 transitions 

for each peptide. 

The established candidate targets of mood disorders (MDD and BD) 

were drawn from a previous study (100), which included a step of evaluating 

detectability and quantifiability of the DEPs of Study 1 (101). The laboratory-

established candidate targets included proteins approved by the US Food and 

Drug Administration, and laboratory developed tests and proteins which were 

developed in previous research unrelated to psychiatric disorders. In total, 

1667 proteins/2283 peptides were merged as candidate targets.  

 To examine targets that were detectable and quantifiable in plasma 

samples of psychiatric disorders, LC-MRM-MS analysis was performed on a 
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pooled plasma sample that consisted of 50 participants in each group 

including HC. Targets were considered detectable if: 1) at least five transitions 

were observed for LC-MRM-MS, 2) they had the same elution patterns within 

the predicted retention time of ± 5 min, 3) library dot product > 0.6, 4) RTs 

and dot products were equal between light and heavy peptides. After 

including the top highest intensity transition per peptide based on the rank of 

intensity that was filtered by AuDIT (automated detection of inaccurate and 

imprecise transitions) (102), the analysis resulted in a total of 642 target 

peptides selected as being quantifiable. 

 

LC-MS analyses for targeted proteomics and proteomic profiling  

Targeted proteomic analysis (LC-MRM-MS) was performed with a 

1260 Infinity HPLC system equipped with a Jetstream electrospray source, 

coupled to an Agilent 6490 triple quadrupole MS (Agilent Technologies, 

Santa Clara, CA, USA). The sample vials of the autosampler were maintained 

at 4°C, and the guard and analytical column was maintained at 40°C. For 

each digested sample, 40 μl was injected into a guard column (2.1 × 15.0 mm, 

1.8 µm, 80 Å) (Agilent Technologies, Santa Clara, CA, USA), and online 

desalting was conducted in 3% solvent B (0.1% formic acid/ACN (v/v)) at 

50 μl/min for 10 min. After the position of valve was switched, the sample 

was transferred to the analytical column (0.5 × 35.0 mm, 3.5 µm, 80 Å) 

(Agilent Technologies, Santa Clara, CA, USA) in 3% solvent B, at 40 µL/min 
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for 5 min. Bound peptides were separated on the column and eluted with a 

linear gradient of 3% to 35% solvent B at 40 µL/min for 50 min. 

The mass spectra were generated in positive ion mode, based on the 

following parameters: 2500 V ion spray capillary voltage, 2000 V nozzle 

voltage, 5 V cell accelerator voltage, 200 V delta EMV, and 380 V fragmented 

voltage. The drying gas was sprayed at 15 L/min at 250°C, and the sheath gas 

flow was 12 L/min at 350°C. Collision energy (CE) was optimized by adding 

the intensities of individual transitions that resulted in the largest peak area. 

Before individual sample analysis, SIS peptides were pooled and analyzed to 

evaluate their RTs. The RTs were compared with those of endogenous target 

peptides by spiking the pooled mixture of SIS peptides with 100 fmol of 

heavy β-galactosidase peptide. Subsequently, the final targets were quantified 

in individual blood samples. LC-MRM-MS analysis was performed once per 

sample (1 replicate for each sample).  

Proteomic profiling analysis was performed with an Easy-nLC 1000 

system equipped with a nano-electrospray ion source, coupled to a Q-

Exactive MS (Thermo Fisher Scientific, Waltham, MA, USA), as described 

in a previous study (93). The peptide samples were separated on a two-column 

system, with a trap column (75 μm I.D. x 2 cm, 3-μm Acclaim PepMap100 

C18 beads) and an analytical column (75 μm I.D. x 50 cm, 3-μm ReproSil-

Pur C18-AQ beads). Lyophilized peptide samples were re-dissolved in 

Solvent A (2% ACN and 0.1% formic acid) prior to sample injection.  
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The peptides separation on a 180-min gradient from 6% to 40% 

Solvent B (100% ACN and 0.1% formic acid) was applied for all samples. 

The spray voltage was set to 2.2 kV in positive ion mode, and the temperature 

of the heated capillary was set to 275°C. Mass spectra were collected in data-

dependent mode with the top 15 method on the Q Exactive. The Orbitrap 

analyser scanned precursor ions with a mass range of 350–1700 m/z, and 

resolution of 70,000 at 200 m/z. HCD scans were acquired at a resolution of 

17,500, and HCD peptide fragments were acquired at a NCE of 27, 30, and 

33. The maximum ion injection time for the full MS/MS scans was 20 ms and 

80 ms, respectively. All samples were analyzed in 3 technical replicates. 

 

Processing of targeted proteomic data  

The raw data from the LC-MRM-MS analysis was processed in 

Skyline (version 19.1.0) (MacCoss Lab, Seattle, WA, USA). After manual 

inspection of peptide-transition peaks, the peak area ratio (PAR); the ratio of 

the endogenous (Light) to SIS (Heavy) peptide peak area; was calculated. A 

total of 54 unstable target peptides with low intensities (intensity < 1000), 

unequal RTs between light and heavy peptide, and skewed peaks were further 

excluded. Subsequently, the final PAR values of 588 target peptides across 

675 samples were normalized by the area of heavy β-galactosidase peptide, 

to reduce technical variability from sample preparations. The normalized 

PAR values were log2 transformed. Potential batch effects between five 
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sample preparation batches were corrected with the Combat algorithm using 

the R package proBatch (103).  

 

Sequence-based search for plasma proteome 

Proteome Discoverer (version 2.2) was used to process mass spectra. 

The SEQUEST-HT algorithm was utilized to match MS/MS spectra with a 

modified version of the Uniprot human database (December 2014, 88,717 

protein entries). The search parameters were as follows: a precursor ion mass 

tolerance value at 20 ppm, a fragment ion mass tolerance value at 0.02 Da, 

dynamic modification values at 42.01 Da for N- acetylation, 15.99 Da for 

methionine oxidation, and 57.02 Da for cysteine carbamidomethylation, full 

enzymatic digestion with trypsin, and peptides up to two missed cleavages. 

FDR was set to less than 1%, at the peptide and protein levels. Peptides were 

mapped and linked with the “Feature Mapper” node to increase the number 

of identified proteins. Proteins were quantified and normalized by calculating 

the relative intensities for peptide-spectrum matches and using the “Precursor 

Ions Quantifier” node. 

 

Analysis of demographics and clinical characteristics  

The study participants with MDD, BD, and SCZ were distributed into 

training, validation, and independent test sets (6:2:2). The HC were analyzed 

as a reference set. Demographic and clinical characteristics were compared 

between patient groups and HC by chi-squared tests for dichotomous 
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variables, and by one-way analysis of variance (ANOVA) with Tukey’s HSD 

(honest significant difference) test for continuous variables. 

 

Determination of targeted proteomic candidate features in the training 

set 

Initially, proteomic features within the range of raw PAR ≤ 0.05 or 

raw PAR ≥ 100 in over 5% of individuals, were excluded in each training 

set. 

Next, proteomic features that had significant relations with 

demographics, medication use, and chronicity of disease and medication were 

excluded as follows. At first, univariate analysis with the t-test for 

dichotomous variables and Pearson’s correlation analysis for continuous 

variables were performed between each covariate and proteomic feature. For 

each significant covariate, the disease type was further controlled by 

univariate analysis of covariance (ANCOVA). All proteomic features that had 

a statistical significance with a covariate and not with the disease type were 

excluded. 

Finally, proteomic features with a variance inflation factor (VIF) > 5 

relative to other features were excluded. The final proteomic candidate 

features were used to develop MPM (multiprotein marker) models. AUROC 

(area under the receiver operating characteristics) analysis was performed for 

each proteomic candidate feature, and fold-changes were calculated by 
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subtracting the average batch-corrected PAR value between patient 

groups/HC. 

 

Development of MPM models 

Repeated 5-fold cross-validation (100 repetitions) LASSO (least 

absolute shrinkage and selection operator) regression was performed in the 

training sets for each pairwise group comparison, with the R package glmnet 

(104). Feature extraction and model averaging based on previous studies (100, 

105) were performed to develop MPM models as follows. For each model 

that was generated with the repetition process, the bias-corrected version of 

the AIC (Akaike’s information criteria) was calculated as : 

AICc = 𝐴𝐼𝐶 +
2𝐾(𝐾 + 1)

𝑛 − 𝐾 − 1
 

where n is the sample size, and K is the number of model parameters.  

The Akaike weight (wm) was calculated with the bias-corrected version of 

AIC (AICc), to represent the probability of each model being the best model 

(100, 105), as : 

𝑤𝑚 =  
𝑒(−

1
2

𝐴𝐼𝐶𝑐(𝑚))

∑ 𝑒(−
1
2

𝐴𝐼𝐶𝑐(𝑗))𝑀
𝑗=1

 

where AICc(j) is the AICc for model j = 1 to M. 

The frequency proportion across the 100 models for each proteomic candidate 

feature was defined as the selection fraction. Features that had a selection 

fraction = 1 or ≥ 0.8 were combined, in each pairwise group comparison. The 
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weighted coefficient for each feature was defined by summing the product of 

the Akaike weight and coefficient of each feature, of each unique model, as : 

β = ∑ 𝑤𝑗𝛽𝑗

𝑀

𝑗=1

  

where wj  and βj  are the Akaike weight and coefficient estimates for a 

feature of interest in model j, and β is the weighted average of βj across 

model j = 1 to M. 

The above process generated two MPM models based on the 

selection fraction, for each pairwise group comparison. The performance of 

each MPM model was evaluated in the validation sets. Then, considering the 

number of combined features and differentiation performance in the 

validation sets, the final MPM models were selected. Pearson’s correlation 

analysis was performed to analyze the association between clinical symptoms 

with proteomic candidate features from the final MPM models. For 

significant correlations, ANCOVA was additionally performed to determine 

if the features were associated with current symptoms or disease types. Finally, 

the performances of the final MPM models were tested in the independent 

test sets. 

 

Expression levels of the proteomic features in the final MPM models 

 Expression levels of the targeted proteomic features in the final 

MPM models were examined in the total study populations. ANOVA was 
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performed for each pairwise group comparison—1) MDD versus BD versus 

HC, 2) MDD versus SCZ versus HC, and 3) BD versus SCZ versus HC—, 

followed by Tukey's HSD for post-hoc analysis. Violin plots for the final 

MPM model value based on the proteomic features, were constructed to 

compare mean/variances between groups in the total study population. 

 

Development of SCLB, CRSB, and ES models in the training sets 

 Symptom checklist-based (SCLB) models were determined by 

considering all combinations of the dimensions and the overeating item of the 

SCL-90-R. The models with the highest differentiation performance by 

binary logistic regression in the training sets, were selected as the final SCLB 

models. Further, all total scores of the clinician rater scales (BPRS, MADRS, 

YMRS, and HAM-A) were used to develop clinician rater score-based 

(CRSB) models by binary logistic regression in the training sets. Both were 

performed with the “glm” function of the R package e1071 (106). Finally, 

ensemble (ES) models were constructed by combining MPM and SCLB 

models, based on the stacking ensemble strategy (107). This was performed 

by combining prediction values (represented as the probability) of the MPM 

and SCLB models in the training sets. 

 

Differentiation and diagnostic performance of the models 

The differentiation performance of each model was calculated with 

AUROC values by the R package pROC (108) in the training, validation, 
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independent test, and total sets. The optimal cutoff of ES models were 

determined by the Youden Index as follows: J = max (Sensitivity + Specificity 

– 1) (109). Sensitivity, specificity, accuracy, positive predictive value (PPV), 

and negative predictive value (NPV) were calculated at the optimal cutoff. 

 

Processing of proteomic profiling data  

Proteins had to have all 3 normalized values positive within a group, 

and at least one unique peptide determined to be quantified. After log2 

transformation, the technical variation was measured by Pearson’s correlation, 

and principal component analysis (PCA) was performed to examine the 

segregation of groups. Then, ANOVA with Tukey's HSD was performed to 

identify DEPs between patient groups and HCs. After z-score normalization 

of DEP levels, k-means hierarchical clustering analysis was performed. Fold-

changes were calculated by subtracting the average normalized protein 

amount between patient groups/HC. 

 

Bioinformatics analysis  

 The protein networks with a network score ≥ 20 were merged by 

IPA, based on all of the proteins that were included in the final MPM models 

for each pairwise group comparison, with their corresponding gene names. 

Diseases/functions and canonical pathways associated with the merged 

network were evaluated. The analytical algorithms in IPA use lists of proteins 



 

 ３３ 

to predict protein networks and their corresponding diseases/functions and 

canonical pathways, with the Fisher’s exact test. 

 

Statistical analysis  

The statistical analyses were performed with SPSS (version 25.0, 

IBM, Armonk, NY, USA) and R (version 4.1.0). Additionally, Perseus 

(version 1.5.8.5) was used for proteomic profiling data. Statistical tests were 

two-tailed, and P < 0.05 was considered to be statistically significant.  
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3.2. Results 
 

Demographics and clinical characteristics 

In total, 174 MDD, 170 BD, 171 SCZ patients, and 160 HC were 

included in the final analysis. There were significant differences between 

patients and HC groups in all demographic and clinical characteristics except 

sex (Table 2-1). Further, these characteristics were compared between patient 

groups in the training, validation, and independent test sets (Tables 2-2, 2-3, 

and 2-4). Particularly in the training set, demographics except for sex, fasting 

time, exercise, and smoking, were significantly different between patient 

groups. Medication use was different excluding BZD/HNT. All of the total 

clinician rater scores, and dimensions of the SCL-90-R except the paranoid 

ideation and overeating item were different between patient groups (Table 2-

2).  

 

Batch effect correction of the targeted proteomic data 

 As there were multiple preparation batches, its effect was corrected 

for the targeted proteomic data to reduce technical variability. PCA plots were 

examined based on the adjusted PAR after batch effect correction. There were 

no outliers identified, and sample preparation batch effects were minimized 

(Figure 2-1a). Additionally, there was no significant batch effect regarding 

hospitals (Figure 2-1b). 
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Proteomic candidate features selection in the training set 

After excluding proteomic features that had a significant relationship 

only with the covariates and not the disease type based on univariate analysis 

and ANCOVA, and that had a variance inflation factor (VIF) > 5 relative to 

other features, 23, 29, and 30 candidates were identified for the differentiation 

between MDD with BD, MDD with SCZ, and BD with SCZ, respectively 

(Table 2-5). 

These features overall showed consistent expression level patterns 

across disease types. In addition, correlations between expression levels with 

demographic and clinical characteristics were low; the absolute median 

Pearson’s correlations (r) were 0.05, 0.07, and 0.07 for each pairwise group 

comparison, respectively. AUROC values of each candidate proteomic 

feature ranged from 0.5 to 0.7 (Figure 2-2). At last, there was low 

interdependence between proteomic candidate features; the absolute median 

Pearson’s correlations (r) were 0.08, 0.09, and 0.08 for each pairwise group 

comparison, respectively (Figure 2-3). 

 

Development of MPM models  

 For each pairwise group comparison, 100 models were generated 

with LASSO in the training sets. The model probability (Akaike weight) was 

0.98 for one unique model, absolutely supporting it for the MPM model of 

MDD versus BD. In contrast, the highest model probability for unique models 

were 0.32 and 0.31 for the MPM model of MDD versus SCZ, and BD versus 
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SCZ (Table 2-6). For the selection fraction of 1 and ≥ 0.8, model averaging 

was performed to develop MPM models in the training sets. When compared 

with selection fraction = 1, selection fraction ≥ 0.8 resulted in additional 6, 

4, and 8 proteomic features in the MPM models for each pairwise group 

comparison. The AUROC values of the models in differentiating MDD 

versus BD, MDD versus SCZ, and BD versus SCZ, based on selection 

fraction = 1, were 0.84, 0.87, and 0.88 in the training sets and 0.73, 0.74, and 

0.72 in the validation sets, respectively. For selection fraction ≥ 0.8, the 

AUROC values were 0.86, 0.88, and 0.90 in the training sets and 0.75, 0.77, 

and 0.79 in the validation sets, respectively (Figure 2-4 and Figure 2-5). Even 

though there was a slight increase in AUROC values for the MPM models 

based on selection fraction ≥0.8 in the validation sets, the MPM models based 

on selection fraction = 1 were determined as the final models, to generate a 

simpler combination with the most important proteomic features (Figure 2-4). 

For each final MPM model, the direction of the average coefficient of 

each proteomic feature was consistent with the direction of alteration of 

expression in the training set (Figure 2-4). Additionally, ANCOVA was 

performed in the training set to analyze the relationship between each 

proteomic feature with clinical symptoms. The following proteomic features 

were associated with the following clinical symptoms, and not with 

differential diagnosis: ALDOC was associated with the paranoid ideation and 
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hostility dimension of the SCL-90-R, ARMD4 was associated with the 

obsessive-compulsive dimension of the SCL-90-R, and CTND1 was 

associated with the total BPRS score in the MPM model for MDD versus BD. 

ALDOC was associated with the psychoticism, paranoid ideation, and 

hostility dimension of the SCL-90-R, and IBP3 was associated with the 

obsessive-compulsive dimension of the SCL-90-R in the MPM model for 

MDD versus SCZ. Finally, GPR37 and UROM were associated with the total 

BPRS score in the MPM model for BD versus SCZ (Table 2-7) 

The final MPM models consisted of 17, 20, and 17 proteomic features 

for each pairwise group comparison. The AUROC values in differentiating 

MDD versus BD, MDD versus SCZ, and BD versus SCZ in the independent 

test sets were 0.74, 0.82, and 0.78, respectively (Figure 2-4). The models of 

MDD versus BD and BD versus SCZ, were additionally used to differentiate 

MDD/SCZ with subgroups of BD in the total set. The MPM model for MDD 

versus BD had an AUROC value of 0.78 in differentiating MDD from BD-

II/other specified bipolar and related disorder, and 0.80 in differentiating 

MDD from BD without current hypomanic/manic/mixed symptoms. The 

MPM model for BD versus SCZ had an AUROC value of 0.82 in 

differentiating BD-I from SCZ (Figure 2-6). The violin plots for the final 

MPM model values in the total population are presented in Figure 2-7.  

 

Proteins of MPM models in the total study population 
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The mass spectral information of the proteomic features from the 

final MPM models is presented in Table 2-8. Expression levels of the 

proteomic features in the final MPM models were examined in the total study 

population including HC (Table 2-9). 

In the final MPM model of MDD versus BD, 10 of the 17 proteins 

differed significantly between MDD versus BD versus HC. In the post-hoc 

analysis for MDD versus BD, ALDOC, CETP, DDR1, and ITIH2 were 

upregulated in MDD, and ARMD4, C1RL, CTND1, and IC1 were 

upregulated in BD. Additionally for MDD versus HC, ALDOC and AMPN 

were upregulated in MDD, and ARMD4 and DOPO were upregulated in HC. 

Finally, for BD versus HC, C1RL and CTN1 were upregulated in BD, and 

CETP and ITIH2 were upregulated in HC. 

In the final MPM model of MDD versus SCZ, 16 of 20 proteins 

differed significantly between MDD versus SCZ versus HC. In the post-hoc 

analysis for MDD versus SCZ, ALDOC, AT1A1, CBG, CRYM, GPX3, IBP3, 

IBP5, ITIH2, PROC, and TFPI1 were upregulated in MDD, and CATS, 

CBPB2, PROS, and SAA1 were upregulated in SCZ. Additionally for MDD 

versus HC, ITIH2 was upregulated in MDD. Finally, for SCZ versus HC, 

ALDOC, CATS, CBPB2, PROS, and SAA1 were upregulated in SCZ, and 

ALS, AT1A1, CBG, CRYM, IBP5, and PROC were upregulated in HC. 

In the final MPM model of BD versus SCZ, 15 of 17 proteins differed 

significantly between BD versus SCZ versus HC. In the post-hoc analysis for 

BD versus SCZ, AACT, AMPN, CFAB, HEP2, and PSMD1 were 
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upregulated in SCZ, and C1RL, CLD3, DOPO, GPR37, IBP5, ICI, MBL2, 

TFPI1, and UROM were upregulated in BD. Additionally for BD versus HC, 

C1RL was upregulated in BD, and PSMD1 was upregulated in HC. Finally, 

for SCZ versus HC, AMPN, BPIB1 and CFAB were upregulated in SCZ, and 

CLD3, DOPO, IBP5, ICI, TFPI1, and UROM were upregulated in HC. 

Overlapping proteomic features for the final MPM models and their 

expression patterns were further examined (Table 2-9 and Figure 2-8). 

ALDOC, COAA1, ITIH2, and SAA1 overlapped between the final MPM 

models for MDD versus BD and MDD versus SCZ. The expression levels of 

ALDOC and ITIH2 were significantly different between diseases in both 

MPM models. AMPN, C1RL, DOPO, IC1, and NPC2 overlapped between 

the final MPM models for MDD versus BD and BD versus SCZ. The 

expression levels of C1RL and IC1 significantly different between diseases 

in both MPM models. IBP5 and TFPI1 overlapped between the final MPM 

models for MDD versus SCZ and BD versus SCZ, and both expression levels 

were significantly different between disorders in both MPM models. 

However, there was no protein that overlapped in all of the final MPM models. 

 

Differentiation performances of SCLB, ES, and CRSB models  

 The SCLB models that were constructed with the combinations of 

the SCL-90-R dimensions are presented in Table 2-10 and its differentiation 

performance is plotted in Figure 2-9. When compared with MPM models, the 

differentiation performances of the SCLB models were generally lower for 
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pairwise group comparisons of MDD versus BD, and BD versus SCZ, and 

generally higher for pairwise group comparison of MDD versus SCZ (Figure 

2-4 and Figure 2-9). After integrating the final MPM and SCLB models, the 

ES models AUROC ranges for differentiating MDD versus BD, MDD versus 

SCZ, and BD versus SCZ were 0.77~0.84, 0.83~0.91, and 0.73~0.89, 

respectively (Figure 2-10). The CRSB models AUROC ranges for 

differentiating MDD versus BD, MDD versus SCZ, and BD versus SCZ were 

0.74~0.83, 0.91~0.95, and 0.78~0.82, respectively (Figure 2-11). The 

differentiation performances in each set and diagnostic performances in the 

independent test set of the ES and CRSB models were overall comparable 

(Figure 2-12). 

 

Network analysis of proteomic features in the final MPM models  

 All of the 43 proteins from the final MPM models were subjected to 

network analysis. The two networks that satisfied network score ≥ 20 were 

merged, comprising 70 molecules, with 31 proteins from the final MPM 

models (Table 2-11 and Figure 2-13). Diseases/functions that were associated 

with the merged network included cellular movement (P = 7.87E-21 to 1.61E-

7), cell-to-cell signaling and interaction (P = 9.14E-10 to 1.61E-7), immune 

cell trafficking (P = 2.3E-12 to 1.3E-7), neurological disease (P = 7.47E-12 

to 8.17E-8), and psychological disorder (P = 6.09E-12 to 3.89E-2). 

Furthermore, the merged network was associated with the following 
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canonical pathways— production of nitric oxide and reactive oxygen species 

in macrophages, neuroinflammation signaling pathway, reelin signaling in 

neurons, synaptogenesis signaling pathway, CREB signaling in neurons, 

opioid signaling pathway, axonal guidance signaling, FXR/RXR activation, 

LXR/RXR activation, and acute phase response signaling (Figure 2-13). 

 

Plasma proteome profiling of psychiatric disorders 

A total of 902 proteins were quantified for proteomic profiling, and 

the dynamic range spanned across 7 orders of magnitude (Figure 2-14a). The 

technical variations across groups were low; the Pearson’s correlation value 

ranged from 0.93 to 0.98 (Figure 2-14b). In addition, the median coefficient 

of variation (CV) values for the normalized abundance of each group was less 

than 1.5 % in the technical replicates (Figure 2-14c). PCA plots revealed that 

plasma proteome composition was grossly different between groups (Figure 

2-14d). 

 In the pairwise groups comparisons of MDD versus BD versus HC, 

267 DEPs were determined, falling into 4 clusters. For MDD versus SCZ 

versus HC, 347 DEPs were determined, falling into 5 clusters, and for BD 

versus SCZ versus HC, 339 DEPs were determined, falling into 5 clusters 

(Figure 2-15).  

 

Consistency of the proteomic features from the final MPM models 

between targeted proteomics and proteomic profiling data 
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 The consistency in the statistical significance and expression patterns 

of the proteomic features in the final MPM models between targeted 

proteomics and proteomic profiling was further examined. In the MPM model 

of MDD versus BD, 4 proteins (ITIH2, TRFE, ALDOC, and SAA1) were 

included as DEPs. Only ITIH2 had consistent statistical significance [Post-

hoc P-value = 0.001 for both proteomic platforms] and expression patterns 

[upregulated in MDD for both proteomic platforms] (Figure 2-15a, Table 2-

9, and Table 2-12). 

In the MPM model of MDD versus SCZ, 6 proteins (PROS, TFPI1, 

ITIH2, CBG, ALDOC, and SAA1) were included as DEPs. TFPI1 [Post-hoc 

P-value = 0.005 and 0.043 for targeted proteomics and proteomic profiling, 

respectively] and ITIH2 [Post-hoc P-value = 0.025 and 0.003 for targeted 

proteomics and proteomic profiling, respectively] had consistent statistical 

significance and expression patterns [upregulated in MDD for both proteomic 

platforms] (Figure 2-15b, Table 2-9, and Table 2-12). 

Finally, in the MPM model of BD versus SCZ, only C1RL was 

included as DEPs. C1RL had consistent statistical significance [Post-hoc P-

value = 0.002 and 0.003 for targeted proteomics and proteomic profiling, 

respectively] and expression patterns [upregulated in BD for both proteomic 

platforms] (Figure 2-15c, Table 2-9, and Table 2-12). 

Consequently, TFPI1, ITIH2, and C1RL were determined to be 

important proteins that satisfied the consistency requirement. Alterations in 

their expression patterns of the profiling data were compared (Figure 2-16). 
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TFPI1 was upregulated in MDD and SCZ but downregulated in BD when 

compared with HC (MDD>SCZ>HC>BD). ITIH2 had no expression 

difference between MDD and HC but was downregulated in BD and SCZ 

when compared with HC (MDD≈HC>SCZ>BD). C1RL had no expression 

difference between BD and HC but was downregulated in SCZ and MDD 

when compared with HC (BD≈HC>MDD>SCZ). 
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3.3. Discussion 
 

 The diagnosis of major psychiatric disorders, including MDD, BD, 

and SCZ, primarily relies on subjective symptoms and behavioral 

observations. However, due to the complexity, heterogeneity of each disorder, 

and shared symptoms between them, it is sometimes difficult to differentiate 

these disorders objectively with high accuracy. Thus, the main aim of this 

study was to develop MPM models for differentiating these disorders. An 

additional aim was to integrate proteomic and self-report clinical features to 

compare its differentiation performance with clinician assessed clinical 

features.  

When developing the final MPM models, it was important to 

consider the high-dimensional characteristics of the proteomic data when 

compared to a relatively smaller sample number (110). Thus, the efforts to 

overcome overfitting was important (111). In this study, initially discarding 

features irrelevant to the differentiation of the disorders, developing repetitive 

models based on machine learning methods with cross-validation, and the 

process of feature extraction/weighted model averaging, yielded 

generalizable MPM models. The applicability of these methods was 

demonstrated in a previous study (100). Consequently, the final MPM models 

for each pairwise group comparison performed reasonably in each data set. 

Furthermore, the models demonstrated similar performance in the subgroup 

analyses of BD, suggesting the model performance is unaffected by subtype 

or episode states of BD.  



 

 ４５ 

 When focusing on proteomic feature selection, the need to control 

effects of certain covariates including demographics, medication, and 

chronicity of the disease/medication was important, as these differed between 

disease types. Thus, in the initial stage of developing MPM models, the study 

confined candidate proteomic features to those significantly associated with 

disease types if they were associated with significant covariates. In addition, 

the final features had low interdependence with current symptoms, suggesting 

its differentiation power when combined in the MPM models. Particularly for 

BD, the features were unrelated to depressive or manic symptoms, which 

should be recognized considering the dynamic differences of these symptoms. 

To summarize, majority of the markers could be considered as a trait marker, 

enabling differentiation between the disorders.  

Subsequently, integration of the models based on current subjective 

symptoms and proteomic data enabled enhancement in its performance, and 

was comparable with models based on clinician rater scores. Of course, these 

models were constructed with current symptoms and proteomic data, so the 

lifetime diagnosis of MDD, BD, and SCZ based on these models has its 

limitations. To enhance performance, integrating known risk factors in 

differentiating these disorders like seasonality, atypical symptoms, family 

history, etc. should be considered. Additionally, controlling procedure 

batches and hospital effects would be important. Nevertheless, the ES models 

have potential clinical applicability, enabling objective differentiation 
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between these disorders. With further validation, these models could help 

differential diagnosis in situations when it is confusing or complicated. 

Compared with a previous study, ITIH2 was replicated as a 

significantly increased protein in MDD when compared to BD (100). 

Smirnova et al. (2021) discovered AACT in the profiling data of SCZ but not 

in BD, which is in line with this study, as AACT was higher in SCZ versus 

BD (34). However, the direction of HEP2 was the opposite when compared 

with the study of Santa Cruz et al. (2019) (36). The differences in proteomic 

quantification approaches can be a reason for the discrepancy. Thus, the 

comparison with proteomic profiling data helps to focus on more consistent, 

reliable proteins. The level of TFPI1 was significantly different between each 

group. This protein is known to have an important role in inhibiting the 

extrinsic coagulation pathway (112). Its function in cancer has been 

previously studied (113), but its ability to differentiate major psychiatric 

disorders is a novel finding. The level of ITIH2 was upregulated in MDD and 

HC, when compared to BD and SCZ. As discussed previously, ITIH2 was a 

consistent key protein in differentiating MDD and BD (100). ITIH2 is a serine 

protease inhibitor with known anti-inflammatory properties (114). A previous 

study reported that the levels of ITIH2 were decreased in MDD when 

compared to HC, but the study sample of it was smaller (115). The level of 

C1RL was upregulated in BD and HC, when compared to MDD and SCZ. A 

recent study reported that the level of C1RL at age 12 was higher in those 

who experienced psychotic symptoms at the age of 18, when compared to 
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those without psychotic symptoms (116). The chronicity could explain the 

discrepancy of expression direction, because the complement pathway 

activity might differ before and after the onset of psychotic symptoms. 

Although the proteomic features were grossly different when 

compared to previous reports, bioinformatics analysis results were generally 

replicated. Earlier studies differentiating MDD/SCZ from BD also implicated 

dysregulation of the coagulation and complement cascades (29, 36) which 

was significant in this study. Other significant pathways included neural 

signaling, and oxidative and inflammatory pathways, which have all been 

recapitulated in previous studies (100, 101). Although these pathways were 

related to the differentiation between MDD and BD (100, 101), the results of 

the current study suggest that they are also associated with SCZ. Another 

interesting result was the significance of the reelin signaling pathway. This 

pathway is known to have several important functions in the CNS. This 

includes the regulation of neuronal migration and synaptogenesis, and the 

pathway has been previously linked to major psychiatric disorders, including 

MDD, BD, and SCZ (117). However, the results of the bioinformatics 

analysis need cautious interpretation because they were based on proteins 

from peripheral blood, and not the CNS. 

Approximately 500 ml of CSF enters the circulation each day (118), 

and in certain situations, the dysfunction of the blood-brain barrier suggests 

the occurrence of protein exchange between the CNS and the peripheral 

system (119). However, the expression of each individual protein differs, and 
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the blood is “neither perfectly correlated, nor uncorrelated” with the CNS 

(120). There is substantial evidence of the leaky blood-brain barrier in 

psychiatric diseases, and evidence of neural-derived exosomes which passes 

the blood-brain barrier and exits in peripheral blood (121). To summarize, 

evidence supports the possibility of differentiating psychiatric disorders with 

plasma proteins, but each individual protein needs its own consideration. 

When matching the 43 plasma proteins of MPM models with a public 

database (THE HUMAN PROTEIN ATLAS) (122), 41 (except for MBL2 

and UROM) were reported as detectable proteins in the human brain. 

However, when comparing consistency with a previous study of the 

cerebrospinal fluid (123), only 2 proteins (AMBP, ITIH2) of the MPM 

models for MDD vs BD were DEPs of the cerebrospinal fluid study, and the 

expression direction was opposite. Seven proteins (ALS, CBPB2, CBG, IBP3, 

ITIH2, PROC1, PROS) of the MPM models for MDD vs SCZ were DEPs of 

the cerebrospinal fluid study, with CBPB2 and PROS expressing consistent 

upregulation in SCZ. There was no consistent protein for BD vs SCZ. 

However, considering the skewed expression patterns of DEPs in certain 

pairwise comparisons (i.e. MDD vs BD and MDD vs SCZ) of the previous 

cerebrospinal fluid study, as well as heterogeneous study designs, sample 

type/size, and analytical methods between both studies, future studies that 

focus on correlations between the proteomes of blood and CNS are warranted. 

 There were several limitations of this study. First, despite the 

expanded sample size compared with previous studies, it remained a major 
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limitation. As proteomic features are known to be associated with symptom 

severity and other diseases, the necessity to exclude certain conditions 

resulted in a smaller sample size than expected. Even though multiple efforts 

including feature extraction and model averaging were performed, overfitting 

occurred, as the performance in other sets were lower than in the training set. 

Second, there could be other potential confounders. Specifically, medication 

categorization was broad, and specific dosages and durations were not 

controlled. Although the study confined proteomic features that were 

associated with differential diagnosis when controlling related covariates, 

other covariates might have influenced the differentiation performance. Third, 

the cross-sectional design limited causality interpretation. Longitudinal 

studies are required to observe diagnostic alterations of MDD, BD, and SCZ, 

and serial quantitation of proteins at various time points would enable 

differentiation between state and trait markers. Finally, although the study 

tried to determine important protein candidates for differentiating MDD, BD, 

and SCZ, other targets might have been overlooked. 

Nevertheless, the study has several strengths. It is the first report to 

differentiate MDD, BD and SCZ with demonstrating diagnostic potential by 

integrating proteomic data and clinical symptom data. Through high-

throughput MS-based proteomics, numerous targets were quantified 

simultaneously in 675 individual samples, greater than most previous 

proteomic studies. Moreover, important and reliable proteomic features were 
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selected by comparing the consistency of the direction of expression pattern, 

and statistical significance between different quantification platforms.  

In conclusion, the study demonstrated the differential potential of 

plasma proteomic data, and the viability of integrating proteomic and clinical 

data in differentiating MDD, BD and SCZ. The proteomic features, and 

related functions and pathways, might expand the understanding of the 

pathophysiology of these disorders. Additional studies involving a larger 

sample size, with longitudinal designs to determine protein profiles from 

those whose diagnosis changes afterwards, are needed. 
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Chapter 4. Final conclusion 
 

Through Study 1 and 2, the viability of differentiating major 

psychiatric disorders based on proteomics data was demonstrated. Study 1 

was based on drug-free patients with MDD and BD. As medication can affect 

proteomic nature, including only those whom are drug-free or drug naïve 

patients is ideal. However, the relatively smaller sample size also has its 

limitations in interpreting the results. Thus, in Study 2, medication was 

controlled as a covariate, and included patients as in the real world. Other 

covariates that are known to influence proteomic expressions were also 

carefully considered.  

Study 2 was expanded not only from increasing the sample size, but 

from expanding the sample groups (including SCZ, HC), and using dual 

quantification platforms. This approach enabled multiple comparison 

between disease groups, and verification of more consistent and reliable 

proteomic features. However, the proteomic features did not overlap between 

the studies. Study 1 was based on statistical significance, and Study 2 was 

based on differentiation ability. The studies additionally differed in 

demographic characteristics, and quantification platforms, which could yield 

different results. Nevertheless, functional analysis with IPA yielded similar 

results based on broad functions and pathways.  

An additional approach in Study 2 was to integrate subjective 

symptoms with the proteomic data, to see if the differential performance 



 

 ５２ 

could be enhanced. As described previously, the association of lifetime 

diagnosis with current proteomic features and symptoms has its limitations. 

Nevertheless, this integrative approach enhanced the performance 

comparable of it to models based on four clinician rater scales. 

The results in this study indicate that these approaches have potential 

in differentiating major psychiatric disorders. Future studies should validate 

their performance in a larger independent set with longitudinal designs. 
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Table 1-1. Demographics and clinical characteristics of drug free major depressive disorder and bipolar disorder  

Characteristics 

  

MDD BD Statistics 

  
P-valuea 

  (n=15) (n=10) 

Age, mean ± SD, years 28.53 ± 8.04 25.10 ± 4.91 Z=-1.059 0.29 

Sex (Female), n (%) 10 (66.7%) 7 (70.0%) Fisher's exact test >0.99 

BMI, mean ± SD, kg/m2 22.42 ± 5.18 22.41 ± 5.17 Z=-0.055 0.96 

Current smoker, n (%) 1 (6.7%) 3 (30.0%) Fisher's exact test 0.27 

HAM-D, mean ± SD 15.33 ± 4.61 12.10 ± 3.54 Z=-2.320 0.02 

Duration from onset, mean ± SD, years 3.73 ± 4.57 4.80 ± 2.94 Z=-1.654 0.10 

Duration from first medication, mean ± SD, years 0.33 ± 0.49 1.90 ± 3.28 Z=-0.974 0.33 
aP-value < 0.05 is considered statistically significant, denoted by bold font 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SD = standard distribution, BMI = body mass index, HAM-D = Hamilton depression 

rating scale 
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Table 1-2. Differentially expressed proteins between drug free major depressive disorder and bipolar disorder 

  Majority protein IDsa Protein names Gene names 
Fold 

changeb 

t-test  

statistics 

P-

valuec 

Overexpressed in MDD      

 P51149;C9J592;C9J8S3 Ras-related protein Rab-7a RAB7A 2.729 5.975 < 0.001 

 E9PF63;O75116 Rho-associated protein kinase 2 ROCK2 2.321 4.782 < 0.001 

 P01763 Ig heavy chain V-III region WEA IGHV3-48 1.205 3.668 0.001  

 P08571;D6RFL4 

Monocyte differentiation antigen CD14; 

Monocyte differentiation antigen CD14, urinary form; 

Monocyte differentiation antigen CD14, membrane-bound 

form 

CD14 1.266 2.875 0.009  

 P23083 Ig heavy chain V-I region V35 IGHV10R15-1 2.103 2.739 0.011  

 A0A075B6Q5 Ig heavy variable 3-64 IGHV3-64 2.252 2.698 0.013  

 P01780 Ig heavy chain V-III region JON IGHV3-7 0.941 2.404 0.025  

Overexpressed in BD      

 E7ESC6;Q9UIA9 Exportin-7 XPO7 -2.999 -4.520 < 0.001 

 P03950 Angiogenin ANG -1.714 -3.636 0.001  

 A0A075B6J4 Ig lambda variable 3-25 IGLV3-25 -2.550 -3.326 0.003  

 Q96Q89-4;Q96Q89-3;Q96Q89;Q96Q89-2 Kinesin-like protein KIF20B KIF20B -1.298 -2.718 0.012  

 A0A096LPE2;P35542;A0A087X0E2 
Serum amyloid A-4 protein 

Serum amyloid A protein 
SAA2-SAA4;SAA4 -0.660 -2.64 0.015  

 P05160 Coagulation factor XIII B chain F13B -1.120 -2.315 0.030  

  D6REX5;P49908;D6RIS9 Selenoprotein P SEPP1;SELENOP -0.881 -2.088 0.048  

aUniProt accession number 
bFold change calculated by the difference of the logarithmic(2) transferred intensity 
cP-value < 0.05 is considered statistically significant, denoted by bold font 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder 
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Table 2-1. Demographics and clinical characteristics of the total set of major psychiatric disorders and healthy controls 

Characteristics  
SCZ 

n=171 

BD 

n=170 

MDD 

n=174 

HC 

n=160 
Statistics P-valuea Post-hoc analysisb   

Sex: Male 74 (43.3%) 58 (34.1%) 61 (35.1%) 48 (30.0%) χ2 = 6.755 0.08   

Age 39.21 ± 11.80 34.31 ± 12.27 36.31 ± 13.23 35.94 ± 11.20 F = 4.784 0.003 SCZ > BD 

BMI 25.84 ± 4.84 24.57 ± 4.41 23.46 ± 4.04 22.08 ± 2.72 F = 25.412 < 0.001 SCZ > BD = MDD > HC 

Blood collection time: AM 81 (47.4%) 50 (29.4%) 55 (31.6%) 69 (43.1%) χ2 = 16.516 0.001   

Fasting time: ≥8 hours 39 (22.8%) 33 (19.4%) 42 (24.1%) 87 (54.4%) χ2 = 61.650 < 0.001   

Exercise: moderate intensity 60 (35.1%) 68 (40.0%) 52 (29.9%) 116 (72.5%) χ2 = 73.476 < 0.001   

Alcohol drinking: ≥ once a week 32 (18.7%) 60 (35.3%) 63 (36.2%) 75 (46.9%) χ2 = 30.098 < 0.001   

Smoking: current smoker 41 (24.0%) 53 (31.2%) 59 (33.9%) 8 (5.0%) χ2 = 46.018 < 0.001   

Duration from first onset  12.48 ± 10.02 9.39 ± 8.77 6.73 ± 7.75*   F = 17.985 < 0.001 SCZ > BD > MDD 

Duration from first medication 11.72 ± 9.89 6.91 ± 8.34 3.68 ± 6.03   F = 41.613 < 0.001 SCZ > BD > MDD 

Medication              

  Antipsychotics  166 (97.1%) 130 (76.5%) 72 (41.4%)   χ2 = 134.298 < 0.001   

  Lithium/Anticonvulsants  28 (16.4%) 125 (73.5%) 24 (13.8%)   χ2 = 172.782 < 0.001   

  Antidepressant 37 (21.6%) 44 (26.0%) 145 (83.3%)*   χ2 = 166.118 < 0.001   

  Benzodiazepines/hypnotics 104 (60.8%) 106 (62.4%) 117 (67.2%)   χ2 = 1.678 0.43   

Clinician rater score              

  BPRS 43.64 ± 11.98 39.47 ± 8.15 40.61 ± 6.98 27.06 ± 3.75 F = 126.282 < 0.001 SCZ > BD = MDD > HC 

  YMRS 4.49 ± 5.81 5.68 ± 6.95 1.87 ± 2.55 1.19 ± 2.11 F = 32.242 < 0.001 SCZ = BD > MDD = HC 

  MADRS 13.80 ± 9.54 17.48 ± 10.49 26.05 ± 9.89 4.14 ± 4.24 F = 171.012 < 0.001 MDD > BD > SCZ > HC 

  HAM-A 8.75 ± 6.67 9.88 ± 5.98 14.94 ± 7.21 2.27 ± 2.01 F = 130.165 < 0.001 MDD > SCZ = BD > HC 

Self-report scale               

Symptom Checklist-90-Revised               
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  Somatization subscale 0.77 ± 0.75* 0.86 ± 0.74*** 1.39 ± 0.94** 0.17 ± 0.21 F = 81.329 < 0.001 MDD > SCZ = BD > HC 

  Obsessive-compulsive subscale 1.26 ± 0.90* 1.48 ± 0.87*** 1.90 ± 0.84** 0.38 ± 0.36 F = 111.170 < 0.001 MDD > BD > SCZ > HC 

  Interpersonal sensitivity subscale 1.22 ± 0.90* 1.29 ± 0.85*** 1.63 ± 0.91** 0.30 ± 0.32 F = 85.622 < 0.001 MDD > SCZ = BD > HC 

  Depression subscale 1.22 ± 0.96* 1.60 ± 0.94*** 2.22 ± 0.92** 0.29 ± 0.35 F = 154.116 < 0.001 MDD > BD > SCZ > HC 

  Anxiety subscale 1.00 ± 0.89* 1.15 ± 0.85*** 1.62 ± 0.95** 0.13 ± 0.24 F = 100.632 < 0.001 MDD > SCZ = BD > HC 

  Hostility subscale 0.73 ± 0.88* 0.97 ± 0.94*** 1.18 ± 0.94** 0.11 ± 0.21 F = 53.672 < 0.001 BD = MDD > SCZ > HC 

  Phobic anxiety subscale 0.74 ± 0.79* 0.73 ± 0.75*** 1.14 ± 0.99** 0.05 ± 0.14 F = 60.264 < 0.001 MDD > SCZ = BD > HC 

  Paranoid ideation subscale 1.05 ± 0.97* 0.92 ± 0.83*** 1.18 ± 0.91** 0.15 ± 0.29 F = 54.784 < 0.001 
SCZ, BD, MDD > HC 
MDD > BD, MDD = SCZ, BD = SCZ 

  Psychoticism subscale 1.03 ± 0.88* 0.94 ± 0.75*** 1.22 ± 0.79** 0.09 ± 0.20 F = 81.867 < 0.001 
SCZ, BD, MDD > HC 
MDD > BD, MDD = SCZ, BD = SCZ 

  Overeating item  1.13 ± 1.18 1.17 ± 1.34*** 1.10 ± 1.28** 0.34 ± 0.54 F = 19.519 < 0.001 SCZ = BD = MDD > HC 

* n=1 missing, ** n=2 missing, *** n=3 missing             

a P-value < 0.05 is considered statistically significant, denoted by bold font         

b Levels of statistical significance of post-hoc analysis based on Tukey’s HSD are presented as equality and inequality sign ( =, >). 

The equality sign (=) signifies no statistical significance, inequality sign (>) denotes statistical significance between groups. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = schizophrenia, HC = healthy controls, BMI = body mass index, BPRS = Brief Psychiatric Rating Scale 
YMRS = Young Mania Rating Scale, MADRS = Montgomery-Asberg Depression Rating Scale, HAM-A = Hamilton Anxiety Scale 
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Table 2-2. Demographics and clinical characteristics of the training set of major psychiatric disorders 

Characteristics 
SCZ 

n=102 

BD 

n=102 

MDD 

n=104 
Statistics P-valuea Post-hoc analysisb 

Sex: Male 41 (40.2%) 33 (32.4%) 38 (36.5%) χ2 = 1.358 0.51   

Age 40.37 ± 11.35 34.23 ± 12.58 36.32 ± 13.19 F = 6.481 0.002 SCZ > BD 

BMI 26.58 ± 4.84 24.42 ± 4.35 23.24 ± 3.99 F = 15.242 < 0.001 SCZ > BD = MDD 

Blood collection time: AM 49 (48.0%) 27 (26.5%) 30 (28.8%) χ2 = 12.669 0.002   

Fasting time: ≥ 8 hours 29 (28.4%) 20 (19.6%) 24 (23.1%) χ2 = 2.230 0.33   

Exercise: moderate intensity 32 (31.4%) 37 (36.3%) 33 (31.7%) χ2 = 0.689 0.71   

Alcohol drinking: ≥ once a week 19 (18.6%) 37 (36.3%) 41 (39.4%) χ2 = 11.938 0.003   

Smoking: current smoker 24 (23.5%) 35 (34.3%) 35 (33.7%) χ2 = 3.525 0.17   

Duration from first onset  13.68 ± 10.38 10.41 ± 9.30 7.01 ± 8.06 F = 13.275 < 0.001 SCZ > BD > MDD 

Duration from first medication 13.04 ± 10.23 7.83 ± 9.07 3.56 ± 6.14 F = 31.105 < 0.001 SCZ > BD > MDD 

Medication            

  Antipsychotics  99 (97.1%) 79 (77.5%) 43 (41.3%) χ2 = 81.304 < 0.001   

  Lithium/Anticonvulsants  19 (18.6%) 69 (67.6%) 10 (9.6%) χ2 = 92.169 < 0.001   

  Antidepressant 25 (24.5%) 29 (28.4%) 88 (84.6%) χ2 = 94.037 < 0.001   

  Benzodiazepines/hypnotics 58 (56.9%) 63 (61.8%) 71 (68.3%) χ2 = 2.875 0.24   

Clinician rater score            

 BPRS 44.31 ± 11.50 39.83 ± 7.51 40.41 ± 6.89 F = 7.733 0.001 SCZ > BD = MDD 

 YMRS 4.64 ± 5.57 5.29 ± 6.11 1.96 ± 2.76 F = 12.767 < 0.001 SCZ = BD > MDD 

 MADRS 14.22 ± 9.62 17.70 ± 10.40 26.06 ± 10.06 F = 37.995 < 0.001 MDD > BD > SCZ 

 HAM-A 9.35 ± 7.33 10.06 ± 5.44 15.57 ± 7.22 F = 26.455 < 0.001 MDD > SCZ = BD 

Self-report scale            
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Symptom Checklist-90-Revised             

  Somatization subscale 0.76 ± 0.68* 0.86 ± 0.70*** 1.41 ± 0.95* F = 20.424 < 0.001 MDD > SCZ = BD 

  Obsessive-compulsive subscale 1.24 ± 0.83* 1.51 ± 0.89*** 1.95 ± 0.87* F = 17.653 < 0.001 MDD > SCZ = BD 

  Interpersonal sensitivity subscale 1.26 ± 0.84* 1.31 ± 0.84*** 1.68 ± 0.88* F = 7.617 0.001 MDD > SCZ = BD 

  Depression subscale 1.21 ± 0.90* 1.67 ± 0.96*** 2.22 ± 0.93* F = 30.291 < 0.001 MDD > BD > SCZ 

  Anxiety subscale 1.02 ± 0.88* 1.14 ± 0.82*** 1.63 ± 0.96* F = 13.719 < 0.001 MDD > SCZ = BD 

  Hostility subscale 0.71 ± 0.78* 1.00 ± 0.95*** 1.19 ± 0.98* F = 7.096 0.001 MDD > SCZ 

  Phobic anxiety subscale 0.78 ± 0.80* 0.67 ± 0.69*** 1.16 ± 1.01* F = 9.119 < 0.001 MDD > SCZ = BD 

  Paranoid ideation subscale 1.04 ± 0.87* 0.95 ± 0.82*** 1.23 ± 0.96* F = 2.516 0.08   

  Psychoticism subscale 1.02 ± 0.82* 0.93 ± 0.76*** 1.22 ± 0.82* F = 3.434 0.033 MDD > BD 

  Overeating item  1.19 ± 1.16 0.98 ± 1.28*** 1.06 ± 1.17* F = 0.757 0.47   

* n=1 missing, *** n=3 missing             

a P-value < 0.05 is considered statistically significant, denoted by bold font         

b Levels of statistical significance of post-hoc analysis based on Tukey’s HSD are presented as equality and inequality sign ( =, >). 

The equality sign (=) signifies no statistical significance, inequality sign (>) denotes statistical significance between groups. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = schizophrenia, HC = healthy controls, BMI = body mass index 

BPRS = Brief Psychiatric Rating Scale, YMRS = Young Mania Rating Scale, MADRS = Montgomery-Asberg Depression Rating Scale 

HAM-A = Hamilton Anxiety Scale 
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Table 2-3. Demographics and clinical characteristics of the validation set of major psychiatric disorders 

Characteristics  
SCZ 

n=34 

BD 

n=34 

MDD 

n=35 
Statistics P-valuea Post-hoc analysisb   

Sex: Male 15 (44.1%) 10 (29.4%) 8 (22.9%) χ2 = 3.741 0.15   

Age 36.88 ± 11.91 37.21 ± 12.73 36.63 ± 12.94 F = 0.018 0.98   

BMI 25.18 ± 5.38 23.87 ± 3.90 23.61 ± 4.08 F = 1.203 0.31   

Blood collection time: AM 18 (52.9%) 10 (29.4%) 15 (42.9%) χ2 = 3.897 0.14   

Fasting time: ≥ 8 hours 7 (20.6%) 3 (8.8%) 11 (31.4%) χ2 = 5.431 0.07   

Exercise: moderate intensity 13 (38.2%) 17 (50.0%) 9 (25.7%) χ2 = 4.326 0.12   

Alcohol drinking: ≥ once a week 10 (29.4%) 14 (41.2%) 10 (28.6%) χ2 = 1.536 0.46   

Smoking: current smoker 12 (35.3%) 6 (17.6%) 13 (37.1%) χ2 = 3.767 0.15   

Duration from first onset  11.15 ± 9.07 9.12 ± 9.12 7.00 ± 7.67 F = 1.989 0.14   

Duration from first medication 10.38 ± 9.54 7.56 ± 8.85 4.83 ± 6.06 F = 3.889 0.024 SCZ > MDD 

Medication            

  Antipsychotics  34 (100.0%) 23 (67.6%) 17 (48.6%) χ2 = 22.992 < 0.001   

  Lithium/Anticonvulsants  4 (11.8%) 26 (76.5%) 6 (17.1%) χ2 = 38.702 < 0.001   

  Antidepressant 6 (17.6%) 10 (30.3%) 30 (85.7%)* χ2 = 36.585 < 0.001   

  Benzodiazepines/hypnotics 24 (70.6%) 19 (55.9%) 23 (65.7%) χ2 = 1.659 0.44   

Clinician rater score            

  BPRS 40.15 ± 11.82 36.09 ± 6.94 41.60 ± 6.93 F = 3.574 0.032 MDD > BD 

  YMRS 3.47 ± 5.09 5.21 ± 6.07 1.51 ± 1.96 F = 5.345 0.006 BD > MDD 

  MADRS 13.47 ± 11.16 15.21 ± 10.19 27.63 ± 8.96 F = 20.112 < 0.001 MDD > SCZ = BD 

  HAM-A 7.53 ± 5.82 8.50 ± 5.84 14.03 ± 5.71 F = 12.712 < 0.001 MDD > SCZ = BD 

Self-report scale            



６０ 

 

Symptom Checklist-90-Revised            

  Somatization subscale 0.83 ± 0.80 0.87 ± 0.84 1.58 ± 0.89 F = 8.642 < 0.001 MDD > SCZ = BD 

  Obsessive-compulsive subscale 1.42 ± 1.04 1.30 ± 0.85 2.06 ± 0.77 F = 7.180 0.001 MDD > SCZ = BD 

  Interpersonal sensitivity subscale 1.25 ± 0.92 1.15 ± 0.82 1.84 ± 0.84 F = 6.418 0.002 MDD > SCZ = BD 

  Depression subscale 1.45 ± 1.08 1.40 ± 0.88 2.46 ± 0.82 F = 14.246 < 0.001 MDD > SCZ = BD 

  Anxiety subscale 1.09 ± 1.02 1.09 ± 0.95 1.89 ± 0.95 F = 7.722 0.001 MDD > SCZ = BD 

  Hostility subscale 0.90 ± 1.09 0.84 ± 0.91 1.38 ± 0.90 F = 3.175 0.046 MDD = BD = SCZ 

  Phobic anxiety subscale 0.70 ± 0.77 0.72 ± 0.93 1.29 ± 0.98 F = 4.851 0.010 MDD > SCZ = BD 

  Paranoid ideation subscale 1.08 ± 1.12 0.87 ± 0.82 1.29 ± 0.79 F = 1.777 0.17   

  Psychoticism subscale 1.10 ± 1.02 0.91 ± 0.79 1.43 ± 0.65 F = 3.432 0.036 MDD > BD 

  Overeating item  1.03 ± 1.24 1.62 ± 1.37 1.14 ± 1.40 F = 1.851 0.16   

* n=1 missing             

a P-value < 0.05 is considered statistically significant, denoted by bold font         

b Levels of statistical significance of post-hoc analysis based on Tukey’s HSD are presented as equality and inequality sign ( =, >). 

The equality sign (=) signifies no statistical significance, inequality sign (>) denotes statistical significance between groups. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = schizophrenia, HC = healthy controls, BMI = body mass index 

BPRS = Brief Psychiatric Rating Scale, YMRS = Young Mania Rating Scale, MADRS = Montgomery-Asberg Depression Rating Scale 

HAM-A = Hamilton Anxiety Scale 
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Table 2-4. Demographics and clinical characteristics of the independent test set of major psychiatric disorders 

Characteristics  
SCZ 

n=35 

BD 

n=34 

MDD 

n=35 
Statistics P-valuea Post-hoc analysisb   

Sex: Male 18 (51.4%) 15 (44.1%) 15 (42.9%) χ2 = 0.602 0.74   

Age 38.06 ± 12.86 31.65 ± 10.39 35.94 ± 13.98 F = 2.342 0.10   

BMI 24.33 ± 3.89 25.71 ± 4.92 23.96 ± 4.20 F = 1.547 0.22   

Blood collection time: AM 14 (40.0%) 13 (38.2%) 10 (28.6%) χ2 = 1.153 0.56   

Fasting time: ≥ 8 hours 3 (8.6%) 10 (29.4%) 7 (20.0%) χ2 = 4.843 0.09   

Exercise: moderate intensity 15 (42.9%) 14 (41.2%) 10 (28.6%) χ2 = 1.815 0.40   

Alcohol drinking: ≥ once a week 3 (8.6%) 9 (26.5%) 12 (34.3%) χ2 = 6.846 0.033   

Smoking: current smoker 5 (14.3%) 12 (35.3%) 11 (31.4%) χ2 = 4.413 0.11   

Duration from first onset  10.29 ± 9.55 6.59 ± 5.88 5.62 ± 6.93* F = 3.605 0.031 SCZ > MDD 

Duration from first medication 9.17 ± 8.72 3.47 ± 3.34 2.91 ± 5.63 F = 10.483 < 0.001 SCZ > MDD = BD 

Medication            

  Antipsychotics  33 (94.3%) 28 (82.4%) 12 (34.3%) χ2 = 33.681 < 0.001   

  Lithium/Anticonvulsants  5 (14.3%) 30 (88.2%) 8 (22.9%) χ2 = 46.326 < 0.001   

  Antidepressant 6 (17.1%) 5 (14.7%) 27 (77.1%) χ2 = 37.553 < 0.001   

  Benzodiazepines/hypnotics 22 (62.9%) 24 (70.6%) 23 (65.7%) χ2 = 0.471 0.79   

Clinician rater score            

  BPRS 45.09 ± 13.16 41.76 ± 10.10 40.23 ± 7.41 F = 1.958 0.15   

  YMRS 5.06 ± 7.07 7.29 ± 9.64 1.94 ± 2.46 F = 5.069 0.008 BD > MDD 

  MADRS 12.89 ± 7.56 19.09 ± 10.96 24.43 ± 10.29 F = 12.406 < 0.001 MDD = BD > SCZ 

  HAM-A 8.17 ± 5.22 10.71 ± 7.44 13.97 ± 8.41 F = 5.797 0.004 MDD > SCZ 

Self-report scale             
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Symptom Checklist-90-Revised             

  Somatization subscale 0.75 ± 0.88 0.85 ± 0.75 1.16 ± 0.94* F = 2.147 0.12   

  Obsessive-compulsive subscale 1.14 ± 0.94 1.60 ± 0.82 1.56 ± 0.75* F = 3.129 0.048 MDD = BD = SCZ 

  Interpersonal sensitivity subscale 1.11 ± 1.03 1.39 ± 0.90 1.25 ± 0.97* F = 0.727 0.49   

  Depression subscale 1.02 ± 0.97 1.62 ± 0.96 2.00 ± 0.93* F = 9.262 < 0.001 MDD = BD > SCZ 

  Anxiety subscale 0.85 ± 0.81 1.23 ± 0.83 1.31 ± 0.86* F = 2.976 0.06   

  Hostility subscale 0.62 ± 0.90 0.99 ± 0.97 0.96 ± 0.84* F = 1.763 0.18   

  Phobic anxiety subscale 0.63 ± 0.78 0.91 ± 0.68 0.91 ± 0.92* F = 1.368 0.26   

  Paranoid ideation subscale 1.05 ± 1.12 0.91 ± 0.89 0.91 ± 0.83* F = 0.242 0.79   

  Psychoticism subscale 1.02 ± 0.92 0.97 ± 0.71 1.02 ± 0.78* F = 0.040 0.96   

  Overeating item  1.06 ± 1.21 1.26 ± 1.42 1.18 ± 1.51* F = 0.196 0.82   

* n=1 missing             

a P-value < 0.05 is considered statistically significant, denoted by bold font         

b Levels of statistical significance of post-hoc analysis based on Tukey’s HSD are presented as equality and inequality sign ( =, >). 

The equality sign (=) signifies no statistical significance, inequality sign (>) denotes statistical significance between groups. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = schizophrenia, HC = healthy controls, BMI = body mass index 

BPRS = Brief Psychiatric Rating Scale, YMRS = Young Mania Rating Scale, MADRS = Montgomery-Asberg Depression Rating Scale 

HAM-A = Hamilton Anxiety Scale 
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Table 2-5. Candidate proteomic features for differentiation of major psychiatric disorders from the training set 
 

MDD vs BD (23)   MDD vs SCZ (29)   BD vs SCZ (30) 

IDa  Protein Peptide   IDa  Protein Peptide   IDa Protein Peptide 

P09972 ALDOC ALQASALNAWR   P04217 A1BG LLELTGPK   P04217 A1BG LLELTGPK 

P15144 AMPN AQIINDAFNLASAHK   P19823 ITIH2 IQPSGGTNINEALLR   P02787 TRFE ASYLDCIR 

Q86TY3 ARMD4 TVVPSITR   P52758 RIDA AAYQVAALPK   Q99460 PSMD1 VSTAVLSITAK 

Q9NZP8 C1RL GSEAINAPGDNPAK   P35542 SAA4 GPGGVWAAK   P05546 HEP2 TLEAQLTPR 

P55290 CAD13 INNTHALVSLLQNLNK   P09972 ALDOC ALQASALNAWR   P05155 IC1 TTFDPK 

P08571 CD14 VLDLSCNR   P24593 IBP5 AVYLPNCDR   P01011 AACT DEELSCTVVELK 

P11597 CETP ASYPDITGEK   P07225 PROS NNLELSTPLK   Q8TDL5 BPIB1 ALGFEAAESSLTK 

Q96KN2 CNDP1 AIHLDLEEYR   P35858 ALS DFALQNPSAVPR   P08185 CBG HLVALSPK 

Q03692 COAA1 GTHVWVGLYK   P17936 IBP3 YGQPLPGYTTK   P00751 CFAB DISEVVTPR 

O60716 CTND1 GYELLFQPEVVR   P04070 PROC TFVLNFIK   P24593 IBP5 AVYLPNCDR 

Q08345 DDR1 LHLVALVGTQGR   P08185 CBG HLVALSPK   P13473 LAMP2 IPLNDLFR 

P28845 DHI1 VIVTGASK   P22352 GPX3 FYTFLK   Q8IYB8 SUV3 LLNLEGFPSGSQSR 

P09172 DOPO TPEGLTLLFK   Q15262 PTPRK QNVVDVFHAVK   Q01082 SPTB2 LTVQTK 

P05155 IC1 TTFDPK   P15144 AMPN AQIINDAFNLASAHK   P15144 AMPN AQIINDAFNLASAHK 

Q9NPH3 IL1AP NEVWWTIDGK   Q96IY4 CBPB2 DTGTYGFLLPER   P55290 CAD13 INNTHALVSLLQNLNK 

P19823 ITIH2 IQPSGGTNINEALLR   Q9Y210 TRPC6 LGILGSHEDLSK   P09172 DOPO VISTLEEPTPQCPTSQGR 

P13473 LAMP2 IPLNDLFR   P10646 TFPI1 IAYEEIFVK   O15551 CLD3 DFYNPVVPEAQK 

P61916 NPC2 LVVEWQLQDDK   P04278 SHBG TSSSFEVR   Q08345 DDR1 LHLVALVGTQGR 

O60486 PLXC1 LNTIGHYEISNGSTIK   P54802 ANAG DFCGCHVAWSGSQLR   P07911 UROM VLNLGPITR 

P62826 RAN FNVWDTAGQEK   Q03692 COAA1 GTHVWVGLYK   O15354 GPR37 ISPDLPDTIYVLALTYDSAR 
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P0DJI8 SAA1 FFGHGAEDSLADQAANEWGR   P0DJI8 SAA1 FFGHGAEDSLADQAANEWGR   Q13283 G3BP1 AVYLPNCDR 

Q01082 SPTB2 LTVQTK   Q8IYB8 SUV3 LLNLEGFPSGSQSR   O60486 PLXC1 LNTIGHYEISNGSTIK 

P02787 TRFE ASYLDCIR   Q86TY3 ARMD4 TVVPSITR   Q9NZP8 C1RL GSEAINAPGDNPAK 

        P25774 CATS YTELPYGR   Q96IY4 CBPB2 DTHTYGFLLPER 

        P05023 AT1A1 IVEIPFNSTNK   Q96KN2 CNDP1 AIHLDLEEYR 

        P20142 PEPC AECGLGVPTTR   P10646 TFPI1 IAYEEIFVK 

        Q14894 CRYM TVVPVTK   Q9NY15 STAB1 SLEAQGNSSHLDADTVR 

        Q13976 KGP1 EEEIQELK   P62888 RL30 SLESINSR 

        P14618 KPYM IYVDDGLISLQVK   P61916 NPC2 LVVEWQLQDDK 

                P11226 MBL2 FQASVATPR 

aUniProt accession number protein entry          

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = schizophrenia 
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Table 2-6. Unique models originating from the combinations of selected features for each pairwise group comparison   

MDD 

vs 

BD 

Model 

# 
Unique model (combination of selected features) 

Number 

of 

features 

Frequency Probability 

  1 

ALDOC_ALQASALNAWR+ AMPN_AQIINDAFNLASAHK+ ARMD4_TVVPSITR+ C1RL_GSEAINAPGDNPAK+ 
CAD13_INNTHALVSLLQNLNK+ CD14_VLDLSCNR+ CETP_ASYPDITGEK+ CNDP1_AIHLDLEEYR+ 

COAA1_GTHVWVGLYK+ CTND1_GYELLFQPEVVR+ DDR1_LHLVALVGTQGR+ DHI1_VIVTGASK+ 

DOPO_TPEGLTLLFK+ IC1_TTFDPK+ IL1AP_NEVWWTIDGK+ ITIH2_IQPSGGTNINEALLR+ 
LAMP2_IPLNDLFR+ NPC2_LVVEWQLQDDK+ PLXC1_LNTIGHYEISNGSTIK+ RAN_FNVWDTAGQEK+ 

SAA1_FFGHGAEDSLADQAANEWGR+ SPTB2_LTVQTK+ TRFE_ASYLDCIR+(intercept) 

23 97 9.800E-01 

  2 

ALDOC_ALQASALNAWR+ AMPN_AQIINDAFNLASAHK+ ARMD4_TVVPSITR+ C1RL_GSEAINAPGDNPAK+ 

CAD13_INNTHALVSLLQNLNK+ CETP_ASYPDITGEK+ CNDP1_AIHLDLEEYR+ COAA1_GTHVWVGLYK+ 

CTND1_GYELLFQPEVVR+ DDR1_LHLVALVGTQGR+ DHI1_VIVTGASK+ DOPO_TPEGLTLLFK+ 
IC1_TTFDPK+ IL1AP_NEVWWTIDGK+ ITIH2_IQPSGGTNINEALLR+ LAMP2_IPLNDLFR+ 

NPC2_LVVEWQLQDDK+ PLXC1_LNTIGHYEISNGSTIK+ RAN_FNVWDTAGQEK+ 

SAA1_FFGHGAEDSLADQAANEWGR+ SPTB2_LTVQTK+ TRFE_ASYLDCIR+(intercept) 

22 1 3.19E-05 

  3 

ALDOC_ALQASALNAWR+ AMPN_AQIINDAFNLASAHK+ ARMD4_TVVPSITR+ C1RL_GSEAINAPGDNPAK+ 

CAD13_INNTHALVSLLQNLNK+ CETP_ASYPDITGEK+ COAA1_GTHVWVGLYK+ CTND1_GYELLFQPEVVR+ 

DDR1_LHLVALVGTQGR+ DOPO_TPEGLTLLFK+ IC1_TTFDPK+ IL1AP_NEVWWTIDGK+ 
ITIH2_IQPSGGTNINEALLR+ NPC2_LVVEWQLQDDK+ RAN_FNVWDTAGQEK+ 

SAA1_FFGHGAEDSLADQAANEWGR+ TRFE_ASYLDCIR+(intercept) 

17 1 4.69E-09 

  4 

ALDOC_ALQASALNAWR+ AMPN_AQIINDAFNLASAHK+ ARMD4_TVVPSITR+ C1RL_GSEAINAPGDNPAK+ 

CAD13_INNTHALVSLLQNLNK+ CETP_ASYPDITGEK+ COAA1_GTHVWVGLYK+ CTND1_GYELLFQPEVVR+ 

DDR1_LHLVALVGTQGR+ DOPO_TPEGLTLLFK+ IC1_TTFDPK+ IL1AP_NEVWWTIDGK+ 
ITIH2_IQPSGGTNINEALLR+ NPC2_LVVEWQLQDDK+ RAN_FNVWDTAGQEK+ 

SAA1_FFGHGAEDSLADQAANEWGR+ TRFE_ASYLDCIR+ LAMP2_IPLNDLFR+(intercept) 

18 1 5.65E-06 
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MDD 

vs 

SCZ 

Model 

# 
Unique model (combination of selected features) 

Number 

of 

features 

Frequency Probability 

  1 

ALDOC_ALQASALNAWR+ ALS_DFALQNPSAVPR+ ANAG_DFCGCHVAWSGSQLR+ AT1A1_IVEIPFNSTNK+ 

CATS_YTELPYGR+ CBG_HLVALSPK+ CBPB2_DTGTYGFLLPER+ COAA1_GTHVWVGLYK+ 

CRYM_TVVPVTK+ GPX3_FYTFLK+ IBP3_YGQPLPGYTTK+ IBP5_AVYLPNCDR+ 
ITIH2_IQPSGGTNINEALLR+ PEPC_AECGLGVPTTR+ PROC_TFVLNFIK+ PROS_NNLELSTPLK+ 

PTPRK_QNVVDVFHAVK+ RIDA_AAYQVAALPK+ SAA1_FFGHGAEDSLADQAANEWGR+ 

SAA4_GPGGVWAAK+ TFPI1_IAYEEIFVK+ (intercept) 

22 10 6.86E-03 

  2 

A1BG_LLELTGPK+ ALDOC_ALQASALNAWR+ ALS_DFALQNPSAVPR+ AMPN_AQIINDAFNLASAHK+ 

ANAG_DFCGCHVAWSGSQLR+ AT1A1_IVEIPFNSTNK+ CATS_YTELPYGR+ CBG_HLVALSPK+ 
CBPB2_DTGTYGFLLPER+ COAA1_GTHVWVGLYK+ CRYM_TVVPVTK+ GPX3_FYTFLK+ 

IBP3_YGQPLPGYTTK+ IBP5_AVYLPNCDR+ ITIH2_IQPSGGTNINEALLR+ KGP1_EEEIQELK+ 

KPYM_IYVDDGLISLQVK+ PEPC_AECGLGVPTTR+ PROC_TFVLNFIK+ PROS_NNLELSTPLK+ 
PTPRK_QNVVDVFHAVK+ RIDA_AAYQVAALPK+ SAA1_FFGHGAEDSLADQAANEWGR+ 

SAA4_GPGGVWAAK+ SHBG_TSSSFEVR+ SUV3_LLNLEGFPSGSQSR+ TFPI1_IAYEEIFVK+ (Intercept) 

28 13 1.56E-01 

  3 

A1BG_LLELTGPK+ ALDOC_ALQASALNAWR+ ALS_DFALQNPSAVPR+ AMPN_AQIINDAFNLASAHK+ 

ANAG_DFCGCHVAWSGSQLR+ ARMD4_TVVPSITR+ AT1A1_IVEIPFNSTNK+ CATS_YTELPYGR+ 
CBG_HLVALSPK+ CBPB2_DTGTYGFLLPER+ COAA1_GTHVWVGLYK+ CRYM_TVVPVTK+ GPX3_FYTFLK+ 

IBP3_YGQPLPGYTTK+ IBP5_AVYLPNCDR+ ITIH2_IQPSGGTNINEALLR+ KGP1_EEEIQELK+ 

KPYM_IYVDDGLISLQVK+ PEPC_AECGLGVPTTR+ PROC_TFVLNFIK+ PROS_NNLELSTPLK+ 
PTPRK_QNVVDVFHAVK+ RIDA_AAYQVAALPK+ SAA1_FFGHGAEDSLADQAANEWGR+ 

SAA4_GPGGVWAAK+ SHBG_TSSSFEVR+ SUV3_LLNLEGFPSGSQSR+ TFPI1_IAYEEIFVK+ 

TRPC6_LGILGSHEDLSK+ (intercept) 

30 21 3.23E-01 

  4 

A1BG_LLELTGPK+ ALDOC_ALQASALNAWR+ ALS_DFALQNPSAVPR+ AMPN_AQIINDAFNLASAHK+ 

ANAG_DFCGCHVAWSGSQLR+ AT1A1_IVEIPFNSTNK+ CATS_YTELPYGR+ CBG_HLVALSPK+ 

CBPB2_DTGTYGFLLPER+ COAA1_GTHVWVGLYK+ CRYM_TVVPVTK+ GPX3_FYTFLK+ 
IBP3_YGQPLPGYTTK+ IBP5_AVYLPNCDR+ ITIH2_IQPSGGTNINEALLR+ PEPC_AECGLGVPTTR+ 

PROC_TFVLNFIK+ PROS_NNLELSTPLK+ PTPRK_QNVVDVFHAVK+ RIDA_AAYQVAALPK+ 

SAA1_FFGHGAEDSLADQAANEWGR+ SAA4_GPGGVWAAK+ SHBG_TSSSFEVR+ 
SUV3_LLNLEGFPSGSQSR+ TFPI1_IAYEEIFVK+ (intercept) 

26 7 6.00E-02 
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  5 

ALDOC_ALQASALNAWR+ ALS_DFALQNPSAVPR+ AMPN_AQIINDAFNLASAHK+ 

ANAG_DFCGCHVAWSGSQLR+ AT1A1_IVEIPFNSTNK+ CATS_YTELPYGR+ CBG_HLVALSPK+ 

CBPB2_DTGTYGFLLPER+ COAA1_GTHVWVGLYK+ CRYM_TVVPVTK+ GPX3_FYTFLK+ 
IBP3_YGQPLPGYTTK+ IBP5_AVYLPNCDR+ ITIH2_IQPSGGTNINEALLR+ PEPC_AECGLGVPTTR+ 

PROC_TFVLNFIK+ PROS_NNLELSTPLK+ PTPRK_QNVVDVFHAVK+ RIDA_AAYQVAALPK+ 

SAA1_FFGHGAEDSLADQAANEWGR+ SAA4_GPGGVWAAK+ SHBG_TSSSFEVR+ 
SUV3_LLNLEGFPSGSQSR+ TFPI1_IAYEEIFVK+ (intercept) 

25 16 7.24E-02 

  6 

A1BG_LLELTGPK+ ALDOC_ALQASALNAWR+ ALS_DFALQNPSAVPR+ AMPN_AQIINDAFNLASAHK+ 

ANAG_DFCGCHVAWSGSQLR+ ARMD4_TVVPSITR+ AT1A1_IVEIPFNSTNK+ CATS_YTELPYGR+ 
CBG_HLVALSPK+ CBPB2_DTGTYGFLLPER+ COAA1_GTHVWVGLYK+ CRYM_TVVPVTK+ GPX3_FYTFLK+ 

IBP3_YGQPLPGYTTK+ IBP5_AVYLPNCDR+ ITIH2_IQPSGGTNINEALLR+ KGP1_EEEIQELK+ 

KPYM_IYVDDGLISLQVK+ PEPC_AECGLGVPTTR+ PROC_TFVLNFIK+ PROS_NNLELSTPLK+ 
PTPRK_QNVVDVFHAVK+ RIDA_AAYQVAALPK+ SAA1_FFGHGAEDSLADQAANEWGR+ 

SAA4_GPGGVWAAK+ SHBG_TSSSFEVR+ SUV3_LLNLEGFPSGSQSR+ TFPI1_IAYEEIFVK+ (intercept) 

29 17 2.91E-01 

  7 

A1BG_LLELTGPK+ ALDOC_ALQASALNAWR+ ALS_DFALQNPSAVPR+ AMPN_AQIINDAFNLASAHK+ 
ANAG_DFCGCHVAWSGSQLR+ AT1A1_IVEIPFNSTNK+ CATS_YTELPYGR+ CBG_HLVALSPK+ 

CBPB2_DTGTYGFLLPER+ COAA1_GTHVWVGLYK+ CRYM_TVVPVTK+ GPX3_FYTFLK+ 

IBP3_YGQPLPGYTTK+ IBP5_AVYLPNCDR+ ITIH2_IQPSGGTNINEALLR+ KGP1_EEEIQELK+ 
PEPC_AECGLGVPTTR+ PROC_TFVLNFIK+ PROS_NNLELSTPLK+ PTPRK_QNVVDVFHAVK+ 

RIDA_AAYQVAALPK+ SAA1_FFGHGAEDSLADQAANEWGR+ SAA4_GPGGVWAAK+ SHBG_TSSSFEVR+ 

SUV3_LLNLEGFPSGSQSR+ TFPI1_IAYEEIFVK+ (intercept) 

27 10 8.74E-02 

  8 

ALDOC_ALQASALNAWR+ ALS_DFALQNPSAVPR+ ANAG_DFCGCHVAWSGSQLR+ AT1A1_IVEIPFNSTNK+ 
CATS_YTELPYGR+ CBG_HLVALSPK+ CBPB2_DTGTYGFLLPER+ COAA1_GTHVWVGLYK+ 

CRYM_TVVPVTK+ GPX3_FYTFLK+ IBP3_YGQPLPGYTTK+ IBP5_AVYLPNCDR+ 

ITIH2_IQPSGGTNINEALLR+ PEPC_AECGLGVPTTR+ PROC_TFVLNFIK+ PROS_NNLELSTPLK+ 
PTPRK_QNVVDVFHAVK+ RIDA_AAYQVAALPK+ SAA1_FFGHGAEDSLADQAANEWGR+ 

SAA4_GPGGVWAAK+ SHBG_TSSSFEVR+ SUV3_LLNLEGFPSGSQSR+ TFPI1_IAYEEIFVK+ (intercept) 

24 4 2.71E-03 

  9 

ALDOC_ALQASALNAWR+ ALS_DFALQNPSAVPR+ ANAG_DFCGCHVAWSGSQLR+ AT1A1_IVEIPFNSTNK+ 

CATS_YTELPYGR+ CBG_HLVALSPK+ CBPB2_DTGTYGFLLPER+ COAA1_GTHVWVGLYK+ 

CRYM_TVVPVTK+ GPX3_FYTFLK+ IBP3_YGQPLPGYTTK+ IBP5_AVYLPNCDR+ 

ITIH2_IQPSGGTNINEALLR+ PEPC_AECGLGVPTTR+ PROC_TFVLNFIK+ PROS_NNLELSTPLK+ 

RIDA_AAYQVAALPK+ SAA1_FFGHGAEDSLADQAANEWGR+ SAA4_GPGGVWAAK+ TFPI1_IAYEEIFVK+ 

(intercept) 

21 2 2.06E-06 
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BD 

vs 

SCZ 

Model 

# 
Unique model (combination of selected features) 

Number 

of 

features 

Frequency Probability 

  1 

AACT_ALEQDLPVNIK+ AMPN_DFYNPVVPEAQK+ BPIB1_DTGTYGFLLPER+ C1RL_HLVALSPK+ 

CBG_GSEAINAPGDNPAK+ CBPB2_ALGFEAAESSLTK+ CFAB_LNTIGHYEISNGSTIK+ 

CLD3_YLSYTLNPDLIR+ CNDP1_DEELSCTVVELK+ DDR1_LTVQTK+ DOPO_INNTHALVSLLQNLNK+ 
G3BP1_AVYLPNCDR+ GPR37_IPLNDLFR+ HEP2_SLEAQGNSSHLDADTVR+ IBP5_INIPPQR+ 

IC1_IAYEEIFVK+ LAMP2_ISPDLPDTIYVLALTYDSAR+ MBL2_LLELTGPK+ NPC2_ASYLDCIR+ 

PLXC1_DISEVVTPR+ PSMD1_SLESINSR+ RL30_VSTAVLSITAK+ SPTB2_LHLVALVGTQGR+ 
SUV3_VLNLGPITR+ TFPI1_TTFDPK+ TRFE_LVVEWQLQDDK+ UROM_LLNLEGFPSGSQSR+ (intercept) 

28 9 9.87E-02 

  2 

AACT_DEELSCTVVELK+AMPN_AQIINDAFNLASAHK+BPIB1_ALGFEAAESSLTK+C1RL_GSEAINAPG 

DNPAK+CBG_HLVALSPK+CBPB2_DTGTYGFLLPER+CFAB_DISEVVTPR+CLD3_DFYNPVVPEAQK+C 
NDP1_AIHLDLEEYR+DDR1_LHLVALVGTQGR+DOPO_VISTLEEPTPQCPTSQGR+G3BP1_INIPPQR+ 

GPR37_ISPDLPDTIYVLALTYDSAR+HEP2_TLEAQLTPR+IBP5_AVYLPNCDR+IC1_TTFDPK+LAMP2_I 

PLNDLFR+MBL2_FQASVATPR+NPC2_LVVEWQLQDDK+PLXC1_LNTIGHYEISNGSTIK+PSMD1_VST 
AVLSITAK+RL30_SLESINSR+SPTB2_LTVQTK+TFPI1_IAYEEIFVK+TRFE_ASYLDCIR+UROM_VLNLG 

PITR+(intercept) 

27 17 3.17E-01 

  3 

AACT_DEELSCTVVELK+AMPN_AQIINDAFNLASAHK+BPIB1_ALGFEAAESSLTK+C1RL_GSEAINAPG 

DNPAK+CAD13_INNTHALVSLLQNLNK+CBG_HLVALSPK+CBPB2_DTGTYGFLLPER+CFAB_DISEVVT 

PR+CLD3_DFYNPVVPEAQK+CNDP1_AIHLDLEEYR+DDR1_LHLVALVGTQGR+DOPO_VISTLEEPTPQ 
CPTSQGR+G3BP1_INIPPQR+GPR37_ISPDLPDTIYVLALTYDSAR+HEP2_TLEAQLTPR+IBP5_AVYLP 

NCDR+IC1_TTFDPK+LAMP2_IPLNDLFR+MBL2_FQASVATPR+NPC2_LVVEWQLQDDK+PLXC1_LNTI 

GHYEISNGSTIK+PSMD1_VSTAVLSITAK+RL30_SLESINSR+SPTB2_LTVQTK+SUV3_LLNLEGFPSGS 
QSR+TFPI1_IAYEEIFVK+TRFE_ASYLDCIR+UROM_VLNLGPITR+(intercept) 

29 39 2.65E-01 

  4 

AACT_DEELSCTVVELK+AMPN_AQIINDAFNLASAHK+BPIB1_ALGFEAAESSLTK+C1RL_GSEAINAPG 

DNPAK+CBG_HLVALSPK+CBPB2_DTGTYGFLLPER+CFAB_DISEVVTPR+CLD3_DFYNPVVPEAQK+C 

NDP1_AIHLDLEEYR+DDR1_LHLVALVGTQGR+DOPO_VISTLEEPTPQCPTSQGR+G3BP1_INIPPQR+ 

GPR37_ISPDLPDTIYVLALTYDSAR+HEP2_TLEAQLTPR+IBP5_AVYLPNCDR+IC1_TTFDPK+LAMP2_I 

PLNDLFR+MBL2_FQASVATPR+NPC2_LVVEWQLQDDK+PLXC1_LNTIGHYEISNGSTIK+PSMD1_VST 
AVLSITAK+SPTB2_LTVQTK+TFPI1_IAYEEIFVK+TRFE_ASYLDCIR+UROM_VLNLGPITR+(intercept) 

26 27 3.07E-01 
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  5 

AACT_DEELSCTVVELK+AMPN_AQIINDAFNLASAHK+BPIB1_ALGFEAAESSLTK+C1RL_GSEAINAPG 

DNPAK+CAD13_INNTHALVSLLQNLNK+CBG_HLVALSPK+CBPB2_DTGTYGFLLPER+CFAB_DISEVVT 
PR+CLD3_DFYNPVVPEAQK+CNDP1_AIHLDLEEYR+DDR1_LHLVALVGTQGR+DOPO_VISTLEEPTPQ 

CPTSQGR+G3BP1_INIPPQR+GPR37_ISPDLPDTIYVLALTYDSAR+HEP2_TLEAQLTPR+IBP5_AVYLP 

NCDR+IC1_TTFDPK+LAMP2_IPLNDLFR+MBL2_FQASVATPR+NPC2_LVVEWQLQDDK+PLXC1_LNTI 
GHYEISNGSTIK+PSMD1_VSTAVLSITAK+RL30_SLESINSR+SPTB2_LTVQTK+STAB1_SLEAQGNSSH 

LDADTVR+SUV3_LLNLEGFPSGSQSR+TFPI1_IAYEEIFVK+TRFE_ASYLDCIR+UROM_VLNLGPITR+(i 

ntercept) 

30 5 1.30E-02 

  6 

AACT_DEELSCTVVELK+AMPN_AQIINDAFNLASAHK+BPIB1_ALGFEAAESSLTK+C1RL_GSEAINAPG 

DNPAK+CBPB2_DTGTYGFLLPER+CFAB_DISEVVTPR+CLD3_DFYNPVVPEAQK+DOPO_VISTLEEPT 
PQCPTSQGR+G3BP1_INIPPQR+GPR37_ISPDLPDTIYVLALTYDSAR+HEP2_TLEAQLTPR+IBP5_AVY 

LPNCDR+IC1_TTFDPK+LAMP2_IPLNDLFR+MBL2_FQASVATPR+NPC2_LVVEWQLQDDK+PLXC1_LN 

TIGHYEISNGSTIK+PSMD1_VSTAVLSITAK+TFPI1_IAYEEIFVK+TRFE_ASYLDCIR+UROM_VLNLGPIT 
R+(intercept) 

22 2 2.88E-09 

  7 

AACT_DEELSCTVVELK+AMPN_AQIINDAFNLASAHK+BPIB1_ALGFEAAESSLTK+C1RL_GSEAINAPG 

DNPAK+CFAB_DISEVVTPR+CLD3_DFYNPVVPEAQK+DOPO_VISTLEEPTPQCPTSQGR+GPR37_ISP 
DLPDTIYVLALTYDSAR+HEP2_TLEAQLTPR+IBP5_AVYLPNCDR+IC1_TTFDPK+MBL2_FQASVATPR+ 

NPC2_LVVEWQLQDDK+PLXC1_LNTIGHYEISNGSTIK+PSMD1_VSTAVLSITAK+TFPI1_IAYEEIFVK+U 

ROM_VLNLGPITR+(intercept) 

18 1 2.81E-11 

Protein_peptide sequence of the selected features is listed for each combination. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = schizophrenia 
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Table 2-7. ANCOVA analysis of proteomic features and significant clinical variables 

from the final multiprotein marker models in the training set 

MPM model Proteomic features Covariates 
P-valuea 

(ANCOVA) 

MDD vs BD ALDOC_ALQASALNAWR Group (MDD vs BD) 0.121 

    SCL_PAR 0.011 

        

  ALDOC_ALQASALNAWR Group (MDD vs BD) 0.080 

    SCL_ANG 0.049 

      

  ARMD4_TVVPSITR Group (MDD vs BD) 0.073 

   SCL_OCD 0.022 

        

  CTND1_GYELLFQPEVVR Group (MDD vs BD) 0.053 

    BPRS 0.036 

        

MDD vs SCZ ALDOC_ALQASALNAWR Group (MDD vs SCZ) 0.124 

    SCL_PSY 0.015 

        

  ALDOC_ALQASALNAWR Group (MDD vs SCZ) 0.112 

    SCL_PAR 0.025 

        

  ALDOC_ALQASALNAWR Group (MDD vs SCZ) 0.267 

    SCL_ANG 0.011 

       

  IBP3_YGQPLPGYTTK Group (MDD vs SCZ) 0.173 

    SCL_OCD 0.008 

       

BD vs SCZ 
GPR37_ 

ISPDLPDTIYVLALTYDSAR 
Group (BD vs SCZ) 0.113 

    BPRS 0.024 

        

  UROM_VLNLGPITR Group (BD vs SCZ) 0.141 

    BPRS 0.039 
aP-value < 0.05 is considered statistically significant, denoted by bold font 

Protein_peptide sequence is listed for each feature. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia; SCL = Symptom Checklist-90-Revised, PAR = paranoid ideation 

dimension, ANG = hostility dimension, OCD = obsessive-compulsive dimension, BPRS = 

Brief Psychiatric Rating Scale, PSY = psychoticism dimension 
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Table 2-8. Mass spectra information of the proteomic features from the final multiprotein marker models       

MDD vs BD  Mass Information  

IDa Protein Peptide Gene name 

Precursor 

ion. Light 

(m/z) 

Precursor 

ion. 

Heavy 

(m/z) 

Precursor 

ion 

charge 

Product 

ion. 

Light 

(m/z) 

Product 

ion. 

Heavy 

(m/z) 

Product 

ion 

charge 

Product 

ion type 

Collision 

energy 

(volt) 

Retention 

time (RT) 

P09972 ALDOC ALQASALNAWR ALDOC 400.89 404.22 3 508.77 513.77 2 y9 9.60 37.47+/-0.49 

P15144 AMPN AQIINDAFNLASAHK ANPEP 734.40 739.40 2 277.15 277.15 1 b2 23.80 39.25+/-0.49 

Q86TY3 ARMD4 TVVPSITR ARMH4 436.76 441.77 2 201.12 201.12 1 b2 14.50 28.73+/-0.19 

Q9NZP8 C1RL GSEAINAPGDNPAK C1RL 670.83 674.83 2 698.35 706.36 1 y7 21.80 24.58+/-0.14 

P55290 CAD13 INNTHALVSLLQNLNK CDH13 598.01 600.68 3 729.43 737.44 1 y6 16.70 44.85+/-0.36 

P11597 CETP ASYPDITGEK CETP 540.76 544.77 2 759.39 767.40 1 y7 17.80 27.87+/-0.17 

Q03692 COAA1 GTHVWVGLYK COL10A1 387.21 389.88 3 480.28 488.30 1 y4 9.10 33.4+/-0.52 

O60716 CTND1 GYELLFQPEVVR CTNND1 725.39 730.39 2 599.35 609.36 1 y5 23.50 44.94+/-0.5 

Q08345 DDR1 LHLVALVGTQGR DDR1 632.38 637.38 2 1013.61 1023.62 1 y10 20.60 34.94+/-0.25 

P09172 DOPO TPEGLTLLFK DBH 559.83 563.83 2 509.30 513.31 2 y9 18.40 44.83+/-0.31 

P05155 IC1 TTFDPK SERPING1 354.68 358.69 2 244.17 252.18 1 y2 12.00 22.55+/-0.76 

Q9NPH3 IL1AP NEVWWTIDGK IL1RAP 624.31 628.31 2 905.45 913.47 1 y7 20.40 40.99+/-0.33 

P19823 ITIH2 IQPSGGTNINEALLR ITIH2 791.93 796.94 2 671.36 676.36 2 y13 25.50 35.16+/-0.23 

P61916 NPC2 LVVEWQLQDDK NPC2 458.24 460.91 3 505.23 513.24 1 y4 11.70 38.92+/-0.52 

P62826 RAN FNVWDTAGQEK RAN 647.81 651.81 2 633.32 641.33 1 y6 21.10 35.37+/-0.41 

P0DJI8 SAA1 
FFGHGAEDSLADQAANEWG
R 

SAA1 726.66 730.00 3 732.34 742.35 1 y6 21.40 39.78+/-0.29 

P02787 TRFE ASYLDCIR TF 499.24 504.25 2 563.26 573.27 1 y4 16.50 32.04+/-0.2 
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MDD vs SCZ Mass Information  

IDa Protein Peptide Gene name 

Precursor 

ion. Light 

(m/z) 

Precursor 

ion. 

Heavy 

(m/z) 

Precursor 

ion 

charge 

Product 

ion. 

Light 

(m/z) 

Product 

ion. 

Heavy 

(m/z) 

Product 

ion 

charge 

Product 

ion type 

Collision 

energy 

(volt) 

Retention 

time (RT) 

P09972 ALDOC ALQASALNAWR ALDOC 400.89 404.22 3 508.77 513.77 2 y9 9.60 37.47+/-0.49 

P35858 ALS DFALQNPSAVPR IGFALS 657.84 662.85 2 626.36 636.37 1 y6 21.40 34.77+/-0.45 

P54802 ANAG DFCGCHVAWSGSQLR NAGLU 593.93 597.26 3 759.34 764.34 2 y13 16.60 34.99+/-0.28 

P05023 AT1A1 IVEIPFNSTNK ATP1A1 631.34 635.35 2 342.20 342.20 1 b3 20.60 35.32+/-0.27 

P25774 CATS YTELPYGR CTSS 499.75 504.75 2 734.38 744.39 1 y6 16.50 28.78+/-0.18 

P08185 CBG HLVALSPK SERPINA6 432.77 436.78 2 251.15 251.15 1 b2 14.40 25.22+/-0.23 

Q96IY4 CBPB2 DTGTYGFLLPER CPB2 456.90 460.23 3 401.21 411.22 1 y3 11.60 41.48+/-0.35 

Q03692 COAA1 GTHVWVGLYK COL10A1 387.21 389.88 3 480.28 488.30 1 y4 9.10 33.4+/-0.52 

Q14894 CRYM TVVPVTK CRYM 372.24 376.24 2 201.12 201.12 1 b2 12.50 24.77+/-0.28 

P22352 GPX3 FYTFLK GPX3 409.73 413.73 2 508.31 516.33 1 y4 13.70 37.78+/-0.24 

P17936 IBP3 YGQPLPGYTTK IGFBP3 612.82 616.82 2 876.48 884.50 1 y8 20.00 29.26+/-0.19 

P24593 IBP5 AVYLPNCDR IGFBP5 554.27 559.27 2 661.27 671.28 1 y5 18.20 28.3+/-0.47 

P19823 ITIH2 IQPSGGTNINEALLR ITIH2 791.93 796.94 2 671.36 676.36 2 y13 25.50 35.16+/-0.23 

P20142 PEPC AECGLGVPTTR PGC 580.79 585.79 2 630.36 640.37 1 y6 19.00 27.96+/-0.18 

P04070 PROC TFVLNFIK PROC 491.29 495.30 2 733.46 741.47 1 y6 16.20 45.02+/-0.3 

P07225 PROS NNLELSTPLK PROS1 564.82 568.82 2 787.46 795.47 1 y7 18.50 34.02+/-0.59 

P52758 RIDA AAYQVAALPK RIDA 516.30 520.30 2 428.29 436.30 1 y4 17.00 31.05+/-0.43 

P0DJI8 SAA1 
FFGHGAEDSLADQAANEWG

R 
SAA1 726.66 730.00 3 732.34 742.35 1 y6 21.40 39.78+/-0.29 

P35542 SAA4 GPGGVWAAK SAA4 421.73 425.74 2 688.38 696.39 1 y7 14.10 26.25+/-0.19 

P10646 TFPI1 IAYEEIFVK TFPI 556.31 560.31 2 506.33 514.35 1 y4 18.20 39.75+/-0.55 
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BD vs SCZ Mass Information  

IDa Protein Peptide Gene name 

Precursor 

ion. Light 

(m/z) 

Precursor 

ion. 

Heavy 

(m/z) 

Precursor 

ion 

charge 

Product 

ion. 

Light 

(m/z) 

Product 

ion. 

Heavy 

(m/z) 

Product 

ion 

charge 

Product 

ion type 

Collision 

energy 

(volt) 

Retention 

time (RT) 

P01011 AACT DEELSCTVVELK SERPINA3 474.57 477.24 3 488.31 496.32 1 y4 12.30 36.4+/-0.28 

P15144 AMPN AQIINDAFNLASAHK ANPEP 734.40 739.40 2 277.15 277.15 1 b2 23.80 42.82+/-0.3 

Q8TDL5 BPIB1 ALGFEAAESSLTK BPIFB1 662.34 666.35 2 735.39 743.40 1 y7 21.50 37.2+/-0.24 

Q9NZP8 C1RL GSEAINAPGDNPAK C1RL 670.83 674.83 2 698.35 706.36 1 y7 21.80 24.58+/-0.14 

P00751 CFAB DISEVVTPR CFB 508.27 513.28 2 787.43 797.44 1 y7 16.80 30.12+/-0.2 

O15551 CLD3 DFYNPVVPEAQK CLDN3 703.85 707.86 2 572.30 580.32 1 y5 22.80 35.45+/-0.24 

P09172 DOPO VISTLEEPTPQCPTSQGR DBH 559.83 563.83 2 509.30 513.31 2 y9 18.40 44.83+/-0.31 

O15354 GPR37 ISPDLPDTIYVLALTYDSAR GPR37 741.72 745.06 3 825.41 835.42 1 y7 21.90 52.74+/-0.15 

P05546 HEP2 TLEAQLTPR SERPIND1 514.79 519.79 2 814.44 824.45 1 y7 17.00 29.55+/-0.2 

P24593 IBP5 AVYLPNCDR IGFBP5 554.27 559.27 2 661.27 671.28 1 y5 18.20 28.3+/-0.47 

P05155 IC1 TTFDPK SERPING1 354.68 358.69 2 244.17 252.18 1 y2 12.00 22.55+/-0.76 

P11226 MBL2 FQASVATPR MBL2 488.76 493.77 2 701.39 711.40 1 y7 16.20 26.64+/-0.17 

P61916 NPC2 LVVEWQLQDDK NPC2 458.24 460.91 3 505.23 513.24 1 y4 11.70 38.92+/-0.52 

O60486 PLXC1 LNTIGHYEISNGSTIK PLXNC1 582.97 585.64 3 653.33 657.33 2 y12 16.20 33.21+/-0.51 

Q99460 PSMD1 VSTAVLSITAK PSMD1 545.33 549.34 2 731.47 739.48 1 y7 17.90 33.62+/-0.51 

P10646 TFPI1 IAYEEIFVK TFPI 556.31 560.31 2 506.33 514.35 1 y4 18.20 39.75+/-0.55 

P07911 UROM VLNLGPITR UMOD 491.81 496.81 2 770.45 780.46 1 y7 16.20 35.59+/-0.25 

aUniProt accession number  

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = schizophrenia 
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Table 2-9. Expression levels of proteomic features from the final multiprotein marker models in the total study population  

MDD 

vs BD 
IDa Proteinb Peptide Gene name 

MDD vs BD vs 

HC  
MDD vs BD MDD vs HC BD vs HC 

F-

statistics 

P-

value
c  

Fold-

changed  

Upregula

ted 

P-

value
c  

Fold-

changed  

Upregula

ted 

P-

value
c  

Fold-

changed  

Upregula

ted 

P-

value
c  

  P09972 ALDOC 
ALQASALN

AWR 
ALDOC 4.286 0.014 -0.527 MDD 0.043 0.582 MDD 0.024 0.054 BD 0.968 

  P15144 AMPN 
AQIINDAFN
LASAHK 

ANPEP 3.597 0.028 -0.097 MDD 0.079 0.111 MDD 0.040 0.014 BD 0.949 

  Q86TY3 ARMD4 TVVPSITR ARMH4 4.882 0.008 0.225 BD 0.011 -0.192 HC 0.041 0.033 BD 0.907 

  Q9NZP8 C1RL 
GSEAINAPG

DNPAK 
C1RL 8.097 

 < 

0.001 
0.107 BD 0.015 0.045 MDD 0.474 0.153 BD 

< 

0.001 

  P55290 CAD13 
INNTHALVS

LLQNLNK 
CDH13 1.992 0.137 0.166 BD 0.115 -0.092 HC 0.525 0.075 BD 0.657 

  P11597 CETP 
ASYPDITGE
K 

CETP 6.723 0.001 -0.185 MDD 0.002 0.028 MDD 0.871 -0.158 HC 0.013 

  Q03692 COAA1 
GTHVWVGL

YK 
COL10A1 1.769 0.172 -0.347 MDD 0.146 0.156 MDD 0.682 -0.190 HC 0.571 

  O60716 CTND1 
GYELLFQPE

VVR 
CTNND1 5.810 0.003 0.285 BD 0.006 -0.019 HC 0.979 0.266 BD 0.014 

  Q08345 DDR1 
LHLVALVG

TQGR 
DDR1 3.520 0.030 -0.316 MDD 0.025 0.107 MDD 0.658 -0.209 HC 0.210 

  P09172 DOPO 
TPEGLTLLF
K 

DBH 3.385 0.035 0.148 BD 0.246 -0.241 HC 0.028 -0.093 HC 0.584 

  P05155 IC1 TTFDPK SERPING1 3.679 0.026 0.189 BD 0.020 -0.112 HC 0.255 0.076 BD 0.535 

  Q9NPH3 IL1AP 
NEVWWTID

GK 
IL1RAP 2.521 0.081 0.119 BD 0.090 -0.020 HC 0.938 0.099 BD 0.198 

  P19823 ITIH2 
IQPSGGTNI

NEALLR 
ITIH2 6.930 0.001 -0.133 MDD 0.001 0.038 MDD 0.559 -0.094 HC 0.032 

  P61916 NPC2 
LVVEWQLQ
DDK 

NPC2 1.970 0.141 0.257 BD 0.117 -0.121 HC 0.627 0.136 BD 0.560 

  P62826 RAN 
FNVWDTAG

QEK 
RAN 1.519 0.220 -0.185 MDD 0.197 0.067 MDD 0.811 -0.118 HC 0.530 



７５ 

 

  P0DJI8 SAA1 

FFGHGAED

SLADQAAN

EWGR 

SAA1 1.719 0.180 0.249 BD 0.159 -0.091 HC 0.786 0.158 BD 0.490 

  P02787 TRFE ASYLDCIR TF 2.993 0.051 0.302 BD 0.052 -0.093 HC 0.749 0.209 BD 0.237 

MDD 

vs SCZ 
IDa Proteinb Peptide Gene name 

MDD vs SCZ vs 

HC  
MDD vs SCZ MDD vs HC  SCZ vs HC  

F-

statistics 

P-

value
c  

Fold-

changed  

Upregula

ted 

P-

value
c  

Fold-

changed  

Upregula

ted 

P-

value
c  

Fold-

changed  

Upregula

ted 

P-

value
c  

  P09972 ALDOC 
ALQASALN

AWR 
ALDOC 4.981 0.007 -0.530 MDD 0.001 0.582 MDD 0.983 0.052 SCZ 0.003 

  P35858 ALS 
DFALQNPS
AVPR 

IGFALS 5.596 0.004 -0.133 MDD 0.272 -0.011 HC 0.533 -0.144 HC 0.028 

  P54802 ANAG 
DFCGCHVA

WSGSQLR 
NAGLU 2.317 0.100 0.237 SCZ 0.119 -0.027 HC 0.940 0.210 SCZ 0.065 

  P05023 AT1A1 
IVEIPFNSTN

K 
ATP1A1 7.890 

 < 

0.001 
-0.234 MDD 

< 

0.001 
0.012 MDD 0.792 -0.222 HC 0.004 

  P25774 CATS YTELPYGR CTSS 14.931 
 < 

0.001 
0.222 SCZ 0.004 0.161 MDD 0.058 0.383 SCZ 

< 

0.001 

  P08185 CBG HLVALSPK SERPINA6 7.439 0.001 -0.155 MDD 
 < 

0.001 
-0.010 HC 0.105 -0.165 HC 

< 

0.001 

  Q96IY4 CBPB2 
DTGTYGFL

LPER 
CPB2 3.367 0.035 0.070 SCZ 0.002 0.049 MDD 0.747 0.119 SCZ 0.024 

  Q03692 COAA1 
GTHVWVGL
YK 

COL10A1 1.941 0.145 -0.332 MDD 0.121 0.156 MDD 0.870 -0.176 HC 0.564 

  Q14894 CRYM TVVPVTK CRYM 11.382 
 < 

0.001 
-0.233 MDD 0.009 0.008 MDD 0.958 -0.226 HC 0.005 

  P22352 GPX3 FYTFLK GPX3 18.516 
 < 

0.001 
-0.145 MDD 0.006 -0.075 HC 0.260 -0.220 HC 0.314 

  P17936 IBP3 
YGQPLPGY

TTK 
IGFBP3 4.749 0.009 -0.149 MDD 0.006 0.077 MDD 0.260 -0.072 HC 0.314 

  P24593 IBP5 
AVYLPNCD

R 
IGFBP5 6.441 0.002 -0.292 MDD 0.004 0.063 MDD 0.058 -0.229 HC 

< 

0.001 

  P19823 ITIH2 
IQPSGGTNI

NEALLR 
ITIH2 5.056 0.007 -0.115 MDD 0.025 0.038 MDD 0.014 -0.076 HC 0.966 



７６ 

 

  P20142 PEPC 
AECGLGVP

TTR 
PGC 4.047 0.018 -0.141 MDD 0.024 0.018 MDD 0.940 -0.123 HC 0.065 

  P04070 PROC TFVLNFIK PROC 9.017 
< 

0.001 
-0.206 MDD 

 < 

0.001 
0.027 MDD 0.989 -0.179 HC 

< 

0.001 

  P07225 PROS 
NNLELSTPL

K 
PROS1 4.977 0.007 0.291 SCZ 0.002 0.075 MDD 0.977 0.366 SCZ 0.002 

  P52758 RIDA 
AAYQVAAL

PK 
RIDA 2.976 0.052 0.078 SCZ 0.063 -0.067 HC 0.970 0.011 SCZ 0.948 

  P0DJI8 SAA1 

FFGHGAED

SLADQAAN

EWGR 

SAA1 8.692 
 < 

0.001 
0.539 SCZ 0.044 -0.091 HC 0.813 0.447 SCZ 0.009 

  P35542 SAA4 
GPGGVWAA
K 

SAA4 2.511 0.082 0.098 SCZ 0.119 0.011 MDD 0.973 0.110 SCZ 0.200 

  P10646 TFPI1 IAYEEIFVK TFPI 6.287 0.002 -0.260 MDD 0.005 -0.025 HC 0.562 -0.285 HC 0.103 

BD vs 

SCZ 
IDa Proteinb Peptide Gene name 

BD vs SCZ vs HC  BD vs SCZ BD vs HC  SCZ vs HC  

F-

statistics 

P-

value
c  

Fold-

changed  

Upregula

ted 

P-

value
c  

Fold-

changed  

Upregula

ted 

P-

value
c  

Fold-

changed  

Upregula

ted 

P-

value
c  

  P01011 AACT 
DEELSCTVV
ELK 

SERPINA3 3.695 0.026 0.274 SCZ 0.021 -0.091 HC 0.658 0.183 SCZ 0.186 

  P15144 AMPN 
AQIINDAFN

LASAHK 
ANPEP 4.238 0.015 0.105 SCZ 0.048 0.014 BD 0.948 0.119 SCZ 0.023 

  Q8TDL5 BPIB1 
ALGFEAAES

SLTK 
BPIFB1 3.677 0.026 0.246 SCZ 0.061 0.019 BD 0.984 0.265 SCZ 0.043 

  Q9NZP8 C1RL 
GSEAINAPG
DNPAK 

C1RL 9.289 
< 

0.001 
-0.133 BD 0.002 0.153 BD 

 < 

0.001 
0.020 SCZ 0.868 

  P00751 CFAB DISEVVTPR CFB 6.793 0.001 0.164 SCZ 0.004 -0.005 HC 0.995 0.159 SCZ 0.006 

  O15551 CLD3 
DFYNPVVP

EAQK 
CLDN3 8.529 

 < 

0.001 
-0.217 BD 0.008 -0.075 HC 0.571 -0.292 HC 

 < 

0.001 

  P09172 DOPO 
VISTLEEPTP

QCPTSQGR 
DBH 8.002 

 < 

0.001 
-0.260 BD 0.012 -0.093 HC 0.570 -0.353 HC 

< 

0.001 

  O15354 GPR37 
ISPDLPDTIY
VLALTYDS

AR 

GPR37 5.911 0.003 -0.557 BD 0.002 0.284 BD 0.196 -0.272 HC 0.223 

  P05546 HEP2 TLEAQLTPR SERPIND1 4.275 0.014 0.144 SCZ 0.016 -0.030 HC 0.834 0.114 SCZ 0.079 
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  P24593 IBP5 
AVYLPNCD

R 
IGFBP5 11.290 

 < 

0.001 
-0.395 BD 

< 

0.001 
0.166 BD 0.125 -0.229 HC 0.020 

  P05155 IC1 TTFDPK SERPING1 6.684 0.001 -0.241 BD 0.001 0.076 BD 0.505 -0.165 HC 0.043 

  P11226 MBL2 FQASVATPR MBL2 4.366 0.013 -0.326 BD 0.015 0.262 BD 0.070 -0.064 HC 0.853 

  P61916 NPC2 
LVVEWQLQ
DDK 

NPC2 2.351 0.096 -0.287 BD 0.078 0.136 BD 0.571 -0.151 HC 0.500 

  O60486 PLXC1 
LNTIGHYEI

SNGSTIK 
PLXNC1 1.580 0.207 0.275 SCZ 0.178 -0.132 HC 0.679 0.143 SCZ 0.634 

  Q99460 PSMD1 
VSTAVLSIT

AK 
PSMD1 5.620 0.004 0.105 SCZ 0.014 -0.113 HC 0.009 -0.008 HC 0.975 

  P10646 TFPI1 IAYEEIFVK TFPI 6.455 0.002 -0.289 BD 0.005 0.004 BD 0.999 -0.285 HC 0.007 

  P07911 UROM VLNLGPITR UMOD 5.754 0.003 -0.258 BD 0.017 -0.035 HC 0.929 -0.292 HC 0.006 

a UniProt accession number 
b Overlapping proteomic features between MPM models are presented as different colors; blue for MDD versus BD and MDD versus SCZ, green for MDD versus BD and BD versus SCZ, and 

orange for MDD versus SCZ and BD versus SCZ. 
c Bold font denotes statistical significance at P-value < 0.05. ANOVA for 3 groups comparison, Tukey's HSD for post-hoc analysis 
d Fold change calculated with logarithmic(2) transformation 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = schizophrenia, HC = healthy controls 
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Table 2-10. Clinical features used in symptom checklist-based models 

and clinician rater score-based models 

          

SCLB models         

          

MDD vs BD    MDD vs SCZ   BD vs SCZ 

Clinical variable    Clinical variable    Clinical variable  

SCL-90-R_SOM    SCL-90-R_SOM   SCL-90-R_OCD 

SCL-90-R_IPS   SCL-90-R_IPS   SCL-90-R_IPS 

SCL-90-R_PSY   SCL-90-R_PSY   SCL-90-R_PSY 

SCL-90-R_60   SCL-90-R_PAR   SCL-90-R_PHO 

SCL-90-R_DEP   SCL-90-R_DEP   SCL-90-R_DEP 
       SCL-90-R_ANG 

CRSB models         

          

MDD vs BD    MDD vs SCZ   BD vs SCZ 

Clinical variable    Clinical variable    Clinical variable  

BPRS   BPRS   BPRS 

YMRS   YMRS   YMRS 

MADRS   MADRS   MADRS 

HAM-A   HAM-A   HAM-A 

          
SCLB models constructed with the highest differentiation performance combination by 

binary logistic regression. CRSB models constructed with the total score of the scales by 

binary logistic regression. 

 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia, SCLB = symptom checklist-based, SCL-90-R = Symptom Checklist-90-

Revised, SOM = somatization dimension, OCD = obsessive-compulsive dimension, IPS = 

interpersonal sensitivity dimension, PSY = psychoticism dimension, 60 = overeating item, 

PAR = paranoid ideation dimension, PHO = phobic anxiety dimension, DEP = depression 

dimension, ANG = hostility dimension, CRSB = clinician rater score-based, BPRS = Brief 

Psychiatric Rating Scale, YMRS = Young Mania Rating Scale, MADRS = Montgomery-

Asberg Depression Rating Scale, HAM-A = Hamilton Anxiety Scale 
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Table 2-11. Predicted networks generated by ingenuity pathway analysis with proteomic features from the final multiprotein marker models 

ID Molecules in Network 

Total 

molecules 

Network 

Score 

Focus 

molecules 

1 

Akt, ALPL, ATP1A1, BPIFB1, C1RL, CDH13, CFB, CG, CTNND1, DBH, DDR1, ERK1/2, 

FSH, Growth hormone, Histone h3, IGFBP3, IGFBP5, IL1RAP, Lh, MAP4K4, MBL2, NFkB 

(complex), NPC2, P38, MAPK, PLIN3, PROC, PROS1, PSMD1, PTGS1, SAA1, SERPINA3, 

TCF, TCF21, TF, TYRO3 

35 41 19 

2 

ANPEP, APLP2, APOB, CETP, CLDN3, COL10A1, Collagen type II, CPB2, CTSS, EHF, 

ETV5, F11, GLI1, GLI2, GPR37, HNF1A, HSPA1A/HSPA1B, IL1RN, ITIH2, KLK2, KLK6, 

LDL, LRP1, MMP2, MSI2, NOS3, NR5A2, PCSK9, PLIN2, SAA4, SERPIND1, SERPING1, 

STUB1, TFPI, VTN 

35 23 12 

3 

ALDOC, APC, BMP2, CCL3, CDK5, CTNNB1, CXCL1, EPAS1, ESR2, GPX3, GSK3B, 

HNRNPA1, IL13, IL22, IPO5, IRS1, JINK1/2, miR-483-3p (miRNAs w/seed CACUCCU), MTOR, 

MYB, MYOC, OGA, PARP, PARP1, PDIA3, PIK3R1, PKN1, PLXNC1, PPARG, RAN, RASSF1, 

RPTOR, STK11, SUZ12, TERT 

35 6 4 

4 PADI2, SERPINA6 2 2 1 

5 CRYM, KDM1A, SBDS 3 2 1 

6 AR, Hedgehog, PGC, SFTPB 4 2 1 

7 GABARAP, GABARAPL1, GABARAPL2, NAGLU, TFEB 5 2 1 

The networks satisfying network score≥ 20 are denoted by bold font. 
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Table 2-12. Proteomic profiling data of the differentially expressed proteins which overlapped with the proteomic features from the final 

multiprotein marker models  
MDD vs BD                 

                  

Protein  
Gene 

name 

ANOVA significance 

(MDD vs BD vs HC) 
Clusters 

Post-hoc analysis 

significance 

(MDD vs BD) 

Fold-

changea 
Upregulated P-valueb 

Consistency of 

statistical significance 

and expression patternc 

ALDOC ALDOC + cluster 4   0.46 BD 0.727 N 

ITIH2 ITIH2 + cluster 1 + -0.19 MDD 0.001 Y 

TRFE TF + cluster 2 + 0.26 BD 0.002 N 

SAA1 SAA1 + cluster 4 + -1.03 MDD 0.004 N 

                  

MDD vs SCZ                 

                  

Protein  
Gene 

name 

ANOVA significance 

(MDD vs SCZ vs HC) 
Clusters 

Post-hoc analysis 

significance 

(MDD vs SCZ) 

Fold-

changea 
Upregulated P-valueb 

Consistency of 

statistical significance 

and expression patternc 

ITIH2 ITIH2 + cluster 2 + -0.13 MDD 0.003 Y 

ALDOC ALDOC + cluster 4   0.05 SCZ 0.993 N 

PROS PROS1 + cluster 1 + -0.14 MDD 0.006 N 

CBG SERPINA6 + cluster 2   -0.59 MDD 0.236 N 

TFPI1 TFPI + cluster 1 + -0.86 MDD 0.043 Y 

SAA1 SAA1 + cluster 4 + -0.23 MDD 0.024 N 

                  

BD vs SCZ                 
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Protein  
Gene 

name 

ANOVA significance 

(BD vs SCZ vs HC) 
Clusters 

Post-hoc analysis 

significance 

(BD vs SCZ) 

Fold-

changea 
Upregulated P-valueb 

Consistency of 

statistical significance 

and expression patternc 

C1RL C1RL + cluster 1 + -0.21 BD 0.003 Y 

 
aFold change calculated with logarithmic(2) transformation 
bP-value < 0.05 is considered statistically significant, based on Tukey's HSD 
cConsistency of statistical significance and expression pattern in both proteomic platforms 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = schizophrenia, HC = healthy controls 
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Figure 1-1. Volcano plot of differentially expressed proteins between drug free major depressive disorder and bipolar disorder. Representative protein 

IDs are statistically significant DEPs based on a P-value < 0.05 (red-color). 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, DEP = differentially expressed protein, 
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Figure 1-2. Hierarchical clustering of differentially expressed proteins between drug free major depressive disorder and bipolar disorder 
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Figure 1-3. Tree-map of the diseases and functions associated with the differentially 

expressed proteins between drug free major depressive disorder and bipolar disorder. 

Major boxes represent categories of biological diseases/functions and individual rectangles 

represent an individual biological disease/function. The rectangle size correlates with 

increasing overlap significance and darker colors represent lower P-values. 
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Figure 1-4. Canonical pathway analysis of differentially expressed proteins between 

drug free major depressive disorder and bipolar disorder  
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Figure 1-5. Top protein network generated by ingenuity pathway analysis of 

differentially expressed proteins between drug free major depressive disorder and 

bipolar disorder. Direct and indirect interactions are represented by the solid and dashed 

lines, respectively. The shapes represent the molecular classes of the proteins defined in the 

legend. The protein interaction networks were generated through the use of IPA. MDD, major 

depressive disorder; BP, bipolar disorder; IPA, Ingenuity Pathway Analysis. 

Log2(Fold-change) 3 -3 

BD up MDD up 
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Figure 2-1. Principal component analysis plot of adjusted peak area ratio of LC-MRM-

MS targets after batch effect correction. Principal component analysis was performed with 

the clinical samples after batch effect correction for sample preparation batches. (a) Sample 

preparation batches and (b) hosptial types are colored in the principal component analysis 

plot (1 = Seoul National Unviersity Hospital, 2 = Seoul Metropolitan Government Seoul 

National University Boramae Medical Center, 3 = Nowon Eulji Medical Center, Eulji 

University; 4 = Cha University Bundang Medical Center, 5 = Inha University Hospital, and 

6 = Hanyang University Seoul Hospital) 
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Figure 2-2. Univariate analysis of proteomic candiate features. Heatmaps of the 

proteomic candidate feature expression, and correlation plots of proteomic candidate feaures 

with demographics and clinical characteristics are presented. Alterations in fold change, and 

AUROCs of the individual proteomic candidate features are further plotted. Univariate 

analysis for (a) MDD versus BD, (b) MDD versus SCZ, and (c) BD versus SCZ.  

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia, PAR = peak area ratio, AUROC = area under the reciever operating 

characteristics, BMI = body mass index, AP = antipsychotics, L/AC = lithium/anticonvulsant, 

AD = antidepressant, BDZ/HNT = benzodiazepine/hypnotic, DFO = duration from first onset, 

DFM = duration from first medication 
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Figure 2-3. Correlation analysis between proteomic candidate features. The correlation 

matrix of the proteomic candidate features based on Pearson’s correlation is presented for (a) 

MDD versus BD, (b) MDD versus SCZ, and (c) BD versus SCZ. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia 
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Figure 2-4. Development of multiprotein marker models based on selection fraction = 

1. The selected features (selection fraction=1) in the MPM models are shown as pink bars. 

Weighted average coefficients and its directions for disease types are presented. Results of 

MPM models for (a) MDD versus BD, (b) MDD versus SCZ, and (c) BD versus SCZ. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia, AUROC = area under the receiver operating characteristics, MPM = 

multiprotein marker 
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Figure 2-5. Differentiation performance of multiprotein marker models based on 

selection fraction ≥ 0.8. 

Results of MPM models for (a) MDD versus BD, (b) MDD versus SCZ, and (c) BD versus 

SCZ. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia, AUROC = area under the receiver operating characteristics. 
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Figure 2-6. Differentiation performance of multiprotein marker models with bipolar 

disorder subgroups. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia. 

 



９３ 

 

 

Figure 2-7. Violin plots for the final multiprotein marker model values 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia. 
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Figure 2-8. Overlapping proteomic features for the final multiprotein marker models 

and its expression levels. Overlapping proteomic features represented as protein entries 

between the final MPM models are shown, and their expression pattern is indicated as up for 

upregulation and down for downregulation. Proteomic features with significance differences 

between disease types are signified by bold font and asterisk. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia, MPM = multiprotein marker 
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Figure 2-9. Differentiation performance of symptom checklist-based models. Results of 

SCLB models for (a) MDD versus BD, (b) MDD versus SCZ, and (c) BD versus SCZ. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia, SCLB = symptom checklist-based, SCL = Symptom Checklist-90-Revised, 

SOM = somatization dimension, OCD = obsessive-compulsive dimension, IPS = 

interpersonal sensitivity dimension, PSY = psychoticism dimension, 60 = overeating item, 

PAR = paranoid ideation dimension, PHO = phobic anxiety dimension, DEP = depression 

dimension, ANG = hostility dimension, AUROC = area under the receiver operating 

characteristics. 
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Figure 2-10. Differentiation and diagnostic performance of ensemble models. Results of 

ES models for (a) MDD versus BD, (b) MDD versus SCZ, and (c) BD versus SCZ. Optimal 

cutoff based on Youden index. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia, ES = ensemble, BPRS = Brief Psychiatric Rating Scale, YMRS = Young 

Mania Rating Scale, MADRS = Montgomery-Asberg Depression Rating Scale, HAM-A = 

Hamilton Anxiety Scale, AUROC = area under the receiver operating characteristics, PPV = 

positive predictive value, NPV = negative predictive value 
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Figure 2-11. Differentiation and diagnostic performance of clinician rater score-based 

models. Results of CRSB models for (a) MDD versus BD, (b) MDD versus SCZ, and (c) BD 

versus SCZ. Optimal cutoff based on Youden index. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia, CRSB = clinician rater score-based, BPRS = Brief Psychiatric Rating Scale, 

YMRS = Young Mania Rating Scale, MADRS = Montgomery-Asberg Depression Rating 

Scale, HAM-A = Hamilton Anxiety Scale, AUROC = area under the receiver operating 

characteristics, PPV = positive predictive value, NPV = negative predictive value 
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Figure 2-12. Performance comparison of ensemble models and clinician rater score-

based models. Differentiation performances in each set, and diagnostic performances in the 

independent test set are compared for (a) MDD versus BD, (b) MDD versus SCZ, and (c) 

BD versus SCZ. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia, CRSB = clinician rater score-based, ES = ensemble, AUROC = area under 

the receiver operating characteristics, PPV = positive predictive value, NPV = negative 

predictive value 
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Figure 2-13. Merged protein networks and associated canonical pathways from 

proteomic features of the final multiprotein marker models. Merged protein networks 

with network score ≥ 20 and the corresponding canonical pathways were generated. 

Canonical pathways associated with proteins in the network are presented as light pink dotted 

lines. Overlapping proteomic features between the final MPM models are denoted by an 

asterisk. Each protein is presented as its gene name, and the corresponding protein entry is in 

parentheses. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia, CP = canonical pathway, MPM = multiprotein marker. 
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Figure 2-14. Proteomic profiling data of pooled plasma samples. (a) Dynamic range of 

the 902 quantified proteins. (b) Technical variances in MS analysis. (c) Coefficient of 

variation (CV) values between technical replicates of MS analysis. (d) Principal component 

analysis of distinct clusters.  

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia, HC = healthy controls, TR = technical replicate, CV = coefficient of variation, 

MS = mass spectrometry 
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Figure 2-15. Consistency of proteomic features from the final multiprotein marker 

models between targeted proteomics and proteomic profiling data. Clusters from DEPs 

of proteomic profiling analysis and their corresponding expression levels are presented as 

heatmaps. For each cluster, the number of DEPs and expression patterns are presented. 

Overlapping proteins of the final MPM models with consistent statistical significance and 

expression pattern for both proteomic platforms are in wine-colored font. Results for (a) 

MDD versus BD, (b) MDD versus SCZ, and (c) BD versus SCZ. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia, HC = healthy controls, MPM = multiprotein marker, DEP = differentially 

expressed protein 
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Figure 2-16. Proteomic profiling data of the consistent proteomic features in 

differentiating major psychiatric disorders. Alterations in expressions of the consistent 

proteomic features, which satisfied consistent statistical significance and expression pattern 

between targeted proteomics and proteomic profiling, are presented as heatmaps and line 

graphs. Alterations in protein expression are indicated by a red line, and average protein 

expression for each group is indicated by a purple line. 

Abbreviations: MDD = major depressive disorder, BD = bipolar disorder, SCZ = 

schizophrenia, HC = healthy controls 
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Abstract in Korean 

 

배경: 주요우울장애, 양극성장애, 조현병은 대표적인 

주요정신질환으로 이들은 일생동안 지속되는 장해, 그리고 증가된 

사망율과 연관되어 있다고 알려져 있다. 주관적 증상과 행동 

관찰을 통한 진단 방법은 이들의 감별진단을 어렵게 할 때가 있다. 

단백체 프로파일링과 표적 단백체 정량이 이러한 질환들을 

객관적으로 감별하는데 도움이 될 수 있다는 최신 연구들이 

나오고 있다. 그래서 이번 연구는, 말초 혈액의 단백체 정량을 

바탕으로 질환 간을 비교, 감별하고자 하였다.  

방법: 약물을 2주 이상 복용하지 않은 주요우울장애 환자 15명과 

양극성장애 환자 10명의 혈청 시료로 질량 분석기 기반 단백체 

프로파일링 분석을 시행하였다. T-검정을 통해 각 군 간 발현양에 

유의하게 차이나는 단백질들을 찾아내고자 하였다 (연구 1). 이 

연구는 174명의 주요우울장애, 171명의 조현병, 170명의 양극성장애, 

그리고 160명의 정상대조군 혈장을 분석함으로써, 확장하고자 

하였다. 질환들을 감별할 수 있는 표적 단백체를 정량하고, 단백체 

프로파일링과 비교함으로써 단백체 발현 변화의 일관성을 

확인고자 하였다. LASSO 회귀분석, 표적 단백체 변수 추출, 모델 

평균화의 과정을 거쳐 다중단백체마커 모델을 만들어서 두 
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질환군을 짝지어서 감별하고자 하였다. 이러한 다중단백체마커 

모델과 간이정신진단검사(SCL-90-R)를 결합하여 만든 앙상블 

모델과, 임상가 척도 기반 모델의 성능을 비교하고자 하였다 (연구 

2). 두 연구 모두 생물정보학 분석을 통해, 감별력이 있는 

단백질들과 연관된 생물학적 기능을 예측하고자 하였다. 

결과: 약물을 복용하지 않은 주요우울장애와 양극성장애 사이에서 

발현양에 유의하게 차이나는 14개의 단백체를 발굴하였다. RAB7A, 

ROCK2는 주요우울장애에서, EPO7은 양극성장애에서 발현양이 

증가되어 있었다 (연구 1). 두 질환군을 비교하는 다중단백체마커 

모델은, 독립된 검정 데이터 셋에서 양호한 감별 성능을 보였다 

(AUROC=0.74~0.82). 게다가, 앙상블 모델의 성능은 

(AUROC=0.77~0.90) 전반적으로 임상가 척도 기반 모델의 성능과 

(AUROC=0.74~0.94) 동등하였다 (연구 2). 두 연구 모두, 감별력이 

있는 단백체들은 세포 기능과 면역/염증 경로와 연관되어 있었다. 

결론: 이번 연구에서는 단백체 정량, 그리고 임상 데이터와의 

통합을 통해 주요정신질환을 비교, 감별하는 방법의 가능성을 

확인할 수 있었다. 이후 연구들은 종적인 방법으로 분석할 필요가 

있다. 

 

주요어: 주요우울장애, 양극성장애, 조현병, 단백체학, 
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다중반응탐색법, 단백체 프로파일링 

 

학번: 2013-21686 
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