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Abstract

Gait Variability as a Potential
Digital Biomarker for Cognitive
Decline: the wearable devices

opportunity

Byun, Seonjeong
Department of Psychiatry, College of Medicine

The Graduate School Seoul National University

Background and Objectives: Large public health burden of dementia and the absence
of a cure highlight the need for early identification of those at risk for cognitive decline
or dementia to prevent and/or delay the onset of dementia. Emerging evidence indicates
gait variability, the fluctuation of a gait measure from one step to the next, strongly
relate to the risk of cognitive decline, MCI and dementia. Gait variability obtain via
wearable sensor is a promising digital biomarker for predicting risk of cognitive
impairment due to its favorable practical advantages of being able to obtain
measurements over a longer period of time under unsupervised real-world conditions
at lower cost. In my thesis, | examine the possibility that gait variability measured by
a single body-worn tri-axial accelerometer (TAA) can be used as a digital biomarker
to predict future risk of cognitive decline. In the first study, | examined whether gait

variability obtained by the body-worn TAA could predict future risk of cognitive
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decline in older people with normal cognition (NC). In the second study, | then identify
neural substrates that theoretically support the potential of gait variability as a digital
biomarker in older adults with larger sample size and broader range of cognitive
function. Additionally, I hypothesized higher gait variability would be related to lower
cortical thickness, especially in regions important for cognitive function and memory,
and that these regions would represent a shared neural substrate for gait control and

cognitive impairment.

Methods: In the study I, we conducted 4-year prospective cohort study on 358
community-dwelling cognitively normal elderly individuals without cerebral ischemic
burden or Parkinsonism. We evaluated gait speed and step time variability using a TAA
placed on the center of body mass, and diagnosed mild cognitive impairment (MCI)
according to the International Working Group on MCI. We performed Kaplan-Meier
analysis with consecutive log-rank testing for MClI-free survival by cohort-specific
quintiles of gait variability; hazard ratios (HR) of incident MCI were estimated using
Cox proportional hazards regression analysis adjusted for age, sex, education level,
Cumulative IlIness Rating Scale score, GDS score, and presence of the apolipoprotein
E &4 allele.

In the study I, we cross-sectionally investigated the cortical and subcortical
neural structures associated with gait variability, and the shared neural substrates of
gait variability and cognitive function in 207 non-demented older adults. We obtained
the cortical thickness and subcortical volumes from the magnetic resonance images,
and examined associations between gait variability, cognitive function, and cortical
thickness and subcortical volumes. Finally, we analyzed the mediation effect of the
cluster cortical thickness and subcortical volume which had a significant association
with both gait variability and cognitive function on the association between gait
variability and cognition.

Results: In the study I, subjects with high gait variability showed about 2-fold higher



risk of MCI (HR = 2.12, 95% CI = 1.05-4.31) than those with 1%-to-4™ quintiles of
variability. However, those with slow gait speed showed comparable MCI risk to those
with 2"-to-5" quintiles of speed (HR = 1.06, 95% CI = 0.49— 2.30). We additionally
found that no sex differences were found when assessing the ability of high gait
variability to predict future cognitive decline. When we computed gait variability and
gait speed as continuous variables to explore whether there are any threshold effects,
the risk of incident cognitive decline increased 1.16 times per 10% increment of gait
variability, whereas it did not change significantly with changes of gait speed.

In the study I, higher gait variability was associated with lower cognitive
functions. We found the widespread decrease in cortical thickness with increasing gait
variability while there was no significant association with the volume of subcortical
structures. Among the clusters that showed significant correlation with the gait
variability, a cluster that included the inferior temporal, entorhinal, parahippocampal,
fusiform, and lingual in left hemisphere was also associated with global cognitive
function, and verbal memory function. Cortical thickness of the cluster explained 17%
of the total effect of gait variability on global cognitive function measured by CERAD-
TS.

Interpretation: Gait variability measured by a single body-worn TAA could be a novel
digital biomarker of risk of cognitive decline that could be used repeatedly and
frequently and at low cost to test risk of individuals without clinical evidence of

cognitive impairments.

Part of this work was previously published on:

- Byun, Seonjeong, et al. “Gait variability can predict the risk of cognitive decline in
cognitively normal older people.” Dementia and geriatric cognitive disorders,

45(2018), 251-261
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1. Study Background

Dementia is a major global health problem, affecting 46.8 million people worldwide,
with prevalence predicted to increase exponentially to 131.5 million in 2050. The
total global societal cost of dementia was estimated to exceed USD 818 billion in
2015, equivalent to 1.1% of global gross domestic product (GDP), to exceed USD 1
trillion in 2018 and forecast to double by 2030 and continues to rise. (Patterson 2018,
FLEMING, ZEISE et al. 2020) This large public health burden and the absence of a
cure highlight the need for early identification of those at risk for cognitive decline or
dementia to prevent and/or delay the onset of dementia. The search for useful
biomarkers in the early stages of cognitive impairment has important implications for
initiating intervention and monitoring disease progression. Substantial progress has
been made in the early diagnosis and identification of individuals at risk for cognitive
impairment using cerebrospinal fluid, structural MRI imaging, and PET molecular
imaging. However, their high cost, invasive nature, or low accessibility limit their
widespread use as early biomarkers. Biomarkers based on MRI and PET imaging are
available in specialty clinic settings in some countries, but the highest increase in
prevalence and incidence of dementia in the coming years will be observed in low-
and intermediate-income countries, where the accessibility to expensive biomarkers
is limited. (de Jager, Msemburi et al. 2017) Blood-based biomarkers have been
actively studied in recent years as a cost-effective and less invasive early screening
biomarker of cognitive impairment. (O'Bryant, Mielke et al. 2017) However, studies
have shown considerable variability owing to inconsistencies in clinical cohort, and
problems with standardization of the samples, and pre- analytical and analytical
differences. Assay reliability and robust replication and validation of initial results
remain key issues for blood-based biomarker, and blood collection and processing
procedures in studies are not applicable to standard clinical lab practice, which will

cause substantial barriers to clinical application. (Hampel, O'Bryant et al. 2018)
11
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Therefore, more studies are needed for biomarkers in the earliest stages of the

cognitive impairments.

There has been a growing interest in examining gait function as a marker of
early cognitive impairment. A simple but useful measure of human locomotion, gait
speed is known to correlate with dementia; slow gait was associated with the
accelerated cognitive decline and the risks of mild cognitive impairment (MCI) and
dementia. (Camicioli, Howieson et al. 1998, Verghese, Lipton et al. 2002, Mielke,
Roberts et al. 2013) Building on these findings, Verghese and colleagues defined
motoric cognitive risk (MCR) syndrome as having cognitive complaint and slow gait
speed, and proposed the MCR syndrome as a novel high-risk condition of dementia.
(Verghese, Wang et al. 2013) The large study (17 countries with 22 cohorts resulting
in 26,802 individuals) showed MCR was associated with increased cognitive
impairment. However, MCR had increased risk of dementia and strongly predicted
vascular dementia (VaD), but not predicted Alzheimer’s dementia (AD) in the study.
Moreover, in a multi-cohort MRI study, gray matter covariance patterns linked to gait
speed were associated with processing speed but not with episodic memory. (Lo,
Halko et al. 2017, Blumen, Brown et al. 2019) Slow processing speed and episodic
memory loss are well-known symptoms that appear in the early stages of vascular
dementia and Alzheimer's dementia, respectively. Considering such findings, gait
speed may not be suitable as a predictive marker of cognitive decline due to

neurodegenerative diseases, which accounts for the majority of dementia.

However, the gait of older adults can be characterized not only by the pace
domain represented by speed, but also by the rhythm, variability, asymmetry, and
postural control domains. (Lord, Galna et al. 2013) Gait parameters belonging to the
rhythm, variability, asymmetry, and postural control cannot be easily measured with
stop-watch and tapeline only, unlike gait speed, have been measured with

computerized gait analysis via 3D gait analysis laboratory, electronic forceplate, and
12



inertial measurement unit sensors. (FRIGO 1992) More recently, the proliferation of
wearable digital technologies in healthcare has provided new opportunities to assess
gait performance outside of a gait laboratory, including detailed gait metrics. (Zhou,
Al-Ali et al. 2018, Kang, Zhou et al. 2020) Among the detailed gait metrics, a
decrease in stride length and gait symmetry, and an increase in gait variability were
observed in subjects with MCI, a transition state between normal aging and dementia.
(Verghese, Robbins et al. 2008) Specifically, subjects with amnestic MCl, a
precursor state to Alzheimer’s disease, in the study had worse variability scores while
subjects with non-amnestic MCI had poor performance on the pace factor. Emerging
evidence indicates gait variability, the fluctuation of a gait measure from one step to
the next, strongly relate to the risk of cognitive decline, MCI and dementia. (Dodge,
Mattek et al. 2012, Beauchet, Allali et al. 2013, Gillain, Dramé et al. 2016) In a
recent Canadian multisite cross-sectional study with older adults across
neurodegenerative conditions, high gait variability, but not other gait domains such
as rhythm, pace, and postural control, was associated with lower cognitive
performance and accurately discriminated AD from other neurodegenerative and
cognitive conditions. (Pieruccini-Faria, Black et al. 2021) Gait variability has been
associated with areas important for sensorimotor integration and coordination and
relies on higher cortical brain control. (Tian, Chastan et al. 2017) Higher gait
variability has been associated with structural and functional differences in gray
matter regions; specifically, with lower levels of neuronal metabolism in
hippocampus and structural degeneration in hippocampus, primary sensorimotor
cortex, anterior cingulate cortex, basal ganglia in older adults. (Zimmerman, Lipton
et al. 2009, Beauchet, Annweiler et al. 2014, Rosso, Hunt et al. 2014) The findings
from cross-sectional and longitudinal studies on risk of cognitive impairment and
from studies on the neural substrates related to gait variability suggest that gait
variability could be a predictive biomarker for cognitive decline, particularly those

due to Alzheimer’s disease, which accounts for most of degenerative dementia.
13
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However, the evaluation of detailed gait metrics is currently limited to research
applications due to the need for institutional visits, the large space required for the
institution, and the high cost. For instance, test-retest reliability of step time
variability estimated using the GAITRite with an active area length of 3.65 m was
very low in my previous study. (Byun, Han et al. 2016) The reliability of gait
variability estimated using the GAITRite is reported to vary depending on the length
of the active area on the walkway used for measuring the gait. The European
GAITRite network group recommends the highest number of gait cycles possible
from a practical standpoint, with a minimum of 6 consecutive gait cycles (i.e., a total
of 12 consecutive steps) to evaluate stride time variability. A laboratory with a length
of 15 m or more is required for this purpose. These limitations preclude repeated and
frequent use to test an individual and specifically in the early pre-symptomatic stage
of the neurodegenerative diseases. Recently, advancing mobile and wearable digital
technology have the potential to overcome these limitations, and their application to
the development of digital biomarkers for future cognitive decline has become an
area of increased interest. (Kourtis, Regele et al. 2019) Furthermore, a recent meeting
of the Alzheimer’s Association Research Roundtable discussed how wearables and
their digital biomarkers can be used in the dementia clinical trial space. Topics of
discussion included how wearables can improve screening, engagement and
compliance with treatment, while providing new insights towards personalized
medicine. (Gold, Amatniek et al. 2018, Godfrey, Brodie et al. 2019) In our previous
study, step time variability can be validly measured using a single tri-axial
accelerometer (hereafter, TAA) placed over the center of body mass in older adults.
(Hsu, Chung et al. 2014, Byun, Han et al. 2016, Del Din, Godfrey et al. 2016) Recent
prospective longitudinal study has already shown the potential for step time
variability and asymmetry measured by a wearable TAA to be potential prodromal
markers for Parkinson disease (PD), the second common neurodegenerative disease.

(Del Din, Elshehabi et al. 2019) Wearable sensor-based gait measurement has the
14
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advantage of being able to obtain measurements over a longer period of time under
unsupervised real-world conditions at lower cost. With these regards, the gait
variability measured by TAA is a promising digital biomarker for predicting risk of

cognitive impairment in the pre-clinical stages.

To summarize, identifying those at risk of cognitive impairment at the
earliest stages of the disease is crucial for timely intervention and effective treatment.
For this, gait variability obtain via wearable sensor is a promising digital biomarker
due to its favorable practical advantages. To date, no prospective studies have
investigated the association of gait variability and future cognitive decline using the
body-worn TAA, and there have been only two prospective studies using
conventional gait assessment tools. One study suggested that high gait variability
may be associated with the future risk of Alzheimer’s disease (AD) in those with
MCI (Gillain, Drame et al. 2016). The other study suggested high variability factor
scores were associated with future risk of dementia in non-demented old people
(Verghese, Wang et al. 2007). In addition to being based on conventional gait
assessment tools, the previous studies were subject to certain methodological
limitations. The former study (Gillain, Drame et al. 2016) included only 13 subjects;
the latter (Verghese, Wang et al. 2007) evaluated gait variability using a short
electronic walkway, resulting in unreliable measurements (Kressig and Beauchet
2006). Furthermore, there was no study investigating whether a combination of gait
speed and variability can better predict the risk of cognitive decline than either factor
alone. Finally, these studies could not show whether the changes in gait variability
preceded or merely accompanied mild cognitive impairment or dementia, because

their samples included people with mild cognitive impairment at baseline.

Meanwhile, some studies have investigated the neural correlates of association
between gait variability and the risk of cognitive decline. Higher gait variability

indicates lower gray matter integrity and neuronal metabolism of hippocampus,
15



lower gray matter integrity of anterior cingulate gyrus, and decreased parietal gray
matter volume.(Zimmerman, Lipton et al. 2009, Beauchet, Annweiler et al. 2014,
Rosso, Hunt et al. 2014) Many of these areas that have been associated with gait
variability are also related to Alzheimer's disease. (Jack, Petersen et al. 1998,
Burgmans, Van Boxtel et al. 2009, Kawakami, Hasegawa et al. 2014) It appears
plausible that gait variability and cognitive function would share neural substrates,
and understanding the shared neural substrates between gait variability-cognitive
function may provide a neurological explanation for a higher gait variability being
associated with an increased risk of cognitive decline. However, such shared neural
substrates have not been examined: there have been some studies of gait variability-
neural substrates or gait variability-cognitive decline, respectively. And even studies
that only reported the neural substrates associated with gait variability have
limitations; most have focused on only a few pre-specified regions of interest, and
cortical thickness has rarely been studied although cortical thickness methods have
been shown to be more sensitive in detecting alterations in cortical morphology than
the former volumetric approach, and a short-length forceplate was used to measure
gait variability with insufficient consecutive steps. (Hutton, Draganski et al. 2009,

Sakurai, Bartha et al. 2019, Jayakody, Breslin et al. 2020)

2. Purpose of Research
In my research, | examine the possibility that gait variability measured by a single
body-worn TAA can be used as a digital biomarker to predict future risk of cognitive

decline. To this end, | conducted two studies.

In the first study, | first examined whether gait variability obtained by the
body-worn TAA could predict future risk of cognitive decline in older people with
normal cognition (NC). To investigate whether the changes in gait variability precede
MCI, we conducted a 4-year prospective study of elderly with NC who had no

16



evidence of cognitive impairment in well-characterized cohort of community

dwelling older adults.

In the second study, | then identify neural substrates that theoretically
support the potential of gait variability as a digital biomarker in older adults with
larger sample size and broader range of cognitive function. | cross-sectionally
investigated the cortical and subcortical neural structures associated with gait
variability, and the shared neural substrates of gait variability and cognitive function
in non-demented older adults. I anticipated that higher gait variability would be
associated with reduced cortical thickness in regions implicated in sensorimotor
control of gait in non-demented older adults, even though not associated with
decreased subcortical volume. Additionally, I hypothesized higher gait variability
would be related to lower cortical thickness, especially in regions important for
cognitive function and memory, and that these regions would represent a shared
neural substrate for gait control and cognitive impairment. Gait variability in the
present study was quantified by step time variability since temporal gait variability
measures such as step time variability and stride time variability are the most widely
reported factors that predict cognitive decline, and the use of steps instead of strides
to calculate gait variability has been suggested in previous studies. (Moe-Nilssen,

Aaslund et al. 2010, Galna, Lord et al. 2013).

Altogether, I hypothesized that step time variability measured by a single
body-worn TAA could be a novel digital biomarker of risk of cognitive decline that
could be used repeatedly and frequently and at low cost to test risk of individuals

without clinical evidence of cognitive impairments.
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1. Study 1: Can gait variability predict the risk of cognitive
decline in cognitively normal elderly?

1.1. Study population

We undertook the current study as a prospective cohort study nested within the
Korean Longitudinal Study on Cognitive Aging and Dementia (KLOSCAD). The
KLOSCAD is a population-based prospective multi-center cohort study on cognitive
aging and dementia in elderly Koreans (age 60 years and over) who have been
followed up every 2 years since 2010 (Kim, Park et al. 2013). Among the KLOSCAD
participants who completed baseline assessment from January 2011 to December
2018 at Seoul National University Bundang Hospital, 506 volunteers who were
eligible for inclusion criteria and exclusion criteria as follows completed gait
assessment. They were non-demented, free from psychiatric, neurologic and serious
medical disorders, any history of cerebrovascular accidents or operations on
musculoskeletal system, or any painful condition or sensory impairment that may
influence their gait. The level of visual function was operationally defined according
to the following five levels: 0 Normal, 1 Diminished but able to see the newspaper or
television without glasses or lenses., 2 Diminished and need to wear glasses or lenses
to see the newspaper or television, 3 Difficult to see newspapers or television with
glasses or lenses because of reduced vision 4 Not able to see anymore. We excluded
people with a score of 3 or more through the interview with trained research nurses
and excluded those who had diplopia, visual field defects, or other sensory deficits
through neurological evaluation performed by geriatric psychiatrists. Out of 506
subjects who underwent gait evaluation, except for 148 subjects (10 subjects who
were diagnosed with MCI through the neuropsychological test,120 subjects who did
not meet the condition of Unified Parkinson's Disease Rating Scale Part 111

(UPDRS) (P. Martinez-Martin and tF. Bermejo 1994) motor score of 0 or a gait
19



subscale of Tinetti gait and balance assessment(Tinetti-gait) (Tinetti 1986) score of
12, and 18 with missing values in one of the covariates), a total of 358 subjects were
included in this baseline sub-cohort. This study was approved by the Institutional
Review Board of the Seoul National University Bundang Hospital. All subjects

provided written informed consent themselves or via their legal guardians.

1.2. Clinical assessments

Geriatric psychiatrists administered a standardized diagnostic interview including a
detailed medical history, physical and neurological examinations, and laboratory tests
including APOE genotyping to each subject using the Korean version of the
Consortium to Establish a Registry for Alzheimer’s Disease Assessment Packet
Clinical Assessment Battery (CERAD-K-C) (LEE, LEE et al. 2004), the Mini
International Neuropsychiatric Interview (MINI) (Yoo, Kim et al. 2006), and the
Cumulative Iliness Rating Scale (CIRS) (Miller, Paradis et al. 1992). We determined
the global severity of dementia using the Clinical Dementia Rating (CDR) (Morris
1993). We evaluated parkinsonian symptoms and gait disturbances using the UPDRS
(range 0-108 with higher scores indicating more severe parkinsonian motor
symptoms) and the gait subscale of Tinetti gait and balance assessment. The Tinetti
instrument consists of three scales: a Gait Scale, a Balance Scale and then and overall
Gait and Balance score. The maximum score for gait is 12. The higher the score, the
better the performance. The Modified Hachinski Ischemic Score (MHIS) was
employed for assessing vascular burden (Rosen, Terry et al. 1980). Trained
neuropsychologists or research nurses administered neuropsychological assessments
including the Korean version of the Consortium to Establish a Registry for
Alzheimer’s Disease Neuropsychological Assessment Battery (CERAD-K-N) (Lee,
Lee et al. 2002), the Korean version of the Frontal Assessment Battery (Kim, Huh et
al. 2010) and the forward and backward Digit Span Test (D. 1987), and asked the
participants to self-administer the Korean version of Geriatric Depression Scale

20



(GDS) (Kim, Park et al. 2008).

We determined the diagnosis and CDR of each subject through consensus diagnostic
conferences in which three or more research geriatric psychiatrists participated. We
diagnosed mild cognitive impairment (MCI) according to the diagnostic criteria for
MCI proposed by the International Working Group on MCI (Winblad, Palmer et al.
2004) and dementia according to the Diagnostic and Statistical Manual of Mental
Disorders (4th ed., text revision) criteria (Association 2000). We diagnosed the
presence of objective cognitive impairment if a subject scored worse than -1.0
standard deviation (SD) on the age-, gender-, and education-adjusted norms for
Korean elders in any of the 11 neuropsychological tests other than the Mini-Mental
State Examination (MMSE). We defined the subjects as cognitively normal whose
CDR was 0 and neuropsychological performance was above -1.0 SD in all

neuropsychological tests.
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1.3. Gait Assessments

Gait analysis using a tri-axial accelerometer placed over the center of body mass
(COM) was found to validly measure gait parameters including cadence, step time,
step length, speed, and gait variability in older adults (Hartmann, Murer et al. 2009,
Byun, Han et al. 2016). We measured the gait of each subject using the GAITRite
and the tri-axial accelerometry-based gait analysis (TAAGA) that we reported in our
previous work. (Byun, Han et al. 2016) The TAAGA showed excellent test-retest
reliability in measuring cadence, step time, step length, step time variability, and step

time asymmetry in cognitively normal older adults.

We obtained gait speed from the GAITRite. According to our previous work,
we measured the step time variability of each participant using a TAA (FITMETER®
[FitLife Inc., Suwon, Korea] or ActiGraph® [SMD solution, Seoul, Korea]) placed
over the center of body mass (CoM). The IMUs were hexahedrons (35 x 35 x 13 mm
[14 g]/30 x 40 x 10 mm [17 g]) with smooth edges and a digital tri-axial
accelerometer (BMA255, BOSCH, Germany) and gyroscope (BMX055, BOSCH,
Germany). They could measure tri-axial acceleration up to + 8 g (with a resolution of
0.004 g/0.00024 g) and tri-axial angular velocity up to £1,000°/s (with a resolution of
0.03°/s) at 250 Hz. We fixed an IMU to each participant at the 3™ — 4" lumbar
vertebrae using Hypafix. We asked each participant to walk back and forth three
times on a 14 m (or 20 m) flat straight walkway at a comfortable self-selected pace,
and to start turning after passing the 14 m (or 20 m) line. We placed the GAITRite
electronic mat in the middle of the walkway. To measure steady-state walking, we
analyzed the data of the central 10 m-walk of the 14m-walk (or 15m-walk of the
20m-walk) after eliminating the 2 m-walks prior to the start and each turn. We
calculated step time variability from vertical acceleration data using the method
described by Zijlstra and Hof [i.e., % coefficient of variation (% CV) of step time =

(standard deviation of step time/mean step time) x 100] (Zijlstra and Hof 2003). In
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the present study, we used the natural log transformation of % CV of step time as gait
variability since % CV of step time was not normally distributed. The detailed
methods of signal processing and gait variability calculation are described elsewhere.
(Byun, Han et al. 2016) In summary, we read acceleration data as comma separated
value (CSV) files using FITMETER and ActiGraph manager software and loaded the
CSV file into MATLAB (The MathWorks Inc., Natick, MA). We applied a low-pass
filter (4th order zero-lag Butterworth filter at 2 Hz) to the acceleration data from
three axes. After that, we took troughs of the processed data on vertical axis as the
instant of a left or right foot contact for each walk. We calculated step times using the

duration between acceleration troughs.

1.4. Statistical analysies

On the basis of sex, we classified each subject's gait variability as being in the 1st,
2nd, 39, 4™ 5" quintiles, and the subjects' gait speed was also classified into the
quintiles. We compared the demographic, clinical, and gait characteristics between
the quintile groups using one-way analysis of variance (ANOVA) for continuous
variables and chi square test or Fisher's exact probability test for categorical variables

(Table 1).

Incidence of MCI over the 4-year follow-up was a primary outcome. We
performed Kaplan—Meier analysis with consecutive log-rank testing for MCI free
survival by cohort-specific quintiles of gait speed and variability to estimate the

association between gait parameters and MCI risk.

We performed cox proportional hazard regression analyses to estimate
multivariate-adjusted estimates of the hazard ratio (HR) of MCI according to gait
speed and variability. We dichotomized the subjects by gait variability into a highest

quintile group and a control group in conducting multivariate analysis. Similarly, gait
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speed was entered into the multivariate model as a variable dichotomized into a
control group and a lowest quintile group because slow gait, not normal or fast gait,
had been a well-known predictor of cognitive decline (Mielke, Roberts et al. 2013,
Verghese, Wang et al. 2013, Gale, Allerhand et al. 2014, Ojagbemi, D’Este et al.
2015), and the high gait speed group had no incidence of MCI. We constructed three
models and adjusted age, sex, level of education, CIRS score, GDS score, and the
presence of the apolipoprotein E (APOE) &4 allele as covariates in all models, with
gait speed included in Model A, gait variability in Model B, and both in Model C.
We compared the predictive ability of these cox regression models using the
likelihood ratio-test and C-statistic. Gait speed and variability status were entered
into the Cox model as both continuous and dichotomized variables to test if there is a
threshold effect. Natural logarithmic transformation was applied to the gait
variability variable to achieve normality. Time to event was from enrolment to
interview at which MCI was diagnosed or to final study contact. We tested the
proportional hazards assumption using the methods based on scaled Schoenfeld
residuals. In an additional analysis, we assessed the robustness of our analyses to
potential reverse causation (that would occur if incipient cognitive impairment at
baseline led to high gait variability and/or low gait speed status) by additionally
adjusting the models for baseline cognitive performance measured by MMSE. Based
on the Youden’s T statistic (Youden 1950), the optimal cut-off value for gait measure
that best predicts the incidence of cognitive decline 4 years after the baseline
assessment was selected for men and women, respectively. All analyses were
performed using SPSS version 20 (IBM Corp., New York, NY) and R version 3.3.2

(R Foundation for Statistical Computing).

2. Study 2: Shared Neural Substrates between Gait Variability-
Cognitive Function

24



2.1. Study population

This study is embedded in the Korean Longitudinal Study on Cognitive Aging and
Dementia (KLOSCAD), a population-based prospective multicenter cohort study on
cognitive aging and dementia in elderly Koreans (age 60 years and over) who have
been followed up every 2 years since 2010 (Kim, Park et al. 2013). This study is
embedded in the Korean Longitudinal Study on Cognitive Aging and Dementia
(KLOSCAD), a population-based prospective multicenter cohort study on randomly
sampled elderly Koreans aged 60 years old and over. The KLOSCAD was launched
in 2009 and have been followed up every 2 years until 2020 (Kim, Park et al. 2013).
Among 232 individuals who completed the gait evaluation and brain MRI
simultaneously in the KLOSCAD cohort, we included 207 participants in the final
analysis after excluding following conditions: 1) dementia or major psychiatric
disorders according to the Diagnostic and Statistical Manual of Mental Disorders (4th
ed., text revision) criteria; 2) major neurologic disorders including Parkinson’s
disease, brain tumor or stroke; 3) having a history of traumatic brain injury; 4) having
the Tinetti Performance Oriented Mobility Assessment - Gait subscale (POMA-G)
score of < 10 (Tinetti 1986); 5) having one or more cardinal signs (bradykinesia,
tremor, rigidity) or two or more non-cardinal signs in the Parkinsonism on the
Unified Parkinson’s Disease Rating Scale Part III (UPDRS) (P. Martinez-Martin and
tF. Bermejo 1994).

All the participants had provided written informed consent themselves or via their
legal guardians. This study had been approved by the Institutional Review Board of

the Seoul National University Bundang Hospital.

2.2. Assessments of cognition and medical conditions

Geriatric psychiatrists administered a standardized diagnostic interview including a
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detailed medical history, physical and neurological examinations, and laboratory tests
to each subject using the Korean version of the Consortium to Establish a Registry
for Alzheimer’s Disease Assessment Packet Clinical Assessment Battery (CERAD-
K-C) (LEE, LEE et al. 2004) and the Mini International Neuropsychiatric Interview
(MINI) (Yoo, Kim et al. 2006). They evaluated the burden of comorbidities using the
Cumulative IlIness Rating Scale (CIRS) (Miller, Paradis et al. 1992) and the vascular
burden using the Modified Hachinski Ischemic Score (MHIS) (Rosen, Terry et al.
1980), and identified the presence of degenerative arthritis of spine and/or lower
extremities through the musculoskeletal category of the CIRS [34]. They evaluated
Parkinsonian symptoms and gait disturbances using the UPDRS and the POMA-G.
The maximum score of the UPDRS is 108 and the higher score indicates more severe
Parkinsonian motor symptoms. The maximum score of the POMA-G is 12 and the

higher the score indicates the better gait performance.

Trained neuropsychologists or research nurses administered neuropsychological
assessments including the Korean version of the Consortium to Establish a Registry
for Alzheimer’s Disease Neuropsychological Assessment Battery (CERAD-K-N)
(LEE, LEE et al. 2004), the Korean version of the Frontal Assessment Battery (Kim,
Huh et al. 2010) and the Digit Span Test (D. 1987).

The CERAD-K-N consists of nine neuropsychological tests, including the
Categorical Fluency Test (CFT), the Modified Boston Naming Test (mBNT), the
Mini Mental Status Examination (MMSE), the Word List Memory Test (WLMT),
the Constructional Praxis Test (CPT), the Word List Recall Test (WLRT), the Word
List Recognition Test (WLRCcT), the Constructional Recall Test (CRT), and the Trail
Making Test A (TMT-A). We calculated the CERAD-K total scores (CERAD-TS) by
summing the scores of CFT, mBNT, WLMT, WLRT, WLRcT, and CPT (Seo, Lee et
al. 2010). We defined the Verbal Memory Score (VMS) as the weighted average of

the scores of WLMT, WLRT, and WLRcT. The CERAD-TS and VMS range from 0
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to 100 and 0 to 30, respectively, and higher scores represent better cognitive function.

Research nurses asked the participants to self-administer the Korean version
of Geriatric Depression Scale (GDS) (Kim, Park et al. 2008) to evaluate the severity

of depressive symptoms.

2.3. Gait assessments

We measured the temporal gait variability because temporal parameters were more
affected dementia-related gait parameters than spatial parameters and temporal, but
not the spatial gait parameter, were associated with AD pathology (Wennberg, Savica
et al. 2017, Chiaramonte and Cioni 2021). In measuring the temporal gait variability,
we used the steps instead of strides because gait variability from left and right steps
combined was more reliable that using strides (Moe-Nilssen, Aaslund et al. 2010,

Galna, Lord et al. 2013).

According to our previous work (Hartmann, Murer et al. 2009, Byun, Han et al.
2016), we measured the step time variability of each participant using a TAA
(FITMETER?® [FitLife Inc., Suwon, Korea] or ActiGraph® [SMD solution, Seoul,
Korea]) placed over the center of body mass (CoM). The IMUs were hexahedrons
(35 % 35 x 13 mm [14 g]/30 x 40 x 10 mm [17 g]) with smooth edges and a digital
tri-axial accelerometer (BMA255, BOSCH, Germany) and gyroscope (BMX055,
BOSCH, Germany). They could measure tri-axial acceleration up to + 8 g (with a
resolution of 0.004 g/0.00024 g) and tri-axial angular velocity up to £1,000°s (with a
resolution of 0.03°/s) at 250 Hz. We fixed an IMU to each participant at the 34— 4"
lumbar vertebrae using Hypafix. We asked each participant to walk back and forth
three times on a 14 m (or 20 m) flat straight walkway at a comfortable self-selected
pace, and to start turning after passing the 14 m (or 20 m) line. To measure steady-

state walking, we analyzed the data of the central 10 m-walk of the 14m-walk (or
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15m-walk of the 20m-walk) after eliminating the 2 m-walks prior to the start and
each turn. We calculated step time variability from vertical acceleration data using
the method described by Zijlstra and Hof [i.e., % coefficient of variation (% CV) of
step time = (standard deviation of step time/mean step time) x 100] (Zijlstra and Hof
2003). In the present study, we used the natural log transformation of % CV of step
time as gait variability since % CV of step time was not normally distributed. The
detailed methods of signal processing and gait variability calculation are described

elsewhere. (Byun, Han et al. 2016)

We also measured the leg length which was the distance between the anterior
superior iliac spine (ASIS) and the lateral malleolus, as a covariate, because leg

length is associated with spatiotemporal gait parameters. (Ko, Gunter et al. 2007)

2.4. Magnetic resonance imaging (MRI) acquisition and
preprocessing

We obtained three-dimensional structural T1-weighted spoiled gradient echo
magnetic resonance (MR) images of the participants within a year from their clinical
and neuropsychological assessments using a 3.0 Tesla GE SIGNA Scanner (GE
Healthcare; Milwaukee, WI) in Digital Imaging and Communications in Medicine
format with the following parameters: acquired voxel size = 1.0 x 0.5 x 0.5 mm3, 1.0
mm sagittal slices with no inter-slice gap, echo time = 3.68 ms, repetition time = 25.0
ms, number of excitations = 1, flip angle = 90°, field of view = 240 x 240 mm, and
175 x 240 x 240 matrix in the x-, y-, and z- dimensions. We bias-corrected the T1
images to remove intensity inhomogeneity artifacts using Statistical Parametric
Mapping software (version 8, SPM8; Wellcome Trust Centre for Neuroimaging,
London; http://www.fil.ion.ucl. ac.uk/spm). We then resliced the bias-corrected T1
images into isotropic voxels (1.0 x 1.0 x 1.0 mm3).

We performed cortical reconstruction and volumetric segmentation with the
28
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FreeSurfer v6.0 (http://surfer.nmr.mgh.harvard.edu/). We smoothed thickness maps
with a 10 mm full-width half-maximum (FWHM) Gaussian kernel prior to statistical
analysis. Based on gyral and sulcal anatomy, we segmented the cortex into 34
different gyral regions per hemisphere (13 frontal, 9 temporal, 4 occipital, 7 parietal,

and insula), using the Desikan—Killiany Atlas (Desikan, Ségonne et al. 2006)

2.5. Statistical analyses

To examine the association of gait variability with cognitive function measures
(CERAD-TS and VMS), we performed a multivariate general linear model (GLM)
adjusted for age, sex, education, GDS, CIRS, leg length and the presence of arthritis
using the linear model function of the Stats package in R version 3.3.2 (R Foundation

for Statistical Computing).

To examine the association of gait variability with cortical thickness, we
performed vertex-wise analyses using the FreeSurfer QDEC module (Query, Design,
Estimate, Contrast [http://surfer.nmr.mgh.harvard.edu]), which allows users to
perform inter-subject/group averaging and inference using the general linear model
on the morphometric data produced by the FreeSurfer processing stream. We applied
correction for multiple comparisons using the built-in Monte Carlo simulation at a
threshold set at a p value, 0.05, a cluster-wise correction that controls for the rate of
false positive clusters. In QDEC, we used a GLM with each gait parameters as the
continuous predictor, and age, estimated total intracranial volume (eTIV) as nuisance
variables within the different offset, different slope design matrix. Because of
limitations in the number of covariates in QDEC, we exported cortical thickness for
each participant for the identified clusters into R to assess whether the associations
withstood correction for confounding factors. To do so, we created a region of
interest (ROI) for each cluster that was significantly associated with gait variability.
We mapped back this normalized ROI to each participant (using deformation tools in
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FreeSurfer) to generate a mean thickness value for that ROI for each participant. We
performed further linear model analyses using the mean cortical thickness of ROIs as
dependent variables and gait variability as an independent variable and corrected for

age, sex, education level, GDS, CIRS, leg length, the presence of arthritis, and eTIV.

To examine the association of gait variability with volumes of subcortical
grey matter structures (caudate, putamen, globus pallidus, thalamus, and nucleus
accumbens), amygdala, hippocampus, and cerebellum, we also performed a
multivariate GLM adjusted for age, sex, education, GDS, CIRS, leg length, the
presence of arthritis and eTIV. False discovery rate correction was applied to correct
for multiple comparisons. Eight ROIs from each hemisphere were selected a priori

based on their known associations with gait control.

To examine the association of cognitive function measures with the cortical
thickness and subcortical volume of the structures that were found to be associated
with the gait variability, we performed a multivariate GLM that adjusted for age, sex,

education, GDS, CIRS and eTIV.

Finally, we performed mediation analysis using the PROCESS macro
developed for SPSS (Hayes 2017). Through mediation analysis, we quantify the
extent to which the association between gait variability and cognitive function (VMS,
CERAD-TS) could be explained by the cluster cortical thickness or subcortical
volume which had a significant association with both gait variability and cognitive
function. We performed the parallel mediation analyses separately for each cognitive
assessment using 5,000 bootstrapped samples. In these analyses, we adjusted for sex,
age, education, GDS, CIRS, and eTIV. Path a represents the effect of gait variability
on the neuroimaging measures, and path b represents the effect of neuroimaging
measures on cognition. Path ¢ indicates the total effect of gait variability on cognition

and path ¢’ indicates the direct effect of gait variability on cognition. The indirect
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effect (path a x b) measures the effect of gait variability on cognition via the cluster
cortical thickness or subcortical volume. 95% confidence intervals that do not include

the value of 0 indicate a significant indirect effect.
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1. Study 1: Can gait variability predict the risk of cognitive
decline in cognitively normal elderly?

At baseline assessment, the mean age of the 358 subjects was 70.6+5.40 years and
the mean level of education was 13.6+3.68 years. The MHIS scores of the subjects
were 0 or 1, which indicates a very low cerebral ischemic burden. Demographic and
clinical characteristics of the subjects were comparable between the gait variability
quintile groups at baseline assessment. Subjects in the lowest quintile of gait speed
were older, and had a greater burden of physical comorbidities than those in the 3",
4™ and 5™ quintiles. At the baseline assessment, MMSE scores were within the
normal range of age-, sex- and education-adjusted norms in all gait speed and
variability quintile groups, and comparable between groups. The highest gait
variability group showed worse WLMT score compared with the 3" quintile, FAB
score compared with the 1%, 2", and 3™ quintiles, TMT-A score compared with the
31, and 4" quintiles, and CFT compared with the 1%t quintile. The lowest gait speed

group showed worse DSB score compared with the 4" quintile (Table 1)
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1.1. Association of gait variability and gait speed status with the risk
of MCI

Out of the 358 participants in the baseline assessment, 318 who completed one or
more 2-year follow-up assessments were included in the multivariate survival
analysis. Median duration of follow-up was 45.3 months (interquartile range=28.9—
50.3). During the follow-up period, 43 (13.5%) developed MCI (with 10 cases of
amnestic multiple domain MCI, 16 cases of amnestic single domain MCI, 14 cases of
non-amnestic single domain MCI, and 3 cases of non-amnestic multiple domain

MCI).

The Kaplan-Meier curves for unadjusted rates of incident MCI show evident
differences in risk by gait variability group (Figure 1A). The mean MCI-free survival
of participants in the high variability group was 10.4% shorter than that of the group
of other quintiles (48.94+1.29 [SD] vs. 54.64+1.21 months; ¥2=4.56, p=0.033, log-
rank test), whereas there was no group difference dependent on gait speed

(51.96+1.22 vs. 55.18+1.39 months; ¥2=0.086, p=0.770) (Figure 1B).

After adjustment for age, sex, level of education, CIRS score, GDS score, and
the presence of APOE &4, multivariable Cox proportional hazard analysis showed
that low gait speed had no significant association with MCI risk (HR=1.06, 95%
Cl1=0.49-2.30, Covariates + Gait Speed, Model A; see Table 2). When gait variability
status was included in the multivariate model instead of gait speed, gait variability
was a significant and independent predictor of MCI. Over the follow-up period, the
high gait variability group showed about 2-fold risk of incident MCI (HR=2.12, 95%
CI=1.05-4.31, covariates + gait variability; Model B). The C-statistic and likelihood
ratio test showed that the model including gait variability had significantly higher
predictive ability (Model B; C-statistic 0.687, likelihood ratio test p=0.048)
compared to the model including gait speed (Model A; C-statistic 0.661).
Furthermore, when both gait parameters were included in the prediction model, gait
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variability remained as a significant predictor of MCI (HR=2.13, 95% CI1=1.04—
4.34), whereas gait speed was not associated with incident MCI risk (HR=0.98, 95%
ClI=0.44-2.14). The C-statistic and likelihood ratio test showed that adding gait speed
to the previous model did not significantly increase predictive ability (covariates +
gait speed + gait variability; C-statistic 0.688, likelihood ratio test p=0.954; see Table
2). We also analyzed sex differences on association between gait variability and
cognitive decline by adding interaction term between gait variability group and sex to
Model B and C, there were no sex difference that high gait variability predicted
future cognitive decline. (gait variability x sex added to model B: p=0.425; gait
variability x sex added to model C: p=0.398). In a supplementary analysis, high gait
variability showed a trend toward higher risk for incident cognitive decline but
without statistical significance when the baseline MMSE score was adjusted in
addition (HR=2.00, 95% C1=0.98-4.10, p=0.058). When we computed gait
variability and gait speed as continuous variables, the risk of incident MCI increased
1.16 times per 10% increment of gait variability (HR=1.16, 95% Cl=1.02-1.32),
whereas it did not change significantly with changes of gait speed (HR=0.93, 95%
CI=0.87-1.34). The optimal cut-off values for gait variability to predict the incidence
of cognitive decline after 4 years were 3.24 %CV for women and 2.7 %CV for men.
(sensitivity = 0.384, specificity = 0.931 in women, sensitivity = 0.736, specificity =
0.775 in men).

2. Study 2: Shared Neural Substrates between Gait Variability-
Cognitive Function

As summarized in Table 3, men were more educated (mean difference = 3.58, t =
6.82, p <0.001), had longer leg length (mean difference = 5.36, t = 6.43, p < 0.001)
and showed higher CERAD-TS cognitive function scores (mean difference = 3.11, t

=2.00, p = 0.047) than women. Although both men and women did not have a
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depressive disorder, men showed the lower GDS score than women (mean difference
=3.16,t=4.09, p <0.001). Degenerative arthritis of spine or lower limbs were less

prevalent in men than in women (2 = 23.50, p < 0.001).

The higher gait variability was associated with the lower CERAD-TS (t=-
3.56, p <0.001) and VMS (t = -3.44, p < 0.001) in multivariate GLM adjusted for
age, sex, education, GDS, CIRS, leg length and existence of arthritis (R? = 0.260,
Fe200=11.73, p < 0.001 for CERAD-TS; R? = 0.022, Fe200=9.16, p < 0.001 for
VMS).

As summarized in Table 4 and Figure 2, the higher gait variability was
associated with the lower cortical thickness of five regions (2 clusters in left
hemisphere and 3 clusters in right hemisphere) in the vertex-wise analysis. However,
there were no clusters where their volume was associated with gait variability. In the
left hemisphere, one cluster (LH1) included the inferior temporal cortex, covering
portions of the middle, and superior temporal cortices. This cluster extended medially
to include the entorhinal, and para-hippocampal cortices, as well as posteriorly to
include fusiform gyrus, and lingual cortex (p = 0.0001). The other cluster (LH2)
included superior frontal gyrus, which contains supplementary motor area, medial
frontal gyrus, and covered a part of the paracentral lobule (p = 0.0001). In the right
hemisphere, one cluster (RH1) included superior frontal gyrus, which is mostly the
supplementary motor area, medial frontal gyrus, and paracentral lobule. This cluster
extended laterally to the part of caudal- and rostral middle frontal gyri (p = 0.0001).
Another cluster (RH2) included the precentral gyrus and extended to anteriorly
include a part of the caudal middle frontal cortex anteriorly and inferiorly to the
parsopercularis. (p = 0.0004). The other cluster (RH3) included the fusiform gyrus,
and lateral occipital cortex (p = 0.0001). As shown in Table 5, all these associations
were also significant when sex, education level, GDS, CIRS, leg length and the

existence of arthritis were adjusted.
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Cortical thinning of the LH1 was associated with the lower CERAD-TS and
VMS. This was the case when age, sex, education level, GDS, CIRS, leg length, the
presence of arthritis and eTIV were adjusted. However, cortical thickness of other
clusters was not associated with CERAD-TS and VMS (Table 6). In the mediation
analyses, the cortical thickness of LH1 mediated the association of gait variability
with CERAD-TS (indirect effect = -1.65, SE = 0.79, bias-corrected 95% confidence
interval = [-3.38, -0.23]; Figure 3A) and explained 17% of the total effect of gait
variability on CERAD-TS. However, the mediating role of the cortical thickness of
LH1 in the association of the gait variability with VMS was not statistically
significant (indirect effect = -0.49, SE = 0.31, bias-corrected 95% confidence interval

= [-1.14, 0.08]; Figure 3B).
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1V Discussion
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1. Summary

In the current thesis, | investigated the feasibility of gait variability as a novel digital
biomarker of cognitive decline. Ultimately, | aimed to identify a marker that is not
only practical (non-invasive and widely accessible) but can also sensitively predict
cognitive decline in early stages. This was motivated by the need for earlier
diagnoses which would lead to more efficient treatments and alleviate the projected

socioeconomic burden of dementia in the coming years.

In the first part of my research, | focused on exploring the predictive potential of
gait variability, and comparing it with that of gait speed. As a result, we found that
gait variability can predict the risk of cognitive decline in cognitively normal older
people and better than gait speed, the most widely studied gait parameter as a
predictive marker of cognitive decline. We additionally found that no sex differences
were found when assessing the ability of high gait variability to predict future
cognitive decline. When we computed gait variability and gait speed as continuous
variables to explore whether there are any threshold effects, the risk of incident
cognitive decline increased 1.5 times per 10% increment of gait variability, whereas

it did not change significantly with changes of gait speed.

In the second part of my research, | investigated which degenerative structural
changes in the brain may underlie the observed predictive power of gait variability
and focused on the shared neural substrates for gait variability and cognitive
function. | found the widespread decrease in cortical thickness with increasing gait
variability while there was no significant association with the volume of subcortical
structures. Among the clusters that showed significant correlation with the gait
variability, a cluster that included the inferior temporal, entorhinal, parahippocampal,
fusiform, and lingual in left hemisphere was also associated with global cognitive
function, and verbal memory function. In mediation analysis, | reaffirmed that
cortical thickness of the cluster played a significant mediating role in the association
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of gait variability with cognitive function.

2. Gait variability and incident cognitive decline

In the first study, we explored the predictive potential of gait variability through 4-
year prospective cohort study on community-dwelling cognitively normal elderly
individuals. We demonstrated that high gait variability showed about 2-fold higher
risk of MCI than those in other quintiles. However, gait speed could not predict the
future risk of MCI in this cognitively normal elderly population. To our knowledge,
this is the first prospective cohort study directly showing that gait variability, but not
gait speed, may precede cognitive decline and thus be a predictive biomarker of MCl
in the cognitively normal elderly population. Our observation is in line with previous
longitudinal observations showing that high gait variability factor scores were
associated with future risk of dementia in non-demented elderly individuals and high
gait variability predicted future risk of AD in people with MCI (Gillain, Drame et al.
2016).

In contrast to our observation, previous longitudinal studies reported that
slow gait speed often precedes cognitive impairment and predicts faster cognitive
decline (Camicioli, Howieson et al. 1998, Deshpande, Metter et al. 2009, Taniguchi,
Yoshida et al. 2012). A longitudinal study from Japan showed that cognitively intact
older adults in the low tertiles of gait speed were 2.06 times more likely to develop
cognitive decline, defined as a decrease of three points or more on the MMSE, during
a 4-year period (Taniguchi, Yoshida et al. 2012). Other prospective studies from the
United States found that cognitively normal elderly individuals with slow gait speed
were more likely to develop cognitive decline (Camicioli, Howieson et al. 1998).
Unlike these studies, ours found that gait speed failed to predict significant cognitive

decline. These conflicting results may be attributable to several methodological
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differences between the current study and previous studies. First, previous studies
employed different thresholds for categorizing gait speed than the current study. For
example, the threshold of the lowest tertile in a study from Japan was <1.19 m/s for
men and <1.11 m/s for women (Taniguchi, Yoshida et al. 2012), and that of the
lowest quartile in a study from United States was 1.08 m/s without sex stratification
(Deshpande, Metter et al. 2009): the threshold values in the Japanese study are
slightly higher than ours, and those in the American study are close to ours. (<1.10
m/s for men; <1.08 m/s for women). However, in our population, slow gait speed was
also not associated with MCI risk when we employed the same cutoffs as the cited
studies (data not shown). Thus, the conflicting results on the association of slow gait
speed with MCI risk may be better explained by differences in the characteristics of

the study samples or the definition of cognitive decline across studies.

In this study, we rigorously excluded participants maintaining normal
cognition despite subclinical neurologic conditions that may impair gait by using
UPDRS, POMA, and MHIS. These neurologic conditions may impair cognition as
well as gait. In a recent systematic review demonstrating associations between
functional and structural cerebral changes and AD-related gait disorders, slower gait
speed was associated with white matter lesions mainly in the medial frontal lobes and
basal ganglia, whereas higher gait variability was associated with lower hippocampal
volume and function (Annweiler, Beauchet et al. 2012). In the present study, even
though elderly in highest quintile of gait variability had normal range of MMSE
scores at baseline, they showed poorer performance on verbal memory and executive
function already at the baseline than those in other quintiles. The result is consistent
with previous findings that gait variability is associated with not only hippocampal
but also fronto-executive function. (Sheridan, Solomont et al. 2003, Allali, Kressig et
al. 2007) Those functions have been known as firstly affected cognitive domains in

the course of neurodegenerative disease. Taken together with our observations, gait
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variability may predict future cognitive decline early in the course of
neurodegenerative disease, and may predict better than gait speed especially in
cognitively normal elderly individuals without cerebral ischemic burdens and
Parkinsonism. In addition to the differences in the characteristics of study samples
between studies, differences in the definition of cognitive decline might also have
contributed to the conflicting results on the association of gait speed and the risk of
cognitive decline in the current and previous studies. In this study, we defined
cognitive decline as incident MCI according to the diagnostic criteria proposed by the
International Working Group on MCI (Winblad, Palmer et al. 2004). However, in
previous studies, cognitive decline was defined as a decline of 3 points or more on
MMSE (Deshpande, Metter et al. 2009) or a decline of 0.5 or more on CDR

(Camicioli, Howieson et al. 1998).

To the best of our knowledge, this is the first prospective cohort study
directly showing that increased gait variability may precede cognitive decline and
thus be a predictive biomarker of incident cognitive decline in the NC population. In
addition, the present study used wearable sensor-based gait analysis as a tool to
predict cognitive decline for the first time. Another strength of this study is that we
comprehensively measured the participant's cognitive function to determine whether
it is possible to predict future cognitive decline even in NC conditions that do not
meet the diagnostic criteria of MCI. However, this study had several limitations.
First, the sample size was small and the follow-up duration relatively short. Second,
our subjects were relatively young, cognitively normal, and free from
cerebrovascular diseases and Parkinsonism. Therefore, our observations cannot be
generalized to the complete cognitively normal elderly population. Given the youth
and uniqueness of our population, further study is warranted to generalize these
interesting findings. Third, a single gait assessment may not reflect typical daily gait

speed or variability. Further research on neural substrates that may explain this
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relationship between gait variability measured with TAA and cognitive decline is

warranted.

3. Shared neural substrates between gait variability-cognitive
function

In the second study, | investigated which degenerative structural changes in the brain
may underlie the observed predictive power of gait variability and focused on the
shared neural substrates for gait variability and cognitive function. This study found
that the higher gait variability was associated with the lower global cognition and
verbal memory in non-demented older adults, which is in line with our previous work
on cognitively normal older adults (Byun, Han et al. 2018). This study also found
that the cortical thinning of the clusters including the inferior temporal, entorhinal,
parahippocampal, fusiform, and lingual in left hemisphere mediated the association

between the higher gait variability and the lower cognitive function.

The current study found that the higher step time variability was associated
with the thinner GM of prefrontal, supplementary motor, and paracentral lobule in
both hemispheres and superior temporal, middle temporal, and inferior temporal in
the left hemisphere. Motor cortex is one of the regions to show significantly reduced
cortical thickness with increased temporal gait variability in the present study, which
is consistent with previous studies (Annweiler, Beauchet et al. 2013, Jayakody,
Breslin et al. 2020). More specifically, we identified cortical thinning of paracentral
lobule, the medial continuation of primary motor and sensory gyri, which controls
lower limb movement. We also found that the thinning of the medial frontal gyri
including the supplementary and pre-supplementary motor areas was associated with
high temporal gait variability. The findings suggest that not only the primary motor
cortex involved in execution phase (i.e. converting motor programs into movements)

but also other frontal areas involved in planning and programming may influence the
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temporal gait variability. In addition, other non-frontal regions such as both fusiform
gyrus, left parahippocampal, inferior temporal and lingual gyri, and right lateral
occipital cortex that play important roles in the visual network also influenced the
temporal gait variability. Theses regions are known to be involved in visual
processing (Weiner and Zilles 2016), visual perception (Koenraadt, Roelofsen et al.
2014), and spatial orientation and navigation (Buckner, Andrews-Hanna et al. 2008).
Dynamic instability may be better explained by cerebral cortical misprocessing than

abnormal subcortical gait control (Annweiler, Beauchet et al. 2012).

To the best of our knowledge, this is the first study to directly demonstrate
the gait-cognition relationship through a shared neural network in an older non-
demented population. We combined exploratory mapping and a priori ROI-based
measurement techniques, first by performing an exploratory analysis of cortical
thickness across the entire cortical mantle to map the “cortical signature” of regional
thinning correlated with gait variability and then by using this map to generate ROIs
to find out, in an a priori fashion, the regional cortical thinning correlated with poorer
cognitive functions simultaneously. We identified that cortical thinning of the cluster
including the entorhinal, parahippocampal, fusiform, lingual, and inferior temporal in
left hemisphere linked to gait variability was also correlated with lower VMS and
CERAD-TS. Medial temporal cortex, including entorhinal and parahippocampal
cortex, has been widely studied to be related to episodic memory, and is one of the
first regions to exhibit neurodegeneration in AD (Jack, Petersen et al. 1997). Also,
the network coves entorhinal, parahippocampal, and fusiform areas is known to be
involved in visuospatial navigation and the imagination of the visual environment,
which is needed for locomotion (Ekstrom, Kahana et al. 2003, Jahn, Deutschlénder et
al. 2004). Through mediation analysis, we confirmed that the cortical thickness of the
cluster including the entorhinal, parahippocampal, fusiform, lingual, and inferior

temporal in left hemisphere mediates the association of CERAD-TS with gait
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variability. That accounted for 17% of the total effect of gait variability on CERAD-
TS. Together, our findings suggest that gait variability and cognitive function rely on
shared neural systems that are firstly affected by pathological aging such as AD. In a
recent multisite cross-sectional study with older adults across neurodegenerative
conditions, high gait variability discriminated AD from other neurodegenerative and
cognitive conditions. Taking a step further from the results, the present study showed
that neurodegenerative changes in widespread cerebral regions, measured by cortical
thinning, may manifest as increased gait variability at an earlier stage than can be
detected by clinical diagnosis of dementia. Also, our results suggest that the gait
variability obtained from a body-worn TAA may be a potential digital biomarker of
neurodegenerative diseases such as AD. Its properties of being free from time and
space constraints and low cost makes it potentially usable in the clinical setting or
clinical trials, especially in non-face-to-face environments. Our results also highlight
the importance of examining comprehensive metrics of gait beyond simple gait speed

measurement.

The current study also found that the cortical thickness of entorhinal and
parahippocampal cortices but not the volume of hippocampus was associated with
the gait variability in non-demented older adults. A large-scale neuroimaging study
proposed that the better option to assess neurodegeneration in regions characteristic
of Alzheimer's disease is to use thickness measurements rather than volumes,
because thickness is sufficiently uncorrelated with TIV (Schwarz, Gunter et al.
2016). In addition, in detecting MCR, cortical thickness was better than cortical
volume or surface area. (Blumen, Schwartz et al. 2021). Consistent with these results,
cortical regions that were associated with gait variability disappeared, when the GM
thickness was changed to the volume in the present study. The studies on the
association between the regional cortical volume and the temporal gait variability in

the older adults without neurological diseases were limited and their results were
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inconsistent. Beauchet et al. reported that the higher temporal gait variability was
associated with the larger hippocampus (Beauchet, Launay et al. 2015) while other
studies could not find the association of temporal gait variability with hippocampal
volume. (Manor, Newton et al. 2012, Beauchet, Annweiler et al. 2014, Sakurai,
Bartha et al. 2018) Sakurai et al. reported that smaller entorhinal cortex but not
hippocampus was associated with the slower dual task gait speed in older adults with
MCI, (Sakurai, Bartha et al. 2018) which is in line with the results of the current
study. Growing body of literature indicates that entorhinal cortex atrophy precedes
hippocampal atrophy in pathological aging (Killiany, Hyman et al. 2002, deToledo-
Morrell, Stoub et al. 2004, Stoub, Bulgakova et al. 2005).

This study has several limitations. First, the cross-sectional nature of the current
study does not allow for causal interpretation between cortical thinning and higher
gait variability. Future longitudinal studies are needed to examine changes in cortical
thickness over time and how they relate to gait variability. Second, the gait variability
obtained from one-time assessment may not properly reflect one’s gait variability.
The shared neural substrates between gait variability and cognitive function needs to
be replicated using the gait features obtained for longer period using a wearable

inertia sensor.

4. Conclusion and perspectives

Overall, gait variability measured by a TAA demonstrates potential as a low-cost
digital biomarker for prediction of cognitive decline years before clinical diagnosis.
Gait variability can predict the risk of cognitive decline over 4 years in NC older
people and better than gait speed. Medial temporal cortex, one of the first regions to
exhibit neurodegeneration in Alzheimer's disease, was the shared neural substrates
for gait variability and cognitive function. Degenerative structural changes in the
areas may underlie the observed predictive power of gait variability for cognitive
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decline.

Evaluation of detailed gait metrics is currently limited to research
applications due to the cost and nature of their visits to institutions. Furthermore,
assessments performed under observation and use of instrumented walkways are
limited, snapshot evaluations in unnatural environments. These limitations preclude
repeated and frequent use to test an individual and specifically in the early pre-
symptomatic stage of the neurodegenerative diseases. Wearable sensor-based
measurements do not require visits to the clinic or laboratory-based assessment,
therefore natural gait in real world environments can be evaluated over longer
periods of time and at a lower cost. These strengths also have raised the possibility
that wearable sensor-based biomarkers can be used as new patient-focused outcomes
in real-life scenarios in clinical trials. Elsewhere, a difference in wearable physical
activity counts for those within a heart failure intervention compared to a placebo
was identified, but not by the traditional regulatory-accepted patient-reported
biomarker. (Redfield, Anstrom et al. 2015) Although gait variability is more difficult
and expensive to measure than gait speed in research and clinical settings, body-worn
activity sensors may be a better option to introduce gait variability as a window into
brain functioning for neurological conditions in various settings than a pressure-
sensor walkway or 3D video gait analysis because they are cost-efficient, easy to

apply, sensitive, and reliable (Byun, Han et al. 2016, Del Din, Godfrey et al. 2016).

A growing body of evidence indicates that cognitive, sensory changes, as
well as motor changes, may precede clinical manifestations of AD by several years.
Many digital markers through various wearable devices have been proposed for
Alzheimer's disease: camera-measured eye movements, gaze, pupil reflexes, and
facial expression traits, photoplethysmography based beat-by-beat heart rate
measurement, heart rate variability, and oxygen saturation (SpO2), body temperature

measured with a thermometer on a ring, patch or watch, smart-phone based
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monitoring of social network activity, and more. Combination of gait variability and
such digital markers has the potential to further enhance the predictive power of
cognitive decline, and studies on them also need to be conducted actively in the

future.
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Figure 1. Risk of incident mild cognitive impairment (MCI) over 4 years stratified by variability (y2 = 4.56 and p = 0.033 by
log-rank test) (a) and gait speed (32 = 0.086 and p = 0.770 by log-rank test) (b). The mean MCI free survival of participants
in the high variability group was 10% shorter than that of the other quintiles group (a), whereas there was no group

difference according to gait speed (b).
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Figure 3. Cortical thickness of LH1 cluster mediates? effect of gait variability

on (A) CERAD-TS and (B) VMS.

LH1 cluster: a cluster including part of temporal, fusiform, and lingual gyrus;
VMS = Verbal Memory Score; CERAD-TS = Consortium to Establish a
Registry for Alzheimer’s Disease Assessment Packet Neuropsychological
Assessment Battery total score; GDS = Geriatric Depression Scale; CIRS =
Cumulative Iliness Rating Scale; eTIV = estimated total intracranial volume.
Parallel mediation analyses, adjusted for sex, age, education, GDS, CIRS, and

eTIV.
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Table 1. Demographic, clinical, cognitive function, and gait characteristics of the subjects

Gait variability Gait speed
1 2nd 3rd 4h 5M(Highest)  P* 1%(Lowest) 2nd 3rd 4h 5h p*
(N=73) (N=72) (N=71) (N=71) (N=71) (N=73) (N=72) (N=71) (N=71) (N=71)

Clinical parameters

Age (years, mean £ SD) 704+ 47 709+54 701+44 714+59 70164 0580  732+57 712+50 695+49 706+51 684+51 <0.001
Sex (female, %) 49.3 48.6 49.3 49.3 49.3 1.000 49.3 48.6 49.3 49.3 49.3 1.000
Education (years, mean + SD)  13.4+36 13.8+3.1 13.6+3.8 139+36 135+43 0913 143+33 132+45 131+£39 140+33 135%33 0250
CIRS (points, mean = SD) 65+31 6.0+28 61+31 58%3.0 59+31 0.641 73+30 62+31 59+28 59+31 49+25 <0.001
GDS (points, mean + SD) 73+50 64+54 66+46 6656 85+6.0 0.106 74+£60 79+62 69+49 66+51 66+45 0507
Presence of APOE &4 allele (%)  19.2 111 25.4 26.8 21.1 0.154 28.8 8.3 19.7 19.7 26.8 0.024
Neuropsychological test scores

MMSE 282+15 280+16 285+1.4 284+16 278+25 0.098 280+20 281+23 280x17 285+15 28414 0.3%
WLMT 202+31 20.0+38 21.1+37 196+36 19.1+39 0026  195+40 202+3.8 19432 207+38 20.1+36 0217
WLRT 69+17 6.8+18 69+18 69=18 6.4+19 0417 69+18 67+17 66+17 70+18 6819 0782
WLRcT 96+0.7 95+08 9409 95+08 9.3+1.1 0505 95+10 95+09 93+08 9509 9508 0.581
CRT 84+23 86+25 8621 8223 76+24 0104 82+21 82+25 85%24 8224 8424 0.882
FAB 165+1.2 165+1.4 164+15 162+18 156+21 0010 163+14 161+19 160+20 165+13 163+15 0439
TMA-A 41.0+14.6 40.9+209 385+127 403+133 51.2+422 0.011 423+175 449+41.1 426+187 396+157 424x156 0.774
CFT 205+54 19.2+45 196+47 195+40 178+52 0020 186+49 199+53 189+43 195+48 198+48 0416
15-BNT 143+09 143+09 145+08 142+10 139+15 0060 141+12 142+14 144+09 144+09 142:09 0.368
CPT 106+0.6 10.6+0.6 10.7+0.6 106+0.7 106x+0.9 0.949 10.7+06 104+10 107+05 10.6+06 10.7+0.5 0.004
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DSF 74+23 7822 80+23 8122 72+23 0111 78+21 75+24 7823 79+25 74+22 0.645
DSB 58+19 59+19 61+21 57z%18 55+18 0461 54+16 59+21 57z%21 6.4+17 57+19 0.024
Gait parameters

Variability (%CV, mean + SD)" 1.8+0.1 22+01 24401 2701 35+06 <0.001 28+07 25+06 24+06 24+06 25+06 0.005
Speed (m/s, mean + SD) 12+01 13+02 12+02 12%02 12+02 0.034 10+£01 11+00 12:00 13+00 14+01 <0.001

CIRS, Cumulative Iliness Rating Scale; GDS, Geriatric Depression Scale; APOE, Apolipoprotein E; MHIS, Modified Hachinski
Ischemic Score; MMSE = Mini Mental Status Examination; WLMT = Word List Memory Test; WLRT = Word List Recall Test;
WLRCcT = Word List Recognition Test; CRT = Constructional Recall Test; FAB = Frontal Assessment Battery; TMA-A = Trail Making
Test A; CFT = Categorical Fluency Test; 15-BNT = 15 item Boston Naming Test; CPT = Constructional Praxis Test; DSF = Digit Span
Forward; DSB = Digit Span Backward; CV, Coefficient of Variance

*Chi-square test or Fisher’s exact test for categorical variables and one-way ANOVA for continuous variables

"We used 79.89 + 1.82 (mean + standard deviation) steps for measuring of gait variability
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Table 2. Prediction of mild cognitive impairment in cognitively normal elderly individuals*

Model A : Gait speed only

Model B : Gait variability only

Model C : Both gait speed and

variability
HR 95% CI p HR 95% ClI p HR 95% ClI p

Gait speed

Other quintiles 1.00 1.00

Lowest quintile 1.06 0.49, 2.30 0.883 0.98 0.44,2.14 0.950
Gait variability

Highest quintile 1.00 1.00

Other quintiles 2.12 1.05,4.31 0.037 2.13 1.04, 4.34 0.038
Measures of fit

-2 Log likelihood 378.2 374.3 374.3

p valuet 0.0487 0.954%

C-index 0.661 0.687 0.688

HR, hazard ratio; Cl, confidence interval
“Multivariable Cox proportional hazard analysis adjusting age, sex, education, Cumulative lliness Rating Scale score, Geriatric Depression Scale
score, and presence of apolipoprotein E e4 allele as covariates

“Compared to Model A
‘Compared to Model B
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Table 3. Characteristics of participants (N=207)

*

All (N=207) Male (N=113) Female (N =94) p
Age at MRI scan (years) 72.7+6.7 73+£6.9 72.2+6.5 0.375
Education (years) 13.0+4.1 14.6 £3.7 11.0+3.8 <0.001
Leg length (cm) 842+ 6.7 86.7+ 6.8 81.3+5.2 <0.001
Gait variability (In % CV)' 0.9+023 0.9+0.3 0.9+0.2 0.313
Gait speed (m/s) 1.1+£0.2 1.2+0.2 1.1+£0.2 0.603
GDS (points) 79+5.7 6.5+5.3 9.6+5.7 <0.001
CIRS (points) 71433 72+3.6 6.9+2.8 0.575
MHIS (points) 0.8+1.2 09+14 0.7+0.8 0.283
Existence of arthritis (%) 29.0 15.0 45.7 <0.001
CERAD-TS (points) 7684109  782+92 75.1£12.5 0.047
VMS (points) 21.7+4.1 21.8+4 21.7+423 0.859

Note. CV, Coefficient of Variance; GDS, Geriatric Depression Scale; CIRS, Cumulative
Iliness Rating Scale; MHIS, Modified Hachinski Ischemic Score; CERAD-TS, Consortium to

Establish a Registry for Alzheimer’s Disease Assessment Packet Neuropsychological

Assessment Battery total score; VMS, Verbal Memory Score.

“Student’s t test for continuous variables (presented as mean * standard deviation) and Chi-

square test for categorical variables (presented as %)

"Natural log transformation of % CV of step time was used as gait variability since % CV of

step time was not normally distributed.
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Table 4. Vertex-Wise Analyses of Gait Variability and Cortical Thickness (N=207)

Clusters Cluster Size (mm?) Talairach Coordinates (X, y, z) i\IVlil:}Iﬂfrc?is\[gﬁces P
Left hemisphere
Temporal/fusiform (LH1) 4460.81 -53.1,-24.0, -4.0 7678 0.0001
Superior frontal/paracentral (LH2) 1766.48 -6.6, 33.8,49.8 3417 0.0001
Right hemisphere
Superior frontal/paracentral (RH1) 2289.14 11.0, 14.6, 62.2 4455 0.0001
Fusiform/lingual (RH2) 1792.45 34.3,-73.5,-12.0 2823 0.0001
Precentral (RH3) 1723.35 40.2,-10.9,42.6 3519 0.0004

“Analyses were corrected for multiple comparisons using the built-in Monte Carlo simulation at a threshold set at a p value <0.05,
a cluster-wise correction that controls for the rate of false positive clusters.

56 S



Table 5. Regression Analyses of Gait Variability and Cortical Thickness

Clusters B SE t p B
Left hemisphere
Temporal/fusiform (LH1)
Unadjusted -0.196 0.038 -5.168 <0.001 -0.329
Adjusted’ -0.177 0.038 -4.685 <0.001 -0.297
Superior frontal/paracentral (LH2)
Unadjusted -0.219 0.048 -4.543 <0.001 -0.302
Adjusted” -0.209 0.049 -4.264 <0.001 -0.289
Right hemisphere
Superior frontal/paracentral (RH1)
Unadjusted -0.225 0.045 -5.010 <0.001 -0.330
Adjusted” -0.211 0.045 -4.668 <0.001 -0.309
Fusiform/lingual (RH2)
Unadjusted -0.222 0.046 -4.801 <0.001 -0.309
Adjusted” -0.213 0.046 -4.578 <0.001 -0.296
Precentral (RH3)
Unadjusted -0.225 0.044 -5.065 <0.001 -0.333
Adjusted” -0.214 0.044 -4.894 <0.001 -0.316

“Adjusted for age and total intracranial volume. Adjusted model additionally adjusted for sex, education level, GDS, CIRS, leg
length, and the existence of arthritis.
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Table 6. Associations between Cortical Regions related with Gait Variability and Cognitive Function (N=207) 2

CERAD-TS VMS
B SE t p B SE t p
Left hemisphere
Temporal/fusiform (LH1) 14.09 4.74 2.97 0.003 4.71 1.86 253 0.01
Superior frontal/paracentral (LH2) 3.62 3.80 095 034 1.62 1.48 1.09 0.28
Right hemisphere
Superior frontal/paracentral (RH1) 3.35 4.10 082 042 1.60 1.60 1.00 031
Fusiform/lingual (RH2) 6.80 3.97 1.72  0.09 1.58 1.55 1.02 031
Precentral (RH3) 8.00 4.22 1.90 0.06 2.92 1.65 1.77  0.08

Note. CERAD-TS, Consortium to Establish a Registry for Alzheimer’s Disease Assessment Packet Neuropsychological

Assessment Battery total score; VMS, Verbal Memory Score; SE, Standard Error; GDS, Geriatric Depression Scale; CIRS,

Cumulative Illness Rating Scale; eT1V, estimated total intracranial volume.
“Adjusted for sex, age, education, GDS, CIRS, leg length, existence of arthritis, and eTIV.

58



Bibliography

Allali, G., et al. (2007). "Changes in gait while backward counting in demented older
adults with frontal lobe dysfunction.” Gait Posture 26(4): 572-576.

Annweiler, C., et al. (2013). "Motor cortex and gait in mild cognitive impairment: a
magnetic resonance spectroscopy and volumetric imaging study.” Brain 136(3): 859-
871.

Annweiler, C., et al. (2012). "Contribution of brain imaging to the understanding of gait
disorders in Alzheimer’s disease: a systematic review." American Journal of
Alzheimer's Disease & Other Dementias® 27(6): 371-380.

Annweiler, C., et al. (2012). "Contribution of brain imaging to the understanding of gait
disorders in Alzheimer’s disease: a systematic review." 27(6): 371-380.

Association, A. P. (2000). "DSM-IV-TR: Diagnostic and statistical manual of mental
disorders, 4th ed., text revision." Washington, DC: American Psychiatric Association
75.

Beauchet, O., et al. (2013). "Gait variability at fast-pace walking speed: a biomarker of
mild cognitive impairment?" The journal of nutrition, health & aging 17(3): 235-239.

Beauchet, O., et al. (2014). "Higher gait variability is associated with decreased parietal
gray matter volume among healthy older adults." Brain Topogr 27(2): 293-295.

Beauchet, O., et al. (2015). "Hippocampal volume, early cognitive decline and gait
variability: which association?" Exp Gerontol 61: 98-104.

Blumen, H. M., et al. (2019). "Gray matter volume covariance patterns associated with
gait speed in older adults: a multi-cohort MRI study.” Brain Imaging and Behavior
13(2): 446-460.

Blumen, H. M., et al. (2021). "Cortical Thickness, Volume, and Surface Area in the
Motoric Cognitive Risk Syndrome." 81(2): 651-665.

Buckner, R. L., et al. (2008). "The brain's default network: anatomy, function, and
relevance to disease." 1124(1): 1-38.

Burgmans, S., et al. (2009). "Prefrontal cortex atrophy predicts dementia over a six-year
period." Neurobiology of aging 30(9): 1413-1419.

Byun, S., et al. (2018). "Gait variability can predict the risk of cognitive decline in
cognitively normal older people.”" Dementia and geriatric cognitive disorders 45:; 251-
261.

Byun, S., et al. (2016). "Test-retest reliability and concurrent validity of a single tri-

59 3_-@



axial accelerometer-based gait analysis in older adults with normal cognition." PloS one
11(7): e0158956.

Camicioli, R., et al. (1998). "Motor slowing precedes cognitive impairment in the oldest
old." Neurology 50(5): 1496-1498.

Chiaramonte, R. and M. J. H. K. P. J. Cioni (2021). "Critical spatiotemporal gait
parameters for individuals with dementia: A systematic review and meta-analysis."
41(01): 1-14.

D., W. (1987). "Wechsler Memory Scale-Revised." The Psychological Corporation.

de Jager, C. A., etal. (2017). "Dementia prevalence in a rural region of South Africa: a
cross-sectional community study." Journal of Alzheimer's Disease 60(3): 1087-1096.

Del Din, S., et al. (2019). "Gait analysis with wearables predicts conversion to
Parkinson disease." Annals of Neurology 86(3): 357-367.

Del Din, S., et al. (2016). "Free-living gait characteristics in ageing and Parkinson’s
disease: impact of environment and ambulatory bout length." Journal of
neuroengineering and rehabilitation 13(1): 1-12.

Del Din, S., et al. (2016). "Validation of an accelerometer to quantify a comprehensive
battery of gait characteristics in healthy older adults and Parkinson's disease: toward
clinical and at home use." IEEE journal of biomedical and health informatics 20(3):
838-847.

Deshpande, N., et al. (2009). "Gait speed under varied challenges and cognitive decline
in older persons: a prospective study." Age and ageing 38(5): 509-514.

Desikan, R. S., et al. (2006). "An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest.”" 31(3): 968-980.

deToledo-Morrell, L., et al. (2004). "MRI-derived entorhinal volume is a good predictor
of conversion from MClI to AD." 25(9): 1197-1203.

Dodge, H., et al. (2012). "In-home walking speeds and variability trajectories associated
with mild cognitive impairment.” Neurology 78(24): 1946-1952.

Ekstrom, A. D., et al. (2003). "Cellular networks underlying human spatial navigation."
Nature 425(6954): 184-188.

FLEMING, R., et al. (2020). "World Alzheimer Report 2020: Design Dignity
Dementia: dementia-related design and the built environment." Alzheimer’s Disease
International 1.

FRIGO, C. (1992). "METHODS FOR GAIT ANALYSIS." Restoration of Walking for
Paraplegics: Recent Advancements and Trends 11: 95.

60 3_-@



Gale, C. R., et al. (2014). "The dynamic relationship between cognitive function and
walking speed: the English Longitudinal Study of Ageing." Age 36(4): 9682.

Galna, B, et al. (2013). "Is gait variability reliable in older adults and Parkinson's
disease? Towards an optimal testing protocol.” Gait & posture 37(4): 580-585.

Gillain, S., et al. (2016). "Gait speed or gait variability, which one to use as a marker of
risk to develop Alzheimer disease? A pilot study." Aging clinical and experimental
research 28(2): 249-255.

Godfrey, A., et al. (2019). "Inertial wearables as pragmatic tools in dementia.” 127: 12-
17.

Gold, M., et al. (2018). "Digital technologies as biomarkers, clinical outcomes
assessment, and recruitment tools in Alzheimer's disease clinical trials.” 4: 234-242.

Hampel, H., et al. (2018). "Blood-based biomarkers for Alzheimer disease: mapping the
road to the clinic." Nat Rev Neurol 14(11): 639-652.

Hartmann, A., et al. (2009). "Reproducibility of spatio-temporal gait parameters under
different conditions in older adults using a trunk tri-axial accelerometer system." Gait &
posture 30(3): 351-355.

Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process
analysis: A regression-based approach, Guilford publications.

Hsu, Y., etal. (2014). "Gait and Balance Analysis for Patients With Alzheimer's
Disease Using an Inertial-Sensor-Based Wearable Instrument." IEEE Journal of
Biomedical and Health Informatics 18(6): 1822-1830.

Hutton, C., et al. (2009). "A comparison between voxel-based cortical thickness and
voxel-based morphometry in normal aging." Neuroimage 48(2): 371-380.

Jack, C. R., et al. (1998). "Rate of medial temporal lobe atrophy in typical aging and
Alzheimer's disease." Neurology 51(4): 993-999.

Jack, C. R., et al. (1997). "Medial temporal atrophy on MRI in normal aging and very
mild Alzheimer's disease." Neurology 49(3): 786-794.

Jahn, K., et al. (2004). "Brain activation patterns during imagined stance and
locomotion in functional magnetic resonance imaging." Neuroimage 22(4): 1722-1731.

Jayakody, O, et al. (2020). "Regional Associations of Cortical Thickness With Gait
Variability-The Tasmanian Study of Cognition and Gait." J Gerontol A Biol Sci Med
Sci 75(8): 1537-1544.

Kang, G. E., et al. (2020). "Characteristics of the gait initiation phase in older adults

61 *



with diabetic peripheral neuropathy compared to control older adults.” Clinical
Biomechanics 72: 155-160.

Kawakami, 1., et al. (2014). "Tau accumulation in the nucleus accumbens in tangle-
predominant dementia." Acta neuropathologica communications 2(1): 1-11.

Killiany, R., et al. (2002). "MRI measures of entorhinal cortex vs hippocampus in
preclinical AD." 58(8): 1188-1196.

Kim, J. Y., et al. (2008). "Standardization of the Korean version of the geriatric
depression scale: reliability, validity, and factor structure." Psychiatry investigation
5(4): 232-238.

Kim, T. H., et al. (2010). "Korean version of frontal assessment battery: psychometric
properties and normative data." Dementia and geriatric cognitive disorders 29(4): 363-
370.

Kim, T. H., et al. (2013). "Overview of the Korean Longitudinal Study on Cognitive
Aging and Dementia." Alzheimer's & Dementia 9(4): P626-P627.

Ko, S.-U., et al. (2007). "Stride width discriminates gait of side-fallers compared to
other-directed fallers during overground walking." 19(2): 200-212.

Koenraadt, K. L., et al. (2014). "Cortical control of normal gait and precision stepping:
an fNIRS study." 85: 415-422.

Kourtis, L. C., et al. (2019). "Digital biomarkers for Alzheimer's disease: the mobile/
wearable devices opportunity." NPJ Digit Med 2.

Kressig, R. W. and O. Beauchet (2006). "Guidelines for clinical applications of spatio-
temporal gait analysis in older adults." Aging clinical and experimental research 18(2):
174-176.

LEE, D. Y., etal. (2004). "A normative study of the CERAD neuropsychological
assessment battery in the Korean elderly." Journal of the International
Neuropsychological Society 10(01): 72-81.

Lee, J. H., et al. (2002). "Development of the Korean Version of the Consortium to
Establish a Registry for Alzheimer's Disease Assessment Packet (CERAD-K) Clinical
and Neuropsychological Assessment Batteries." The Journals of Gerontology Series B:
Psychological Sciences and Social Sciences 57(1): P47-P53.

Lo, O.-Y., et al. (2017). "Gait Speed and Gait Variability Are Associated with Different
Functional Brain Networks." Frontiers in aging neuroscience 9: 390-390.

Lord, S., et al. (2013). "Moving forward on gait measurement: Toward a more refined
approach." Movement Disorders 28(11): 1534-1543.




Manor, B., et al. (2012). "The relationship between brain volume and walking outcomes
in older adults with and without diabetic peripheral neuropathy." Diabetes care 35(9):
1907-1912.

Mielke, M. M., et al. (2013). "Assessing the temporal relationship between cognition
and gait: slow gait predicts cognitive decline in the Mayo Clinic Study of Aging." J.
Gerontol A Biol Sci Med Sci 68(8): 929-937.

Miller, M. D, et al. (1992). "Rating chronic medical illness burden in geropsychiatric
practice and research: application of the Cumulative lliness Rating Scale." Psychiatry
research 41(3): 237-248.

Moe-Nilssen, R., et al. (2010). "Gait variability measures may represent different
constructs." Gait & posture 32(1): 98-101.

Morris, J. C. (1993). "The Clinical Dementia Rating (CDR): current version and scoring
rules.” Neurology.

O'Bryant, S. E., et al. (2017). "Blood-based biomarkers in Alzheimer disease: current
state of the science and a novel collaborative paradigm for advancing from discovery to
clinic." Alzheimer's & Dementia 13(1): 45-58.

Ojagbemi, A., et al. (2015). "Gait speed and cognitive decline over 2 years in the Ibadan
study of aging." Gait & posture 41(2): 736-740.

P. Martinez-Martin, A. G.-N., L. Morlfin Gracia, J. Balseiro GCimez, J. Martinez-
SarriCs, and a. T. C. M. G. tF. Bermejo (1994). "Unified Parkinson's Disease Rating
Scale Characteristics and Structure." Movement Disorders 9(1): 76-83.

Patterson, C. (2018). World Alzheimer report 2018, Alzheimer’s Disease International.

Pieruccini-Faria, F., et al. (2021). "Gait variability across neurodegenerative and
cognitive disorders: Results from the Canadian Consortium of Neurodegeneration in
Aging (CCNA) and the Gait and Brain Study." Alzheimer's & Dementia.

Redfield, M. M., et al. (2015). "Isosorbide mononitrate in heart failure with preserved
ejection fraction." 373(24): 2314-2324.

Rosen, W. G, et al. (1980). "Pathological verification of ischemic score in
differentiation of dementias." Annals of Neurology 7(5): 486-488.

Rosso, A. L., et al. (2014). "Higher step length variability indicates lower gray matter
integrity of selected regions in older adults." Gait & posture 40(1): 225-230.

Sakurai, R., et al. (2018). "Entorhinal Cortex Volume Is Associated With Dual-Task
Gait Cost Among Older Adults With MCI: Results From the Gait and Brain Study."
The Journals of Gerontology: Series A 74(5): 698-704.




Sakurai, R., et al. (2019). "Entorhinal cortex volume is associated with dual-task gait
cost among older adults with MCI: results from the gait and brain study." The Journals
of Gerontology: Series A 74(5): 698-704.

Schwarz, C. G., et al. (2016). "A large-scale comparison of cortical thickness and
volume methods for measuring Alzheimer's disease severity." 11: 802-812.

Seo, E. H., et al. (2010). "Total scores of the CERAD neuropsychological assessment
battery: validation for mild cognitive impairment and dementia patients with diverse
etiologies." The American Journal of Geriatric Psychiatry 18(9): 801-809.

Sheridan, P. L., et al. (2003). "Influence of executive function on locomotor function:
divided attention increases gait variability in Alzheimer's disease." J Am Geriatr Soc
51(11): 1633-1637.

Stoub, T., et al. (2005). "MRI predictors of risk of incident Alzheimer disease: a
longitudinal study." 64(9): 1520-1524.

Taniguchi, Y., et al. (2012). "A prospective study of gait performance and subsequent
cognitive decline in a general population of older Japanese." Journals of Gerontology
Series A: Biomedical Sciences and Medical Sciences 67(7): 796-803.

Tian, Q., et al. (2017). "The brain map of gait variability in aging, cognitive impairment
and dementia-A systematic review." Neuroscience and biobehavioral reviews 74(Pt A):
149-162.

Tinetti, M. E. (1986). "Performance-oriented assessment of mobility problems in
elderly patients." Journal of the American Geriatrics Society 34(2): 119-126.

Verghese, J., et al. (2002). "Abnormality of gait as a predictor of non-Alzheimer's
dementia." New England Journal of Medicine 347(22): 1761-1768.

Verghese, J., et al. (2008). "Gait Dysfunction in Mild Cognitive Impairment
Syndromes." Journal of the American Geriatrics Society 56(7): 1244-1251.

Verghese, J., et al. (2013). "Motoric cognitive risk syndrome and the risk of dementia."
Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 68(4):
412-418.

Verghese, J., et al. (2013). "Motoric cognitive risk syndrome and the risk of dementia."
J Gerontol A Biol Sci Med Sci 68(4): 412-418.

Verghese, J., et al. (2007). "Quantitative gait dysfunction and risk of cognitive decline
and dementia.” Journal of Neurology, Neurosurgery & Psychiatry 78(9): 929-935.

Weiner, K. S. and K. J. N. Zilles (2016). "The anatomical and functional specialization
of the fusiform gyrus.” 83: 48-62.

64



Wennberg, A. M., et al. (2017). "Cerebral amyloid deposition is associated with gait
parameters in the mayo clinic study of aging." 65(4): 792-799.

Winblad, B., et al. (2004). "Mild cognitive impairment-beyond controversies, towards a
consensus: report of the International Working Group on Mild Cognitive Impairment.”
Journal of internal medicine 256(3): 240-246.

Yoo, S., etal. (2006). "Validity of Korean version of the Mini-International
Neruopsychiatric Interview." Anxiety and Mood 2(1): 50-55.

Youden, W. J. (1950). "Index for rating diagnostic tests." 3(1): 32-35.

Zhou, H., et al. (2018). "Hemodialysis impact on motor function beyond aging and
diabetes—obijectively assessing gait and balance by wearable technology." Sensors
18(11): 3939.

Zijlstra, W. and A. L. Hof (2003). "Assessment of spatio-temporal gait parameters from
trunk accelerations during human walking." Gait & posture 18(2): 1-10.

Zimmerman, M. E., et al. (2009). "MRI-and MRS-derived hippocampal correlates of
guantitative locomotor function in older adults." Brain research 1291: 73-81.



A 2

o

&2l

ol% A m}e&

ol
)

AA

w22k ol

oH

To
i

Pl
i)

.foT
X

7A

Ho
ijN
M
NH

I

alp)

Tor

3} A

714

s

A%

—
fite)

~

;OO
IH

ol
U

B

W)
i

“upAbets] ol

66



il
ol

o

Gl

0

Hr
Nl
ol

0

Goll

o

o)
o

==
"o

e 5

—

i

=35 gole]

=8

T

E_O

ol
08

o)

AA]

S

T
T

AA A

}
SR EEEE R
A9 A 5L 7

HAE wlolomARA R Wol Ao

=

3

*
H

AN

bl e,

°©

A

S

2 A7i¢ ¥y

o
o=,

3
ar

=
L

=

T

.

A0l A

O
il

He

~

;OL
=3

BR
10

Nd

67



EREERE

°©

Holide] A7)l

Q

o]

=

X3l

T

57}
‘:41__

o

5

~~ — - - — N | _ . _
N3 o is 0 B o EI E.E EE N ‘ul e
gD %ﬂﬂ ﬁ w,w oo MM R TR R W
w L xX | o HT o) = EE HL
T B = 3% T " oo & T W g
S = fon
% 2 Y 2 TR B S
N R @ L HEwL FUwT
k9 m H o ~ X of o E
N8 " W I ST Y ,E_ = A 2
© o o~ ) ™ 4 e ool B — % _
O_E N ol < # o L_ )
mo E o ~ MMO S G o~ = T T A or ~
@ S @ B oo R e T e X
50 fig T o R e A
g S 5 @ aﬁ 3 wﬂ a\ﬂ CRECEIE = = ,MM
S o NTon > T 7 N S -
byxobdE T mamTE Rz
X B oo L B o R e o X o= -
oom o X S x © xR o © o) < K
4o ®E S ST o Hoy g o Mg =
ﬁow.%%wbcﬂww,wbtﬂ 2o
° —
o ﬂmﬂﬂﬂoﬂ_% do = o B o "=
- ;ﬂm» - OT ,yi ‘H N —_ ,HL wwo Hﬁ —
o Mo = o < N ) Ho % ~ ut T 5 © H
T, o 5 - 7o — = o}
&WﬂmE%Hﬂ uo,mﬁmﬁﬂ.?bz,w_m
o B OF OB o m o B om S
TXOFW® o J® s o 5 T o o
ool ooy X TR T H B TR N T .. W W
D e ) PRNPHEIT T B oo

92

68

(HR = 1.06, 95% CI = 0.49- 2.30).



A U, AT GARES Al 7w AEes o
Ao Aol Axa# (threshold effect) At
H3h LR AEWEE Fu BNAYL de®
ol 108 F7be dehek Akl AFel 116w
%ﬂﬂﬁ-%ﬁ YLz Wil wel AXgE AR FI

1
s
n

(0]
©
f
N
1o
:(I)I:

AT ITolA =2 Ei‘ﬁtﬁ_ol*é% S22 A7 FEe] A

oo 4] Tl 5] A FA 7o)
2 L,E@%ﬂ@%ﬂ@fﬂ?agg
Bushe fold ARYS wolx etk maMoly ol
AR

SUAAE Hel 3d 82y T FAPHR9] inferior temporal,

o
KW
rir

ki

rlo

%

og{:z

o &
o,

o,

o,

of
ki

T 4o
l-l 1

O

3} 5)=

=
ks

entorhinal, parahippocampal, fusiform, and lingual& 2
Fezgel 94 FAL QA Q475 @ dof7]e)E
AT}

e 9 a4 gRdon B ATk, AR 9 HEoe e

5S4 wyWolgd e XA st 99 o5 "UAd velentA =AM 9

7}

_1

2 Q7 AnE ok A 7] A v e

- Byun, Seonjeong, et al. “Gait variability can predict the
risk of cognitive decline in cognitively normal older people.”
Dementia and geriatric cognitive disorders, 45(2018), 251-261.

Fgo] : nal, UXE nolQvtA, HEAEA, FHAFGUENDL,
A, FodT

3 W @ 2017-31534

69 "':I'H-_E _'k.::_'ll' F 1



	I       Introduction
	1. Study background
	2. Purpose of research
	II Methods
	1. Study 1: Can gait variability predict the risk of cognitive decline in cognitively normal elderly?
	1.1. Study population
	1.2. Clinical assessments
	1.3. Gait Assessments
	1.4. Statistical analysis
	2. Study 2: Shared Neural Substrates between Gait Variability-Cognitive Function
	2.1. Study population
	2.2. Assessments of cognition and medical conditions
	2.3. Gait assessments
	2.4. Magnetic resonance imaging (MRI) acquisition and preprocessing
	2.5. Statistical analyses
	III Results
	1. Study 1: Can gait variability predict the risk of cognitive decline in cognitively normal elderly?
	1.1. Association of gait variability and gait speed status with the risk of MCI 
	2. Study 2: Shared Neural Substrates between Gait Variability-Cognitive Function
	IV Discussion
	[Figure 1] Risk of incident mild cognitive impairment over 4 years stratified by gait speed (a) and variability (b) by log-rank test
	[Figure 2] Cortical thickness and gait variability in non-demented older adults
	[Figure 3] Cortical thickness of LH1 cluster mediates effect of gait variability on CERAD-TS (a) and VMS (b) 
	[Table 1] Demographic, clinical, cognitive function, and gait characteristics of the subjects
	[Table 2] Prediction of mild cognitive impairment in cognitively normal elderly individuals
	[Table 3] Characteristics of participants 
	[Table 4] Vertex-Wise Analyses of Gait Variability and Cortical Thickness
	[Table 5] Regression Analyses of Gait Variability and Cortical Thickness
	[Table 6] Associations between Cortical Regions related with Gait Variability and Cognitive Function
	Bibliography
	감사의 글
	초 록 


<startpage>2
I       Introduction 10
1. Study background 11
2. Purpose of research 16
II Methods 18
1. Study 1: Can gait variability predict the risk of cognitive decline in cognitively normal elderly? 19
1.1. Study population 19
1.2. Clinical assessments 20
1.3. Gait Assessments 22
1.4. Statistical analysis 23
2. Study 2: Shared Neural Substrates between Gait Variability-Cognitive Function 24
2.1. Study population 24
2.2. Assessments of cognition and medical conditions 25
2.3. Gait assessments 26
2.4. Magnetic resonance imaging (MRI) acquisition and preprocessing 27
2.5. Statistical analyses 28
III Results 32
1. Study 1: Can gait variability predict the risk of cognitive decline in cognitively normal elderly? 33
1.1. Association of gait variability and gait speed status with the risk of MCI  34
2. Study 2: Shared Neural Substrates between Gait Variability-Cognitive Function 35
IV Discussion 38
[Figure 1] Risk of incident mild cognitive impairment over 4 years stratified by gait speed (a) and variability (b) by log-rank test 49
[Figure 2] Cortical thickness and gait variability in non-demented older adults 50
[Figure 3] Cortical thickness of LH1 cluster mediates effect of gait variability on CERAD-TS (a) and VMS (b)  51
[Table 1] Demographic, clinical, cognitive function, and gait characteristics of the subjects 52
[Table 2] Prediction of mild cognitive impairment in cognitively normal elderly individuals 54
[Table 3] Characteristics of participants  55
[Table 4] Vertex-Wise Analyses of Gait Variability and Cortical Thickness 56
[Table 5] Regression Analyses of Gait Variability and Cortical Thickness 57
[Table 6] Associations between Cortical Regions related with Gait Variability and Cognitive Function 58
Bibliography 59
감사의 글 66
초 록  67
</body>

