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Abstract 

 
Gait Variability as a Potential 

Digital Biomarker for Cognitive 

Decline: the wearable devices 

opportunity 

 
Byun, Seonjeong  

Department of Psychiatry, College of Medicine 

The Graduate School Seoul National University 

 
Background and Objectives: Large public health burden of dementia and the absence 

of a cure highlight the need for early identification of those at risk for cognitive decline 

or dementia to prevent and/or delay the onset of dementia. Emerging evidence indicates 

gait variability, the fluctuation of a gait measure from one step to the next, strongly 

relate to the risk of cognitive decline, MCI and dementia. Gait variability obtain via 

wearable sensor is a promising digital biomarker for predicting risk of cognitive 

impairment due to its favorable practical advantages of being able to obtain 

measurements over a longer period of time under unsupervised real-world conditions 

at lower cost. In my thesis, I examine the possibility that gait variability measured by 

a single body-worn tri-axial accelerometer (TAA) can be used as a digital biomarker 

to predict future risk of cognitive decline. In the first study, I examined whether gait 

variability obtained by the body-worn TAA could predict future risk of cognitive 
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decline in older people with normal cognition (NC). In the second study, I then identify 

neural substrates that theoretically support the potential of gait variability as a digital 

biomarker in older adults with larger sample size and broader range of cognitive 

function. Additionally, I hypothesized higher gait variability would be related to lower 

cortical thickness, especially in regions important for cognitive function and memory, 

and that these regions would represent a shared neural substrate for gait control and 

cognitive impairment.  

 
Methods: In the study I, we conducted 4-year prospective cohort study on 358 

community-dwelling cognitively normal elderly individuals without cerebral ischemic 

burden or Parkinsonism. We evaluated gait speed and step time variability using a TAA 

placed on the center of body mass, and diagnosed mild cognitive impairment (MCI) 

according to the International Working Group on MCI. We performed Kaplan-Meier 

analysis with consecutive log-rank testing for MCI-free survival by cohort-specific 

quintiles of gait variability; hazard ratios (HR) of incident MCI were estimated using 

Cox proportional hazards regression analysis adjusted for age, sex, education level, 

Cumulative Illness Rating Scale score, GDS score, and presence of the apolipoprotein 

E ε4 allele.  

In the study II, we cross-sectionally investigated the cortical and subcortical 

neural structures associated with gait variability, and the shared neural substrates of 

gait variability and cognitive function in 207 non-demented older adults. We obtained 

the cortical thickness and subcortical volumes from the magnetic resonance images, 

and examined associations between gait variability, cognitive function, and cortical 

thickness and subcortical volumes. Finally, we analyzed the mediation effect of the 

cluster cortical thickness and subcortical volume which had a significant association 

with both gait variability and cognitive function on the association between gait 

variability and cognition. 

Results: In the study I, subjects with high gait variability showed about 2-fold higher 
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risk of MCI (HR = 2.12, 95% CI = 1.05–4.31) than those with 1st-to-4th quintiles of 

variability. However, those with slow gait speed showed comparable MCI risk to those 

with 2nd-to-5th quintiles of speed (HR = 1.06, 95% CI = 0.49– 2.30). We additionally 

found that no sex differences were found when assessing the ability of high gait 

variability to predict future cognitive decline. When we computed gait variability and 

gait speed as continuous variables to explore whether there are any threshold effects, 

the risk of incident cognitive decline increased 1.16 times per 10% increment of gait 

variability, whereas it did not change significantly with changes of gait speed.  

In the study II, higher gait variability was associated with lower cognitive 

functions. We found the widespread decrease in cortical thickness with increasing gait 

variability while there was no significant association with the volume of subcortical 

structures. Among the clusters that showed significant correlation with the gait 

variability, a cluster that included the inferior temporal, entorhinal, parahippocampal, 

fusiform, and lingual in left hemisphere was also associated with global cognitive 

function, and verbal memory function. Cortical thickness of the cluster explained 17% 

of the total effect of gait variability on global cognitive function measured by CERAD-

TS. 

Interpretation: Gait variability measured by a single body-worn TAA could be a novel 

digital biomarker of risk of cognitive decline that could be used repeatedly and 

frequently and at low cost to test risk of individuals without clinical evidence of 

cognitive impairments. 

 

Part of this work was previously published on: 

- Byun, Seonjeong, et al. “Gait variability can predict the risk of cognitive decline in 

cognitively normal older people.” Dementia and geriatric cognitive disorders, 

45(2018), 251-261 
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I Introduction  
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1. Study Background 

 

Dementia is a major global health problem, affecting 46.8 million people worldwide, 

with prevalence predicted to increase exponentially to 131.5 million in 2050. The 

total global societal cost of dementia was estimated to exceed USD 818 billion in 

2015, equivalent to 1.1% of global gross domestic product (GDP), to exceed USD 1 

trillion in 2018 and forecast to double by 2030 and continues to rise. (Patterson 2018, 

FLEMING, ZEISE et al. 2020) This large public health burden and the absence of a 

cure highlight the need for early identification of those at risk for cognitive decline or 

dementia to prevent and/or delay the onset of dementia. The search for useful 

biomarkers in the early stages of cognitive impairment has important implications for 

initiating intervention and monitoring disease progression. Substantial progress has 

been made in the early diagnosis and identification of individuals at risk for cognitive 

impairment using cerebrospinal fluid, structural MRI imaging, and PET molecular 

imaging. However, their high cost, invasive nature, or low accessibility limit their 

widespread use as early biomarkers. Biomarkers based on MRI and PET imaging are 

available in specialty clinic settings in some countries, but the highest increase in 

prevalence and incidence of dementia in the coming years will be observed in low- 

and intermediate-income countries, where the accessibility to expensive biomarkers 

is limited. (de Jager, Msemburi et al. 2017) Blood-based biomarkers have been 

actively studied in recent years as a cost-effective and less invasive early screening 

biomarker of cognitive impairment. (O'Bryant, Mielke et al. 2017) However, studies 

have shown considerable variability owing to inconsistencies in clinical cohort, and 

problems with standardization of the samples, and pre- analytical and analytical 

differences. Assay reliability and robust replication and validation of initial results 

remain key issues for blood-based biomarker, and blood collection and processing 

procedures in studies are not applicable to standard clinical lab practice, which will 

cause substantial barriers to clinical application. (Hampel, O'Bryant et al. 2018)  
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Therefore, more studies are needed for biomarkers in the earliest stages of the 

cognitive impairments. 

There has been a growing interest in examining gait function as a marker of 

early cognitive impairment. A simple but useful measure of human locomotion, gait 

speed is known to correlate with dementia; slow gait was associated with the 

accelerated cognitive decline and the risks of mild cognitive impairment (MCI) and 

dementia. (Camicioli, Howieson et al. 1998, Verghese, Lipton et al. 2002, Mielke, 

Roberts et al. 2013) Building on these findings, Verghese and colleagues defined 

motoric cognitive risk (MCR) syndrome as having cognitive complaint and slow gait 

speed, and proposed the MCR syndrome as a novel high-risk condition of dementia. 

(Verghese, Wang et al. 2013) The large study (17 countries with 22 cohorts resulting 

in 26,802 individuals) showed MCR was associated with increased cognitive 

impairment. However, MCR had increased risk of dementia and strongly predicted 

vascular dementia (VaD), but not predicted Alzheimer’s dementia (AD) in the study. 

Moreover, in a multi-cohort MRI study, gray matter covariance patterns linked to gait 

speed were associated with processing speed but not with episodic memory. (Lo, 

Halko et al. 2017, Blumen, Brown et al. 2019) Slow processing speed and episodic 

memory loss are well-known symptoms that appear in the early stages of vascular 

dementia and Alzheimer's dementia, respectively. Considering such findings, gait 

speed may not be suitable as a predictive marker of cognitive decline due to 

neurodegenerative diseases, which accounts for the majority of dementia.  

However, the gait of older adults can be characterized not only by the pace 

domain represented by speed, but also by the rhythm, variability, asymmetry, and 

postural control domains. (Lord, Galna et al. 2013) Gait parameters belonging to the 

rhythm, variability, asymmetry, and postural control cannot be easily measured with 

stop-watch and tapeline only, unlike gait speed, have been measured with 

computerized gait analysis via 3D gait analysis laboratory, electronic forceplate, and 
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inertial measurement unit sensors. (FRIGO 1992) More recently, the proliferation of 

wearable digital technologies in healthcare has provided new opportunities to assess 

gait performance outside of a gait laboratory, including detailed gait metrics. (Zhou, 

Al-Ali et al. 2018, Kang, Zhou et al. 2020) Among the detailed gait metrics, a 

decrease in stride length and gait symmetry, and an increase in gait variability were 

observed in subjects with MCI, a transition state between normal aging and dementia. 

(Verghese, Robbins et al. 2008) Specifically, subjects with amnestic MCI, a 

precursor state to Alzheimer’s disease, in the study had worse variability scores while 

subjects with non-amnestic MCI had poor performance on the pace factor. Emerging 

evidence indicates gait variability, the fluctuation of a gait measure from one step to 

the next, strongly relate to the risk of cognitive decline, MCI and dementia. (Dodge, 

Mattek et al. 2012, Beauchet, Allali et al. 2013, Gillain, Dramé et al. 2016) In a 

recent Canadian multisite cross-sectional study with older adults across 

neurodegenerative conditions, high gait variability, but not other gait domains such 

as rhythm, pace, and postural control, was associated with lower cognitive 

performance and accurately discriminated AD from other neurodegenerative and 

cognitive conditions. (Pieruccini‐Faria, Black et al. 2021) Gait variability has been 

associated with areas important for sensorimotor integration and coordination and 

relies on higher cortical brain control. (Tian, Chastan et al. 2017) Higher gait 

variability has been associated with structural and functional differences in gray 

matter regions; specifically, with lower levels of neuronal metabolism in 

hippocampus and structural degeneration in hippocampus, primary sensorimotor 

cortex, anterior cingulate cortex, basal ganglia in older adults. (Zimmerman, Lipton 

et al. 2009, Beauchet, Annweiler et al. 2014, Rosso, Hunt et al. 2014) The findings 

from cross-sectional and longitudinal studies on risk of cognitive impairment and 

from studies on the neural substrates related to gait variability suggest that gait 

variability could be a predictive biomarker for cognitive decline, particularly those 

due to Alzheimer’s disease, which accounts for most of degenerative dementia. 



14  

However, the evaluation of detailed gait metrics is currently limited to research 

applications due to the need for institutional visits, the large space required for the 

institution, and the high cost. For instance, test-retest reliability of step time 

variability estimated using the GAITRite with an active area length of 3.65 m was 

very low in my previous study. (Byun, Han et al. 2016) The reliability of gait 

variability estimated using the GAITRite is reported to vary depending on the length 

of the active area on the walkway used for measuring the gait. The European 

GAITRite network group recommends the highest number of gait cycles possible 

from a practical standpoint, with a minimum of 6 consecutive gait cycles (i.e., a total 

of 12 consecutive steps) to evaluate stride time variability. A laboratory with a length 

of 15 m or more is required for this purpose. These limitations preclude repeated and 

frequent use to test an individual and specifically in the early pre-symptomatic stage 

of the neurodegenerative diseases. Recently, advancing mobile and wearable digital 

technology have the potential to overcome these limitations, and their application to 

the development of digital biomarkers for future cognitive decline has become an 

area of increased interest. (Kourtis, Regele et al. 2019) Furthermore, a recent meeting 

of the Alzheimer’s Association Research Roundtable discussed how wearables and 

their digital biomarkers can be used in the dementia clinical trial space. Topics of 

discussion included how wearables can improve screening, engagement and 

compliance with treatment, while providing new insights towards personalized 

medicine. (Gold, Amatniek et al. 2018, Godfrey, Brodie et al. 2019) In our previous 

study, step time variability can be validly measured using a single tri-axial 

accelerometer (hereafter, TAA) placed over the center of body mass in older adults. 

(Hsu, Chung et al. 2014, Byun, Han et al. 2016, Del Din, Godfrey et al. 2016) Recent 

prospective longitudinal study has already shown the potential for step time 

variability and asymmetry measured by a wearable TAA to be potential prodromal 

markers for Parkinson disease (PD), the second common neurodegenerative disease. 

(Del Din, Elshehabi et al. 2019) Wearable sensor-based gait measurement has the 
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advantage of being able to obtain measurements over a longer period of time under 

unsupervised real-world conditions at lower cost. With these regards, the gait 

variability measured by TAA is a promising digital biomarker for predicting risk of 

cognitive impairment in the pre-clinical stages. 

To summarize, identifying those at risk of cognitive impairment at the 

earliest stages of the disease is crucial for timely intervention and effective treatment. 

For this, gait variability obtain via wearable sensor is a promising digital biomarker 

due to its favorable practical advantages. To date, no prospective studies have 

investigated the association of gait variability and future cognitive decline using the 

body-worn TAA, and there have been only two prospective studies using 

conventional gait assessment tools. One study suggested that high gait variability 

may be associated with the future risk of Alzheimer’s disease (AD) in those with 

MCI (Gillain, Drame et al. 2016). The other study suggested high variability factor 

scores were associated with future risk of dementia in non-demented old people 

(Verghese, Wang et al. 2007). In addition to being based on conventional gait 

assessment tools, the previous studies were subject to certain methodological 

limitations. The former study (Gillain, Drame et al. 2016) included only 13 subjects; 

the latter (Verghese, Wang et al. 2007) evaluated gait variability using a short 

electronic walkway, resulting in unreliable measurements (Kressig and Beauchet 

2006). Furthermore, there was no study investigating whether a combination of gait 

speed and variability can better predict the risk of cognitive decline than either factor 

alone. Finally, these studies could not show whether the changes in gait variability 

preceded or merely accompanied mild cognitive impairment or dementia, because 

their samples included people with mild cognitive impairment at baseline.  

Meanwhile, some studies have investigated the neural correlates of association 

between gait variability and the risk of cognitive decline. Higher gait variability 

indicates lower gray matter integrity and neuronal metabolism of hippocampus, 
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lower gray matter integrity of anterior cingulate gyrus, and decreased parietal gray 

matter volume.(Zimmerman, Lipton et al. 2009, Beauchet, Annweiler et al. 2014, 

Rosso, Hunt et al. 2014) Many of these areas that have been associated with gait 

variability are also related to Alzheimer's disease. (Jack, Petersen et al. 1998, 

Burgmans, Van Boxtel et al. 2009, Kawakami, Hasegawa et al. 2014) It appears 

plausible that gait variability and cognitive function would share neural substrates, 

and understanding the shared neural substrates between gait variability-cognitive 

function may provide a neurological explanation for a higher gait variability being 

associated with an increased risk of cognitive decline. However, such shared neural 

substrates have not been examined: there have been some studies of gait variability-

neural substrates or gait variability-cognitive decline, respectively. And even studies 

that only reported the neural substrates associated with gait variability have 

limitations; most have focused on only a few pre-specified regions of interest, and 

cortical thickness has rarely been studied although cortical thickness methods have 

been shown to be more sensitive in detecting alterations in cortical morphology than 

the former volumetric approach, and a short-length forceplate was used to measure 

gait variability with insufficient consecutive steps. (Hutton, Draganski et al. 2009, 

Sakurai, Bartha et al. 2019, Jayakody, Breslin et al. 2020)  

 

2. Purpose of Research 

In my research, I examine the possibility that gait variability measured by a single 

body-worn TAA can be used as a digital biomarker to predict future risk of cognitive 

decline. To this end, I conducted two studies. 

In the first study, I first examined whether gait variability obtained by the 

body-worn TAA could predict future risk of cognitive decline in older people with 

normal cognition (NC). To investigate whether the changes in gait variability precede 

MCI, we conducted a 4-year prospective study of elderly with NC who had no 
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evidence of cognitive impairment in well-characterized cohort of community 

dwelling older adults. 

In the second study, I then identify neural substrates that theoretically 

support the potential of gait variability as a digital biomarker in older adults with 

larger sample size and broader range of cognitive function. I cross-sectionally 

investigated the cortical and subcortical neural structures associated with gait 

variability, and the shared neural substrates of gait variability and cognitive function 

in non-demented older adults. I anticipated that higher gait variability would be 

associated with reduced cortical thickness in regions implicated in sensorimotor 

control of gait in non-demented older adults, even though not associated with 

decreased subcortical volume. Additionally, I hypothesized higher gait variability 

would be related to lower cortical thickness, especially in regions important for 

cognitive function and memory, and that these regions would represent a shared 

neural substrate for gait control and cognitive impairment. Gait variability in the 

present study was quantified by step time variability since temporal gait variability 

measures such as step time variability and stride time variability are the most widely 

reported factors that predict cognitive decline, and the use of steps instead of strides 

to calculate gait variability has been suggested in previous studies. (Moe-Nilssen, 

Aaslund et al. 2010, Galna, Lord et al. 2013). 

Altogether, I hypothesized that step time variability measured by a single 

body-worn TAA could be a novel digital biomarker of risk of cognitive decline that 

could be used repeatedly and frequently and at low cost to test risk of individuals 

without clinical evidence of cognitive impairments. 
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II Methods  
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1. Study 1: Can gait variability predict the risk of cognitive 

decline in cognitively normal elderly?  

 
1.1. Study population  
 

We undertook the current study as a prospective cohort study nested within the 

Korean Longitudinal Study on Cognitive Aging and Dementia (KLOSCAD). The 

KLOSCAD is a population-based prospective multi-center cohort study on cognitive 

aging and dementia in elderly Koreans (age 60 years and over) who have been 

followed up every 2 years since 2010 (Kim, Park et al. 2013). Among the KLOSCAD 

participants who completed baseline assessment from January 2011 to December 

2018 at Seoul National University Bundang Hospital, 506 volunteers who were 

eligible for inclusion criteria and exclusion criteria as follows completed gait 

assessment. They were non-demented, free from psychiatric, neurologic and serious 

medical disorders, any history of cerebrovascular accidents or operations on 

musculoskeletal system, or any painful condition or sensory impairment that may 

influence their gait. The level of visual function was operationally defined according 

to the following five levels: 0 Normal, 1 Diminished but able to see the newspaper or 

television without glasses or lenses., 2 Diminished and need to wear glasses or lenses 

to see the newspaper or television, 3 Difficult to see newspapers or television with 

glasses or lenses because of reduced vision 4 Not able to see anymore. We excluded 

people with a score of 3 or more through the interview with trained research nurses 

and excluded those who had diplopia, visual field defects, or other sensory deficits 

through neurological evaluation performed by geriatric psychiatrists. Out of 506 

subjects who underwent gait evaluation, except for 148 subjects (10 subjects who 

were diagnosed with MCI through the neuropsychological test,120 subjects who did 

not meet the condition of Unified Parkinson's Disease Rating Scale Part III 

(UPDRS) (P. Martinez-Martin and tF. Bermejo 1994) motor score of 0 or a gait 
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subscale of Tinetti gait and balance assessment(Tinetti-gait) (Tinetti 1986) score of 

12, and 18 with missing values in one of the covariates), a total of 358 subjects were 

included in this baseline sub-cohort. This study was approved by the Institutional 

Review Board of the Seoul National University Bundang Hospital. All subjects 

provided written informed consent themselves or via their legal guardians. 

 

1.2. Clinical assessments 

Geriatric psychiatrists administered a standardized diagnostic interview including a 

detailed medical history, physical and neurological examinations, and laboratory tests 

including APOE genotyping to each subject using the Korean version of the 

Consortium to Establish a Registry for Alzheimer’s Disease Assessment Packet 

Clinical Assessment Battery (CERAD-K-C) (LEE, LEE et al. 2004), the Mini 

International Neuropsychiatric Interview (MINI) (Yoo, Kim et al. 2006), and the 

Cumulative Illness Rating Scale (CIRS) (Miller, Paradis et al. 1992). We determined 

the global severity of dementia using the Clinical Dementia Rating (CDR) (Morris 

1993). We evaluated parkinsonian symptoms and gait disturbances using the UPDRS 

(range 0-108 with higher scores indicating more severe parkinsonian motor 

symptoms) and the gait subscale of Tinetti gait and balance assessment. The Tinetti 

instrument consists of three scales: a Gait Scale, a Balance Scale and then and overall 

Gait and Balance score. The maximum score for gait is 12. The higher the score, the 

better the performance. The Modified Hachinski Ischemic Score (MHIS) was 

employed for assessing vascular burden (Rosen, Terry et al. 1980). Trained 

neuropsychologists or research nurses administered neuropsychological assessments 

including the Korean version of the Consortium to Establish a Registry for 

Alzheimer’s Disease Neuropsychological Assessment Battery (CERAD-K-N) (Lee, 

Lee et al. 2002), the Korean version of the Frontal Assessment Battery (Kim, Huh et 

al. 2010) and the forward and backward Digit Span Test (D. 1987), and asked the 

participants to self-administer the Korean version of Geriatric Depression Scale 
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(GDS) (Kim, Park et al. 2008).  

We determined the diagnosis and CDR of each subject through consensus diagnostic 

conferences in which three or more research geriatric psychiatrists participated. We 

diagnosed mild cognitive impairment (MCI) according to the diagnostic criteria for 

MCI proposed by the International Working Group on MCI (Winblad, Palmer et al. 

2004) and dementia according to the Diagnostic and Statistical Manual of Mental 

Disorders (4th ed., text revision) criteria (Association 2000). We diagnosed the 

presence of objective cognitive impairment if a subject scored worse than -1.0 

standard deviation (SD) on the age-, gender-, and education-adjusted norms for 

Korean elders in any of the 11 neuropsychological tests other than the Mini-Mental 

State Examination (MMSE). We defined the subjects as cognitively normal whose 

CDR was 0 and neuropsychological performance was above -1.0 SD in all 

neuropsychological tests.  
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1.3. Gait Assessments 

Gait analysis using a tri-axial accelerometer placed over the center of body mass 

(COM) was found to validly measure gait parameters including cadence, step time, 

step length, speed, and gait variability in older adults (Hartmann, Murer et al. 2009, 

Byun, Han et al. 2016). We measured the gait of each subject using the GAITRite 

and the tri-axial accelerometry-based gait analysis (TAAGA) that we reported in our 

previous work. (Byun, Han et al. 2016) The TAAGA showed excellent test-retest 

reliability in measuring cadence, step time, step length, step time variability, and step 

time asymmetry in cognitively normal older adults.  

We obtained gait speed from the GAITRite. According to our previous work, 

we measured the step time variability of each participant using a TAA (FITMETER®  

[FitLife Inc., Suwon, Korea] or ActiGraph®  [SMD solution, Seoul, Korea]) placed 

over the center of body mass (CoM). The IMUs were hexahedrons (35 × 35 × 13 mm 

[14 g]/30 × 40 × 10 mm [17 g]) with smooth edges and a digital tri-axial 

accelerometer (BMA255, BOSCH, Germany) and gyroscope (BMX055, BOSCH, 

Germany). They could measure tri-axial acceleration up to ± 8 g (with a resolution of 

0.004 g/0.00024 g) and tri-axial angular velocity up to ±1,000°/s (with a resolution of 

0.03°/s) at 250 Hz. We fixed an IMU to each participant at the 3rd – 4th lumbar 

vertebrae using Hypafix. We asked each participant to walk back and forth three 

times on a 14 m (or 20 m) flat straight walkway at a comfortable self-selected pace, 

and to start turning after passing the 14 m (or 20 m) line. We placed the GAITRite 

electronic mat in the middle of the walkway.  To measure steady-state walking, we 

analyzed the data of the central 10 m-walk of the 14m-walk (or 15m-walk of the 

20m-walk) after eliminating the 2 m-walks prior to the start and each turn. We 

calculated step time variability from vertical acceleration data using the method 

described by Zijlstra and Hof [i.e., % coefficient of variation (% CV) of step time = 

(standard deviation of step time/mean step time) × 100] (Zijlstra and Hof 2003). In 
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the present study, we used the natural log transformation of % CV of step time as gait 

variability since % CV of step time was not normally distributed. The detailed 

methods of signal processing and gait variability calculation are described elsewhere. 

(Byun, Han et al. 2016) In summary, we read acceleration data as comma separated 

value (CSV) files using FITMETER and ActiGraph manager software and loaded the 

CSV file into MATLAB (The MathWorks Inc., Natick, MA). We applied a low-pass 

filter (4th order zero-lag Butterworth filter at 2 Hz) to the acceleration data from 

three axes. After that, we took troughs of the processed data on vertical axis as the 

instant of a left or right foot contact for each walk. We calculated step times using the 

duration between acceleration troughs. 

 

1.4. Statistical analysies 

On the basis of sex, we classified each subject's gait variability as being in the 1st, 

2nd, 3rd, 4th, 5th quintiles, and the subjects' gait speed was also classified into the 

quintiles. We compared the demographic, clinical, and gait characteristics between 

the quintile groups using one-way analysis of variance (ANOVA) for continuous 

variables and chi square test or Fisher's exact probability test for categorical variables 

(Table 1).  

 Incidence of MCI over the 4-year follow-up was a primary outcome. We 

performed Kaplan–Meier analysis with consecutive log-rank testing for MCI free 

survival by cohort-specific quintiles of gait speed and variability to estimate the 

association between gait parameters and MCI risk.  

 We performed cox proportional hazard regression analyses to estimate 

multivariate-adjusted estimates of the hazard ratio (HR) of MCI according to gait 

speed and variability. We dichotomized the subjects by gait variability into a highest 

quintile group and a control group in conducting multivariate analysis. Similarly, gait 
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speed was entered into the multivariate model as a variable dichotomized into a 

control group and a lowest quintile group because slow gait, not normal or fast gait, 

had been a well-known predictor of cognitive decline (Mielke, Roberts et al. 2013, 

Verghese, Wang et al. 2013, Gale, Allerhand et al. 2014, Ojagbemi, D’Este et al. 

2015), and the high gait speed group had no incidence of MCI. We constructed three 

models and adjusted age, sex, level of education, CIRS score, GDS score, and the 

presence of the apolipoprotein E (APOE) ε4 allele as covariates in all models, with 

gait speed included in Model A, gait variability in Model B, and both in Model C. 

We compared the predictive ability of these cox regression models using the 

likelihood ratio-test and C-statistic. Gait speed and variability status were entered 

into the Cox model as both continuous and dichotomized variables to test if there is a 

threshold effect. Natural logarithmic transformation was applied to the gait 

variability variable to achieve normality. Time to event was from enrolment to 

interview at which MCI was diagnosed or to final study contact. We tested the 

proportional hazards assumption using the methods based on scaled Schoenfeld 

residuals. In an additional analysis, we assessed the robustness of our analyses to 

potential reverse causation (that would occur if incipient cognitive impairment at 

baseline led to high gait variability and/or low gait speed status) by additionally 

adjusting the models for baseline cognitive performance measured by MMSE. Based 

on the Youden’s J statistic (Youden 1950), the optimal cut-off value for gait measure 

that best predicts the incidence of cognitive decline 4 years after the baseline 

assessment was selected for men and women, respectively. All analyses were 

performed using SPSS version 20 (IBM Corp., New York, NY) and R version 3.3.2 

(R Foundation for Statistical Computing). 

 

2. Study 2: Shared Neural Substrates between Gait Variability-

Cognitive Function 
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2.1. Study population 

This study is embedded in the Korean Longitudinal Study on Cognitive Aging and 

Dementia (KLOSCAD), a population-based prospective multicenter cohort study on 

cognitive aging and dementia in elderly Koreans (age 60 years and over) who have 

been followed up every 2 years since 2010 (Kim, Park et al. 2013). This study is 

embedded in the Korean Longitudinal Study on Cognitive Aging and Dementia 

(KLOSCAD), a population-based prospective multicenter cohort study on randomly 

sampled elderly Koreans aged 60 years old and over. The KLOSCAD was launched 

in 2009 and have been followed up every 2 years until 2020 (Kim, Park et al. 2013). 

Among 232 individuals who completed the gait evaluation and brain MRI 

simultaneously in the KLOSCAD cohort, we included 207 participants in the final 

analysis after excluding following conditions: 1) dementia or major psychiatric 

disorders according to the Diagnostic and Statistical Manual of Mental Disorders (4th 

ed., text revision) criteria; 2) major neurologic disorders including Parkinson’s 

disease, brain tumor or stroke; 3) having a history of traumatic brain injury; 4) having 

the Tinetti Performance Oriented Mobility Assessment - Gait subscale (POMA-G) 

score of ≤ 10 (Tinetti 1986); 5) having one or more cardinal signs (bradykinesia, 

tremor, rigidity) or two or more non-cardinal signs in the Parkinsonism on the 

Unified Parkinson’s Disease Rating Scale Part III (UPDRS) (P. Martinez-Martin and 

tF. Bermejo 1994).  

All the participants had provided written informed consent themselves or via their 

legal guardians. This study had been approved by the Institutional Review Board of 

the Seoul National University Bundang Hospital. 

 

 
2.2. Assessments of cognition and medical conditions 

Geriatric psychiatrists administered a standardized diagnostic interview including a 
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detailed medical history, physical and neurological examinations, and laboratory tests 

to each subject using the Korean version of the Consortium to Establish a Registry 

for Alzheimer’s Disease Assessment Packet Clinical Assessment Battery (CERAD-

K-C) (LEE, LEE et al. 2004) and the Mini International Neuropsychiatric Interview 

(MINI) (Yoo, Kim et al. 2006). They evaluated the burden of comorbidities using the 

Cumulative Illness Rating Scale (CIRS) (Miller, Paradis et al. 1992) and the vascular 

burden using the Modified Hachinski Ischemic Score (MHIS) (Rosen, Terry et al. 

1980), and identified the presence of degenerative arthritis of spine and/or lower 

extremities through the musculoskeletal category of the CIRS [34]. They evaluated 

Parkinsonian symptoms and gait disturbances using the UPDRS and the POMA-G. 

The maximum score of the UPDRS is 108 and the higher score indicates more severe 

Parkinsonian motor symptoms. The maximum score of the POMA-G is 12 and the 

higher the score indicates the better gait performance. 

Trained neuropsychologists or research nurses administered neuropsychological 

assessments including the Korean version of the Consortium to Establish a Registry 

for Alzheimer’s Disease Neuropsychological Assessment Battery (CERAD-K-N) 

(LEE, LEE et al. 2004), the Korean version of the Frontal Assessment Battery (Kim, 

Huh et al. 2010) and the Digit Span Test (D. 1987). 

The CERAD-K-N consists of nine neuropsychological tests, including the 

Categorical Fluency Test (CFT), the Modified Boston Naming Test (mBNT), the 

Mini Mental Status Examination (MMSE), the Word List Memory Test (WLMT), 

the Constructional Praxis Test (CPT), the Word List Recall Test (WLRT), the Word 

List Recognition Test (WLRcT), the Constructional Recall Test (CRT), and the Trail 

Making Test A (TMT-A). We calculated the CERAD-K total scores (CERAD-TS) by 

summing the scores of CFT, mBNT, WLMT, WLRT, WLRcT, and CPT (Seo, Lee et 

al. 2010). We defined the Verbal Memory Score (VMS) as the weighted average of 

the scores of WLMT, WLRT, and WLRcT. The CERAD-TS and VMS range from 0 
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to 100 and 0 to 30, respectively, and higher scores represent better cognitive function. 

 Research nurses asked the participants to self-administer the Korean version 

of Geriatric Depression Scale (GDS) (Kim, Park et al. 2008) to evaluate the severity 

of depressive symptoms.  

 

2.3. Gait assessments 

We measured the temporal gait variability because temporal parameters were more 

affected dementia-related gait parameters than spatial parameters and temporal, but 

not the spatial gait parameter, were associated with AD pathology (Wennberg, Savica 

et al. 2017, Chiaramonte and Cioni 2021). In measuring the temporal gait variability, 

we used the steps instead of strides because gait variability from left and right steps 

combined was more reliable that using strides (Moe-Nilssen, Aaslund et al. 2010, 

Galna, Lord et al. 2013).  

According to our previous work (Hartmann, Murer et al. 2009, Byun, Han et al. 

2016), we measured the step time variability of each participant using a TAA 

(FITMETER®  [FitLife Inc., Suwon, Korea] or ActiGraph®  [SMD solution, Seoul, 

Korea]) placed over the center of body mass (CoM). The IMUs were hexahedrons 

(35 × 35 × 13 mm [14 g]/30 × 40 × 10 mm [17 g]) with smooth edges and a digital 

tri-axial accelerometer (BMA255, BOSCH, Germany) and gyroscope (BMX055, 

BOSCH, Germany). They could measure tri-axial acceleration up to ± 8 g (with a 

resolution of 0.004 g/0.00024 g) and tri-axial angular velocity up to ±1,000°/s (with a 

resolution of 0.03°/s) at 250 Hz. We fixed an IMU to each participant at the 3rd – 4th 

lumbar vertebrae using Hypafix. We asked each participant to walk back and forth 

three times on a 14 m (or 20 m) flat straight walkway at a comfortable self-selected 

pace, and to start turning after passing the 14 m (or 20 m) line. To measure steady-

state walking, we analyzed the data of the central 10 m-walk of the 14m-walk (or 
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15m-walk of the 20m-walk) after eliminating the 2 m-walks prior to the start and 

each turn. We calculated step time variability from vertical acceleration data using 

the method described by Zijlstra and Hof [i.e., % coefficient of variation (% CV) of 

step time = (standard deviation of step time/mean step time) × 100] (Zijlstra and Hof 

2003). In the present study, we used the natural log transformation of % CV of step 

time as gait variability since % CV of step time was not normally distributed. The 

detailed methods of signal processing and gait variability calculation are described 

elsewhere. (Byun, Han et al. 2016) 

We also measured the leg length which was the distance between the anterior 

superior iliac spine (ASIS) and the lateral malleolus, as a covariate, because leg 

length is associated with spatiotemporal gait parameters. (Ko, Gunter et al. 2007) 

 

2.4. Magnetic resonance imaging (MRI) acquisition and 

preprocessing 

We obtained three-dimensional structural T1-weighted spoiled gradient echo 

magnetic resonance (MR) images of the participants within a year from their clinical 

and neuropsychological assessments using a 3.0 Tesla GE SIGNA Scanner (GE 

Healthcare; Milwaukee, WI) in Digital Imaging and Communications in Medicine 

format with the following parameters: acquired voxel size = 1.0 × 0.5 × 0.5 mm3, 1.0 

mm sagittal slices with no inter-slice gap, echo time = 3.68 ms, repetition time = 25.0 

ms, number of excitations = 1, flip angle = 90°, field of view = 240 × 240 mm, and 

175 × 240 × 240 matrix in the x-, y-, and z- dimensions. We bias-corrected the T1 

images to remove intensity inhomogeneity artifacts using Statistical Parametric 

Mapping software (version 8, SPM8; Wellcome Trust Centre for Neuroimaging, 

London; http://www.fil.ion.ucl. ac.uk/spm). We then resliced the bias-corrected T1 

images into isotropic voxels (1.0 × 1.0 × 1.0 mm3).  

We performed cortical reconstruction and volumetric segmentation with the 
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FreeSurfer v6.0 (http://surfer.nmr.mgh.harvard.edu/). We smoothed thickness maps 

with a 10 mm full-width half-maximum (FWHM) Gaussian kernel prior to statistical 

analysis. Based on gyral and sulcal anatomy, we segmented the cortex into 34 

different gyral regions per hemisphere (13 frontal, 9 temporal, 4 occipital, 7 parietal, 

and insula), using the Desikan–Killiany Atlas (Desikan, Ségonne et al. 2006)  

 

2.5. Statistical analyses 

To examine the association of gait variability with cognitive function measures 

(CERAD-TS and VMS), we performed a multivariate general linear model (GLM) 

adjusted for age, sex, education, GDS, CIRS, leg length and the presence of arthritis 

using the linear model function of the Stats package in R version 3.3.2 (R Foundation 

for Statistical Computing).  

To examine the association of gait variability with cortical thickness, we 

performed vertex-wise analyses using the FreeSurfer QDEC module (Query, Design, 

Estimate, Contrast [http://surfer.nmr.mgh.harvard.edu]), which allows users to 

perform inter-subject/group averaging and inference using the general linear model 

on the morphometric data produced by the FreeSurfer processing stream. We applied 

correction for multiple comparisons using the built-in Monte Carlo simulation at a 

threshold set at a p value, 0.05, a cluster-wise correction that controls for the rate of 

false positive clusters. In QDEC, we used a GLM with each gait parameters as the 

continuous predictor, and age, estimated total intracranial volume (eTIV) as nuisance 

variables within the different offset, different slope design matrix. Because of 

limitations in the number of covariates in QDEC, we exported cortical thickness for 

each participant for the identified clusters into R to assess whether the associations 

withstood correction for confounding factors. To do so, we created a region of 

interest (ROI) for each cluster that was significantly associated with gait variability. 

We mapped back this normalized ROI to each participant (using deformation tools in 
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FreeSurfer) to generate a mean thickness value for that ROI for each participant. We 

performed further linear model analyses using the mean cortical thickness of ROIs as 

dependent variables and gait variability as an independent variable and corrected for 

age, sex, education level, GDS, CIRS, leg length, the presence of arthritis, and eTIV.  

To examine the association of gait variability with volumes of subcortical 

grey matter structures (caudate, putamen, globus pallidus, thalamus, and nucleus 

accumbens), amygdala, hippocampus, and cerebellum, we also performed a 

multivariate GLM adjusted for age, sex, education, GDS, CIRS, leg length, the 

presence of arthritis and eTIV. False discovery rate correction was applied to correct 

for multiple comparisons. Eight ROIs from each hemisphere were selected a priori 

based on their known associations with gait control. 

To examine the association of cognitive function measures with the cortical 

thickness and subcortical volume of the structures that were found to be associated 

with the gait variability, we performed a multivariate GLM that adjusted for age, sex, 

education, GDS, CIRS and eTIV. 

Finally, we performed mediation analysis using the PROCESS macro 

developed for SPSS (Hayes 2017). Through mediation analysis, we quantify the 

extent to which the association between gait variability and cognitive function (VMS, 

CERAD-TS) could be explained by the cluster cortical thickness or subcortical 

volume which had a significant association with both gait variability and cognitive 

function. We performed the parallel mediation analyses separately for each cognitive 

assessment using 5,000 bootstrapped samples. In these analyses, we adjusted for sex, 

age, education, GDS, CIRS, and eTIV. Path a represents the effect of gait variability 

on the neuroimaging measures, and path b represents the effect of neuroimaging 

measures on cognition. Path c indicates the total effect of gait variability on cognition 

and path c’ indicates the direct effect of gait variability on cognition. The indirect 
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effect (path a × b) measures the effect of gait variability on cognition via the cluster 

cortical thickness or subcortical volume. 95% confidence intervals that do not include 

the value of 0 indicate a significant indirect effect. 
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III Results  
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1. Study 1: Can gait variability predict the risk of cognitive 

decline in cognitively normal elderly? 

At baseline assessment, the mean age of the 358 subjects was 70.6±5.40 years and 

the mean level of education was 13.6±3.68 years. The MHIS scores of the subjects 

were 0 or 1, which indicates a very low cerebral ischemic burden. Demographic and 

clinical characteristics of the subjects were comparable between the gait variability 

quintile groups at baseline assessment. Subjects in the lowest quintile of gait speed 

were older, and had a greater burden of physical comorbidities than those in the 3rd, 

4th, and 5th quintiles. At the baseline assessment, MMSE scores were within the 

normal range of age-, sex- and education-adjusted norms in all gait speed and 

variability quintile groups, and comparable between groups. The highest gait 

variability group showed worse WLMT score compared with the 3rd quintile, FAB 

score compared with the 1st, 2nd, and 3rd quintiles, TMT-A score compared with the 

3rd, and 4th quintiles, and CFT compared with the 1st quintile. The lowest gait speed 

group showed worse DSB score compared with the 4th quintile (Table 1) 
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1.1. Association of gait variability and gait speed status with the risk 

of MCI 

Out of the 358 participants in the baseline assessment, 318 who completed one or 

more 2-year follow-up assessments were included in the multivariate survival 

analysis. Median duration of follow-up was 45.3 months (interquartile range=28.9–

50.3). During the follow-up period, 43 (13.5%) developed MCI (with 10 cases of 

amnestic multiple domain MCI, 16 cases of amnestic single domain MCI, 14 cases of 

non-amnestic single domain MCI, and 3 cases of non-amnestic multiple domain 

MCI).  

The Kaplan-Meier curves for unadjusted rates of incident MCI show evident 

differences in risk by gait variability group (Figure 1A). The mean MCI-free survival 

of participants in the high variability group was 10.4% shorter than that of the group 

of other quintiles (48.94±1.29 [SD] vs. 54.64±1.21 months; χ2=4.56, p=0.033, log-

rank test), whereas there was no group difference dependent on gait speed 

(51.96±1.22 vs. 55.18±1.39 months; χ2=0.086, p=0.770) (Figure 1B). 

After adjustment for age, sex, level of education, CIRS score, GDS score, and 

the presence of APOE ε4, multivariable Cox proportional hazard analysis showed 

that low gait speed had no significant association with MCI risk (HR=1.06, 95% 

CI=0.49–2.30, Covariates + Gait Speed, Model A; see Table 2). When gait variability 

status was included in the multivariate model instead of gait speed, gait variability 

was a significant and independent predictor of MCI. Over the follow-up period, the 

high gait variability group showed about 2-fold risk of incident MCI (HR=2.12, 95% 

CI=1.05–4.31, covariates + gait variability; Model B). The C-statistic and likelihood 

ratio test showed that the model including gait variability had significantly higher 

predictive ability (Model B; C-statistic 0.687, likelihood ratio test p=0.048) 

compared to the model including gait speed (Model A; C-statistic 0.661). 

Furthermore, when both gait parameters were included in the prediction model, gait 
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variability remained as a significant predictor of MCI (HR=2.13, 95% CI=1.04–

4.34), whereas gait speed was not associated with incident MCI risk (HR=0.98, 95% 

CI=0.44–2.14). The C-statistic and likelihood ratio test showed that adding gait speed 

to the previous model did not significantly increase predictive ability (covariates + 

gait speed + gait variability; C-statistic 0.688, likelihood ratio test p=0.954; see Table 

2). We also analyzed sex differences on association between gait variability and 

cognitive decline by adding interaction term between gait variability group and sex to 

Model B and C, there were no sex difference that high gait variability predicted 

future cognitive decline. (gait variability × sex added to model B: p=0.425; gait 

variability × sex added to model C: p=0.398). In a supplementary analysis, high gait 

variability showed a trend toward higher risk for incident cognitive decline but 

without statistical significance when the baseline MMSE score was adjusted in 

addition (HR=2.00, 95% CI=0.98–4.10, p=0.058). When we computed gait 

variability and gait speed as continuous variables, the risk of incident MCI increased 

1.16 times per 10% increment of gait variability (HR=1.16, 95% CI=1.02–1.32), 

whereas it did not change significantly with changes of gait speed (HR=0.93, 95% 

CI=0.87–1.34). The optimal cut-off values for gait variability to predict the incidence 

of cognitive decline after 4 years were 3.24 %CV for women and 2.7 %CV for men. 

(sensitivity = 0.384, specificity = 0.931 in women, sensitivity = 0.736, specificity = 

0.775 in men). 

 

2. Study 2: Shared Neural Substrates between Gait Variability-

Cognitive Function 

As summarized in Table 3, men were more educated (mean difference = 3.58, t = 

6.82, p < 0.001), had longer leg length (mean difference = 5.36, t = 6.43, p < 0.001) 

and showed higher CERAD-TS cognitive function scores (mean difference = 3.11, t 

= 2.00, p = 0.047) than women. Although both men and women did not have a 
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depressive disorder, men showed the lower GDS score than women (mean difference 

= 3.16, t = 4.09, p < 0.001). Degenerative arthritis of spine or lower limbs were less 

prevalent in men than in women (χ2 = 23.50, p < 0.001).  

The higher gait variability was associated with the lower CERAD-TS (t = -

3.56, p < 0.001) and VMS (t = -3.44, p < 0.001) in multivariate GLM adjusted for 

age, sex, education, GDS, CIRS, leg length and existence of arthritis (R2 = 0.260, 

F6,200 = 11.73, p < 0.001 for CERAD-TS; R2 = 0.022, F6,200 = 9.16, p < 0.001 for 

VMS). 

As summarized in Table 4 and Figure 2, the higher gait variability was 

associated with the lower cortical thickness of five regions (2 clusters in left 

hemisphere and 3 clusters in right hemisphere) in the vertex-wise analysis. However, 

there were no clusters where their volume was associated with gait variability. In the 

left hemisphere, one cluster (LH1) included the inferior temporal cortex, covering 

portions of the middle, and superior temporal cortices. This cluster extended medially 

to include the entorhinal, and para-hippocampal cortices, as well as posteriorly to 

include fusiform gyrus, and lingual cortex (p = 0.0001). The other cluster (LH2) 

included superior frontal gyrus, which contains supplementary motor area, medial 

frontal gyrus, and covered a part of the paracentral lobule (p = 0.0001). In the right 

hemisphere, one cluster (RH1) included superior frontal gyrus, which is mostly the 

supplementary motor area, medial frontal gyrus, and paracentral lobule. This cluster 

extended laterally to the part of caudal- and rostral middle frontal gyri (p = 0.0001). 

Another cluster (RH2) included the precentral gyrus and extended to anteriorly 

include a part of the caudal middle frontal cortex anteriorly and inferiorly to the 

parsopercularis. (p = 0.0004). The other cluster (RH3) included the fusiform gyrus, 

and lateral occipital cortex (p = 0.0001). As shown in Table 5, all these associations 

were also significant when sex, education level, GDS, CIRS, leg length and the 

existence of arthritis were adjusted.  
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Cortical thinning of the LH1 was associated with the lower CERAD-TS and 

VMS. This was the case when age, sex, education level, GDS, CIRS, leg length, the 

presence of arthritis and eTIV were adjusted. However, cortical thickness of other 

clusters was not associated with CERAD-TS and VMS (Table 6). In the mediation 

analyses, the cortical thickness of LH1 mediated the association of gait variability 

with CERAD-TS (indirect effect = -1.65, SE = 0.79, bias-corrected 95% confidence 

interval = [-3.38, -0.23]; Figure 3A) and explained 17% of the total effect of gait 

variability on CERAD-TS. However, the mediating role of the cortical thickness of 

LH1 in the association of the gait variability with VMS was not statistically 

significant (indirect effect = -0.49, SE = 0.31, bias-corrected 95% confidence interval 

= [-1.14, 0.08]; Figure 3B).  
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IV Discussion  
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1. Summary 

In the current thesis, I investigated the feasibility of gait variability as a novel digital 

biomarker of cognitive decline. Ultimately, I aimed to identify a marker that is not 

only practical (non-invasive and widely accessible) but can also sensitively predict 

cognitive decline in early stages. This was motivated by the need for earlier 

diagnoses which would lead to more efficient treatments and alleviate the projected 

socioeconomic burden of dementia in the coming years. 

In the first part of my research, I focused on exploring the predictive potential of 

gait variability, and comparing it with that of gait speed. As a result, we found that 

gait variability can predict the risk of cognitive decline in cognitively normal older 

people and better than gait speed, the most widely studied gait parameter as a 

predictive marker of cognitive decline. We additionally found that no sex differences 

were found when assessing the ability of high gait variability to predict future 

cognitive decline. When we computed gait variability and gait speed as continuous 

variables to explore whether there are any threshold effects, the risk of incident 

cognitive decline increased 1.5 times per 10% increment of gait variability, whereas 

it did not change significantly with changes of gait speed. 

In the second part of my research, I investigated which degenerative structural 

changes in the brain may underlie the observed predictive power of gait variability 

and focused on the shared neural substrates for gait variability and cognitive 

function. I found the widespread decrease in cortical thickness with increasing gait 

variability while there was no significant association with the volume of subcortical 

structures. Among the clusters that showed significant correlation with the gait 

variability, a cluster that included the inferior temporal, entorhinal, parahippocampal, 

fusiform, and lingual in left hemisphere was also associated with global cognitive 

function, and verbal memory function. In mediation analysis, I reaffirmed that 

cortical thickness of the cluster played a significant mediating role in the association 
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of gait variability with cognitive function. 

 

2. Gait variability and incident cognitive decline 

In the first study, we explored the predictive potential of gait variability through 4-

year prospective cohort study on community-dwelling cognitively normal elderly 

individuals. We demonstrated that high gait variability showed about 2-fold higher 

risk of MCI than those in other quintiles. However, gait speed could not predict the 

future risk of MCI in this cognitively normal elderly population. To our knowledge, 

this is the first prospective cohort study directly showing that gait variability, but not 

gait speed, may precede cognitive decline and thus be a predictive biomarker of MCI 

in the cognitively normal elderly population. Our observation is in line with previous 

longitudinal observations showing that high gait variability factor scores were 

associated with future risk of dementia in non-demented elderly individuals and high 

gait variability predicted future risk of AD in people with MCI (Gillain, Drame et al. 

2016).  

In contrast to our observation, previous longitudinal studies reported that 

slow gait speed often precedes cognitive impairment and predicts faster cognitive 

decline (Camicioli, Howieson et al. 1998, Deshpande, Metter et al. 2009, Taniguchi, 

Yoshida et al. 2012). A longitudinal study from Japan showed that cognitively intact 

older adults in the low tertiles of gait speed were 2.06 times more likely to develop 

cognitive decline, defined as a decrease of three points or more on the MMSE, during 

a 4-year period (Taniguchi, Yoshida et al. 2012). Other prospective studies from the 

United States found that cognitively normal elderly individuals with slow gait speed 

were more likely to develop cognitive decline (Camicioli, Howieson et al. 1998). 

Unlike these studies, ours found that gait speed failed to predict significant cognitive 

decline. These conflicting results may be attributable to several methodological 
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differences between the current study and previous studies. First, previous studies 

employed different thresholds for categorizing gait speed than the current study. For 

example, the threshold of the lowest tertile in a study from Japan was ≤1.19 m/s for 

men and ≤1.11 m/s for women (Taniguchi, Yoshida et al. 2012), and that of the 

lowest quartile in a study from United States was 1.08 m/s without sex stratification 

(Deshpande, Metter et al. 2009): the threshold values in the Japanese study are 

slightly higher than ours, and those in the American study are close to ours. (<1.10 

m/s for men; <1.08 m/s for women). However, in our population, slow gait speed was 

also not associated with MCI risk when we employed the same cutoffs as the cited 

studies (data not shown). Thus, the conflicting results on the association of slow gait 

speed with MCI risk may be better explained by differences in the characteristics of 

the study samples or the definition of cognitive decline across studies.  

In this study, we rigorously excluded participants maintaining normal 

cognition despite subclinical neurologic conditions that may impair gait by using 

UPDRS, POMA, and MHIS. These neurologic conditions may impair cognition as 

well as gait. In a recent systematic review demonstrating associations between 

functional and structural cerebral changes and AD-related gait disorders, slower gait 

speed was associated with white matter lesions mainly in the medial frontal lobes and 

basal ganglia, whereas higher gait variability was associated with lower hippocampal 

volume and function (Annweiler, Beauchet et al. 2012). In the present study, even 

though elderly in highest quintile of gait variability had normal range of MMSE 

scores at baseline, they showed poorer performance on verbal memory and executive 

function already at the baseline than those in other quintiles. The result is consistent 

with previous findings that gait variability is associated with not only hippocampal 

but also fronto-executive function. (Sheridan, Solomont et al. 2003, Allali, Kressig et 

al. 2007) Those functions have been known as firstly affected cognitive domains in 

the course of neurodegenerative disease. Taken together with our observations, gait 
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variability may predict future cognitive decline early in the course of 

neurodegenerative disease, and may predict better than gait speed especially in 

cognitively normal elderly individuals without cerebral ischemic burdens and 

Parkinsonism. In addition to the differences in the characteristics of study samples 

between studies, differences in the definition of cognitive decline might also have 

contributed to the conflicting results on the association of gait speed and the risk of 

cognitive decline in the current and previous studies. In this study, we defined 

cognitive decline as incident MCI according to the diagnostic criteria proposed by the 

International Working Group on MCI (Winblad, Palmer et al. 2004). However, in 

previous studies, cognitive decline was defined as a decline of 3 points or more on 

MMSE (Deshpande, Metter et al. 2009) or a decline of 0.5 or more on CDR 

(Camicioli, Howieson et al. 1998).  

To the best of our knowledge, this is the first prospective cohort study 

directly showing that increased gait variability may precede cognitive decline and 

thus be a predictive biomarker of incident cognitive decline in the NC population. In 

addition, the present study used wearable sensor-based gait analysis as a tool to 

predict cognitive decline for the first time. Another strength of this study is that we 

comprehensively measured the participant's cognitive function to determine whether 

it is possible to predict future cognitive decline even in NC conditions that do not 

meet the diagnostic criteria of MCI. However, this study had several limitations. 

First, the sample size was small and the follow-up duration relatively short. Second, 

our subjects were relatively young, cognitively normal, and free from 

cerebrovascular diseases and Parkinsonism. Therefore, our observations cannot be 

generalized to the complete cognitively normal elderly population. Given the youth 

and uniqueness of our population, further study is warranted to generalize these 

interesting findings. Third, a single gait assessment may not reflect typical daily gait 

speed or variability. Further research on neural substrates that may explain this 
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relationship between gait variability measured with TAA and cognitive decline is 

warranted. 

 

3. Shared neural substrates between gait variability-cognitive 

function 

In the second study, I investigated which degenerative structural changes in the brain 

may underlie the observed predictive power of gait variability and focused on the 

shared neural substrates for gait variability and cognitive function. This study found 

that the higher gait variability was associated with the lower global cognition and 

verbal memory in non-demented older adults, which is in line with our previous work 

on cognitively normal older adults (Byun, Han et al. 2018). This study also found 

that the cortical thinning of the clusters including the inferior temporal, entorhinal, 

parahippocampal, fusiform, and lingual in left hemisphere mediated the association 

between the higher gait variability and the lower cognitive function. 

The current study found that the higher step time variability was associated 

with the thinner GM of prefrontal, supplementary motor, and paracentral lobule in 

both hemispheres and superior temporal, middle temporal, and inferior temporal in 

the left hemisphere. Motor cortex is one of the regions to show significantly reduced 

cortical thickness with increased temporal gait variability in the present study, which 

is consistent with previous studies (Annweiler, Beauchet et al. 2013, Jayakody, 

Breslin et al. 2020). More specifically, we identified cortical thinning of paracentral 

lobule, the medial continuation of primary motor and sensory gyri, which controls 

lower limb movement. We also found that the thinning of the medial frontal gyri 

including the supplementary and pre-supplementary motor areas was associated with 

high temporal gait variability. The findings suggest that not only the primary motor 

cortex involved in execution phase (i.e. converting motor programs into movements) 

but also other frontal areas involved in planning and programming may influence the 
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temporal gait variability. In addition, other non-frontal regions such as both fusiform 

gyrus, left parahippocampal, inferior temporal and lingual gyri, and right lateral 

occipital cortex that play important roles in the visual network also influenced the 

temporal gait variability. Theses regions are known to be involved in visual 

processing (Weiner and Zilles 2016), visual perception (Koenraadt, Roelofsen et al. 

2014), and spatial orientation and navigation (Buckner, Andrews‐Hanna et al. 2008). 

Dynamic instability may be better explained by cerebral cortical misprocessing than 

abnormal subcortical gait control (Annweiler, Beauchet et al. 2012).  

To the best of our knowledge, this is the first study to directly demonstrate 

the gait-cognition relationship through a shared neural network in an older non-

demented population. We combined exploratory mapping and a priori ROI-based 

measurement techniques, first by performing an exploratory analysis of cortical 

thickness across the entire cortical mantle to map the “cortical signature” of regional 

thinning correlated with gait variability and then by using this map to generate ROIs 

to find out, in an a priori fashion, the regional cortical thinning correlated with poorer 

cognitive functions simultaneously. We identified that cortical thinning of the cluster 

including the entorhinal, parahippocampal, fusiform, lingual, and inferior temporal in 

left hemisphere linked to gait variability was also correlated with lower VMS and 

CERAD-TS. Medial temporal cortex, including entorhinal and parahippocampal 

cortex, has been widely studied to be related to episodic memory, and is one of the 

first regions to exhibit neurodegeneration in AD (Jack, Petersen et al. 1997). Also, 

the network coves entorhinal, parahippocampal, and fusiform areas is known to be 

involved in visuospatial navigation and the imagination of the visual environment, 

which is needed for locomotion (Ekstrom, Kahana et al. 2003, Jahn, Deutschländer et 

al. 2004). Through mediation analysis, we confirmed that the cortical thickness of the 

cluster including the entorhinal, parahippocampal, fusiform, lingual, and inferior 

temporal in left hemisphere mediates the association of CERAD-TS with gait 
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variability. That accounted for 17% of the total effect of gait variability on CERAD-

TS. Together, our findings suggest that gait variability and cognitive function rely on 

shared neural systems that are firstly affected by pathological aging such as AD. In a 

recent multisite cross-sectional study with older adults across neurodegenerative 

conditions, high gait variability discriminated AD from other neurodegenerative and 

cognitive conditions. Taking a step further from the results, the present study showed 

that neurodegenerative changes in widespread cerebral regions, measured by cortical 

thinning, may manifest as increased gait variability at an earlier stage than can be 

detected by clinical diagnosis of dementia. Also, our results suggest that the gait 

variability obtained from a body-worn TAA may be a potential digital biomarker of 

neurodegenerative diseases such as AD. Its properties of being free from time and 

space constraints and low cost makes it potentially usable in the clinical setting or 

clinical trials, especially in non-face-to-face environments. Our results also highlight 

the importance of examining comprehensive metrics of gait beyond simple gait speed 

measurement.  

The current study also found that the cortical thickness of entorhinal and 

parahippocampal cortices but not the volume of hippocampus was associated with 

the gait variability in non-demented older adults. A large-scale neuroimaging study 

proposed that the better option to assess neurodegeneration in regions characteristic 

of Alzheimer's disease is to use thickness measurements rather than volumes, 

because thickness is sufficiently uncorrelated with TIV (Schwarz, Gunter et al. 

2016). In addition, in detecting MCR, cortical thickness was better than cortical 

volume or surface area. (Blumen, Schwartz et al. 2021). Consistent with these results, 

cortical regions that were associated with gait variability disappeared, when the GM 

thickness was changed to the volume in the present study. The studies on the 

association between the regional cortical volume and the temporal gait variability in 

the older adults without neurological diseases were limited and their results were 
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inconsistent. Beauchet et al. reported that the higher temporal gait variability was 

associated with the larger hippocampus (Beauchet, Launay et al. 2015) while other 

studies could not find the association of temporal gait variability with hippocampal 

volume. (Manor, Newton et al. 2012, Beauchet, Annweiler et al. 2014, Sakurai, 

Bartha et al. 2018) Sakurai et al. reported that smaller entorhinal cortex but not 

hippocampus was associated with the slower dual task gait speed in older adults with 

MCI, (Sakurai, Bartha et al. 2018) which is in line with the results of the current 

study. Growing body of literature indicates that entorhinal cortex atrophy precedes 

hippocampal atrophy in pathological aging (Killiany, Hyman et al. 2002, deToledo-

Morrell, Stoub et al. 2004, Stoub, Bulgakova et al. 2005).  

This study has several limitations. First, the cross-sectional nature of the current 

study does not allow for causal interpretation between cortical thinning and higher 

gait variability. Future longitudinal studies are needed to examine changes in cortical 

thickness over time and how they relate to gait variability. Second, the gait variability 

obtained from one-time assessment may not properly reflect one’s gait variability. 

The shared neural substrates between gait variability and cognitive function needs to 

be replicated using the gait features obtained for longer period using a wearable 

inertia sensor.  

 

4. Conclusion and perspectives 

Overall, gait variability measured by a TAA demonstrates potential as a low-cost 

digital biomarker for prediction of cognitive decline years before clinical diagnosis. 

Gait variability can predict the risk of cognitive decline over 4 years in NC older 

people and better than gait speed. Medial temporal cortex, one of the first regions to 

exhibit neurodegeneration in Alzheimer's disease, was the shared neural substrates 

for gait variability and cognitive function. Degenerative structural changes in the 

areas may underlie the observed predictive power of gait variability for cognitive 
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decline. 

Evaluation of detailed gait metrics is currently limited to research 

applications due to the cost and nature of their visits to institutions. Furthermore, 

assessments performed under observation and use of instrumented walkways are 

limited, snapshot evaluations in unnatural environments. These limitations preclude 

repeated and frequent use to test an individual and specifically in the early pre-

symptomatic stage of the neurodegenerative diseases. Wearable sensor-based 

measurements do not require visits to the clinic or laboratory-based assessment, 

therefore natural gait in real world environments can be evaluated over longer 

periods of time and at a lower cost. These strengths also have raised the possibility 

that wearable sensor-based biomarkers can be used as new patient-focused outcomes 

in real-life scenarios in clinical trials. Elsewhere, a difference in wearable physical 

activity counts for those within a heart failure intervention compared to a placebo 

was identified, but not by the traditional regulatory-accepted patient-reported 

biomarker. (Redfield, Anstrom et al. 2015) Although gait variability is more difficult 

and expensive to measure than gait speed in research and clinical settings, body-worn 

activity sensors may be a better option to introduce gait variability as a window into 

brain functioning for neurological conditions in various settings than a pressure-

sensor walkway or 3D video gait analysis because they are cost-efficient, easy to 

apply, sensitive, and reliable (Byun, Han et al. 2016, Del Din, Godfrey et al. 2016).  

A growing body of evidence indicates that cognitive, sensory changes, as 

well as motor changes, may precede clinical manifestations of AD by several years. 

Many digital markers through various wearable devices have been proposed for 

Alzheimer's disease: camera-measured eye movements, gaze, pupil reflexes, and 

facial expression traits, photoplethysmography based beat-by-beat heart rate 

measurement, heart rate variability, and oxygen saturation (SpO2), body temperature 

measured with a thermometer on a ring, patch or watch, smart-phone based 
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monitoring of social network activity, and more. Combination of gait variability and 

such digital markers has the potential to further enhance the predictive power of 

cognitive decline, and studies on them also need to be conducted actively in the 

future. 
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Figure 1. Risk of incident mild cognitive impairment (MCI) over 4 years stratified by variability (χ2 = 4.56 and p = 0.033 by 

log-rank test) (a) and gait speed (χ2 = 0.086 and p = 0.770 by log-rank test) (b). The mean MCI free survival of participants 

in the high variability group was 10% shorter than that of the other quintiles group (a), whereas there was no group 

difference according to gait speed (b).  
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Figure 2. Cortical thickness and gait variability in non-demented older adults 
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Figure 3. Cortical thickness of LH1 cluster mediatesa effect of gait variability 

on (A) CERAD-TS and (B) VMS.  

LH1 cluster: a cluster including part of temporal, fusiform, and lingual gyrus; 

VMS = Verbal Memory Score; CERAD-TS = Consortium to Establish a 

Registry for Alzheimer’s Disease Assessment Packet Neuropsychological 

Assessment Battery total score; GDS = Geriatric Depression Scale; CIRS = 

Cumulative Illness Rating Scale; eTIV = estimated total intracranial volume. 
aParallel mediation analyses, adjusted for sex, age, education, GDS, CIRS, and 

eTIV. 
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Table 1. Demographic, clinical, cognitive function, and gait characteristics of the subjects  

 Gait variability  Gait speed 

 1st 2nd 3rd 4th 5th(Highest) P*  1st(Lowest) 2nd 3rd 4th 5th P* 

 (N = 73) (N = 72) (N = 71) (N = 71) (N = 71)   (N = 73) (N = 72) (N = 71) (N = 71) (N = 71)  

Clinical parameters              

Age (years, mean ± SD)  70.4 ± 4.7 70.9 ± 5.4 70.1 ± 4.4 71.4 ± 5.9 70.1 ± 6.4 0.580  73.2 ± 5.7 71.2 ± 5.0 69.5 ± 4.9 70.6 ± 5.1 68.4 ± 5.1 <0.001 

Sex (female, %) 49.3 48.6 49.3 49.3 49.3 1.000  49.3 48.6 49.3 49.3 49.3 1.000 

Education (years, mean ± SD) 13.4 ± 3.6 13.8 ± 3.1 13.6 ± 3.8 13.9 ± 3.6 13.5 ± 4.3 0.913  14.3 ± 3.3 13.2 ± 4.5 13.1 ± 3.9 14.0 ± 3.3 13.5 ± 3.3 0.250 

CIRS (points, mean ± SD) 6.5 ± 3.1 6.0 ± 2.8 6.1 ± 3.1 5.8 ± 3.0 5.9 ± 3.1 0.641   7.3 ± 3.0  6.2 ± 3.1  5.9 ± 2.8  5.9 ± 3.1  4.9 ± 2.5 <0.001 

GDS (points, mean ± SD) 7.3 ± 5.0 6.4 ± 5.4 6.6 ± 4.6 6.6 ± 5.6 8.5 ± 6.0 0.106   7.4 ± 6.0  7.9 ± 6.2  6.9 ± 4.9  6.6 ± 5.1  6.6 ± 4.5 0.507 

Presence of APOE ε4 allele (%) 19.2 11.1 25.4 26.8 21.1 0.154  28.8 8.3 19.7 19.7 26.8 0.024 

Neuropsychological test scores              

MMSE 28.2 ± 1.5 28.0 ± 1.6 28.5 ± 1.4 28.4 ± 1.6 27.8 ± 2.5 0.098  28.0 ± 2.0 28.1 ± 2.3 28.0 ± 1.7 28.5 ± 1.5 28.4 ± 1.4 0.394 

WLMT 20.2 ± 3.1 20.0 ± 3.8 21.1 ± 3.7 19.6 ± 3.6 19.1 ± 3.9 0.026  19.5 ± 4.0 20.2 ± 3.8 19.4 ± 3.2 20.7 ± 3.8 20.1 ± 3.6 0.217 

WLRT 6.9 ± 1.7 6.8 ± 1.8 6.9 ± 1.8 6.9 ± 1.8 6.4 ± 1.9 0.417  6.9 ± 1.8 6.7 ± 1.7 6.6 ± 1.7 7.0 ± 1.8 6.8 ± 1.9 0.782 

WLRcT 9.6 ± 0.7 9.5 ± 0.8 9.4 ± 0.9 9.5 ± 0.8 9.3 ± 1.1 0.505  9.5 ± 1.0 9.5 ± 0.9 9.3 ± 0.8 9.5 ± 0.9 9.5 ± 0.8 0.581 

CRT 8.4 ± 2.3 8.6 ± 2.5 8.6 ± 2.1 8.2 ± 2.3 7.6 ± 2.4 0.104  8.2 ± 2.1 8.2 ± 2.5 8.5 ± 2.4 8.2 ± 2.4 8.4 ± 2.4 0.882 

FAB 16.5 ± 1.2 16.5 ± 1.4 16.4 ± 1.5 16.2 ± 1.8 15.6 ± 2.1 0.010  16.3 ± 1.4 16.1 ± 1.9 16.0 ± 2.0 16.5 ± 1.3 16.3 ± 1.5 0.439 

TMA-A 41.0 ± 14.6 40.9 ± 20.9 38.5 ± 12.7 40.3 ± 13.3 51.2 ± 42.2 0.011  42.3 ± 17.5 44.9 ± 41.1 42.6 ± 18.7 39.6 ± 15.7 42.4 ± 15.6 0.774 

CFT 20.5 ± 5.4 19.2 ± 4.5 19.6 ± 4.7 19.5 ± 4.0 17.8 ± 5.2 0.020  18.6 ± 4.9 19.9 ± 5.3 18.9 ± 4.3 19.5 ± 4.8 19.8 ± 4.8 0.416 

15-BNT 14.3 ± 0.9 14.3 ± 0.9 14.5 ± 0.8 14.2 ± 1.0 13.9 ± 1.5 0.060  14.1 ± 1.2 14.2 ± 1.4 14.4 ± 0.9 14.4 ± 0.9 14.2 ± 0.9 0.368 

CPT 10.6 ± 0.6 10.6 ± 0.6 10.7 ± 0.6 10.6 ± 0.7 10.6 ± 0.9 0.949  10.7 ± 0.6 10.4 ± 1.0 10.7 ± 0.5 10.6 ± 0.6 10.7 ± 0.5 0.004 
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CIRS, Cumulative Illness Rating Scale; GDS, Geriatric Depression Scale; APOE, Apolipoprotein E; MHIS, Modified Hachinski 

Ischemic Score; MMSE = Mini Mental Status Examination; WLMT = Word List Memory Test; WLRT = Word List Recall Test; 

WLRcT = Word List Recognition Test; CRT = Constructional Recall Test; FAB = Frontal Assessment Battery; TMA-A = Trail Making 

Test A; CFT = Categorical Fluency Test; 15-BNT = 15 item Boston Naming Test; CPT = Constructional Praxis Test; DSF = Digit Span 

Forward; DSB = Digit Span Backward; CV, Coefficient of Variance 

*Chi-square test or Fisher’s exact test for categorical variables and one-way ANOVA for continuous variables 

†We used 79.89 ± 1.82 (mean ± standard deviation) steps for measuring of gait variability 

DSF 7.4 ± 2.3 7.8 ± 2.2 8.0 ± 2.3 8.1 ± 2.2 7.2 ± 2.3 0.111  7.8 ± 2.1 7.5 ± 2.4 7.8 ± 2.3 7.9 ± 2.5 7.4 ± 2.2 0.645 

DSB 5.8 ± 1.9 5.9 ± 1.9 6.1 ± 2.1 5.7 ± 1.8 5.5 ± 1.8 0.461  5.4 ± 1.6 5.9 ± 2.1 5.7 ± 2.1 6.4 ± 1.7 5.7 ± 1.9 0.024 

Gait parameters              

Variability (%CV, mean ± SD)† 1.8 ± 0.1 2.2 ± 0.1 2.4 ± 0.1 2.7 ± 0.1 3.5 ± 0.6 <0.001   2.8 ± 0.7  2.5 ± 0.6  2.4 ± 0.6  2.4 ± 0.6  2.5 ± 0.6 0.005 

Speed (m/s, mean ± SD) 1.2 ± 0.1 1.3 ± 0.2 1.2 ± 0.2 1.2 ± 0.2 1.2 ± 0.2 0.034   1.0 ± 0.1  1.1 ± 0.0  1.2 ± 0.0  1.3 ± 0.0  1.4 ± 0.1 <0.001 
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Table 2. Prediction of mild cognitive impairment in cognitively normal elderly individuals*  

 Model A : Gait speed only 
 

Model B : Gait variability only 
 Model C : Both gait speed and 

variability 

 HR 95% CI p  HR 95% CI p  HR 95% CI p 

Gait speed            

 Other quintiles 1.00        1.00   

 Lowest quintile 1.06 0.49, 2.30 0.883      0.98 0.44, 2.14 0.950 

Gait variability            

 Highest quintile     1.00    1.00   

 Other quintiles     2.12 1.05, 4.31 0.037  2.13 1.04, 4.34 0.038 

            

Measures of fit            

 -2 Log likelihood 378.2  374.3  374.3 

 p value†   0.048†  0.954‡ 

 C-index 0.661  0.687  0.688 

HR, hazard ratio; CI, confidence interval 

*Multivariable Cox proportional hazard analysis adjusting age, sex, education, Cumulative Illness Rating Scale score, Geriatric Depression Scale 

score, and presence of apolipoprotein E e4 allele as covariates  
†Compared to Model A 
‡Compared to Model B 
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Table 3. Characteristics of participants (N=207) 

 All (N = 207) Male (N = 113) Female (N = 94) p* 

Age at MRI scan (years) 72.7 ± 6.7 73 ± 6.9 72.2 ± 6.5 0.375 

Education (years) 13.0 ± 4.1 14.6 ± 3.7 11.0 ± 3.8 <0.001 

Leg length (cm) 84.2 ± 6.7 86.7 ± 6.8 81.3 ± 5.2 <0.001 

Gait variability (ln % CV)† 0.9 ± 0.3 0.9 ± 0.3 0.9 ± 0.2 0.313 

Gait speed (m/s) 1.1 ± 0.2 1.2 ± 0.2 1.1 ± 0.2 0.603 

GDS (points) 7.9 ± 5.7 6.5 ± 5.3 9.6 ± 5.7 <0.001 

CIRS (points) 7.1 ± 3.3 7.2 ± 3.6 6.9 ± 2.8 0.575 

MHIS (points) 0.8 ± 1.2 0.9 ± 1.4 0.7 ± 0.8 0.283 

Existence of arthritis (%) 29.0 15.0 45.7 <0.001 

CERAD-TS (points) 76.8 ± 10.9 78.2 ± 9.2 75.1 ± 12.5 0.047 

VMS (points) 21.7 ± 4.1 21.8 ± 4 21.7 ± 4.3 0.859 

Note. CV, Coefficient of Variance; GDS, Geriatric Depression Scale; CIRS, Cumulative 

Illness Rating Scale; MHIS, Modified Hachinski Ischemic Score; CERAD-TS, Consortium to 

Establish a Registry for Alzheimer’s Disease Assessment Packet Neuropsychological 

Assessment Battery total score; VMS, Verbal Memory Score. 

*Student’s t test for continuous variables (presented as mean ± standard deviation) and Chi-

square test for categorical variables (presented as %) 

†Natural log transformation of % CV of step time was used as gait variability since % CV of 

step time was not normally distributed. 
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Table 4. Vertex-Wise Analyses of Gait Variability and Cortical Thickness (N=207)  

Clusters Cluster Size (mm2) Talairach Coordinates (x, y, z) 
Number of Vertices 

Within Cluster 
p* 

Left hemisphere     

Temporal/fusiform (LH1) 4460.81 -53.1, -24.0, -4.0 7678 0.0001 

Superior frontal/paracentral (LH2) 1766.48 -6.6, 33.8, 49.8 3417 0.0001 

Right hemisphere     

Superior frontal/paracentral (RH1) 2289.14 11.0, 14.6, 62.2 4455 0.0001 

Fusiform/lingual (RH2) 1792.45 34.3, -73.5, -12.0 2823 0.0001 

Precentral (RH3) 1723.35 40.2, -10.9, 42.6 3519 0.0004 

*Analyses were corrected for multiple comparisons using the built-in Monte Carlo simulation at a threshold set at a p value <0.05, 

a cluster-wise correction that controls for the rate of false positive clusters. 
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Table 5. Regression Analyses of Gait Variability and Cortical Thickness    

Clusters B SE t p* β 

Left hemisphere      

Temporal/fusiform (LH1)      

    Unadjusted -0.196 0.038 -5.168 <0.001 -0.329 

    Adjusted* -0.177 0.038 -4.685 <0.001 -0.297 

Superior frontal/paracentral (LH2)      

    Unadjusted -0.219 0.048 -4.543 <0.001 -0.302 

    Adjusted* -0.209 0.049 -4.264 <0.001 -0.289 

Right hemisphere      

Superior frontal/paracentral (RH1)      

    Unadjusted -0.225 0.045 -5.010 <0.001 -0.330 

    Adjusted* -0.211 0.045 -4.668 <0.001 -0.309 

Fusiform/lingual (RH2)      

    Unadjusted -0.222 0.046 -4.801 <0.001 -0.309 

    Adjusted* -0.213 0.046 -4.578 <0.001 -0.296 

Precentral (RH3)      

    Unadjusted -0.225 0.044 -5.065 <0.001 -0.333 

    Adjusted* -0.214 0.044 -4.894 <0.001 -0.316 

*Adjusted for age and total intracranial volume. Adjusted model additionally adjusted for sex, education level, GDS, CIRS, leg 

length, and the existence of arthritis. 
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Table 6. Associations between Cortical Regions related with Gait Variability and Cognitive Function (N=207) a 

Note. CERAD-TS, Consortium to Establish a Registry for Alzheimer’s Disease Assessment Packet Neuropsychological 

Assessment Battery total score; VMS, Verbal Memory Score; SE, Standard Error; GDS, Geriatric Depression Scale; CIRS, 

Cumulative Illness Rating Scale; eTIV, estimated total intracranial volume. 
*Adjusted for sex, age, education, GDS, CIRS, leg length, existence of arthritis, and eTIV. 

  CERAD-TS   VMS 

  B SE t p*   B SE t p 

Left hemisphere          

  Temporal/fusiform (LH1) 14.09 4.74 2.97 0.003  4.71 1.86 2.53 0.01 

  Superior frontal/paracentral (LH2) 3.62 3.80 0.95 0.34  1.62 1.48 1.09 0.28 

Right hemisphere          

Superior frontal/paracentral (RH1) 3.35 4.10 0.82 0.42  1.60 1.60 1.00 0.31 

Fusiform/lingual (RH2) 6.80 3.97 1.72 0.09  1.58 1.55 1.02 0.31 

Precentral (RH3) 8.00 4.22 1.90 0.06  2.92 1.65 1.77 0.08 
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초 록 
 

배경 및 목적: 치매로 인한 공공보건 부담이 가중됨에도 만족스러운 

치료법은 부재한 현 상황은 치매 발병을 예방하거나 진행을 

지연시키기 위해 인지저하 또는 치매 위험이 있는 사람들을 조기에 

식별해야 할 필요를 더욱 부각시킨다. 최근 연구들은 보행 시 한발-

한발 사이 보행인자들의 변동성을 의미하는 보행변이성이 인지 

저하, 경도인지장애 및 치매의 위험과 밀접하게 관련되어 있다는 

것을 보였다. 특히 웨어러블 센서를 통해 얻은 보행변이성은 감독이 

없는 자연스러운 환경에서 더 오랜 기간 동안 측정값을 낮은 

비용으로 얻을 수 있다는 실용적인 이점으로 인해 인지저하의 

위험을 예측하는 유망한 디지털 바이오마커로 활용될 수 있다. 본 

논문에서는, 신체에 부착한 단일 삼축가속계로 측정된 보행 

변이성이 미래의 인지저하 위험을 예측하는 디지털 바이오마커로 

사용될 수 있을지에 대해 연구하였다. 첫 번째 연구에서는 신체 

부착 삼축가속계로 얻은 보행변이성이 정상인지를 가진 노인에서 

미래 인지저하의 위험을 예측할 수 있는지를 조사했다. 두 번째 

연구에서는 더 큰 표본 크기와 더 넓은 범위의 인지 기능을 가진 

비치매 노인을 대상으로, 디지털 바이오마커로서 보행 변이성의 

가능성을 이론적으로 뒷받침할 수 있는 신경기질에 대해 

조사하였다. 또한, 높은 보행 변이성이 인지 기능 및 기억 기능에 

관련된 것으로 밝혀진 뇌 영역에서의 얇아진 대뇌 피질 두께와 

관련되어 있을 것이며, 그 영역이 보행-인지 사이의 연관성을 

설명하는 공유 신경 기질에 해당할 것이라는 가설을 검증하였다. 

 

방법: 연구 I에서 우리는 뇌허혈이나 파킨슨병이 없으면서, 

지역사회에 거주하는, 인지적으로 정상인 노인 358명을 대상으로 
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4년 전향적 코호트 연구를 수행하였다. 체중심에 부착한 

삼축가속계를 이용하여 보행변이성을 측정하였고, 경도인지장애에 

관한 국제 워킹 그룹의 진단기준에 따라 경도인지 장애를 진단했다. 

우리는 보행 변이성의 크기에 따라 연구대상자를 삼분위수로 

분류하여, 보행변이성이 가장 큰 일분위 그룹과 나머지 그룹을 

관찰하며 4년 동안의 경도인지장애의 발병을 추적하였다. 그룹간 

경도인지장애 발병 위험 비교는 Log-rank test와 Kaplan-Meier 

분석을 통해 수행했다. 경도인지장애 발병 위험비(Hazard Ratio, 

HR)는 연령, 성별, 교육수준, 누적질병평가척도 점수, GDS 점수, 

아포지단백 E ε4 대립유전자 유무를 보정한 콕스 비례위험 회귀 

분석을 사용하여 추정하였다. 

연구 II에서 우리는 207명의 치매가 없는 노인을 대상으로, 

보행변이성과 연관된 뇌 피질 및 피질 하 신경 구조, 보행변이성-

인지기능의 공유신경기질을 횡단적으로 연구하였다. 

자기공명영상에서 뇌 피질의 두께와 피질 하 구조물 부피를 구하여 

보행변이성, 인지기능, 피질 두께와 피질 하 구조물 부피와의 

연관성을 각각 조사했다. 또한 보행변이성과 인지기능 양쪽에 모두 

유의한 연관성을 보이는 뇌영역의 피질 두께 또는 피질 하 구조물 

부피가 실제로 보행변이성과 인지기능 관계에 미치는 매개효과를 

분석하였다. 

결과: 연구 I에서 보행변이성이 일분위에 속하는 노인들은 나머지 

노인들에 비해서 4년 간 경도인지장애 발병 위험이 약 2배 더 높았다. 

(HR = 2.12, 95% CI = 1.05–4.31). 그러나 느린 보행 속도를 가진 

노인들은 나머지 노인들과 비슷한 경도인지장애 발병위험을 보였다. 

(HR = 1.06, 95% CI = 0.49– 2.30). 우리는 또한 보행변이성이 미래 

인지저하를 예측하는 것에는 성별에 따른 차이가 유의하지 않다는 
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것을 밝혔다. 연구 대상자들을 보행변이성의 크기로 삼분위화 하는 

과정에서의 역치효과 (threshold effect) 유무를 알아보기 위해, 

보행변이성과 보행속도를 연속변수로 두고 분석하였을 때에도 

보행변이성이 10% 증가할 때마다 인지저하의 위험이 1.16배 

증가하는 반면 보행속도의 변화에 따라 인지감퇴 위험의 유의한 

변화는 없었다. 

연구 II에서 높은 보행변이성은 낮은 인지기능과 관련이 있었다. 

우리는 높은 보행변이성이 광범위한 영역에서 대뇌피질 두께 감소와 

연관이 있다는 것을 확인했다. 반면, 보행변이성은 피질 하 구조물의 

부피와는 유의한 연관성을 보이지 않았다. 보행변이성과 유의한 

상관관계를 보인 피질 클러스터 중 좌반구의 inferior temporal, 

entorhinal, parahippocampal, fusiform, and lingual을 포함하는 

클러스터의 피질 두께는 전반적 인지기능 및 언어기억기능과 연관이 

있었다.  

결론 및 해석: 결론적으로 본 연구는, 신체부착 단일 삼축가속계로 

측정한 보행변이성의 인지저하 위험 예측 디지털 바이오마커로서의 

가능성에 근거를 제시하고 있다. 
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