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Abstract

Synergetic bridge of simulations,
observations, and theory using

machine learning

Yongseok Jo
Department of Physics and Astronomy

Graduate School
Seoul National University

Over the decades, the remarkable progress of cosmological simulations and

observations has greatly extended our understanding of a wide variety of

astrophysical and cosmological phenomena, such as the formation and evo-

lution of large-scale structure, and cosmological simulations have become

indispensable for studying astrophysics. However, simulations and observa-

tions have not been reconciled due to several factors, such as various un-

certainties in both observation and simulation, limitations of physical mod-

els for both observation and simulation, computational cost of simulations,

and the absence of delicate and sophisticated comparisons. Meanwhile, the

emerging power of machine learning has shown the full potential to solve

most of the problems above. Harnessing the power of machine learning,

we aim to mainly address two issues: (1) we establish a model that can

assist cosmological hydrodynamic simulation in a computationally-highly

efficient way, and (2) we also build a pipeline that calibrates cosmological

simulations against observations.
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In the first part, we present a pipeline to estimate baryonic proper-

ties of a galaxy inside a dark matter (DM) halo in DM-only simulations

using a machine trained on high-resolution hydrodynamic simulations. An

extremely randomized tree (ERT) algorithm is used together with multiple

novel improvements we introduce here such as a refined error function in

machine training and two-stage learning. Aided by these improvements, our

model demonstrates a significantly increased accuracy in predicting bary-

onic properties. By applying our machine to the DM-only simulation of a

large volume, we then validate the pipeline that rapidly generates a galaxy

catalogue from a DM halo catalogue. Our machine may become a promis-

ing method to transplant the baryon physics of galaxy-scale hydrodynamic

calculations onto a larger-volume DM-only run. We discuss the benefits that

machine-based approaches like this entail, as well as suggestions to raise

the scientific potential of such approaches.

In the second part, employing simulation-based inference (SBI), also

known as likelihood-free inference, we calibrate the parameters of cosmo-

logical simulations against observations, which has previously been unfea-

sible due to the high computational cost of these simulations. Using the cos-

mic star formation rate density (SFRD) and, separately, stellar mass func-

tions (SMFs) at different redshifts, we perform SBI on select cosmological

and astrophysical parameters (Ωm, σ8, stellar wind feedback and kinetic

black hole feedback) and obtain full 6-dimensional posterior distributions.

We find that there exist degeneracies between the parameters inferred from

the SFRD, which is confirmed with new full cosmological simulations. We

also find that the SMFs can break the degeneracy in the SFRD, which in-

dicates that the SMFs provide stronger constraints for the parameters. Fur-

ther, we find that the parameter set inferred from an observationally-inferred

SFRD reproduces the target observed SFRD very well, whereas in the case

of the SMFs, the inferred and observed SMFs show significant discrepan-
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cies, pointing to limitations of the galaxy formation modelling framework.

Keywords : Cosmological simulation, Simulation-based inference, Galaxy

formation and evolution, Large-scale structure formation

Student Number : 2014-22379
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Chapter 1

Introduction

Since long before the development of notion of astrophysics and cos-

mology, the sky pitch-dark night has been adorned with countless magically-

shining stars, and the mystery of somewhere at the edge of the sky has stim-

ulated people’s imagination. Questions about the extraterrestrial world be-

yond the Earth on which we are living have been constantly attracting peo-

ple’s attention amidst controversy such as geocentrism and heliocentrism,

and long-standing questions about the universe are finally being bearing fruit

in the 21st century.

Many observations and theories have made it possible to predict the

origin and age of the universe, and provided clues to the formation of the

universe. For instance, the discovery of the cosmic wave background radia-

tion plays a major role in defining the present in which we live, drifting in the

infinite space-time of the expanding universe, and makes it possible to study

the density fluctuations of the early universe, which has become the basis for

the growth of the universe after inflation. Furthermore, the development of

observational instruments has led to the discovery of literally astronomical

numbers of galaxies and galaxy clusters, which has made it possible to help

understand the characteristic large-scale structure of the universe.

By combining observations and various theories, numerous theoreti-

cal models for formation and evolution of the universe that do not sig-

nificantly violate observations and principal theories have been proposed.

Among them, the most familiar ΛCMD cosmology is currently the most

reliable theoretical model (i.e., most compatible with observations). In ad-

dition, since the 2011 Nobel Prize, the expanding universe has become a

known fact, but the expansion rate, H0, together with the cosmological pa-
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rameters such as Ωm and σ8, is still not well-constrained, and the precise

estimation of the cosmological parameters remains as one of the biggest

challenges in cosmology and astrophysics.

Cosmological simulation as virtual observatory
Behind this success story, there was an indispensable assistant, along

with observation and theory, which is numerical simulation—hereafter sim-

ply simulation. Numerical simulation complements one of the most difficult

aspects of cosmology and astrophysics study: irreproducibility of the uni-

verses in a laboratory. Simulation (or mock experiment), which has been

developed since the mid-1990s, starting with E. Holmberg’s laboratory ex-

periment in 1941 [67], has grown into an indispensable existence in astro-

physical research through the late 19’s to the present.

In the early days of simulation, the number of particles, volume, and

dimension that can be simulated were quite limited due to the computa-

tional limits. For example, in the mid-1900s, two-dimensional simulations

only with hundreds of particles were mainly performed. However, with the

rapid development of computers in the late 1900s, which was in line with

Moore’s law, simulations on a cosmological scale became doable. At that

time, so-called cosmological N-body simulations that solve gravitational in-

teractions were used to study the evolution of dark matter1 from the begin-

ning of the universe to the present. These cosmological simulations have

played a significant role in studying the large-scale structure of the universe

or the structure of individual halos.

Even so, up to that point, studies using N-body simulations that solve

only gravitational interactions had been limited so far because the physics

of baryons subject to hydrodynamics (or fluid dynamics) could not be ac-

1Dark matter is a hypothetical form of matter thought to account for approximately 85%
of the matter in the universe (except dark energy). Dark matter is called ”dark” because it
does not appear to interact with the electromagnetic field, but only with gravitational field,
and is, therefore, difficult to detect.
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counted for. The development of computers enables combining N-body sim-

ulation with hydrodynamics, and it is possible to reproduce the observable

properties of baryons in the universe. The advent of cosmological hydrody-

namic simulations gave another impetus to numerical study in astrophysics,

and has produced large-size, high-resolution simulated universes that can

mimic the observed universe. Researchers have compared and analyzed the

simulated universes with actual observations as if it were another virtual

universe, which helps us improve our understanding of the universe.

However, cosmological hydrodynamic simulations also have two ma-

jor drawbacks: (1) expensive computational cost and (2) ambiguity in sub-

grid models. Numerical hydrodynamics, unlike gravity, requires solving non-

linear physics that requires numerous computations, which limits the size

and resolution of the simulation. In addition, due to the resolution lim-

its, hydrodynamics simulations employ physical approximations—so-called

subgrid model—to realize astrophysical phenomena, such as star formation

and explosion, radiative cooling, black hole accretion, and AGN feedback.

These subgrid models inevitably entail free parameters subject to calibration

and lead to uncertainty of cosmological hydrodynamic simulations.

The high computational cost of hydrodynamic simulations leads to sev-

eral limits. First, the size of the simulations is limited. For instance, cosmo-

logical N-body simulations are performed on a Gpc scale, while cosmo-

logical hydrodynamics simulation are performed on a Mpc scale. Note that

the size of Milky Way Galaxy is roughly several hundreds kpc, while the

Hubble horizon of the universe is ∼ 4 Gpc. Secondly, the resolution of the

simulations is limited. The simulation resolution is directly connected to

accuracy of simulations. Thus, there are many attempts to reduce or over-

come the computational cost of the hydrodynamics. In particular, in the era

of machine learning, many studies have been conducted to overcome these

computational limitations using machine learning.
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Machine learning: computationally-efficient, versatile function
Since the notion of machine learning is first conceived in 1943 by lo-

gician Walter Pitts and neuroscientist Warren McCulloch in terms of map-

ping the decision-making process in human cognition and neural networks,

machine learning along with its remarkable growth has established itself

as a rapidly emerging and revolutionary keyword in almost all fields. The

key idea of machine learning is to establish mapping from input to output

directly from training data using parametrized functions such as decision

trees and neural networks. Conceptually, it is not much different from func-

tion fitting out of data points. However, the application of various loss func-

tions and optimization methods, such as a gradient descent, makes it able to

handle high-dimension and highly-nonlinear problems. In addition, having

many hyper-parameters—i.e., deeper neural networks—leads to expand the

function space that the machines can have and increase the possibility that

the optimal function that the problem can ideally have is inside the function

space of the machines. In addition, computational efficiency is one of the

major merits of machine learning. Once the machine is trained, the com-

putation time of the machine is generally less than a second. Thus, there

have been mounting studies that aim at building a machine that can estimate

output of complex and computationally-heavy models by training it on the

input-output pairs of the models.

In this dissertation, we summarize the physics of cosmological sim-

ulations in Chapter 2 and mathematics of machine learning in Chapter 3.

We exploit machine learning to address the problem of computational cost

of cosmological simulations: In Chapter 4, we transplant physics of small-

size hydrodynamic simulations to large-size N-body simulations that lack

of hydrodynamics. In Chapter 5, we calibrate simulation parameters against

observations using simulation-based inference—one of the machine learn-

ing methods.
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Chapter 2

Numerical framework for evolution of universe

In this chapter, we provide the preliminaries, including the implemen-

tations of the cosmological hydrodynamic simulations, for the main body of

this dissertation.

2.1 Evolution of the universe

Initial conditions for cosmological simulations
In the early universe at z ∼ 1100, recombination occurred—photons

decouple from baryons—leading to small-amplitude linear Gaussian den-

sity fluctuations in baryons, photons, and dark matter based on the infla-

tion model [61]. The Gaussian density fluctuations, δ(x, t), can fully be

described by its matter power spectrum P (k, t) ≡
∫
d3r eik·r ξ(r, t) where

ξ(r, t) is the two point correlation function, ⟨δ(x, t)δ(y, t)⟩, with r = |x−
y|.

Initial conditions for cosmological simulations consist of the cosmo-

logical model and its perturbations. The cosmological model is generally

taken to be a spatially flat or open Robertson-Walker spacetime with speci-

fied composition of dark matter, baryons, a possible cosmological constant.

Once cosmological model is specified, the standard approach for generating

initial conditions for simulations is to displace particles from a Cartesian

lattice using the Zel’dovich approximation [202] as follows:

r = q+D(t)ψ(q), v = a
dD

dt
ψ (2.1)

where q and D(t) are the unperturbed lattice position and is linear growth
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factor, respectively. ψ is the irrotational displacement field computed by the

linear continuity equation

∇ ·ψ = − δ

D(t)
. (2.2)

Accelerating expansion of the universe
Cosmological simulations generally evolve the initial density fluctua-

tions of dark matters and baryons by solving the (Newtonian) gravity and

(magneto-)hydrodynamics on a uniformly expanding Friedmann-Lemaı̂tre-

Robertson-Walker spacetime. With the help of Enstein’s general relativity,

the evolution of the scale factor a that explains the expansion of the universe

is given by the Friedmann equation as

H2

H2
0

= Ωra
−4 +Ωma

−3 +Ωka
−2 +ΩΛ. (2.3)

Here, H = ȧ/a the fractional expansion rate, and H0 the Hubble con-

stant today. Once the cosmological parameters are specified, dark matter

and baryon, together with the scale factor a, can be evolved forward in time

using Poisson’s equation for the Newtonian gravity

∇2Φ = −4πGa [ρ(x, t)− ρ̄(t)] , (2.4)

where ρ̄(t) is the mean density of the universe at time t.

2.2 Magneto-hydrodynamics

In contrast to dark matter that is subject to collisionless Boltzmann

equation, physics of baryon—i.e., dynamics of gas—is highly non-linear

and requires collisional Boltzmann equation (hearafter hydrodynamics). In

addition to baryon, it is known that the magnetic field is ubiquitous in the

universe, which can be approximately evaluated by magneto-hydrodynamics
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(MHD). In the expansion of the universe, the equations of the ideal MHD

can be written as [128]:

∂ρ

∂t
+

1

a
∇ · (ρv) = 0, (2.5)

∂ρ(av)

∂t
= ∇ ·

(
ρvvT + Iptot −

BBT

a

)
= −ρ

a
∇Φ, (2.6)

∂(a2E)

∂t
+a∇·

[
v(E + ptot)−

1

a
B(v ·B)

]
=

ȧ

2
B2−ρ(v·∇Φ)+a2(H−Λ),

(2.7)
∂B

∂t
+

1

a
∇ · (BvT − vBT) = 0, (2.8)

where ptot = pgas+B2/2 is the total gas pressure, and E = ρuth+ρv2/2+

B2/2 is the total energy per unit volume, with uth denoting the thermal en-

ergy per unit mass. ρ, v and B represent the local gas density, velocity and

magnetic field strength, respectively. Note that the ideal MHD requires sev-

eral assumptions, such as quasi-neutrality of plasma and a low-frequency,

long-wavelength approximation.

2.3 Physical models

Although principal equations—such as the Friedmann equation, New-

tonian gravity, and hydrodynamics—are implemented and solved in cosmo-

logical simulations, the limited resolution of simulations constrains resolv-

ing small-scale physics. Thus, modern cosmological hydrodynamic simula-

tions typically include a sub-resolution model for radiative cooling, forma-

tion, the explosion of stars, and formation and evolution of massive black

holes. Among them, we introduce implementations of stellar and black hole

physics in Sections 2.3.1 and 2.3.2.
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2.3.1 Stellar physics

Stellar formation and evolution
The cosmological simulations that we use throughout this dissertation

model the star-forming dense inter-stellar gas (ISM) using an effective equa-

tion of state, where stars form stochastically above a gas density of ρsfr with

a star formation time scale of tsfr. the ISM is believed to be governed by

small-scale effects, such as turbulence and thermal instability, leading to

self-regulated equilibrium state of the ISM. Here, the adopted parameters

are ρsfr = 0.13 cm−3 and tsfr = 2.2Gyr. The formed stars represent a

population of stars, not a single star, with an initial mass function given by

Chabrier [25]. The stars are allowed to evolve and age, with a return of mass

to the surrounding ISM as stellar winds. The detailed implementations of the

evolution of stars can be found in Vogelsberger et al. [187], Wiersma et al.

[201].

Stellar winds
At the end of the stellar evolution, stars return its mass as a stellar wind.

The star formation-driven galactic wind is isotropically injected in a kinetic

form [136, for details]. The winds are characterized by a mass loading factor

ηw which is defined by

ηw ≡ Ṁw

ṀSFR

=
2

v2w
ew(1− τw), (2.9)

where Ṁw and ṀSFR are the rate of gas mass to be converted into wind

particles and the instantaneous, local star formation rate, respectively. With

a fixed thermal energy fraction τw, the mass loading factor is determined by

the total energy injection rate per unit star-formation ew and the wind speed

8



vw that involve ASN1 and ASN2, respectively as follows:

ew = ASN1 × ēw

[
fw,Z +

1− fw,Z

1 + (Z/Zw,ref )γw,Z

]
×NSNIIESNII,5110

51ergM−1
⊙

(2.10)

and

vw = ASN2 ×max

[
κwσDM

(
H0

H(z)

)1/3

, vw,min

]
, (2.11)

where details on the parameters ēw, fw,Z , Zw,ref , Z, γw,Z , NSNII, ESNII,51,

κw, σ8, and vw,min can be found in Table 1 of Pillepich et al. 2018 [138].

Here, ASN1 and ASN2 are set to 1 in the chapter 4 but subject to change in

the work of chapter 5.

2.3.2 Black hole physics

Various lines of observations have indicated the presence of black holes

and strong feedback of massive black hole at the center of the galaxy, known

as active galactic nuclei (AGN). However, the formation and evolution of

black hole still remain as open question. Thus, many cosmological simu-

lation typically implant a black hole seed at the center of a halo when the

halo attains a certain mass threshold. In this dissertation, a super-massive

black hole (SMBH) particle with mass Mseed = 8 × 105h−1M⊙ is seeded

on-the-fly at the center of any halo with mass Mhalo > 5×1010h−1M⊙ that

does not yet contain a SMBH. To prevent the SMBH particles from artifi-

cially wandering around the galaxy, the SMBH particles are kept close to

the potential minimum of their host dark matter haloes using an ad hoc pre-

scription. Also, their velocities are set to the mean mass-weighted velocity

of the region around the host haloes.

Black hole accretion
Once implanted, the SMBHs grow by accreting surrounding gas ac-
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cording to Bondi-Hoyle-Lyttleton accretion [15, 16, 68]:

ṀBondi =
4πG2M2

BHρ

c3s
(2.12)

where MBH, ρ, and cs are the mass of the SMBHs, gas density in the vicinity

of the SMBHs, and sound speed of the gas, respectively. The accretion of

SMBH is thought to form a gaseous disk around the SMBH, which emits ra-

diation. The pressure of radiation suppresses gas accretion by the Thomson

scattering, and when the accretion rate reaches a certain threshold, called

Eddington limit where the pressure of radiation is equivalent to the gravita-

tional pressure of the SMBH, the accretion of the SMBH halts:

ṀEdd =
4πGMBHmpc

ϵrσT
(2.13)

where mp, c, σT, and ϵr are the mass of a proton, the speed of light, and

the cross section of Thomson scattering, respectively. Note that the power

of radiation of accretion disk can be written as Ėr = ϵrṀBHc2 where ϵr is

radiation efficiency. Therefore, the accretion rate of the SMBH is given by

ṀBH = min(ṀBondi, ṀEdd).

Black hole kinetic feedback
The states of SMBHs are distinguished into high accretion (a classical

thin disc) and low accretion (hot accretion flow) based on a threshold of

χ = min

[
0.002

(
MBH

108M⊙

)8

, 0.1

]
(2.14)

in units of Eddington accretion limit. According to the state of the accretion,

the feedback mode is determined. For the high-accretion state, the feedback

energy is injected as pure thermal energy into the vicinity of the SMBH

(thermal mode). For the low-accretion state, feedback energy is released
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kinetically in a random direction (kinetic mode) as

Ėlow = AAGN1ϵf,kinṀBHc
2, (2.15)

where

ϵf,kin = min

[
ρ

0.05ρSFthresh
, 0.2

]
. (2.16)

Here, ρ and ρSFthresh are the gas density around the SMBH and the density

threshold for star-formation. The injection of the kinetic feedback occurs ev-

ery time the accumulated energy has reached the energy threshold since the

last feedback. The energy threshold for the kinetic feedback is parametrized

as

Einj,min = AAGN2 × fre
1

2
σ2
DMmenc, (2.17)

where σ2
DM is the one-dimensional dark matter velocity dispersion around

the SMBH, menc is the enclosed gas mass within the feedback sphere, and

fre is a free parameter which is set to 20 for the fiducial TNG model.

AAGN2 controls the frequency and speed of the SMBH feedback. AAGN1

and AAGN2 are fixed as 1 in Chapter 4 and subject to change in Chapter 5.

The details of prescription for the SMBH physics are described in [194].
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Chapter 3

Machine learning framework as bridge

In this chapter, we describe the machine learning frameworks that we

employ in the main body of this dissertation.

3.1 Extremely randomized tree

Extremely randomized tree (ERT) is a commonly-used machine learn-

ing that combines the output of multiple decision trees to reach a single re-

sult. ERT is a branch of random forest (RF) algorithms which itself is a type

of ensemble learning. We introduce the regressor’s basic concept and inner

workings here to later explain the improvements we made in the machine. At

the heart of an ERT lies a “decision tree” that is constructed top-down from

a root node. The tree partitions the data into subsets which contain instances

of similar values; a (leaf) node generally has more than one attribute. A

“forest” refers to an ensemble of decision trees — i.e., a collection of trees

makes a forest. Compared to a plain RF, ERT’s additional randomization

step arises as the tree nodes are split (i.e., the points of split are randomly

chosen), which makes an ERT perform mostly faster than a plain RF.

Here, we briefly summarize terminology used in this section: the at-

tribute denotes a particular input variable. The candidate attributes stand for

all input variables available. Output variables denotes the target variable for

training. N refers to the size of the training sample.

Since the ERT is made of decision trees, it would be useful to describe

the decision tree. Decision trees is a flowchart-like tree structure that helps

decision-making process. Every node (or leaf) of decision trees asks ”yes”

or ”no” questions—e.g., the attribute A is greater than B?—and splits the
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Algorithm 1: Building Extra Tree Ensemble
Input: Training set D
Initialize: Tree ensemble T = {}
for i = 1 to N do

Build a tree T ∪ {ti = Build Tree(D)};
end
Output: Tree ensemble T

Build Tree(D)
Input: Training set D
if D < nmin∥all candidate attributes are constant in D∥the output
variable is constant in D then

Output: D
else

Select randomly K attributes, {a1, . . . , aK}, without
replacement, among all (non constant in D candidate
attributes;

Generate K splits, {s1, . . . , sK}, where si = Pick Split(D, ai),
∀i = 1, . . . ,K;

Select a split s∗ s.t. L(s∗,D) = maxi L(si,D);
Split D into subsets Dl and Dr according to the test s∗;
Build tl = Build Tree(Dl) and tr = Build Tree(Dr) from

these subsets;
Create a node with the split s∗, attach tl and tr as left and right

subtrees of this node and return the resulting tree t.
end

Pick Split(D, a)
Input: Training set D, attribute a
Find amax = max(a) and amin = min(a) a ∈ D;
Draw a cut-point ac uniformly in [amin, amax];
Output: the split[a < ac]

data accordingly into two subsets (left node and right node). Therefore, de-

cision trees seek to find the best split to the data in a way that it can reach

the best answer in the end. To best split the nodes, the ERT can be trained

through the Classification and Regression Tree (CART) algorithm. Also,

loss functions, such as Gini impurity, information gain, or mean square er-
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ror (MSE), can be used to estimate the quality of the split. In this section,

we adopt the loss function L—called relative variance reduction—for two

subsets of training data (Dr and Dl) and split s defined as

L =
VarD(y)− |Dl|

|D| VarDl
(y)− |Dr|

|D| VarDr(y)

VarD(y)
(3.1)

where VarD(y) ≡ ED[(y− ȳ)2] is the variance of the output y in the sample

D where ȳ is the mean of y in sample D. The “decision tree” is constructed

to minimize L for training set D. The minimization of the loss function L
goes to the reduction of relative variance (e.g., |Dl|VarD↕r(y)/|D|VarD(y)).
If the reduction succeeds, we can split the data D into two subsets Dr and

Dl that have similar y (or similar kinds) , respectively, in their own sets.

This resembles the classification of y into two classes. Detailed algorithm

of building trees can be found in Algorithm 1.

3.2 Simulation-based inference

Simulation-based inference (SBI) aims at retrieving the posterior dis-

tribution p(θ|x0) using forward models that estimates observable x taking

parameters θ given observations x0 [29, 177]. In contrast to the conven-

tional Bayesian inference that adopts an explicit likelihood, SBI employs a

neural network that outputs a probability distribution—called a neural den-

sity estimator (NDE). The NDE takes observations x0 and parameters θ as

input and estimates a conditional probability distribution p̃ϕ(θ|x0) where ϕ

represents hyper-parameters of neural network.

One of the important features is that SBI aims at training the NDE with

the least number of evaluations of forward models by narrowing down the

parameter space of interest. To this end, we must choose a proposal distribu-

tion q(θ) from which we draw the sets of parameters for the new simulations

in the next iteration. However, the choice of the optimal proposal generally
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remains as an open question.

3.2.1 Neural Density Estimator: Learning Density Ra-
tio

The neural density estimator (NDE) estimates the posterior density

p(θ|x) by computing the density ratio r(θ,x) = p(x|θ)
p(x) = p(θ|x)

p(θ) , where

a simulator defines a valid probability density function p(x|θ) over obser-

vations x [64, 113, 175].

Consider a binary random variable Y : Ω → R where Ω ∈ {y = 0, y =

1} and each outcome is equally likely a priori (i.e., p(y = 0) = p(y = 1)).

Then,

p(y = 1|x,θ) = p(x,θ|y = 1)

p(x,θ|y = 1) + p(x,θ|y = 0)

=
r(x,θ)

1 + r(x,θ)

(3.2)

where the density ratio r(x,θ) is defined by r(x,θ) ≡ p(x,θ|y=1)
p(x,θ|y=0) (refer to

the derivation 1). That is, the binary classifier that computes p(y = 1|x,θ)
or p(y = 0|x,θ) can be exploited to compute the ratio density r(x,θ).

In case of the conditional probability density, y = 1 class represents

(x,θ) ∼ p(x,θ) that θ is drawn from the given prior p(θ) and x is ob-

tained subsequently by the simulations with the sampled parameters. In the

meantime, y = 0 class is pairs (x,θ) ∼ p(x)p(θ) with parameters and ob-

servations sampled independently. By training the neural classifier p̃ϕ(x,θ)

that takes (x,θ) as input and outputs the probability density p(y = 1|x,θ)
or p(y = 0|x,θ) where ϕ stands for hyper-parameters (e.g., weights and

1By definition of conditional probability, p(y = 1|x) = p(x|y = 1)p(y = 1)/p(x).
Using the law of total probability, we can rewrite p(y = 1|x) = p(x|y = 1)p(y =
1)/(p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1)). Since each class is equally likely a
priori, p(y = 1|x) = p(x|y = 1)/(p(x|y = 0) + p(x|y = 1)) .
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Algorithm 2: Sequential Ratio Estimation
Input: Simulator p̃(x|θ), prior p(θ), target observation x0, neural

density estimator p̃ϕ(x,θ), iterations N, simulations per
iteration M

Initialize: Proposal q(1)(θ|x0) = p(θ), training set T = {}
for n = 1 to N do

Draw θm ∼ q(n)(θ|x0), m = 1, . . . , M ;
Simulate xm ∼ p̃(x|θm), m = 1, . . . , M ;
Construct T = T ∪ {(xm, θm)|m = 1, . . . ,M};
while p̃ϕ not converged do

Sample mini-batch {(xb,θb)} ∼ T ;
Optimize a neural density estimator p̃ϕ(x,θ) using

stochastic gradient descent;
end
Save the neural density estimator p̃ϕ(x,θ)
Update posterior p(n)(θ|x0) ∝ p̃ϕ(x0|θ)p(θ)
Update proposal q(n)(θ|x0) ∝ p(n)(θ|x0)p(θ)

end
Output: Posterior p(N)(θ|x0) ∝ p̃ϕ(x0|θ)p(θ)

biases) of the neural network, we can compute the ratio density

r(x,θ) =
p(x,θ)

p(x)p(θ)
=

p(x|θ)
p(x)

=
p(θ|x)
p(θ)

. (3.3)

Therefore, if the prior p(θ) is known, the posterior density p(θ|x) can be

obtained as p(θ|x) = r(x,θ)p(θ).

3.2.2 Sequential Ratio Estimation

In this section, we introduce the sequential ratio likelihood estimation

(SRE) [47], which is one of the simulation-based inference (SBI) methods.

The SRE retrieves a posterior density using the neural density estimator

described in Sec. 3.2.1. The workflow of the SRE is as follows: (1) The SRE

samples M parameters θm from the prior p(θ) (or proposal density) and

simulates M observablesxm with the parameters θm where m = 1, . . . ,M ;
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(2) The SRE constructs a training set T that consists of two classes of pairs:

(xm,θm) for y = 1 and (xk,θm) for y = 0 by permutations where k ̸= m.

(3) The NDE p̃ϕ(x,θ) is trained on T until it converges; (4) The structure

of trained NDE is saved as an external file for future use. (5) The posterior

and the proposal densities are updated as p(n)(θ|x0) ∝ p̃ϕ(x0|θ)p(θ) and

q(n)(θ|x0) ∝ p(n)(θ|x0)p(θ), respectively. (6) The SRE repeats from (1)

with the newly updated proposal. Please refer to Algorithm 2 for details.

The SRE has two hyper-parameters subject to optimization: the number

of simulations per iteration M and the number of iterations N . Since M

determines the amount of information that the training set can carry, it can

vastly affect the accuracy of the posterior density. For instance, if M is over-

biased, the resultant posterior density can also be biased. M should be set

to a sufficiently large value that the sampled training set can carry enough

information about the trained posterior.
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Chapter 4

Part I: Painting cosmological simulations with
baryons

The results of this chapter are published in Monthly Notices of the

Royal Astronomical Society, 2019, Volume 489, Issue 3.

4.1 Introduction

In the context of the ΛCMD cosmology, the gravitational N -body sim-

ulations that contains only dark matter (DM) to describe the evolution of

large scale structures (LSS) are successfully performed [7, 18, 62, 71, 82,

146, 160, 193]. DM-only simulations has also provided considerable in-

sights into halo properties, such as the spatial and velocity correlations [72,

198, 199], density profiles [23, 81, 120, 142, 143], angular momentum pro-

files and shapes [14, 22, 27, 97], and halo substructures [79, 105, 114, 171].

However, gravity alone is not sufficient to extend our understanding

of the universe beyond the DM properties which is generally not observ-

able. Baryon physics must be taken into account via one of the two popu-

lar methods: (magneto-)hydrodynamic simulations, or semi-analytic mod-

els (SAMs). On the one hand, with the advent of high-performance com-

puting units with a large amount of memories, fully hydrodynamics, high-

resolution cosmological simulations have become one of the major tools in

studying baryonic contributions in the Universe’s evolution. Hydrodynamic

simulations that treat baryon physics such as individual galaxy formation

from ∼Mpc scales down to ≲100 pc scales have emerged in recent years

despite the expensive computational costs. Prominent examples includes

ILLUSTRIS [56, 189, 191], ILLUSTRISTNG [123, 137, 172];, HORIZON-
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AGN [45], EAGLE [156], ROMULUS [180], MUFASA [36] and SIMBA [37].

On the other hand, in SAMs and empirical models, halos from DM-only

simulations are “colored” with baryons based on relatively simple physical

recipes [9, 10, 12, 28, 31, 115, 150]. While SAMs inevitably require a set

of tunable parameters, the computational cost of typical SAMs is much less

than that of high-resolution hydrodynamic simulations. In addition, SAMs

make it easy to test and appreciate the importance of physical interactions

and parameters in play [159].

Even with the cutting-edge computing technologies that have allowed

us to simulate individual galaxies with high fidelity, the contemporary com-

putation power is insufficient to describe a larger volume of the Universe

(i.e., ∼Gpc scale) with detailed baryon physics resolved at ≲100 pc reso-

lution. To obtain “observable” baryonic signatures populating such a large

volume, combining DM-only simulations with a SAM has traditionally been

the only strategy that is computationally feasible. But, now with the arrival

of machine learning technology, preliminary studies have been carried out

to combine DM-only simulations with machine learning algorithms such as

random forest (RF) to produce galaxy catalogues [1, 73, 74].

Here, in what we call a machine-assisted semi-simulation model (MSSM),

a machine — suitable for big data regression — is trained to first establish

correlations between DM and baryonic properties in fully hydrodynamic

simulations (e.g., DM mass and stellar mass in a halo). The machine is then

tested and used to estimate various baryonic properties of a DM halo (ei-

ther in hydrodynamic simulations or in DM-only simulations) based purely

on its DM content. A well-constructed machine can generate an extensive

galaxy catalogue out of a DM-only simulation of a large volume, within a

fraction of time needed for a high-resolution hydrodynamic simulation. Fur-

thermore, this method can be one of the most promising ways to accurately

transplant the baryon physics of galaxy-scale hydrodynamic calculations

(e.g., ILLUSTRISTNG in a (75 h−1Mpc)3 volume) onto a larger-volume
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DM-only simulation (e.g., MULTIDARK-PLANCK in a (1 h−1Gpc)3 vol-

ume [81]). Training the machine with a RF-type algorithm, we could also

grasp the degree of contribution or “feature importance” by each of the in-

put features (e.g., halo mass vs. halo angular momentum) in estimating a

particular property (e.g., stellar mass). From the intuition gained by feature

importances and by comparing the resulting catalogues with SAMs’, we will

be able to provide insights to improve the SAMs as well.

In this chapter, we first describe how we establish the MSSM in Sec-

tion 4.2.1. The cosmological simulations that we adopt are explained in Sec-

tion 4.2.2, and its pre-processing for training and application is described in

Section 4.2.3. We then focus on improving the machine training for MSSM,

and compare our machine’s accuracy with a simpler baseline model’s (Sec-

tion 4.3.1). Lastly in Section 4.3.2, our machine learning and application

pipeline, MSSM, is shown to be largely compatible with popular SAMs

when generating a galaxy catalogue using the DM-only simulation database

MULTIDARK-PLANCK.

4.2 Methodology

In this section, we describe the pipeline of our model and how we

build and train our machine. In particular, we focus on the structure of our

pipeline, and how we pre-process the input dataset to improve the machine’s

accuracy.

Overview
In our so-called MSSM, we exploit the results of full hydrodynamic,

high-resolution simulations to establish correlations or mappings — not an-

alytic prescriptions — between DM and baryonic properties. Machine learn-

ing means training a machine for a task that typically deals with a large

amount of data. If we assign two sets of data as “input” and “output”, the

machine by itself searches for a model and model parameters to take in
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the input and produce the output. In general, the more amount of data one

gives, the more accurate the model becomes. The large datasets from mod-

ern cosmological simulations are thus ideal to exploit the novelty of machine

learning.

In the supervised learning phase of our work,1 we first divide the halo-

galaxy catalogue from a large hydrodynamic simulation into a “training set”

and a “test set” (see Section 4.2.2). The machine learns a structure that maps

an input to an output based on example input–output pairs, i.e., the training

set (e.g., DM mass and stellar mass). The machine looks for an optimized

mapping by constantly evaluating the current mapping with an “error func-

tion” (or “cost function”; e.g., a widely used metric in public packages is

mean square error or MSE). Based on this evaluation, the machine returns

positive or negative feedback to itself. When the training is completed, one

can “score” how well the machine can match the actual features in the sim-

ulation using the test set. Based on this score, one may choose to update the

learning algorithm or replace it with a different method.

4.2.1 Machine-assisted semi-simulation model

The flowchart of our MSSM, the machine learning and application

pipeline, is illustrated in Figure 4.1. Our goal is to construct a machine to

produce a galaxy catalogue by combining a DM-only N -body simulation

and a machine learning technique, that is on a par with or better than cat-

alogues made with popular SAMs. Our pipeline is divided into two main

parts — (1) the learning phase: train a machine to estimate baryonic data

out of DM data using a fully hydrodynamic simulation, and (2) the applica-

tion phase: apply the trained machine to a DM-only simulation to produce

catalogues of galactic baryonic properties.

1Machine learning algorithms are divided into several categories based on the amount and
type of supervision in training: supervised learning, unsupervised learning, semi-supervised
learning, and reinforcement learning.
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Figure 4.1: Flowchart of our machine-assisted semi-simulation model
(MSSM). In the learning phase (top panel), we train our machine with a fully
hydrodynamic simulation database that contains both dark matter (DM) and
baryon data to predict the baryonic properties (“output”) based on the DM
properties (“input”). In the application phase (bottom panel), by feeding a
DM-only N -body simulation to the trained machine, we produce a cata-
logue of baryonic predictions.

Learning phase
In the learning phase, we use only the DM-related features extracted

from the ILLUSTRISTNG hydrodynamic simulation of a (75 h−1Mpc)3

volume (“TNG100” [124]; see Section 4.2.2 for more information) as input

data. We take these DM features such as DM halo mass and halo velocity

dispersion as inputs, and the baryonic features such as stellar mass and gas

mass of the halo as desired outputs. These input–output pairs is used to train

the machine via ExtraTreeRegressor (Section 3.1). Note that several

historical and environmental characteristics of each halo not included in the

native catalogue are computed in the pre-processing step (see Section 4.2.3

and Table 4.1 for more information). During the training process, 20% of

the ILLUSTRISTNG data is spared for a test — a “test set” — to score the

accuracy of the machine afterwards. Fed with the test set, the resulting ma-
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chine makes a set of predicted output data (e.g., stellar masses predicted

from DM masses); and, by comparing it with the actual values in the sim-

ulation (e.g., the actual stellar masses in ILLUSTRISTNG) we “score” the

machine. Common metrics for scoring the linear regression are MSE and

Pearson correlation coefficient (PCC); but, in the reported study different

measures are also used to evaluate the machine accuracy.

It is also worth to mention that ERT in our MSSM not only builds a map

connecting inputs and outputs, but also provides the “feature importance”

that shows which input feature contributes how much to predict a particular

output (e.g., which input feature is more important to predict stellar mass,

halo mass or halo angular momentum?). From the feature importance we

may update the set of input parameters to increase the machine’s accuracy,

understand the underlying physics, and potentially provide insights to im-

prove SAMs (see also Section 4.4).

Application phase
In the application phase, the machine from the learning phase is fed

with a DM-only simulation data. Here, the MULTIDARK-PLANCK DM-

only simulation of a large (1 h−1Gpc)3 volume is used as an input (“MDPL2”

[83]; see Section 4.2.2 for more information). Needless to say, this input

data needs to be pre-processed so that it is exactly in the same format and

structure as the input used in the learning phase (Section 4.2.3). A well-

optimized machine can swiftly generate a galaxy catalogue once the DM-

only simulation dataset is pre-processed. In our study, the machine is able

to “paint” baryonic features on ∼ 106 halos in a large cosmological volume

in just a few tens of minutes. This is a miniscule amount of time when con-

trasted with what is typically needed for a high-resolution hydrodynamic

simulation that resolves each galaxy-size halo with proper baryon physics.

In Section 4.4, we will discuss more on how to utilize MSSM for science.
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Table 4.1: All DM-related input parameters utilized to predict baryonic
properties of a halo in our machine.

Input Parameter Definition

DM mass of a halo Total mass of all DM particles bound to a halo

Velocity dispersion of a halo Dispersion of all member particles’ velocities

Maximum velocity of a halo Maximum of spherically-averaged circular velocity

Angular momentum of a halo Halo spin parameter

Number of all mergers Number of all mergers throughout the halo’s entire
history

Number of all major mergers Number of all mergers in which the mass ratios of the
participating halos are less than 3:1

Last major merger mass ratio The mass ratio of the most recent major merger along
the merger tree

Local density The local density, (
∑

Mi)/Vbox, estimated for all
local halos within a (2Mpc)3 volume

Number of local halos Number of all local halos whose mass is larger than
80% of the target halo’s mass

Sum of mass over distance Sum of mass over distance,
∑

Mi/Ri, of all local
halos within a (2Mpc)3 volume

Maximum mass over distance Mass over distance, Mmax/Rmax, for the most
massive halo in the local volume

4.2.2 Cosmological simulations

As noted in Section 4.2.1 and Figure 4.1, two types of simulations are

considered in our MSSM pipeline — (1) in the learning phase: a fully hy-

drodynamic simulation is used to train a machine, and (2) in the application

phase: the trained machine is applied to a DM-only simulation to produce

galaxy catalogues.
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Hydrodynamic simulation for learning phase
ILLUSTRISTNG [123, 137] are gravito-hydrodynamic simulations per-

formed with a moving-mesh code AREPO [164] (see Chapter 2 for the de-

tailed implementation). Both simulations include all relevant galaxy-scale

physics to follow the evolution of dark matter, cosmic gas, stars and su-

per massive black holes (SMBHs) from z = 127 to 0, such as radiative

gas cooling [75, 155, 166, 200], stellar evolution and chemical enrichment

based on stellar synthesis models [201], stellar feedback [165] and SMBH

and Active Galactic Nuclei (AGN) feedback [168, 169]. The more recent

ILLUTRISTNG (The Next Generation) updates ILLUSTRIS by including

magneto-hydrodynamics [119, 129, 130, 195, 196], various computational

improvements [137], as well as updated cosmology consistent with Planck

Collaboration [141]: Ωm,0 = 0.3089,ΩΛ,0 = 0.6911,Ωb,0 = 0.0486, σ8 =

0.8159, ns = 0.9667, and h =0.6774.

ILLUSTRISTNG is one of the most successful hydrodynamic calcula-

tions to date resolving individual galaxies with sophisticated baryon physics

in a large enough volume. For this reason, we employ ILLUTRISTNG in

the learning phase of our MSSM pipeline (Section 4.2.1). In particular,

among the three different box sizes the ILLUTRISTNG database offers, the

“TNG100” simulation of a (75 h−1Mpc)3 volume is adopted (“TNG100”

dataset as designated in Nelson et al. [124]), where 100 denotes the simu-

lation’s approximate box size in Mpc). The TNG100 run was performed at

three different resolutions: TNG100-1, -2 and -3 with TNG100-1 being the

highest resolution run. At z = 127, the TNG100-1 data consists of 18203

DM particles with mDM = 7.5 × 106M⊙, and 18203 hydrodynamic cells

with mgas = 1.4 × 106M⊙. At z = 0 the simulation box holds 4371211

(sub)halos identified with the friends-of-friends halo finder (FoF) [39] and

the SUBFIND subhalo finder [167]. The publicly available halo catalogue

also includes the merger trees built with the SUBLINK code [148].2

2The ILLUSTRISTNG data is available at http://www.tng-project.org/.
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DM-only simulation for application phase
MULTIDARK-PLANCK [81, 147, 149] is a DM-only gravitational dy-

namics simulation using L-GADGET-2, a version of GADGET-2 optimized

for a run with large number of particles [163]. The cosmological model

adopted is consistent with Planck Collaboration [140]: Ωm,0 = 0.3071,

ΩΛ,0 = 0.6929, Ωb,0 = 0.0482, σ8 = 0.8228, ns = 0.96, and h =0.6777.

In the application phase of our MSSM, the later version of MULTIDARK-

PLANCK is used as an input (“MDPL2” [83]). Run on a volume of (1 h−1Gpc)3

that is large enough to match observational surveys, MDPL2 depicts the

large-scale evolution of a significant chunk of the Universe from z = 65

to 0 using 38403 DM particles with mDM = 1.5 × 109h−1M⊙ each. The

MDPL2 database publicly provides a halo catalogue for each redshift snap-

shot identified with the ROCKSTAR code, along with the merger trees built

with the CONSISTENT TREES code [11].3

4.2.3 Pre-processing simulation dataset

Data pre-processing is a pivotal step in machine learning. As noted in

Figure 4.1, we transform the raw database — the ILLUSTRISTNG data for

the learning phase, and the MULTIDARK-PLANCK data for the application

phase — into a desired input format for the machine.

Pruning the input datasets
Due to resolution discrepancy between MULTIDARK-PLANCK and IL-

LUSTRISTNG, we need to trim input datasets accordingly to reconcile it.

MDPL2 resolves dark matter halos down to ∼ 2.23 × 109M⊙. TNG100-1

resolves dark matter halos down to 7.5 × 10 6M⊙ while resolving baryon

down to 1.4 × 10 6M⊙. Therefore, we exclude the halos of masses below

109M⊙ in TNG100-1 to be compatible with MDPL2. In addition, since ha-

3The MULTIDARK-PLANCK data can be found in the COSMOSIM database at
http://www.cosmosim.org/.
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los which do not contain star or gas are not our targets of interest, we have

excluded halos whose stellar or gas mass is zero. With these cuts, the ac-

tual training set for the learning phase is reduced to ∼ 3% of the original

TNG100-1 halo catalogue. In Section 4.2.1, we demonstrate that this train-

ing set is still sufficiently large for our learning process.

Extracting historical and environmental factors
The “baseline” input features to predict baryonic properties include:

DM mass, velocity dispersion, and maximum circular velocity of a halo

(see Table 4.1). This set of parameters — straight from public halo cata-

logues — is largely what prior attempts have used [74]. In addition to the

baseline parameters, in the present study we aim to capture what we refer

to as “historical” and “environmental” factors, and add them to the input

dataset. The new features for each halo are extracted (1) from the halo’s

merger history, and (2) from the halo’s local volume.

First, from the halo’s merger tree, the following three features are ob-

tained (Table 4.1): the number of all mergers, the number of all major merg-

ers, and the mass ratio of the last major merger. These characteristics are

chosen to explicitly quantify the evolution history of a halo imprinted in the

merger tree (unlike Agarwal’s work [1] where the merger-related parameters

are implicit). Here, the mass ratio of participating halos must be less than 3:1

to be considered as major merger. Analogous to Rodriguez-Gomez’s work

[148], the mass ratio is calculated when the secondary progenitor reaches its

maximum halo mass, tmax, before the two halos merge into one in the tree.

We take this point tmax as the moment of merger.

Second, from the target halo’s local volume of (2Mpc)3, the following

four features are extracted (Table 4.1): the local density, the number of local

halos whose masses are greater than 80% of the target halo’s mass, the sum

of mass over distance (“semi-potential”) of all local halos Φs =
∑

Mi/Ri,

and the mass over distance for the most massive local halo. These parame-
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ters aim to characterize the target halo’s local environment which has likely

affected how the halo has evolved. Extracting these features from the raw

dataset leads to the nearest neighbor search and range search problem. It

requires us to construct a k-d tree that partitions the space into tree structure

so that neighboring halos are efficiently located.

Indeed, the value-added input datasets containing the additional input

features improve the MSSM’s accuracy for several feature predictions. This

will be discussed in detail in Section 4.4.

4.3 Results

4.3.1 Improving a machine that predicts baryonic prop-
erties

In Sections 4.3.1 and 4.3.2, we present the results of our study focus-

ing on the learning phase and the application phase of the MSSM pipeline

(Figure 4.1), respectively. For the rest of the paper, unless the redshift of

the data is specified, we only discuss the z = 0 result. We also note that

we will focus on the halos of DM masses in the range of approximately

[1010, 1013.5]M⊙ when presenting our results (but not necessarily when

training the machine; see Section 4.2.3). It is because (1) for halos of DM

masses below 1010M⊙, the resolutions of ILLUSTRISTNG (Section 4.3.1)

and MULTIDARK-PLANCK simulations (Section 4.3.2) are too coarse for

the machine to extract reliable mappings between DM and baryonic fea-

tures, and (2) ILLUSTRISTNG contains insufficient number of halos of DM

masses above 1013.5M⊙ due to a small simulation box size. It should be

noted that the limitation here is not about our model but about the available

simulations; [1010, 1013.5] M⊙ is indeed also the range for which the SAMs

are best optimized.

How accurate is the machine’s prediction?
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Figure 4.2: Normalized two-dimensional contour plot comparing the actual
stellar masses of halos in the ILLUSTRISTNG test set, M⋆,TNG, and the stel-
lar masses predicted from input DM features of the test set, M⋆,pred. Colors
indicate the normalized frequency, nbin = Nbin/Ntot, where Ntot is the total
number of halos and Nbin is the number of halos in each two-dimensional
bin. Results from two machine learning models are shown: the “baseline”
model similar to previous studies (left panel) and our model improved for
its performance (right panel). The black dotted line indicates an ideal pre-
diction, M⋆,pred = M⋆,TNG.

We first discuss how well our machine from the learning phase can pre-

dict halos’ baryonic properties based purely on their DM features. Shown in

Figure 4.2 are normalized two-dimensional histograms comparing the pre-

dicted stellar masses (“predicted output”) and the actual stellar masses in

a simulation (“desired output” or “answer”), when a test set from the IL-

LUSTRISTNG run is used. First, shown on left is the “baseline” model that

considers only mass, velocity dispersion, and maximum circular velocity

of a DM halo as inputs (similar to previous studies such as Kamdar’s work

[74]; see Section 4.2.3). Shown on right is our model that improves the base-

line one in various ways to be discussed in the following sections. We test

both models to predict the following baryonic properties: gas mass, stellar

mass, central black hole mass, star formation rate (SFR), metallicity, and
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Gas
mass

Stellar
mass

BH
mass

SFR Metallicity
Stellar
mag. g

Baseline
0.0015 0.0018 0.0047 1.71 0.022 0.0012
(0.023) (0.017) (0.020) (36.10) (0.099) (0.0121)

Logarithmic
scaling

0.0010 0.0045 0.0126 1.70 0.010 –5

(0.021) (0.017) (0.025) (30.42) (0.076) (–)

history and
environment

0.0014 0.0014 0.0042 1.5 0.018 0.0010
(0.023) (0.016) (0.018) (28.27) (0.093) (0.0100)

Two-stage
learning

0.0014 0.0016 0.0036 1.11 0.013 0.000511

(0.021) (0.011) (0.017) (20.15) (0.078) (0.0064)

Best
combination

0.0010 0.0013 0.0034 1.00 0.010 0.0005
(0.020) (0.010) (0.016) (20.23) (0.070) (0.0053)

Table 4.2: The mean binned error (MBE), Equation 4.4, quantifying how
well the machine predicts each of the six baryonic properties — gas mass,
stellar mass, central black hole mass, SFR, metallicity, and stellar magnitude
(g band). Each row indicates the MBE score within the respective x-range in
Figure 4.3 when the machine is improved by a single improvement—except
the “Best combination” row9. Numbers in the parentheses are mean binned
standard deviation (MBSD), Equation 4.5.

stellar magnitudes.4

Both histograms in Figure 4.2 are around the ideal prediction line (black

dotted), but in the bottom panels, the distribution is markedly tighter in our

improved model resulting in the emergence of more concentrated region

(red region) around the ideal prediction line. To quantify the machine’s ac-

curacy we first score each model with two common measures — (1) mean

square error (MSE),

MSE =
1

Ntot

Ntot∑
i

(
y i

pred − y i
TNG

)
, (4.1)

4Stellar magnitudes are the luminosities of all star particles in eight photometric bands
— U, B, V, K, g, r, i, z [122].
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and (2) Pearson correlation coefficient (PCC),

PCC =
cov

(
ypred , yTNG

)
σypredσyTNG

, (4.2)

where cov(A,B) is the covariance of two variables A,B and σ is the stan-

dard deviation. In both equations, y i
pred is the predicted logged output, and

y i
TNG is the desired logged output in the simulation. Note that we take the

logarithm of the output data—except for stellar magnitudes where y i
pred and

y i
TNG are simply the raw data (i.e., not logged).5

We find that both measures are significantly improved in our model:

MSE decreased from 2.0 × 10−2 to 1.9 × 10−4, and PCC increased from

0.971 to 0.987.

We have also tried — and eventually adopted — another metric to mea-

sure the machine accuracy.6 To compute what we call the “mean binned er-

ror” (MBE), first, the predicted and desired output pairs,
(
y i

pred, y
i
TNG

)
, are

binned into Nbins bins according to the y i
TNG values. Then, in each bin, the

normalized mean error is

Γj =
1

Nj

Nj∑
i

∣∣∣y i
pred − y i

TNG

∣∣∣
y i

TNG
, (4.3)

where Nj is the number of data in the j-th bin. Finally, by averaging Γj’s

across all bins we obtain the MBE as

MBE =
1

Nbins

Nbins∑
j

Γj . (4.4)

If we replace the mean error in each bin, Γj , with the standard deviation

5Unlike other baryonic properties we consider, the stellar magnitudes are already logged
and lie in the range of [-25, -13].

6This is inspired by the case in which MSE or PCC does not aptly represent the entire
y i

pred−y i
TNG distribution — i.e., PCC can be high even when the datapoints are widely spread

out around the y i
pred = y i

TNG line in Figure 4.2.
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in each bin, sj , then we acquire another accuracy measure “mean binned

standard deviation” (MBSD),

MBSD =
1

Nbins

Nbins∑
j

sj . (4.5)

We find that, in general, MBE captures the accuracy of a trained ma-

chine better than other metrics do. When predicting stellar masses, our model

improves the MBE score from the baseline model’s 0.0018 to 0.0013, and

MBSD from 0.017 to 0.010. We will extensively use MBE and MBSD in

Table 4.3.1.

In addition to reducing the machine accuracy down to a numeric score,

we also inspect the machine’s performance across the output’s entire value

range. In Figure 4.3, for six baryonic properties we predict, we compare

the probability distribution functions (PDFs) of the two machine learning

models, and the actual data in the simulation.7 Again, both the baseline

(blue dot dashed lines) and our model (red solid lines) predict the baryonic

properties well, but in general our improved model’s PDFs better match the

actual PDFs in ILLUSTRISTNG — as demonstrated by the residual plots.

Factors that improved our model
Having overviewed our machine’s overall accuracy by comparing it

with the actual data and with the baseline model, we now focus on each of

the factors that improved our model. In what follows, we explain each of

the three major improvements we made to our MSSM pipeline, followed by

how we identify the best combination of these improvements that exhibits

the highest accuracy.

7To make the PDF in Figure 4.3, we sum up the test results of 5 (= 1/0.2) trials of
machine learning and testing, where 0.2 is the fractional size of the ILLUSTRISTNG test set.
Then, the fractional halo numbers in each bin match the number density in the real Universe.
For this reason, the black dashed line in Figure 4.3 is slightly different from that of Figure
4.4, the actual halo number density in the ILLUSTRISTNG volume (TNG100-1).
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Figure 4.3: Probability distribution functions Φ (PDFs) of six baryonic prop-
erties — gas mass, stellar mass, central black hole mass, star formation rate
(SFR), metallicity, and stellar magnitude (g band) — predicted from input
DM features in the ILLUSTRISTNG test set. The baseline model and our im-
proved model are shown in blue dot dashed lines and red solid lines;. The
residuals between the predicted and the actual PDF, log Φ pred − log ΦTNG,
are displayed in the bottom chart of each panel.
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Using A Refined Error Function with Logarithmic Scaling
One of the most common choices for an error function in the machine

learning algorithm — including our choice, ERT — is the MSE (see Section

3.1),

MSE node =
1

Nnode

∑
i∈ node

(
yi − ynode

)2
. (4.6)

However, a severe problem may arise when our prediction target property

has a large dynamic range (e.g., halo gas masses ranging from 108M⊙ to

1012M⊙). A simple mathematical argument tells that when naively used

with raw y values, MSE could be disproportionately more sensitive to larger

y values. For example, a small fractional error in the 1012M⊙ range may

completely dominate over even a very large fractional error in the 108M⊙

range. This has caused the naive baseline model to perform poorly in the

lower value range (see e.g., the left panel of Figure 4.2).

To amend the problem, in the learning phase, we apply logarithmic

scaling to desired outputs of the training set (i.e., actual baryonic properties

in ILLUSTRISTNG — except stellar magnitudes).5 Or equivalently, the y

variables in the MSE error function, Equation 4.6, now mean logged out-

puts, brining y values to the range of O(1). As a result, the equation is no

longer heavily biased towards larger y values. Hence, our fix alleviates the

inaccuracy in the lower end of the predicted outputs (see e.g., the right panel

of Figure 4.2).8 As seen in the 2nd row of Table 4.3.1 where we assemble

the scores by each of the improvements, predictions such as gas mass, SFR,

and metallicity benefit from the refined error function (e.g., MBE for gas

mass prediction decreased from 0.0015 to 0.0010).9 On the other hand, pre-

8An alternative to the logarithmic scaling could be to normalize the raw y values. How-
ever, the normalized variables lose their physical meanings, so the physically meaningful
quantities must be carefully recovered afterwards. In contrast, logarithmic scaling does not
lead to the loss of physical meaning.

9Each of the MBE/MBSD scores in the table is an average over 200 trials. A machine
built in each trial is different due to the randomness in building an ERT, and in choosing a
training set (80% of the ILLUSTRISTNG data).
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dictions for stellar and central black hole masses do not benefit as much

from the refined error function alone.

Using historical and environmental factors
As discussed in Section 4.2.3, we extract and add “historical” and “en-

vironmental” factors to the input features when we pre-process the data for

our MSSM pipeline. The newly added features are extracted (1) from the

halo’s merger history, and (2) from the halo’s local volume, aimed at di-

rectly and indirectly capturing the halo’s evolution history. The resulting

value-added dataset includes seven additional input features such as: num-

ber of all mergers, number of all major mergers, mass ratio of the last major

merger, local density, number of local halos whose masses are greater than

80% of the target halo’s mass, etc. (see Section 4.2.3 for details). It im-

proves our model’s MBE and MBSD scores when predicting features like

stellar mass, central black hole mass, and SFR (see the 3rd row of Table

4.3.1). For other features, including these extra factors is not as effective by

itself.

Two-stage learning with stellar magnitudes as an intermediary
Broadly speaking, the accuracy of the ERT machine learning algorithm

improves as the number of decision trees or the “size” of each tree in-

creases10 (Section 3.1).Since the increased tree size requires exponentially

more computing resources, we often need to limit the “depth” of a tree,

and/or prune the nodes that are not functional. In practice, however, it is

difficult to grow a large tree and prune them into an efficient shape.

Here we introduce a scheme that “links” two machines, by using a

predicted output from one machine as an input to the next. The “two-stage

learning” scheme works as follows. Imagine building a machine to predict

10ERT includes various hyper-parameters to optimize: e.g., maximum depth of a tree,
minimum samples split, maximum number of nodes, etc. The “depth” of a decision tree
refers to the distance from a root node to a farthest leaf node. The “size” of a tree is the
number of all nodes.
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SFR based only on DM features (e.g., DM mass or velocity dispersion).

To increase the machine accuracy the tree must be both deep and large, re-

quiring copious computing resources. A training set may not be informative

enough for a machine to establish a meaningful direct mapping between the

DM properties and SFR within a practical time limit. Instead, here we first

build a machine estimating stellar magnitudes based on DM properties, then

use the predicted stellar magnitudes as part of inputs to another machine es-

timating SFR.4,11 By supervising what to estimate first (stellar magnitudes)

in order to predict the eventual output (SFR), we effectively “guide” the ma-

chine to build one combined, large — yet efficient — ERT. Readers should

note that we select stellar magnitudes as an “intermediary” because (1) the

stellar magnitudes are relatively accurately predicted only from DM fea-

tures and (2) the stellar magnitudes and SFR are highly correlated in the

simulation data.12 Thus, we argue that in the two-stage machine training,

new astrophysical information is provided to the machine by a human su-

pervisor that the stellar magnitudes are a good intermediary between DM

properties and SFR. For more discussion on how stellar magnitudes and the

two-stage learning can improve the performance of MSSM.

We find that the two-stage learning technique described here is one of

the best strategies to construct a large and efficient ERT, and is also arguably

the most effective way to improve the MSSM’s accuracy. As an example, for

the SFR prediction, the two-stage learning scheme improves both MBE and

MBSD scores the most when compared with any other improvements (e.g.,

MBE for SFR prediction decreased from 1.71 to 1.11, and MBSD from

36.10 to 20.15; see the 4th row of Table 4.3.1).

Combining improvements to construct the best model

11To predict the g band, the other seven bands are used to link the machines.
12For example, SFR is more strongly correlated with the stellar magnitudes (e.g., g band)

than with any other DM features like DM mass. In other words, when predicting SFR, stel-
lar magnitudes’ “feature importances” dominate (> 50%; see Figure 4.7) over other DM
features’.
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Finally, we combine all three improvements discussed above. Rather

than using all the improvements at once, we have carefully tested various

combinations of improvements per each of baryonic properties. This is be-

cause, when combined, one improvement may hurt the other and lead to an

unexpected decrease in machine accuracy. The MBE scores for the identi-

fied best combinations are shown in the last row of Table 4.3.1. The best

combinations identified here have been referred as our “improved model”,

and are used to produce the figures presented throughout this chapter.

In Table 4.3.1, readers may notice that the score of a best combination

is sometimes the same as that of a single improvement. For example, the

MBE for a stellar magnitude prediction is 0.0005 for the best combination,

but also for the two-stage learning alone. This means that the two-stage

learning technique is the most important and dominant factor in improving

the accuracy of stellar magnitude prediction.

4.3.2 Predicting baryonic properties in dark matter-
only simulations

We now turn to the application phase of our MSSM pipeline (Figure

4.1), and use the machine to estimate baryonic properties for halos in a DM-

only N -body simulation data. The improved machine from Section 4.3.1

trained with the ILLUSTRISTNG data in the learning phase, is fed with the

MULTIDARK-PLANCK DM-only simulation (MDPL2; see Section 4.2.2).13

The machine is asked to generate a galaxy catalogue with multiple baryonic

properties — gas mass, stellar mass, central black hole mass, SFR, metal-

licity, and stellar magnitudes — filling the entire MULTIDARK-PLANCK

volume of (1 h−1Gpc)3.

13Note that the DM halos in DM-only simulations and hydrodynamic simulations have
experienced different physical processes so are inevitably different but the baryonic back-
reaction effect is relatively small.
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Figure 4.4: Probability distribution functions Φ (PDFs) of six baryonic
properties predicted using a DM halo catalogue from the MULTIDARK-
PLANCK database. Our improved machine trained with ILLUSTRISTNG is
applied to a MULTIDARK-PLANCK dataset to make predictions (red solid
lines). The residuals between the predicted PDF and the simulation’s PDF
(ILLUSTRISTNG’s), log Φ pred−log ΦTNG, are displayed in the bottom chart
of each panel.
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Is the Machine-assisted Semi-Simulation Model (MSSM) com-
patible with Semi-Analytic Models (SAMs)?

In Figure 4.4, for six baryonic properties we estimate, we compare the

PDFs of our machine learning model (red solid lines), and of a SAM (green

dotted lines). For a representative SAM, we utilize the MDPL2-SAG cata-

logue (Cora et al. [28]), one of the three SAM-generated galaxy catalogues

in the MULTIDARK-GALAXIES database (Knebe et al. [83]).14 We also add

the actual baryon data in the ILLUSTRISTNG for comparison (TNG100-1;

black dashed lines). Overall, we find that our MSSM and the SAM (SAG)

exhibit largely compatible distribution functions. For certain properties like

black hole masses, star formation rate, and stellar magnitudes, there is a sign

that the MSSM mimics the distribution of ILLUSTRISTNG more closely —

which is what MSSM is specifically designed to do. Yet, there are some clear

mismatches due in large part to the small number statistics. For example, in

the gas mass distribution, at Mgas ≲ 109.5M⊙, the MSSM’s prediction de-

viates from ILLUSTRISTNG leading to a sizable gap at the lowest mass end

(1st row, left panel). The MSSM’s prediction for metallicity drops drasti-

cally at log(Metallicity) ≳ −1.8, too (3rd row, left panel).

We then consider the relation between the predicted stellar mass and

the halo mass, M⋆ − Mhalo, in Figure 4.5. This plot shows how the two

halo properties are correlated on a two-dimensional plane (two-dimensional

PDF). Since stellar mass is one of the properties the machine can estimate

well, our MSSM prediction (red-blue contours in the upper right panel)

replicates the actual M⋆ − Mhalo relation in the ILLUSTRISTNG run well

(top left panel). As a reference, the prediction of three popular SAMs —

SAG (Cora et al. [28]), SAGE (Croton et al. [31]), and GALACTICUS (Ben-

son [12]) — are shown here as gray contours demarcating ρbin, cutoff =

0.01 /(log10M⊙)
2. Also as a reference, added to Figure 4.5 is the result of

14The MULTIDARK-GALAXIES data can be found in the COSMOSIM database at
http://www.cosmosim.org/.
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Figure 4.5: Two-dimensional probability distribution of DM halo masses,
Mhalo, and predicted stellar masses, M⋆ at z = 0. Colors indicate ρbin =
Nbin/(NtotSbin), where Ntot is the total number of halos, Nbin is the num-
ber of halos in each two-dimensional bin, and Sbin is the bin area. Yellow
squares represent binned averages. The actual baryon data in the ILLUS-
TRISTNG itself is also presented (top left panel). Shown in each panel
as gray contours are results by three popular SAMs: SAG, SAGE, and
GALACTICUS.

the baseline model (bottom right panel; see Section 4.2.2 and Table 4.1).

Because of the various improvements, our MSSM tends to perform better in

the lower-mass end (M⋆ < 109.5M⊙) than the baseline model does.

As illustrated in Figures 4.4 and 4.5, we find that the MSSM pipeline

can be a promising way to transplant the baryon physics of a high-resolution
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Figure 4.6: Two-dimensional probability distribution of predicted stellar
masses, M⋆, and predicted specific SFRs at z = 0. Colors indicate ρbin =
Nbin/(NtotSbin), where Ntot is the total number of halos, Nbin is the num-
ber of halos in each two-dimensional bin, and Sbin is the bin area. Yel-
low squares represent binned averages, black diamonds represent GALEX-
SDSS-WISE Legacy Catalog (GSWLC) [153] at z ∼ 0, and black circles
represent a compilation of observations [48] at z ∼ 0. Our machine trained
with ILLUSTRISTNG is applied to a MULTIDARK-PLANCK dataset to pre-
dict the PDF (right panel). The actual baryon data in the ILLUSTRISTNG
itself is also presented (left panel). Shown in each panel as black dotted
contours is the result by a SAM code, SAG.

galaxy-scale hydrodynamic simulation (e.g., ILLUSTRISTNG) onto a larger-

volume DM-only simulation (e.g., MULTIDARK-PLANCK). It is also worth

noting that our machine can “paint” galaxies and their baryonic properties

on a large (1 h−1Gpc)3 DM-only run, within a fraction of time required

for a high-resolution hydrodynamic calculation — a few tens of minutes (at

most) versus a few weeks (at least).

Where the MSSM can be improved
In Figure 4.6, we plot the probability distribution of halos on the plane

of predicted stellar masses and predicted specific star formation rates (sSFR).

Shown in each panel is the MDPL-SAG catalogue (black dotted contours;

the outermost contour marks ρbin, cutoff = 0.05 /(log10M⊙log10 yr
−1)) which
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best matches the observational data (black circles; [48]) among SAMs; No-

tice that the ILLUSTRISTNG data itself (red-blue contours in the left panel)

slightly underpredicts the Elbaz’s estimation [48] data at a given stellar mass

when compared with MDPL-SAG, but better matches the GALEX-SDSS-

WISE Legacy Catalog (black diamonds) [153]. The MSSM prediction be-

haves in a similar way (red-blue contours in the right panel), which is again

exactly what the MSSM is trained to do. However, the two-dimensional dis-

tribution of halos is narrower in machine predictions than in the original IL-

LUSTRISTNG data, as is indicated by the smaller error bars for the binned

averages (yellow squares in the right panel). A similar tendency is found

in Figure 4.5 as well, where the halos are distributed in a narrower strip in

MSSM predictions but not as much. When only one axis is of a predicted

property (e.g., Figure 4.5), the two-dimensional distribution seems broader

than when both x- and y-axis are of predicted properties (e.g., Figure 4.6).

The narrower distribution of halos likely implies reduced diversity of

galaxies of same stellar masses. We suspect that when the machine is asked

to predict baryonic features from DM-related features only, it may have been

underfitted due to the inherently limited number of available input features.

That is, there are only a very few important input features that decides the

output, so the diversity of resulting outputs is highly restricted (more dis-

cussion in Section 4.4). This is the area where our MSSM pipeline should

and can be improved in future studies (see Section 4.5).

4.4 Discussion

In this section, we discuss two topics we find useful to appreciate our

MSSM pipeline and its scientific usages.

Relative importance of input features
Since our machine is built with ERT, a RF-type learning algorithm, we

can easily find which input feature contributes more than the others (e.g.,
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Figure 4.7: Relative importances of input features — halo mass, velocity
dispersion, maximum circular velocity — when the machine predicts stellar
masses (left panel) and central black hole masses (right panel) based only
on the three DM features of halos in ILLUSTRISTNG. The evolution of the
feature importances are plotted as functions of time.

halo mass vs. halo angular momentum) in estimating a particular halo prop-

erty (e.g., stellar mass). The degree of contribution by each of the input fea-

tures is termed “feature importance”. Feature importance is a relative metric

among all input features adopted, and lie in the range of [0, 1]. For example,

the feature importances of input parameters P1, P2, P3 could be 0.6, 0.3,

0.1, respectively, which add up to 1.

Figure 4.7 shows how relative importances of input features in the base-

line model change over time when predicting two baryonic properties. At

high z, the maximum circular velocity is the most responsible in construct-

ing the mappings from inputs to outputs — to both stellar mass (left panel)

and central black hole mass (right panel). However, at lower z, the halo

mass and velocity dispersion take over and become more dominant. The

trends robustly appear across 15 redshift snapshots from z = 7 to 0 we

tested, and are highly similar for both mass predictions. At z = 0, the halo

mass is the most important feature in estimating both properties with fea-

tures importances ≳ 0.4.
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From feature importances we expect to extract physical insights about

how cosmological structures have formed and evolved. We may also use fea-

tures importances to evaluate how effective a new input feature is compared

to preexisting ones. For example, a similar test with our improved MSSM

reveals that the three input features shown in Figure 4.7 are still more im-

portant than most other newly introduced features in Table 4.1 most of the

time. To raise the scientific potential of MSSM, our next goal would be to

develop a set of new inputs whose feature importances are comparable to

the three existing ones’.

Required training set size to build MSSM
Generally speaking, the size of a training set is one of the deciding fac-

tors in the quality of supervised learning. To check whether our TNG100-1

training set is sufficiently large, we measured the machine accuracy with

PCC, Equation 4.2, as we increase the size of the training set. In Figure

4.8, we see the effect of the training set size on the accuracy of the baseline

model (that uses just three input features — halo mass, velocity dispersion,

maximum circular velocity; see Table 4.1). Readers may notice that for all

six baryonic properties we estimate, the “learning curves” reach their maxi-

mum accuracies with only a surprisingly small number of halos in the train-

ing set. For example, for stellar mass and gas mass predictions, ∼103 halos

are enough to yield reasonably good estimates. For stellar magnitudes (g

band) and metallicities, ∼102 halos seem sufficient for the machine to reach

its maximum potential. From the shapes of learning curves one may argue,

for example, that the stellar magnitudes are highly correlated with the three

input features (steep ascent to PCC ∼ 1 only with ∼102 halos), or that SFR

is relatively hard to predict no matter how many halos are used in training

(steep ascent but only to PCC ∼ 0.5).
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Figure 4.8: Effect of a training set size on the machine accuracy for various

baryonic properties (each of six panels) based on three DM features of halos.
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The baseline model can be well-trained up to its full potential with just

≲ 103 halos, at least for the presented machine learning algorithm. Because

the z = 0 training set from TNG100-1 even after aggressive data prun-

ing (Section 4.2.3) still holds ∼ 4 × 104 halos, the machine trained with

TNG100-1 can be considered to have reached its maximum accuracy.15 We

suspect that if the machine is built with more important input features (i.e.,

not just three features in the baseline model; see Section 4.4), a bigger train-

ing set would be needed to converge to the maximum accuracies in the learn-

ing curves. Combined with what we see in Sections 4.3.1 and the previous

feature importance, our experiments suggest that the machine’s accuracy is

limited not necessarily by the data size available for training, but more likely

by the number of important input features.

Effect of Baryons on Dark Matter Halos
In Section 4.3.2, we feed a DM-only simulation data to the machine

trained with a hydrodynamic simulation data to generate a galaxy catalogue.

For this to work, an implicit assumption is that DM halos from DM-only

simulations and the ones from hydrodynamic simulations starting from an

identical IC should have an one-to-one match. In hydrodynamic simulation,

however, the so-called baryon back-reaction may have an effect on the inter-

nal properties of a DM halo such as its shape, profile, and circular velocity

(e.g., Duffy et al. 2010; Cui et al. 2012; Martizzi et al. 2012; Sawala et

al. 2013; Henson et al. 2017; Chua et al. 2019) and possibly some large-

scale properties (e.g., Cui et al. 2017). Internal structure of DM halo can

also be affected by sophisticated baryonic physics such as AGN feedback.

In this study, however, we consider only the bulk properties of DM halos

such as the ones in Table 4.1. For our MSSM to work, one of the crucial

15To doubly ensure that our z = 0 training set is sufficiently large, we trained a machine
with all nine halo catalogues within z < 0.1. Using a ∼9 times bigger training set did not
significantly improve the machine accuracy, as expected by the saturated learning curves in
Figure 4.8.
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Figure 4.9: Probability distribution functions Φ (PDFs) of DM halo masses
for ILLUSTRISTNG (red solid line) and ILLUSTRISTNG-DARK simula-
tions (blue dotted line). The shift between the two lines is only less than
1%, and can be safely ignored for our purpose when applying our machines.

indicators to inspect would be the DM mass function of halos, not the indi-

vidual internal structures. Studies have shown that the DM halo mass func-

tion of a hydrodynamic simulation including AGN feedback matches well

that of a DM-only simulation (e.g., Duffy et al. 2010; Martizzi et al. 2012).

Our own comparison of DM halo mass functions from ILLUSTRISTNG and

ILLUSTRISTNG-DARK (DM-only run of ILLUSTRISTNG) in Figure 4.9

reveals high resemblance with only a slight shift (<1%). For these reasons,

we have assumed that DM halos from a DM-only simulation can be used

as inputs for a machine trained with a hydrodynamic simulation. Further

correction and investigation on this issue remains as future work.

Verifying Stellar Magnitudes As Information Containers
Stellar magnitudes play an important role in the two-stage learning

48



Figure 4.10: Mean binned error (MBE), Eq. (4.4), of stellar mass predic-
tion as a function of how mock band stellar magnitudes are used as an in-
termediary in the two-stage learning for our MSSM (see Section 4.3.1).9

Shown on the x-axis are various combinations of mock band magnitudes
(e.g., “zKgB” means z, K, g, B bands are used as an intermediary in ma-
chine training). The blue dashed line is for the sequence of combinations
shown in the upper axis, B to UirV zKgB. The red solid line is for the
sequence of combinations shown in the lower axis, U to UirV zKgB.

(Section 4.3.1). As discussed, stellar magnitudes are found to be a good in-

termediary between e.g., DM halo mass and SFR. Typically, star particles in

the simulation are convolved with a stellar population synthesis model (e.g.,

Bruzual & Charlot 2003) and a photometric filter to produce mock band

stellar magnitudes. Therefore, one may argue that additional astrophysical

information is provided to the machine as we utilize stellar magnitudes as

an intermediary.

To better understand how stellar magnitudes and the two-stage learn-

ing help our MSSM to achieve better accuracy, here we evaluate if stellar
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magnitudes in different bands contain different information. In other words,

we check if including more photometric bands improves the MSSM’s ac-

curacy. On the x-axis of Figure 4.10, we list combinations of mock band

magnitudes used as an intermediary in the two-stage learning when predict-

ing stellar masses. For the blue dashed line, we start with just one band, B,

and add one more band at a time in the order of g, K, z, V , r, i, U (from left

to right on the upper axis). This is the ascending order of feature importance

among the eight band magnitudes. One can see that as we add more bands,

the machine error, MBE, decreases. On the other hand, the red solid line is

for the reversed order of combinations starting with U (from left to right on

the lower axis). Since the U band magnitude has the highest feature impor-

tance, the MBE is already near its minimum only with the U band. Adding

more bands does not significantly improve the machine accuracy.

Our tests reveal that for stellar mass predictions the U band is domi-

nant; for metallicity predictions, the i band is. Because different band mag-

nitudes carry different information about baryonic physics in a galaxy, we

expect that including stellar magnitudes in more photometric bands would

improve the MSSM’s accuracy.

4.5 Summary

Using machine learning techniques, we have developed a pipeline to

estimate baryonic properties of a galaxy based purely on DM-related fea-

tures of its host halo (Section 4.2). Our MSSM pipeline was trained with the

ILLUSTRISTNG high-resolution hydrodynamic simulation of a (75 h−1Mpc)3

volume, so it can establish correlations between DM and baryonic proper-

ties (Figure 4.1). Compared to a simpler baseline model similar to prior

studies, our machine’s accuracy has been significantly improved by several

improvements — such as a refined error function with logarithmic scaling in

machine training, considering historical and environmental factors of a halo
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as inputs, and the two-stage learning with stellar magnitudes as an interme-

diary. Machine accuracies by each and combinations of these improvements

were extensively discussed (Sections 4.2.3 and 4.3.1). For example, the log-

arithmic scaling in the error function alleviates the inaccuracy in the lower

end of the predicted gas masses. The two-stage learning in which predicted

stellar magnitudes from one machine is used as an input in the next, is found

to be very effective in increasing the prediction accuracy for SFRs.

Once a well-trained machine is in place, in just a few tens of minutes

we can rapidly populate a DM-only simulation volume that is large enough

to address topics like baryonic acoustic oscillations, with galaxies having

basic properties. With our MSSM mimicking ILLUSTRISTNG’s galaxy-

halo correlation better than previous models, we painted baryonic properties

on DM halos in a (1 h−1Gpc)3 volume of the MULTIDARK-PLANCK DM-

only simulation (Section 4.3.2). The resulting MSSM galaxy catalogue is

largely compatible with popular SAM catalogues. Furthermore, our MSSM

has multiple scientific advantages:

• Within a fraction of time needed for a hydrodynamic simulation, one

can efficiently transplant the baryon physics of galaxy-scale hydrody-

namic calculations onto a much larger volume. Readers should note

that, unlike SAMs, this process does not require any recipes with fine-

tuned parameters or human bias.

• The ERT algorithm naturally assesses the relative importances of in-

put features in estimating each baryonic properties (Section 4.4). The

feature importance enables us to select important input features easily,

and refine the machine with newly added input features with higher

importance scores.

• From feature importances, and by comparing the MSSM catalogue

with SAMs’, one can expect to discover physical insights in structure

formation and improve the physics models in SAMs.
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Chapter 5

Part II: Calibration of cosmological simulations
using simulation-based inference

This chapter is included in the publication submitted to The Astrophys-

ical Journal.

5.1 Introduction

Over the decades, the significant progress of cosmological simulations

and observations has greatly improved our understanding of a wide vari-

ety of phenomena, such as the formation and evolution of large-scale struc-

ture. N-body simulations have successfully simulated formation and evo-

lution of large-scale structure of ΛCDM universe [19, 80, 82, 170]. Fur-

thermore, (magneto-)hydrodynamic simulations that include comprehensive

subgrid models such as star formation, stellar winds and active galactic nu-

clei (AGN) feedback have been performed in a cosmological context and

have made significant strides towards reproducing a realistic galaxy popu-

lation across a range of cosmic epochs. These include ILLUSTRIS [57, 121,

188, 190], cosmo-OWLS [90], MAGNETICUM [65, 144], HORIZON-AGN

[44], MASSIVEBLACK-II [77], EAGLE [157], BLUETIDES [51], MUFASA

[35], ROMULUS [179], BAHAMAS [108], SIMBA [38], ILLUSTRISTNG

[138, 173], HORIZON RUN 5 [91].

Meanwhile, wide-field and deep surveys have identified samples of

many thousands of nearby and distant galaxies, respectively [2, 20, 89, 184].

In addition, high-resolution imaging and spectroscopy have enabled investi-

gations into the structure and kinematics of galaxies [40, 192]. These obser-

vational breakthroughs have not only enabled access to a plethora of galax-
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ies from which to construct global distributions of galaxy properties, such as

cosmic star formation history [93, 104] and galaxy stellar-mass functions at

different redshifts [8, 94, 111], but also the exploration of many dimensions

of galaxy properties, leading to scaling relationships such as the (baryonic)

Tully-Fisher relation [109, 110, 182], mass-metallicity relation [53, 55, 98],

star-forming sequence [95, 125, 162], size-mass relation [116, 158, 183],

and relations between galaxy properties and the mass of the central massive

black hole [85, 87, 112].

The remarkable progress of simulations and observations has provided

considerable insights into physical processes for galaxy formation and evo-

lution and has played a crucial role in constraining theoretical models. How-

ever, simulations and observations have not been reconciled due to several

factors, such as various uncertainties in both observation and simulation,

limitations of physical models for both observation and simulation, and the

absence of delicate and sophisticated comparisons. For instance, cosmologi-

cal simulations—specifically, the subgrid models—have generally been cal-

ibrated against only a handful of observables through by-eye comparisons

between simulations and observations, along with educated guesses or sim-

ple parameter-space search algorithms [126, 138, 157]. The limits of this

conventional calibration approach are as follows: (1) The dimensions of the

subgrid parameter space that one can cover is significantly limited when us-

ing by-eye comparisons. In addition, as the number of parameters of interest

increases, it becomes harder to provide educated guesses due to complex

and intertwined relations between physical models and observables. (2) It is

challenging to calibrate against numerous observables simultaneously. (3)

The accuracy of the calibrated parameters is hard to determine due to the

objective nature of the comparison process. (4) The simulation uncertainty,

due to such sources as cosmic variance, is generally not taken into consid-

eration. The cosmological simulations suffer from uncertainty that comes

from various sources of randomness such as initial conditions [57, 58, 76].
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This can lead to appreciable bias in the calibration.

Similarly, semi-analytical models (SAMs), which estimate properties

of the galaxy population using parameterized physical models that include a

number of free parameters, have rigorously tuned those parameters to repro-

duce certain observational properties of galaxy population using Bayesian

inference together with the Markov chain Monte Carlo method (MCMC)

[13, 101, 102]. Bayesian inference is a widely-used method of statistical in-

ference that updates one’s knowledge—or belief in the Bayesian sense—of

the parameters by making new observations. The majority of the problems

of the conventional calibration method for cosmological simulations can be

alleviated by the use of Bayesian inference. For instance, the Bayesian infer-

ence is conducted through the likelihood functions that can mathematically

guarantee the precision of calibration and enables inference from numerous

observations simultaneously. Also, the probabilistic nature of the Bayesian

inference captures the uncertainty of parameters through Bayes’ theorem.

However, Bayesian inference usually entails MCMC, which is computa-

tionally expensive, for determining the posterior distribution. In contrast to

SAMs, hydrodynamical cosmological simulations with subgrid models are

too computationally costly to perform hundreds of thousands of simulations

for MCMC, rendering such an approach impossible in practice. This is the

primary reason, despite all the merits, why calibration of cosmological sim-

ulations in the Bayesian framework has never been conducted thus far. In

addition, conventional Bayesian inference has its limitations in terms of its

need for an explicit (analytic) likelihood. Since the likelihood should be ex-

plicitly formulated, commonly-used analytic likelihoods such as Gaussians

are only an approximation to the true unknown one.

The simulation-based inference approach (SBI)—also known as likelihood-

free inference or simulation-based inference—provides a framework for per-

forming rigorous Bayesian inference in a computationally efficient way, es-

pecially for inferences on computationally expensive simulations. In con-
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trast to the conventional Bayesian inference that requires an explicit (ana-

lytic) formulation for the likelihood, SBI obtains posteriors directly from

simulated parameter-observable pairs insert reference to SBI here. Often

SBI methods adopt a neural density estimator (NDE) that learns the likelihood—

the conditional distribution of observable given the parameters [47, 64, 103,

132, 133]. The NDE removes the need to assume a particular analytical form

for the likelihood. On the computational cost side, the likelihood can be

evaluated through the trained NDE without performing further simulations.

The number of simulations required for the inference is equivalent to the

number of simulations for training the NDEs, which is generally thousands

of simulations [5]. In conventional inference, although it generally depends

on the complexity of the problem, the convergent MCMC typically requires

at least 105 samples in cosmological applications [52, 181], which is signif-

icantly more simulations than the NDE requires. SBI has already started to

vigorously be exploited for inference and estimation of physical quantities

in astrophysics, for example: inference of the Hubble constant from binary

neutron star mergers [59]; constraints on the cosmological parameters from

weak lensing [176]; mass estimations of the Milky Way and M31 [96]; in-

ference of strong gravitational lensing parameters [92]; dynamical mass es-

timation of galaxy clusters [84]; inference of reionization parameters from

21 cm power spectrum and light cones [203, 204];

In this chapter, we adopt the sbi package [177], the successor of

delfi package, which is equipped with various NDEs for SBI, to cali-

brate cosmological simulations against observations. We also exploit the

suite of cosmological simulations of the Cosmology and Astrophysics with

MachinE Learning Simulations (CAMELS) project [185] that includes the

largest data set designed to train machine learning models and provides

more than a thousand simulations for exploring the cosmological and as-

trophysical parameter space. Despite the large number of simulations in the

CAMELS project, it is still not enough to directly employ our SBI tech-
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nique, so we build an emulator that is trained on the CAMELS simulations

to estimate the target observable taking the cosmological and astrophysical

parameters as input. This provides much flexibility on computational cost

during inference, which is in line with Elliott et al. [49] that uses an emu-

lator to calibrate a semi-analytic model. Using the emulator as a surrogate

to the actual cosmological simulations, we perform SBI using the observed

cosmic star formation history [93] and the observed stellar mass functions

[94] to infer the parameters that are varied in the CAMELS suite – two

cosmological parameters (Ωm and σ8) and four astrophysical parameters

(related to stellar wind feedback and kinetic black holes feedback).

The structure of this chapter is as follows. In Section 5.2.1, we describe

the CAMELS simulations that we use to train emulators and the details of

the target observables. In Section 5.2.4, we give a brief review of the SBI

including the NDE and our emulator design. In Section 5.3.1, we investi-

gate the performance and convergence of the posterior distributions of the

cosmological and astrophysical parameters inferred from an emulated star

formation rate density (SFRD) as the target observable. In Section 5.3.2, we

perform the inference from the observed SFRD and study how the inferred

SFRD matches the observed one. In Section 5.3.3, we investigate the per-

formance and convergence of the posterior distributions from an emulated

stellar mass function (SMF) as the target observable and in Section 5.3.4, we

perform the inference from observed SMFs and study the discrepancies be-

tween those and the inferred ones. In Section 5.4, we discuss the properties

of the inferred posteriors and mismatch between inferences and observations

with respect to the correlation between the parameter-observable pairs and

physical analysis of cosmological simulations. In Section 5.5, we present a

summary of the results and findings.
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5.2 Methodology

5.2.1 Cosmological simulations: the CAMELS project

Overview
Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS)1

is a suite of 4,233 cosmological simulations: 2,184 (magneto-)hydrodynamic

simulations with the AREPO and GIZMO codes, and 2,049 N-body sim-

ulations [185]. Each simulation contains 2563 dark matter particles of mass

6.49× 107(Ωm−Ωb)/0.251h
−1M⊙ and 2563 gas cells with an initial mass

of 1.27×107h−1M⊙ in a periodic box of comoving volume of (25h−1Mpc)3,

which results in a resolution comparable to but slightly lower than that of

ILLUSTRISTNG300-1 [106, 118, 123, 138, 172]. The CAMELS project

has been exploring a wide cosmological and astrophysical parameter space

for the applications of machine learning in astrophysics. The cosmological

and astrophysical parameters of interest are Ωm, σ8, ASN1, ASN2, AAGN1,

and AAGN2 (refer to Equations 2.9 to 2.17 for details). The suite of (magneto-

)hydrodynamic CAMELS simulations comprises four different sets for each

of the AREPO and GIZMO codes, as follows: 1) the LH set consists of

1000 simulations with different initial conditions varying all parameters

sampled from a latin hypercube; 2) the 1P set consists of 61 simulations

with the same initial condition varying only one parameter at a time; 3) the

CV set consists of 27 simulations with fixed cosmology and astrophysics

that sample cosmic variance using different initial conditions;

The AREPO and GIZMO simulations are referred to as TNG and

SIMBA, respectively. Throughout this chapter, we adopt the TNG suites

of the CAMELS simulations unless specified otherwise. The LH set of the

TNG suites is exploited to train the emulator (Section 5.2.5). The CV set

of the TNG suites is used to model simulation uncertainty. The 1000 sim-

1https://www.camel-simulations.org
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ulations of the LH set are performed with Ωm ∈ [0.1, 0.5], σ8 ∈ [0.6, 1.0],

ASN1 ∈ [0.25, 4.0], ASN2 ∈ [0.5, 2.0], AAGN1 ∈ [0.25, 4.0], and AAGN2 ∈
[0.5, 2.0] arranged in a latin hypercube. The 27 simulations of the CV set

are performed with Ωm = 0.3, σ8 = 0.8, ASN1 = ASN2 = AAGN1 =

AAGN2 = 1 but with different initial conditions. In the meantime, the fol-

lowing cosmological parameters are fixed across all simulations: Ωb =

0.049, h = 0.6711, ns = 0.9624, Mν = 0.0eV, w = −1 and ΩK =

0. The TNG suite of the CAMELS simulations implements the subgrid

physics models of ILLUSTRISTNG [138, 194]. These simulations employ

the AREPO code2 [164, 197] to solve gravity (TreePM) and magneto-

hydrodynamics using a Voronoi moving-mesh approach. The ILLUSTRISTNG

physics includes various subgrid models: radiative cooling and heating, star-

formation, stellar evolution, feedback from galactic winds, the formation

and growth of the supermassive black holes (SMBH), and feedback from

AGN. The detail implementations of galactic winds and AGN feedback are

described in Chapter 2.

Target observables: cosmic star formation rate density & stellar
mass function

In this chapter, the target observables from which the cosmological

and astrophysical parameters are inferred are the cosmic star formation rate

density (SFRD) and the stellar mass functions (SMF). To make an infer-

ence from observations, the data structures of simulations must be consistent

witht that of observations. To this end, we manipulate the simulation data to

fit into observation data. On the observational side, we adopt the SFRD of

Leja et al. [93] ranging from z = 3 to 0.5 and the five SMFs of Leja et al.

[94] at z = 0.5, 1, 1.5, 2.0, and 2.5 that are inferred with Prospector

using galaxies in the 3D-HST and COSMOS-2015 surveys in a way that

SFRD and SMFs are consistent as in simulations.

2https://arepo-code.org
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On the simulation side, the SFRD is constructed from the global star

formation rate per unit co-moving volume for 21 snapshots (21 redshifts).

Here, we match the values of 21 redshifts between simulations and obser-

vations. The SMFs are obtained from the stellar mass of the galaxy catalog.

Each SMF is binned with 13 bins in the range [108.9, 1011.4]M⊙.

5.2.2 Resolution effects: convergence & rescaling

The resolution convergence and effects in the TNG simulations have

been extensively studied in Weinberger et al. [194, Appendix B], Pillepich

et al. [138, Appendix A], and Pillepich et al. [136, Section 3.3]. In general,

observables such as the SMF at different resolutions are not fully converged.

Figure 5.1 shows that there are appreciable offsets in both SMFs and SFRDs

between TNG100-1 and TNG100-2. Note that the fiducial parameters for

the suite of the TNG simulations are calibrated against observations for

TNG100-1. The CAMELS parameter variations are chosen around the fidu-

cial values of the TNG suite. Hence, based on the approach of Pillepich et al.

[136, Appendix A], we re-scale the SFRD and SMFs with a mass-modulated

re-scaling factor. Since the resolution of CAMELS simulations are compa-

rable to TNG100-2, we construct a re-scaling factor using the star forma-

tion rate-halo mass relation and the stellar mass-halo mass relation from

TNG100-1 and TNG100-2. The re-scaled CAMELS simulations in Figure

5.1 demonstrates that the application of the re-scaling reduces the resolution

effects at some level. One remark is that we find that the re-scaling depends

on the cosmological and astrophysical parameters. However, in this work,

we ignore this effect. Further will be discussed in Section 5.4.5.

Details of re-scaling
We adopt the re-scaling method introduced in Pillepich et al. [136,

Appendix A]. There, the stellar mass functions (SMF) of TNG300-1 is re-

scaled using the ratio between TNG100-2 and TNG100-1. The re-scaling
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Figure 5.1: Left and Middle: Stellar mass functions at z = 2.5 and 0.5.
Right: Cosmic star formation rate densities. The difference in TNG100-
1 (black dash-dotted) and TNG100-2 (blue dotted) illustrates the resolu-
tion effect of the TNG simulations. The fiducial CAMELS simulation (red
dashed) is re-scaled with the ratio between TNG100-1 and TNG100-2. The
re-sacled CAMELS simulation is shown in red solid lines.

is based on the resolutions of TNG100-2 and TNG300-1 being essentially

the same, and the SMFs of the two simulations being in a good agreement

despite the difference in the simulation volumes. As a result, the re-scaled

SMF of TNG300-1 (rTNG300-1) coincides with that of TNG100-1 with

high accuracy.

Figure 5.1 shows resolution effects in each observable in comparison

between TNG100-1 (black dash-dotted) and TNG100-2 (blue dotted). The

fiducial CAMELS (red dahsed), computed as the average of the CV set, is

overall slightly lower than TNG100-2 in both SMF and SFRD. This is be-

cause the resolution of the CAMELS simulations is lower than TNG100-2.

For dark matter particles, the mass and spatial resolution in CAMELS are

∼ 9.67×107M⊙/h and ∼ 2 kpc comoving, whereas TNG100-2 has a mass

resolution of ∼ 5.97 × 107M⊙ and a spatial resolution of ∼ 1.48 kpc co-

moving. In this chapter, we ignore the discrepancies between the CAMELS

simulations and TNG100-2. We re-scale the SMF by estimating stellar mass
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(M⋆) as a function of each bin of halo mass (Mhalo) as follows:

M⋆,rCAMELS(Mhalo)

= M⋆,CAMELS(Mhalo)×
⟨M⋆,TNG100−1(Mhalo)⟩
⟨M⋆,TNG100−2(Mhalo)⟩

,
(5.1)

where ⟨·⟩ stands for average over all halos in each bin to which Mhalo

belongs. We multiply the stellar mass of each CAMELS halo by the cor-

responding re-scaling factor (the last fractional term) for that halo mass.

The re-scaled SMF of the CAMELS simulations (red solid in Figure 5.1) at

z = 2.5 (left) is in a good agreement with TNG100-1 (black dash-dotted),

whereas the re-scaled SMF at z = 0.5 (center) deviates appreciably from

TNG100-1, especially in the low-mass end. The discrepancy is attributed

to the resolution limit that leads to the lower bounds for both dark matter

mass (∼ 108M⊙) and stellar mass (∼ 107M⊙) of halos. Since the mass-

resolution limits of halos cause lack of galaxy population in the vicinity of

the limits, the construction of the re-scaling factor becomes unfeasible in

the halo-mass range of [108, 109]M⊙, which largely affects the low-mass

end of SMFs. This results in the significant discrepancy between the SMFs

of rescaled CAMELS and TNG100-1 in low-mass end at z = 0.5. In this

chapter, we have not employed any post-processing for the zero-stellar mass

galaxies whose stellar mass is not resolved due to the mass-resolution limit.

Similarly, we re-scale the SFRD by multiplying the SFR of the CAMELS

simulations by the re-scaling factor as a function of bin of halo mass as fol-

lows:

SFRrCAMELS(Mhalo)

= SFRCAMELS(Mhalo)×
⟨SFRTNG100−1(Mhalo)⟩
⟨SFRTNG100−2(Mhalo)⟩

,
(5.2)

where dM⋆/dt is a star formation rate of galaxy. The re-scaled SFRD in

Figure 5.1 (right, red solid) has a consistent offset from TNG100-1 (black
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Figure 5.2: (a) Cosmic star formation rate densities from 27 simulations of
the CV set; (b) Mean of the 27 cosmic star formation rate densities from
the CV set + Mock uncertainty; (c) Stellar mass functions at z = 0.5 from
27 simulations of the CV set; (d) Mean of the 27 stellar mass functions at
z = 0.5 from the CV set + Mock uncertainty Each panel consists of 27
different curves.

dash-dotted), which is simply attributed to the difference between TNG100-

2 (blue dotted) and the CAMELS (red dashed).

5.2.3 Uncertainties in simulation

In this section, we focus on simulation uncertainty that is modeled as

mock uncertainty and added to emulators in Section 5.2.5 The simulation

uncertainty is the intrinsic uncertainty of cosmological simulations. In cos-

mological simulations, randomness in the initial conditions that correspond

to the density fluctuations of the early universe leads to cosmic variance.

The minute position differences of the initial conditions owing to random

seeds manifest as differences in the large-scale structure that directs to the

galaxy populations. On an observational side, cosmic variance can be at-

tributed to the limited volume of the surveys. Meanwhile, the butterfly ef-

fect stems from the chaos-like behaviors of cosmological simulations. In
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dynamical systems, we can quantify chaotic or stochastic behaviors using

a quantity called Lyapunov exponent λ. If the positive Lyapunov exponent,

the minute perturbations evolve exponentially with Lyapunov timescale λ−1

and manifest as macroscopic differences. The chaos-like behavior of the

galactic dynamical systems amplifies minute fluctuations, seeded by ran-

domness in the numerical computations such as stochasticity in subgrid

models and floating errors, into appreciable differences in later times [58].

Also, Keller et al. [76] studied stochasiticity of galaxy propertices in terms

of using the particle-base code GASOLINE and the grid-base code RAMSES.

Here, we quantify the simulation uncertainty using the CV set and

model the mock uncertainty. Figure 5.2 illustrates 27 SFRDs (top left, (a))

and 27 SMF at z = 0.5 (top right, (c)) from 27 cosmological simulations

in the CV set, which represents the simulation uncertainty (refer to Section

5.2.1 for details of the CV set). We measure the standard deviations of 27

SFRDs and 27 SMFs as σsim,sfr = 0.057 dex and σsim,smf = 0.111 dex,

respectively.

Implementation of the mock uncertainty
We model the mock uncertainty of the SFRD and SMF using a modi-

fied six-dimensional Gaussian noise in the form

Z(x) = CT exp(−1
2(x− µ)TΣ−1(x− µ))√

(2π)6|Σ|
(5.3)

with C = I for the SFRD and [0.3, 0.34, 0.38, 0.43, 0.47, 0.51, 0.56, 0.6,
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0.7, 0.9, 1.5, 1.7, 0.5] for the SMF, µ = 0, and Σ = σeγΓ where

Γ =



0 1 2 3 4 5

1 0 1 2 3 4

2 1 0 1 2 3

3 2 1 0 1 2

4 3 2 1 0 1

5 4 3 2 1 0


.

Here, (σ, γ) are (0.02, 0.2) for the SFRD and (0.02, 2) for the SMF. Note

that the parameters are empirical. The parameters of the mock uncertainty

are tuned such that the mock uncertainty can have a visually similar form

and similar standard deviations to the simulation uncertainty. In Figure 5.2,

panels (b) and (d) exhibit the 27 SFRDs and 27 SMFs with mock uncer-

tainty. Here, 27 SFRDs and 27 SMFs are generated by adding the mock

uncertainty to the mean of 27 SFRDs and 27 SMFs from the CV set, respec-

tively. The mock uncertainty-implemented SFRDs and SMFs are visually

in a good agreement with SFRDs and SMFs from the simulation uncer-

tainty. The standard deviations of the mock uncertainty of SFRD and SMF

are σmock,sfr = 0.061 dex and σmock,smf = 0.096 dex, which approximates

to that of the simulation uncertainty. Note that in principle, the mock un-

certainty depends on the cosmological and astrophysical parameters. Nev-

ertheless, we model the mock uncertainty as if the simulation uncertainty is

consistent over the entire parameter space since it is computationally impos-

sible to perform simulations across parameter space to obtain the simulation

uncertainty as a function of parameters.
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Figure 5.3: Diagram of the pipeline for this chapter.

5.2.4 Simulation-based inference with emulator

Simulation-based inference (SBI) aims at identifying the regions of

parameter space of forward models3 to match observations [29, 177]. In

Bayesian terminology, SBI retrieves the posterior distribution over the pa-

rameters given observation. In contrast to the conventional Bayesian infer-

ence, SBI requires no assumption or ansatz for likelihood p(x|θ) so that

it can also be applicable when analytical formulation for the likelihood is

not accessible. Here, x and θ generally stand for observable and relevant

parameters, respectively.

In this chapter, we adopt sbi4, a package designed to retrieve the pos-

terior distribution p(θ|x) [177]. Instead of analytical probability distribu-

tions such as the Gaussian distribution, sbi employs a neural network to

output a probability distribution, called a neural density estimator (NDE).

The NDE is a neural network that takes data points x as input and returns a

3A forward model numerically estimates output taking parameters as input, but the cor-
responding inverse model does not exists.

4https://github.com/mackelab/sbi
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conditional probability distribution p̃ϕ(θ|x) over the simulation parameters

such that
∫
p̃ϕ(θ|x)dx = 1 where ϕ represents neural network parameters.

Please refer to Figure 5.3 for the pipeline of this chapter.

The sbi package also aims at training the NDE with the least number

of evaluations of forward models such as cosmological simulations, which

are in general computationally expensive, by making an inference concen-

trating on the relatively small parameter space around the parameters of

interest. To this end, of importance is the choice proposal q(θ) from which

we draw the sets of parameters for the new simulations in the next itera-

tion. In general, the choice of the optimal proposal for a specific problem

is an open question. Since we are interested in the high probable regions of

parameter space, it might be natural to adopt the current approximate poste-

rior density as a proposal density [47, 134]. On the other hand, Alsing et al.

[4] adopts the geometric mean of prior and the current approximate poste-

rior density in the context of sequential Approximate Bayesian Computation

(ABC). It might increase the probability of exploring parameter space more

broadly beyond the posterior density. Please refer to Section 3.2 for details

of simulation-based inference and the NDE.

5.2.5 Emulator: surrogate for cosmological simulations

The number of simulations required to retrieve the posterior density is

highly correlated with dimensions and complexity of a problem. Neverthe-

less, SBI generally requires more than thousands of simulations [34, 47, 64,

70, and Figures 5.5 and 5.11 in this chapter], which exceeds the total num-

ber of the CAMELS simulations. We, thus, circumvent this issue by adopt-

ing an emulator as a surrogate simulation. The emulator is constructed upon

a fully-connected neural network that is faster than hydrodynamic simula-

tions by several of orders of magnitude. We split the LH set of the CAMELS

simulations into training (750), test (150), and validation (150) sets. Two
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independent neural emulators are trained on the training sets to estimate

the SFRD and SMFs, respectively, as a function of six cosmological and

astrophysical parameters: (Ωm, σ8, ASN1, ASN2, AAGN1, AAGN2). We use

Optuna [3], an automatic hyper-parameter optimization tool, to train and

optimize the emulators. The hyper-parameters subject to optimization in-

cludes learning rate, weight decay, the number of layers and the number

of neurons. During training, both inputs (cosmological and astrophysical

parameters) and outputs (the SFRD and the SMFs) are normalized, using

linear scaling5 and z-score6, respectively. We measure the accuracy of the

emulators with the mean square error (MSE) and the Pearson correlation

coefficient. The MSE for emulators are 0.0007 dex (SFRD) and 0.0011

dex (SMF). The Pearson coefficient correlations are 0.98 (SFRD) and 0.94

(SMF).

Connection between emulator and cosmological hydrodynamic
simulation

The emulator can be the best option for a surrogate simulation with

reasonable accuracy in terms of computational cost. However, aside from

accuracy, the imperative missing piece in an emulator is the realization of

physical uncertainty such as cosmic variance and butterfly effects (refer to

Section 5.2.3 for details of simulation uncertainty). The cosmological sim-

ulations generate different observable g(θ, δ(λ,θ)) with the same set of

parameters θ depending on its initial density fluctuation δ(λ,θ) where λ

stands for any types of randomness (e.g., in case of cosmic variance, λ is a

random seed for the initial condition).

The simulation uncertainty plays a significant role in a probabilistic

inference such as SBI, especially in quantifying uncertainty in the inferred

5x′ = (x − xmin)/(xmax − xmin) where x′ is the normalized input, and xmin and
xmax are the minimum and maximum of the inputs, namely the edge values of the parameter
ranges (refer to Section 5.2.1).

6x′ = (x − µ)/σ where x′ is the normalized output and µ and σ are the mean and the
standard deviation of the outputs, respectively.
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parameters. In case of an emulator without any uncertainties, the parame-

ters θ and observable x are highly correlated via the emulators: f(θ) = x.

Then, the posterior density p(θ|x) can be given in the form of a Dirac delta

function δ(f(θ) − x). However, with uncertainty in observable, no longer

can the posterior density be written with a Dirac delta function. The uncer-

tainty degrades the correlations between parameters and observables, propa-

gates to the posterior density, and ends up having a non-negligible amount of

uncertainties in the inferred parameters. Thus, implementation of simulation

uncertainty in the emulators is indispensable for quantifying uncertainty and

estimating error in the inferred parameters given observation.

Prior to the implementation of the simulation uncertainty in the em-

ulator, we first investigate how the emulator marginalizes the simulation

uncertainty during training. To this end, we estimate how much the em-

ulators f(θ) deviated from the uncertainty-marginalized ideal simulations

ḡ(θ) that ideally marginalize simulation uncertainty; The deviation ∆(θ) =

f(θ) − ḡ(θ). Although the deviation itself is unobtainable due to the tech-

nical limitations, we can approximate the mean and variance of the devia-

tions by taking an average over the ensembles of the thousand simulations

in the LH set. Here, two assumptions are made: (1) The mean of the infinite

number of simulation ensembles converges to the uncertainty-marginalized

ideal simulation: ḡ(θ) = ⟨g(θ, δ(λ,θ))⟩λ. (2) The simulation uncertainty is

constant across every possible simulated Universe: σ[g(θ, δ(λ,θ))] = σsim

where σsim is a constant 7. The details of the derivations and the assumptions

are further described in Appendix 5.6.2.

As mentioned above, we use two metrics: the bias bLH = ⟨∆(θ)⟩θ∈LH set

and the variance σ̂LH =
〈
∆(θ)2

〉
θ∈LH set

. The bias bLH measures the mean

of the deviations of emulated observable from the unceratinty-marginalized

ideal observable over the LH set that the emulators are trained on. The vari-

7σ[g(θ, δ(λ,θ))] ≡
〈
(g(θ, δ(λ,θ))− ḡ(θ))2

〉
λ

where ḡ(θ) = ⟨g(θ, δ(λ,θ))⟩λ.
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ance σ̂LH measures the variance of the deviations of emulated observables

from uncertainty-marginalized ideal observables over the LH set. If bLH = 0

and σ̂LH = 0, the emulator perfectly marginalizes the simulation uncer-

tainty and emulated prediction follows the uncertainty-marginalized ideal

simulation. In this work, the emulators have the bias of 0.003 and the vari-

ance of 0.066 over the LH set whereas the variance of the simulation un-

certainty that is estimated from the simulations of the CV set is 0.057 (refer

to Appendix 5.6.2). Provided that the variances from emulators and simu-

lations are comparable, it is less likely for the emulators to marginalize the

simulation uncertainty. Each emulated universe rather corresponds to one

of the realizations of the cosmological simulations with unknown random

seeds. Without proper marginalization, the implementation of uncertainty

in the emulator leads to a greater uncertainty in the parameters as well as

the observables. In addition, this weakens the connection between simula-

tions and emulators to a large extent in terms of physical interpretation of

the parameters. Hence, in this work, we treat an emulator as ground truth

or the mean of simulation uncertainty and implement a mock simulation

uncertainty on top of the emulators. We model the simulation uncertainty

using the multivariate Gaussian noise with minor modifications. Then, the

mock simulation uncertainty—hereafter mock uncertainty—is added to the

emulators manually (refer to Section 5.2.3 for details of implementation).

5.3 Results

5.3.1 Inference from emulated star formation rate den-
sity

In this section, we study the performance and properties of SBI on the

cosmic star formation rate density (SFRD) using an emulated SFRD rather

than an observed SFRD. To this end, we use the emulator to predict SFRDs

as function of the cosmological and astrophysical parameters and adopt an
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emulated SFRD as a target observation from which the cosmological and

astrophysical parameters can be inferred. As discussed in Section 5.2.5, the

emulators are adopted as surrogates for the hydrodynamic simulations and

considered to be the ground truth throughout this chapter unless it is speci-

fied otherwise.

In contrast to deterministic approaches, probabilistic inference such as

Bayesian inference and SBI have a significant flexibility in that the inferred

posterior distributions can take on versatile structures of probability distri-

butions depending on the nature of the problems. The probabilistic distribu-

tions have three main beneficial aspects in our application: (i) the variance

of the posteriors can be interpreted as the error bars of inferred parameters;

(ii) the posterior can have a appreciable volume of parameter space that

reproduces the same target observable within some accuracy; (iii) we can

measure variances and uncertainties of each parameter under the presence

of the uncertainty of the observations. Lastly, in Section 5.3.2, we apply our

SBI machinery to a measurement of the observed SFRD and study how well

the inferred posterior distribution can match the observations.

Performance of inference
We first investigate the accuracy of our ILI and how stably the inferred

posterior density converges without the mock uncertainty. The performance

of ILI with the mock uncertainty will be discussed later this section. Using

the suite of CAMELS simulations, we train an emulator that takes as input

six cosmological and astrophysical parameters θ and predicts the cosmic

star formation rate density (SFRD) x (for details, refer to Section 5.2.5).

Then, we perform SBI to retrieve the posterior density over six cosmological

and astrophysical parameters θ given an emulated target SFRDx0. Here, the

emulated target SFRD x0 is generated by the emulator with θ0 that is one

of the data points in the LH set.

Shown in Figure 5.4 are two-dimensional projections of the inferred
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Figure 5.4: Top right: Emulated cosmic star formation rate densities
(SFRDs) from the inferred posterior (grey), the maximum of the poste-
rior (red dashed), and the target SFRD (black solid). Bottom left: Two-
dimensional distribution of the inferred posterior. The black and red cross-
hairs represent the values of target and maximum of the posterior, respec-
tively. The marginal distributions are obtained by kernel density estimation.
The black solid and red dashed vertical lines indicate the true values and the
maximum values of the inferred posterior, respectively.

posterior (bottom left) and the SFRD plot (top right) that includes the cor-

responding SFRDs drawn from the posterior as well as the target SFRD. In

this example, a total of 40000 emulations (400 epochs) is used to retrieve the

posterior density p(θ|x0) (grey) given the SFRD x0 (black solid). The loca-
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Figure 5.5: The convergence of each parameter as a function of the number
of simulations used in the SBI on an emulated SFRD. The red squares and
grey error bars present the maximum and the standard deviation of the pos-
terior density. The black dotted lines show the true values.
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tion of the maximum of the posterior density8 (red dashed or red cross-hair)

matches the true values (black solid or black cross-hair) almost perfectly for

all six parameters with the relative errors δ(Ωm,σ8,ASN1,AAGN1,ASN2,AAGN2)=

(0.20, 0.49, 1.36, 49.8, 0.25, 3.65)%. We estimate the standard deviations σ

and the coefficients of variation cv
9 of each parameter and find:σ(Ωm,σ8,ASN1,

AAGN1,ASN2,AAGN2)=(0.004, 0.003, 0.014, 0.105, 0.007, 0.040) and cv(Ωm,σ8,

ASN1,AAGN1,ASN2,AAGN2) = (0.79, 0.42, 2.33, 40.5, 0.76, 5.01)%. The values

of the standard deviations imply that the inferred posterior density has very

small variances, in that compared to the volume of parameter space covered

by the prior of O(10), the volume of the posterior density approximates to

O(10−12). In the top right panel, the SFRD from the maximum of the pos-

terior (red dashed) coincides with the true SFRD (black line) with a relative

error of 0.17%. The SFRDs from the full posterior (grey region) have an

exceedingly narrow distribution with the standard deviation of 0.003 dex.

Figure 5.5 illustrates the convergence of the SBI on the SFRD and its

stability. Each panel shows maxima of the posterior (red square) and stan-

dard deviations (grey errorbar) of each parameter as a function of the (cu-

mulative) number of simulations used for training so far (i.e. the number of

epochs × the number of new simulations per epoch). The panel for ASN1

(third row) shows that the ASN1 parameter converges to the truth almost

right after the beginning. The rest of the parameters (Ωm, σ8, AAGN1, ASN2,

AAGN2) can seemingly come to convergence after 10000 simulations. How-

ever, the convergence can be divided into two different stages: the unstably

convergent stage in [10000, 33500] simulations (yellow region) and the sta-

bly convergent stage in [33500, 50000] simulations (green region). In the

unstably convergent stage (yellow region), the inferred parameters jump

8The set of parameters, giving the maximum value of the posterior density, is drawn from
the MCMC samples. i.e. θmax =θ p(θ|x0).

9The coefficient of variation, also known as relative standard deviation, is a standardized
measure of dispersion of a probability distribution or frequency distribution. It is usually
defined as cv = σ

µ
× 100, but in this chapter we adopt a definition using the maximum of

posterior θmax instead of the mean µ, namely cv = σ
θmax

× 100.
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around occasionally without a particular period (unstably) but rapidly return

to the truth in the next epoch (convergent). The average relative errors10,

standard deviations, and the coefficients of variation over [10000, 33500]

simulations are as follows (also see Table 5.1): δ̄(Ωm,σ8,ASN1,AAGN1,ASN2,AAGN2)

= (7.9 ± 12.5, 6.1 ± 8.8, 18.8 ± 19.4, 52.1 ± 71.6, 8.5 ± 8.0, 17.8 ±
30.4)%, σ(Ωm,σ8,ASN1,AAGN1,ASN2,AAGN2) = (0.016, 0.014, 0.043, 0.138,

0.026, 0.117), and cv(Ωm,σ8,ASN1,AAGN1,ASN2,AAGN2) =(3.2, 2.0, 7.1, 53.0,

3.2, 14.8)%, respectively. All three measures above are an order of magni-

tude greater than that of the converged posterior in Figure 5.4. However, the

mean of the relative errors of all the SFRDs including not only the maximum

of posteriors but also the posteriors themselves, at the unstably convergent

stage, δ̄sfrd approximates to 0.95%, which is clearly greater than that of one

single convergent SFRD (0.17%) but in terms of the value itself, it seems

acceptable. The most interesting feature of the stage is that although the

inferred parameters are jumping around, the corresponding SFRDs are rela-

tively well converging to the truth. This is attributed to the weak correlation

between the parameters and the SFRD (see Section 5.4.1 for a discussion).

More importantly, this implicitly indicates the possibility of a multi-modal

distribution that can reproduce the same observable from different sets of

the parameters, as further discussed in the following section.

On the other hand, the posterior distributions are stably convergent with

relatively small variances after ∼ 30000 simulations (green region). All

six maxima (red square) for the six parameters stably converge to the truth

(black dotted line) with the average relative errors10 and their standard devi-

ations over [33500, 50000] simulations (see Table 5.1): δ̄(Ωm,σ8,ASN1,AAGN1,

ASN2,AAGN2) = (0.9±0.9, 1.0±3.7, 6.3±29.8, 52.1±95.7, 1.6±5.5, 8.2±
23.2)%. The variances of the posterior density (grey errorbar) are conver-

10The average relative error of a parameter θ is defined as δ̄θ ≡
1
N

∑
n

(
θtruth −θ p

(n)(θ|x0)
)
/θtruth × 100 where n stands for the number of sim-

ulations (epoch) in Figure 5.5 and N =
∑

n 1. x0 is the target observation.
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Table 5.1: The average relative errors δ̄ (first and second rows), the standard
deviations σ (third and fourth rows), and the coefficients of variation cv
(fifth and sixth rows) of the unstably convergent stage (U.C.) and the stably
convergent stage (S.C.), respectively.

Ωm σ8 ASN1 AAGN1 ASN2 AAGN2

δ̄ U.C. 7.9% 6.1% 18.8% 52.1% 8.5% 17.8%
S.C. 0.9% 1.0% 6.3% 52.1% 1.6% 8.2%

σ

U.C. 0.016 0.014 0.043 0.138 0.026 0.117
S.C. 0.004 0.003 0.015 0.072 0.009 0.036

c
v

U.C. 3.2% 2.0% 7.1% 53.0% 3.2% 14.8%
S.C. 0.8% 0.4% 2.5% 27.5% 1.1% 4.6%

gent as well, with average standard deviations of σ(Ωm,σ8,ASN1,AAGN1,ASN2,

AAGN2) = (0.004, 0.003, 0.015, 0.072, 0.009, 0.036) and average coeffi-

cients of variation of cv(Ωm,σ8,ASN1,AAGN1,ASN2,AAGN2) =(0.8, 0.4, 2.5, 27.5,

1.1, 4.6)% over [33500, 50000] simulations. These values are an order of

magnitude lower than the values at the unstably convergent stage, which can

be a clear sign of transition. Also, in comparison to the values for the poste-

rior in Figure 5.4, the average relative errors of stably convergent posteriors

are somewhat greater but the standard deviations and coefficients of vari-

ation are comparable. That is, the peaks or the maxima of posteriors have

appreciable scatters compared to the truth at the stably convergent stage,

whereas the widths of the posteriors are consistent. As in the variances,

the convergence properties depend not only on the number of simulations

(epoch) but also differ by parameter. In the convergence of AAGN1, there is

no evident transition from unstably convergent to stably convergent in terms

of the relative errors, standard deviations, or the coefficients of variation. On

the other hand, the stellar feedback parameters (ASN1 and ASN2) converges

rapidly as soon as the training begins, leading to seamlessly smooth transi-

tion to the unstably convergent stage. However, the transition to the stably

convergent stage takes place drastically both visually and quantitatively. In
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the meantime, the AGN feedback parameters (AAGN1 and AAGN2) have no-

table scatter even in the stably convergent stage (green region) compared to

the other four parameters. Hence, we can conclude that the strengths of cor-

relation between each parameter and the SFRD are in the following order:

ASN1 ≃ ASN2 > Ωm ≃ σ8 > AAGN1 ≃ AAGN2. An indication for such

correlations can be also found in Villaescusa-Navarro et al. [185, Figure 11

and Figure 12].

Thus far, we have not implemented any uncertainties in the inferences.

Therefore, assuming that the emulators are injective (one-to-one function),

a negligible variance is expected for all six parameters; i.e. p(x,θ) = δ(x−
f(θ)) and θ is unique. However, a tiny amount of variance exists in both the

posterior and the inferred SFRDs (grey in Figure 5.4). This can be attributed

to (1) physical degeneracy and (2) inaccuracy of the NDE. A certain amount

of errors of the NDE or machine learning in general is inevitable. In the SBI,

the error of the NDE propagates to the posterior density proportionally to

the degree of correlations between each parameter and observable. In both

Figures 5.4 and 5.5, Ωm, σ8, ASN1, and ASN2 show high convergence and

precision for both maxima and variances whereas AAGN1 and AAGN2 have

larger variances on average. The magnitude of the variance indicates how

strongly the observable can constrain each parameters, or how intimately

each parameter and observable correlate with each other. The greater the

variance, the weaker the correlation is. Due to the weak correlations, AAGN1

and AAGN2 require more simulations to converge stably and tend to have a

larger variance than other parameters. Nevertheless, the relative errors of

both parameters and SFRDs are less than 1% on average with a total of

34000 simulations.

Bimodality in the posterior distribution
Here, we present one of the bimodal posterior distributions that can be

found at the unstably convergent stage (yellow region) in Figure 5.5. Figure
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Figure 5.6: Top right: Emulated star formation rate densities (SFRD) from
the inferred posterior (grey), two peaks of the posterior (red dashed and
blue dotted), and the target SFRD (black solid). Bottom left: 2D contour
projections of the inferred posterior.

5.6 illustrates two-dimensional projections of the inferred posterior (bottom

left) as well as the corresponding SFRDs from the posterior and the target

SFRD (top right). One of the most intriguing feature in Figure 5.6 is clearly

the bimodality (red and blue) in the posterior density. Not only do the two

peaks exist in the posterior density, but also they reproduce the target obser-

vation within a barely appreciable margin of error.

We use k-means clustering to divide the posterior density into two uni-
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Figure 5.7: (a) Cosmic star formation rate density from the emulator, rep-
resenting the posterior and its two peaks; (b) Cosmic star formation rate
density from cosmological simulations using the points in parameter space
that are the peaks of the posterior; (c) One-dimensional projections of the
inferred posterior (grey) based on Figure 5.6. The two peaks are drawn with
the red dashed and blue dotted lines consistently across Figure 5.6 and pan-
els (c). However, the marginals of the degenerate posterior distribution in
panel (c) are reconstructed with a modified probability density, namely that
which is limited to only the region within ζdegen = 0.9 in Figure 5.6. The
grey and light grey regions in panel (b) indicate the σ and 3σ confidence
regions of the simulation uncertainty.

modal distributions. The k-means clustering partitions samples into k clus-

ters in which each sample belongs to the cluster with the nearest mean. Each

peak is defined by the center of each cluster. The relative errors of the two

SFRDs with respect to the true SFRD are 0.35% for the peak 1 and 0.98%

for peak 2. The peak 2 has slightly larger errors than peak 1 but still less

than 1%. Furthermore, peak 1 (red dashed) accurately coincides with the

true (black solid) with the relative errors δ(Ωm,σ8,ASN1,AAGN1,ASN2,AAGN2)

= (0.45, 0.36, 0.55, 30.8, 0.0041, 5.7)%. We measure the variances with

respect to each peak by using the result of the k-means clustering. The stan-

dard deviation σ and coefficients of variation cv of the peak 1-cluster with
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respect to peak 1 are (0.015, 0.014, 0.042, 0.090, 0.032, 0.087) and (3.1, 2.0,

7.0, 26.5, 3.9, 10.5)%. The standard deviation σ and coefficients of varia-

tion cv of the peak 2-cluster with respect to peak 2 are (0.018, 0.025, 0.046,

0.039, 0.020, 0.148) and (4.8, 3.0, 4.9, 13.1, 3.4, 8.1)%. There is no marked

difference between the variances of peak 1 and peak 2. The level of devia-

tion is slightly higher than that of the stably convergent posterior in Figure

5.4 but similar to the unstably convergent ones shown in Figure 5.5.

Having two strong peaks in the posterior distribution is the result of

a physical degeneracy, namely a situation where more than a single set of

parameters reproduces the same observable. To study degeneracy, we pro-

pose a definition of degeneracy in a mathematically consistent way using

a given posterior distribution. The set of degenerate points in parameter

space, Θdegen, is defined such that it satisfies
∫
θ∈Θdegen

p(θ)dθ = ζthres

where p(θ ∈ Θdegen) > p(θ /∈ Θdegen), assuming that the inferred pos-

terior distribution p(θ) is normalized. Here, ζthres is a free parameter, and

the degenerate-parameter set Θdegen collects parameters according to their

probability density in a descending order until the integration of the proba-

bility over the degenerate set becomes equal to ζdegen (refer to Section 5.6.1

for a precise and detailed definition). In this chapter, we decide to set ζdegen
to 0.9. Also, every two-dimensional projection of posterior distributions in

this paper includes a contour line for ζdegen = 0.9.

Shown in the panel (c) of Figure 5.7 are the marginals of the degenerate

posterior distribution that is reconstructed with the probability density only

enclosed within ζdegen = 0.9 through the Gaussian kernel density estima-

tion. On the other hand, two peaks (red dashed and blue dotted) are identical

to the ones in Figure 5.6. Figure 5.6 illustrates details of the posterior dis-

tribution with ζthres = 0.9 (black dotted contour) in the two-dimensional

projection plot (bottom left). The two emulated SFRDs that correspond to

two peaks of the posterior distribution (red dashed and blue dotted) in panel

(a) are approximately on top of each other. The distribution of SFRDs (grey)
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is also sufficiently concentrated with a variance of 0.003 that is similar to

that of the SFRDs from the stably convergent posterior in Figure 5.4. Hence,

we can conclude that the two peaks are degenerate in terms of the emulated

SFRDs.

However, not necessarily does the presence of degeneracy in the emu-

lated SFRD demand that degeneracy exist in the actual cosmological sim-

ulations as well. The panel (b) in Figure 5.7 demonstrates the simulated

SFRDs performed with each set of parameters from the two peaks (red

dashed and blue dotted). Here, we investigate whether two sets of param-

eters (red dashed and blue dotted) are also degenerate in the simulations

given the simulation uncertainty (refer to Section 5.2.3). We use ±1σ (grey)

and ±3σ (light grey) regions that correspond to 68.1% and 99.7% confi-

dence levels assuming that the simulation uncertainty follows the Gaussian

distribution, respectively. The standard deviations of the Gaussian distribu-

tion are directly calculated from the suite of simulations in the CV set along

redshift (refer to Section 5.2.3). In panel (b), blue dotted SFRD lies within

the 1σ region (grey) of the red dashed SFRD. Thus, two simulated SFRDs

are highly likely to be degenerate sharing the same parameters, while having

discrepancies originating from the simulation uncertainty.

Above all, the emulator result demonstrates the clear signs of degen-

eracy in the SFRD having two approximately identical SFRDs from two

different sets of parameters. On the simulation side, cosmological simula-

tions with the two sets of parameters also produce two SFRDs that are close

to each other, though simulation uncertainty leads to notable differences in

the simulated SFRDs, which are nevertheless not statistically significant.

The SFRD lies approximately inside 64.8% (1σ) confidence regions and is

completely enclosed within 99.7% (3σ) confidence regions of the simulation

uncertainty. This might be strong evidence that both emulator and cosmo-

logical simulation have degeneracy in the SFRD, in spite of the emulator

not being a perfect representation of the simulations.
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Figure 5.8: Bottom left: 2D projections of the inferred posteriors (blue) from
the emulated SFRD with the mock uncertainty. Top right: Cosmic star for-
mation rate density from the inferred parameters (grey) and the truth (black
solid). The red vertical lines indicate the locations of the maximum value of
the inferred posterior in the six dimensional parameter space.

Response to mock uncertainty
Thus far, we performed SBI without including any uncertainty in the

forward model, namely the emulator, but such uncertainties do exist in full

cosmological simulations, as discussed in Section 5.2.3. In this section, we

include the simulation uncertainty that originates from various sources of

randomness in the cosmological simulations using the mock uncertainty.

82



Shown in Figure 5.8 are two-dimensional projections of the posterior

density inferred from the emulated SFRD (bottom left) with the mock uncer-

tainty. The mock uncertainty that we impose is modelled to have the same

standard deviation as the simulation uncertainty (refer to Section 5.2.3). In

comparison to the inferences without the mock uncertainty, the posterior

densities inferred with the uncertainty cover notable regions of parame-

ter space with the standard deviations σ(Ωm,σ8,ASN1,AAGN1,ASN2,AAGN2) of

(0.073, 0.100, 0.353, 1.158, 0.145, 0.358) and the coefficient of variation cv

of (16.0, 14.7, 60.7, 450.6, 17.8, 47.0)% for the SFRD. In comparison to

Figure 5.6, the bimodal peaks are merged to a single oval or banana-shape

distribution (bottom left). Although the deviations of the inferred AAGN1

and AAGN2 become notable, the relative error of SFRD is only 0.38 dex. The

variance of the inferred SFRDs (0.057 dex) is comparable to the variance of

the mock uncertainty (0.061 dex). This demonstrates that the inferred pos-

terior densities and the corresponding observables successfully reproduce

the mock uncertainty in terms of the variances. Thus, concerning the uncer-

tainty propagation from observation to parameters, the variance of inferred

parameters can be reliable. On the other hand, the inclusion of the mock un-

certainty has led to an increase in the inaccuracy of the posterior as well as

the relative errors of the inferred observables to the truth. We can relate it to

the stochasticity of sampling of mock uncertainty. In every iteration of the

SBI, additional training data (x,θ) is generated from the proposal density.

Here, the observable x is emulated as a function of the sampled parameters

together with the emulator uncertainty Z(η). Since the sampling size is fi-

nite, the mean of observables ⟨x+ Z(η)⟩samples cannot be the same as the

ideal (theoretical) mean ⟨x+ Z(η)⟩ = ⟨x⟩, leading to a bias in the sampled

data. Notice that for an infinite number of samples (ideal case), ⟨Z(η)⟩ = 0

since Z(η) is the Gaussian noise that has a mean of zero. The bias in the

newly generated training data is highly likely to result in the inaccuracy of

the inferred posterior density.
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Figure 5.9: Bottom left: 2D projections of the inferred posteriors (grey) from
the observed SFRD [93]. The red dashed vertical lines indicate the maxi-
mum values of the inferred posterior in the six dimensional parameter space.
Top right: The inferred cosmic star formation rate density (red dashd) and
the observed SFRD (black solid). The blue dotted curve indicates the emu-
lated fiducial SFRD of the CAMELS simulations.

5.3.2 Inference from observed star formation rate den-
sity

We now apply our framework to actual observational data. We first,

however, must consider some fundamental differences between observa-

tions and the cosmological simulations that our emulators are trained on.
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For instance, the simulations consistently evolve the baryons and dark mat-

ters with which halos and galaxies are made up across cosmic time. In other

words, the total mass and implemented physics model of the simulated uni-

verses is self-consistent at all times. However, observational data is signif-

icantly subject to a survey size and physical models for a particular ob-

servable. To make a fair comparison between observations and emulators,

we take into consideration the consistency between observed cosmic star

formation rate density (SFRD) and stellar mass function (SMF) which is

discussed in Sections 5.3.4.

The cosmological simulations, by nature, can guarantee consistency

between the evolution of star formation rate and stellar mass. That is, the

SFRD f(z) = dM⋆(z)/dz+Ṁreturn, where M⋆(z) =
∫
M ϕ(M, z), ϕ(M, z)

is the galaxy stellar mass function, and Ṁreturn is the rate of mass return

from evolving stellar populations. The cumulative quantities such as the

stellar mass should necessarily coincide with the integrated instantaneous

quantities such as the star formation rate. On the observational side, the

consistency depends on e.g. the modeling for each observable and related

observables such as the SFRD and the SMF at different times are not guar-

anteed by construction to be consistent with one another. To circumvent this,

we adopt SFRD and SMFs from Leja et al. [93] and Leja et al. [94] that aim

to resolve the issue of consistency in observations (more details in Leja et al.

[93, Section 5.1]).

We first infer the posterior density for the cosmological and astrophys-

ical parameters from the actual observed SFRD [93]. We perform the SBI

with an identical setup to the previous sections that includes the mock uncer-

tainty. Figure 5.9 illustrates the two dimensional projections of the posterior

density inferred from the observed SFRD. Note that we have not included

the uncertainty of the observation data; rather, only the mock uncertainty

is adopted. The observed SFRD (black solid) lies totally within the region

of the inferred SFRDs (grey), whereas the SFRD from the maximum of
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the posterior (red dashed) cannot match it precisely with a relative error of

4.1%. The standard deviations and the coefficients of variation are (0.040,

0.039, 0.224, 1.475, 0.078, 0.181) and (8.3, 5.6, 37.1, 566.9, 9.7, 23.0)%,

respectively. The discrepancy between the inferred and observed SFRDs is

now notable compared to the previous inference from the emulated SFRD.

The relative error is an order of magnitude greater than the case of inference

from the emulated SFRD which is 0.38% (e.g. see Figure 5.8).

Nevertheless, it can be thought of as a successful inference given that

the emulated fiducial SFRD (blue dotted curve in Figure 5.9) shows entirely

different trends from the target observation over all redshifts, with an aver-

age deviation of ∼ 0.1 dex. In addition, the fiducial SFRD has its peak at

z ∼ 2.5, whereas the peak of the [93] SFRD is located at z ∼ 2.0. Here,

the emulated fiducial SFRD (blue dotted) is an SFRD that is generated by

the emulator from the fiducial parameters, which is close to the simulated

SFRD of the CV set (see Figure 5.1 in Section 5.2.2). Despite the huge dis-

crepancy between the fiducial SFRD and the target observation, the inferred

SFRD follows the observation relatively well with a mean deviation less

than 0.01 dex and even matching the observed peak precisely.

In the case of inference from observations, the intrinsic limit of the

emulators should also be accounted for. The most significant difference be-

tween the inferences from the emulated SFRD and observed SFRD is that

any emulated SFRD can be predicted precisely by the emulator for sure,

whereas we cannot ensure whether there exists a data point in parameter

space that can reproduce the observation perfectly. Mathematically speak-

ing, the emulator (and simulation) prediction is limited by the set of all

SFRDs and SMFs it may produce: the image of the emulator. The image

of an emulator might not coincide with the set of all of the physically pos-

sible SFRDs, including observed SFRDs: the codomain of the SFRDs. In

other words, the emulators and simulations might not be able to reproduce

every possible universe. The necessary condition for the successful preci-

86



sion inference is that the observed SFRD be a member of the image of the

emulator. Concerning the limit of the emulator and the simulations that the

emulator is trained on, there are fundamental issues: e.g., (1) the limited di-

mension of parameter space (domain); (2) the gap between the emulators

and the simulations; (3) the limits of the physical models in the simulations.

The above will be discussed in Section 5.4.4.

5.3.3 Inference from emulated stellar mass functions

We now turn to inference on stellar mass functions (SMFs) as the tar-

get observable. We study the dependence of the properties of the SBI and

the inferred posteriors on the choice of observable with a comparison to the

cosmic star formation rate density (SFRD). The latter covers the evolution-

ary history of the universe ranging from z = 3 to z = 0.5 whereas a single

SMF contains information of only one epoch. To be consistent, we concate-

nate five SMFs at z = 0.5, 1.0, 1.5, 2.0, and 2.5 and each SMF is binned

with 13 bins in the mass range [108.9, 1011.4]M⊙ (refer to Section 5.2.1).

Hereafter, “SMFs” denotes the five concatenated SMFs from the five dif-

ferent redshifts throughout the paper unless specified otherwise. In Section

5.3.3, We first investigate the performance and convergence of the inference

on the SMFs compared to that of the SFRDs. In Section 5.3.4, we perform

SBI from observed five concatenated SMFs, and lastly, we study the SBI

from one individual observed SMF (at a single redshift) at a time.

Performance of inference
We first investigate the performance of the SBI and how stably the

inferred posterior converges in terms of the stellar mass functions (SMFs).

As in Section 5.3.1, we train emulators that take as input six cosmological

and astrophysical parameters θ and predict the SMFs x (for details, refer

to Section 5.2.5). Using the emulator, we perform the SBI to retrieve the

posterior density for six cosmological and astrophysical parameters θ given
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Figure 5.10: Top right: Emulated stellar mass functions (SMFs) from five
different redshifts from the inferred posterior (grey), the maximum of the
posterior (red dashed), and the target SMFs (black solid). Bottom left: Two-
dimensional projections of the inferred posterior. The black and red cross-
hairs represent the values of target and mean of the posterior, respectively.
The marginal distributions are obtained by the kernel density estimation.
The black solid vertical lines indicate the true values. The red dashed verti-
cal lines indicate the mean values of the inferred posterior.

the emulated SMFs x0.

Shown in Figure 5.10 are two-dimensional projections of the inferred

posterior (bottom left) and emulated SMFs from the posterior along with the

target SMFs (top right). A total of 6000 simulations (30 epochs) are used to
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Figure 5.11: The convergence of each parameter as a function of the num-
ber of simulations for SBI from emulated stellar mass functions (SMFs).
The red square and grey error bar present the maximum and the standard
deviation of the posterior density. The black dotted lines show the true val-
ues.

retrieve the posterior density p(θ|x0) given the SMFs x0. Here, the target

SMFs x0 is generated by the emulator with the parameters that we used to

generate the emulated SFRD in Section 5.3.1. The maximum of the posterior

density8 (red dashed or red cross-hair) match the true values (black solid or
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Figure 5.12: Comparison between true values and its inferred values from
posteriors for the stellar mass functions without uncertainty. Each red square
represents the maximum value of the inferred posterior against its true value.
Each grey bar represents the standard deviation of the inferred posterior. The
black solid line represents inferred equals true.

black cross-hair) nearly perfectly for all six parameters with the relative

errors δ(Ωm,σ8,ASN1,AAGN1,ASN2,AAGN2)=(0.15, 0.01, 0.08, 4.9, 0.72, 0.12)%

and with the standard deviations ofσ(Ωm,σ8,ASN1,AAGN1,ASN2,AAGN2)=(0.006,

0.002, 0.024, 0.076, 0.006, 0.018) and the coefficients of variations of cv(Ωm,

σ8,ASN1,AAGN1,ASN2,AAGN2)=(0.9, 0.2, 3.7, 17.7, 0.6, 2.3)%. In the top right

panel, the SMFs from the maximum of the posterior (red dashed) coincide

with the true SMFs (black solid) with a relative error of 0.4%. The SMFs

from the full posterior (grey region) have an exceedingly narrow distribution

with the mean standard deviation of 0.007 dex. In comparison to the SFRD

in Section 5.3.1, the relative errors of SMFs are slightly better except ASN2,

whereas the standard deviations of the SMFs are comparable to that of the

SFRD. In general, the error of inference can be related to the correlation be-

tween the parameters and the observable. We discuss why ASN2 can be more

precisely predicted from the SFRDs in Section 5.4.1, where we show how
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surprisingly the errors presented here are well explained by the correlations.

Figure 5.11 illustrates the convergence and its stability for the inference

from the emulated SMFs. Each panel shows maxima (red square) and vari-

ances (grey errorbar) of the posterior for a given parameter as a function of

the (cumulative) number of simulations used for training so far (i.e. the num-

ber of epochs × the number of new simulations per epoch). All six maxima

(red square) stably converge to the truth (black dotted line) with the average

relative errors10 over [4800, 8000] simulations: δ(Ωm,σ8,ASN1,AAGN1,ASN2,AAGN2)

= (1.4± 1.1, 0.3± 0.2, 1.2±, 1.1 34.1± 17.8, 0.6± 0.4, 1.9± 1.3)%. The

variances of the posterior density (grey errorbar) are convergent with the av-

erage standard deviation σ(Ωm,σ8,ASN1,AAGN1,ASN2,AAGN2) = (0.007, 0.002,

0.022, 0.076, 0.006, 0.028) and the coefficient of variation cv(Ωm,σ8,ASN1,

AAGN1,ASN2,AAGN2) =(0.2, 0.1, 2.6, 4.9, 0.7, 20.2)% over [4800, 8000] sim-

ulations. Hence, the convergence of the inference requires at least ∼ 4000

simulations.

In contrast to the SFRD, the unstably convergent stage is absent in

the SMFs. To be stably convergent, the SMFs require only 4000 simula-

tions whereas ∼ 40000 simulations are needed for the SFRD, an order of

magnitude difference. Moreover, the average variances at the stably conver-

gent stage, σ̄smf ∼ O(1) for the SMFs and σ̄sfrd ∼ O(10) for the SFRD,

demonstrate that the SMFs converge with less fluctuations. Hence, we con-

clude that the SMFs converge far more rapidly and stably to the truth com-

pared to the SFRD. Furthermore, the NDE of the SFRD has more hidden

units (Nhid,sfrd = 250) than that of the SMFs (Nhid,smf = 100). Given that

the more neurons the easier it converges, we can conclude that the SMFs-

parameters pairs are more apt to be mapped than the SFRD-parameters

pairs. This indicates that the degree of correlation between the SMFs and

the parameters is stronger than between the SFRD and the parameters (as

discussed further in Section 5.4.1).

We also investigate the accuracy of the inference for various SMFs over
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the parameter space. Figure 5.12 shows the maxima (red square) and vari-

ances (grey errorbar) of 100 posterior densities inferred from 100 emulated

SMFs. Here, 100 SMFs are generated by the emulators with 100 randomly-

sampled sets of parameters from the LH set (refer to Section 5.2.1). We

consistently perform the SBI with the total of 4800 simulations over all 100

SMFs without any further convergence tests. Due to computational cost, the

minimal (necessary but perhaps not sufficient) number of simulations for

the convergence is adopted11, deduced from the previous convergence test

in Figure 5.11. Most maxima (red square) are on top of the ideal prediction

line (black solid) or are indistinguishably close to it. The average relative er-

rors10 of the maximum are (1.1±1.2, 0.2±0.2, 1.3±2.2, 4.0±8.5, 0.6±0.8,

1.8±3.4)%. These values are in line with the relative errors from the con-

vergence test. Thus, the SBI can be performed on the SMFs stably with

relatively small, constant errors regardless of the choice of parameters.

No response to uncertainty
We perform SBI on the SMFs with the mock uncertainty (for details of

mock uncertainty for the SMFs, refer to Sections 5.2.5 and 5.2.3). However,

unlike the uncertainty case of the SFRD which shows appreciable variances

in the inferred posterior, the posterior density inferred from the SMFs with

the mock uncertainty is identical to the posterior density inferred without the

mock uncertainty. Note that the figure for the with-uncertainty case is not

presented here since it is so identical to the without-uncertainty case that

we cannot tell any difference both visually and quantitatively. We find that

the mock uncertainty that mimics the simulation uncertainty cannot have

any impact on inference from the SMFs in contrast to the SFRD. Hence,

in Section 5.4.3, we study how the inferred posteriors response to various

types of uncertainties and which type of uncertainty is suitable for the SBI

11For the same reason, we cannot produce this plot for the SFRD since the SFRD requires
significantly more simulations than the SMFs and owing to numerous hidden units for the
SFRD, the computational time is at least 10 times greater than that of the SMFs.
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Figure 5.13: Bottom left: 2D projections of the inferred posteriors for the ob-
served stellar mass functions (SMFs) from five different redshifts (z =2.5,
2.0, 1.5, 1.0, and 0.5) [94]. Top right: the SMFs from the inferred parameter
(grey and red) and the observed SMFs (black). The red vertical lines indi-
cate the maximum values of the inferred posterior in the six dimensional
parameter space.

in detail.

5.3.4 Inference from observed stellar mass functions

Five concatenated stellar mass functions
Figure 5.13 shows two-dimensional projections of the posterior density
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inferred from the observed SMFs [94] (bottom left) and the corresponding

SMFs (top right). The discrepancy between the observation (black solid)

and the maximum of posterior (red dashed) is considerable with a mean

relative error of 41.1 % over all mass ranges. The discrepancy of the high

mass ends is dominant for the errors with the relative error for stellar masses

≳ 1011M⊙ being ∼ 80.9% versus 13.7% at the lower mass ends. The high

mass ends (≳ 8 × 109M⊙) of the observed SMF are located completely

outside the region of the SMFs from the full posterior (grey) across all five

redshifts. The population of the massive galaxies in the observed SMF is far

greater than that in the inferred SMFs.

At the low mass ends, even though the observed SMFs lie within the

(grey) region, the emulated and observed SMFs have different, distinct char-

acteristics: (1) the slope of SMFs at high redshift and (2) the evolution-

ary rate of the SMFs. At z = 2.5 and z = 2.0, the slopes of the inferred

SMFs are notably steeper than the observed SMFs. The observed SMFs do

not show the appreciable difference in slope across the redshifts, whereas

the slopes of inferred SMFs become less steep as redshift decreases. Also,

there is a significant difference in the evolutionary rate of SMFs. The evo-

lution of the inferred SMFs is barely notable, but the apparent growth can

be seen in the observation. For example, the differences between SMFs at

M⋆ = 108.9M⊙ at z = 2.5 and z = 0.5 are 0.20 dex for the inference and

0.47 dex for the observation.

On the simulation side, the significant mismatch between the inference

and observation can be attributed to the following: (1) the limited volume of

simulations; (2) low resolution of simulations and the failure of re-scaling;

(3) limitations of the physical models of simulations; (4) inaccuracy of the

emulators. The size of simulation is directly linked to the level of simula-

tion uncertainty that we fail to realize in the SMFs. Since we cannot account

for the simulation uncertainty, the inference results are suffering from sam-

pling bias. Also, the problem of lack of massive galaxies are prevalent in a
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Table 5.2: The maximum of the posteriors, θmax, (first-fourth rows) in Fig-
ures 5.13 and 5.14 and their standard deviations σ (fifth-eighth rows) with
respect to the maximum of the posteriors. ‘ALL’ indicates that the param-
eters are inferred from all five redshifts simultaneously (red cross-hair in
Figure 5.13).

Ωm σ8 ASN1 AAGN1 ASN2 AAGN2

θ
m
a
x

ALL 0.18 0.64 0.26 0.27 0.73 1.50
z = 0.5 0.22 0.97 0.41 1.50 0.51 0.52
z = 1.5 0.10 1.00 0.47 0.25 0.58 1.63
z = 2.5 0.11 1.00 0.72 2.77 0.83 0.61

σ

ALL 0.02 0.01 0.03 0.31 0.10 0.22
z = 0.5 0.02 0.04 0.11 1.32 0.18 0.71
z = 1.5 0.01 0.03 0.04 1.38 0.04 0.35
z = 2.5 0.05 0.03 0.11 1.02 0.06 0.82

low-resolution simulations (Appendix A. in Pillepich et al. [136, 138] and

Section 5.2.2 in this paper). Even though we apply re-scaling to alleviate the

resolution effects, the rescaled SMFs are still subject to resolution conver-

gence (refer to Section 5.2.2). Inside the parameter space that we adopt in

this chapter, there might not exist a set of parameters that can reproduce the

observations simultaneously across redshifts. Lastly, since we are using the

emulators as a surrogate to cosmological simulations, the inference results

are also limited by the accuracy of emulators. Further will be discussed in

the next part and Section 5.4.4. Note that technical and physical limits of

observation can also be crucial factors for the mismatch but will not be dis-

cussed in this paper.

Three individual stellar mass functions
To isolate the problem, we perform the inferences from one SMF at a

time for each redshift (z = 0.5, 1.5, and 2.5) separately. Figure 5.14 illus-

trates the three posterior densities inferred from the observed SMFs (thick

black solid) at z = 0.5 (sky blue), z = 1.5 (violet), z = 2.5 (red) and

the corresponding SMFs (top right). The separate inferences lead to signif-
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Figure 5.14: Two-dimensional projections of the inferred posteriors from
the individual stellar mass functions (SMFs; Leja et al. [94]) at the different
redshifts: z = 0.5 (top left sky blue), z = 1.5 (bottom left, violet), and z =
2.5 (bottom right, red). The top right panel shows three inference results
from the target observed SMFs (thick black solid) from different redshifts
z = 2.5 (left), 1.5 (middle), and 0.5 (right). Here, thin black solid lines are
the observed SMFs that are not involved in the inferences at a particular
redshift. The dashed, dotdashed, and dotted lines are the emulated SMFs
for z = 0.5, 1.5, and 2.5 from the maximum of the posteriors inferred from
the observed SMFs at z = 0.5 (dark blue), 1.5 (dark violet), and 2.5 (dark
red).

icantly higher accuracy than the previous inference, with the relative errors

of SMFs of 17.7% for z = 2.5, 10.3% for z = 1.5, and 10.3% z = 0.5 (the
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relative error of the previous inference is 31.4%). In comparison to the pre-

vious inference (Figure 5.13), the locus of the posterior densities are notably

different, especially in σ8 and ASN1 (refer to Table 5.2). The standard devi-

ations of the AGN parameters in Figure 5.14 are notably larger than those

from the inference based on the five concatenated SMFs in Figure 5.13,

whereas the standard deviation of the inferred SMFs are similar. This might

indicate that the impact of the AGN parameters on the SMFs is trivial. In

general, the impact of the AGN parameters on the SMFs can be negligible

in this analysis, given the extensive variances that cover almost entire ranges

of parameter space. The average variances of AAGN1 and AAGN2 over the

three redshifts are 1.23 and 0.62, whereas the variances of other parameters

are less than 0.01 on average.

σ8 from the separate inferences show considerably higher values than

the previous inference, whereas Ωm show relatively small changes. In both

emulators and simulations, the AGN parameters only have a minor effect

in the stellar populations of galaxies (Sections 5.4.1). As a compensatory

action, the emulated universes have exploited the cosmological parameters,

especially σ8, to control the populations of massive galaxies in the context

of structure formation. Meanwhile, to sustain the density of low mass galax-

ies, stronger supernova feedback can be inevitable, which we can see (the

increases in ASN1, even though it is not significant) in Figure 5.14.

In the top right panel consisting of three subpanels, the emulated SMF

for z = zX obtained by the maximum of the posteriors inferred from the ob-

served SMF at z = zY is shown in “Y X” line style where XzX=(0.5,1.5,2.5) =

(dashed, dash-dotted, dotted) and YzY =(0.5,1.5,2.5) =(dark blue, dark violet,

dark red). For example, the emulated SMF at z = 0.5 from the maximum of

the z = 1.5-based posterior (bottom left, violet) is drawn with a “dark violet

dashed” line. Each subpanel exhibits the discrepancies of the slope and evo-

lution of SMFs across different redshift (different line styles). Notice that

although the separate inferences can predict observations with much im-
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proved accuracy, the discrepancy cannot be resolved. Further discussion on

the discrepancies between inferred SMFs and observed SMFs is described

in Section 5.4.4 in detail.

The mismatch between inference and observations significantly high-

lights the intrinsic limits of emulators and simulations: (1) the limited di-

mension of parameter space (domain); (2) simulation volume and resolu-

tions; (3) inaccuracy of the emulators; (4) the limits of the physical models

in the simulations.

5.4 Discussion

5.4.1 Correlation between observables and parameters

The correlation plays a significant role in mapping between domain

(input) and codomain (output), such as in machine learning and inference.

What a correlation between two sets measures is how dependent the two

sets are on each other. In machine learning, the degree of correlation can

have a decisive impact on the precision of a machine. As input and output

are more correlated, the sensitivity of output to input increases. This results

in a higher error of the objective function (or loss function) in response to

a minute change in input. Thus, given the same amount of error tolerance,

the accuracy of a machine increases as the correlation increases. In a similar

context, the variance of posterior is an indirect indicator of the correlation

between parameters and observable. The less correlated they are, the larger

the variances and vice versa. We have already encountered several trails of

the correlation between parameters and observables in the inference results.

One of the most evident examples is that the SFRD requires O(104) simula-

tions to reach the stable convergence, whereas only O(103) simulations are

sufficient for the SMFs (see Sections 5.3.1 and 5.3.3 for the SFRD and the

SMFs, respectively). In other words, with the same size of training data—

i.e. the same number of simulations, the SMF would have attained a more
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accurate posterior with a smaller variance than the SFRD would;

For a quantitative analysis, We measure the correlation between pa-

rameters and observables using the mutual information (MI), which is a

fundamental measure for the inter-dependence or relationship between two

variables. In contrast to linear correlation coefficients, such as the Pearson

correlation coefficient, the mutual information captures non-linear statistical

dependencies [78]. The mutual information is defined by

I(X,Y ) = DKL(PXY ∥PX ⊗ PY ) (5.4)

where DKL(·∥·) is the Kullback-Leibler divergence12, and PXY and PX

are joint distributions and marginal distributions. Here, ⊗ denotes the outer

product that spans the probability space from X and Y to (X,Y ). I(X,Y )

quantifies a statistical distance between the joint probability and product of

marginals as per property of the Kullback-Leibler divergence. The mutual

information is zero if and only if X, Y are independent.

However, the estimation of the mutual information is challenging and

only tractable for discrete variables or when probability distributions are

known [131]. Thus, we adopt the mutual information regression function in

the sklearn package [88, 135, 152]. Using the package, we estimate the

mutual information for (1) simulated observable and parameters from the

LH set, (2) emulated observable and parameters from the LH set. Here, the

observables and the parameters are normalized to reduce the effects of the

difference in magnitude of values in the same way used to train an emulator

(Section 5.2.5).

Table 5.3 shows the estimated mutual information of each observable-

parameter pair. In the simulations, the mutual information of the SMFs

12A Kullback-Leibler divergence, also known as relative entropy, is a measure of how
one probability distribution Q(x) is different from the other reference probability distribu-
tion P (x) and it is defined as follows: DKL(P∥Q) ≡

∑
x∈X P (x) log(P (x)/Q(x)) or∫∞

−∞ p(x) log(p(x)/q(x))dx.
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Table 5.3: The mutual information between the parameters and obseravbles
(first-fourth rows). The relative errors δ of the convergent SFRD and SMFs
from Sections 5.3.1 and 5.3.3, respectively (fifth and sixth rows). ‘Sim’ and
‘Emu’ stands for “simulated” and “emulated”. The values of the MI are
multiplied by 100 for convenience and the unit for the relative error is per-
centage.

Ωm σ8 ASN1 AAGN1 ASN2 AAGN2

SimSFR 1.19 0.62 0.54 0.29 2.11 1.43
SimSMF 12.5 9.27 36.9 1.17 4.69 0.41
EmuSFR 11.4 6.82 30.0 0.7 17.1 0.85
EmuSMF 14.6 12.8 41.4 1.49 5.79 0.30
δsfr (%) 0.20 0.49 1.36 49.8 0.25 3.65
δsmf (%) 0.15 0.01 0.08 4.9 0.72 0.12

(SimSMF) is significantly higher than that of the SFRD (SimSFR) over all

parameters except AAGN2. Interestingly, the gap has been drastically re-

duced in the emulators (EmuSMF and EmuSFR). The increase of mutual

information in the emulators (especially in the SFRD) can be attributed to

the training of the emulators. During training, the emulator (neural network)

keeps updating itself to minimize the loss function or maximize mutual in-

formation (correlation) between input and output [54, 60]. As a result, input

and emulated output pairs can attain overall more correlation via the em-

ulator than input and simulated output pairs. Note that the correlation of

the emulated pairs should depend on the precision of training. Nonetheless,

the relative magnitudes among each parameter-observable pair remain the

same. For instance, the mutual information of SMF-parameter pairs is still

higher than that of SFRD-parameter pairs except for ASN2 and AAGN2.

In addition to the gap between simulations and the emulator, the MI

among the parameters shows considerable differences in magnitude. ASN1

is found to be the most relevant parameter to both SFRD and SMFs, whereas

the AGN feedback parameters (AAGN1 and AAGN2) have MI that is one or

two orders of magnitude lower than other parameters. That is, ASN1 can
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precisely be inferred or estimated in terms of inference and machine learn-

ing. On the other hand, not only the AGN parameters can be hardly con-

strained but also the AGN physics themselves might have a negligible im-

pact on the SFRD and the SMFs in the TNG suite of the CAMELS simula-

tions that have low resolution and limited volume. Such impact of relative

magnitudes among parameter-SFRD pairs can also be found in Villaescusa-

Navarro et al. [185, Figure 9] which demonstrates that the SFRD is only

sensitive to Ωm, σ8, ASN1, and ASN2, but not AAGN1 and AAGN2.

The values of the MI are also in line with the performance of infer-

ence with respect to the parameters. For instance, the MI between ASN2 and

the SFRD, which is an exceptional case, is larger than that between ASN2

the SMFs, which is in line with the relative error of ASN2 in the SFRD

(fifth rows) being also smaller than that of the SMFs (sixth row). The ratio

among the MIs of each parameter is inversely proportional to that of the

relative error and/or the variance for all inferences presented in this chap-

ter. In addition, the convergence depends on the degree of the correlation of

the pairs, implying that more training data—i.e. simulations—are required

to converge in the SFRD (compare Figures 5.5 and 5.11). Lastly, it is also

in agreement with previous work. The CAMELS introduction paper [185]

builds a fully-connected neural network to predict cosmological and astro-

physical parameters taking the SFRD as input. With the neural network, Ωm,

σ8, ASN1, and ASN2 are predicted relatively well compared to AANG1 and

AANG2 (Villaescusa-Navarro et al. [185, Figure 11]).

We now focus on the MI of the SMF-parameter pair with respect to

stellar mass. Figure 5.15 specifically shows the MI between each parame-

ter and the SMF at z = 0.5 (solid) and 2.5 (dotted) as a function of stel-

lar mass. At z = 0.5, ASN1 is dominant over other parameters especially

for M⋆ ≲ 1010.8M⊙, while Ωm also has appreciable MIs. In the higher

mass end (M⋆ ≳ 1010.8M⊙), ASN2 is most effective, followed by σ8 and

ASN1, whereas the MIs of AAGN1 and AAGN2 are negligible across the
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Figure 5.15: Mutual information of the stellar mass function (SMF) at z =
0.5 (solid) and 2.5 (dotted) with respect to stellar mass. Each colored line
indicates mutual information between one parameter and the SMF.

entire stellar-mass range. Interestingly, although the average MI of Ωm is

higher than ASN2, ASN2 can be more practically effective than Ωm since

ASN2 dominates the higher mass end of the SMF. In the case of the higher

redshift (z = 2.5), the order of the relative magnitudes of the MIs among pa-

rameters has changed. ASN1 is still the most dominant parameter in the low

mass end, but the gap with Ωm is smaller. The MI of σ8 is drastically larger

overall and dominates the high mass end, whereas ASN2 becomes negligible.

Compared to z = 0.5 (solid lines), Ωm (red dotted) remains approximately

the same and σ8 (yellow dotted) is significantly increased, while the ASN1

(green dotted) and ASN2 (blue dotted) are appreciably decreased, which,

overall, leads to the increase in the ratio of MI of the cosmological param-

eters to the astrophysical parameters. This can be indicative that cosmology
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is more influential at early times than late times compared to astrophysical

phenomena.

The MI can be an indirect but crucial measure for the degree of the rel-

ative impact of parameters on observables. We can extract physical insights

from Figure 5.15 as follows: (1) The impact of cosmology (Ωm and σ8) di-

minishes as time goes by in terms of the SMF. (2) The energy budget of the

supernova-driven winds (ASN1) is of paramount importance in the galaxies

of stellar mass ≲ 1010.8M⊙. (3) For massive galaxies (M⋆ ≳ 1010.8M⊙),

the stellar wind velocity (ASN2) has more effect than its energy budget

(ASN1). (4) The portion of dark matter (Ωm) in the universe has more im-

pact on lower stellar-mass galaxies than higher-mass galaxies, (5) whereas

the density fluctuation (σ8) is more effective in massive galaxies. (6) The

kinetic feedback of the black holes (AAGN1 and AAGN2) are negligibly

weakly related with the SMF regardless of both redshift and stellar mass

of the galaxies. Note that these results are subject to the resolution effect

and the implementation of subgrid physics. Above all, the importance of

AGN feedback in massive galaxies has been reiterated by many authors

[17, 30, 43, 50, 139, 151]. In contrast, both inference results and MIs demon-

strate the insignificance of the AGN physics overall. Thus, we discuss why

the AGN parameters become fruitless parameters in the following section.

AGN feedback weakly correlated with observables
We have seen the weak correlation between the observables and AGN

feedback parameters from both the variances of the posteriors and the mu-

tual information. In this section, we investigate the impact of the AGN

parameters on the properties of their host galaxies. The AGN parameters

in this work control the energy budget of the low-accretion mode (kinetic

feedback) of black holes (AAGN1) and its burstiness (AAGN2) (refer to Sec-

tion 5.2.1). The kinetic wind from the black holes can play a more cru-

cial role in quenching massive galaxies than thermal feedback can, since
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Figure 5.16: Two-dimensional specific star formation rate (sSFR)-stellar
mass contour plots and one-dimensional histograms of sSFR and stellar
mass for six extreme parameters. Six grey scale dashed-contours and pairs
of black dashed bars are from the fiducial parameter set. Six blue-filled con-
tours and pairs of blue bars are from Ωm = 0.5 (top left), σ8 = 1.0 (top
middle), ASN1 = 4.0 (top right), ASN2 = 2.0 (bottom left), AAGN1 = 4.0
(bottom middle), and AAGN2 = 2.0 (bottom right). Each panel illustrates
the extreme case of each parameter. Here, the other parameters are fixed as
the fiducial values (refer to Section 5.2.1). The red horizontal lines indicate
the threshold below or above which a galaxy is quiescent or star-forming.

the kinetically-injected energy is less vulnerable to gas (over-)cooling, es-

pecially for dense gas where the cooling time is short. For instance, the

black hole-driven winds not only efficiently heat up and eject the gas within

the host galaxy, which ends up becoming quiescent, but also affect the gas

beyond the galaxy by increasing gas entropy and the cooling time of the

CGM [205]. Furthermore, Terrazas et al. [178] find that the galaxy can be

quenched when the cumulative kinetic feedback energy of the central black
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hole exceeds the gravitational binding energy of the gas within the galaxy.

In this regard, the lack of correlation between the AGN parameters and the

SMFs in CAMELS, even at the higher mass end, seems puzzling.

Hence, we study how the changes in kinetic winds (AAGN1 and AAGN2)

affect the star formation rate (SFR) in the higher mass end (M⋆ > 1010M⊙)

and compare them with the impact of the other parameters (Ωm, σ8, ASN1,

and ASN2). First, we define as “quiescent” those galaxies whose specific star

formation rate (sSFR) is lower than 10−11yr−1. Second, although the time-

averaged SFR over tens or hundreds of Myr is a more common choice for

studying SFR as an observable, we adopt the instantaneous SFR since the

results can remain qualitatively the same [178]. Lastly, due to the mass res-

olution limits, there exist galaxies whose SFR is zero. To keep them in the

analysis, we randomly assign their SFRs in the range [10−4, 10−3]M⊙yr
−1,

following Donnari et al. [41, 42], Terrazas et al. [178].

Shown in Figure 5.16 are sSFR-M⋆ diagrams at z = 0.5 with respect

to the six extreme cases. We vary the values of six parameters to the ex-

treme level from the fiducial case but only one at a time, using the 1P set of

CAMELS [186, see Section 3.3.2]. Note that all the simulations presented

in this section are performed with the same initial conditions to minimize

the effects of simulation uncertainty through cosmic variance. The fiducial

sSFR-M⋆ relation is indicated with black dashed contours and histograms

identically in the six panels. Note that all color map and axis limits are con-

sistent across the six panels. In the case of cosmology (Ωm and σ8) in the

left panels (a) and (b), the increase in either Ωm or σ8 leads to increased

abundance of massive galaxies. Interestingly, the increase in the quiescent

galaxies that are located below the threshold line (red dashed) is notable

while the population of star-forming galaxies is similar to the fiducial case

(black dashed). The fractions of the quiescent galaxies of the Ωm and σ8

cases are significantly increased from the fiducial case (35%) to cosmology

variation cases (50% and 49%, respectively).
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On the other hand, the star formation-driven winds (ASN1 and ASN2)

in the middle panels (c) and (d) suppress the formation of galaxies with

high stellar mass to a large degree, especially ASN1. ASN1 has a significant

impact on both star-forming and quiescent galaxies, leaving exceedingly

small number of galaxies in the stellar mass ≥ 1010M⊙ compared to the

fiducial case. However, the quiescent galaxy fraction has decreased to 13%

from the fiducial case of 35%. Meanwhile, the strong stellar-wind velocity

(ASN2) also suppresses the massive population of galaxies, but contrarily to

ASN1, the quiescent galaxy fraction has increased to 56%.

In contrast, the black hole winds have the most minor impact on both

the high-mass population and SFR in the massive galaxies. The increase

in the energy budget of the black hole winds (AAGN1) can suppress the

star-forming galaxies with a quiescent-galaxy fraction of 41%, whereas the

change in burstiness (AAGN2) hardly affects both star formation and popula-

tion of the massive galaxies, with a quiescent-galaxy fraction of 35%, as in

the fiducial run (35%). This result is approximately in agreement with both

Figure 5.15 (solid lines) and Table 5.3 (SmSMF) that show mutual informa-

tion between each parameter and the SMF at z=0.5. The mutual information

of the stellar wind feedback (ASN1 and ASN2) is dominantly high, followed

by Ωm and σ8, whereas the kinetic black hole feedback (AAGN1 and AAGN2)

has exceedingly small mutual information across the entire mass range.

It is known that the black hole physics, especially kinetic feedback, is

more responsible to the population of massive galaxies than stellar physics

such as supernova [43, 127, 174, 178]. This argument can still be valid, but

our analysis introduces a slightly different point of view on it in the context

of the fraction of quiescent galaxies. The black-hole kinetic feedback can be

a primary mechanism for suppression of star formation in massive galaxies.

For instance, cosmological simulations without black hole kinetic feedback

(only with thermal feedback) hardly quench the star formation in massive

galaxies [178, see Figure 1]. However, we find that the black hole kinetic
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feedback has a negligible impact on sSFR-M⋆ compared to cosmological

parameters and stellar wind feedback. One possible explanation is that the

implemented AGN feedback (AAGN1 and AAGN2) might be sufficiently ef-

fective, even in small value of AGN parameters, so that the changes in AGN

feedback can hardly have a critical impact on the fraction of the quiescent

galaxies compared to the other physics.

Figure 5.17: (a) Stellar mass functions from the emulator; (b) Stellar mass
functions from the cosmological simulation; (c) One-dimensional projec-
tions of the inferred posterior based on Figure 5.6. The two peaks in Figure
5.6 are drawn with the red dashed and blue dotted lines consistently. Note
that there exists an offset between the emulated SMFs and simulated SMFs.
This is because the emulated SMFs are re-scaled, whereas the simulated
SMFs come right from the cosmological simulations.

5.4.2 Degeneracy broken with stellar mass functions

We have seen the bimodality of the inferred posterior density and de-

generacy in SFRD in Section 5.3.1 and Figures 5.6 and 5.7. In this section,

we discuss how degeneracy in the SFRD can be broken with both the em-

ulated SMF and the simulated SMF. Figure 5.17 illustrates the marginal

distributions (bottom) that are exactly the same marginals as in Figure 5.7,
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derived by inference on the SFRD, and the corresponding emulated SMFs

(top left) and the simulated SMFs (top right). In contrast to the case of the

SFRD where two emulated SFRDs from two peaks (red dashed and blue

dotted) are nearly on top of each other, two emulated SMFs from two peaks

are appreciably separate in panel (a). The standard deviation of SMFs (grey)

in panel (a), which is 0.081, is an order of magnitude higher than that of

the SMFs from the convergent posterior in Figure 5.10 that is only 0.007.

In addition, the relative error of the SMFs from peak 2 (blue dotted) with

respect to the SMFs from peak 1 (red dashed) is 59%, which is far larger

than 0.79% from the SFRDs in Figure 5.7. Therefore, we can conclude that

the SMFs can break the degeneracy of the SFRDs in terms of the emulators.

Also, we perform new simulations with the parameter sets of the peak

1 (red dashed) and peak 2 (blue dotted) to study whether the SMFs can

break the degeneracy even under the simulation uncertainty. In panel (b)

of Figure 5.17, the red dashed and blue dotted lines indicate the simulated

SMFs from the two peaks. Similarly to the emulated SMFs, the two simu-

lated SMFs do not coincide with each other. However, since the simulation

is affected by the simulation uncertainty, such as cosmic variance and but-

terfly effect (refer to Section 5.2.3), we include the confidence regions (grey

in panel (b)) of the simulation uncertainty. We use ±1σ (grey) and ±3σ

(light grey) regions that correspond to 68.1% and 99.7% confidence levels

for the Gaussian distribution, respectively. The standard deviations of the

SMF are directly calculated from the simulations in the CV set as a function

of stellar mass. The confidence regions are drawn with respect to the red

dashed curves. Panel (b) (top right) demonstrates that the low mass ends of

the blue dotted SMFs noticeably fall outside the 3σ regions at z ≥ 1.5. By

the definition of 3σ regions that corresponds to 99.7% confidence level, the

blue dotted SMFs have only 0.3% chance that it shares the same origin with

the red dashed SMFs and is differed by the simulation uncertainty, namely

degenerate with the red dashed SMFs.
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Both emulated and simulated results support two main conclusions: (1)

There exists degeneracy in the SFRD (refer to Section 5.3.1); (2) The SMFs

can break the degeneracy in the SFRD (see Figure 5.17). Taken together

with the correlation analysis in Section 5.4.1, these conclusions further sup-

port the notion that the higher the correlation between observable and pa-

rameters, the stronger the observable constrains the parameters; here, the

SMF is shown to be a stronger constraint than the SFRD.

5.4.3 Uncertainty in simulation-based inference

We have briefly discussed that the mock uncertainty applied to the

SMFs has negligible impact on the variance of posteriors in Section 5.3.3

unlike the case of the SFRD in Figure 5.8. To elucidate the origin and im-

plications of these results, and what type of uncertainty should be adopted

for SBI, here we perform tests of SBI using various types of uncertainties.

We adopt six different uncertainties as follows: (a) Mock uncertainty (that

which we have used throughout this paper) is modelled to mimic the simu-

lation uncertainty from the CV set in Section 5.2.3; (b) Uniform uncertainty

is made of the univariate Gaussian distribution. Random variables are drawn

from the Gaussian and added to the SMF uniformly with respect to stellar

mass, leading to overall shifts in normalization; (c) Asymmetric Uncertainty

is simply modelled as the modulus of the mock uncertainty such that the

uncertainty only goes in the positive direction.(d) For Gaussian Ωm uncer-

tainty, given a set of parameters (Ω0
m, σ

0
8, A

0
SN1, A

0
AGN1, A

0
SN2, A

0
AGN2), we

generate the SMFs out of (Ω′
m, σ

0
8, A

0
SN1, A

0
AGN1, A

0
SN2, A

0
AGN2) where

Ω′
m ∼ N (Ω0

m, σΩm). Here, σΩm is set to 0.04; (e) We model Gaussian Ωm

uncertainty with white noise by adding Gaussian white noise directly to the

SMFs with the Gaussian Ωm uncertainty; (f) Gaussian Ωm and σ8 uncer-

tainty is modelled similarly to Gaussian Ωm except that we additionally vary

σ8 as σ′
8 ∼ N (σ0

8, σσ8) with σσ8 of 0.04. The visual description of above
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Figure 5.18: The upper six panels show the stellar mass functions (SMF)
at z = 0.5 with six different types of uncertainties. The middle six panels
show the inferred SMFs at z = 0.5 with six different types of uncertainties.
The lower six panels show six marginal of the inferred posteriors from the
SMFs with six different types of uncertainties.
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six uncertainties is shown in the top panels of Figure 5.18. The standard de-

viations of six uncertainties are 0.095, 0.054, 0.058, 0.018, 0.139 and 0.033

dex from (a) to (f), respectively.

We perform SBI from the emulated SMF at z = 0.5 that is generated

with the same parameters that are used in Section 5.3.3, together with the six

uncertainties, respectively. Figure 5.18 shows the marginals of the inferred

posteriors (bottom) and the corresponding SMFs (middle). The correspond-

ing posterior (middle) inferred from each implemented uncertainty (top) (a,

b, c, d, e, and f) in shown in the panels (a’, b’, c’, d’, e’, and f’), respec-

tively. Also, the inferred SMFs (middle) and marginal densities (bottom) are

consistently color-coded as follow: orange dotted—(a’, b’, and c’), green

solid—(d’), blue dotdash—(e’), and red dashed—(f’). We color (a’, b’, and

c’) with the same color since the implemented uncertainties (a, b, and c)

share the same property that the uncertainty injected to the SMFs is uncor-

related with the parameters. The uncertainty is uncorrelated with parameters

if there does not exist θ′ satisfying f(θ′) = f(θ) + Z(η) for all θ where

f is a function that takes parameters θ as input and outputs a stellar mass

function and Z(η) is an implemented uncertainty. We will discuss it further

at the end of this section in detail.

Compared to the implemented uncertainties (a, b, and c), the inferred

SMFs (a’, b’, and c’) have exceedingly small variances. The standard devi-

ations σ̄smf of (a’, b’, and c’) are dex, whereas that of (a, b, and c) are dex,

which is an order of magnitude smaller in the inferred SMFs. The marginal

distributions (a’, b’, and c’) (yellow) are nearly on top of each other and have

the standard deviations σ(Ωm,σ8,ASN1,AAGN1,ASN2,AAGN2) = (0.005, 0.001,

0.006, 0.084, 0.006, 0.010), (0.007, 0.002, 0.012, 0.056, 0.008, 0.023), and

(0.002, 0.001, 0.006, 0.027, 0.004, 0.011), respectively. The standard devi-

ations of SMFs are 0.009, 0.007, and 0.004 dex (a’, b’, and c’), which is an

order of magnitude smaller than that of the implemented uncertainty (0.095,

0.054, and 0.058 dex). Most importantly, the standard deviations of both the
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SMFs and the marginals is close to that of the inference from the SMFs with-

out uncertainty in Figure 5.10 of Section 5.3.3, which are σ̄smf = 0.007 dex

andσ(Ωm,σ8,ASN1,AAGN1,ASN2,AAGN2)=(0.006, 0.002, 0.024, 0.076, 0.006, 0.018).

This can lead us to the proposition that uncorrelated uncertainty has merely

no impact on inference.

In the case of the uncertainties directly injected to Ωm and σ8, the in-

ferred SMFs (d’, f’) and the implemented uncertainty (d, f) have approxi-

mately the same level of the standard deviations as σ̄smf of (d, f) = (0.018,

0.033) and σ̄smf of (d’, f’) = (0.017 0.033). On the other hand, the errors

on the inferred SMFs (e’) are completely different from the implemented

uncertainty (e) that includes white noise in SMFs. The inferred SMFs (e’)

shows no sign of the white noise but are very similar to the SMFs with the

implemented uncertainty (d) that has no white noise. Shown in the zoom-in

panels are the analytic Gaussian distributions (black solid) that are used to

generate the uncertainties (d, e, f). In Ωm, the three inferred marginals—

green dotdashed, blue dashed, red dotted—are in a relatively good agree-

ment with the analytic lines (black solid). Notice that the marginal for (e’)

is not affected by the white noise. Due to the range limit of Ωm, the inferred

marginals are skewed such that the probability density near Ωm = 0.5 drops

sharply compared to the analytic line, whereas in the σ8 panel, the marginal

(f) (red dotted) precisely matches the analytic line (black solid).

The implemented uncertainties (d, e, f) are the correlated uncertainty

since the uncertainty is directly injected to the parameter such that there

exists θ′ satisfying f(θ′) = f(θ+Z(η)) for θ′ ∈ R. Meanwhile, the uncer-

tainty (e) is the partially correlated uncertainty since it includes the uncor-

related part as well. In contrast to uncorrelated uncertainty (a, b, and c), the

variance of correlated uncertainty (d and f) can successfully be propagated

to the posteriors (d’ and f’). Moreover, in the case of partially correlated

uncertainty (e), the uncorrelated part is cancelled out, leaving only variance

of the correlated uncertainty in the posterior distribution. This is a strong
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evidence that uncorrelated uncertainty has no impact on inference and high-

lights the importance of well-establish mock uncertainty that can reproduce

the correlation between the simulation uncertainty and the parameters. From

another point of view, if the simulation uncertainty is not correlated with the

parameters, performing SBI using cosmological simulations can naturally

eliminate the effects of simulations. Note that it is not yet proven that the

simulation uncertainty is correlated with the parameters.

5.4.4 Physical limits of simulations

Mismatch between inferred SMFs and observed SMFs
We have seen the significant mismatch between the inferred SMFs and

the observed SMFs in Section 5.3.4. There are four primary issues in the

SMFs inferred from the observed SMFs shown in Figures 5.13 and 5.14:

(1) The population of massive galaxies (M⋆ ≳ 1010M⊙) in the inferred

SMFs are located far below the observed SMFs across all redshifts; (2) The

inferred SMFs have a ‘shoulder’ at M⋆ = [1010.5, 1011]M⊙, which does not

appear in the observations. (3) The evolution of the emulated SMFs with

respect to redshift dϕ(M, z)/dz in the low-mass end is smaller than that

of the observed SMFs; (4) the SMF-stellar mass slope changes in time are

appreciably different between simulations and observations.

The mismatch in the high mass end has been a crucial problem in the

inference from the five concatenated observed SMFs in Section 5.3.4. The

difference between the inferred SMFs and the observed SMFs is approx-

imately 0.3 dex on average. Concerning physical models in cosmological

simulations, there can be two physical mechanisms that can control the pop-

ulations of massive galaxies: (1) large-scale structure formation and evolu-

tion and (2) astrophysical feedback. In the context of structure formation,

a sufficient amount of matter (Ωm) and large density fluctuations (σ8) can

lead to a high abundance of massive halos and galaxies. On the other hand,
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it is well known that the AGN feedback is a dominant factor in quenching

star formation in massive galaxies (for a seminal review, refer to Kormendy

and Ho [86]), whereas the stellar feedback is more effective in low-mass

galaxies. However, since the AGN feedback is ineffective as we have seen

in Section 5.4.1, the dependence of the massive-galaxy population on cos-

mology should considerably increase. The compensation of cosmology can

be found in Section 5.3.4: In short, the inferences from the individual SMFs

in Figure 5.14 have recovered the population of massive galaxies by having

significant larger σ8 compared to the posterior inferred from the concate-

nated SMFs in Figure 5.13. That being said, the inferences cannot find a set

of parameters that can reproduce the evolution of SMFs as observations.

In addition, Figure 5.14 exhibits several notably different properties for

observations and emulators. The emulated SMFs tend to have a ‘shoulder’ at

M⋆ = [1010.5, 1011]M⊙, which does not appear in the observed SMFs at all.

Although we can find this property in the actual hydrodynamic simulation,

the re-scaling might enhance such properties (refer to Section 5.2.2). Figure

5.1 demonstrates that the re-scaled SMFs (red) have more notable shoulders

than the SMFs without re-scaling (red dashed). Thus, such shoulders can be

attributed to the re-scaling and/or resolution effects.

The rate of evolution of the SMFs in cosmological simulations is rel-

atively low compared to the rate of evolution in observations. We define

the rate of evolution of the SMFs as Rsmf ≡ ∆f̄(z)/∆z where f̄(z) ≡∫ 109.5M⊙
108.9M⊙

f(z,M⋆)d log(M⋆)/
∫ 109.5M⊙
108.9M⊙

d log(M⋆) and f = f(z,M⋆) is a

stellar mass function at redshift z. For ∆z = 0.5 − 2.5, Rsmf,obs ∼ −0.23

dex per unit redshift for the observations and Rsmf ∼ −0.18 dex per unit

redshift for the inferred SMFs in Figure 5.13. We find that the average

Rsmf,sim over 1000 simulations in the LH set is ∼ −0.12 dex/redshift. Over-

all, Rsmf,sim is biased toward lower value than Rsmf,obs.

Lastly, the slope of the SMFs with respect to stellar mass at the low-

mass end hardly changes across redshift in observation, whereas the slope
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of simulations tends to decrease as time goes by. We define the slope as

f ′(z) = ∆f/∆M⋆|z =
(
f(108.9M⊙, z)− f(109.5M⊙, z)

)
/ (8.9− 9.5 log(M⊙))

where f is a stellar mass function. The changes of the slope with respect

to redshift can be written as ∆f ′ = f ′(z = 0.5) − f ′(z = 2.5). Then,

∆f ′
obs = 0.031 whereas ∆f ′

sim = 0.241. In addition to the discrepancy be-

tween Rsmf,sim and Rsmf,obs, the difference in ∆f ′ can be strong evidence

for the limits of physical models in hydrodynamic simulations and/or the

limited dimensions of parameter space. We anticipate that this problem can

be at least partially alleviated by introducing additional dimensions in the

parameter space.

An extra parameter: star formation timescale
In this section, we investigate whether the parameters can be success-

fully inferred from a simulated observable that comes from higher-dimensional

parameter space that has an extra dimension. Thus far, we have performed

SBI on six parameters from observables—SFRD or SMFs—that are ob-

tained by a specific set of six parameters, or actual observations. Here, we

perform SBI on the same six parameters from SMFs that are simulated from

the fiducal six parameters while varying the extra subgrid model parameter,

star formation timescale. The two simulations are performed with longer and

shorter star formation timescale than the fiducial run (hereafter, LT and ST

denote the longer and shorter star formation timescale simulations, respec-

tively). In LT snd ST, the same random seed as the fiducial run is adopted

to minimize the effect of simulation uncertainty through cosmic variance.

Lastly, to generate emulator counterpart of SMFs for LT (ST), we calculate

the ratios of the SMFs from LT (ST) to the simulated fiducial SMFs, and

then apply them to the emulated SMFs of the fiducial parameters to obtain

emulated SMFs for LT (ST).

Figure 5.19 shows the marginal posterior densities and SMFs inferred

from the emulated SMFs from LT and ST (top and middle panels, respec-
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Figure 5.19: Top: Stellar Mass functions and the marginal posterior den-
sities that are inferred from the SMFs with the fiducial six parameters and
a longer star-formation timescale. Middle: Same, but with a shorter star-
formation timescale. Bottom: Stellar Mass functions and the marginal pos-
terior densities that are inferred from the average SMFs out of the CV set of
the SIMBA, rather than IllustrisTNG, suite.
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tively). In the case of LT, the peaks of the marginal densities of the inferred

posteriors (red dashed) considerably deviate from the fiducial parameters

(black solid), except for σ8. The low-mass end of the inferred SMFs (red

dashd) at z = 2.5, 2.0, and 1.5 is in a relatively good agreement with the

SMFs from LT (black solid), whereas at z = 1.0 and 0.5, the inferred SMFs

and the SMFs of LT show a complete mismatch. In addition, the LT has a

high evolutionary rate of the SMFs and tends to have steeper slopes as red-

shift decreases, which the inferred SMFs fail to match as in the inference

from observation (see Figure 5.13). Similar to LT, the inferred SMFs are in

good agreement with the SMFs of ST at z = 2.5, 2.0 and 1.5, whereas the

high-mass end of the inferred SMFs at low redshifts is clearly lacking com-

pared to the SMFs of ST, which we have also seen in the inference from the

observation in Figure 5.13.

We have found that the SMFs from the seven-dimensional parameter

space including an extra parameter—star formation timescale—are not nec-

essarily reproduced by points in the conventional six-dimensional parame-

ter space that we have used throughout this work. LT and ST have intrinsic

properties that cannot be reproduced from points in the six-dimensional pa-

rameter space (e.g., higher rates of evolution in the SMFs, slope evolution in

the SMFs, and large populations of massive galaxies). The results indicate

that the introduction of extra dimensions or parameters has the potential to

resolve the problem of the significant mismatch between the five concate-

nated observed SMFs and observation.

Inference from SIMBA
In addition to the extra parameter, we also perform SBI from the SMFs

that are obtained by the fiducial simulation from the CV set of the SIMBA

suite (refer to Section 5.2.1 or Villaescusa-Navarro et al. [185]). Likewise,

we re-scale the SIMBA SMFs to obtain the emulated SIBMA SMFs in the

same way as we have in the previous part. Note that although we make
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inference from a SIMBA-derived observable, we use the same emulators

that we have used so far, which are trained on the TNG suite of the CAMELS

simulations.

The bottom row of Figure 5.19 illustrates the inferred SMFs (red dashed

and grey) and the emulated SIMBA SMFs (black solid). The inferred SMFs

from the maximum of the posteriors (red dashed) seem to match the SIMBA

SMFs relatively well even though the relative error is ∼ 21%. Unlike LT and

ST in the previous part, the inferred SMFs reasonably follow the trends of

the SMFs, such as slopes and rates of the evolution of SMFs. Still, the dif-

ference between inferred parameters and fiducial parameters has not been

narrowed. Such deviations between the inferred and fiducial parameters can

be attributed to the differences of physical model between TNG and SIMBA.

5.4.5 Caveats & physical interpretation of inference

This section discusses how the inferred parameters can be interpreted

in an astrophysical sense. We defer the physical interpretation of the infer-

ence to the last section because the inferred parameters contain very little

meaningful physics at this time. Prior to the physical interpretation, it is

imperative to understand the key factors that influence inferences on pa-

rameters: e.g. emulator, simulation uncertainty, resolution convergence, and

limited parameter space.

First, we have employed the emulators for computational efficiency,

paying the price of discrepancies between simulations and emulators. The

discrepancies inevitably propagate to the inferred posterior and lead to devi-

ations from the posterior that would have been inferred if actual cosmolog-

ical simulations were employed in the inference. Assuming that we can re-

place the emulators with actual cosmological simulations, the next questions

shall be: “Will the posterior inferred from the actual cosmological simula-

tions contain robust information on physics?” Or, more specifically, “Will
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the cosmological parameters inferred from the cosmological simulations,

not the emulators, be physical and comparable to the pre-existing estima-

tions?” To answer these questions, resolution convergence and the limited

dimension of parameter space, along with simulation uncertainty, should be

taken into consideration.

Resolution effect
The resolution effects in hydrodynamic simulations have been discussed

in many papers [6, 24, 69, 99, 100, 117, 136, 138, 145, 161, and also see Sec-

tion 5.2.2 of this chapter]. In general, it is believed that the hydrodynamic

simulations are sensitive to (spatial and mass) resolution. On the other hand,

pure hydrodynamic simulations themselves without subgrid models, such as

radiative cooling, are highly likely to be convergent at some level (refer to

Hubber et al. [69] for resolution convergence of both SPH and AMR codes).

This implicitly indicates that the resolution effect is likely to be attributed to

response of subgrid models to the different resolutions. In addition, cosmo-

logical hydrodynamic simulations with subgrid models can become conver-

gent once it reaches a certain resolution and beyond [24, 99, 100]. The above

arguments suggest that resolution effects can generally be incorporated into

the subgrid models—astrophysical parameters.

We turn our attention to the resolution effect in this section. As dis-

cussed in Section 5.2.2, we re-scale the obserables—SFRD and SMF—to

minimize the the resolution effect according to Pillepich et al. [136]. How-

ever, aside from the inaccuracy of re-scaling, there is a problem with re-

scaling. We find that the resolution effect has a significant dependence on

the position in parameter space, which is in line with the above arguments.

In principle, the re-scaling must be a function of parameters θ, whereas

we construct the re-scaling function only based on the fiducial parameters

in this chapter. Due to computational cost, it is not realistically possible to

obtain the full re-scaling relation as a function of parameters by running
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high-resolution simulations over the entire parameter space [66]. Hence, the

inference results near the fiducial parameters can be physically compara-

ble to TNG100-1, which is the target resolution of the re-scaling, but other

regions of the parameter space may be difficult to grasp.

Limited parameter space
In this work, we have seen the limits of the six-dimensional model

parameter space: e.g., weak correlation between AGN parameters and ob-

servables, failure of inference from the observed SMF, and potential of the

extended parameter space. The limits of parameter space can affect not only

the performance or accuracy of inference but also the physical interpretation

of the inferred posterior. In addition, the limitations of the subgrid model

and the limited dimensions of the parameter space can lead to overfitting

or over-fine-tuning of the parameters to the target observable, even if the

inferred physics is not realistic. For instance, since our emulators (or sim-

ulations) are insensitive to the AGN feedback, the cosmological and stel-

lar feedback parameters should be adjusted to control the population of the

high-mass end in Section 5.3.4. The parameter space of the TNG universe

or the SIMBA universe is likely to be insufficient to describe the real uni-

verse. Thus, we will ultimately move towards extending the parameter space

beyond the current TNG universe so that we can resolve the problems of in-

ference failure and secure the physical meaning of the posteriors.

5.5 Summary

In order to calibrate cosmological simulations against observations,

we have employed simulation-based inference (SBI) that enables rigorous

Bayesian inference in a computationally efficient way by adopting neural

density estimators (NDE) that evaluate the likelihood instead of an explicit

analytic likelihood in conventional Bayesian inference (Sections 3.2 and

5.2.4). In addition, for computational efficiency, we have adopted emulators
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that are trained on ∼ 1000 cosmological simulations from the CAMELS

project (specifically, those based on the IllustrisTNG framework) to predict

simulated observables, taking as input the cosmological and astrophysical

parameters, and used these emulators as surrogates to the cosmological sim-

ulations (Section 5.2.5). Using the emulators, we have conducted SBI on the

cosmological and astrophysical parameters (Ωm, σ8, stellar wind feedback,

and kinetic black hole feedback) from the cosmic star formation rate den-

sity (SFRD) and stellar mass functions at different redshifts (SMFs) and

retrieved 6-dimensional posterior distributions of the parameters.

We summarize our results as follows:

• The posteriors inferred from emulated SFRD and SMFs converge to

the true values well with relative errors of less than 1% in either SFRD

or SMFs (Sections 5.3.1 and 5.3.3, respectively). However, the SFRD

requires an order of magnitude more training data to converge than

the SMFs do, having two convergent stages—an unstably convergent

stage and a stably convergent stage (Figure 5.5).

• In the unstably convergent stage, there exists a bimodal posterior dis-

tribution that has two degenerate peaks (see 5.6). However, the degen-

eracy in the SFRD, which is also confirmed with new cosmological

simulations (namely, it is not an artefact of the emulator), is broken

with the SMFs in both the emulator and cosmological simulations

(Section 5.4.2). This indicates that the SMFs provide stronger con-

straints for the parameters.

• In the inferences with the mock uncertainty that we add to the emula-

tors to mimic the simulation uncertainty (Section 5.2.3), the posterior

inferred from the emulated SFRD has successfully captured the vari-

ance of the mock uncertainty in the parameters, whereas the SMFs

cannot capture any variances in the posterior. In Section 5.4.3, we
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show that uncorrelated uncertainties have a negligible impact on SBI.

Future work will require to build a robust model that can precisely

reproduce the simulation uncertainty (note that the actual simulation

uncertainty is also uncorrelated with the parameters). In addition, an

emulator or theoretical model that can marginalize the simulation un-

certainty will be another direction to future work.

• Employing SBI on the Leja et al. [93] observed SFRD, we find a

set of parameters that matches the target observable with a relatively

high accuracy, whereas the similarly inferred SMFs show significant

discrepancies with the target observed SMFs (Section 5.3.4). Such

discrepancies could potentially originate from the intrinsic physical

limits of cosmological simulations with the TNG framework (Section

5.4.4). Resolving this issue will require extending the parameter space

and/or updating the subgrid models of cosmological simulations.

• Using mutual information, we measure the correlation between parameter-

observable pairs and we find that the performance of inference for

each observable largely depends on the correlation between the pa-

rameters and observable (Section 5.4.1).

• In both correlations and inferences, we find that the AGN parameters

(black hole kinetic feedback) are most weakly correlated with both

SFRD and SMFs. This can be attributed to the relatively insignifi-

cant impact of the black hole kinetic feedback parameters, within the

range varied in CAMELS, on both formation of galaxies with high

stellar mass and star formation in massive galaxies compared to cos-

mological parameters and stellar wind feedback (see Figure 5.16).

• In this work, we have refrained from conducting physical interpreta-

tion of the inferred parameters because the inference result is sensi-

tive to emulator accuracy, resolution effects, simulation uncertainty,
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and inaccuracy from limited parameter space (Sections 5.4.5).

• This work is only a cornerstone of calibrating cosmological simula-

tion against observation and provides considerable insights into future

directions. In future work, we will focus on resolution convergence,

simulation uncertainty, the extension of parameter space as well as the

number of target observables, and inference (only) with cosmological

simulations without emulator bias.
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5.6 Appendix

5.6.1 Definition of degeneracy

We have encountered degeneracy in Section 5.3.1 that discusses the

bimodality of the SFRD. In this section, we probabilistically discuss the

relation between uncertainty and degeneracy and mathematically define de-

generacy for our purposes. In terms of parameter-observable pair, the de-

generacy originates from indistinguishability among these pairs. Given an

arbitrary observation x0, if there exists a set of parameters Θdegen such that

f(θ)|θ∈Θdegen
= x0 where f(θ) is e.g. a theoretical model, a simulation,

and a fast approximation method that predict observable x as a function of

parameters θ, then one cannot pinpoint the parameters θ from which the

given observation x0 comes. In this case, the pairs {(θ,x0)|θ ∈ Θdegen}
are said to be degenerate with respect to observation x0. This can be usually

seen in quantum systems such as the spin triplet state under no magnetic

field. In consideration of an arbitrary uncertainty Z(η) in observable13 , the

pairs can be written in either (θ,x + Z(η)) or (θ + ϵ(η),x) where η is a

random seed (see Section 5.2.3). One can notice that Z and ϵ are basically

random variables that require a probabilistic treatment. In the following sec-

tion, degeneracy will be discussed in a probabilistic manner.

The ideal probabilistic inference naturally traces the propagation of un-

certainty in observation onto each parameter. Nevertheless, the consistent,

robust confinement for the posterior density is necessary to define a finite re-

gion of the degenerate parameter space since an arbitrary inferred posterior

density is generally well-defined over the entire parameter space.

We define degeneracy as follows.

Given an arbitrary probability density p(θ) and ζthres, there exist pthres and

13For example, the cosmological simulations f reproduce different output x depending on
the initial conditions η even with the same set of physical and free parameters θ. i.e. f(θ) =
x+ Z(η) where Z(η) stands for cosmic variance.

124



Θdegen satisfying Θdegen = {θ | p(θ) ≥ pthres} such that

(continuous)

∫
θ∈Θdegen

p(θ)dθ∫
θ∈V p(θ)dθ

= ζthres (5.5)

or

(discrete)

∑
θ∈Θdegen

p(θ)∆θ∑
θ∈V p(θ)∆θ

= ζthres (5.6)

where 0 < ζthres < 1 and V stands for the entire parameter space. Here, the

parameters θ in Θdegen are said to be degenerate. Note that the threshold

value ζthres is a free parameter.

In case of a high dimensional problem with an intractable probability

distribution, it is practically impossible to numerically integrate the proba-

bility distribution p(θ) over V or Θdegen even if Θdegen is known. In low

dimensional problems, simple quadrature methods can work. For example,

we can evaluate a function on a fixed grid of points, then apply the trapezoid

rule. However, in high dimensions, the number of grid points grows expo-

nentially. 14 Hence, MCMC methods are widely adopted to integrate high

dimensional functions.

We utilize the MCMC sampling to estimate the degenerate parameter

space. The MCMC provides millions of parameter sets such that the ratio

of the number of parameter sets in each bin, N(∆θbin), to the total number

of the samplings, Ntotal, represents the approximate probability of that bin.

In other words, p(θ)∆θbin ≃ N(∆θbin)/Ntotal where ∆θbin is the size of

each bin. We can rewrite the left-hand side of Eq. 5.6 in the form∑
θ∈Θdegen

p(θ)∆θ∑
θ∈V p(θ)∆θ

=

∑
θ∈Θdegen

N(∆θbin)

Ntotal
. (5.7)

14In our case, six dimensional parameter space requires (102)6 = 1012 grid points where
we space each axis with 100 grid points, which means that 1012 arithmetic calculations at
least are needed.
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Then, ∑
θ∈Θdegen

N(∆θbin) = ζthresNtotal. (5.8)

Together with Θdegen = {θ | p(θ) ≥ pthres}, we can write Θdegen =D∈D

pthres;D = {D|p̃(θ) > pthres∀θ;θ ∈ D, n(D) = ζthresNtotal, D ⊂
ΘMCMC} where ΘMCMC, p̃ and n(·) are the set of sampled parameters

from MCMC, an arbitrary surrogate posterior function, such as the NDE or

kernel density estimation, and the cardinality of a set. The set of degenerate

points in parameter space, Θdegen, is a subset of ΘMCMC such that the sum

of probability of the parameters in the subset is equal to ζthres (refer to Eq.

5.6). In practice, we identify Θdegen among ΘMCMC as follows: (1) Esti-

mate p̃(θ) for all θ ∈ ΘMCMC; (2) Pair θ and p̃(θ) into (θ, p̃(θ)); (3) Sort

(θ, p̃(θ)) in a descending order along p̃(θ); (4) Identify the first ζthresNtotal

number of θ of the sorted pairs as Θdegen.

5.6.2 Marginalization of simulation uncertainty in em-
ulator

This section discusses how emulators marginalize the simulation un-

certainty in the LH set that the emulators are trained on. The LH set, con-

sisting of 1000 cosmological simulations, suffers from the simulation un-

certainty since the initial conditions of the 1000 simulations are all differ-

ent, namely it is dominated by cosmic variance, since the scale of our box

size is 25Mpc/h. The simulation uncertainty plays a role as an intrinsic

noise in the simulated data in training the emulators, which potentially de-

grades the accuracy of emulators. Thus, we study whether the emulators can

marginalize the noise during training or how much the emulator suffers from

the simulation uncertainty. If the emulators can marginalize the simulation

uncertainty completely, then the emulator prediction should be equivalent

to the mean of the results of a hypothetical suite with a large number of

126



simulations for each point in parameter space—hereafter the uncertainty-

marginalized ideal simulation.

We first describe the simulated observable g (SFRD or SMF) as fol-

lows:

g = g(θ, δ(λ,θ)), (5.9)

where θ is a set of parameters and δ(λ,θ) describes the initial conditions

with a random seed λ for cosmological simulations. Here, the marginal-

ization of simulation uncertainty—i.e., the emulator prediction is equiv-

alent to the uncertainty-marginalized ideal simulation—can be written as

ḡ(θ) = ⟨g(θ, δ(λ,θ))⟩λ by averaging g over the sources of randomness λ.

The physical analogy of the mean of the simulation uncertainty is the mean

of cosmic variance by performing the infinite-volume simulation (only if

we ignore the effects of the long-wave limit in power spectrum in cosmic

variance).

The emulator prediction f can be written with respect to the ideally-

marginalized prediction—the uncertainty-marginalized ideal simulation—

in the form

f = f(θ) = ḡ(θ) + ϵ(θ) +m(θ). (5.10)

Here, we separate the inaccuracy of the emulator into the training error ϵ(θ)

and the marginalization error m(θ). Then, the bias of the emulator with

respect to simulations in the LH set, bLH, can be written as

bLH = ⟨g(θ, δ(λθ,θ))− f(θ)⟩θLH

= ⟨g(θ, δ(λθ,θ))⟩θLH
− ⟨ḡ(θ)⟩θLH

− ⟨ϵ(θ)⟩θLH
− ⟨m(θ)⟩θLH

,

(5.11)

where θLH denotes θ ∈ ΘLH and ΘLH is a set of 1000 parameters in the

LH set. Here, we write λ as λθ because in the LH set, λ are already deter-

mined depending on θ. Assuming that the average of simulations over the

127



LH set can average not only the simulations from different parameters but

also marginalize their simulation uncertainties such that it can be approx-

imately equal to the average of the uncertainty-marginalized ideal simula-

tions over the LH set—i.e., ⟨g(θ, δ(λθ,θ))⟩θLH
∼ ⟨⟨g(θ, δ(λ,θ))⟩λ⟩θLH

≡
⟨ḡ(θ)⟩θLH

, we obtain

bLH ≃ −⟨ϵ(θ)⟩θLH
− ⟨m(θ)⟩θLH

. (5.12)

The empirical biases bLH for the SFRD and SMFs are 0.0026 dex and -

0.0014 dex, respectively. Compared to the standard deviations of the sim-

ulation uncertainty for the SFRD and SMFs (∼ 0.06 dex and ∼ 0.1 dex),

the emulators have relatively small bias, which indicates that the mean of

emulators and the mean of simulations are in a good agreement.

Secondly, we estimate the variance of emulator prediction with respect

to the uncertainty-marginalized ideal simulation in terms of the LH set as

follows:

σ̂2
LH =

〈
(ḡ(θ)− f(θ))2

〉
θLH

=
〈
(ḡ(θ)− g(θ, δ(λ,θ)) + g(θ, δ(λ,θ))− f(θ))2

〉
θLH

.
(5.13)

With the definitions A ≡ ḡ(θ)−g(θ, δ(λθ,θ)), B ≡ g(θ, δ(λθ,θ))−f(θ)

and C ≡ ḡ(θ)− f(θ), we obtain

σ̃2
LH =

〈
C2

〉
θLH

=
〈
A2

〉
θLH

+
〈
B2

〉
θLH

+ 2 ⟨AB⟩θLH

=
〈
A2

〉
θLH

+
〈
B2

〉
θLH

+ 2 ⟨A(C −A)⟩θLH

= −
〈
A2

〉
θLH

+
〈
B2

〉
θLH

+ 2 ⟨AC⟩θLH

≃ −
〈
A2

〉
θLH

+
〈
B2

〉
θLH

.

(5.14)

In the third line, ⟨AC⟩θLH
is the covariance of A and C where A and C

are the simulation uncertainty and the deviations of the emulator from the
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ideally-marginalized prediction, respectively. Since the error of emulator

and simulation uncertainty are, in principle, fully independent, we assume

that ⟨AC⟩θLH
approximately vanishes.

〈
A2

〉
θLH

is the variance of simula-

tion uncertainty and
〈
B2

〉
θLH

is the variance of emulator with respect to

simulation in the LH set, both of which are measurable quantities.
〈
A2

〉
θLH

and
〈
B2

〉
θLH

for the SFRD are 0.036 dex2 and 0.004 dex2, and
〈
A2

〉
θLH

and
〈
B2

〉
θLH

for the SMFs are 0.369 dex2 and 0.035 dex2. Thus, σ̂2
LH for

the SFRD and SMFs are 0.032 dex2 and 0.334 dex2, respectively. As a re-

sult, the emulators have negligibly small biases but are deviated from the

mean of the simulation uncertainty at a similar level to the variance of the

simulation uncertainty. Therefore, we can conclude that the emulators can-

not properly marginalize the simulation uncertainty.
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Chapter 6

Conclusion

In the era of technology, the development of computers and telescopes

has led to remarkable successes in both numerical simulations and obser-

vations, and greatly improved our understanding of astrophysical and cos-

mological phenomena, from formation of the first star to the large-scale

structure. However, simulations and observations have been sundered and

studied almost independently due to several factors, such as various uncer-

tainties in both observation and simulation, limitations of physical models

for both observation and simulation, and the absence of delicate and sophis-

ticated comparisons. In this dissertation, we harness the power of machine

learning to overcome the computational limitations of numerical simula-

tions and extend our understanding of formation and evolution of galaxy in

a cosmological context.

In the first part of the dissertation (Chapter 4), we build a machine-

learning model that estimates the baryonic properties of halos, taking as in-

put dark-matter halo properties without running actual hydrodynamic sim-

ulations. In doing so, we improve our model by adopting several methods:

inclusion of historical and environmental properties of halos, application of

logarithmic scaling, and use of two-stage learning. Machine accuracy has

appreciably been improved as follows. The application of logarithmic scal-

ing alleviates the problem of disproportionality in output features such as

stellar mass so that we can have consistent accuracy across mass scale. The

inclusion of historical and environmental properties leads to higher corre-

lation between input and output features by providing more physical infor-

mation to the machine. The two-stage learning helps reduce the complexity

of the machine (i.e., structure of decision trees), leading to increase in both
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training efficiency and accuracy (refer to Sections 4.2.3 and 4.3.1). By ap-

plying our improved model to larger-scale dark matter-only simulations, we

can address topics like baryonic acoustic oscillations, with galaxies having

basic properties, which is usually unavailable with smaller-size cosmologi-

cal hydrodynamic simulations that the model is trained on.

One of the main benefits of our model is that we can transplant the

baryon physics of galaxy-scale hydrodynamic simulations onto a much larger

volume of dark matter-only simulations, only within a fraction of time needed

for a hydrodynamic simulation. Therefore, we can obtain a large-scale galac-

tic catalog which is not feasible to obtain using hydrodynamic simulations.

In addition, the ERT algorithm that we adopt assesses the relative impor-

tances of input features in estimating each baryonic properties (Section 4.4).

This has a full of potential to study the complex relations between dark mat-

ter and baryon properties.

In Chapter 5, we have studied how we can bridge the gap between ob-

servations and simulations by addressing practical computational-efficiency

problems using machine learning. For computational efficiency, we trained

emulators on cosmological simulation to predict observables, taking as in-

put the simulation parameters—cosmological and astrophysical parameters.

Using the emulators, we have performed simulation-based inference on the

cosmological and astrophysical parameters (Ωm, σ8, stellar wind feedback,

and kinetic black hole feedback) from the cosmic star formation rate den-

sity (SFRD) and stellar mass functions at different redshifts (SMFs), and

retrieved 6-dimensional posterior distributions of the parameters. In a per-

formance test, the posterior distributions successfully recover both SFRD

and SMFs with relative errors of less than 1%. We fine that the SFRD re-

quires an order of magnitude more training data to converge than the SMFs

do due to the weak correlation between the SFRD and parameters. In the

inference from the emulated SFRD, there exists a bimodal posterior distri-

bution that has two degenerate peaks. However, the bimodality is broken
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with the SMFs, which indicates that the SMFs provide stronger constraints

for the parameters.

In the inference from observations, we successfully inferred a set of

parameters from the target observed SFRD with a relatively high accuracy,

whereas the inferred SMFs show significant discrepancies with the target

observed SMFs. These discrepancies can stem from the intrinsic physical

limitations of cosmological simulations, such as subgrid models, resolutions

and dimensionality of parameters. We might resolve discrepancies by ex-

tending the parameter space, updating the subgrid models, and/or resolution

of cosmological simulations. In addition, physical interpretation of the in-

ferred parameters is highly sensitive to emulator accuracy, resolution effects,

simulation uncertainty, and inaccuracy from limited parameter space. Thus,

clearly there is a room for improvements in the future. Nevertheless, as a

cornerstone, this shows the full potential of calibrating cosmological simu-

lations and improving our understanding of galaxy formation and evolution

in a cosmological context.
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[80] A. Klypin, G. Yepes, S. Gottlöber, F. Prada, and S. Heß. MultiDark

simulations: the story of dark matter halo concentrations and density

profiles. , 457(4):4340–4359, Apr. 2016. doi: 10.1093/mnras/stw248.
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ton, A. Gregorio, A. Gruppuso, J. E. Gudmundsson, J. Haissin-

ski, J. Hamann, F. K. Hansen, D. Hanson, D. Harrison, S. Henrot-
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gache, A. Lähteenmäki, J. M. Lamarre, A. Lasenby, M. Lattanzi, R. J.

Laureijs, C. R. Lawrence, S. Leach, J. P. Leahy, R. Leonardi, J. León-

Tavares, J. Lesgourgues, A. Lewis, M. Liguori, P. B. Lilje, M. Linden-
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Martin, E. Martı́nez-González, S. Masi, M. Massardi, S. Matarrese,

F. Matthai, P. Mazzotta, P. R. Meinhold, A. Melchiorri, J. B. Melin,

L. Mendes, E. Menegoni, A. Mennella, M. Migliaccio, M. Millea,
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H. Dole, S. Donzelli, O. Doré, M. Douspis, A. Ducout, J. Dunk-

ley, X. Dupac, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Erik-

sen, M. Farhang, J. Fergusson, F. Finelli, O. Forni, M. Frailis, A. A.

Fraisse, E. Franceschi, A. Frejsel, S. Galeotta, S. Galli, K. Ganga,

C. Gauthier, M. Gerbino, T. Ghosh, M. Giard, Y. Giraud-Héraud,
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국문초록

수십년동안의우주론적모의실험과관측의눈부신발전은우주거

대구조의형성과진화와같은다양한천체물리학및천문현상에대한이

해를 눈부시게 확장시켰고, 우주론적 모의 실험은 천체 물리학을 연구하

는 데에 없어서는 안될 필수불가결한 요소가 되었습니다. 그러나 관측과

모의실험의다양한불확실성,관측과모의실험의물리적모델의한계,모

의실험의계산비용,수학적으로정교한비교의방법론적부재와같은여

러 요인으로 인해 모의 실험과 관측은 융합되어 연구되지 못하였습니다.

한편,컴퓨터의발전과함께부상한기계학습은위에서제기된대부분의

문제를 해결할 수 있을 만큼의 잠재력을 보여주었습니다. 이 논문에서는

기계학습을활용하여크게두가지문제를해결하는것을목표로합니다.

(1) 계산적으로 매우 효율적인 방식으로 우주론적 유체역학 모의 실험을

지원할 수 있는 모델을 수립하고, (2) 수학적으로 보다 정교한 방법으로

관측에대해우주론적모의실험을보정하는골조를구축하였습니다.

첫번째부분에서는기계학습을사용하여고해상도유체역학모의

실험으로 암흑 물질으로만 이루어진 암흑 물질 전용 모의 실험에서 암흑

물질 헤일로의 중입자적 특성(즉, 항성이나 기체 등의 특성)을 추정하는

모델을제시합니다.모델을훈련및개선시키기위해무작위숲알고리즘

과함께두단계학습,개선된오차함수,헤일로의주변환경과성정과정

등을 추가적인 입력값으로 사용하였습니다. 이러한 개선 사항들을 통해

저희 모델의 중입자적 특성을 예측하는 정확도가 크게 향상되었음을 보

여줍니다.이런모델을아주큰암흑물질전용모의실험에적용하여암흑

물질의 정보로만 이루어진 암흑 물질 헤일로 목록에서 중입자적 특성까

지 포함할 수 있는 은하 목록을 기존 모의 실험에 비해 비약적으로 짧은

시간안에생성할수있는골조을구축하였습니다.저희모델은은하규모

의유체역학모의실험의중입자물리학을큰규모의암흑물질전용모의

실험에 효율적으로 이식할 수 있는 획기적인 방법이 될 수 있습니다. 또
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한,기계학습의장점과이러한접근방식을이용하여우주론적현상들에

대한물리학적이해를증대하기위한방법들에대해논의하였습니다.

두 번째 부분에서는 우도함수를 사용하지 않는 추론이라고도 하는

모의 실험 기반 추론을 사용하여, 기존에는 모의 실험의 높은 계산 비용

으로실현할수없었던,관측에대한우주론적모의실험의보정을수행하

였습니다.계산효율성을위해우리는약천여개의우주론적모의실험을

사용하여에뮬레이터를훈련하여우주론및천체물리학매개변수를입력

으로 받아 모의 실험의 관측량을 추정하고, 이러한 에뮬레이터를 우주론

모의 실험의 대체제로 사용합니다. 우주 항성 형성 속도 밀도 및 항성 질

량함수를사용하여선택된우주및천체물리학매개변수(Ωm, σ8,초신성

폭발피드백및블랙홀피드백)에대해모의실험기반추론을수행하여 6

차원사후확률분포를얻습니다.저희는우주항성형성속도밀도에서추

론된 매개변수 사이에 축퇴가 존재한다는 것을 발견했으며, 이는 새로운

우주론적모의실험으로도확인되었습니다.또한,항성질량함수가우주

항상형성속도밀도의축퇴를깨뜨릴수있음을발견했습니다.이는항성

질량함수가매개변수에대해더강력한제약을제공할수있음을나타냅

니다.저희는관측에서추론된항성형성속도밀도에서추론된매개변수

집합이 관측된 항성 형성 속도 밀도를 매우 잘 재현하는 반면, 항성 질량

함수의경우,추론및관찰된항성질량함수의상당한불일치로부터은하

형성모델링의한계가있다는것을발견했습니다.

주요어 : 우주론모의실험,모의실험기반추론,은하형성과진화,우주

의거대구조형성

학번 : 2014-22379
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