
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


이학박사학위논문

Topological phases in
quasi-one-dimensional bismuth

halides Bi4X4 (X= I, Br)

준일차원비스무트할라이드 Bi4X4 (X= I, Br)의
위상적상

2022년 8월

서울대학교대학원

물리천문학부

윤치호





Topological phases in
quasi-one-dimensional bismuth

halides Bi4X4 (X= I, Br)

준일차원비스무트할라이드 Bi4X4 (X= I, Br)의
위상적상

지도교수민홍기

이논문을이학박사 학위논문으로제출함

2022년 6월

서울대학교대학원

물리천문학부

윤치호

윤치호의이학박사학위논문을인준함

2022년 7월

위 원 장 유재준 (인)
부위원장 민홍기 (인)
위 원 김기훈 (인)
위 원 양범정 (인)
위 원 정재일 (인)





Abstract

Topological phases in
quasi-one-dimensional bismuth

halides Bi4X4 (X= I, Br)

Chiho Yoon

Department of Physics and Astronomy

The Graduate School

Seoul National University

Since the successful exfoliation of graphene, researchers have been

paying a great attention on van der Waals materials, a stack of layers or

chains of atoms held together by weak van-der-Waals-like forces. Thanks

to the weak interlayer or interchain bonding, a multilayer with an arbitrary

thickness can be made from van der Waals materials. Very intriguingly, van

der Waals material multilayers exhibit completely different physics as the

number of stacked layers changes. In this dissertation, we investigate two

kinds of van der Waals materials Bi4X4 (X=Br, I) and Bernal stacked mul-
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tilayer graphene, focusing on the stacking-dependent topological properties

and the effect of the electron-electron interaction.

In the first part, we focus on a family of quasi-one-dimensional mate-

rials Bi4X4. Bi4X4 are prototype weak topological insulators (TI) in the β

phase. For the α phases, recent high-throughput database screening suggests

that Bi4Br4 is a rare higher-order TI (HOTI) whereas Bi4I4 has trivial sym-

metry indicators. Here we show that in fact the two α phases are both pris-

tine HOTIs yet with distinct termination-dependent hinge state patterns by

performing first-principles calculations, analyzing coupled-edge dimeriza-

tions, inspecting surface lattice structures, constructing tight-binding mod-

els, and establishing boundary topological invariants. We reveal that the lo-

cation of inversion center dictates Bi4Br4 (Bi4I4) to feature opposite (the

same) dimerizations of a surface or intrinsic (bulk or extrinsic) origin at two

side cleavage surfaces. We also conduct various experiments including the

angle-resolved photoemission spectroscopy, gate-tunable transport, and the

scanning tunneling microscopy to examine our predictions. Given the supe-

rior hinges along atomic chains, the structural transition at room tempera-

ture, and the extreme anisotropies in three axes, our results not only imply

the possible existence of many topological materials beyond the scope of

the current scheme for the classification of topological materials, but also

establish a new TI paradigm and a unique material platform for exploring

the interplay of geometry, symmetry, topology, and interaction.

In the second part, we analyze the ordered phases of Bernal stacked

multilayer graphene in the presence of interaction induced band gaps due to
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sublattice symmetry breaking potentials, whose solutions can be analyzed

in terms of light-mass and heavy-mass pseudospin doublets which have the

same Chern numbers but opposite charge polarization directions. The appli-

cation of a perpendicular external electric field reveals an effective Hund’s

rule for the ordering of the sublattice pseudospin doublets in a tetralayer,

while a similar but more complex phase diagram develops with increasing

layer number.
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Chapter 1

Introduction

Since the first successful exfoliation of a two-dimensional (2D) mate-

rial graphene [1, 2], researchers have been paying a great attention to van

der Waals materials in the last two decades of the twenty-first century. Van

der Waals materials is a stacking of 2D layers or 1D chains of atoms held

together by weak van-der-Waals-like forces. Thanks to the weak interlayer

or interchain bonding, one can reach the mono- or few-layer limit, where

the physical properties of the material changes dramatically as the number

of layers changes. Especially in the case of multilayer graphene, various

types of chiral 2D electron gases are realized near the charge neutral point,

which plays as a fertile ground for the interesting many-body physics [3].

In addition to the study of few-layer systems, recently the researchers have

been building the heterostructures, a stacking of different 2D crystals on the

top of each other [4]. By stacking different systems, we expect to engineer a

system unforeseen in the nature. And even more, very recently researchers

discovered that stacking 2D materials with a little bit of ‘twist’ also leads

to the unforeseen physical systems. The most famous example is the bilayer

graphene system with a twist of the magic angle of ∼ 1.1◦, where the un-

conventional superconductivity is observed [5–7].

On the other hand, around the same time, a new paradigm ‘topological
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phase of matter’ was rising in condensed matter physics. In 2004, Kane and

Mele [8, 9] proposed that the the spin-orbit interaction can lead to the new

phase called ‘topological insulator’ (TI) and soon this phase was verified in

the HgTe/CdTe quantum well [10, 11] and even in a natural material Bi2Se3

[12]. The discovery of TI has highlighted the importance of the topology

in condensed matter systems and then numerous new topological phases of

matter like topological crystalline insulators, topological semimetals, topo-

logical and superconductors has been proposed until very recently.

A TI is characterized by gapless helical states at the boundary of the

system. As long as time-reversal symmetry is protected, the gapless heli-

cal states are robust against perturbation and these boundary states carry

spin Hall current. Not only a TI but also most of the topological phases

of matter are characterized by the unique boundary states which cannot be

realized in the bulk alone. This aspect of the topological phases is called

the ‘bulk-boundary correspondence’. As the novel physical features like

the spin current and Majorana zero modes occur at the boundaries due to

the bulk-boundary correspondence, the boundary physics has become very

important recently. In fact, van der Waals materials can play as excellent

platforms for the study of the boundaries, since the clean cleavage planes or

edges are expected due to the weak interlayer or interchain bonding. Among

van der Waals materials, quasi-one-dimensional (quasi-1D) materials espe-

cially have been highlighted recently because the natural cleavage surfaces

can be obtained in multiple of directions, which is crucial for the verification

of the weak TI and the higher-order TIs.
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In this dissertation, we discuss two van der Waals materials Bi4X4

(X=Br, I) family and Bernal stacked multilayer graphene, focusing on their

topological properties dependent on the stacking structures, e.g. the number

of stacked layers and the boundary termination. In the first part, Chap. 3, we

discuss how are the various phases of Bi4X4 are related to each other from

the crystal structures and the bulk band structure topology analysis. We also

show that the α phases of Bi4X4 exhibit novel stacking-dependent topologi-

cal helical hinge states, some of which cannot be understood by the conven-

tional TI theories. In the second part, Chap. 4, we study the ground states

of Bernal stacked multilayer graphenes under the (mean-field) electron-

electron interaction. We find interaction-driven energy gaps in Bernal stacked

even-layer graphenes. The gapped ground states are topological and the non-

trivial topology is characterized by the non-zero Chern numbers near the

K/K ′ valleys. We further investigate the effect of the external electric field

and find that various interaction-driven topological phases can be tuned by

applying the external electric field.
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Chapter 2

Preliminaries

2.1 Topological insulators

Over the past two decades, the study on the topological phases of mat-

ter has been very rapidly grown, as shown in Fig. 2.1. Without a doubt,

topological phases of matter have taken the condensed matter physics com-

munity by storm. In this section, we briefly introduce TIs and their variants,

and ways to diagnose them. Following the history of TI, we show how the

concept of the TI can be extended to the topological crystalline insulator and

further to the higher-order TI.

2.1.1 Time-reversal-invariant topological insulators

According to Hasan and Kane in the celebrated review Ref. [13], “Topo-

logical insulators are electronic materials that have a bulk band gap like an

ordinary insulator but have protected conducting states on their edge or

surface.”. This intriguing phenomenon is in fact not so new, since it is one

of the characteristics of an integer quantum Hall insulator (IQHE). How-

ever, until very recently, this phenomenon has been overlooked by most of

the people, partly because the IQHE phase only occurs under a very strong
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Figure 2.1: History of topological insulators

magnetic field and not found in a natural material without an external field.

Although Haldane demonstrated that the Landau level is not a necessary

for the IQHE by introducing the so-called Haldane model [14], this model

had got less attention for a long time since it required unrealistic fine-tuned

magnetic flux into a unit cell. In 2005, Kane and Mele discovered a new

type of topological insulator (TI) called the “quantum spin Hall insulator”

(QSHI) or simply a 2D TI [8, 9]. This phase was firstly demonstrated in a

graphene with the significant spin-orbit coupling (SOC). In Ref. [8], Kane

and Mele carefully investigated the edge states of a graphene nano-ribbon.

Interestingly, the graphene nano-ribbon exhibit gapless edge states with a

point-wise double degeneracy and this persists as long as the bulk band gap

remains opened and time-reversal symmetry is not broken. Soon, they re-

alized that this degeneracy is not accidental, not limited to the graphene

model. They found that this system is “topologically distinct” from a trivial

insulator.

Kane and Mele found that if sz , the spin along the z-axis, commutes

with the model Hamiltonian for graphene with the SOC, the model is noth-

ing but two copies of the Haldane models, where each copy has the opposite
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sign in the quantum Hall conductance. Thus, though this system may ex-

hibit trivial quantum Hall coefficient, this system is topologically non-trivial

since each sector in sz exhibit non-trivial quantum Hall conductances. The

non-triviality of this system can be simply characterized by quantized spin

Hall conductivity, where

σs
xy =

1

2
(σ↑

xy − σ↓
xy) = ns

e2

h
. (2.1)

However, sz conservation does not happen in a generic realistic system and

thus the topological characterization of the system using Eq. (2.1) should

fail. Nevertheless, the gapless edge states exists with or without the sz break-

ing terms and there would be a way to diagnose this non-trivial phase. In the

milestone paper Ref. [9], Kane and Mele derived a new “topological” in-

variant to characterize the newly phase found in graphene. This invariant

is defined up to Z2 and the robustness of the invariant is protected by time-

reversal symmetry. The invariant is defined from the “Pffafian” of the sewing

matrix that relates the occupied eigenstates of two different momenta k and

−k.

Soon after the discovery of the QSHI phase in 2D, three groups in-

dependently discovered that the QSHI phase can be extended to the 3D

systems, which we now call by the “topological insulator” [15–17]. In the

case of the 3D TIs, the topological phases are classified by four Z2 indices,

which are usually written as (ν0; ν1ν2ν3). The first index ν0 is called the

strong index and the other three indices are called the weak indices. If ν0
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is non-trivial, this system is called a strong TI and exhibit gapless surface

Dirac cones at any side surfaces as long as time-reversal symmetry is not

broken and the 3D bulk gap remains opened. If ν0 is trivial and at least one

of the weak indices is non-trivial, this system is called a weak TI. A weak TI

exhibit gapless surface states at the surfaces whose normal is not parallel to

(ν1ν2ν3). The weak TI phase is “weak” in the sense that it additionally re-

quires the protection of discrete translational symmetry along the directions

parallel to the surface.

Since this seminal work by Kane and Mele, a number of studies have

been conducted to realize this new topological phase experimentally. Al-

though Kane and Mele first discovered the QSHI phase in graphene, graphene

was shown to have a negligible SOC [18] immediately after the discovery

of the QSHI phase and was excluded from the candidate for the experimen-

tal realization. Nevertheless, starting from the HgTe/CdTe heterostructure in

2006 [10, 11] and Bi2Se3 in 2009 [19], a considerable number of materials

have been revealed as TIs. As of 2022, approximately 53% of the all non-

magnetic stoichiometric materials are shown to be topological at the Fermi

energy and 88% of them are shown to have at least one topological property

in the whole energy range [20].

2.1.2 Fu-Kane criterion

Although Kane and Mele successfully proved that the QSHI phase is

a new topological phase of matter, There were some problems in Kane and
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Mele’s expression for the Z2 topological invariant which hindered the search

for TIs. Firstly, the expression for the Z2 topological invariant derived by

Kane and Mele is very difficult to calculate, since the smooth gauge choice

in the whole Brillouin zone was required and thus the formula for the Z2

invariant was incompatible with complicated models like the first principle

calculations. Secondly, the physical meaning of the Z2 topological invariant

is not obvious in Kane and Mele’s formula, as the invariant was derived

within the mathematical framework of K-theory.

In 2007, Fu and Kane showed that these problems can be completely

resolved if an insulator has additional spatial inversion symmetry [15]. They

showed that if a system has inversion symmetry, very complicated expres-

sions for the Z2 topological invariants in 2D and 3D TIs become nothing

but the multiplication of the inversion eigenvalues of occupied states at the

time-reversal-invariant momenta (TRIMs). To be explicit, the Z2 invariant

ν in a 2D TI and the Z2 invariants (ν0; ν1ν2ν3) are given as the following:

(−1)ν =

4∏
i=1

δi,

(−1)ν0 =
8∏

i=1

δi,

(−1)νk =
∏

nk=1,nj ̸=k=0,1

δi=(n1n2n3), (2.2)

where

δi =

N∏
m=1

ξ2m(Γi), (2.3)
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TRIM

Band inversion

TRIM

Figure 2.2: Schematic picture for the formation of a TI from the band inver-
sion. The red and blue dots on the TRIM indicate the signs of the inversion
parity eigenvalues.

and here Γi is the i-th TRIM among the 8 (4) TRIMs in a 3D (2D) sys-

tem, 2N is the number of occupied bands, and ξ2m is the inversion parity

eigenvalue of 2m-th occupied band. We assume that 2m-th and (2m − 1)-

th bands are the Kramer’s degeneracy partners at each TRIM. As shown

in Eqs. (2.2) and (2.3), the topological invariants can be directly calculated

only by knowing the inversion parities at the TRIMs and does not require

any complicated process like gauge fixing.

As a result of this striking simplification, the search for topological ma-

terials was dramatically boosted and soon various materials like Bi1−xSbx,

α-Sn, SnTe, and Bi2Se3 have been newly suggested as a TI. More impor-

tantly, thanks to the simple expression for the Z2 invariants, a very common

mechanism called the “band inversion” which makes a system a TI has been

clarified. Suppose we have an insulator which has a small direct gap at a

TRIM and large direct gaps at other TRIMs and suppose that the valance
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band and the conduction band has different inversion parity eigenvalues at

the TRIM with a small direct gap, as shown in the left side of Fig. 2.2. Then

one can derive a phase transition between the trivial insulator and the TI

phases, by applying a potential to the original system which results in the

shift of the valance band top to the conduction band and the conduction band

bottom to the valance band which is shown in the right side of Fig. 2.2. The

application of such potential may correspond to the chemical substitution in

experiment, or turning on the SOC or the crystal field in theoretical calcula-

tions. One of the prototypical examples would be the realization of the 3D

TI phase in Bi1−xSbx by varying x.

2.1.3 Topological crystalline insulator

As discussed above, the TI phase is protected by only time-reversal

symmetry Θ, which satisfies Θ2 = −1. But, in the study of the prototypical

TI Bi1−xSbx, Teo, Fu, and Kane discovered that mirror symmetry can lead

to the additional topological structure of the bulk band structures [21]. The

additional structure protected by mirror symmetry is similar to the model for

graphene with the sz conservation we discussed in Sec. 2.1.1. Suppose we

have a system with time-reversal symmetry Θ and mirror symmetry Mz =

−isz . Then the Hamiltonian on the mirror-invariant plane in the momentum

space can be expressed by

H(k) =

H+i(k) 0

0 H−i(k)

 , (2.4)
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where H±i(k) is a subspace of the basis for H(k) with mirror eigenvalue

Mz = ±i. In this case, each sector H±i(k) can be considered as an insulator

without time-reversal symmetry. Then similar to the spin Chern number in

Eq. (2.1), we can define the “mirror Chern number” NM = 1
2(N+i−N−i) ∈

Z where N±i is the Chern number of H±i(k), and a system with non-zero

NM will exhibit NM surface Dirac cones on the mirror-invariant surfaces.

For a time-reversal-invariant system with mirror symmetry, the Z2 invariant

ν0 is given by ν0 = NM mod 2. This implies that although the Z2 invariant

ν0 is trivial, the system can be topologically non-trivial with finite NM ∈ 2Z

with the aid of mirror symmetry. This discovery broadened the concept of

the TI to the new topological phases protected by crystalline symmetries,

called the “topological crystalline insulator” (TCI) [22]. The TCI phase was

firstly identified in SnTe, Pb1−xSnxSe, and Pb1−xSnxTe, which have four

Dirac cones on the (001) surface [23].

2.1.4 Higher-order topological insulator

For the almost two decades since the discovery of TI and TCI, a number

of studies have proven that the topological phases are not rare and occurs in

many of materials on an ordinary basis. Meanwhile, many new approaches

have been tried to broaden our understanding of topological insulators. Be-

low, we introduce two different point of view on the topological (crystalline)

insulators.

Since the pioneering work by Fu and Kane in 2006 [24], topological
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(crystalline) insulator phase has been identified as a phenomenon that an

insulator exhibiting non-trivial flow of charge along a certain direction in

the momentum space, which generalizes the “charge pump” argument in the

IQHE system. This motivated people to develop the “Wilson loop” method

[25], which can diagnose the topological insulator phase by tracking the

charge polarization of the eigenstates in the occupied bands.

On the other hand, people also tried to understand topological insulator

phase in the viewpoint of “obstruction”. It is well known that a non-zero

Chern number in a IQHE system is an obstruction to smoothly defining

the wave function throughout the entire Brillouin zone. Fu and Kane [24]

showed that the obstruction is not a unique property of the IQHE phase but

also happening in a TI. Motivated by Fu and Kane, now the presence of

the obstruction is often considered as a definition rather than a property of

the topological insulator phase. From the viewpoint of the obstruction, one

can understand the topological insulator phase as an insulator that is not an

atomic insulators at which a smooth gauge choice in the wave function is

possible.

This new definition of topological insulator phase allowed the auto-

mated classification of all the possible topological (crystalline) insulator

phases and several groups independently reported new ways to classify all

the topological insulators since 2017 [26–31]. One of the pioneering ap-

proach is “topological quantum chemistry” [28]. In this work, Bradlyn et

al.considered all the atomic insulators and their band representations at the

high-symmetry points, lines, and planes. If the band representations at each
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high-symmetry sites are connected in such a way that they form a “discon-

nected” graph, this system is found to be topological if the disconnected

bands are partly occupied.

Another very important approach is called the “symmetry-based indi-

cator”, which was invented independently in Refs. [26] and [27]. Instead of

investigating the band representation at the high-symmetry sites, the symmetry-

based indicator investigates the symmetry eigenvalues at the high-symmetry

sites. Then the symmetry eigenvalues of the band structures can be ex-

pressed as a “vector” which characterizes a band structures. In Ref. [27],

the authors diagnosed topological insulators as non-trivial elements of the

quotient group XBS = {BS}/{AI}, where {BS} ({AI}) is the vector space

of all the possible insulator (atomic insulator) spanned by the vectors con-

taining symmetry eigenvalue information. This method can be understood

as a generalization of the Fu-Kane criterion and very powerful in many

cases since the topological phases can be diagnosed only from the symmetry

eigenvalues.

From the high-throughput calculations, many new TIs have been dis-

covered. However, some of the newly discovered TIs does not show the

bulk-boundary correspondence, i.e. they lack gapless surface states even

though the bulk band structures are clearly distinct from the atomic insu-

lators as the obstruction exists. One example is the “topological axion in-

sulator”, which is characterized by the topological magnetoelectric effect

with an effective action which integrates E ·B over the (3+1)-D space [32].

Around 2017, people started to realize that for some TCIs, bulk-boundary
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d = 1

Figure 2.3: Higher-order order topological insulators. d and k indicates the
system dimension and the order of the topological phase, respectively. The
yellow region in the figures indicate the region where the gapless topological
boundary states are localized.

correspondence can appear at boundaries of more than one dimension lower,

as shown in Fig. 2.3 [33–43]. Such TCIs are called the “higher-order topo-

logical insulators” (HOTIs), where the order of topological insulators is de-

fined by the codimension of the region where the gapless states are local-

ized. The HOTI phase is originally suggested around 2013 in the study of

the boundary states [33], although the higher-order boundary states were not

considered as the bulk-boundary correspondence at that time. The higher-

order topological phase was experimentally observed in pure bismuth [39]

and α-Bi4Br4 [44, 45] very recently.

2.2 Boundary states and the surface Green’s function

One of the most striking characteristics of the topological phases of

matter is the bulk-boundary correspondence: the non-trivial band topology

is characterized by the unique boundary states. For example, a time-reversal-
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invariant 2D TI is characterized by the gapless helical edge states and a 3D

Weyl semimetal exhibit line-shaped states at the Fermi energy called Fermi

arcs. Thus, an efficient way to observe the boundary states with the given

bulk band structures is necessary in the study of the topological phases of

matter. There are many ways to investigate boundary states and each method

has advantages and limitations. In this section, we introduce three methods

which will be used in this thesis.

The most straightforward method to get the boundary states would

be constructing the finite-sized tight-binding Hamiltonian directly from the

bulk Hamiltonian. This method has various advantages. Firstly, it is very

simple to construct a finite-sized Hamiltonian from the bulk Hamiltonian.

Secondly, one can easily add arbitrary boundary conditions. Thirdly, the

wave functions of the boundary states can be obtained. However, in many

cases, the computation cost is tremendous for this method. For example,

a 2D system which has the finite length of Nx unit cells along the x axis

has Nx times larger columns and rows than the 2D bulk Hamiltonian and

solving the eigenvalue problem of the finite-sized system takes N3
x times

larger than the bulk system. But to have the boundary states well-defined,

we require Nx to be as large as possible so it is not easy to overcome the

computational cost.

Another method is performing the substitution k⊥ → −i∂⊥ to the con-

tinuum limit of the tight-binding Hamiltonian, where ⊥ indicates the sur-

face normal direction. Unlike the construction of the finite-sized Hamilto-

nian, this method starts from the bulk Hamiltonian. Thus this method has a
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strong advantage to the finite-sized system method that one can analytically

study the characteristics of the boundary states. Due to this advantage, this

method has been widely used to study the boundary states of the topolog-

ical materials [19, 46, 47]. However, this method has clear limitations as

well. Firstly, this method only applies to the continuum limit and thus only

the band structure near a certain point can be investigated. Secondly, this

method is not universal. Depending not only on the Hamiltonian but also on

the boundary conditions, one should solve different differential equations

and this is usually a difficult task.

Lastly, we introduce a quick iterative method to obtain the boundary

band states utilizing the surface Green’s function. We will follow Refs.

[48, 49] below. Similar to the finite-sized Hamiltonian method, we construct

a Hamiltonian with the boundary using the bulk Hamiltonian. However, this

time, we focus on the Green’s function. We will show that we can obtain

the boundary contribution of the Green’s function of the semi-infinite sys-

tem with a time complexity proportional to log2Nx, which converges much

faster than directly solving the finite-sized Hamiltonian.

Let us consider a 3D system. For other dimensions, the discussion is

similar. We firstly construct a finite-sized Hamiltonian with m-unit-cell-long

along r⊥ direction from the n×n bulk Hamiltonian, where the basis is given

by

Ψ(k∥) = [ϕ11, ϕ12, · · · , ϕ1n, · · · , ϕm1, ϕm2, · · · , ϕmn]T , (2.5)
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and ϕij(k∥) is j-th atomic orbital in the i-th unit cell along the finite-length

direction. For convenience, we introduce the concept called the “principal

layer”. A principal layer is formed by a group of atomic layers in such a

way that only nearest-interlayer coupling between principal layers exist.

Then the finite-sized Hamiltonian which is constructed from a n-band bulk

Hamiltonian and has nprin unit cells per a principal layer would be expressed

by

Hfin(k∥) =



H00 H01 0 0 0 · · ·

H10 H11 H12 0 0 · · ·

0 H21 H22 H23 0 · · ·

0 0 H32 H33 H34 · · ·

0 0 0 H43 H44 · · ·
...

...
...

...
...

. . .


, (2.6)

where Hij(k∥) is the (n × nprin) × (n × nprin) block matrix that contains

the hopping between i-th and j-th principal layers and 0-th layer is the out-

ermost principal layer. By the definition of the principal layer, Hij = 0 for

|i− j| > 1.

We now consider the Green’s function of the finite-sized Hamiltonian,

which is defined by

[ω −Hfin(k∥)]G(k∥, ω) = I. (2.7)

Similar to the Hij in Eq. (2.6), we define Gij by the block in the Green’s
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function G that corresponds to the coupling between orbitals in i-th and j-th

principal layer. Then we get the following equations from the first column

of Eq. (2.7):

(ω −H00)G00 = I +H01G10

(ω −H00)G10 = H†
01G00 +H01G20

...

(ω −H00)Gn0 = H†
01Gn−1,0 +H01Gn+1,0 (2.8)

Here, for simplicity, we made an assumption of an ideal surface, i.e., H00 =

H11 = · · · and H01 = H12 = H23 = · · · . After some algebra, one can

derive the following equations from Eq. (2.8):

G10 = t0G00 + t̃0G20

G20 = t1G00 + t̃1G40

...

G2n0 = tnG00 + t̃nG2n+10, (2.9)

where

ti = (I − ti−1t̃i−1 − t̃i−1ti−1)
−1t2i−1

t̃i = (I − ti−1t̃i−1 − t̃i−1ti−1)
−1t̃2i−1 (2.10)
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and

t0 = (ω −H00)
−1H†

01

t̃0 = (ω −H00)
−1H01. (2.11)

From Eq. (2.9), we get

G10 = (t0 + t̃0t1 + t̃0t̃1t2 + · · · )G00 + t̃nG2n+10. (2.12)

Since G2n+10 → 0 very rapidly as n increases, we get G10 ∼ TG00 for

large n, where the transfer matrix T is given by

T = t0 + t̃0t1 + t̃0t̃1t2 + · · ·+ t̃0t̃1t2t̃3 · · · t̃n−1tn. (2.13)

Finally, by putting G10 = TG00 into Eq. (2.8), we get the surface contribu-

tion G00 of the Green’s function,

G00 = (ω −H00 −H01T )
−1. (2.14)

We can extract some information of the system from Eq. (2.14). One of

the simplest and the most important example is the spectral density of the

surface states:

N(k∥, ϵ) = − 1

π
Tr G00(k∥, ϵ+ iη). (2.15)

Before we end this section, we demonstrate how to get that the edge
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Figure 2.4: Principal layers of graphene with (a) the armchair edges and
(b) the zigzag edges when only the nearest neighbor hoppings are consid-
ered. (c,d) Principal layers of graphene with the next nearest neighbor hop-
pings. Here, the red and green colors indicate the two inequivalent sites in a
graphene unit cell.

state of a monolayer graphene using the Green’s function method as an ex-

ample. The simplest tight-binding model Hamiltonian for a monolayer con-

sists of only the nearest neighbor hopping terms, which is given by

H =

 0 f(k)

f †(k) 0

 , (2.16)

where f(k) = −t0[e
ikya√

3 + 2 cos
(
kxa
2

)
e

−iky

2
√
3 ]. We consider two kinds of

edges of graphene. One is the armchair edge and the other is zigzag edge,

which are shown in the uppermost edges of Figs. 2.4(a) and 2.4(b), respec-

tively. Since we only consider the nearest neighbor hoppings, the principal

layers are easily determined as shown in Figs. 2.4(a) and 2.4(b). What if the

next nearest neighbor hopping terms, the hopping between two red sites or
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two green sites [shown as blue arrows in Figs. 2.4(c) and 2.4(d)], are consid-

ered? In the case of the armchair edges, the number of layers in a principal

layer is doubled, as the blue arrow in Fig. 2.4(c) corresponds to the hopping

between l = 0 and l = 2 in Fig. 2.4(a). On the other hand, the number of

layers in a principal layer remains the same in the case of the zigzag edges.

Once we set the principal layers, one can straightforwardly get H00 and

H01 from the geometry given in Fig. 2.4. For the armchair edges, we have

H00 = −t0

0 1

1 0

 , H01 = −t0

 0 1

e−ikx
√
3a 0

 , (2.17)

and for the zigzag edges, we have

H00 = −t0

 0 1 + e−ikxa

1 + eikxa 0

 , H01 = −t0

0 0

1 0

 . (2.18)

Putting the equations into Eqs. (2.14) and (2.15), we can get the edge spec-

tral densities of the armchair and the zigzag edges, which are shown in Fig.

2.5. We see only the bulk band projection in Fig. 2.5(a). However in Fig.

2.5(b), we can observe the zero edge modes indicated by the white arrows,

which is a famous characteristic of the zigzag edge graphene.
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Figure 2.5: Edge spectral densities of (a) the armchair and (b) the zigzag
edges.
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Chapter 3

Topological phases in quasi-one-dimensional
bismuth halides Bi4X4 (X = I, Br)

3.1 Introduction

Geometry, symmetry, topology, and interaction are fundamental themes

in physics. Their interplay governs microscopic laws of individual particles

and macroscopic phenomena of many-particle systems. As a paradigm in

condensed matter physics, Kane-Mele topological insulators (TI) exist in

2D and 3D but not in 0D and 1D, dictated by the time-reversal (T ) and

gauge symmetries in spin-orbit-coupled systems [8, 16, 17, 50]. For a 3D

(2D) TI, the nontrivial Z2 topological invariant of a gapped bulk state im-

plies the presence of a symmetry-protected gapless 2D (1D) surface (edge)

state. Having taken the electronics community by storm, not only has this

spirit topologically classified all insulators, (semi-)metals, and superconduc-

tors with various different symmetries and dimensions [13, 51–53], but it

has also substantially inspired the study of classical systems that address

photonic, acoustic, mechanical, and even equatorial waves [54–58].

Fascinatingly, higher-order TIs (HOTI) and topological superconduc-

tors have emerged recently [33–43]. They host protected gapless states at
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boundaries of more than one dimension lower. In fact, they can be best

exemplified by simple models of Z2 TIs under suitable symmetry break-

ing. In the original work by Zhang, Kane, and Mele (ZKM) [33], when

the T symmetry is broken for a 3D TI, one chiral hinge mode propagates

along any hinge that reverses the sign of Hall conductivity of two mag-

netic gapped surfaces. In more recent studies, when the gauge symmetry

is broken for a 2D TI, two Majorana corner modes are bound to any cor-

ner that reverses the sign of induced pairing of two superconducting gapped

edges [41, 42]. While the former may be realized in Sm-doped Bi2Se3 or

MnBi2nTe3n+1 in a magnetic field, its thin-film limit as the first quantum

anomalous Hall effect has been achieved in Cr-doped (Bi,Sb)2Te3 [59–62].

While the latter may be materialized in the 112-family of iron pnictides such

as Ca1−xLaxFeAs2, its 3D counterpart with helical Majorana hinge modes

has appeared to be confirmed in FeTe0.55Se0.45 [63–65]. HOTIs also have

been realized in experiments by engineering the systems like electric circuits

[66, 67], photonic crystals [68–70], and sonic crystals [71–73]. Moreover,

HOTIs have been experimentally verified in pure materials, bismuth [39]

and MTe2 (M=W, Mo) [43, 74, 75], although both are semimetals. These

progresses urge a more ambitious question: does there exist any pristine

HOTI, i.e., a material with a global bulk band gap and a natural gapless

hinge state in the absence of any symmetry-breaking perturbation?

Following the theory of topological quantum chemistry or symme-

try indicators [26–28, 76, 77], high-throughput screening of nonmagnetic

topological materials has been performed in the Inorganic Crystal Struc-
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ture Database [78], and thousands of candidates have been identified [29–

31]. Unfortunately, only a handful of them are HOTIs with helical hinge

states. According to the high-throughput screening calculations [29], the list

of most plausible candidates for HOTIs with global band gaps and helical

hinge states includes α-Bi4Br4 (but not α-Bi4I4), KHgSb (with hourglass

surface states), Bernal graphite (with a band gap ∼ 0.025 meV), IV-VI

semiconductors (with Dirac surface states) and BaTe in rocksalt structure,

ThTaN3 in perovskite structure, La2Hf2O7 in pyrocholore structure, and an-

tiperovskite oxides A3BO (A = Ca, Sr, Ba, Yb and B = Ge, Sn, Pb)1. Even

though the list is short, extra efforts including more accurate calculations

and more physical understanding are necessary to narrow down it to those

not only truly topological but also experimentally feasible [79]. As a rare

yet prime example, it has been predicted that α-Bi4Br4 is a HOTI with

Z4 = 2 whereas α-Bi4I4 has completely trivial symmetry indicators [29–

31, 80, 81]. In this chapter, by using various of different computational and

analytical approaches, we explicitly demonstrate that both α-Bi4Br4 and α-

Bi4I4 are HOTIs with helical hinge states, though with sharp distinction in

their hinge state patterns. Given that the symmetry indicators of α-Bi4I4 are

indeed trivial, significantly, our results imply that there are likely to be many

topological materials beyond the scope of the current scheme for the clas-

sification of topological materials like symmetry indicators or topological

quantum chemistry and awaiting to be discovered.

Bi4X4 (X = Br, I) are quasi-1D van der Waals materials, and each can

1Hongming Weng (private communication).
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be viewed as a periodic stack of atomic chains. In the case of Bi4I4, two

phases are found to be stable [82], where the low- and high-temperature

phases are called α-Bi4I4 and β-Bi4I4, respectively. On the other hand, only

one phase has been observed in Bi4Br4 so far, but recently, the crystal that

substituted iodine with bromine in β-Bi4I4 has been theoretically demon-

strated to be stable [83]. We refer to the former phase as α-Bi4Br4 and the

later phase as β-Bi4Br4. The β phase has been predicted as a prototype

weak TI (WTI) [83], as confirmed by angle-resolved photoemission spec-

troscopy (ARPES) [84]. Strain can further tune the β phase between WTI,

strong TI (STI), and normal insulator [83]. Superior to layered WTIs, the

quasi-1D WTI is granted two natural cleavage surfaces in which the dis-

tinct surface hallmarks defining WTI can be inspected [83]. Here we show

that our revealed hinge states of the two α phases propagate along the natu-

ral cleavage hinges, i.e., in the chain direction. This extraordinary property

would greatly facilitate the experimental detections of the hinge states. In-

terestingly, intrinsic superconductivity has already been reported for both

Bi4Br4 and Bi4I4 [85–88]. This enables possible topological superconduc-

tivity to arise from an intrinsic proximity effect. More remarkably for Bi4I4,

the structural transition turns out to be around 300 K [82, 84, 89–91]. Thus,

our identifying α-Bi4I4 as a HOTI not only uncovers a thermal phase tran-

sition between the first- and second-order TIs but also implies that the topo-

logical surface/hinge states of Bi4I4 can be switched at room temperature, a

property that may be exploited for potential applications.

This chapter is organized as follows. In Sec. 3.2, we discuss the crystal
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structures of Bi4X4. Starting from the simplest β-Bi4X4, we investigate the

more complicated crystal structures of α-Bi4Br4 and α-Bi4I4. In the end of

Sec. 3.2, we remark the atomic dimerization pattern along the (001) direc-

tion which is closely related to HOTI phases. In Sec. 3.3, we discuss the

low energy band structures based on the density functional theory (DFT)

calculation. We explain the band evolution at various stages and show that

the band inversions that make Bi4X4 system topological are driven by the

spin-orbit coupling (SOC). Based on the crystal structures and the low-

energy electronic band structures, we construct the effective tight-binding

(TB) models for Bi4X4 in Sec. 3.4. We first construct the effective TB model

of a (001) layer of Bi4X4, which serves as a building block of the 3D Bi4X4.

Then we construct the effective TB model for the simplest stacking of (001)

layers, β-Bi4X4, and derive the effective TB model for the α phases based

on the β phases. In Sec. 3.5, we investigate the bulk band topology using

the symmetry-based indicators [26, 27, 77]. From our observation that the

α phases can be derived from the β phases by the unit cell doubling in the

real space or the Brillouin zone-folding in the reciprocal space, we explain

the bulk-obstructed HOTI phase in α-Bi4Br4 and the triviality of α-Bi4I4

in the periodic boundary conditions. In Sec. 3.6, we investigate the bound-

ary states of Bi4X4. Here we demonstrate that the 3D bulk band analysis

like the symmetry-based indicator cannot explain the non-trivial boundary

states. Especially we show that α-Bi4I4 exhibit topological hinge states even

though its 3D bulk Hamiltonian is trivial. Since the non-trivial topology of

Bi4X4 cannot be fully captured by the periodic 3D bulk Hamiltonian, we

analyze the band topology at the surface Hamiltonian in Sec. 3.7. We ob-
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serve the analogy between the surface Hamiltonians of α-Bi4X4 and the

celebrated Su-Schrieffer-Heeger (SSH) model [92]. Motivated by the SSH

model, we introduce surface topological invariants which can fully capture

the topological boundary states in α-Bi4X4. Finally in Sec. 3.8, we discuss

one of our recent experimental projects on Bi4X4 which strongly supports

our theory.

This chapter is largely based on my publications, Refs. [45, 93].

3.2 Crystal structures

Both the α and β phases of Bi4X4 crystallize in the same monoclinic

space group C3
2h (C2/m). They have three spatial symmetries: inversion

(P), (010) mirror reflection (Mb), and twofold rotation around the b axis

(C2). Given that C2 = MbP , only two of the three symmetries are indepen-

dent. The building block of Bi4X4 is an atomic chain with strongly covalent

bonds between bismuth atoms. Each chain consists of four inequivalent Bi

atoms and four inequivalent X atoms. As shown in Fig. 3.1(a), the two inter-

nal (external) Bi atoms are denoted by Biin and Bi′in (Biex and Bi′ex), and the

angles between different Bi-Bi bonds are denoted by four θ’s. The chains

are oriented in the b direction and stacked via the van der Waals forces in

the a and c directions [82, 83, 94].

We note that Bi4X4 has two natural cleavage surfaces. For β-Bi4Br4,

the inter-layer binding energy for the (001) and (100) planes are respectively
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Figure 3.1: (a) An atomic chain as the building block of Bi4X4. The purple
(brown) balls are the Bi (X) atoms. (b) A (001) monolayer of Bi4X4. The
black diamond is a primitive unit cell. The red dots are possible inversion
centers. The dashed red line is a mirror plane. (c)-(e) Left panels: the bulk
structures of β-Bi4X4, α-Bi4Br4, and α-Bi4I4 viewed from the b̄ axis. The
solid black lines sketch the primitive unit cells. The X atoms are omitted for
better illustration. The green bubbles indicate the dimerization patterns of
the NN inter-edge tunnelings. The red dots are possible inversion centers.
Right panels: the side monolayers in the dashed black frames in the left
panels viewed from the a axis.
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20 and 25 meV/Å2 (slightly larger than that of graphite and smaller than that

of MoS2) [83]. These values are consistent with the fact that for the inter-

chain distances c is slightly larger than a/2 as detailed in Appendix A.1.

For the other three materials, the binding energies are in the same range.

Nevertheless, this unique property of quasi-1D materials highlights the β

phase as a prototype WTI [83] that bears surface selective hallmarks. More-

over, the absence of dangling bonds for hinges between the two cleavage

surfaces renders the two α phases ideal platforms for exploring HOTIs that

host helical hinge states.

3.2.1 Crystal structure of β-Bi4X4

While β-Bi4I4 has been experimentally synthesized [82, 84, 95], β-

Bi4Br4 is a designed material [83] based on the same crystal structure of

β-Bi4I4. The dynamic stability of β-Bi4Br4 has been demonstrated through

the phonon spectrum calculations [83]. Nevertheless, their detailed crystal

structure data are provided in Appendix A.1.

Each atomic chain is inversion symmetric in β-Bi4X4, as seen in Fig.

3.1(a). Under inversion, the Biin and Biex atoms are reflected into the Bi′in

and Bi′ex atoms, respectively. In addition, each chain is mirror-symmetric

with respect to any (010) plane that contains the Bi atoms. The mirror and

inversion symmetries dictate that θ1 = θ′1 and θ2 = θ′2, respectively.

Each (001) monolayer of β-Bi4X4 consists of equally spaced atomic

chains in the a direction, as shown in Fig. 3.1(b). Two adjacent chains
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are displaced from each other by constant vectors a1,2 = (a ∓ b)/2. The

monolayer is inversion- and mirror-symmetric, with the same inversion cen-

ters and mirror planes as its individual chains. In addition to the intra-

chain inversion centers off the mirror planes, there exist inter-chain inver-

sion centers in the mirror planes between two adjacent chains, as shown in

Fig. 3.1(b). It follows that the monolayer is also invariant under a twofold

rotation (C2 = MbP) around the b axis across the inter-chain inversion

centers.

As shown in Fig. 3.1(c), bulk β-Bi4X4 is a periodic stack of (001)

layers in the c axis, which is normal to the b axis and 107.87◦ (β in Ap-

pendix A.1) above the a axis. Given that c ⊥ b, the bulk crystal has the

same mirror planes as its individual monolayers. Remarkably, the bulk in-

version center of β-Bi4X4 can be placed not only in a (001) layer but also

in the middle of two adjacent layers, and likewise the twofold rotation axis.

3.2.2 Crystal structure of α-Bi4Br4

Each (001) monolayer of α-Bi4Br4 has the same crystal structure as

that of β-Bi4X4, except for the slightly different lattice constants and intra-

chain parameters listed in Appendix A.1. Unlike β-Bi4X4, two adjacent lay-

ers are not related by any symmetry, as shown in Fig. 3.1(d). For instance,

although the two layers have the same inter-chain distance in the a axis,

the key intra-chain parameters θ’s are different for the two layers. As a re-

sult, the primitive unit cell consists of two (001) layers. Bulk α-Bi4Br4 has
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the same symmetries as β-Bi4X4: inversion, (010) mirror reflection, and

twofold rotation around the b axis. However, the inversion center and the

rotational axis of bulk α-Bi4Br4 can only be placed in a (001) layer. The

detailed crystal structure data are provided in Appendix A.1.

3.2.3 Crystal structure of α-Bi4I4

For each atomic chain of α-Bi4I4, the (010) mirror symmetry is pre-

served such that θ1 = θ′1, whereas the inversion symmetry is broken as

indicated by θ2 ̸= θ′2. Even for a (001) monolayer of α-Bi4I4, only the

mirror symmetry is present. For bulk α-Bi4I4, however, the inversion and

twofold rotational symmetries are restored, as each symmetry relates two

adjacent layers. Similar to α-Bi4Br4, the primitive unit cell of α-Bi4I4 con-

sists of two (001) layers. Different from α-Bi4Br4, the inversion center and

the rotational axis of bulk α-Bi4I4 can only be placed in the middle of two

adjacent layers.

Bulk α-Bi4I4 exhibits a clear difference from the other three materials

in how the (001) layers are stacked, as shown in Fig. 3.1(e). This is best

indicated by the angle between the c and a axes, β = 87.04◦2, which is

significantly different from ∼ 107◦ of the other three materials. If c′ = 2c−

a was the primitive lattice vector, the stacking direction would be the same

as the other three materials, but there would be four layers per primitive

2Note that β can be either 87.04◦ or 92.96◦ for α-Bi4I4, and that conventionally the
obtuse angle is chosen. Here we choose β = 87.04◦ instead for the consistency with the
coordinates of the other three materials.
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unit cell. Nevertheless, there exists a shorter inter-layer lattice vector c, and

the true primitive unit cell only contains two layers. As such, the natural

cleavage surface of α-Bi4I4, corresponding to the (100) surface of the other

three materials, is the (201) surface [82]. The detailed crystal structure data

are provided in Appendix A.1.

3.2.4 Atomic dimerization in α-Bi4X4

From the crystal structures in Fig. 3.1, the dimerization patterns at the

side surfaces can be visualized clearly. For β-Bi4X4 in Fig. 3.1(c), the NN

inter-edge tunnelings are the same at both the (100) and (1̄00) side surfaces

between any two adjacent (001) layers. Thus, the two surfaces share the

same dimerization pattern resembling the critical point of the SSH model.

For α-Bi4Br4 in Fig. 3.1(d), the highlighted NN inter-layer tunnelings are

the same in the bulk between any two adjacent (001) layers. At the (100)

and (1̄00) side surfaces, however, the closer the Biex/Bi′ex atoms are to the

vacuum, the weaker their tunnelings are. This leads to opposite dimeriza-

tion patterns at the two side surfaces. By sharp contrast, for α-Bi4I4 in

Fig. 3.1(e), the highlighted NN inter-layer tunnelings are even evidently dif-

ferent in the bulk. It follows that the dimerization patterns at the (201) and

(2̄01̄) side surfaces are the same. This atomic dimerization plays a crucial

role in the formation of topological hinge states in α-Bi4X4, which will be

discussed in Sec. 3.7.

35



3.3 Low-energy band structures

With the crystal structures of Bi4X4 in Fig. 3.1 and Appendix A.1, we

carry out the DFT calculations to obtain their electronic band structures and

analyze their topological band properties. The DFT calculations were per-

formed by using the projector augmented wave method implemented in the

Vienna ab initio simulation package [96] and the Perdew-Burke-Ernzerhof

parametrization of the generalized gradient approximation for the exchange

correlation potential [97, 98]. In order to obtain more accurate band gaps and

band inversions, we apply the more sophisticated Heyd-Scuseria-Ernzerhof

(HSE) hybrid functional method [99] to the calculations. We employ the

DFT results and the Wannier90 code [100–102] to construct the maximally

localized Wannier functions (MLWF) for the p orbitals of Bi and halogens.

Based on the MLWF, we derive the electronic band structures in Figs. 3.6

and 3.8 for finite-size systems. The methods here are the same as those in

our previous work [83]. Figure 3.2 displays the bulk band structures and

band inversions for β-Bi4Br4, α-Bi4Br4, α-Bi4I4, and β-Bi4I4.

To better understand the physical mechanism of the non-trivial topol-

ogy in Bi4X4 family, now we explain the band evolution of Bi4X4 at various

stages [83, 103]. We first elucidate the case for the β phase and then gener-

alize it to the α phase, as illustrated in Fig. 3.3.

Due to the large electronegativity of halogen atoms, the bands near the

Fermi energy are mainly determined by the 6p orbitals of bismuth atoms.

First, consider the (010) mirror symmetry. The py orbitals are decoupled
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Figure 3.3: The band evolution at the L and M points near the Fermi en-
ergies of Bi4X4. From left to right, we consider the electronegativity of the
atomic orbitals, the splitting due to the (010) mirror symmetry, the formation
of bonding and anti-bonding states as a result of the intra- and inter-chain
couplings, and the possible band inversion driven by the SOCs. The details
are explained in the text.

from the px,z orbitals since their mirror eigenvalues are different. Given the

atomic chain orientation, the energies of py orbitals are higher than those of

px,z orbitals; the hopping between py orbitals is of σ-type, whereas that

between px,z orbitals is of π-type. Then, consider the inversion symme-

try in a chain. Biin/ex and Bi′in/ex atoms are reflected to each other under

inversion. They form the bonding and anti-bonding states split in energy:

|Biin/ex, p±i ⟩ = (|Biin/ex, pi⟩ ± |Bi′in/ex, pi⟩)/
√
2, where i = x, y, z.

Next, we count the stronger intra-chain couplings. Because of the short

Biin-Bi′in distance, the energy splittings between states |Biin, p±x ⟩ and be-
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tween states |Biin, p±y ⟩ are large. On the contrary, the large Biex-Bi′ex dis-

tance results in negligible energy splittings. However, states |Biex, p±x,y⟩ can

be coupled to states |Biin, p±x,y⟩ via the π-bonding and acquire splittings in

the opposite fashion of |Biin, p±x,y⟩. Due to the σ-bonding between states

|Biin, p±z ⟩ and |Biex, p±z ⟩, the pz orbitals split and shift far away from the

Fermi energy.

Moreover, we take into account the weaker inter-chain couplings. As

the chains are closer in the a direction than in the c direction, the energy

splitting mainly occurs within each (001) layer due to the couplings in the

a direction. Two adjacent chains in the same layer can be related by the

inversion symmetry, and their states |Biin/ex, p±x ⟩ form the bonding and anti-

bonding states |Biin/ex, p±x ,±⟩, where the new ± signs denote the inversion

eigenvalues. As a results, the states |Biin, p+x ,−⟩ and |Biex, p−x ,+⟩ become

the valence and conduction bands closest to the Fermi energy, respectively.

Finally, we include the effect of spin-orbit couplings (SOC). The SOCs

mix the px orbitals with the py,z orbitals that have the same inversion eigen-

values. As a result, band inversions occur near the Fermi energy at either one

or both of the two TRI momenta L and M , and Bi4X4 become topologically

nontrivial.

The above picture for the β phase equally applies to α-Bi4Br4, as its

inversion center is also in a (001) layer. For α-Bi4I4, as its inversion center is

in the middle of two adjacent layers instead, the two pairs of ± signs above

should be both interpreted as the labels of bonding and anti-bonding states.
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Figure 3.4: The band structures (black) and band inversions (±) of (a) β-
Bi4Br4, (b) α-Bi4Br4, (c) α-Bi4I4, and (d) β-Bi4I4 in Fig. 3.2 fitted by our
effective tight-binding models (red) evaluated by the set of parameter values
in Appendix A.2.

For this reason, the NN inter-chain couplings along the c direction needs to

be further considered for states |Biin, p+x ,−⟩ and |Biex, p−x ,+⟩ to form the

inversion eigenstates that are eventually band-inverted by the SOCs.

3.4 Effective tight-binding models

We construct the effective tight-binding model for both α- and β-Bi4X4

based on their crystal and band structures revealed in Secs. 3.2 and 3.3.

We start from the construction of the WTI model for the β phase and then

derive the models for the two distinct α phases by applying zone fold-
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ing and Peierls distortion. With reasonable sets of parameter values in Ap-

pendix A.2, our models well fit the band inversions and band structures of

the DFT data, as shown in Fig. 3.4.

3.4.1 β-Bi4X4 model

We choose a basis in which the three spatial symmetries discussed in

Sec. 3.2 and the T symmetry can be specified as follows:

P = σz, Mb = isy, C2 = MbP, T = iKsy, (3.1)

where K is the complex conjugation. As such, the low-energy model for β-

Bi4X4 can be built by using the four basis states |+, ↑⟩, |+, ↓⟩, |−, ↑⟩, and

|−, ↓⟩, where ± and ↑ / ↓ denote the eigenvalues of σz and sz , respectively.

As illustrated in Fig. 3.3, the |σz = ±⟩ states are mainly from the px orbitals

of Biin/ex atoms, and the |sz = ↑ / ↓⟩ states are dominated by the electron

spins.

We further assume that the four basis states are localized in (001) layers

and consider only the NN (intra-layer) intra-chain, NN (intra-layer) inter-

chain, and NN inter-layer (inter-chain) hopping processes, as well as the

onsite potentials. It follows that the symmetries in Eq. (3.1) dictate the β
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phase Hamiltonian to be

Hβ=HL+ 2(dc +mcσz) cos q3 + 2(tcσxsy + t′′cσy) sin q3,

HL=Mσz + (taσy + t′′aσxsy)(sin q1 + sin q2)

+D + (tbσxsz + t′′bσxsx) sin (q2 − q1),

M = m0 +ma(cos q1 + cos q2) +mb cos (q2 − q1),

D = d0 + da(cos q1 + cos q2) + db cos (q2 − q1), (3.2)

where HL is the (001) monolayer Hamiltonian, qi = k · ai, and a1,2 =

(a∓ b)/2 and a3 = c are the primitive lattice vectors shown in Fig. 3.1.

For simplicity, we set t′′a = t′′b = t′′c = 0 in Eq. (3.2) hereafter. We may

interpret ti ≫ t′′i (i = a, b, c) as follows. As the |σz = ±⟩ states are mainly

from the px orbitals, spin independent hopping processes dominate in the

a direction, i.e., ta ≫ t′′a. As the contribution of pz orbitals is negligibly

weak at the Fermi energy, the SOC terms ∝ sz dominate those ∝ sx,y, i.e.,

tb ≫ t′′b . Near the L and M points in Fig. 3.2(a), the bands in the absence of

the SOCs become much steeper when the SOC effect is taken into account,

i.e., tc ≫ t′′c .

To derive the α phase models, we apply zone folding to Eq. (3.2) by

doubling the unit cell in the c direction. This model with two (001) layers
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per unit cell reads

H̄β = HL + 2(dc +mcσz)τx cos
q3
2

+ 2tcσxsyτx sin
q3
2
, (3.3)

where τz = ± denote the even and odd (001) layers. Note that in this model

the inversion operator becomes P = σzτx for inversion center placed in

the middle of two adjacent layers and remains P = σz for inversion center

placed in a layer. In order to make this model periodic in q3, we further

perform the gauge transformation:

H̃β = UH̄βU−1, (3.4)

where U = (1 + τz)/2 + eiq3/2(1 − τz)/2, and τz = ±1 denote the two

layers in a unit cell. Then we obtain

H̃β = HL + (dc +mcσz)[τx + (τx cos q3 + τy sin q3)]

+ tcσxsy[τy − (τy cos q3 − τx sin q3)], (3.5)

in which the inversion operator remains P = σzτx for inversion center

placed in the middle of two adjacent layers and becomes P = σz(1+τz)/2+

eiq3σz(1 − τz)/2 for inversion center placed in a layer. Note that a3 = 2c

in both Eqs. (3.3) and (3.5).

For the models in Eqs. (3.2)-(3.5) to describe the WTI with band in-

versions at the M and L points, (π, π, 0) and (π, π, π), Mπ,π < −2|mc|
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and M0,0, Mπ,0 > 2|mc| are dictated based on the Fu-Kane criterion [15].

The models for α-Bi4Br4 and α-Bi4I4 are derived below by introducing ad-

ditional symmetry-allowed terms to the zone-folded β phase model. From

the bulk perspective, these terms may seem secondary, as they simply shift

the energies of bands and remove the accidental degeneracies of the zone-

folded β phase model; when their energy scale is smaller than the gap along

the ML line ∼ |Mπ,π ± 2mc|, the two α phase models are equivalent to

the zone-folded β phase model, as shown in Sec. 3.5.2. More substantially,

these terms reduce the translational and inversion symmetries by choosing a

location for the inversion center. From the surface perspective, these terms

are essential. They open the side surface band gaps in Sec. 3.7.2, yield the

surface SSH models in Sec. 3.7.1, and validate the surface topological in-

variants in Sec. 3.7.3.

3.4.2 α-Bi4Br4 model

In contrast to the β phase, the primitive unit cell of α-Bi4Br4 consists

of two (001) layers, and its inversion center can only be placed in a layer.

Thus, Eq. (3.3) provides a reasonable, convenient starting point to construct

the effective tight-binding model for α-Bi4Br4. Moreover, the even and odd

(001) layers are nearly (001) mirror images of each other. Given szH
Lsz =

HL, the crystal symmetries, and the orbital characters, with the zeroth order
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corrections, α-Bi4Br4 can be described by

H̄α
BiBr = H̄β + (d′0 +m′

0σz)τz + 2t′cσysyτy sin
q3
2

+ 2(d′c +m′
cσz)syτy cos

q3
2
, (3.6)

for which P = σz . In Eq. (3.6) the terms ∝ τz characterize the differences

between the even and odd layers, and the terms ∝ τy are new SOCs. To make

this model periodic in q3, we further perform the same gauge transformation

U used in Eq. (3.4) and obtain

Hα
BiBr= H̃β + (d′0 +m′

0σz)τz

+ t′cσysy[−τx + (τx cos q3 + τy sin q3)]

+ (d′c +m′
cσz)sy[τy + (τy cos q3 − τx sin q3)], (3.7)

for which P = σz(1 + τz)/2 + eiq3σz(1− τz)/2.

3.4.3 α-Bi4I4 model

Although the primitive unit cell of α-Bi4I4 also consists of two (001)

layers, different from α-Bi4Br4, its inversion center can only be placed in the

middle of two adjacent layers. For this reason, while the even and odd layers

are related to each other, the inter-layer spacings become not uniform any

more. In this case, the inter-layer couplings become alternating in α-Bi4I4,

and Eq. (3.5) is a more convenient starting point to construct its effective

tight-binding model. Considering the alternating couplings, we find that α-
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Bi4I4 can be described by

Hα
BiI = HL + tσxτz + t′σysyτz + [(dc +mcσz)τx

+ (d′c +m′
cσz)(τx cos q3 + τy sin q3)]

+ σxsy[tcτy − t′c(τy cos q3 − τx sin q3)], (3.8)

for which P = σzτx. In Eq. (3.8), the terms ∝ τz are extra symmetry-

allowed zeroth order corrections and characterize the differences between

the even and odd layers. Note that Eq. (3.8) does not count the relative

shifts between adjacent layers within the a-b plane. Appendix A.3 provides

a more accurate model that takes into account this ignored effect. In fact, the

more accurate model reduces to Eq. (3.8) near the ML line.

3.5 Bulk band topology analysis

Recent studies [29–31] on the high-throughput screening of nonmag-

netic topological materials (based on topological quantum chemistry [28]

or symmetry-based indicators [26, 27, 40, 76]) showed that α-Bi4Br4 is a

HOTI and α-Bi4I4 is a trivial insulator (later we will show that it is actu-

ally topological). However, all the previous studies only provided numerical

calculation results obtained from a large DFT data without detailed analysis

of the band structures of α-Bi4X4. In this section, we show that our sim-

ple model Hamiltonians derived in Sec. 3.4 successfully reproduce not only

the low-energy band structures but also the bulk band topology. Moreover,
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we find that the non-trivial (trivial) Z4 inversion symmetry indicator of α-

Bi4Br4 (α-Bi4I4) can be obtained simply by the unit cell doubling in the

real space or the zone-folding in the reciprocal space to β-Bi4X4. From this,

we show that previously overlooked locations of inversion centers are very

crucial in the determination of the non-trivial higher-order topology.

3.5.1 Symmetry indicators of Bi4X4

Informed by the band inversions in Fig. 3.2, we can obtain the symme-

try indicators [27, 77] of the space group C2/m (No. 12). The space group

C2/m is classified as a P 1̄-type space group in Ref. [77] and thus the sym-

metry indicators are given by (Z2,Z2,Z2;Z4), where first three Z2 indices

are the Fu-Kane weak indices [15], and the Z4 index is the total number

of band inversions modulo 4 [27, 77]. From the DFT calculation, we find

(001; 2) for β-Bi4Br4, (110; 1) for β-Bi4I4, and (000; 2) for α-Bi4Br4 with

their inversion centers placed in (001) monolayers and (000; 0) for α-Bi4I4

with its inversion center placed in the middle of two adjacent (001) layers.

β-Bi4Br4 is a prototype WTI that can be viewed as a periodic stack of 2D Z2

TIs with one TI layer per unit cell. While our calculation predicts β-Bi4I4

to be a STI, two recent ARPES experiments obtained contrasting conclu-

sions: STI versus WTI [84, 95]. In fact, a small strain can tune β-Bi4I4 to

a WTI [83], and the (001) monolayer of β-Bi4I4 is indeed a 2D Z2 TI as

shown in Fig. 3.2. For the purpose of understanding the two α phases, we

view the two β phases as the WTI with interlayer couplings much smaller

than band gaps. Notably, in the same classification based on the symmetry
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indicators, while α-Bi4Br4 is a HOTI with Z4 = 2, α-Bi4I4 is topologically

trivial in all possible classes. However, α-Bi4I4 is also a true HOTI as clearly

evidenced in Fig. 3.8.

3.5.2 Unit cell doubling of β-Bi4X4

Now we show that the band inversions and symmetry indicators of the

two α phases can be directly understood by applying zone folding to the β

phase WTI yet choosing two different locations for their inversion centers.

Doubling the unit cell in the c axis folds the TRI momenta with q3 = π

back to those with q3 = 0. This implies that, due to the zone folding, all

the band inversions in the q3 = π plane move to the corresponding TRI

momenta in the q3 = 0 plane. Moreover, at the new TRI momenta in the re-

duced Brillouin zone (BZ) with q′3 = π, the inversion eigenstates are sym-

metric and antisymmetric combinations of the band states at q3 = ±π/2

in the original BZ, i.e., |q′3 = π,±⟩ = (|q3 = π/2⟩ ± |q3 = −π/2⟩) /
√
2,

where P |q3 = ±π/2⟩ = |q3 = ∓π/2⟩ and q1, q2 = 0 or π implicitly. Con-

sequently, the band states at the TRI momenta with q′3 = π are four-fold

degenerate, and for each degeneracy the two Kramers pairs have opposite

inversion eigenvalues. This implies that the TRI momenta with q′3 = π are

irrelevant to the Z2 and Z4 indices.

When the inversion center is placed in a (001) monolayer, Fig. 3.5(a)

sketches the two band inversions of the β phase WTI at (π, π, 0) and (π, π, π)

in the original BZ. This implies the symmetry indicators (001; 2). For the
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Figure 3.5: The inversion eigenvalues of the occupied bands at the TRI mo-
menta for the β phase WTI, modeled by Eqs. (3.2) and (3.5). Different in-
version centers and primitive unit cells are chosen in (a) and (c). Illustrating
the band inversions in α-Bi4Br4 and α-Bi4I4, respectively, (b) and (d) are
the doubled unit cell counterparts of (a) and (c). In the bottom panels, the
solid lines, dashed boxes, and red dots denote the (001) layers, unit cells,
and inversion centers, respectively.

same choice of inversion center, the two band inversions appear at (π, π, 0)

in the reduced BZ as sketched in Fig. 3.5(b), and the symmetry indicators

become (000; 2), which also characterizes α-Bi4Br4. When the inversion

center is shifted to the middle of two adjacent (001) layers, the inversion

operator acquires a factor e−iq3 , and the inversion eigenvalues switch signs
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at the TRI momenta with q3 = π. In this choice of inversion center, in ad-

dition to the band inversion at (π, π, 0), there are three band inversions at

(0, 0, π), (0, π, π), and (π, 0, π), as sketched in Fig. 3.5(c). This implies the

symmetry indicators (001; 0). In the reduced BZ as sketched in Fig. 3.5(d),

there is one band inversion at each TRI momentum in the q3 = 0 plane, and

the symmetry indicators become (000; 0), which also characterizes α-Bi4I4.

Clearly, while the Z2 indices are not robust against the unit cell dou-

bling, they remain the same under the inversion center shifting. By contrast,

the Z4 index behaves in the opposite manner. Both Figs. 3.5(a) and 3.5(c)

illustrate the band inversions of the β phase WTI, since its inversion center

can be placed either in a (001) layer or between two adjacent layers. More-

over, Figs. 3.5(b) and 3.5(d) illustrate the band inversions of α-Bi4Br4 and

α-Bi4I4, respectively, since the additional inter-layer couplings induced by

the structure transitions are sufficiently weak compared with the bulk band

gap of the β phase WTI. In fact, those weak couplings play two roles in de-

termining the symmetry and topology of the two α phases. First, they reduce

the translational symmetry, opening the side surface band gaps. Second, they

reduce the inversion symmetry, fixing the inversion center locations. These

two effects lead to Z4 = 2 for α-Bi4Br4 and Z4 = 0 for α-Bi4I4. More fun-

damentally, they together give rise to the surface SSH models in Sec. 3.7.1

and the surface topological invariants in Sec. 3.7.3
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3.6 Topological boundary states of α-Bi4X4

In this section, we present the most intriguing features of α-Bi4Br4

and α-Bi4I4, i.e., the emergence of helical hinge states and their depen-

dence on the (001) termination. In order to display the hinge states, We

construct finite-size systems of the two materials by using the 3D ab initio

tight-binding models obtained from the MLWF for the p orbitals of Bi and

Br/I. (The computational methods are detailed in Sec. 3.3.)

As we have shown from the 3D bulk band structure analysis, the heli-

cal hinge states are expected in α-Bi4Br4 as long as inversion symmetry is

protected. However, here we directly demonstrate that α-Bi4Br4 has stable

helical hinge states in the even-layer systems where inversion symmetry is

broken. More strikingly, we show that not only α-Bi4Br4 but also α-Bi4I4

also can exhibit stable helical hinge states, which is not expected from the

bulk band structure analysis as Z4 = 0 in α-Bi4I4. The existence of the in-

teresting termination-dependent hinge state patterns tells us that the 3D bulk

band topology analysis is not enough for the complete understanding of the

topological nature of α-Bi4X4.

3.6.1 Helical hinge and gapless surface states ofα-Bi4Br4

α-Bi4Br4 has two (001) layers in a primitive unit cell and each (001)

monolayer is a 2D Z2 TI (The crystal structure of α-Bi4Br4 is detailed in

Sec. 3.2.). For convenience, we label the two layers as A and B. The inver-
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sion center of α-Bi4Br4 is in a monolayer and thus the A-type and B-type

layers are reflected to themselves under inversion, respectively. It follows

that there are four possible scenarios of (001) termination, i.e., A-A, B-A,

B-B, and A-B, and that they feature distinct patterns of helical hinge states,

as depicted in the upper panels of Fig. 3.6.

In Fig. 3.6(a), the featured system is periodic in the b direction, 60-unit-

cell long in the a direction, and 43-layer thick in the c direction with the A-A

termination. Because the system has an odd number of (001) layers, from

the perspective of 2D Z2 TI, there must be one pair of helical edge states

in total in the b direction. Given the unbroken inversion symmetry, the pair

must be degenerate in energy and localized in two hinges that are reflected

to each other under inversion. The spectroscopic and spatial patterns of the

pair of helical hinge states, calculated based on the MLWF, are presented in

the middle and lower panels of Fig. 3.6(a).

The system in Fig. 3.6(b) has one extra (001) layer stacked to the bot-

tom of the system in Fig. 3.6(a). As a result, one helical edge state of the

extra TI layer annihilates the bottom hinge state in Fig. 3.6(a), whereas

the other creates a new hinge state at the opposite side of the bottom in

Fig. 3.6(b). As the inversion symmetry is broken in this even-layer system,

the pair of hinge states are not related under inversion. In Fig. 3.6(c), one

extra (001) layer is stacked to the top of the system in Fig. 3.6(b). In a sim-

ilar fashion, the top hinge state in Fig. 3.6(b) is annihilated whereas a new

hinge state emerges at the opposite side of the top in Fig. 3.6(c). Since the

inversion symmetry is restored in this odd-layer system, the new pair of
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hinge states become symmetric and degenerate. In Fig. 3.6(d), the bottom

of the system has one extra (001) layer compared to that in Fig. 3.6(c). As

expected, this extra TI layer breaks the inversion symmetry and switches the

bottom hinge state to the opposite side.

We note that, because of the Z2 character of 2D TI, the hinge states

are gapped for the two even-layer scenarios yet remain gapless for the two

odd-layer scenarios in the atomically thin limit. In the bulk limit, however,

in each scenario the pair of hinge states are separate in space and gapless

in energy. While the scenarios in Figs. 3.6(a) and 3.6(c) are the inversion

symmetric time-reversal-invariant (TRI) TIs, which is consistent with the

bulk analysis in Sec. 3.5 with the non-trivial symmetry indicator Z4 = 2,

here we demonstrate explicitly in Figs. 3.6(b) and 3.6(d) that the existence

of helical hinge states does not require the inversion symmetry. In fact, the

hinge states in Figs. 3.6(a) and 3.6(c) are robust against inversion symmetry

breaking, as long as the disturbance neither close the surface band gaps nor

hybridize the helical states at different hinges (or edges). Indeed, following

the ZKM theory [33], the hinge states of α-Bi4Br4 can also be demonstrated

by applying a surface topological invariant or a surface domain-wall argu-

ment to the effective tight-binding models we derived in Sec. 3.4. The two

demonstrations are provided in Sec. 3.7.

Evidently in Fig. 3.6, depending on its (001) termination, each scenario

exhibits a distinct pattern of helical hinge states. In fact, the four scenarios

in Fig. 3.6 are the elementary building blocks of α-Bi4Br4, and any many-

layer system even with stacking faults or/and step edges can be decomposed
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Figure 3.7: (a) Gapless (010) surface states of pristine α-Bi4Br4 and (b)
gapped (010) surface states of α-Bi4Br4 with a C2-asymmetric TRI sur-
face potential. The constant-energy contours with a spacing of 0.5 meV are
obtained by the surface Green’s function calculations of the MLWF for a
semi-infinite system. The zero energy is set at the 0 meV in Fig. 3.2(b).

into them. For instance, stacking Fig. 3.6(c) on top of Fig. 3.6(a) produces a

scenario represented by Fig. 3.6(d). This fact can be verified easily by super-

imposing the two schematics in the upper panels or the two band structures

in the middle panels. Intriguingly, stacking Fig. 3.6(c) on top of Fig. 3.6(d)

yields one layer of stacking fault: effectively, one 2D TI layer is embedded

into the interior of Fig. 3.6(d).

For completeness, we close this section by showing that α-Bi4Br4 also

hosts protected surface states at the (010) and (01̄0) surfaces. The gapless

surface Dirac cones are denoted as the red crosses in Fig. 3.6. Based on

the surface Green’s function calculations of the MLWF for a semi-infinite

system, Fig. 3.7(a) features the two (010) surface Dirac cones of α-Bi4Br4,

which are protected and related by the C2 symmetry. By contrast, a similar

calculation for α-Bi4I4 reveals no gapless surface states, although it also has

the C2 symmetry. Nevertheless, we confirm the previous finding [31, 81] of
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α-Bi4Br4 being a rare topological crystalline insulator with a surface rota-

tion anomaly [104] by the first-principles calculations as detailed in Sec. 3.3.

One can further verify this result directly by evaluating a rotation invari-

ant [104] or indirectly by using the symmetry indicators [31, 81] along with

the inversion eigenvalues listed in Sec. 3.5.1.

Moreover, when the effects such as dangling bonds and surface recon-

struction are ignored, the two surface Dirac points are identified at (qa, qc) =

±(0.861, 0.113)π. When a TRI (010) surface potential that breaks the C2

symmetry is added in our calculation, the gapless Dirac cones in Fig. 3.7(a)

become gapped, as shown in Fig. 3.7(b). This unambiguously demonstrates

that it is the C2 symmetry that protects the (010) surface Dirac cones. We

point out that it would be challenging to observe the gapless (010) surface

states in experiment, because the (010) surface is not a natural cleavage

plane, and because α-Bi4Br4 is extremely soft3. Most likely, the C2 symme-

try would be broken by the (010) dangling bonds and surface reconstruction.

Fortunately, the hinges states of our major interest are between two natural

cleavage planes. This facilitates the future hinge state experiments.

3.6.2 Helical hinge states of α-Bi4I4

α-Bi4I4 is similar to α-Bi4Br4 in two aspects. First, the primitive unit

cell of α-Bi4I4 also consists of two (001) layers, which we also label them

as A and B. Thus, there are four possible scenarios of (001) termination,

3Bing Lv (private communication).
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i.e., A-B, B-B, B-A, and A-A. Any many-layer system even with stacking

faults or/and step edges can be decomposed into them. Second, each (001)

monolayer of α-Bi4I4 is also a 2D Z2 TI with a crystal structure similar to

that of α-Bi4Br4 as detailed in Sec. 3.2.

However, in contrast to α-Bi4Br4, the inversion center of α-Bi4I4 is in

the middle of two adjacent (001) layers. Since each of the A- and B-type lay-

ers is inversion-asymmetric and reflected to the other type under inversion,

only even-layer systems are inversion symmetric. Significantly, although α-

Bi4I4 has Z4 = 0 as an inversion symmetric TRI insulator and trivial sym-

metry indicators in general [29–31], we explicitly show in Fig. 3.8 that it

can host helical hinge states for three of its four possible (001) terminations.

In Fig. 3.8(a), the featured system is periodic in the b direction, 60-

unit-cell long in the a direction, and 44-layer thick in the 2c − a direction

with the A-B termination. The spectroscopic and spatial patterns of this sys-

tem, calculated based on the MLWF, are presented in the middle and lower

panels of Fig. 3.8(a). Clearly, this system of A-B termination does not host

any gapless boundary state. This result is consistent with the fact that the

system in Fig. 3.8(a) has an even number of 2D Z2 TIs from the 2D per-

spective and the fact that α-Bi4I4 has trivial symmetry indicators from the

3D perspective [29–31]. The system of B-B termination in Fig. 3.8(b) has

one extra (001) layer stacked to the bottom of the system in Fig. 3.8(a). The

new system can be viewed as a 2D Z2 TI since it consists of an odd number

of (001) layers. As a result, a pair of helical hinge states in the b direction

emerges at the opposite sides of the bottom in Fig. 3.8(b). For the B-A termi-
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nation in Fig. 3.8(c), one extra (001) layer is stacked to the top of the system

in Fig. 3.8(b). In a similar fashion, a pair of helical hinge states emerges

at the opposite sides of the top in Fig. 3.8(c), in addition to the pair at the

bottom. This even-layer system is trivial from the perspectives of 2D Z2 TI

and 3D symmetry indictors, yet it hosts helical hinge states at all the four

hinges in the b direction. For the A-A termination in Fig. 3.8(d), the bottom

of the system has one extra (001) layer compared to that in Fig. 3.8(c). As

expected, the edge states of the extra TI layer annihilate the bottom hinge

states in Fig. 3.8(c).

We note that the two odd-layer scenarios in Figs. 3.8(b) and 3.8(d)

have neither the inversion symmetry nor the C2 symmetry of the bulk as

detailed in Sec. 3.2. In each scenario the pair of hinge states is not related

by any symmetry. Intriguingly, the two scenario can be related under inver-

sion, and thus all the features in Figs. 3.8(b) and 3.8(d) are the same, except

that their hinge states are localized at the opposite hinges. Nevertheless, the

three patterns of hinge states in Fig. 3.8 are all robust against inversion sym-

metry breaking, as long as the disturbance neither close the surface band

gaps nor hybridize the helical states at different hinges (or edges). We stress

that, whereas the hinge states of α-Bi4I4 cannot be understood by the bulk

symmetry indicators, they can be captured within the ZKM theory [33] by

applying a surface topological invariant or a surface domain-wall argument

to the effective tight-binding model, as shown in Sec. 3.7.
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3.7 Band topology of α-Bi4X4 with open boundaries

The key features of α-Bi4Br4 and α-Bi4I4 presented in Figs. 3.6 and 3.8

are all calculated by using the DFT-based MLWF. In Secs. 3.6.1 and 3.6.2

we also deduce all these features based on the minimal numerical results,

i.e., one of the four scenarios, and the knowledge of 2D Z2 TI. To further

explain these appealing features, now we provide a computation-free surface

argument based on the locations of inversion centers and the knowledge of

2D Z2 TI. (A similar argument also exists by considering the locations of

twofold rotation axes.) Because each (001) monolayer is a 2D Z2 TI, the

(100) side surface of β-Bi4X4 or α-Bi4Br4 can be viewed as a “chain” (in the

c direction) of coupled helical edge states (in the b direction), and likewise

the (1̄00) side surface. This fact also applies to the (201) and (2̄01̄) side

surfaces of α-Bi4I4. (The subtle differences between the crystal structures

of the two α phases are detailed in Sec. 3.2). This argument is analogous

to the Su-Schrieffer-Heeger (SSH) model [92], and it is valid because the

nearest-neighbor (NN) inter-layer edge tunnelings are much smaller than

the bulk band gaps.

In this section, first we briefly explain how the SSH models are formed

at the surfaces of Bi4X4 only from the symmetry analysis without explicit

calculations and show that the termination-dependent hinge states can be

easily understood from the SSH argument in Sec. 3.7.1. From the observa-

tion that the surface dimerization pattern plays a crucial role in the formation

of helical hinge states in α-Bi4X4, we derive the side surface Hamiltonians
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and explicitly show the analogy with the SSH model in Sec. 3.7.2. Using the

analogy with the SSH model, we derive the surface topological invariants,

which can be used to characterize the topological properties of α-Bi4X4

under the open boundary conditions in Sec. 3.7.3. Then we comment on α-

Bi4I4 as a recently proposed boundary-obstructed TI in Sec. 3.7.4. Lastly

in Sec. 3.7.5, we introduce an alternative approach to understand the heli-

cal hinge state patterns in α-Bi4X4, the domain wall argument in the ZKM

theory [33, 47].

3.7.1 Coupled edge construction

Consider first the WTI β-Bi4X4 [83, 84] depicted in Fig. 3.9(b). The

primitive unit cell of β-Bi4X4 consists of only one (001) layer. The inversion

center can be placed in a monolayer or in the middle of a bilayer. As a result,

the inversion symmetry restricts the NN inter-edge tunnelings to be the same

between any two adjacent edges at any side surface. Given that the tunnel-

ings are weak, each side surface states can be viewed as a 1D Dirac cone

along kb dispersing weakly along kc; the Dirac cone is gapless only at the

TRI points kc = 0 and π. This is exactly what has been predicted in a pre-

vious theory [83] and observed in a recent experiment [84]. Therefore, both

the (100) and (1̄00) side surfaces are gapless, independent of the number

of (001) layers, as sketched in Fig. 3.9(d). This is analogous to the critical

point of the SSH model. Remarkably, the β phase (an equally spaced chain

of edge states) does undergo a Peierls transition (i.e., dimerization) to an α

phase (dimerized chain of edge states) at low temperature [83]. The criti-
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cal temperature of Bi4I4 turns out to be room temperature [82, 84, 89–91].

There may exist an edge-state Peierls’ theorem to explain the instability.

In the case of α-Bi4Br4, the inversion center can only be placed in a

(001) layer. Consequently, as depicted in Fig. 3.9(a), the inversion symmetry

only relates the NN upper A-lower B tunneling at one side surface to the NN

lower A-upper B tunneling at the other side surface, and the NN upper A-

lower B and lower A-upper B tunnelings at the same side surface generally

have different strengths. This gives rise to the unique dimerization pattern in

Fig. 3.9(a): the two side surfaces exhibit opposite dimerizations. Following

the spirit of SSH model, the dimerizations gap the strongly coupled edge

states, and any weakly coupled one left by a (001) surface termination yields

a helical hinge state. As showcased in Fig. 3.9(d), there are four possible

terminations, and each has a distinct pattern of hinge states. This explains

the four scenarios of hinge states featured in Fig. 3.6.

In the case of α-Bi4I4, by contrast, the inversion center can only be

placed between two adjacent layers. Accordingly, as depicted in Fig. 3.9(c),

the NN upper A-lower B tunnelings at different side surfaces are related by

the inversion symmetry, and likewise the NN lower A-upper B tunnelings.

Yet, the two tunnelings generally have different strengths. It follows that

the two side surfaces exhibit the same dimerization. Moreover, the strongly

coupled edge states become gapped, leaving the weakly coupled ones at the

hinges gapless. As showcased in Fig. 3.9(d), there are four possible termina-

tions, and three yield distinct hinge states while one is trivial. This explains

the four scenarios of hinge states featured in Fig. 3.8.
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Figure 3.9: (a)-(c) The possible inversion centers (or twofold rotation axes)
of Bi4X4 and the dimerization patterns of the coupled edge states at the
two side surfaces. The black and blue lines denote the B- and A-type (001)
layers. The red dots denote the inversion centers (or twofold rotation axes).
The green dots denote the helical edge states in the b (chain) direction. The
double solid and single dashed red lines denote the stronger and weaker NN
inter-edge tunnelings. (d) All possible (001) surface terminations: one for
the β phase and four for each α phase. The green lines denote the Dirac
surface states, and the green dots denote the helical hinge states.
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Clearly, a key difference between the two α phases is whether the two

side surfaces exhibit the same or opposite dimerizations. For α-Bi4Br4, be-

cause of the opposite dimerizations at the two side surfaces, there always

exists two unpaired edge states, one at the top and the other at the bottom,

independent of the termination. This is rooted in the fact that its inversion

center can only be placed in a (001) layer. For α-Bi4I4, because of the same

dimerization at the two side surfaces, the unpaired edge states always appear

in pair at the top or bottom (or both). This originates from the fact that its

inversion center can only be placed between two adjacent layers. We point

out that compelling evidence of the revealed surface dimerization patterns

in the two α phases is provided by their crystal structures in Fig. 3.1 and

effective surface models in Eqs. (3.12) and (3.14).

3.7.2 Surface models and the SSH dimerization

Following the ZKM theory [33, 47], we can impose the topological

boundary conditions in the (100) and (1̄00) directions and obtain the sur-

face states for the two cases. This allows us to derive the surface SSH models

in Fig. 3.9, formulate a surface topological invariant determining the hinge

state patterns in Figs. 3.6 and 3.8, and characterize the topological distinc-

tions between the two α phases.

We start from the β phase WTI that has two band inversions, one at

M point (π, π, 0) and one at L point (π, π, π). Near the ML line, Eq. (3.2)
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yields the following (100) and (1̄00) surface Hamiltonians

hβ = Dπ,π + ηtbszqb + 2dc cos q3 + 2ηtcsy sin q3, (3.9)

where Dπ,π = d0−2da+db. Note that the (100) and (1̄00) surface states are

the eigenstates of σx with η = ± eigenvalues, respectively [47]. As a result,

those terms anticommuting with σx in Eq. (3.2) only produce hybridization

between the two surfaces [33], which is negligibly weak when the two sur-

faces are well separated, and can thus be safely ignored in Eq. (3.9). In fact,

the two surface models in Eq. (3.9) can be constructed by directly consid-

ering the symmetries in Eq. (3.1) and the orbitals in Fig. 3.3. Each surface

model in Eq. (3.9) describes two connected gapless Dirac cones respecting

the Mb symmetry, one at (0, 0) and the other at (0, π) with different Dirac-

point energies. The two surface models in Eq. (3.9) can be related by the P

or C2 symmetry.

Similar to Eq. (3.5), we apply zone folding to Eq. (3.9) by doubling the

unit cell in the c direction and obtain

h̃β = Dπ,π + ηtbszqb + dc[τx + (τx cos q3 + τy sin q3)]

+ ηtcsy[τy − (τy cos q3 − τx sin q3)]. (3.10)

It is clear that the two Dirac surface states in Eq. (3.9) are folded into (0, 0)

in Eq. (3.10), and that they remain gapless. Moreover, from the terms ∝ τx,y

65



in Eq. (3.10), the inter-layer tunneling-up and -down matrices read

T β,± = dc ∓ iηsytc, (3.11)

which implies no surface dimerization since |T β,+| = |T β,−|. The gapless

nature and the absence of dimerization agree well with the edge construction

in Sec. 3.7.1 that the WTI side surface models are analogous to the critical

point of the SSH model.

In the same fashion, Eqs. (3.7) and (3.8) respectively yield the (100)

and (1̄00) surface Hamiltonians of α-Bi4Br4

hαBiBr = h̃β + d′csy[τy + (τy cos q3 − τx sin q3)] + d′0τz, (3.12)

with the inter-layer tunneling-up and -down matrices

Tα,±
BiBr = dc − isy(d

′
c ± ηtc), (3.13)

and the (201) and (2̄01̄) surface Hamiltonians of α-Bi4I4

hαBiI = Dπ,π + ηtbszqb + [dcτx + d′c(τx cos q3 + τy sin q3)]

+ ηsy[tcτy − t′c(τy cos q3 − τx sin q3)] + ηtτz, (3.14)

with the inter-layer tunneling-up and -down matrices

Tα,+
BiI = dc − iηsytc, Tα,−

BiI = d′c + iηsyt
′
c. (3.15)
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Evidently, surface dimerization is present in Eqs. (3.12) and (3.14), as

|Tα,+
BiBr| ≠ |Tα,−

BiBr| and |Tα,+
BiI | ≠ |Tα,−

BiI |. Similarly in the two cases, the

dimerization gaps the two surface states at (0, 0) in Eq. (3.10). Differently,

the dimerization is characterized by ηtcd
′
c in Eq. (3.12) and by |dc| − |d′c|

and |tc| − |t′c| in Eq. (3.14); the former only exists at the surfaces, whereas

the latter even exists in the bulk. Moreover, for the two spins (sy = ±) the

dimerization patterns are the same in both cases, however, for the two side

surfaces (η = ±) the dimerization patterns are the same for α-Bi4I4 but op-

posite for α-Bi4Br4. All these results agree well with the edge construction

in Sec. 3.7.1 and the atomic dimerization in Sec. 3.2.4.

3.7.3 Surface topological invariants

From the analysis above, it is clear that a mirror (or sy-resolved) wind-

ing number [105] can be used to characterize the topological properties of

the two surface models in Eqs. (3.12) and (3.14). This is allowed because in

the c direction these surface models are 1D tight-binding models. Applying

the results in Appendix A.4 here and considering the terms ∝ τx,y at qb = 0

only, we obtain

γ
η,sy
BiBr = Θ

(
−ηtcd

′
c

)
(3.16)

for the model in Eq. (3.12) and

γ
η,sy
BiI = Θ

(√
d′c

2 + t′c
2 −

√
dc

2 + tc2
)

(3.17)
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for the model in Eq. (3.14), with Θ the Heaviside function.

For both α-Bi4Br4 and α-Bi4I4, their winding numbers are indepen-

dent of sy. This implies that the topological invariants and dimerization pat-

terns are robust against the Mb symmetry breaking. At the two opposite

side surfaces, the winding numbers are different for α-Bi4Br4 but the same

for α-Bi4I4. Both conclusions are consistent with the dimerization analyses

in Secs. 3.2.4, 3.7.1, and 3.7.2. Although a winding number is gauge de-

pendent, the differences in winding number between the two opposite side

surfaces (of the same α phase) and between the two different α phases are

both gauge invariant.

The terms ∝ τz in Eqs. (3.12) and (3.14) break the chiral symmetry and

seem to make the winding numbers in Eqs. (3.16) and (3.17) meaningless.

In general, as the chiral symmetry breaking produces particle-hole asymme-

try, a zero-energy bound state implied by a nontrivial winding number is not

necessarily pinned to the middle of band gap and can be removed perturba-

tively. However, this is not the case here. The pairs of zero modes implied by

the nontrivial winding numbers become dispersive across the surface band

gaps in the presence of the terms ∝ qb
4 and form helical hinge states with

gapless Dirac points at qb = 0, which is protected by the T symmetry.

We stress that the validity of the topological invariants in Eqs. (3.16)

and (3.17) requires the presence of the T symmetry and the surface band

gaps whereas it does not rely on the presence of the P , Mb, or C2 symmetry.

4This is inherited from the monolayer TIs. In other words, terms ∝ sin qb can not ensure
the same protection.
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3.7.4 Boundary-obstructed phase in α-Bi4I4

The topological phase in α-Bi4I4 is the boundary-obstructed TI (BOTI)

proposed very recently [106]. The BOTI is defined by a topological phase

which does not have any bulk obstruction but has an obstruction at the

boundary. Thus, the BOTI can be deformed into a trivial insulator without

closing the bulk gap, but the boundary gap is closed instead.

α-Bi4I4 clearly exhibits such property, which can be easily shown from

the model Hamiltonian in Eq. (3.8). Considering the boundary conditions,

one finds that the bulk model for the A-B termination of α-Bi4I4 [Fig. 3.8(a)]

is related to the model for the B-A termination [Fig. 3.8(c)] by a trans-

formation which shifts the unit cell by c/2: dc,mc, tc ↔ d′c,m
′
c, t

′
c and

t, t′ → −t,−t′. Since the zone-folding argument discussed in Sec. 3.5.2

agrees with the DFT data, the deviation of α-Bi4I4 from β-Bi4I4 is not large

enough to close the bulk gap. Thus, the bulk models for the two terminations

of α-Bi4I4 can be smoothly connected to each other without closing the bulk

band gap by passing through the model for β-Bi4I4. However, the surface

gap is closed along this path because β-Bi4I4 is a WTI. Note that β-Bi4I4

is a topological phase transition point from the viewpoint of the surface in-

variant in Eq. (3.17), since the model for β-Bi4I4 can be obtained by putting

dc = d′c, mc = m′
c, tc = t′c and t = t′ = 0.

Since a BOTI does not have any bulk obstruction but has a boundary

obstruction, the hinge states of a BOTI can be realized by placing 2D TIs

in 3D space properly. For example, the boundary states of the B-A termi-
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nation can be realized in a 3D trivial insulator sandwiched by two 2D TIs.

Thus, the BOTI phase may seem equivalent to a set of 2D TIs in 3D space.

However, the B-A termination of α-Bi4I4 does not require a special setting

for the boundary conditions unlike sandwiched 3D trivial insulator, where

the couplings between the 3D insulator and the 2D TIs should be negligible

in order to localize the edge states at the hinges. Instead, the localization

of the hinge states in the B-A termination is guaranteed topologically from

the interlayer couplings in the 3D bulk Hamiltonian and the open boundary

condition as shown in Eq. (3.17).

3.7.5 Domain wall argument

Although the dimerization analyses and the topological invariants above

are sufficient to understand the helical hinge states of the two α phases,

here we briefly discuss how to use the ZKM theory [33, 47] to construct

domain walls (DW) and deduce the presence or absence of hinge states.

This DW method has been employed to obtain the original higher-order

chiral TI [33] and to demonstrate several more recent examples [35–37, 39–

42, 64, 104, 107].

Consider the local frame of a generic surface formed by a vector j

along the hinge, the outward surface normal k, and the direction i = j × k

(at the surface). While the j axis is fixed, the k and i axes co-move with the

surface. As the bulk translational symmetry is broken in the k direction by

a topological boundary condition, we can derive a surface Hamiltonian that
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Figure 3.10: Schematics of inversion symmetric (a) α-Bi4Br4 and (b) α-
Bi4I4 samples with or without helical hinge states. The relative signs of the
mass term gapping the two surface Dirac cones are indicated in red. The
hinge states along the domain walls switching the mass signs are indicated
in green. (The other two hinge state patterns for α-Bi4Br4 are not shown.
The C2 symmetry is not considered here.)

describes all the surfaces sharing the same hinge in the j direction [47]. For

a generic surface, the two resulting surface Dirac cones are gapped due to a

hybridization mass.

For α-Bi4Br4, viewed in the local frame, the P symmetry dictates

the mass term to have the opposite signs at two opposite surfaces. This

is because the dimerization of α-Bi4Br4 is a surface effect as revealed in

Sec. 3.7.2. As a result, depending on the relative sign of the mass term at

the top surface, an inversion symmetric sample exhibits one loop of hinge

states in one of the two fashions, as depicted in Fig. 3.10(a). (The mass term
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at the (010) or (01̄0) surface is odd under the C2 rotation, restoring the two

gapless Dirac cones.) For α-Bi4I4, however, the P symmetry dictates the

mass term to have the same sign at two opposite surfaces. In fact, the mass

term has the same sign for all the side surfaces, since the dimerization of

α-Bi4I4 is a bulk effect as revealed in Sec. 3.7.2. It follows that, depending

on the relative sign of the mass term at the top surface, an inversion sym-

metric sample hosts either no hinge states or two loops of hinge states, as

depicted in Fig. 3.10(b). These are consistent with the results presented in

Figs. 3.6(a), 3.6(c), 3.8(a), and 3.8(c).

3.8 Experiments

A variety of experiments can be carried out to examine our predic-

tions. This section introduces three of my collaborations with experimental

groups. This section is largely based on Refs. [45, 91, 108].

3.8.1 Room-temperature topological phase transition
in Bi4I4

In Ref. [91], we studied the phase transition between α- and β-Bi4I4.

We firstly verified the structural transition between the high-temperature β

and low-temperature α phases, which can be characterized by the resistance

discontinuity and its hysteresis in bulk transport and by the bulk band split-

ting due to the dimerization, which are shown in Figs. 3.11(a) and 3.11(b)-
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Figure 3.11: (a) Temperature-dependent resistivity data for both cooling
and warming curves. The inset is the enlarged view showing the hysteresis
behavior of the first-order transition. (b) Measured dispersions in α-Bi4I4
along high symmetry cuts. (c) Calculated bulk band structure of α-Bi4I4
projected onto the (001) surface. (d),(e) Same as (b),(c) but for β-Bi4I4. A
clear doubling of the bulk valence bands is evident from β-Bi4I4 to α-Bi4I4
in both the measured and calculated dispersions. All measurement tempera-
tures are as indicated.

(e), respectively.

Having confirmed the phase transition as observed from the electronic

structure, we examine the topological proper-ties of the two phases. In Fig.

3.12 we present high-resolution measurements near EF for both phases. We
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Figure 3.12: Surface states evolution across the phase transition. (a) Band
image along the kb-axis on the (001) surface of α-Bi4I4 as well as its cor-
responding EDC stacks. The red EDC corresponds to kb = 0. The green
dots track the peak positions of the bulk band which reveal a gap opening of
∼85 meV. (b) Same as (a) but of β-Bi4I4. A gap opens at kb = 0 of ∼100
meV. (c) Band image along the kb-axis on the (201) surface of α-Bi4I4 as
well as its corresponding EDC stacks. The blue dots track the surface state
which reveal a ∼35 meV gap opening. (d) Same as (c) but the (100) surface
of β-Bi4I4. A gapless Dirac surface state is observed.

first examine the β phase. On the (001) surface [Fig. 3.12(b)], we observe

a clear gap in all the bulk gaps and no additional surface Dirac crossings.

This can be confirmed from the energy distribution curve (EDC) stacks of

the bands across M̄ [Fig. 3.12(b)], where the green dots track the bulk band

dispersion and reveal a gap of ∼100 meV. On the (100) surface, a quasi-1D

Dirac surface state exists inside the bulk band gap [Fig. 3.12(d)]. Particu-

larly at the Γ̄ and Z̄ points, the surface states are gapless within the resolu-

tion of measurements at 350 K. These combined measurements on both the
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(001) and (100) surfaces demonstrate that the high-temperature β-Bi4I4 is

a weak TI where only selected surfaces possess an even number (two here)

of gapless Dirac cones [15, 83]. In the α phase, all the observed bands on

the (001) surface are also gapped [Fig. 3.12(a)]. A gap of ∼85 meV can

be further seen from the bands tracked by the EDC stacks in Fig. 3.12(a).

On the (201) surface, from a high-resolution measurement taken with 30 eV

photons at 10 K [Fig. 3.12(c)], we observe a gap of ∼35 meV clearly in the

EDC stacks, indicating a gapped surface state within a bulk band gap. This is

consistent with our theoretical prediction and calculation of a higher-order

TI scenario of α-Bi4I4, where both the bulk bands and surface bands are

required to be gapped, hosting gapless hinge states inside the surface gap.

3.8.2 Gate-Tunable Transport in α-Bi4I4 Field Effect
Transistors

A plethora of hinge state signatures can be obtained in a gate-tunable

multi-terminal device. In such a device, the Fermi energy can be tuned by

a gate voltage into the bulk, surface, and hinge states. (i) While the sur-

face states have a much larger density of states (DOS), a 1D helical mode

has a constant DOS, i.e., 1/πℏvF . The total DOS in the surface state gap

can be used to estimate the number of hinges, step edges, or/and stack-

ing faults that host 1D helical modes. The detailed DOS of α-Bi4X4 un-

der different surface terminations are given in Appendix. A.5. (ii) The sign

of Hall coefficient can indicate whether the Fermi energy crosses the elec-

tron or hole surface band and infer the size of surface state gap. (iii) In the
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surface state gap, nonlocal conductances can be analyzed to determine the

hinge state pattern and layer stacking order. (iv) From weak antilocaliza-

tion in magnetotransport, the temperature dependence of dephasing lengths

can be extracted. The Nyquist length Ln and the phase coherence length Lφ

should both scale as T−1/3, T−1/2, and T−3/4 for the hinge, surface, and

bulk states, respectively [108–110]. (v) The spatial distribution of surface

and hinge conductances can be mapped by MIM. (vi) The hinge states have

Fermi velocities ∼ 5 × 105 m/s5 and confinement lengths < 1 nm, similar

to the case of bismuthene [111]. The anticipated Tomonaga-Luttinger liq-

uid behavior can be probed via the power-law dependences on energy and

temperature in tunneling spectroscopy [111–113].

Josephson transport in devices with superconducting contacts also pro-

vides excellent means to probe the hinge states. The bulk supercurrent should

display a rapidly decaying Fraunhofer pattern, whereas the one through the

hinge (and side surface) states should exhibit slowly decaying oscillations

typical for a SQUID [39, 75, 114]. While the Fraunhofer pattern is more

dominant in a thicker sample, the SQUID-like behavior depends only on the

area of the hinge-state loop(s). As a result, the evolution of the asymmetry

of the critical current with a magnetic field can be exploited to distinguish

the hinge states and determine their specific pattern.

In our recent publication Ref. [108], we observe a Dirac-like longitu-

dinal resistance peak and a sign change in the Hall resistance; their temper-

5For α-Bi4Br4 hinge states, the Fermi velocities are 4.19 × 105 m/s in Fig. 3.6(a) and
5.58× 105 m/s in Fig. 3.6(c). For α-Bi4I4 hinge states, the Fermi velocities are 4.63× 105

m/s and 3.79× 105 m/s in Fig. 3.8(b).
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ature dependences suggest competing transport mechanisms: a hole-doped

insulating bulk and one or more gate-tunable ambipolar boundary channels.

Our combined transport, photoemission results indicate that the gate-tunable

channels likely arise from novel gapped side surface states, two-dimensional

(2D) TI in the bottommost layer, and/or helical hinge states of the upper lay-

ers. Markedly, a gate-tunable supercurrent is observed in an α-Bi4I4 Joseph-

son junction, underscoring the potential of these boundary channels to me-

diate topological superconductivity.

3.8.3 Stacking-dependent room-temperature quantum
spin Hall edge states in α-Bi4Br4 thin-films

In our recent work Ref. [45], we use scanning tunneling microscopy to

provide spectroscopic evidence for a room-temperature quantum spin Hall

edge state on the surface of multilayer α-Bi4Br4. Firstly, we find that a

monolayer step edge of α-Bi4Br4 exhibits a large insulating gap of over

200 meV, and hosts an in-gap gapless state.

We now consider a bilayer step edge of α-Bi4Br4. From the perspec-

tive of the 2D Z2 invariant, the hybridization occurs between the helical edge

modes in each monolayer and opens an energy gap. But as we discussed in

Sec. 3.6 and 3.7, specific to this material, rooted in the fact that the inversion

center is in the monolayer instead of in the center of a bilayer, the left and

right bilayer edges have different geometries [Fig. 3.13(a)]. Here we call the

bilayer system in Fig. 3.13(a) the BA-bilayer, following the convention in
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Figure 3.13: (a) Side view of an AB-bilayer. The hybridization of edge
state is destructive, as illustrated by the lighter color of the edge states (red
spheres). (b) Construction of a higher-order topological insulator based on
the hybridization mechanism in (a). (c) Spectroscopic imaging of the crys-
talline steps. The bottom panel shows the topographic image of two-step
edges. The middle panel shows the corresponding differential conductance
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insulating gap, revealing pronounced edge states. (d) Topographic image of
two adjacent bilayer atomic step edges forming a trench. (e) Differential
spectra taken at the left AB bilayer step edge (red), right AB bilayer step
edge (violet), and away from the edges (blue). Red and violet dots in panel
(d) denote the respective positions on the left and right AB edges where
the differential spectra are taken. (f) Differential conductance map, taken at
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spectra in panel (e)] shown in two layers. V = 0 mV and −75 mV, both of
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Sec. 3.6. On the left, the edges of the A and B layers have a facing angle

larger than 180◦, while on the right the facing angle is smaller than 180◦.

This inversion asymmetry leads to stronger hybridization of the monolayer

edge states on the right. Similarly, for a AB-bilayer, it can be inferred that

the left side has stronger hybridization (not shown). Figure 3.13(c) shows a

case region containing both a monolayer step edge and a left edge of BA-

bilayer. The associated dI/dV mapping confirms the existence of in-gap

edge states in both cases. To visualize the asymmetric hybridization of the

edge states depicted in Fig. 3.13(a), we extensively scan the crystal to find

an area containing both left and right BA-bilayer step edges as shown in Fig.

3.13(d). The differential spectra taken at the two BA-bilayer step edges, as

shown in Fig. 3.13(e), reveal their dramatically different behaviors. The in-

gap state for the right-BA bilayer edge is substantially suppressed compared

with that on the left-BA bilayer edge. The inversion asymmetry of the bi-

layer edge state is further visualized in Fig. 3.13(f), which demonstrates the

dI/dV maps of the same area as in Fig. 3.13(d), taken at two representative

energies within the insulating gap. It is shown that the edge state mainly

shows up for the left-BA bilayer edge, in agreement with the picture in Fig.

3.13(a).

Note that this result of the bilayer system is clearly consistent with our

prediction in Figs. 3.6(b) and 3.6(d), except that the number of layers is in

the bulk limit in Fig. 3.6 (Nc > 40). In fact, as shown in Fig. 3.14(d), we find

that α-Bi4Br4 very quickly reaches the limit of the HOTI with the unique

stacking-dependent hinge patterns. The energy gap at the left-BA bilayer
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Figure 3.14: Calculated bilayer and twenty-layer step-edge states. (a) The
edge-projected band structure for a (001) twenty-layer ribbon on the top
surface of α-Bi4Br4. The cyan bands are from the bulk and (001) surfaces of
the system. The orange bands are from the (100) and (1̄00) side surfaces of
the ribbon. The red bands are the gapless hinge states. Due to the inversion
asymmetry of even-layer systems, the bands are singly degenerate at each
kb. The ribbon is infinitely long in the b direction and 50-chain wide in the
a direction. (b) The same as a but for a bilayer ribbon. The two helical edge
states from the two monolayers are gapped at one side (orange) but remain
gapless at the other side (red). (c) The real space schematics of the surface
and hinge/edge states in [(a) and (b)]. (d) Calculated edge gap of (001) even-
layers.

edge is already ∼1 meV [Red bands in Fig. 3.14(b)] in large contrast to

the energy gap at the right-BA bilayer edge of ∼20 meV [Orange bands in

Fig. 3.14(b)]. In addition to the BA bilayer, we also investigated the BABA
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tetralayer step edge in the experiment and obtained qualitatively the same

result as the BA bilayer case, which is also consistent with our prediction.

3.9 Discussion

Although both are HOTIs with helical hinge states, α-Bi4Br4 is more

intrinsic (bulk-obstructed) whereas α-Bi4I4 is more extrinsic (boundary-

obstructed) [106, 115]. As featured in Figs. 3.6 and 3.8, attaching a 2D TI

to the (001) surface can annihilate an existing hinge state of α-Bi4I4 but not

that of α-Bi4Br4. Markedly, their clear distinction in the hinge state pattern

highlights the critical role played by the location of inversion center that has

so far been overlooked in the literature. Fundamentally, as only the T sym-

metry is required to protect a local 1D helical mode, the helical hinge states

are robust against the P symmetry breaking, as long as the perturbation nei-

ther closes the surface band gaps nor hybridizes the states at different hinges

(or edges). This is in sharp contrast to the case of topological mirror insula-

tors and superconductors [105, 116], in which the mirror symmetry breaking

exclusively removes the gapless boundary modes. Given that the symmetry

indicators of α-Bi4I4 are completely trivial [29–31], our results imply that

there are likely to be many topological materials beyond the scope of the

current scheme for the classification of topological materials and awaiting

to be discovered.

We stress that the effective models for the side surface states in Sec. 3.7

are continuum models in the chain direction but lattice models in the stack-
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ing direction. As the side surface states can be constructed by the helical

edge states of (001) monolayers that are 2D Z2 TIs, it does not exist any lat-

tice model to account for the surface states in the chain direction [51, 117].

However, this is not the case in the stacking direction, as there are neverthe-

less dual surface Dirac cones that are gapless in the WTI case but gapped in

the HOTI case. Best displayed by the quasi-1D Bi4X4, this special feature

reflects the intimate relations between the HOTI, WTI, and 2D TIs.

Given that the (001) monolayers of the four materials are all 2D Z2

TIs as shown in Fig. 3.2, one may wonder whether their (100) ((201) for α-

Bi4I4) films are also TIs. Our MLWF-based calculations and effective tight-

binding models both indicate that their monolayers and the β-Bi4X4 film

of any thickness are Z2 trivial. However, any α-Bi4Br4 (100) film thicker

than three layers6 is a Z2 TI. This can be understood by the top panels of

Fig. 3.6: each scenario has one hinge state at the top surface and one at

the bottom. As the (100) thickness decreases, the two hinge states turn into

the two edge states, as long as the inter-edge coupling in a (001) layer is

sufficiently small compared with the inter-edge coupling between two (001)

layers. On the contrary, an α-Bi4I4 (201) film of any thickness is Z2 trivial.

As each surface in the top panels of Fig. 3.8 has either zero or two hinge

states, for a (201) film either there is no edge state or the dual edge states

acquire a hybridized gap, though, which is small for a thick film. This offers

a different perspective on the distinction between the two HOTIs.

6The thinest (100) TI film is the tetralayer in our MLWF-based computation. It is the
hexalayer instead in our effective tight-binding model calculation. The latter can be adjusted
to match the former without affecting the bulk and surface band topologies by changing ta
from 181.67 meV to 140.00 meV in Table A.2.
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Our results establish a new TI physics paradigm and a unique quasi-

1D material platform for exploring the interplay of geometry, symmetry,

topology, and interaction. Besides the discussed experiments, studies on the

coupling to ferromagnet, superconductor, or their linear junctions, the pos-

sible topological phase transitions under strain [83], and the influence of

electron-electron interactions would be extremely interesting.
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Chapter 4

Broken sublattice symmetry states in Bernal
stacked multilayer graphene

4.1 Introduction

Ultrathin multilayer graphene has been extensively studied in the lit-

erature over the last decade as a promising platform for electronic devices

[2, 118–120] and energy storage applications [121] that take advantage of

the superlative properties of graphene. From a more fundamental physics

point of view, few-layer graphenes are interesting because their band struc-

ture embodies the chiral nature of the Dirac cones near the charge neutrality

point which can manifest in transport and optical experiments. Clear sig-

natures of electron-electron interactions observed through scanning probes

[122, 123] and transport experiments [124–127] have signaled interesting

many-body effects. Remarkably, the predictions of interaction driven band

gaps in Bernal stacked bilayer [128] and rhombohedral trilayer graphene

[129] have been speculated to be accompanied by spin/valley resolved spon-

taneous Hall phases [130–133] for a variety of possible ground-state config-

urations among quasi-degenerate states. Other possible ordered phases sug-

gested near the charge neutrality point in bilayer graphene include nematic

phases with broken rotational symmetry [124, 134–139], and Fermi surface
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instabilities in both ℓ = 0, 1 channels in the presence of a finite carrier

doping and electric fields [140]. Recent experiments in ultraclean Bernal

stacked multilayer graphenes signal the formation of electron-electron in-

teraction driven ordered phases [141, 142].

In this chapter, we analyze the nature of the electron interaction driven

ordered ground-state phases in Bernal stacked tetralayer graphene subject to

perpendicular external electric fields and the associated Hall conductivities

that can be measured in transport experiments. We show that the electronic

structure consisting of light-mass and heavy-mass band doublets follows an

effective Hund’s rule of the sublattice pseudospins when a perpendicular ex-

ternal electric field is applied, allowing to introduce qualitative changes in

the associated Hall conductivities. Interestingly, in a certain range of elec-

tric fields, a ground state with a non-vanishing charge Hall conductivity ap-

pears that should be measurable by conventional Hall experiments. Anal-

ysis of the ordered phases in Bernal stacked multilayer graphene beyond

tetralayer acquires a more complex character due to the appearance of ad-

ditional pseudospin doublets and mixing between them. Within a minimal

multiband model, we show that the interaction driven band gap and broken

sublattice symmetry can appear in even-layer graphenes, whereas the gaps

for odd-layer graphenes are suppressed, exhibiting an even-odd effect for

the energy gap size.

This chapter is largely based on my publication, Ref. [143].
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4.2 Effective model and electron-electron interaction

We use a π-band minimal continuum model for multilayer graphene in

which only nearest-neighbor intralayer hopping t0 and interlayer hopping t1

for the full π-bands are retained. The non-interacting Hamiltonian is

Ĥ0 =
∑
k,σ,σ′

ĉ†k,σε
(0)
σσ′(k)ĉk,σ′ , (4.1)

where k is the wavevector measured from a valley K or K ′, σ is a collec-

tive index representing spin (u/d), valley, sublattice (A/B), and layer (n =

1, 2, · · · ) degrees of freedom, ĉ†k,σ (ĉk,σ) is the electron creation (annihila-

tion) operator for k and σ, and ε
(0)
σσ′(k) is the non-interacting Hamiltonian

matrix element for Bernal stacked multilayers. For the tight-binding param-

eters, we use the LDA parameters of graphite t0 = 2.598 eV and t1 = 0.377

eV [144, 145].

We include the effect of electron-electron interactions within a mean-

field Hartree-Fock approximation,

ĤMF = Ĥ0 +
∑
k,σ,σ′

ĉ†k,σε
(HF)
σσ′ (k)ĉk,σ′ . (4.2)

The matrix element of the Hartree-Fock term is given by

ε
(HF)
σσ′ (k) = δσσ′

∑
k′,σ′

Vnn′(0)
〈
ĉ†k′,σ′ ĉk′,σ′

〉
−δss′

∑
k′

Vnn′(|k − k′|)
〈
ĉ†k′,σ′ ĉk′,σ

〉
, (4.3)
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where n and s denote the layer and spin, respectively. Vnn′(q) = 2πe2

ϵrq
e−|n−n′|qd

is the Coulomb interaction matrix where d = 3.35 Å is the interlayer sep-

aration and ϵr is the background dielectric constant. The first and second

terms in the right-hand side of Eq. (4.3) represent the classical Hartree and

exchange Fock contributions, respectively. Note that the Hartree terms re-

duce to potential differences between the layers when we take the proper

limit at q = 0. Here we take a rather small value of the interaction strength

α ≡ e2

ϵrℏv , where v =
√
3
2

t0a
ℏ is the Fermi velocity of monolayer graphene

and a = 2.46Å is the lattice constant, to effectively account for the overes-

timation of the exchange by long-ranged Coulomb repulsion in a Hartree-

Fock theory that misses out the screening effects of π and σ orbitals in

graphene. (Simple screening models such as the static Thomas-Fermi ap-

proximation for the exchange interaction do not change the qualitative pic-

ture on the sublattice symmetry breaking presented in this paper.) The spe-

cific value α = 0.1 is adopted to match the experimentally observed gap

size in bilayer graphene [123, 126, 127].

To overcome computational challenges posed by the absence of an-

alytic form of wavefunctions in multilayer graphene, we use the rotational

transformation method [146] in which the wavefunction at an arbitrary angle

is obtained by a stacking dependent unitary transformation of the wavefunc-

tion at a specific angle. Moreover, we omit the inter-valley interaction which

is negligibly small, and each one of the four spin/valley flavors are treated

independently.
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4.3 Interaction-driven gapped phases in Bernal stacked
tetralayer graphene

4.3.1 Ground states with broken sublattice symmetry

The experimentally observed band gap in Bernal stacked tetralayer

graphene suggests the presence of electron-electron interaction driven sym-

metry breaking [141, 142]. Here, we show that the band gap opens due to

interaction driven sublattice symmetry breaking and its internal structure

consists of light-mass and heavy-mass band doublets whose charge densi-

ties polarize towards opposite out-of-plane directions. A sufficiently strong

perpendicular external electric field can flip their polarization directions in

the order of increasing effective mass values.

In Fig. 4.1, we show a comparison of the non-interacting and Hartree-

Fock energy band structures, and corresponding ground-state wavefunction

amplitudes and charge polarizations near the Fermi energy. The electronic

structure of Bernal stacked multilayer graphene can be understood from

the chiral decomposition rules of arbitrarily stacked multilayers [3, 147]

where the ABAB tetralayer is the simplest example involving more than

one massive band. In the absence of electron-electron interactions, the low-

energy band structure of ABAB stacking is described by two bilayer-like

pseudospin doublets with different effective masses, whose wavefunctions

near the Fermi energy are mainly localized at outer layer (1A, 4B) and inner

layer (2B, 3A) sublattice sites that define the pseudospin basis for the light
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Figure 4.1: Electronic structure and zero-energy wavefunction configura-
tions near the K or K ′ valley for ABAB tetralayer graphene obtained re-
spectively from (a), (c) the non-interacting continuum model and (b), (d)
a self-consistent Hartree-Fock calculation. Two pseudospin doublets are la-
beled by “Light” or “Heavy” depending on their effective mass of the energy
band. In the case of non-interacting model, all four spin/valley flavors have
the same wavefunction configuration with localized wavefunctions on the
gray sublattices, as shown in (c). When electron-electron interactions are
turned on, the sublattice symmetry is broken for both doublets transferring
charges either from A to B sublattices or vice versa, as indicated in red (pos-
itive charge) and blue (negative charge) color in (d). The (↓,⇑) and (↑,⇓)
labels represent two possible configurations of opposite charge polarization
towards the top and bottom layers corresponding to the light and heavy mass
bands.

and heavy mass bands, respectively, as shown in Fig. 4.1(c). In the presence

of electron-electron interactions, the sublattice symmetry of the two-fold

degenerate pseudospin doublets in the occupied bands is broken by trans-

ferring charge either from A to B sublattices or vice versa for both doublets

(but not from A to B for one doublet and from B to A for other doublet),

resulting in the gapped band structure with the same sublattice polarization
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direction.

Sublattice symmetry breaking in tetralayer graphene can be considered

as the generalization of the case of bilayer graphene system, which has one

pseudospin (per spin and valley) whose direction is out-of-plane as a re-

sult of the electron-electron interactions [128]. For each spin/valley flavor,

the charge polarizations of the light-mass and heavy-mass band doublets

can be represented as (↓,⇑) or (↑,⇓), where the first (second) arrow in the

parenthesis denotes the charge polarization for the light (heavy) mass band.

The charge polarizations for light and heavy bands point in opposite direc-

tions but towards the same sublattices, leading to same sign Chern numbers

(+1,+1) or (−1,−1), as shown in the Fig. 4.1(d). Note that the Chern num-

ber changes its sign at the opposite valley. We will discuss later on the states

with the same polarization directions such as (↓,⇓) or (↑,⇑) with a vanish-

ing net Chern number for a single spin/valley flavor, which are possible in

the presence of an external electric field. Thus, we can expect a variety of

ground states as a function of an external electric field, where different types

of Hall conductivities can result depending on the polarization of light-mass

and heavy-mass band doublets for each flavor.

4.3.2 Spin-valley degrees of freedom

Similar to the discussions for pseudospin magnetism in bilayer graphene

[128] we can classify the different states into flavor antiferro, ferri, and ferro

states. Flavor antiferro states have two flavors in (↓,⇑) configuration and the
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other two in (↑,⇓) configuration at zero field, so that no net charge polar-

ization exists.

The internal arrangement of the sublattice pseudospins has a direct im-

pact on the Hall transport properties of the system. Whenever the charge

polarization direction flips, the associated Chern number changes its sign

due to the change in the sublattice potential in the doublet. We distinguish

the spin Hall (SH), valley Hall (VH), charge Hall (CH), and spin resolved

valley Hall (SV) contributions of the conductivities. From the Chern num-

bers Cv,s (v = K,K ′ and s = u,d) of the pseudospin doublets at each

valley/spin flavor, the various quantum Hall conductivities can be evaluated

as

σSH =
e2

h

(
CK,u − CK,d + CK′,u − CK′,d

)
, (4.4a)

σVH =
e2

h

(
CK,u + CK,d − CK′,u − CK′,d

)
, (4.4b)

σCH =
e2

h

(
CK,u + CK,d + CK′,u + CK′,d

)
, (4.4c)

σSV =
e2

h

(
CK,u − CK,d − CK′,u + CK′,d

)
. (4.4d)

where σSH, σVH, σCH, and σSV indicates the quantum spin Hall conduc-

tivity, quantum valley Hall conductivity, quantum anomalous Hall conduc-

tivity, and quantum spin-valley Hall conductivity, respectively. Within the

flavor antiferro states, we classify different Hall phases [131, 132]: layer an-

tiferromagnetic (LAF) phase with the spin dependent but valley independent

sublattice potential, quantum spin Hall (QSH) phase with both the spin and

valley dependent sublattice potential, and quantum anomalous Hall (QAH)
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Figure 4.2: Schematic picture of the ground-state configuration and corre-
sponding spontaneous Hall effect at zero external electric field for three pos-
sible flavor antiferro states: LAF, QSH and QAH. Arrows in the square box
and numbers below the box at each spin/valley flavor represent pseudospin
polarizations and corresponding Chern numbers, respectively, whereas the
arrows above the box indicate the corresponding net current directions ex-
pected in the Hall measurement.

phase with the valley dependent but spin independent sublattice potential,

as schematically shown in Fig. 4.2.

Flavor ferro states have all four flavors in the same pseudospin con-

figuration. The flavor ferri states have one distinct flavor with respect to

other three. Since the number of (↓,⇑) and (↑,⇓) configurations are differ-

ent in flavor ferro and ferri states at zero field, non-zero net charge polariza-

tion exists for these states. From the Hartree energy cost considerations, the

metastable states with the lowest total energy are expected to be flavor an-

tiferro when there is no external electric field perpendicular to the graphene
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Figure 4.3: The evolution of the layer antiferromagnetic state under a
perpendicular external electric field, keeping the flavor degeneracy of the
system. Arrows in the square box and numbers below the box at each
spin/valley flavor represent pseudospin polarizations and corresponding
Chern numbers, respectively, whereas the arrows above the box indicate the
corresponding net current directions expected in the Hall measurement. The
change in the charge polarization by applying a perpendicular electric field
is denoted by the dashed circle.

layers.

4.4 Electric field induced “Hund’s rule” and Hall ef-
fects

Now let us consider the effect of a perpendicular external electric field

that can introduce a richer phase diagram. The presence of an electric field

is able to reorganize the charge polarization of the sublattice pseudospins in
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Table 4.1: Spontaneous quantum Hall conductivities in units of e2/h for the
antiferro states in Bernal stacked tetralayer graphene under a perpendicular
external electric field. Here, Ec1 = 0.025 mV/Å and Ec2 = 0.879 mV/Å.

Eext LAF QSH QAH
SH VH CH SV SH VH CH SV SH VH CH SV

Ec2 0 0 0 0 0 0 0 0 0 0 0 0
Ec1 0 −4 0 4 4 −4 0 0 0 −4 4 0

0 0 0 0 8 8 0 0 0 0 0 8 0
−Ec1 0 4 0 4 4 4 0 0 0 4 4 0
−Ec2 0 0 0 0 0 0 0 0 0 0 0 0

each spin/valley flavor. (Here we evolve a pseudospin configuration under an

electric field without changing its antiferro, ferri or ferro character keeping

the same flavor degeneracy. The lowest total energy state among them is

discussed in the following section.)

4.4.1 Flavor antiferro states

We begin by considering the flavor antiferro state consisting of (↓,⇑

)×2 and (↑,⇓)×2 at zero field. When an external electric field is increased

beyond the first critical field of Ec1 = 0.025 mV/Å, the polarization of

the light-mass band changes its sign first due to smaller interaction-induced

sublattice potential compared with that for the heavy-mass band, resulting

in the (↑,⇑)×2 and (↑,⇓)×2 configuration. A second critical electric field

of Ec2 = 0.879 mV/Å is able to flip all pseudospins leading to a ground

state with four identical copies of the band doublets (↑,⇑) × 4, and thus

resulting in flavor ferro state. Figure 4.3 schematically illustrates this pro-

cess and resulting transport properties in one of the flavor antiferro states,
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the LAF phase, assuming a spin dependent but valley independent sublat-

tice potential. Thus, polarizations of the pseudospin doublets arising from

the interaction induced sublattice symmetry breaking are aligned by the ex-

ternal electric field in the order of increasing effective mass. The rest of the

two flavor antiferro states, QSH and QAH phases also exhibit the same be-

havior as the LAF phase, except for the different spontaneous quantum Hall

conductivities. The change in Hall coefficients of all the three flavor anti-

ferro states under the external field is shown in Table 4.1. We observe that

the pseudospin ordering behavior under external electric field is also very

similar in 6-layer Bernal-stacked graphene. Similar to the tetralayer case,

the pseudospins with lighter mass flips first. See Appendix B.1 for details.

4.4.2 Flavor ferri and ferro states

It can be shown that this simple “Hund’s rule” type pseudospin order-

ing applies also to flavor ferri and ferro states. The evolution of a flavor ferri

state with the minority pseudospin configuration on K ′
d and that of a fla-

vor ferro state under a perpendicular external electric field are depicted in

Fig. 4.4. The corresponding Chern numbers for each state are represented in

Table 4.2. Note that in zero external electric field, there are eight ferri states

(from the two possible choice of minority configuration between (↑,⇓) and

(↓,⇑) on four possible spin/valley flavors) and two ferro states (from the two

possible choice of majority configuration).

As shown in Table 4.2, in the case of ferri states, all the types of Hall
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 (-∞,-Ec2- )ferri

(a)   Ferri

Ku K’u Kd K’d

(Ec1+, ∞)

(-Ec1- , Ec1+   )

ferro

-1 +1 +1 -1 -1 +1 +1 -1
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ferroferro

ferro (-∞,-Ec1-  )

(b)   Ferro
+1 -1 +1 -1

Figure 4.4: The evolution of ABAB tetralayer graphene under a perpendic-
ular external electric field for (a) a flavor ferri state with the minority pseu-
dospin configuration (↑, ⇓) on K ′

d and (b) a flavor ferro state with (↓, ⇑)
for all four flavors. Arrows in the square box and numbers below the box at
each spin/valley flavor represent pseudospin polarizations and correspond-
ing Chern numbers, respectively, whereas the arrows above the box indicate
the corresponding net current directions expected in the Hall measurement.
The change in the charge polarization by applying a perpendicular electric
field is denoted by the dashed circle.

coefficients are non-zero for −Eferri
c2− < E < Eferri

c2+ . This is the reason why

the ferri state is also called “All” state [131–133]. Also note that only the
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Table 4.2: Spontaneous quantum Hall conductivities in units of e2/h under
a perpendicular external electric field in ABAB tetralayer for the ferri and
ferro states in Fig. 4.4. Here, Eferri

c1+ = 0.019, Eferri
c2+ = 0.943, Eferri

c1− = 0.031,
and Eferri

c2− = 0.815 meV/Å for the ferri state, whereas Eferro
c1+ = 0.013 and

Eferro
c1− = 0.753 meV/Å for the ferro state.

E
Ferri

E
Ferro

SH VH CH SV SH VH CH SV
Eferri

c2+ 0 0 0 0 Eferro
c1+ 0 0 0 0

Eferri
c1+ −2 −2 2 2 0 0 8 0 0

0 −4 4 4 4 −Eferro
c1− 0 0 0 0

−Eferri
c1− −2 6 2 2

−Eferri
c2− 0 0 0 0

valley Hall coefficients change their signs in the opposite field direction. In

the case of ferro states, only the valley Hall coefficients are non-zero for

−Eferro
c1− < E < Eferro

c1+ .

4.4.3 Multiple hysteresis of layer charge polarization

Figure 4.5 shows the external field dependence of the total charge po-

larization for flavor antiferro, ferri and ferro states tracing a single metastable

configuration. Here we define the total charge polarization ζ in tetralayers

taking into account the layer separations as

ζ =
3
2n4 +

1
2n3 − 1

2n2 − 3
2n1

n4 + n3 + n2 + n1
, (4.5)

where ni is the electron density at i-th layer. Note that in the case of ferri

and ferro states, the evolution of states depends on the initial condition and

the sweep direction of the field, exhibiting hysteretic behavior associated
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Figure 4.5: (Left) External field dependence of the total charge polariza-
tion ζ defined in Eq. (4.5) for flavor antiferro (top), ferri (middle) and ferro
(bottom) states. The solid and dashed lines indicate evolutions of states
from two different initial states with reversed polarization direction for each
pseudospin. For each solid line, the pseudospin configurations are depicted.
(Right) Zoomed view of the dashed rectangular area in the left panel.

with the broken sublattice symmetry at zero field, which is analogous to the

bilayer graphene system [128].

4.5 Generalization to thicker multilayer stacks

In Bernal stacked multilayer graphene beyond tetralayer, there are sev-

eral additional factors that influence electronic structure near the Fermi level
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Figure 4.6: (a) Energy band gap as a function of the number of layers in
the absence of a perpendicular electric field. The energy gaps of even (odd)
number of layers are denoted by red (blue) circles. (b) The lowest total en-
ergy states in the presence of electric field. Flavor antiferro, ferri, and ferro
states are colored in blue, red, and gray, respectively. The pseudospin polar-
ization directions are written in increasing effective mass order.

due to the increased number of pseudospin doublets and their interactions.

Here, we intend to provide a qualitative picture of the electronic structure

expected in Bernal stacked multilayer graphene in the presence of electron-

electron interactions and perpendicular external electric fields using a mini-

mal continuum model for the band Hamiltonian.

In Bernal stacked multilayer graphene, the low-energy effective the-

ory is described by a set of bilayer-like doublets for even-number of lay-

ers, while an additional monolayer-like doublet is found for odd-number

of layers. The major difference in the energy gap between even- and odd-

layer graphenes originates from the existence of the monolayer-like dou-

blet in odd layered multilayers [3, 148–150]. Unlike bilayer-like doublets,
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monolayer-like doublets are much more robust to the interaction-induced

sublattice symmetry breaking and tend to remain gapless [128], thus the

gaps of odd-layer graphenes are much smaller than those of even-layer

graphenes.

In Fig. 4.6 (a), we show the energy band gap as a function of the num-

ber of layers in the absence of electric field. For even number of layers the

energy gap opens due to interactions and decreases as the number of layers

increases, whereas for odd number of layers the energy gap almost remains

closed. Note that the energy gap for odd number of layers is not exactly zero

(except for a single layer) and the energy gap for both odd and even layers

saturate as the number of layers increases. It is important to note that these

remnant gaps are due to simplification in the minimal model and expected

to be closed when remote hopping terms and screening are considered.

Restricting our attention to even-layer graphene, we summarize in Fig.

4.6 (b) the effect of a perpendicular electric field in the ground-state config-

urations. In general, the lowest total energy state varies from a flavor anti-

ferro state with zero net charge polarization via a partially polarized state,

and eventually to fully polarized flavor ferro state. Interestingly, for an ap-

propriate external electric field range, the flavor ferri state (or “All” state

[131–133]), which exhibits non-zero Hall conductivities of all flavors can

be achieved not only in rhombohedral but also in Bernal stacked multilayer

graphene. Since the total energies are almost degenerate, we expect that do-

mains of different pseudospin configurations will form in a disordered sam-

ple [151]. Considering the large number of pseudospin flavors in tetralayers
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and beyond, it is also expected that a large variety of topological domain

walls will arise at the interface between the ordered pseudospin domains.

4.6 Discussion

We identified the structure of the electron-electron interaction driven

ordered phases in Bernal stacked multilayer graphene based on the polariza-

tion of the pseudospin doublets belonging to electronic bands with distinct

effective masses. Our analysis rests on a number of simplifying assumptions

such as: neglect of remote hopping terms and the energy difference between

the dimer and non-dimer sites ∆, and the absence of screening and corre-

lations in our interaction model. In our minimal model for the band Hamil-

tonian, only the nearest intralayer and interlayer hopping is considered for

simplicity in order to conserve the rotational symmetry of the Hamiltonian.

As the number of layers becomes larger, however, the remote hopping terms

cannot be omitted for an accurate description of the band structure. Each

remote hopping term plays a different role in multilayer graphene, but in

general, it distorts the chiral character of the low energy band near the K

or K ′ point reducing the density of states near the Fermi energy. Since the

energy gap originates from the interplay of chirality and electron-electron

interaction, the energy gap is expected to become smaller when the remote

hopping terms are considered. Once the energy gap is closed or becomes

narrower, the screening effect due to the Coulomb interaction begins to play

a significant role, in a particularly notable manner for odd-layer graphenes.
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For even-layer graphenes, larger interaction induced gaps open. When the

gap size sets the dominant energy scale relative to the remote hopping ener-

gies, the basic picture presented in this paper should be valid at least qual-

itatively. It has been proposed that the electron-electron interactions will

induce strains that suppress the remote interlayer coupling terms such as the

γ2 hopping [142]. The assumption of weakened remote hopping terms in

few layer systems would make the minimal model an adequate ground for

the analysis of interaction effects. In Appendix B.2, we investigated how

the remote hopping term γ2 modifies the ground state of the minimal model

fro the ABAB graphene. We found that for a reasonable range of interac-

tion strength and weakened γ2, the ground states does not deviate from the

minimal model qualitatively. As the number of layers increases towards the

graphite limit, however, it is expected that the energy gap should show a

progressive decrease until it eventually closes.

In summary, we provide a simple and comprehensive picture for the in-

teraction induced ordered states in Bernal stacked multilayer graphene. We

analyze the ground-state configurations and associated Hall conductivities

that can result from the combined presence of electron-electron interactions

and perpendicular external fields that could serve as guidance to future ex-

periments.
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Chapter 5

Conclusion

In this dissertation, we discussed two van der Waals materials Bi4X4

(X=Br, I) family and Bernal stacked multilayer graphene, focusing on their

topological properties. As a summary and conclusion, we briefly review the

important results in each system.

In Chap. 3, we provided a single framework to understand various

topological phases found in Bi4X4 family. Starting from the careful anal-

ysis of the crystal structures, we constructed the effective TB models for

each material of Bi4X4 and verified that our TB models not only reproduces

the band structures but also the bulk band topology. We also investigated

the (001) film systems of α-Bi4X4 and discovered the intriguing stacking-

dependent hinge state patterns which cannot be understood from the 3D

bulk band structures alone. Then we found that the non-trivial topology can

be captured from the boundary Hamiltonian which has an analogy with the

SSH model. We finally introduced three experimental collaborations which

strongly support our theoretical predictions.

In Chap. 4, we analyze the ordered phases of Bernal stacked multi-

layer graphene in the presence of interaction. We find the interaction-driven

ground states exhibit band gaps due to sublattice symmetry breaking, whose
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solutions can be analyzed in terms of light-mass and heavy-mass pseudospin

doublets which have the same Chern numbers but opposite charge polariza-

tion directions. We also applied a perpendicular external electric field and

find various topological ground state phases with different spin, valley, spin-

valley, and/or charge quantum Hall coefficients.

Even though there have been so many amazing discoveries in topolog-

ical van der Waals materials both theoretically and experimentally, we are

still in the early phases of this field. From the aspects of the experiment,

the progress in the fabrication of the high-quality samples now leads us to

the unexpected physics. Good examples would be the discovery of the su-

perconductivity in rhombohedral trilayer graphene and the twisted bilayer

graphene. Besides experiments, there is still a long way to go in terms of

theory. Though various topological phases have been extensively studied

in the last two decades, most of the researches have been limited to the

non-interacting single particle physics. I strongly believe that the interplay

between geometry, symmetry, topology, and interaction will lead us to even

more exciting new discoveries.
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Appendix A

Topological phases in quasi-one-dimensional
bismuth halides Bi4X4 (X = I, Br)

A.1 Crystal structure data

Table A.1 summarizes the crystal structure data of β-Bi4Br4, β-Bi4I4,

α-Bi4Br4, and α-Bi4I4.

A.2 Model fitting

Table A.2 summarizes a set of parameter values for the Bi4X4 models

in Sec. 3.4 that can well fit the band inversions and band structures of the

MLWF data, as shown in Fig. 3.4. Below we describe our fitting procedure.

We first fit the intra-layer terms in HL of Eq. (3.2) to the (001) mono-

layer Hamiltonians derived from the MLWF Hamiltonians by ignoring the

inter-layer tunnelings. Informed by the bottom panels of Fig. 3.2, HL has a

band inversion at (π, π). Those terms even in momentum are fixed by the

band energies at the TRI momenta, and those odd are determined by the

band dispersions near (π, π). For the α phases, those terms ∝ τz are identi-

fied by the differences between the even and odd (001) layers, e.g., the direct
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(Å
)

b
(Å
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band gaps of Bi4Br4 and the Dirac point energies of Bi4I4. On top of these,

we then fit the inter-layer tunnelings in Eqs. (3.2), (3.7), and (3.8) with the

band inversions and band energies at the L and M points.

Table A.2: A set of parameter values in units of meV for the Bi4X4 models
in Sec. 3.4 that can well fit the band inversions and band structures given by
the MLWF data.

Parameter β-Bi4Br4 α-Bi4Br4 α-Bi4I4 β-Bi4I4
ta 146.15 181.67 119.73 119.73
tb 977.13 977.62 1075.40 1075.40
d0 89.43 92.37 114.66 128.44
da 20.14 15.85 44.59 47.71
db −57.50 −70.19 −19.94 −9.10
m0 955.08 922.99 788.19 804.44
ma 140.61 161.04 121.65 110.85
mb −701.98 −714.37 −589.67 −594.71

tc 19.49 12.06 39.48 20.50
dc 4.17 −6.62 −2.09 −11.95
mc −1.99 −12.96 −24.46 −21.64

d′0 −12.00
m′

0 21.31
t 7.78
t′ 7.78
t′c −10.33 −6.85
d′c −6.62 −5.66
m′

c −12.96 2.47

A.3 More accurate α-Bi4I4 model

The fact that the inversion center of α-Bi4I4 can only be placed in the

middle of two adjacent (001) layers has two consequences. First, the inter-

unit-cell layer separation is slightly different than the intra-unit-cell one, as
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c

c − d

d

d − a1

d − a2

Figure A.1: (a) Stacking registry of α-Bi4I4. The dashed boxes are the prim-
itive unit cells. The red dots are the inversion centers. (b) and (c) are two ad-
jacent layers in the same and different unit cells, respectively, viewed from
the c − a/2 axis. The zigzag lines sketch the atomic chains. The solid and
dashed lines denote the upper and lower layers. The blue and gray dots are
the centers of the unit cells of individual layers. d, d−a1, d−a2, and c−d
connect the centers of two adjacent layers. The green arrows are vectors
connecting different inter-layer NNs. Based on Table A.1, the layer spacing
is nearly uniform, and d is close to c/2 + a/4; the spacing variation in (a)
and the layer mismatch in (c) are exaggerated.

sketched in Fig. A.1(a). Second, within the a-b plane, two adjacent layers

in the same unit cell are shifted by a/2 relatively, while two in different

unit cells remain little shifted, as sketched in Figs. A.1(b) and A.1(c). In the

model in Eq. (3.8), while the first effect has been counted, the second effect
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is ignored for simplicity. Because of the second effect, the NN interlayer

hopping processes within a unit cell are associated with the lattice vectors

±(d− a1) and ±(d− a2) instead of ±d, as shown in Fig. A.1(b). To take

into account the second effect, in the model in Eq. (3.8), the factor τx in the

term (dc +mcσz)τx needs to be replaced by

−1

2
[τx(cos k1 + cos k2) + τy(sin k1 + sin k2)], (A.1)

and the factor τy in the term tcσxsyτy needs to be replaced by

−1

2
[τy(cos k1 + cos k2)− τx(sin k1 + sin k2)]. (A.2)

In the ML line, k1 = k2 = π, these two factors reduce to τx and τy, and the

model in Eq. (3.8) is recovered.

A.4 Extended winding number

The celebrated SSH model can be expressed as

H(q) =

 0 t1 + t2e
−iq

t∗1 + t∗2e
iq 0

 , (A.3)

where t1 and t2 are the NN couplings within a unit cell and between two unit

cells, respectively. Because of its chiral symmetry, H(q) is characterized by
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Figure A.2: The trajectory of (hx(q), hy(q)) in Eq. (A.5).

the first winding number (evaluated in the trivial gauge [105])

ν1 =
i

2π

∫
BZ

dqh(q)†∂qh(q) = Θ (|t2| − |t1|) , (A.4)

where h(q) = (t1 + t2e
−iq)/|ϵ(q)|, ±ϵ(q) are eigenvalues of H(q), and

Θ is the Heaviside function. Although the winding numbers are not gauge

invariant, their differences are gauge invariant (when evaluated in the same

gauge). Thus, there are N topological zero modes localized at any boundary

across which ν1 changes by N .

In most cases t1 and t2 are assumed to be real, yet in general they

can be extended to complex numbers and the conclusion Eq. (A.4) remains

the same. To show this explicitly, let t1 = |t1|eiϕ1 and t2 = |t2|eiϕ2 with
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0 ≤ ϕ1, ϕ2 < 2π in Eq. (A.3), and we obtain

H(q) = hx(q)σx + hy(q)σy,

hx(q) = |t2| cos (q − ϕ2) + |t1| cosϕ1,

hy(q) = |t2| sin (q − ϕ2)− |t1| sinϕ1, (A.5)

where σ are Pauli matrices. One can directly see from Eq. (A.5) that The

trajectory of (hx(q), hy(q)) is a circle of radius |t2| centered at (|t1| cosϕ1,

−|t1| sinϕ1), as shown in Fig. A.2. Thus, the criterion for the origin being

enclosed by the trajectory, i.e., ν1 = 1, remains the same as |t1| < |t2| even

for complex t1 and t2.

A.5 Density of states of finite-sized α-Bi4X4

In contrast to the most of (perhaps all the other) HOTI candidates, α-

Bi4X4 exhibit not only a finite global bulk gap, but also a finite global sur-

face gap, where the case of α-Bi4I4 is shown in Fig. A.3(a) as an example.

As a result, the hinge, surface, and bulk contribution to the DOS are clearly

distinguished as depicted in Fig. A.3(b). Here, note that all the hinge, sur-

face, and bulk bands have nearly constant DOS, which is due to the quasi-1D

nature of α-Bi4X4. Although the surface and the bulk bands are the 2D and

3D bands, respectively, the bands are much more dispersive along the b di-

rection than the other two directions, so that the DOS of the system exhibit

approximately 1D-like power law.
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Figure A.3: (a) (201) surface states of α-Bi4I4. The zero energy is set at the
0 meV in Fig. 3.2(c). (b) The DOS of α-Bi4I4 rod which is periodic in the
b direction, 1000-unit-cell long in the a and c direction. (c), (d) The DOS
of α-Bi4Br4 and α-Bi4I4 near the surface gap. The systems in Figs. 3.6 and
3.8 are used here.

In the surface gap, one can measure the DOS of the 1D helical hinge

states, where each Kramer pair of hinge states contributes a constant 1/πℏvF
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to the DOS. In the case of α-Bi4Br4, the number of helical hinge modes are

independent of the (001) termination, as shown in Fig. 3.6. As a result, the

DOS in the surface gap are nearly the same for all the types of (001) termi-

nations, which are shown in Fig. A.3(c). However, as one can verify from

Fig. 3.8, the number of hinge states depends on the (001) termination in

α-Bi4I4 and thus the DOS in the surface gap also varies with the (001) ter-

minations in Fig. A.3(d). This clear difference can be used to distinguish the

bulk- and boundary-obstructed phases in quasi-1D TIs.
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Appendix B

Broken sublattice symmetry states in Bernal
stacked multilayer graphene

B.1 Ground-state configurations for 6-layer graphene

Similarly as tetralayer graphene, the low-energy band structure of Bernal

stacked 6-layer graphene (ABABAB) at low energies is described by three

bilayer-like pseudospin doublets with different masses. Because of the sub-

lattice symmetry breaking, charge polarizations of the three pseudospins

have alternating directions, (↓, ↑, ↓) or (↑, ↓, ↑) where arrows in the paren-

thesis represent the charge polarization of pseudospins with increasing ef-

fective mass order. The corresponding Chern numbers are (+1,+1,+1) or

(−1,−1,−1) because of the same sign of sublattice potential generated by

the sublattice symmetry breaking. Similarly, we can understand the ground-

state configurations of 8-layer graphene (ABABABAB) as (↓, ↑, ↓, ↑) or

(↑, ↓, ↑, ↓) with the Chern numbers (+1,+1,+1,+1) or (−1,−1,−1,−1) at

zero field.

Table B.1 shows the external field dependence of the ground-state con-

figurations in the LAF state for 6-layer graphene. In Tab. B.2, the cor-

responding Hall conductivities are calculated for the three possible anti-
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Table B.1: Charge polarizations and corresponding Chern numbers in the
presence of a perpendicular electric field in Bernal stacked 6-layer graphene
for the LAF state. The pseudospins are written in increasing effective mass
order from the left to the right. Here, E(6)

c1 = 0.017, E(6)
c2 = 0.251, and

E
(6)
c3 = 0.281 meV/Å. Red arrows indicate flipped pseudospin polarizations

with field.

Chern Number
E

Flavor I
(Ku, K ′

u)
Flavor II
(Kd, K ′

d)
Ku Kd K ′

u K ′
d

E
(6)
c3 ↑ ↑ ↑ ↑ ↑ ↑ 1 1 −1 −1

E
(6)
c2 ↑ ↑ ↑ ↑ ↑ ↓ 1 −1 −1 1

E
(6)
c1 ↑ ↓ ↑ ↑ ↑ ↓ 3 −1 −3 1

0 ↑ ↓ ↑ ↓ ↑ ↓ 3 −3 −3 3
−E

(6)
c1 ↓ ↓ ↑ ↓ ↑ ↓ 1 −3 −1 3

−E
(6)
c2 ↓ ↓ ↑ ↓ ↓ ↓ 1 −1 −1 1

−E
(6)
c3 ↓ ↓ ↓ ↓ ↓ ↓ −1 −1 1 1

ferro states, respectively. When the external electric field Eext is zero, pseu-

dospins with increasing effective mass have alternating charge polarization

directions for 6-layer graphene, which is consistent with the tetralayer case.

As Eext increases, each pseudospin flips from the one with lighter effective

mass following the Hund’s rule. As the number of layers increases, however,

there are deviations from this rule in the intermediate field region resulting

from the greater complexity of the intermediate states and the interaction

between the bands near the Fermi energy.

B.2 Effect of the remote hopping terms

In even-layer graphenes, the energy gap is the dominant energy scale,

thus when the gap is large enough, the effect of other energy scales asso-
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Table B.2: Spontaneous quantum Hall conductivities in units of e2/h for the
antiferro states in Bernal stacked 6-layer graphene under a perpendicular
external electric field.

Eext
LAF QSH QAH

SH VH CH SV SH VH CH SV SH VH CH SV
E

(6)
c3 0 4 0 0 0 4 0 0 0 4 0 0

E
(6)
c2 0 0 0 4 4 0 0 0 0 0 4 0

E
(6)
c1 0 4 0 8 8 4 0 0 0 4 8 0

0 0 0 0 12 12 0 0 0 0 0 12 0
−E

(6)
c1 0 −4 0 8 8 −4 0 0 0 −4 8 0

−E
(6)
c2 0 0 0 4 4 0 0 0 0 0 4 0

−E
(6)
c3 0 −4 0 0 0 −4 0 0 0 −4 0 0

ciated with remote hopping terms could be neglibible and the basic picture

presented in this paper remains valid at least qualitatively. However, when

the remote hopping terms are not negligible compared to the energy gap, the

ground state is no longer described by the sublattice symmetry breaking and

the effective Hund’s rule, and the detailed ground state configurations will

be determined by combined effects of the remote hopping terms and screen-

ing. Figure B.1 shows the phase diagram between the gap dominant and

remote-hopping dominant regions as a function of the interaction strength

α and the next-nearest interlayer coupling between non-dimer sites γ2, ne-

glecting other remote hopping terms for simplicity, in tetralayer graphene.

Here, the gap (remote-hopping) dominant region represent a region where

the ground state is (not) described by the sublattice symmetry breaking and

the effective Hund’s rule. As expected, broken sublattice symmetry occurs

at large α and small size of γ2. It has been proposed that the remote hopping

terms in multilayer graphene could be different from those in graphite and

suppressed by interaction induced strains [142], justifying the use of the
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minimal model. Considering that α ∼ 1 for conventional SiO2 substrates

and α ∼ 2.6 for suspended samples, we expect that the remote hopping

terms do not change the basic picture drawn from the minimal model.

-20 -15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Gap
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Remote-Hopping
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Remote-Hopping
Dominant

γ2  (meV)

α

Figure B.1: The phase diagram for the ground state configuration of
tetralayer graphene on α and γ2 plane. Here, the gap (remote-hopping) dom-
inant region denotes a region where the ground state is (not) described by
the sublattice symmetry breaking and the effective Hund’s rule.
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국문초록

그래핀의성공적인박리이래로,원자사슬이나원자층이약한반데

르 발스 힘으로 결합된 반 데르 발스 물질에 많은 관심이 쏟아지고 있다.

반 데르 발스 물질은 층 간 혹은 사슬 간의 약한 결합 덕분에 임의의 두

께의 다층 구조를 만드는 것이 가능하다. 흥미롭게도, 다층 반 데르 발스

물질은쌓인층수에따라완전히다른물리적인특징을나타낸다.본학위

논문에서는두가지반데르발스물질 Bi4X4 (X=Br, I)와버널적층구조

를갖는다층그래핀을적층양상에다른위상적특징과전자간상호작용

효과에초점을맞추어다룬다.

첫번째부분에서는우리는준일차원물질군인Bi4X4를다룬다. Bi4X4

는베타상이약한위상부도체가되는것으로인해처음주목받은물질군

으로,최근무기물질데이터베이스대규모조사연구에서알파상 Bi4Br4

는 희소한 고차 위상 부도체로 밝혀지는 한편 알파 상 Bi4I4는 자명한 대

칭지시자를가지는것으로밝혀졌다.본연구에서우리는기존에알려진

것과는다르게실제로는두알파상모두브릴루앙존전체에서에너지띠

간격을갖는한편물질의경계에의존하는힌지상태패턴을나타내는고

차위상부도체임을제일원리계산,엣지이합체화,표면격자구조조사,

밀접 결합 모델 설계, 그리고 경계 위상 불변량 도입과 같은 다양한 방법

을 통해 보인다. 우리는 Bi4Br4와 Bi4I4의 반전 중심이 이 물질의 위상적

특징을결정짓는것에있어서핵심적인역할을함을보인다.우리는또한

각분해능 광전자 분광 기법, 가변 게이트 수송, 주사 터널링 현미경 측정

과같은다양한실험을통해우리의이론적예측을뒷받침한다.본물질에
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대한연구결과는현재분류범위를넘어서서새로운다양한위상물질의

존재가능성을암시하는것외에도원자사슬구조에따른이상적인힌지

환경, 실온에서의 구조적 전이, 세 축 방향으로의 극도의 이방성과 같은

측면에서 새로운 위상 부도체의 패러다임을 제시하는 한편, 구조, 대칭,

위상, 그리고 상호작용을 연구하기 위한 이상적인 플랫폼이 될 수 있을

것으로기대된다.

두번째부분에서우리는상호작용에기인한부분격자대칭붕괴퍼

텐셜로띠간격이있는상태에서버널적층다층그래핀의상을분석한다.

상호작용으로 인해 나타나는 이 상은 동일한 천 수를 갖지만 전하 분극

방향이반대인두다른질량을갖는유사스핀쌍으로설명된다.수직외부

전기장을 가하게 되면 사층 버널 그래핀에서 부분격자 유사스핀 쌍의 방

향은 훈트의 규칙과 비슷한 양상으로 정렬되지만 층수가 증가함에 따라

더복잡한규칙을가지는것으로나타난다.

주요어 : 위상물질,반데르발스계,박막

학번 : 2015-20342
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