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Abstract

Topological Phenomena in
Pyrochlore Iridates

Taekoo Oh
Department of Physics and Astronomy

The Graduate School
Seoul National University

Physics in condensed matter is determined by spin-orbit coupling and elec-

tronic correlation. When spin-orbit coupling and electronic correlation are

comparable to the bandwidth, the correlated topological phases like Weyl

semimetal, axion insulator, and topological Mott insulator emerge. Because

of their unique physical phenomena, correlated topological phases are get-

ting more attention.

Pyrochlore iridates, whose chemical formula is R2Ir2O7 (R: rare-earth),

have a strong correlation and spin-orbit coupling at the same time. Hence,

pyrochlore iridates are playgrounds for investigating the correlated topo-

logical phases. Especially, pyrochlore iridates are the first candidate that a

Weyl semimetal develops when the antiferromagnetic order is developed at a

low temperature. The antiferromagnetic order is called all-in-all-out (AIAO)

since all spins point from or to the unit cell center.

However, the smoking gun evidence for a magnetic Weyl semimetal

is missing so far for two reasons. First, the ground state is mostly an an-

tiferromagnetic insulator, so the window for Weyl semimetal is negligible.
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Second, although the Weyl semimetal is present in pyrochlore iridates, the

signals from the Weyl semimetal are canceled by the cubic symmetry. In

order to find Weyl semimetal in pyrochlore iridates, we apply the perturba-

tions to pyrochlore iridates near the transition point from antiferromagnetic

insulator to paramagnetic metal. We expect that the perturbation widens the

window for Weyl semimetal and breaks the cubic symmetry so that the dif-

ficulties above can be overcome. The perturbations used here are magnetic

field and strain. Accordingly, the dissertation is divided into two parts.

First, the magnetic field is applied to (NdxPr1−x)2Ir2O7 single crystals,

which is between the antiferromagnetic insulator and paramagnetic metal

phase. Then, the experiment shows a variety of topological semimetals.

The group theory shows that the quadratic band crossing in paramagnetic

metal has a high effective spin J = 3/2, so the magnetic field induces an

anisotropic Zeeman term as well as a usual Zeeman term. The interplay of

two Zeeman terms and AIAO order gives rise to the various topological

semimetals, like the 4-pair Weyl, 2-pair Weyl, double Weyl, and nodal-line

semimetals. The magnetic field controls Zeeman terms and AIAO by chang-

ing the spin configuration of pyrochlore iridates.

Second, when strain is applied to Nd2Ir2O7 and Pr2Ir2O7 thin films,

which are the antiferromagnetic insulator and paramagnetic metal, respec-

tively. For Nd2Ir2O7, the strain induces the insulator-to-metal transition and

anomalous Hall Effect at zero magnetic fields. The model calculation shows

that strained Nd2Ir2O7 is trivial metal with electron and hole pockets. Since

the magnetization is zero at zero fields, the origin of the anomalous Hall

Effect is neither the magnetization nor the Weyl semimetal. In fact, the

strain-induced T1-octupole is the origin of the anomalous Hall Effect, since

T1-octupole has the same symmetry as magnetization. On the other hand,

for Pr2Ir2O7, the experiments show numerous pieces of evidence for Weyl

semimetals, such as anomalous Hall Effect, negative magnetoresistance, and

planar Hall Effect. Especially, the planar Hall Effect can be explained by the
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chiral anomaly of Weyl semimetal and AIAO order. The results in the dis-

sertation provide the reasons why Weyl semimetal emerges in pyrochlore

iridates, and the method to find the Weyl semimetal as well. This disser-

tation facilitates the experimental discovery of novel topological phases in

pyrochlore iridates.

Keywords : Topological phenomena, Anomalous Hall Effect, Pyrochlore

Iridates, Weyl semimetal

Student Number : 2016-24222
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Chapter 1

Introduction

1.1 Correlated Topological Phases

Simple Metal
or 

Band Insulator
Topological Insulator

Mott
Insulator

Correlated Topological
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Axion
Insulator
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Topological
Mott

Insulator
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ordered

𝜆𝜆/𝑡𝑡

𝑈𝑈/𝑡𝑡

Figure 1.1: The schematics of 2D phase diagram of condensed matter as a
function of λ/t and U/t.

Physics in condensed matter physics is determined mostly by the spin-

orbit coupling (SOC) and electronic correlation [1]. The Hamiltonian in a

generic system is written as

H =
∑
⟨ij⟩,σ

tijc
†
iσcjσ + λ

∑
i

L⃗i · S⃗i + U
∑
i

ni↑ni↓, (1.1)

where ciσ is the annihilation operator for an electron at site i, λ is the SOC,

U is the correlation, L⃗i is the orbital angular momentum, S⃗i is the spin
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angular momentum, and niσ is the number operator.

The 2D phase diagram as a function of λ/t andU/t is shown in Fig. 1.1.

In the phase diagram, one can see four different regions. When λ and U are

small, it is just a simple metal or insulator. When λ gets stronger, the phase

becomes topological. When U gets stronger, the phase becomes correlated.

When both λ and U are comparable to the bandwidth, the phase gets both

topological and correlated features. In this region, the correlated topological

phases such as Weyl semimetal, axion insulator, topological Mott insulator,

spin liquid, and quadrupolar ordered phases can be obtained.

The correlated topological phases attract much attention from the com-

munity since they show unique physical properties. For example, the Weyl

semimetal is the phase that the point node crossings between different en-

ergy bands are described by the Weyl equation. This is topological because

the integration of Berry curvature on the surface surrounding the Weyl node

is quantized. Weyl semimetal shows unique physical properties. First, since

Weyl nodes are the source of Berry curvature, it can induce the anomalous

Hall Effect. Second, two Weyl nodes are connected on the surface by the sur-

face Fermi arc. Third, when the magnetic and electric fields are applied in

the same direction, the charge pumping between a pair of Weyl nodes called

the chiral anomaly appears. A negative longitudinal magnetoresistance can

be induced by the chiral anomaly.

1.2 Pyrochlore Iridates

Pyrochlore iridates have the chemical formula R2Ir2O7, where R is

rare-earth such as lanthanides. Since R is an f -electron system and Ir is a

d-electron system, pyrochlore iridates have strong SOC and strong correla-

tion. Furthermore, the structure of the pyrochlore iridates is frustrating. (See

Figs. 1.2a-b.) The unit cell of the pyrochlore iridates is a tetrahedron. Sup-

pose that an antiferromagnetic exchange interaction exists in the system.
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a b
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Figure 1.2: (a) The crystal structure of pyrochlore iridates. (b) The frustra-
tion in the unit cell of pyrochlore iridates. (c) AIAO order of pyrochlore
iridates.

Then, we can determine at most two spins as up and down, but the other

two spins remain undetermined. The frustrated structure makes the system

host various magnetic structures. Thus, pyrochlore iridates are useful play-

grounds for studying the various correlated topological phases.

Especially, pyrochlore iridates are the first candidate materials that Weyl

semimetal is predicted to exist. At low temperatures, pyrochlore iridates de-

velop an antiferromagnetic order. The antiferromagnetic order is called the

all-in-all-out (AIAO) order, since all spins point from or to the center of

the unit cell (Fig. 1.2c.) When antiferromagnetic order sets in, time-reversal

symmetry is broken, and a magnetic Weyl semimetal can emerge [2].

1.3 Motivation and Outline of the dissertation

However, the smoking gun evidence for the Weyl semimetal in py-

rochlore iridates is still missing for two reasons. First, the ground state

is either an antiferromagnetic (AFM) insulator or paramagnetic metal. In

Fig. 1.3a, the experiment results for various rare-earth ions R3+ are shown,

as a function of ionic radius and temperature [1, 3]. For every rare-earth ion

except Pr3+, the ground state is an AIAO insulator. For Pr3+, the ground

3
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Figure 1.3: (a) 2D phase diagram from the experiments. This figure is re-
vised from one in Ref. 1, 3. (b) 2D phase diagram from theoretical analysis.
This figure is revised from one in Ref. 4.

state is a paramagnetic metal.

This can be explained by theoretical analysis [4, 5]. In Fig. 1.3b, the

phase diagram as a function of nearest neighbor hopping parameter (tσ) and

Hubbard repulsion (U ) is drawn. The AIAO Weyl semimetal is in a very

small region (green area) between the transition from an AIAO insulator

and a paramagnetic metal. The window for Weyl semimetal is infinitesimal

to be realized.

Furthermore, although the Weyl semimetal is present in pyrochlore iri-

dates, it cannot be observed by the cubic symmetry. When AIAO order in

Fig. 1.2c sets in, the system have 3C2, 8C3, 6σT , and 6S4T , where C2 is

twofold rotation, C3 is threefold rotation, σ is the mirror, S4 is the four-

fold roto-inversion, and T is time-reversal symmetry. Accordingly, the sig-

nals from Weyl semimetal, for example, anomalous Hall Effect (AHE) must

vanish.

In order to the topological semimetals in pyrochlore iridates, one should

overcome the two difficulties above. Thus, this dissertation reports the jour-

ney for finding topological semimetals in pyrochlore iridates by means of
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perturbations. The perturbations are applied to pyrochlore iridates near the

transition between the AFM insulator and paramagnetic metal. In Fig. 1.3,

R = Pr, Nd are close to the transition point. One can expect two effects

from the perturbations. Since both valence and conduction bands are close

together, perturbations are expected to make the system metallic and make

the window for topological semimetal expanded. Moreover, perturbations

point in a certain direction, and the cubic symmetry must be broken. Ac-

cordingly, signals from the Weyl semimetal such as AHE can be detected.

Since the perturbations applied to the system are the magnetic field

and strain, this dissertation is divided into two parts. In the first part, the

magnetic-field induced topological semimetals in pyrochlore iridates is dis-

cussed. The magnetic field is applied to (NdxPr1−x)2Ir2O7 single crystals,

which is close to the transition point between AFM insulator and param-

agnetic metal. Various topological semimetals such as Weyl and nodal-line

semimetals are observed. Motivated by the experiment, the generic topo-

logical band structure is investigated. In paramagnetic metal, it was ob-

served that quadratic band crossing (QBC) with fourfold degeneracy is at

Γ point [6]. Because of the large band degeneracy and strong SOC, the Zee-

man field can induce an anisotropic Zeeman effect as well as the conven-

tional isotropic Zeeman effect. The competition of the energy scales of two

Zeeman terms and the exchange energy of Ir electrons give rise to the var-

ious topological semimetals. Furthermore, we show the three energy scales

can be controlled by the modulation of the magnetic structure, which cou-

ples to the degenerate states at QBC. The general topological band structure

under a magnetic field is proposed.

In the second part, the strain-induced topological semimetals in py-

rochlore iridates are discussed. Primarily, we explain that the anomalous

Hall Effect in relaxed Nd2Ir2O7 thin films comes from the AFM domain

wall of the system. Since the AIAO order has cubic symmetry, the anoma-

lous Hall Effect must be canceled. However, when the domain wall is gen-
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erated, twofold rotations are broken and anomalous Hall Effect is allowed.

Next, we apply the strain to Nd2Ir2O7 thin films which is the AFM insulator.

In the experiment, the strained Nd2Ir2O7 thin films show a large enhance-

ment of AHE compared to the relaxed ones. The recent theory proposed

that higher-rank magnetic multipoles formed by clusters of spins can gener-

ate the AHE without magnetization [7, 8]. We prove that the strain-induced

cluster T1-octupoles are the only source of observed AHE. Lastly, we ap-

ply the strain to Pr2Ir2O7 thin films which is the paramagnetic metal. The

anomalous Hall Effect, magnetoresistance, and planar Hall Effect support

that the strained Pr2Ir2O7 develops an AIAO order and the Weyl semimetal

sets in. With the experimental analysis and renormalization group calcula-

tions, we find an interacting Weyl liquid state with logarithmically renor-

malized Fermi velocity dressed by long-range Coulomb interaction.

This dissertation is based on my publications [9–13], and many con-

tents are overlapped with them. I make an effort to streamline the publi-

cations and to carry the significant concepts in this dissertation. This may

lead to the omission of references cited previously. The readers can find the

original papers and look for the references there.
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Chapter 2

Backgrounds

This chapter introduces the physical background of this dissertation.

This chapter is composed of three parts. In the first part, the Weyl semimetal

and its physical properties are introduced. Next, all physical models we

use in this dissertation are described in detail. Lastly, the cluster multipoles

which are widely utilized in this dissertation are explained.

2.1 Weyl semimetal

2.1.1 Introduction to Weyl semimetal

A Weyl semimetal is the phase where there are gapless excitations

that are protected by topological invariants and symmetry near the Fermi

level [14]. The gapless excitations are described by the so-called Weyl equa-

tion,

H = ±vk⃗ · σ⃗, (2.1)

where σ⃗ = (σx, σy, σz) are the Pauli matrices. The sign ± is the chirality of

Weyl fermions. The Weyl semimetal phase appears when time-reversal T or

inversion P is broken in 3-dimensional systems. The number of Weyl nodes

in the Brillouin zone must be even, because of Nielsen-Ninomiya Theorem.

Before proceeding, we first define the Berry connection and Berry cur-

vature. Suppose that there is a Hamiltonian with periodic potential H =

H0 + U(r⃗) where U(r⃗) = U(r⃗ + R⃗) (R⃗: Bravais lattice vector). Then, the
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eigenstates of the Hamiltonian are described by

ψ
k⃗
(r⃗) = eik⃗·r⃗u

k⃗
(r⃗), (2.2)

where u
k⃗
(r⃗) = u

k⃗
(r⃗+R⃗). This is the Bloch Theorem, and u

k⃗
(r⃗) = ⟨r⃗|u(k⃗)⟩

is called Bloch wave functions. Let us denote |un(k⃗)⟩ is the n-th Bloch

wavefunction of the Hamiltonian, an Abelian Berry connection is defined as

A⃗n(k⃗) = −i⟨un(k⃗)|∇k|un(k⃗)⟩, (2.3)

and the Berry curvature is defined as

F ab
n (k⃗) = ∂kaA

b
n − ∂kbA

a
n. (2.4)

The Weyl semimetal is considered a topological phase. This is because

the net Berry flux surrounding the gapless excitation is quantized,∫
d2k

(2π)
F ab
n (k⃗) = ±1. (2.5)

This can be proved by using Eq. 2.1. When we represent k⃗ = k(sin θ cosϕ

, sin θ sinϕ, cos θ), The eigenstates of the Hamiltonian are given by

|u↑(k⃗)⟩ = [cos(θ/2)e−iϕ, sin(θ/2)]T ,

|u↓(k⃗)⟩ = [sin(θ/2)e−iϕ,− cos(θ/2)]T , (2.6)

The Berry curvature for the down arrow band is

F⃗ (k⃗) = −1

2

k⃗

k3
(2.7)

Then, the integration of Berry curvature on a shell surrounding the excitation
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is ∫
dS⃗

2π
· F⃗ (k⃗) = −1. (2.8)

Please note that the Weyl nodes can be regarded as a source or sink of the

Berry curvature.

2.1.2 Physical consequences of Weyl semimetal

The topological properties of Weyl semimetal give rise to a myriad

of exotic physical consequences. We introduce two representative physical

consequences, the anomalous Hall Effect (AHE) and chiral anomaly.

The AHE is the emergence or enhancement of Hall voltage in the time-

reversal broken systems. There are extrinsic and intrinsic mechanisms for

AHE. The extrinsic mechanism is the side-jump and skew-scattering from

the magnetic impurities. The intrinsic mechanism, on the other hand, is from

the Berry curvature of the electronic energy band. Weyl semimetal gives rise

to anomalous Hall Effect by intrinsic effects. The intrinsic anomalous Hall

conductivity is given by [15]

σab =
e2

ℏ

∫
ddk

(2π)d

∑
n

F ab
n (k⃗)f(ϵn(k⃗)), (2.9)

where ϵn(k⃗) is the electronic energy, f(ϵ) is the Fermi-Dirac distribution,

and F ab
n is the Berry curvature. Because the Weyl nodes are a source or sink

of a Berry curvature, Weyl semimetal exhibits the AHE.

For example, let us consider a model with two Weyl nodes. We choose

a Hamiltonian like [16].

H =[2tx(cos kx − cos k0) +m(2− cos ky − cos kz)]σx

+ 2ty sin kyσy + 2tz sin kzσz. (2.10)

9



Figure 2.1: The schematics of the chiral anomaly in Weyl semimetal

This models includes a pair of Weyl nodes at ±k⃗W = ±(k0, 0, 0). If we

assume the half-filling, the Weyl nodes are exactly at the Fermi level. By

fixing kx, we think Hkx(ky, kz) as a 2-dimensional band structure, which

are all gapped whenever kx ̸= ±kW . Therefore, the Chern number of each

2D plane can be calculated. When kx ∈ (−k0, k0), C = 1, and otherwise,

C = 0. Hence, by using the formula in Eq. 2.9, we find that

σyz =
e2

2πh
(2k0). (2.11)

Note that the anomalous Hall conductivity is proportional to the distance

between the pair of Weyl nodes.

Meanwhile, the chiral anomaly is the violence of the preservation of

chiral currents under electromagnetic fields. This occurs because the Weyl

nodes have chiral zeroth Landau levels. (See Fig. 2.1.) Introducing the mag-

netic field along z-direction to Eq. 2.1, one easily obtains the nth Landau
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levels of Weyl fermions are [17]

En(kz) =∓ vkz(n = 0),

sgn(n)v
√
k2z + 2|n|eB(n ̸= 0). (2.12)

Introducing the electric field additionally, the chemical potentials of left-

handed to right-handed Weyl fermions become different. Hence, the number

of chiral charges is not conserved anymore. That is,

dnR/L

dt
= ± e2

h2
B⃗ · E⃗, (2.13)

This gives rise to the negative magnetoresistivity or positive magnetocon-

ductivity [18, 19].

σ(B) = σ0 +
e4

4π4G(ϵF )
B2τ, (2.14)

where G(ϵF ) is the density of states at the Fermi level, and τ is the inter-

node scattering time.

2.2 Physical models

This part introduces the models for the theoretical calculation of py-

rochlore iridates. There are two kinds of models. The first one is the Hub-

bard model which describes the itinerant electron systems. The second one

is the classical spin model which describes the localized spin systems.

2.2.1 Hubbard Model

When we theoretically calculate the conduction properties of pyrochlore

iridates, we use a Hubbard model. The Hubbard model is based on Ref. 5,

11



20,

H = H0 +HU +Hfd +HB +HZ (2.15)

where H0 is the hopping of Ir electrons, HU is the Hubbard repulsion for Ir

electrons, Hfd is the fd-exchange between rare-earth and Ir electrons, and

HB and HZ are the Zeeman effects for Ir and rare-earth, respectively. That

is,

H0 =
∑

⟨ab⟩,α,β

c†a,αvab(t1 + it2d⃗ab · σαβ)cb,β

+
∑

⟨⟨ab⟩⟩αβ

c†a,α(t
′
1 + i(t′2R⃗ab + t′3D⃗ab) · σαβ)cb,β,

HU =U
∑
a

na↑na↓,

Hfd =
∑

⟨ai⟩,µν

Λµν
ai σ

µ
a τ

ν
i ,

HB =
1

2

∑
a

c†a,α(B⃗ · σαβ)ca,β,

HZ =−
∑
i

γ(B⃗ · V⃗i)τ zi . (2.16)

Here, a, b are the Ir sublattice indices, i is the Nd sublattice index, d⃗ab
(R⃗ab, D⃗ab) are the (next-)nearest-neighbor DM vectors, σ are Pauli matrices

for Ir spins, α, β =↑, ↓ are indices for Pauli matrices, τ is the number for

rare-earth spins, µ, ν = x, y, z are the coordinate indices, ca,α is the annihi-

lation operator for Ir electrons, naα = c†a,αca,α is the number operator, vab
is the hopping parameter change by the strain, B⃗ is the magnetic field, V⃗i is

the local-z axis for rare-earth spins, and γ = 5 is the g-factor for rare-earth

spins. We explain the model in detail as follows. Note that we deal with

rare-earth spins as an Ising one.

We define the hopping parameters first. The hopping parameters are

12



from Ref. 5.

t1 =
130

243
toxy +

17

324
tσ − 79

243
tπ,

t2 =
28

243
toxy +

15

243
tσ − 40

243
tπ,

t′1 =
233

2916
t′σ − 407

2187
tπ,

t′2 =
1

1458
t′σ +

220

2187
tπ,

t′3 =
17

324
t′σ +

460

2187
tπ, (2.17)

where toxy is the hopping through oxygen ions, tσ(t′ma) is the hopping

through (next-)nearest-neighbor σ-bonding, and tπ(t′π) is the hopping through

(next-)nearest-neighbor π-bonding. In the most calculations, We use toxy =

1, tσ = −0.8, tπ = −2tσ/3.

We define the DM vectors here. The nearest-neighbor DM vectors are

d⃗ab =2f⃗ab × b⃗ab,

f⃗ab =
1

2
(r⃗a + r⃗b)− C⃗,

b⃗ab =r⃗b − r⃗a. (2.18)

Here, r⃗a is the a-th sublattice position, and C⃗ is the unit cell center position.

The next-nearest-neighbor DM vectors are

R⃗ab =b⃗ac × b⃗cb,

D⃗ab =d⃗ac × d⃗cb. (2.19)

Here, c means the common neighbor of a and b sublattices.

13



Next, we define the parameters in Hfd.

(Gx
1 a⃗i +Gx

2 a⃗i×̄d⃗ai×̄d⃗ai) · êµ(ν = x),

Λµν
ai = Gy (⃗ai×̄d⃗ai×̄d⃗ai]) · êµ(ν = y),

(Gz
1a⃗i +Gz

2a⃗i×̄d⃗ai×̄d⃗ai) · êµ(ν = z). (2.20)

×̄ is the symmetrized vector product, and a⃗i is the position of i sublattice.

The parameters we use here is Gx
1 = 0, Gx

2 = 0.01, Gy = −0.006, Gz
1 =

−0.06, G2z = −0.02.

Next, we define the hopping change vab. For a compressive strain on

[111] plane,

vab =1− δ, (ab = 12, 13, 14),

1 + δ, (ab = 23, 24, 34). (2.21)

Lastly, we use the Hartree-Fock mean-field theory on the Hubbard

model to calculate the ground state self-consistently.

HMF
U = −U(

∑
a

2⟨m⃗a⟩ · m⃗a − ⟨m⃗a⟩2) (2.22)

where m⃗a = 1
2

∑
αβ c

†
aασαβcaβ .

2.2.2 Spin Model

On the other hand, when we theoretically calculate the ground state

from the classical spin model of pyrochlore iridates. The spin model is given

by

H = Hex +HDM +Hani +Hfd +HB +HZ , (2.23)

14



where Hex is the exchange interaction, HDM is the DM interaction, Hani

is the anisotropic interaction, Hfd is the fd-exchange between Ir and Nd

spins, andHB andHZ are the Zeeman interaction of Ir and rare-earth spins.

Hex =
∑

⟨ab⟩,⟨⟨ab⟩⟩

JabS⃗a · S⃗b,

HDM =
∑

⟨ab⟩,⟨⟨ab⟩⟩

D⃗ab · S⃗a × S⃗b,

Hani =
∑

⟨ab⟩,⟨⟨ab⟩⟩

Γµν
ab S

µ
aS

ν
b ,

Hfd =JK
∑
⟨ai⟩

Λµν
ai S

µ
a τ

ν
i ,

HB =− h⃗ ·
∑
a

S⃗a,

HZ =− γ
∑
i

(⃗h · V⃗i)τ zi , (2.24)

Note that JK = 0(1) for the absence (existence) of the rare-earth spins.

γ = 5 is the relative g-factor of rare-earth spins to Ir spins. h⃗ is the magnetic

field. Λµν
ai is defined in Eq. 2.20. V⃗i is the local-z axis for the rare-earth i

sublattice. S⃗i is the Ir spin, and τ⃗i is the rare-earth spin. We deal with the

spins as a number, not an operator since this is the classical theory.

The other parameters we use here are obtained from the perturbation

theory of the Hubbard model. The second order perturbation gives

Jab =
4

U
(t2ab −

d2ab
3

),

D⃗ab =
4

U
(2tabd⃗ab),

Γµν
ab =

4

U
(2dµabd

ν
ab − δµν

d2ab
3

), (2.25)
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where d⃗ab is the DM vector, and tab is the hopping strength between a and

b sublattices.

2.3 Cluster Magnetic Multipole

For the systematic approach to the magnetic order, we use the concept

of cluster multipoles [7, 8]. In the magnetic unit cell, the spin cluster is

defined as the set of atoms connected by the symmorphic crystalline sym-

metries. The cluster multipoles of ath order are defined as

Mab =

Nc∑
i=1

m⃗i · P⃗ab(r⃗i), (2.26)

where

P⃗ab(r⃗i) =

√
4π

2a+ 1
∇(raY ∗

ab(θi, ϕi)) (2.27)

Here, Nc is the number of atoms in the spin cluster, r⃗i is the position of

ith atom, Yab(θi, ϕi) is the spherical harmonics, m⃗i is the magnetic moment

at ith atom, and b ∈ [−a, a] is the magnetic quantum number. The cluster

toroidal multipoles can also be defined as follows.

Tab =
1

a+ 1

Nc∑
i=1

(r⃗i × m⃗i) · P⃗ab(r⃗i). (2.28)

Note that cluster multipoles are related to the responses to the magnetic

field, while cluster toroidal multipoles are related to the responses to both

electric and magnetic fields. Since this dissertation considers the response

under the magnetic field, only the cluster multipoles of pyrochlore lattices

are described below.

The magnetic unit cell of pyrochlore iridates is a tetrahedron [21]. The

point group of the tetrahedron is the Td group, which has threefold rota-
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Figure 2.2: The cluster multipoles in pyrochlore iridates. (a) Dipoles, (b)
Octupoles, and (c) Dotriacontapoles (32-poles).

tions C3, twofold rotations C2, fourfold roto-inversions S4, and diagonal

mirrors σd. Accordingly, Td group has five distinct irreducible represen-

tations: A1, A2, E, T1, and T2. By projecting the general spin configura-

tion of pyrochlore lattices, we find a total of 12 kinds of cluster multipoles

that form the bases of irreducible representations. The results are shown in

Fig. 2.2. Pyrochlore lattices have T1-dipoles, an A2-octupole, T1-octupoles,

T2-octupoles,E-dotriacontapoles. The dipoles are the ferromagnetic orders,

the A2-octupole is the AIAO order, T1-octupoles are antiferromagnetic or-

ders related to the spin ice, T2-octupoles are the Palmer-Chalker phase,

and E-dotriacontapoles are the local-XY phase. Note that in the viewpoint

of cluster toroidal multipoles, T2-octupoles and E-dotriacontapoles are the

toroidal quadrupoles.

Lastly, we leave here the equation describing each magnetic multipole.

m⃗i = (mix,miy,miz) denote the magnetic moment at ith atoms. T1-dipoles
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are

Mx =
1

4
(m1x +m2x +m3x +m4x),

My =
1

4
(m1y +m2y +m3y +m4y),

Mz =
1

4
(m1z +m2z +m3z +m4z). (2.29)

The A2-octupole is

A2 =
1

4
√
3
(m1x +m1y +m1z +m2x −m2y −m2z

−m3x +m3y −m3z −m4x −m4y +m4z). (2.30)

The T1-octupoles are

T1x =
1

4
√
2
(−m1y −m1z +m2y +m2z +m3y −m3z

−m4y +m4z),

T1y =
1

4
√
2
(−m1x −m1z +m2x −m2z +m3x +m3z

−m4x +m4z),

T1z =
1

4
√
2
(−m1x −m1y +m2x −m2y −m3x +m3y

+m4x +m4y). (2.31)
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The T2-octupoles are

T2x =
1

4
√
2
(−m1y +m1z +m2y −m2z +m3y +m3z

−m4y −m4z),

T2y =
1

4
√
2
(m1x −m1z −m2x −m2z −m3x +m3z

+m4x +m4z),

T2z =
1

4
√
2
(−m1x +m1y +m2x +m2y −m3x −m3y

+m4x −m4y). (2.32)

The E-dotriacontapoles are

E1 =
1

4
√
6
(m1x +m1y − 2m1z +m2x −m2y + 2m2z

−m3x +m3y + 2m3z −m4x −m4y − 2m4z),

E2 =
1

4
√
2
(m1x −m1y +m2x +m2y −m3x −m3y

−m4x +m4y). (2.33)
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Chapter 3

Part I: Magnetic field-induced topological
semimetals in pyrochlore iridates

3.1 Diversity of topological phases in (NdxPr1−x)2Ir2O7

single crystals

3.1.1 Introduction

The pyrochlore iridates R2Ir2O7 are composed of corner-sharing tetra-

hedrons of rare-earth R and Ir ions. Since the lattice is a geometrically frus-

trated lattice, pyrochlore iridates are a fertile playground for exotic elec-

tromagnetic states [1, 2, 22, 23]. The angle-resolved photoemission spec-

troscopy shows that Pr2Ir2O7 is a paramagnetic semimetal with a quadratic

band crossing at Γ point [6]. This is an essential ingredient for diverse topo-

logical phases. For example, the antiferromagnetic all-in-all-out (AIAO)

magnetic order breaks time-reversal symmetry and lifts the band degen-

eracy, giving rise to linearly dispersed Weyl nodes in three dimensions.

Here, we terms Weyl semimetal (WSM (4/0)) [2, 4, 24]. Another unconven-

tional electronic states are comprehensively discussed with different mag-

netic configurations [20, 25–27]. By the uniaxial magnetic anisotropy along

[111] or equivalent directions, various magnetic configurations can be gained

under the interplay between exchange interactions and external magnetic

field [28]. When a magnetic field applied along H ∥ [001] (H ∥ [111]) is

stronger than the exchange interaction, AIAO turns into two (three) mag-

netic moments direct inwards and the other two (one) direct outwards of the

unit cell, forming 2/2 (3/1) configuration.

Another key factor is the electron bandwidth, demonstrating the inverse
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of the effective electron correlation (U ) [29]. One can tune the bandwidth

by applying hydrostatic pressure [30, 31] or substituting R site [3, 32] that

can prompt metal-insulator transition (MIT). The Pr compound is a param-

agnetic semimetal down to 120mK [33], while the paramagnetic or antifer-

romagnetic AIAO insulator appears with smaller R ionic radius [34–36], ap-

parently similar to the correlation-induced MIT as observed for 3d-electron

systems [31, 37, 38]. At the point of quantum MIT (between R=Nd and

Pr), nevertheless, the unconventional magneto-transport was reported, such

as anomalous Hall effect![39, 40], metallic AIAO domain walls [41, 42],

and field-induced MIT [20, 27]. This may be related to the predicted topo-

logical phases in the system. The quantum MIT including such correlated

topological phases may build an ideal stage of a novel quantum critical-

ity [43, 44], but has been little explored up to now. To address this subject,

we systematically measure magneto-transport on R=Nd and R=Nd0.5Pr0.5
compounds under external hydrostatic pressures (P ) and magnetic fields

(H). This makes us delicately tune the effective bandwidth and magnetic

configuration. We reveal a variety of topological phases as a function of

bandwidth and a magnetic field near the quantum critical point.

3.1.2 Electromagnetic phase diagram for pyrochlore
iridates.

We present the temperature dependence of resistivity under several

pressures in Fig. 3.1d–h. The resistivity at ambient pressure increases ex-

tremely below TN = 22 K, which shows the recent improvement of sam-

ple quality. The transition temperature systematically lowers with increasing

pressure as in previous studies [30, 31]. Figure 3.1i displays the temperature

dependence of longitudinal resistivity for x = 0.5 (R=Nd1−xPrx). This also

shows a sharp increase below 4K. We plot the TN as a function of pressure

P and the portion of Pr x in Fig. 3.1j. We use the empirical equation be-
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Figure 3.1: Schematics of magnetic configuration for (a) all-in-all-out, (b)
2-in-2-out, and (c) 3-in-1-out states, respectively. Temperature dependence
of longitudinal resistivity for R=Nd (x = 0) at (d) 0 GPa, (e) 1.0 GPa,
(f) 1.4 GPa, (g) 1.8 GPa, (h) 2.2 GPa and (i) x = 0.5 for R=Nd1−xPrx
(effectively 3.3 GPa), respectively. The black lines denote the resistivity of
the trained state that the magnetic domain wall contribution is eliminated.
The blue lines denote the resistivity under H ∥ [111] of 14 T and the red
ones denote the resistivity under H ∥ [001]. (j) The change in MIT temper-
ature as a function of pressure (bottom axis) and the portion of Pr x (top
axis). ∆x = 0.1 effectively corresponds to ∆P = 0.65 GPa. The circles
are the MIT temperature for x = 0, the triangles are that for x = 0.5, and
the square is that for x = 1.

tween the chemical and physical pressures [31] that ∆x=0.1 corresponds to

the pressure change ∆P = 0.65 GPa. From now on, we consider x = 0.5

equivalent to the application of P = 3.3 GPa on x = 0. Since the TN is al-

most linearly decreased as pressure increases, we can explore a wide range

of effective bandwidths. Note that the AIAO insulator stands up to P = 5.0

GPa (P = 1.7 GPa on the x = 0.5). The strength of the insulating phase

is also previously reported.

23



3.1.3 Anomalous magneto-transport near MIT.

Figure 3.1d–i also display the longitudinal resistivity under H ∥ [001]

and [111] of 14 T . For H ∥ [001], while the resistivity slightly decreases

by the magnetic field at ambient pressure, the extreme increase of the re-

sistivity below TN is suppressed about P ≥ 1.0 GPa. This means that the

systematic application of pressure makes the system critical where various

electromagnetic phases compete with each other strongly, as the colossal

magnetoresistance in perovskite manganites [45]. Similarly, the large mag-

netoresistance was reported even at ambient pressure [20, 27]. This can be

attributed to the off-stoichiometry of the crystal. The iridium deficiency, for

example, changes the band filling and effectively pushes the system forward

to criticality. On the other hand, the applied magnetic field H ∥ [111] in-

duces different magnetotransport properties from H ∥ [001]. The resistivity

begins to rise gradually above TN and reaches a plateau at the lower temper-

ature. The observed magnetotransport for each field direction is ascribed to

the emergence of a novel electronic state induced byH ∥ [001] (H ∥ [111]),

which tunes AIAO to the 2/2 (3/1) configuration in R 4f moments as shown

in Fig. 3.1b,c. The saturated magnetization forH ∥ [001] (H ∥ [111]) agrees

well with the predicted values in 2/2 (3/1) state. In Nd2Zr2O7 without d-

electrons, where the Nd spins form AIAO order at zero field, also shows 2/2

or 3/1 order under magnetic field [46]. Furthermore, for x = 0.5, the specific

heat peak divided by temperature (CV /T ) moves to a higher temperature,

with broadening when we increase H ∥ [001] (H ∥ [111]). These features

implies that the increasing H ∥ [001] (H ∥ [111]) induces the 2/2 (3/1) type

magnetic order even at T > TN [47, 48]. Because of the coupling between

4f and 5d moments, the magnetic configuration of 5d moments is linked to

that of 4f ones, leading to the observed magnetotransport. Also, note that

in this experiment, the chiral anomaly effect was removed by applying the

magnetic field perpendicular to the current. Chiral anomaly is the negative
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Figure 3.2: Magnetotransport of (Nd1−xPrx)2Ir2O7 at different pressures.
Magnetic field dependence of longitudinal resistivity (a–e) and Hall conduc-
tivity (f–j) for H ∥ [001] at (a,f) 1.0 GPa, (b,g) 1.4 GPa, (c,h) 1.8 GPa,
(d,i) 2.2 GPa and (e,j) 3.3 GPa (x = 0.5), respectively. Magnetic field
dependence of longitudinal resistivity (k–o) and Hall conductivity (p–t) for
H ∥ [111] at (k,p) 1.0 GPa, (l,q) 1.4 GPa, (m,r) 1.8 GPa, (n,s) 2.2 GPa
and (o,t) 3.3 GPa (x = 0.5), respectively. The solid (dotted) lines are the
resistivity on increasing (decreasing) field sweep, indicated by black arrows.

magnetoresistance induced in WSM materials when the magnetic field is

applied parallel to electric current [49]. Thus, the anisotropic magnetore-

sistance observed here can only be attributed to the magnetic configuration

change.
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3.1.4 Magnetotransport properties for H ∥ [001].

The H-dependence of longitudinal resistivity for H ∥ [001] at various

pressures is shown in the top panels of Fig. . The sharp decrease of longi-

tudinal resistivity is followed by a hysteresis between field-increasing and

field-decreasing sweeps below TN , as observed in previous reports [20, 27].

The Hall conductivity in Fig. f–j provides intuitions into the observed field-

induced MIT. When T > TN , the Hall conductivity is proportional to

the magnetic field, which is the normal Hall effect. On the contrary, when

T < TN , the Hall conductivity shows non-monotonous field dependence.

It almost vanishes at low magnetic fields, suddenly rises up at intermediate

fields, and eventually decreases towards negative at high fields. This feature

is more evident at the low temperature. A sign change of Hall response also

appears in the Nd2Ir2O7 poly-crystals [40]. The complex behavior of the

Hall response cannot be explained by either the normal or anomalous Hall

resistivity [15]. The contour plots of the longitudinal and Hall conductivity

as a function of temperature and magnetic field for H ∥ [001] at several

pressures are exhibited in Fig. 3.3a–j.

Generally, the Hall conductivity depends on the relaxation time. For

instance, the zero Hall conductivity at low fields implies the localization

of electrons, in agreement with the large value of longitudinal resistivity

(ρxx=410 mΩcm). On the other hand, the Hall conductivity at high fields de-

creases towards negative, while the longitudinal resistivity saturates around

ρxx(B)=0.4 mΩcm (Fig. 3.1.4a–e). One possible candidate for the elec-

tronic phase is the topological semimetal in the 2/2 spin configuration. This

phase, which we dubbed line node semimetal (LSM), has a nodal line in the

kz = 0 plane and two Weyl points on the kz axis as presented in Fig. 3.4b.

Next, the major result of Hall conductivity presented here is a large sig-

nal with a positive sign in intermediate fields. When the field increases, the

Hall conductivity shows a drastic change including a sign reversal. This
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Figure 3.3: Contour plot of conductivity and Hall conductivity under various
pressures. (a,f,k,p) 1.0 GPa, (b,g,l,q) 1.4 GPa, (c,h,m,r) 1.8 GPa, (d,i,n,s)
2.2 GPa, and (e,j,o,t) 3.3 GPa. (a-j) H ∥ [001], and (k-t) H ∥ [111].

can be explained by the phase transition between the 4/0 WSM (Fig. 3.4a)

and 2/2 LSM (Fig. 3.4b). We schematically show the phase transition in

Fig. 3.4d,f. Since 4/0 WSM and 2/2 LSM have distinct Fermi surface topol-

ogy, the phase transition requires a crucial modulation of the energy band

near the Fermi level. The modulation is accompanied by the emergence of

electron/hole pockets, which can change the Hall conductivity drastically.

The competition of the normal and anomalous Hall conductivities are theo-

retically calculated, which illustrates the non-monotonic field dependence.

We show the calculation in Ref. 9.

In contour plots of longitudinal and Hall conductivities in Fig. 3.3a–j,
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we can reveal the characteristic relation between the MIT and Hall conduc-

tivity for H ∥ [001]. Both longitudinal and Hall conductivities are small

in a low-field and low-temperature region, where the phase is AIAO insu-

lating. When the field increases, the Hall conductivity drastically changes

with a sign reversal. This can be attributed to the phase transition between

the WSM and LSM, as shown in Fig. 3.4d,f. Previously, the WSM phase

was theoretically predicted to exist in a very narrow temperature region at

zero field [4, 24], and thus would be difficult to observe the phase by opti-

cal [50] and angle-resolved photoemission spectroscopy [51]. Interestingly,

the WSM phase is extended by H ∥ [001], which deforms the regular 4/0

spin configuration. Moreover, on increasing pressure, both AIAO insulating

and WSM phases shrink, while the LSM phase expands toward zero tem-

perature and zero fields. The diverse competing phases come close to each

other in free energy and merge at the quantum critical point, such as an-

tiferromagnetic Mott insulator, a paramagnetic semimetal, the topological

pseudo-4/0 WSM, and 2/2 LSM.

3.1.5 Unconventional semimetal phases in H ∥ [111].

Let us consider the magnetotransport for H ∥ [111] now, shown in

Fig. 3.1.4k–t. Right above TN , the resistivity is greatly increased by the

magnetic field, while the Hall conductivity exhibits a sharp upturn and flips

its sign in a higher field (Fig. 3.1.4p–t). There is a report for paramagnetic

Pr2Ir2O7 that shows similar magnetotransport properties at a much lower

temperature (T = 30 mK) [52]. Below TN , when temperature decreases,

a sharp dip is observed around H = 3 T in longitudinal resistivity, which

comes from the emergence of metallic domain walls [41, 42]. Remarkably,

the longitudinal resistivity shows the unique H dependence followed by a

hysteresis between field-increasing and -decreasing sweeps. It is conspicu-

ous at T = 9 K and P = 1.0 GPa as shown in Fig. 3.1.4k. Furthermore,
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Figure 3.4: Schematic band structures of (a) WSM (4/0) with small H , (b)
LSM (2/2) with H ∥ [001], (c) WSM (3/1) with H ∥ [111]. The schematic
phase diagram near quantum critical points (d-e) as a function of U and H ,
and (f-g) as a function of T and H . (d,f) H ∥ [001], and (e,g) H ∥ [111].

the longitudinal resistivity saturates around ρxx ≈7 mΩcm above H = 9 T

where the hysteresis loop ends. This indicates the transition from the 4/0 to

the 3/1 magnetic configuration. To observe the evolution of the respective

phases, we present the contour plot of longitudinal and Hall conductivities

in Fig. 3.3k–t and the schematic phase diagrams in Fig. 3.4e,g. The con-

ductivity is quite small in the high field where the Hall conductivity has a

positive sign. This can be attributed to the emergence of the new semimetal

phase with the 3/1 magnetic state.

To reveal the electronic energy band in the 3/1 magnetic configuration,
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we perform a mean-field calculation. The method for the calculation is in

Ref. 9. The outstanding feature in the 3/1 configuration is that only one

trigonal axis parallels to H ∥ [111] exists. This is in contrast to the 4/0

configuration with four trigonal axes. Note that a pair of Weyl nodes are

always lying on one of the four trigonal axes in the AIAO configuration.

Because each pair of Weyl nodes is confined on a one-dimensional line,

pair-annihilation easily occurs at the Brillouin zone boundary when the pair

separation increases. In the 3/1 configuration, on the other hand, threefold

rotation symmetry breaking allows six Weyl nodes to deviate away from the

original one-dimensional subspace. Instead, they move in a two-dimensional

mirror plane. The remaining two Weyl nodes on [111] are still confined,

but their pair-annihilation gives rise to another WSM with six Weyl points

(WSM (3/1)) as described in Fig. 3.4c. When the point nodes move in the

two-dimensional plane, it is less likely to collide with the other pair than

those moving in a one-dimensional line. Thus, WSM (3/1) has more stability

than WSM (4/0) and covers a larger area in the phase diagram. WSM (3/1)

phase survives intensively in any H range, while it is stable only within a

finite U range.

We suggest a variety of topological phases can emerge as a function of

bandwidth or electronic correlation by combining the systematic approach

to transport with the theoretical calculations, as shown in Fig. 3.4d–f. An

important point is that all topological states merge towards the quantum

critical point. In the next section, we theoretically analyze the field-induced

topological states near the quantum critical point.
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3.2 Magnetic field-induced topological phases in py-
rochlore iridates

3.2.1 Introduction

Spin-orbit coupling and electronic correlation are two ultimate con-

stituents underlying enormous emergent physical phenomena in condensed

matter systems [1, 53]. Particularly, when these two energies are comparable

to the electronic bandwidth, diverse correlated phases with new topological

properties are predicted to appear generally [2, 49, 54–56]. Pyrochlore iri-

dates whose chemical formula is R2Ir2O7 (R: a rare-earth ion; see Fig. 3.5(a))

are an archetype showing such correlated topological properties that can

possibly host various enthralling electronic states [1, 53]. In the paramag-

netic metal (PM) phase, these materials are predicted to have a quadratic

band crossing (QBC). There are doubly degenerate hole-like and electron-

like bands touching at the Γ point [5]. Recently, in Pr2Ir2O7 [6] an ARPES

approach finds electron dispersion which accords to QBC. When a magnetic

phase transition takes place below T < TN , various interesting electronic

states show up through the QBC. For example, it is predicted theoretically

that an antiferromagnetic (AF) Weyl semimetal (WSM) phase exist between

a PM and an AF insulator (AFI) where all-in all-out (AIAO) magnetic order,

as shown in Figs. 3.5(b) and 3.5(c) [2, 4, 5, 21, 34].

Nevertheless, in the real world, the WSM phase only comes out in an

infinitesimal window at the boundary between PM and AFI. The only ex-

ception is the case Pr2Ir2O7 where the PM prevails down to a few mK.

However, by mixing R sites with Pr and Nd ions or applying physical pres-

sure, TN is systematically controllable, and the system approaches the quan-

tum critical point (QCP). Near the QCP, a ground state of semimetal with

AF ordering may be obtainable [9]. Fascinatingly, in systems near QCP,

anomalous transports are observed, such as metallic magnetic domain walls,

anomalous Hall effect, and magnetic field induced metal-insulator transi-
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Figure 3.5: (a) The lattice structure of pyrochlore iridates. (Red: rare-earth,
blue: iridium) (b) Schematics of all-in-all-out (AIAO) magnetic ordering.
(c) Positions of Weyl nodes relevant to AIAO ordering.

tions [20, 25, 27, 39–42, 52, 57]. Especially, in the previous section, we

discussed that the systematically tuned (Nd1−xPrx )2Ir2O7 under pressure

reach the QCP, and the unusual magneto-transport properties were found

therein. We associated those properties with topological semimetals under

a magnetic field emerging near QCP. [9]. By combining previous experi-

mental and theoretical reports, we summarize the schematic phase diagram

shown in Fig. 3.6. This implies that the magnetic field in the system near the

QCP guarantees to produce various topological semimetals carrying point

and line nodes.

The main purpose of this section is to arrange a general theoretical

structure to understand the magnetic field-induced topological semimetals

near the QCP of pyrochlore iridates. To discuss this issue, we set up the

PM phase with QBC, and approach the QCP by including the magnetic
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field and AIAO order. The QBC at the Γ point can be considered as the

fourfold degenerate states of the total angular momentum J = 3/2. Be-

cause of the large J = 3/2 with strong spin-orbit coupling, a nontrivial

Zeeman coupling comes out. The Zeeman field H generates an unconven-

tional anisotropic Zeeman coupling (∝ H⃗ · J⃗3) in addition to the usual

isotropic Zeeman coupling (∝ H⃗ · J⃗). Moreover, the AIAO order plays a

role as an additional magnetic energy scale. Because the exchange energy

of AIAO ordering and the two different Zeeman couplings are comparable

near the QCP, the energy competition creates a number of novel topological

semimetal phases in accordance with the low-energy theory. Considering the

microscopic degrees of freedom in the lattice, we prove that the transaction

between three distinct magnetic energy scales can be compactly depicted

by magnetic multipole moments (MMMs) of the spin clusters in the unit

cell. Magnetic field-induced tune of MMMs in the unit cell and its coupling

to the degenerate states at QBC lie at the most essential part of emergent

topological semimetals of pyrochlore iridates near the QCP.

3.2.2 Quadratic band crossing and AIAO ordering

Figure 3.7(a) shows the QBC in the PM phase [4–6, 58]. Since each

energy band is doubly degenerate by the time-reversal and inversion sym-

metries, the Γ point has fourfold degeneracy. The fourfold degeneracy is

considered to carry the total angular momentum J = 3/2. The low-energy

physics of the QBC can be effectively expressed by the Luttinger Hamilto-

nian [59],

H0(k⃗) = ϵ0(k⃗) +

5∑
i=1

di(k⃗)Γi, (3.1)

where ϵ0(k) = k2/2m and Γi are the 4 × 4 matrices obeying the Clifford

algebra {i, j} = 2δij (i, j = 1 − 5). A complete set of Hermitian 4 × 4
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Figure 3.6: A schematic phase diagram near QCP which summarizes the
previous section, as a function of electronic correlation U , temperature T ,
and magnetic field h for a given electronic bandwidth.

matrices is established by defining 10 Hermitian matrices as Γij = [i, j]/2i

and the identity matrix. The function d1−5(k⃗) is d-orbital like second order

polynomials.

When the AIAO order develops in Ir spins below TN , the QBC is bro-

ken into 4 pairs of Weyl nodes (WNs). Each pair is confined at the lines

along threefold rotational axes [4]. The WSM with 4 pairs of WPs can be

expressed by adding HAIAO = −αΓ45 to Eq. 3.1. Note that α ∝ UmAIAO

whereU is the local Coulomb repulsion andmAIAO represents the magnetic

moment magnitude at each site of the AIAO order. The distance between

each WN pair is proportional to
√
|α|. Hence, when α > αc for some crit-
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Figure 3.7: (a) The quadratic band crossing (QBC). (b) The energy level
splitting of J = 3/2 eigenstates by isotropic and anisotropic Zeeman terms.

ical value, WN pairs reach the Brillouin zone boundary and pair-annihilate

at L points, and the system becomes a trivial insulator. Previous study [5]

showed that WN pair creation at Γ point and annihilation at L points finish

only within 1 % change of U/t, where t is the nearest-neighbor hopping.

Accordingly, the WSM phase emerges in a very small region of the phase

diagram, so it is very hard to achieve WSM in experiments.

3.2.3 Topological semimetals induced by Zeeman field

Let us now consider that a magnetic field is applied to the semimetal

with QBC. The external Zeeman field H⃗ applied for QBC gives the follow-
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Figure 3.8: (a) Energy levels of J = 3/2 states as a function of θ =
tan−1(β2/β1), and the associated phase diagram. DWSM (LSM) denotes
a pair of double Weyl nodes (a nodal line with a pair of Weyl nodes). (b)
Positions of point/line nodes in DWSM and LSM.

ing terms,

HB = −β1B⃗ · J⃗ − β2B⃗ · J⃗3, (3.2)

where J⃗ = (Jx, Jy, Jz), J⃗3 = (J3
x , J

3
y , J

3
z ), and B⃗(H⃗, M⃗ , ...) is the ef-

fective Zeeman field as a function of H and the magnetization M⃗ . β1 and

β2 determine the weight of isotropic and anisotropic Zeeman couplings, re-

spectively. The anisotropic Zeeman coupling with J⃗3 appears because of

spin-orbit coupling and the large J = 3/2. Usually, the anisotropic Zeeman

term is proportional to spin-orbit coupling and negligibly contributes to Zee-
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man splitting [60, 61]. Nonetheless, in pyrochlore iridates, the anisotropic

Zeeman term is large enough to control the energy splitting at the Γ point

can be controlled.

Generally, the isotropic Zeeman term breaks the degenerate eigenstates

at the Γ point into different energy levels. The eigenstates are equally space,

as shown in Fig. 3.7(b). Thus, when β1 ̸= 0 and β2 = 0, a level crossing

between different Jz at the point does not occur by H⃗ . On the other hand,

when both the isotropic and anisotropic Zeeman terms exist at the same

time, the level crossing occurs between different Jz occurs, and the energy

sequence is rearranged by β2/β1 ≡ tan θ. Figure 3.8(a) presents the change

of energy levels at Γ as a function of θ under H⃗ ∥ [001]. The level cross-

ing appears at several angles θc, where phase transitions between different

topological semimetals occur. When H⃗ ∥ [001], a double Weyl semimetal

(DWSM) where a pair of WNs with the charge ±2 at the kz axis, or a line-

node semimetal (LSM) where a nodal line on the kz = 0 plane with a pair of

WNs with the charge ±1 at the kz axis appears. This is shown in Fig. 3.8(b).

On the other hand, when H⃗ ∥ [111], the system has a lower symmetry than

that under H⃗ ∥ [001], the band crossing occurs more simply. The detail is

shown in Ref. [10].

In real materials under the magnetic field, AIAO order and two Zeeman

terms exist at the same time. Then, the extended Luttinger model Hextended

≡ H0+HAIAO +HB can capture the most generic low-energy band struc-

ture. We obtain the general phase diagram in the two-dimensional (θ,ϕ)

plane because we have three distinct energy scales. Note that ϕ≡ tan−1(B/α)

is the measure of the relative strength of the Zeeman term to the AIAO or-

dering. Diverse novel topological semimetal arise by varying θ and ϕ, as

shown in Fig. 3.9(a)
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Figure 3.9: (a) The most general phase diagram under B ∥ [001] as a func-
tion of (θ, ϕ) from the extended Luttinger model. 4P WSM denotes a WSM
with four pairs of Weyl nodes, while 2P WSM indicates two pairs of Weyl
nodes. Two types of 2P WSM exist. The solid lines are the trajectory from
the mean-field lattice model when the magnetic field changes the spin ori-
entation in a unit cell. (b) Positions of Weyl nodes in T1/T2-2P WSM.

3.2.4 Lattice model and cluster magnetic multipole mo-
ments

Here we present a microscopic illustration of magnetic field-induced

topological semimetals. We adopt a tight-binding Hamiltonian H = H0 +

HU + HZ + Hfd, where HU = U
∑

i ni↑ni↓ is the on-site Hubbard re-
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pulsion, HZ =
∑

i,s c
†
i,s

(H⃗·σss′ )
2 ci,s indicates the Zeeman effect on Ir spins,

and Hfd is the coupling between Ir and Nd moments. c†i,s(ci,s) is the cre-

ation (annihilation) operator for electrons whose spin s =↑, ↓ on the ith site,

and ni,s = c†i,sc
i,s is the number operator. Here, each Ir ion has an effective

spin-1/2 described by the Pauli matrix σ. The hopping between Ir sites is

depicted by

H0 =
∑
ss′

[
∑
⟨ij⟩

c†i,s(t1 + it2d⃗ij · σ⃗ss′cj,s′)

+
∑
⟨⟨ij⟩⟩

c†i,s(t
′
1 + i{t′2R⃗ij + t′3D⃗ij} · σ⃗s,s′)cj,s] (3.3)

where t1(t′1) is the spinless nearest-neighbor (next-nearest-neighbor) hop-

ping, and t2(t′2,3) implies spinful nearest-neighbor (next-nearest-neighbor)

hopping. The hopping defined above includes both the oxygen-mediated

hopping toxy and the direct hopping between Ir ions [4, 5]. We apply mean-

field theory to the Hubbard repulsion, (HU ≈ HMF
U ). The local order

parameters adopted here are mα ≡ 1
2N

∑
k⟨c

†
α,s(k⃗)σ⃗s,s′cα,s′(k⃗)⟩ where

α = 1, 2, 3, 4 is the sublattice site in a unit cell. For Hfd, Nd moments

are considered classically. The detail is in Ref. [10].

Figure 3.10(a) shows the energy band of PM from H0. Just as the Lut-

tinger Hamiltonian described above, there is a QBC at the Γ point. We de-

pict the spin configurations of four degenerate wavefunctions at the QBC

in Fig. 3.10(a), to understand their nature. One interesting property of four

degenerate wavefunctions is that the wavefunctions carry cluster magnetic

multipole moments (CMMMs) intrinsically. Namely, the two states with

Jz = ±3/2 have dipolar moments whereas the other two states with Jz =

±1/2 have the linear combination of dipolar and octupolar moments. Be-

cause of this intrinsic CMMM, those four states can naturally couple to

magnetic orders.

The MMMs for a spin cluster were introduced in Ref. 7. Similar to the
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Figure 3.10: (a) Depiction of the eigenfunctions for the four degenerate
states at QBC which carry the linear combination of dipolar and octupo-
lar orders. (b) A general spin configuration under H⃗ ∥ [001] is divided into
magnetic multipolar components. (c) The amplitude change of each multi-
polar component as a function of rotational angle ζ. The spin configuration
in a unit cell is changed from AI to 2I2O under H⃗ ∥ [001].

multipole moments of an atom [62], one can define the rank-p MMM of a

given cluster µ as Mµ
pq =

√
4π

2p+1

∑Nc
i=1 m⃗i ·∇i(|Ri|pY ∗

pq(θi, ϕi)) where Nc

is the number of atoms in µ cluster, q ∈ [−p, p] is the magnetic quantum
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Figure 3.11: Phase diagrams from self-consistent mean-field calculations
under H ∥ [001]. For (a), Ir is an Ising spin, while for (b), Ir is a Heisenberg
spin. The brown (green) solid line in (a) [(b)] matches to the brown (green)
curve in Fig. 3.9(a) by the spin configuration. We use the projection matrix
in Eq. 3.5 to obtain α, β1 and β2 of extended Luttinger model.

number, (Ri,θi,ϕi) are the spherical coordinates of the ith atom, m⃗i is the

magnetic moment on atom i of µ cluster, and Ypq(θi, ϕi) is the spherical

harmonics of rank p. By summing for all clusters in the magnetic unit cell,

one acquires the p-th order of the CMMM.

We analyze the CMMM of a tetrahedral unit cell as the following.
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Since there are four atoms in the unit cell, we classify a total of 12 inde-

pendent spin degrees of freedom in a unit cell by using group theory. The

symmetrized spin configurations of CMMMs are considered as a basis. The

general spin configuration can be represented by the linear combination of

the basis. For example, the most general spin configuration under H⃗ ∥ [001]

in a unit cell satisfies the crystalline symmetry C2z and σdT . This can be

written as

|ψ⟩[001] = aD|D⟩+ aT1 |T1⟩+ aA2 |A2⟩, (3.4)

where |D⟩, |T1⟩, and |A2⟩ are the states having magnetic dipolar, T1-octupolar,

and A2-octupolar moments, and aD, aT1 , and aT2 are their amplitudes. (See

Fig. 3.10(b).) aD, aT1 , and aT2 varies continuously when spin configurations

are modulated, as shown in Fig. 3.10(c).

Now we illustrate how the intrinsic CMMMs of the QBC states couple

to the CMMM of magnetic order. In fact, the CMMM of a lattice system

and the three energy scales α, β1, β2 of the extended Luttinger model has

a close relation. The relation can be revealed when one project the effec-

tive Zeeman term in the lattice, HB = 1
2

∑
i,s B⃗eff,i · [c†i,sσ⃗s,s′ci,s′ ], to the

subspace spanned by the QBC wavefunctions. Here, the effective magnetic

field at sublattice i, B⃗eff,i, includes all interactions in the mean-field theory.

B⃗eff,i is decided self-consistently for given H⃗, U, Jfd and hopping parame-

ters. The projection operator is defined as P̂J =
∑

Jz
|Jz⟩⟨Jz|, where |Jz⟩

are the QBC states with Jz = ±3/2 and ±1/2, then

P̂JHBP̂J =MA2Γ45 + [
2

3
MD − 9

4
MT1 ] +MT1J

3
z . (3.5)

for H⃗ ∥ [001]. Here, MA2 , MD, MT1 denote the A2-octupole (or AIAO or-

der parameter), the magnetic dipole, and the T1-octupole each. It is notewor-

thy that MD and MT1 decide the relative strength between the isotropic and
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anisotropic Zeeman couplings. Because the linear combination of CMMMs

gives the three energy scales α, β1, and β2, diverse topological semimetals

expected in the extended Luttinger model can simply come out by changing

the spin configurations to control the CMMMs.

To describe this idea, we fix α, β1, and β2 by projecting the lattice

model for distinct spin orientation changes. We plotted the associated tra-

jectories in Fig. 3.9(a). The red (blue) line in Fig. 3.9(a) denotes the tra-

jectory of the process that spins in a unit cell continuously from the AIAO

configuration to the 2-in 2-out state by a magnetic field. For the distinct

spin orientation change processes, the CMMM and α, β1, and β2 change

differently, resulting in distinct trajectories and topological semimetals.

In real materials, the spin orientation change process under a mag-

netic field depends on the microscopic parameters like H,U , and Jfd in

self-consistent mean-field theory. Figure 3.11 shows two different phase

diagrams in the (H,U) plane from self-consistent calculations. Whether

Ir spins are considered as an Ising or a Heisenberg spin, we obtain dis-

parate topological phase diagrams. Although topological phase diagrams

are disparate, the origin of emergent topological semimetals can be under-

stood based on Fig. 3.9(a) for both cases. For instance, the projected mean-

field Hamiltonian along the brown (green) line in the left (right) panel in

Fig. 3.11 corresponds to the brown (green) trajectory in Fig. 3.9(a), mani-

festing the origin of topological semimetals. The emergence of diverse topo-

logical semi-metals can be well described by the QBC coupled to three dis-

tinct energy scales α, β1, and β2 in the extended Luttinger Hamiltonian.

So far, we consider only a Kramers Nd ion for fd-exchange coupling.

On the other hand, the role of the non-Kramers Pr ion should be also con-

sidered to apply our theory to (Nd1−xPrx )2Ir2O7. Because of the distinct

symmetries of Nd and Pr spins, the form of fd-exchange is also quite dis-

parate [62]. For example, the local in-plane components of the spin op-

erators are electric quadrupoles for Pr3+ while they are magnetic dipole-
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octupoles for Nd3+ [63]. As a result, Pr in-plane spins couple to Ir charge

density rather than Ir spin density [26]. Nevertheless, such a change in the

fd-exchange coupling can just modify the trajectory in the phase diagram

but not the phase diagram itself in Fig. 3.9. This can be apprehended by the

change of α,β1,β2 in our extended Luttinger Hamiltonian.

3.2.5 Conclusion

Near the QCP of pyrochlore iridates, the magnetic field-induced topo-

logical semimetals are appreciated through the energy band near the Γ point.

However, in systems far from the QCP, accidental band crossings away from

the Γ point might appear, which changes the total number of WNs. We deal

with this problem in Ref. [10].

The QBC near the Fermi level is the key factor for the magnetic field-

induced topological semimetals in Fig. 3.9(a). Hence, a broad class of mate-

rials carrying a similar low-energy band structure, like HgTe [64] or GdPtBi [58]

can show similar behavior. Yet, it is noteworthy that in pyrochlore iridates,

the non-coplanar magnetic order strengthens the anisotropic Zeeman term

in the effective Hamiltonian. This is because the anisotropic Zeeman term

depends on the cluster magnetic T1-octupolar moment, as shown in Eq. 3.5.

The conventional Zeeman term dominates over the anisotropic one in HgTe

and GdPtBi, because HgTe is paramagnetic and GdPtBi is collinearly anti-

ferromagnetic. Thus, for these materials, the eligible accessible topological

semimetal phases would be limited.

From now on, we discuss the effect of disorder on Fig. 3.9(a), since the

Pr doping imports the weak disorder effect in the system. All topological

semimetals in Fig. 3.9(a) create small electron or hole pockets surrounding

their nodal points or lines deviated away from the Fermi level since the

magnetic field breaks the crystalline symmetry. As it is well acknowledged

in conventional metals, the weak disorder is an irrelevant perturbation, and

44



the effect of the disorder is ignored. Although the Weyl points are located

exactly at the Fermi level, the weak disorder is still marginally irrelevant in

the renormalization group theory [43, 65–67]. The disorder effect in a nodal

line semimetal is more delicate [68]. Because the energy of a nodal line is

not at the Fermi level at the same time and small Fermi surfaces from Weyl

nodes exist, the weak disorder is irrelevant in the LSM phase as well. We

believe that what we propose remains true even with the weak disorder.

Lastly, we discuss the magnetic fluctuation near the QCP [44, 69]. It is

well known that the modest screening of the Coulomb interaction in QBC

induces non-Fermi liquid and unconventional magnetic quantum critical-

ity. However, the magnetic field breaks cubic lattice symmetry allowing the

system to have electron or hole pockets near the Fermi level. All topological

semimetals in Fig. 3.9(a) have a Fermi surface with nodal points or lines

near the Fermi level. In this case, the magnetic phase transition of the AIAO

order is expressed by the conventional Hertz-Millis type theory.
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Chapter 4

Part II: Strain-induced topological semimetals
in pyrochlore iridates

4.1 Domain wall-induced anomalous Hall Effect in py-
rochlore iridates

4.1.1 Introduction

The magnetic domain wall (DW) modifies the symmetry and magnetic

order, creating new topological properties [70–75]. The research on con-

ductive DWs in ferroelectric thin films helped to understand the fundamen-

tal mechanisms, and the DW-based device manufacture [70–73]. The DWs

of some ferromagnets show magnetic skyrmion-based topological Hall Ef-

fect [74, 75]. However, for DWs of antiferromagnets, topological properties

have never been observed. Theoretically, it was expected that the anomalous

Hall effect (AHE) can emerge from antiferromagnetic (AFM) DWs [76], but

only a few experimental attempts are performed.

After the Weyl semimetal is predicted to exist in AFM Y2Ir2O7 [2], the

family of pyrochlore iridates has captivated a great interest from the commu-

nity [1]. Especially, Nd2Ir2O7 (NIO) has been frequently studied because it

is close to the metal-insulator transition (MIT) [3, 77] and the DW is conduc-

tive [42]. Let us discuss the AFM spin configuration of NIO in detail. NIO is

composed of two distinct chains of tetrahedra, which are occupied by Ir and

Nd ions, respectively. (See Fig. 4.1(a).) All Ir spins in a tetrahedron point

inward, and all Ir spins in the neighboring tetrahedron point outward at the

same time. (This is not shown in the figure.) Thus, it is called all-in–all-out

(AIAO) ordering, which we denote as Ir:AIAO. Simultaneously, Nd spins in
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Figure 4.1: Schematics of domain wall structures in Nd2Ir2O7 thin films. (a)
When H = 0, Nd spins form AOAI. By fd-exchange, Ir spins form AIAO.
(b) When H ∥ [111], Nd spins become 3I1O by the Zeeman effect. Accord-
ingly, Ir spins become tilted AOAI through fd-exchange. (c) Schematics of
the AOAI / AIAO domain wall. (d) The enlarged part of the black box in (c).
The red arrows are the local magnetic moments. On the domain wall (purple
region), finite magnetization arises (purple arrows).

a tetrahedron that is adjacent to Ir one have a similar spin configuration that

is a time-reversal partner of AIAO. We denote it as Nd:AOAI. The physical

properties of pyrochlore iridates come from the intriguing magnetic orders

and coupling between two distinct sublattices [1–3, 25, 42, 63, 77].

When we apply an external magnetic field H , the domain switching
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between AIAO and AOAI occurs. Let us understand the DW formation pro-

cess during the domain switching in an NIO sample. Since Nd ions have a

stronger magnetic moment than Ir ones, the Zeeman energy of Nd is also

larger than that of Ir. When H ∥ [111] is applied and increases, Nd spins

are flipped and the order changes to a 3-in-1-out (3I1O) configuration [27].

When we increase H further, Nd spins can flip the Ir spins to form an AOAI

configuration through fd-exchange interaction. (See Fig. 4.2(b).) During

the spin-flip process, Ir:AIAO and Ir:AOAI exist simultaneously, so the DW

forms as shown in Fig. 4.1(c).

Here, we suggest that an NIO epitaxial thin film is an ideal playground

to realize antiferromagnetic DW-based topological responses. We assume

that the electronic energy band structure of Nd2Ir2O7 is similar to a Weyl

semimetal [2, 50]. The Weyl semimetal-like band structure gives rise to a

colossal DW conductance [27, 42]. If an NIO is composed of either AIAO

or AOAI domain solely, AHE is canceled out by the cubic symmetry of

the system [7, 78]. However, if DWs exist, twofold rotation symmetries are

broken, and magnetic moments near DWs give finite magnetization. Ac-

cordingly, a finite anomalous Hall conductivity arises in the plane made out

of highly conducting DW. To find DW-based unconventional magnetotrans-

port, we maximize the effect of DW by searching the low-dimensional NIO

thin films [79].

4.1.2 Experiments

4.1.2.1 Deposition of Nd2Ir2O7 thin films

Our experimental team prepares for the NIO (111) thin films on Y-

stabilized ZrO2 (YSZ) (111) substrates by pulsed laser deposition with a

post-annealing process. They illuminate an NIO polycrystalline target with

a KrF excimer laser with λ = 248 nm. Its laser fluence and frequency are

4.5 J/cm2 and 3 Hz each. The distance between the target and the substrate is
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Figure 4.2: (a) X-ray Diffraction data of Nd2Ir2O7 thin film (red lines) with
YSZ (111) substrate (black lines). (b) (222) diffraction pattern of Nd2Ir2O7

thin film. (c) Rocking curve of Nd2Ir2O7 and the YSZ substrate. (d) The
reciprocal map of Nd2Ir2O7 (662).

50 mm. Pyrochlore iridate thin films are infamously difficult to deposit since

the iridium is volatile [80–82]. Hence, to form the pyrochlore phase, high

oxygen pressure and temperature during the deposition process are compul-

sory [83]. During the deposition, since the IrO3 gas is prone to form and

evaporate, in-situ growth is notoriously difficult. They deposit stoichiomet-

ric amorphous Nd2Ir2O7 thin films at 600 oC firstly. After then, they post-

anneal the thin films in an electrical box furnace at 1000 oC for 1 hour [84].
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Figure 4.3: (a) The Nd2Ir2O7 thin film on YSZ (111) substrate is caught in a
STEM image from [21̄1̄] direction. Bright gray is for Nd2Ir2O7, while dark
gray is for the YSZ substrate. The fast Fourier transform of the red squares
(b) in Nd2Ir2O7 thin film and (c) in YSZ substrate.

The X-ray diffraction (XRD) θ − 2θ scans of the NIO thin film on

the YSZ substrate is shown in Fig. 4.2(a). In this figure, only peaks from

NIO (111) and YSZ (111) are present, implying that it is in a single phase,

Figure 4.2(b) presents the enlarged XRD peak near NIO (222). Figure 4.2(c)
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Figure 4.4: (a) The longitudinal resistivity ρxx of Nd2Ir2O7 single crystal
(blue dots) [27] and thin films (a red line) as a function of temperature T . (b)
The magnetoresistance (MR) of Nd2Ir2O7 thin film for diverse H ∥ [111]
from 0 to 14 T, as a function of temperature. TNd

N = 15 K and T Ir
N = 30

K indicates the ordering temperature of Nd and Ir magnetic moments. (c)
The Normalized MR values as a function of temperature show that the sign
change of derivative of MR occurs for H > 7 T at TNd

N . (d) Normalized
MR at 2 K under H ∥ [111] from a single crystal [27] (blue dots) and thin
films (a red line)

displays that the width of the rocking curve is ∼0.05o, which implies that

the NIO sample is highly crystalline. We map X-ray diffraction into the

reciprocal space to compare the in-plane lattice constant of NIO film with

that of YSZ substrate. Figure 4.2(d) offers the reciprocal map around the
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YSZ (662) and NIO (331) Bragg reflections. The Qx and Qz of the NIO

(662) Bragg peak are smaller than those of the YSZ (331) one. We determine

the lattice constants of NIO thin film to be a = b = 10.380 Å, that is similar

to those of NIO polycrystals (a = b = c = 10.375 Å). Accordingly, the

experimental team raises the NIO thin films with high structural quality.

4.1.2.2 Scanning transmission electron microscopy mea-
surements

We probe the micro-structure of our NIO thin films by scanning trans-

mission electron microscopy (STEM). Figure 4.3(a) displays a STEM im-

age of the NIO thin film on a YSZ (111) substrate from [21̄1̄] crystalline

direction. A blurry area near the interface of thin film and substrate comes

from the structural defects or the damage by the electron beam of STEM

measurements. We take the red box regions from NIO thin films and YSZ

substrates in Fig. 4.3 and perform fast Fourier transforms (FFTs). which are

in Figs. 4.3(b-c). The epitaxial relationship between NIO and the YSZ sub-

strate can be determined by NIO [111] ∥ YSZ [111] and Nd2Ir2O7 [011] ∥
YSZ [011].

4.1.2.3 Magnetotransport measurements

The dc magnetotransport properties are measured. During these mag-

netotransport measurements, the current is applied along [11̄0], and H is

applied along [111] that is perpendicular to the current. Figure 4.4(a) shows

that the NIO thin film displays a MIT near T Ir
N ∼ 30 K. However, ρ(2K)/

ρ(300K) ∼ 10 is much smaller than the single crystal value ρ(2K)/ρ(300K)

∼ 1000. Note that ρ(2K)/ρ(300K) in single crystals also varies in a vast

range of 10 − 1000 as well [51]. Therefore, the NIO thin films and single

crystals have similar sample quality [51].

NIO thin films are cooled down to 2 K without field, and the mag-

53



Figure 4.5: (a) Normalized MR under H ∥ [111] at diverse temperatures
from 2 to 40 K. (b) The asymmetric components of increasing sweep MR at
1.8 K (H > 0). Region (I) is where Ir is AIAO and Nd is AOAI, Region (II)
is where Ir is AIAO and Nd is 3I1O, and Region (III) is where Ir is AOAI
and Nd is 3I1O. The red (blue) and orange lines are the hysteresis of Ir (Nd)
domain switching and of the total, respectively. (c) The fit parameters a from
Eq. 4.2. Red circles (blue diamonds) are the hysteresis from Ir (Nd) domain
switching. (d) The temperature dependence of coercive fields of the Ir (red
circles) and Nd (blue diamonds) spins from MR data.

netoresistance is measured under H while T is raised up to 300 K. Fig-

ure 4.4(b) shows the change of resistance as a function of T under various

H ∥ [111] from 0 to 14 T. The magnitude of MR gets increases as the tem-

perature decreases. Figure 4.4(c) shows normalized MR curves as a function
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of temperature at various H values. The MR peaks appear at ∼ 15 K which

is close to TNd
N [34].

4.1.3 Antiferromagnetic domain switching

4.1.3.1 Magnetoresistance Hysteresis

Figure 4.4(d) exhibits the normalized MR curve as a function ofH at 2

K compared with that of the single crystal [27]. The normalized MR curve

of thin films exhibits a hysteresis with wider MR dips near ±3 T than that

of single crystals. Note that 3 T is near the coercive field HC of the single

crystal [27]. The dip structure comes from structural defects in the thin film

and the fixation of DWs on such defects. On the other hand, the hysteretic

behavior is the same as that of the single crystal (blue squares), implying

that it comes from the DW switching.

Hysteresis appears below 30 K = T Ir
N . In Fig. 4.5(a), we present nor-

malized MR curves under H ∥ [111] at diverse temperatures. The MR

changes its sign from positive to negative when the temperature decreases

near TNd
N ∼ 15 K [34]. (See Fig. 4(c).) The dip structures are easily seen

from 5 to 15 K, and nearHC = 3 T of single crystal as mentioned above [27].

It is already reported that the hysteresis comes from AFM domain switch-

ing. NIO thin film data can be also explained in terms of the AIAO and

AOAI domain switching.

4.1.3.2 Asymmetric analysis on hysteretic magnetore-
sistance curves

The asymmetric part of MR is known as containing magnetic domain

switching information [84, 85]. The asymmetric part of the normalized MR
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curves is defined as

MRAsym(H) =
ρxx(H)− ρxx(−H)

2ρxx(0)
(4.1)

Figure 4.5(b) exhibits the MRAsym(H) curve (black dots) at 1.8 K the in-

creasing field sweep from 0 to 30 T. Note that the MRAsym(H) curve has

a peak and a dip in sequence. Furthermore, MRAsym(H) changes its sign

around 3.0 T, which has never been observed in other magnetic materials.

By analyzing the asymmetric MR curve, we can get an intuition of

magnetic order and DW dynamics. In most ferroic materials, domain switch-

ing occurs at the coercive field HC . When the domain switching is widened

by fixing DWs to defects, asymmetric MR nearHC follows a Gaussian func-

tion [86, 87]. That is, by considering the asymmetry, we use

MRAsym,FIT (H) = a(e−b(H−Hc)2 − e−b(H+Hc)2). (4.2)

where a and b are arbitrary constants, which represent the magnitude and

width of the hysteresis, respectively.

However, the sign change in MRAsym(H) in Fig. 4.5(b) cannot be

explained by a single Gaussian function in Eq. 4.2. This means that the

hysteresis comes from the magnetic domain switching of both Ir and Nd

sublattices. Thus, we introduce two domain switching functions to fit the

experimental MRAsym(H) curves. We show the red (blue) line for Ir (Nd)

domain switching in Fig. 4.5(b). Both Ir and Nd spins play a role in magne-

totransport in our NIO thin films.

Here is the reason that the red line is related to Ir and the blue line is

related to Nd domain switching. To fit the MR, we use MRIr+MRNd. MRIr

(MRNd) is the red (blue) line calculated by Eq. 4.2 with a = aIr (a = aNd).

Figure 4.5(c) shows aIr and aNd as a function of temperature. When the

temperature decreases, aIr appears near T Ir
N , and aNd appears near TNd

N .
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Note that aIr > aNd for all available temperatures since the conduction of

NIO is dominated by the Ir-O network [1]. Hence, we conclude that both Ir

and Nd come together to determine the magnetotransport.

4.1.3.3 Domain switching caused by the fd-exchange

Figure 4.5(b) indicates that when H increases, Nd domain switching

occurs earlier than Ir one. According to this, we summarize the process of

domain switching as follows. First, when H turns on, the Ir-AIAO and Nd-

AOAI dominate. Second, as H increases, Nd spins flip but Ir spins do not

because of the Zeeman energy difference, Nd-3I1O and Ir-AIAO are formed

Lastly, at strong H , as Nd spins flip the Ir spins, Ir-AOAI domain is formed.

This switching process is in Fig. 4.1.

Figure 4.5(b) also implies that Ir and Nd spins are strongly coupled by

fd-exchange. We determine the coercive fields where each Ir and Nd spin

are switched by MRAsym(H) curve, Figure 4.5(d) shows the fitted values

for µ0HNd
c (blue diamonds) and µ0HIr

c (red circles). Nd spin switching is

absent for T > TNd
N . When T < TNd

N , on the other hand, HNd
c ∼ 2T ap-

pears. Ir-AIAO to AOAI domain switching appears when T < T Ir
N , around

HIr
C sim7 T at 20 K. When T < TNd

N , HIr
C decreases down to 3 T. The

colossal decrease of HIr
C around TNd

N can only be explained by two sublat-

tice systems and emphasizes the role of the fd-exchange interaction on Ir

domain switching.

4.1.4 Anomalous Hall Effect caused by antiferromag-
netic domain walls

4.1.4.1 AHEs observed in Nd2Ir2O7 thin films

We measure Hall resistivity ρxy of the NIO thin film under H ∥ [111]

Figure 4.6(a) shows the ρxy curves as a function of µ0H at various tem-

peratures. When T < T Ir
N = 30 K, a hysteretic behavior with a hump is
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observed, which differs from the conventional Hall effect. The behavior be-

comes more pronounced as T < TNd
N . In ferromagnetic DWs, the same

behavior has been observed, which is the topological Hall effect coming

from magnetic skyrmions [74, 75].

We present the anomalous part of ρxy (AHE) at 2 K as black circles in

Fig. 4.6(b). In the figure, the peaks appear ∼ 2–3 T, which is close to the

µ0H
Ir
c values from the previous section. That is, the DWs play an important

role in the AHE. Additionally, the experimental AHE saturates above 5 T,

implying that the AHE comes from other origins than DWs, like the scalar

spin chirality in the bulk. We hereafter denote the contribution to AHE from

scalar spin chirality and DW as bulk AHE and DW AHE, respectively.

4.1.4.2 Bulk anomalous Hall Effect: Scalar spin chi-
rality

The AHE in non-coplanar AFM is explained in terms of the scalar spin

chirality. If there are three spins S⃗i, S⃗j , and S⃗k, the scalar spin chirality is

defined as S⃗i · S⃗j × S⃗k [88], which is the solid angle subtended by the three

spins. The AHE comes from the fictitious magnetic flux coming from the

real space Berry phase which is proportional to the scalar spin chirality [15,

39, 89–94].

When the magnetic field is absent, both magnetization and scalar spin

chirality are zero inside NIO with a single domain. However, when Nd-3I1O

order and Ir-canted-AOAI are set in by a strong magnetic field as shown in

Fig. 4.1(b) both magnetization and scalar spin chirality arises and the bulk

NIO gives rise to the AHE. We here estimate ρxy values in such a case.

Ir-AOAI (AIAO) is canted by the Nd-3I1O (1I3O) through fd-exchange.

Therefore, Ir-AOAI generates scalar spin chirality which leads to a fictitious

magnetic field parallel to the magnetization [95]. Furthermore, Nd has much

larger magnetic moments (∼ 2.4 µ0B/Nd) than (∼ 0.2µ0B/Ir) [27]. Ir
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spins do not contribute to magnetization as much as Nd ones.

Since the AHE depends on the number of Nd-3I1O mostly, we will

focus on the Nd spin configuration. We quantify Nd-3I1O order by com-

puting the magnetization per unit cell. After then, we infer the bulk AHE

by the portion of the Nd-3I1O order. Let us consider the Hamiltonian that

describes a single Nd unit cell under H ∥ [111],

H = −J
∑
⟨ij⟩

S⃗i · S⃗j − µB⃗ ·
∑
i

S⃗i −KΦBxByBz (4.3)

where J is the exchange interaction, µ is the Nd magnetic moment strength,

B⃗ is a magnetic field, and K is the coupling of AIAO order to the field, and

Φ is the AIAO order parameter. Note that

Φ =
1

4
√
3
(S1x + S1y + S1z + S2x − S2y − S2z

− S3x + S3y − S3z − S4x − S4y + S4z). (4.4)

Here, since Nd spins have anisotropy, we consider Nd spin as an Ising one.

Then, the Nd spins are given by S⃗1 = σ1√
3
(1, 1, 1), S⃗2 =

σ2√
3
(1,−1,−1), S⃗3 =

σ3√
3
(−1, 1,−1), and S⃗4 = σ4√

3
(−1,−1, 1). (σi = ±1.) Then, Eq.4.3 be-

comes

H = −J
∑
⟨ij⟩

σiσj − µB⃗ ·
∑
i

S⃗i −KΦBxByBz (4.5)

When J > 0 and B⃗ = 0, the ground state is either AIAO (σi = 1,∀i) or

AOAI (σi = −1,∀i). Then, the partition function is given by

Z =
∑

σi=±1

exp(−βH), (4.6)
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Figure 4.6: (a) The Hall resistivity ρxy as a function of H under H ∥ [111]
at diverse temperatures. The black arrows are the sweep directions. (b)
Anomalous Hall resistivity, which is the total Hall subtracted by the nor-
mal Hall at 2 K. The black circles are the experimental data. The blue lines
are the bulk anomalous Hall Effect. The red circles are the domain wall Hall
Effect. (c) Anomalous Hall resistivity as a function of T and µ0H . Red cir-
cles are the coercive field HIr

c where Ir domain switching occurs according
to MR data.

and the expectation value of magnetization parallel to [111] is

⟨M⟩ = 1

Z

∑
σi=±1

(σ1 −
1

3
(σ2 + σ3 + σ4)) exp(−βH). (4.7)

We value the bulk AHE of NIO by assuming that the bulk AHE is

proportional to the Nd magnetization. All DWs disappear when H is suf-
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ficiently large, then the bulk AHE dominates over the DW AHE. We use

the saturated Hall resistivity (∼ 8µ cm) at ∼ 2 T (µ0HNd
c ) in Fig. 4.6(b)

in the experiment, to estimate the bulk AHE contribution analytically. The

estimated bulk AHE is represented as the blue line in Fig. 4.6(b). We note

here that the bulk AHE cannot explain the experiment solely, and DW AHE

is necessary.

4.1.4.3 Domain wall anomalous Hall Effect: Symme-
try analysis

Let us consider the emergence of AHE by momentum space Berry cur-

vature through symmetry analysis. First, the anomalous Hall Effect vanishes

in a single AIAO or AOAI domain of pyrochlore iridates [78]. The anoma-

lous Hall conductivity is obtained by integrating the Berry curvature of the

occupied energy bands.

σαβ =
e2

ℏ

∫
BZ

d3k

(2π)3

∑
n

f(ϵn(k⃗)− µ)Fαβ(k⃗) (4.8)

where f(ϵn(k⃗)− ) is the Fermi-Dirac distribution, and Fαβ is the Berry cur-

vature. For convenience, let us denote Fx(k⃗) = Fyz(k⃗), Fy(k⃗) = Fzx(k⃗),

and Fz(k⃗) = Fxy(k⃗). When twofold rotation symmetry C2z exists,

Fx(−kx,−ky, kz) = −Fx(kx, ky, kz),

Fy(−kx,−ky, kz) = −Fy(kx, ky, kz),

Fz(−kx,−ky, kz) = Fz(kx, ky, kz). (4.9)

σyz , σzx vanishes by the integration while σxy can be finite. In a single

domain of AIAO or AOAI order, AHE vanishes for all directions since py-

rochlore iridates are invariant under C2x, C2y, and C2z symmetries.

However, when DW is present, AHE can arise from the net Berry cur-
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Figure 4.7: A domain wall of Ir pyrochlore lattice. Domain wall breaks the
twofold rotation symmetries, giving rise to the anomalous Hall Effect. The
direction of the anomalous Hall is parallel to the domain wall.

vature effect. The DW breaks all twofold rotation symmetries but keeps a

threefold rotational symmetry about the axis perpendicular to the DW (see

Fig. 4.7). Let the threefold rotation axis as [111]. Then, the Berry curvature

changes as

Fx(ky, kz, kx) = Fy(kx, ky, kz),

Fy(ky, kz, kx) = Fz(kx, ky, kz),

Fz(ky, kz, kx) = Fx(kx, ky, kz). (4.10)

Therefore, the Berry curvature components along [111] satisfy

F [111](k⃗) + F [111](C3k⃗) + F [111](C−1
3 k⃗) ̸= 0, (4.11)

where C3 is the threefold rotation operator. This gives σ[111] ̸= 0, which
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means the AHE occurs in the plane parallel to the DW.

4.1.4.4 Unconventional AHE at the antiferromagnetic
domain walls of Nd2Ir2O7 thin films

When H ∥ [111], DWs are predicted to form in the (111) plane since it

lowers the frustration [96, 97]. We provide the detail in Ref. 11. Moreover,

in Cd2Os2O7 single crystal whose ground state is also AIAO, the DW for-

mation prefers to orient normal to H⃗ [97]. Accordingly, in our experimental

geometry, DWs in the (111) plane can play an important role.

Figure 4.6(b) shows anomalous part of ρxy at 2 K as a function of

H . As aforementioned, we cannot interpret the exotic behavior of ρxy in

terms of the bulk AHE solely. The bulk AHE is shown as the blue curve in

Sec. 4.1.4.2. The red circles in Fig. 4.6(b) are the data that is not explained

by the bulk AHE.

We reveal here that the red circles are related to DW AHE. The max-

imum value of red circles is ρxy ∼ 15 µΩ cm at 2 T which is twice as the

saturated ρxy ∼ 8 µΩ cm. The maximum field 2 T agrees with the coercive

field of Ir HIr
c ∼ 3 T from MR where the DWs play a significant role. The

red circles tend to be the Gaussian functions which are also used in the fitting

of MRAsym(H) [see Eq. 4.2]. This indicates that a broad DW switching oc-

curs, which matches our MR analysis. Moreover, ρxy ∝ ρxx [11] indicates

that the AHE at HIr
c ∼ 3 T is intrinsic.

Furthermore, a contour plot of the anomalous part of ρxy in Fig. 4.6(c)

as a function of T and H supports our argument as well. This supports

a large enhancement of DW AHE. For a given T , the H value where ρxy
is maximized is relevant to HIr

C from MR (red circles). The high density

of DWs near HIr
C gives rise to a maximum DW AHE. The peak value of

AHE is also greatly raised below TNd
N , This supports that the strong cou-

pling between Ir and Nd through fd-exchange affects the magnetotransport.
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Experimental observation already reveals that the DWs of NIO are highly

conductive than bulk NIO. The conductivity is an order of magnitude higher

in DWs [20, 27]. In comparison, on Sm2Ir2O7 thin films where the DW

conductance is lower [31], the hysteresis in AHE is absent. To sum up, the

hysteretic AHE with humps observed in NIO thin films originates from DW.

In summary, we observe a large AHE in an NIO thin film and reveal

that the AHE is attributed to the AFM DWs. The strong fd-exchange effec-

tively lowers the energy barrier for Ir domain switching and makes it occur

at the weak H-field. Ir-domain switching induces the net Berry curvature

effect at the DW, resulting in a large DW AHE ∼ 15μ cm at 2 K.
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4.2 Anomalous Hall Effect in Strained Nd2Ir2O7 thin
films

4.2.1 Introduction

The anomalous Hall Effect (AHE) is a universal transport property that

appears in a wide range of time-reversal symmetry broken systems. AHE

can arise from either extrinsic or intrinsic ways [15]. The extrinsic mecha-

nism denotes skew scattering or side jump because of magnetic impurities,

while the intrinsic mechanism originates from Berry curvature in momen-

tum space. Since the topology of electronic energy eigenstates is ciphered in

the Berry curvature, AHE is an effective tool to examine the topological ef-

fects of condensed matter [98, 99]. The AHE is also widely utilized in appli-

cations like memory devices. [100]. From a conventional viewpoint, itiner-

ant ferromagnets are the major source to observe the AHE. The anomalous

Hall conductivity is known to be proportional to the magnetization [101],

which is an order parameter of time-reversal symmetry breaking. However,

in recent reports, the non-collinear antiferromagnets like Mn3X (X=Sn,Ge)

and GdPtBi can exhibit a large AHE [94, 102–104]in spite of negligible

magnetization. The report of large AHE in antiferromagnets implies that

ferromagnetism is not the only necessary condition for AHE. An alternative

source for AHE other than ferromagnetism is proposed in Ref. 7. The the-

oretical analysis showed that higher-rank magnetic multipole formed in a

cluster of spins (so-called cluster multipoles) in antiferromagnet can induce

the AHE when the multipole has the same symmetry as ferromagnetic or-

der. Subsequently, the octupoles in spin clusters also give rise to the anoma-

lous Nernst [105] and magneto-optical Kerr effects [106] in Mn3Sn. How-

ever, since antiferromagnets are not directly coupled to the electromagnetic

fields [107], the cluster multipoles can hardly be manipulated. This forces

strong limitations on experiments for antiferromagnetic AHE. Here, we de-

scribe that we apply a strain on antiferromagnetic Nd2Ir2O7 (NIO) thin film,
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and show that the strain can create the AHE by producing the higher-rank

cluster multipoles. We investigate that the biaxial strain on pyrochlore iri-

dates tunes the spin structure and induces a certain type of cluster octupoles.

Since the induced cluster octupoles have the same symmetry to ferromag-

netic order, generating the net Berry curvature effect and thus a finite AHE

as well. We anticipate that the strain-induced AHE can be applied to a wide

range of spin-orbit–coupled topological magnets [7] and antiferromagnetic

spintronics [100, 108].

4.2.2 Strain-induced cluster multipoles in a pyrochlore
lattice

Pyrochlore iridates family has the chemical formula R2Ir2O7 (R: rare-

earth). This is a geometrically frustrated antiferromagnet with complex lat-

tice structures. In Fig. 4.8A, we show that pyrochlore iridates are composed

of corner-sharing tetrahedrons whose vertices are occupied by R and Ir.

In R2Ir2O7, both electronic correlations and spin-orbit coupling are large

enough to induce a unique antiferromagnetic spin structure, so-called all-in-

all-out (AIAO) order [2, 3]. In the circle of Fig. 4.8B, all spins in a tetrahe-

dron point either inward or outward simultaneously. The Néel temperatures

where the AIAO order sets in are TN
Ir 30 K [3] for Ir and TN

Nd 15 K [20] for

Nd, respectively. By breaking the time-reversal symmetry, the AIAO order

induces correlated topological phases [10, 23] such as a Weyl semimetal.

Nevertheless, the AIAO ordering preserves the cubic symmetries, the

net Berry curvature effect, and the integration of Berry curvature over the

Brillouin zone (BZ), vanishes. If the cubic crystalline symmetries are kept,

AHE does not appear in the system. There are many efforts to break the

cubic symmetries by a magnetic field, in the pressured NIO and Pr-doped

NIO single crystal samples [9, 10, 109]. However, the spin configuration

tuned by the magnetic field is weak and readily turns back when the mag-
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Figure 4.8: (A) The lattice structure of pyrochlore iridates. Yellow dots are
Nd ions and red dots are the Ir ions. (B) Schematics of strained Nd2Ir2O7

thin films on YSZ (111) substrate. The deformed lattice structure and spin
configuration are shown in the circle. (C) The spin configuration without
strain. AIAO order is expressed by anA2-octupole solely. (D) The spin con-
figuration under strain. The deformed AIAO order by strain is decomposed
into an A2-octupole, a dipole, and a T1-octupole.

netic field is off. Hence, we highly desire a stable method to break the cubic

symmetries. Here, we utilize strain engineering and investigate the transport

phenomenon.

In Fig. 4.8B, we show that the biaxial strain deforms the unit cell along

the [111] direction. This will break the cubic symmetries like twofold ro-

tations and fourfold roto-inversions. Since the deformation tunes magnetic
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anisotropy of each spin [78], the orientation of Ir spins is adjusted. We adopt

cluster multipole theory to describe the orientation of Ir spins systematically.

Note that since Ir d-electrons are the main source of conduction, we consider

Ir only [2]. Since there are 4 atoms in the unit cell, all Ir spin configurations

can be classified into 12 distinct cluster multipoles under 5 different irre-

ducible representations. The detail is in Ref. 10.

In a usual NIO single crystal (bulk), the ground state is the AIAO order

that corresponds to an A2-octupole (see Fig. 4.8C). Since the A2-octupole

keeps most cubic symmetries like twofold rotations, AHE is canceled out.

However, in a strained NIO (s-NIO), the ground state is tuned from the

AIAO order. We denote the tuned spin configuration by strained AIAO (s-

AIAO). s-AIAO is expressed by a linear combination of a dipole, an A2-

octupole, and a T1-octupole in Fig. 4.8D. The dipole is the ferromagnetic

order, while the T1-octupole is a type of antiferromagnetic order different

from AIAO. We here maintain that the T1-octupole can induce the AHE in

our system.

4.2.3 Characterizations of r and s-NIO thin films

Here the sample preparation of our experimental group is explained.

They prepare two different NIO thin films on the YSZ (111) substrates:

relaxed (r-NIO) and fully strained (s-NIO) films. Since the lattice con-

stants of NIO and YSZ mismatch, the biaxial strain arises as shown in

Fig. 4.8B [16, 110]. Since the twice of the lattice parameter of YSZ is

smaller than that of NIO, the strain is compressive. The strain is estimated

as ϵ = (2aY SZ`aNIO)/aNIO ≈ `0.96%, where aNIO = 10.38Å and

aY SZ = 5.14Å.

Numerous efforts [81, 82, 84] showed that the in-situ growth of pure

NIO thin film is extremely challenging. Although the proper crystalline

growth conditions are imposed on pyrochlore oxides [83], NIO is unsettled
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Figure 4.9: (A) The X-ray diffraction data of Nd2Ir2O7 film on a YSZ (111)
substrate. (B) Reciprocal map around YSZ (331) and NIO (662) peaks.
Since Qx values of two peaks are the same, the compressive strain of 1% is
applied to Nd2Ir2O7 thin films. (C) STEM image from [11̄0] crystalline di-
rection shows the clear interface between Nd2Ir2O7 thin film and substrate.
The colored dots denote the position of Nd and Ir ions. The fast Fourier
transform of the green box is in (D) and that of the light blue box is in (E).
(D-E) indicate that the lattice constants of Nd2Ir2O7 and YSZ are the same.

because of the production of IrO3 gas [111]. To remove this instability, the

“solid-phase epitaxy (SPE)” [81, 84] method has been used. In SPE, amor-
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Figure 4.10: (A) The longitudinal resistivity ρxx as a function of temper-
ature T . The orange line (black dotted line) is from s-NIO (r-NIO). The
energy band structure in (B) r-NIO and (C) s-NIO. r-NIO is a trivial insu-
lator and s-NIO is a trivial semimetal, which explains the change of ρxx in
(A). (D) The anomalous Hall conductivity σAxy of s-NIO (orange dots) and
r-NIO (black dotted lines) thin films. s-NIO has an order larger σAxy than r-
NIO. Arrows are the sweep directions. Anti-hysteresis is observed. (E) The
Berry curvature along high-symmetry lines of Brillouin zone of r-NIO (up-
per panel) and s-NIO (lower panel). The Berry curvature is larger in r-NIO
but the net contribution vanishes by high symmetry. (F) The Brillouin zone
of pyrochlore iridates.

phous NIO films are grown at a lower temperature (T ) initially, and then

they thermally annealed ex-situ in a sealed tube. SPE is known to produce

r-NIO thin films [81, 82]. To apply the strain, our experimental team invent

an unprecedented in-situ growth method, the so-called repeated rapid high-

temperature synthesis epitaxy (RRHSE) [112]. The detail of this method is

in Ref. 12.
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By the RRHSE method, the experimental team succeeds to grow the

fully s-NIO films on YSZ (111) substrates. The success is evident as shown

in Fig. 4.9A, an X-ray diffraction data with the NIO (lll) and YSZ (lll) (l: in-

teger) peaks. This implies the epitaxial growth of the NIO single phase. Es-

pecially, the satellite peaks or ”thickness fringes” near the NIO (222) peaks

are found. These peaks mean that a high-quality sharp interface is formed

between NIO and YSZ. Figure 4.9B is the reciprocal space mapping near

the NIO (662) and YSZ (331) Bragg peaks. Note that the lattice parameter

d(662) of bulk NIO is 1.19 Å, while that of YSZ is 1.18 Å. Since the NIO

thin film (662) Bragg peak has the same Qx value as the YSZ (331) peak,

the NIO thin film is fully strained at about 1 %.

Figure 4.9C shows a STEM image of the NIO thin film on the YSZ

substrate. The NIO pyrochlore phase is high-quality with few structural dis-

orders. Figures 4.9D-E displays fast Fourier transform of the green and light

blue boxes in Fig. 4.9C. The NIO film has the identical inverse lattice con-

stant to the YSZ substrate. This shows us that the NIO film is strained as

well.

4.2.4 Electronic structures of r and s-NIO thin films

Here, let us compare the r-NIO and s-NIO thin films. Figure 4.10A

shows the longitudinal resistivity ρ(T ) of r (black dotted line) and s-NIO

(orange line) as a function of temperature T . The r-NIO film is metallic at

high T , and metal-to-insulator transition occurs at 30 K. The sudden upturn

below TN
Ir = 30 K is attributed to the insulating nature. Hence, the ρ(T ) of

r-NIO film is the Arrhenius plot at low T . This result agrees with the single

crystal results [20, 27]. On the other hand, ρ(T ) of s-NIO films is smaller

than that of r-NIO films by an order of magnitude. The ρ(T ) of s-NIO film

is semimetallic. This is because we found ∂ρ/∂T > 0 at most T and the

conductivity σxx ∼ 1600 Ω`1 cm`1 at 2 K. The small upturn below 10 K
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Figure 4.11: (A) σAxy as a function of µ0H at 3 K. The orange dots are the
measured data, the green (blue) lines are the fitting curve attributed to Ir
(Nd), and the black lines are the total fitting curve. (B) σAxy as a function
of µ0H at various temperatures. Near T Ir

N = 30 K, the anomalous Hall
conductivity begins to appear, which means Ir ordering begins to play a
role. Near TNd

N = 15 K, the hysteresis occurs, which means Nd ordering
begins to play a role via fd-exchange. (C) The temperature dependence of
the Ir and Nd contribution to anomalous Hall Effect. Green (blue) dots are
σIrxy (σNd

xy ) at 9 T. The red dots are the anomalous Hall conductivity at 0 T,
(spontaneous Hall conductivity) which comes out below 15 K.

comes from disorders.

We perform the mean-field calculation of Hubbard Hamiltonian to un-

derstand the transport and electronic energy band change by the strain. The

detail of the model is in Sec. 2.2. Note that the valence and conduction bands

near the Fermi level come mostly from Ir 5d-electrons [2]. The calculated
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electronic energy band for r-NIO thin film is in Fig. 4.10B. The energy gap

between valence and conduction bands is about 13 meV, which indicates

the insulating nature [51]. The calculated energy band for s-NIO thin film

is in Fig. 4.10C. The compressive strain of about 1 % modifies the valence

and conduction bands to touch the Fermi level. As small electron and hole

pockets emerge near L points, the system becomes semimetallic. The calcu-

lations explain the semimetallic s-NIO film and the insulating r-NIO film.

4.2.5 Large AHE in s-NIO thin films

In Fig. 4.10D, the anomalous Hall conductivity (AHC; σAxy(H)) as a

function of H at 2 K is present. The r-NIO AHC is in the black dotted line

and s-NIO AHC is in the orange line. The s-NIO film exhibits a stronger

AHC than the r-NIO film. At 9 T, AHC of s-NIO is 2.4 Ω−1 cm−1 while

that of r-NIO is 0.2 Ω−1 cm−1. The spontaneous Hall conductivity (SHC;

AHC at zero fields σAxy(0)) of the s-NIO films is 1.04 Ω−1 cm−1, an order

stronger than that of the r-NIO film.

In the previous section, we claim that the r-NIO film can induce small

AHC and SHC because of the AIAO domain walls [11]. However, the do-

main walls are insufficient to explain the large AHC and SHC in the s-

NIO film. We think the net Berry curvature effect induced by the strain is

attributable. We cross-check the argument by comparing s-NIO magneto-

transport with those of typical ferromagnets. For instance, in ferromagnets

like (Ga, Mn)As [113] and CuCr2Se4–xBrx [114], σxx(H = 0) ∼ 1000

Ω−1 cm−1 while σAxy(0) ∼ 1 to 10 Ω−1 cm−1. They obey a scaling relation-

ship σAxy ∝ σ1.6xx , which indicates the intrinsic AHE of the systems [101].

The scaling relationship for the s-NIO film is the same, so our s-NIO thin

film is also related to a net Berry curvature effect. (The detail is in Ref. 12.)

We calculate the Berry curvature effect on AHC in the mean-field cal-

culations of Hubbard Hamiltonian mentioned above (see Sec. 2.2.) The for-
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mula for AHC is given by

σAxy =
e2

ℏ
∑
n

∫
d3k

(2π)3
f(ϵn(k⃗)− µ)Ωxy(k⃗) (4.12)

where f(ϵn(k⃗)`µ) is the Fermi-Dirac function, µ is the Fermi level, and

Ωxy is the Berry curvature. Figure 4.10E shows the calculated Ω[111](k⃗)

along the high-symmetry lines of BZ for both r and s-NIOs. Ω[111](k⃗) is

large at L points (see Fig. 4.10F.) for both the r- and s-NIOs. The Berry

curvature at each L-point is larger in r-NIO than in s-NIO. However, σAxy
vanish only in the r-NIO, because the integration of Ω[111] cancels out by

the cubic crystalline symmetries of r-NIO.

Here we discuss why σAxy vanishes. When there are twofold rotation

symmetries C2 about a-axis,

Ωab(ka, kb, kc) = −Ωab(ka,−kb,−kc),

Ωac(ka, kb, kc) = −Ωac(ka,−kb,−kc) (4.13)

Hence, when we integrate for all BZ, σAab and σAac vanish. In r-NIO, twofold

rotation exists for x, y, and z-axes, so the net Berry curvature effect must

be hidden [7]. On the contrary, the s-NIO breaks C2 symmetries and the net

Berry curvature effect arises. Thus, the large AHE is generated in the s-NIO

films.

4.2.6 Antihysteresis of AHC

Remarkably, the σAxy(H) curve of s-NIO shows an antihysteresis, as

shown in Fig. 4.10D. During the increasing (decreasing) sweep process, σAxy
changes its sign about `1 (1) T. The sign change of σAxy contrasts a typical

hysteresis in a usual ferroic material, where the sign change occurs H > 0

for increasing sweep and H < 0 for decreasing sweep. The antihystersis

was reported in the previous studies, but it was not fully examined [109].
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Figure 4.12: (A) TheM−H curve (purple squares) and σAxy (orange dots) of
s-NIO films at 3 K. M = 0 but σAxy ̸= 0 at 0 T, which implies an alternative
cause of the anomalous Hall Effect. (B) σAxy at 3 K. The orange dots are
the experimental data, and the green (blue) line is the Ir (Nd) contribution to
anomalous Hall conductivity. The blue arrows indicate the sweep directions.
The numerical calculations of dipole M and T1-octupole ω as a function of
effective Zeeman field h, (C) without strain and (D) under strain. The strain-
induced T1-octupole is the origin of the spontaneous Hall Effect in s-NIO
films.

We use a phenomenological model to understand our anti-hysteresis

curve.

σHxy = f(H) + g(H). (4.14)
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The model has two distinct tangent-hyperbolic functions f(H) and g(H).

f(H) is hysteretic (blue line) and g(H) is non-hysteretic (green line) as dis-

played in Fig. 4.11A. The experimental data agrees well with f(H)+ g(H)

(black line). Thus, we must have two distinct origins of AHC to explain its

antihysteretic curve.

To specify the origins, we present σAxy(H) curves of s-NIO films at var-

ious T below 40 K in Fig. 4.11B. When the system is paramagnetic T > 30

K, σAxy vanishes. σAxy begins to arise below 30 K and gets stronger when

T decreases. Between 15 K and 30 K, σAxy has no hysteresis. However, the

anti-hysteresis begins to arise below 15 K. We succeed to match all experi-

mental data with the fitting function in Eq. 4.14. Considering that TN
Nd ∼ 15

K and TN
Ir ∼ 30 K [20], the hysteretic f(H) and non-hysteretic g(H) de-

velops because of Nd and Ir spins, respectively. We name f(H) = σNd
xy and

g(H) = σIrxy from now on.

The argument can be supported by the summary of the AHC fitting

at H = −9 T in Fig. 4.11. The dotted lines denote TN
Nd and TN

Ir values.

The transport in the NIO is dominated by the Ir d-electrons near the Fermi

level. When the transport occurs, the carriers are influenced by the Ir and Nd

spins. The non-hysteretic σIrxy(H = −9 T) emerges below TN
Ir . On the other

hand, the hysteretic σNd
xy (H = −9 T) emerges below TN

Nd. Ir spins give the

non-hysteretic contribution because the Ir domain switching is absent by its

weak Zeeman coupling. Meanwhile, Nd spins give the hysteretic contribu-

tion because the Nd domain can be switched by strong Zeeman coupling

and transfer the switching to the Ir domain by fd-exchange. The hysteresis

gives rise to finite SHC as shown in red squares of Fig. 4.11C.

4.2.7 AHE from strain-induced T1-octupoles

The conventional understanding of AHE teaches us that the SHC is

proportional to the magnetization M [101]. Accordingly, we compare M
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with σAxy as functions of H at T = 3 K in Fig. 4.12A, and present σIrxy and

σNd
xy in Fig. 4.12B. Surprisingly, the conventional understanding, σAxy(H =

0) ∝ M(H = 0), does not hold for our s-NIO films. Whereas the s-NIO

film has a large SHC signal (orange lines), M = 0 at 3 K at H = 0 (purple

squares).

Thus, we should consider the alternative origin of SHC. In Fig. 4.8D,

we show that the biaxial strain induces three distinct cluster multipoles, a

dipole, an A2-octupole, and a T1-octupole. Since we have zero magnetiza-

tion, the dipole is crossed out. Since the A2-octupole does not give SHC

because of its cubic symmetry, it is crossed out as well. The T1-octupole is

antiferromagnetic, but it can induce AHE since it has the same symmetry to

the ferromagnetic order. Therefore, the strain-induced T1-octupole generate

the SHC without any magnetization.

We illustrate how the strain induces T1-octupole by the spin model cal-

culation. The spin model (in Sec. 2.2) includes the various exchange inter-

actions of Ir spins, fd-exchange between Ir and Nd spins, and the Zeeman

energy for Ir and Nd spins. We calculate the ground state spin structure and

obtain cluster multipoles which are defined in Sec. 2.3. We show the cal-

culated dipole (M) and T1-octupole (ω) as a function of effective Zeeman

field h in Figs. 4.12C-D. Note that M is in green circles, ω is in blue cir-

cles, and Figure 4.12C (D) is for r-NIO (s-NIO). In r-NIO, both M and ω

vanish at h = 0, which explains its small SHC. In s-NIO, on the other hand,

both M and ω are finite even at h = 0. Intriguingly, ω looks alike to σNd
xy

in Fig. 4.12B. We think this is because fd-exchange strengthens ω. To sum

up, we conclude that the strain-induced T1-octupole gives rise to AHE in

the s-NIO film.

We here demonstrate that the strain-engineering in an AFM can gen-

erate topological phenomena by tuning the cluster multipoles. In our case,

we emphasize that strain-induced T1-octupole is closely linked to the topo-

logical transport in an NIO. We expect that the strain-engineering can be
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extended to investigate the other topological phenomena in correlated mag-

netic systems. For instance, we apply the strain onto other members of py-

rochlore iridates to realize the correlated topological phases like a Weyl

semimetal, a nodal line semimetal, an axion insulator, and a topological in-

sulator [10, 23, 109]. In the next section, accordingly, we describe how we

find the correlated topological phases in Pr2Ir2O7.
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4.3 Correlated Weyl semimetal in Strained Pr2Ir2O7

thin films

4.3.1 Introduction

In modern condensed matter, correlation-driven and topological-driven

physics compose central themes [1] It has been thoroughly investigated for

several years that electronic correlation denoted by U plays a key role in the

metal-to-insulator transition, giant magnetoresistance, and superconductiv-

ity [115–117]. Meanwhile, topological-driven physics was developed since

a topological insulator (TI) with sizable spin-orbit coupling (λ) [118] has

been discovered, and stretched out swiftly toward Weyl (or Dirac) [2, 55,

56, 119, 120] and nodal-line semimetals [121, 122] as well. Nowadays, the

voyage of interest advances toward the reciprocity of electronic correlation

and topological-driven physics [1, 22, 122, 123], which gives rise to the

correlated topological semimetals (CTPs) [4]. The typical example of CTPs

is a correlated Weyl semimetal (WSM), a topological Mott insulator, and

an axion insulator. Especially, WSMs attract numerous activities in soci-

ety, which is characterized by Weyl fermions and surface Fermi arc [2, 55,

56, 119]. WSMs show intriguing physical properties, like phonon–electron

fluid [124], the nonlinear Hall effect [42], magnetotransport induced by chi-

ral anomaly [18, 49, 125], anomalous Hall effect (AHE) [94], and anoma-

lous Nernst effect [105]. Nonetheless, the electronic correlation in WSMs is

too restricted to be realized in experiments, because candidate materials are

rare in nature [119, 123].

Here, we use pyrochlore iridates whose chemical formula is R2Ir2O7.

Pyrochlore iridates have large λ and intermediate U since they are members

of 5d transition metal oxides. Hence, pyrochlore iridates is a playground

to realize the topological CTPs [1, 23, 57, 69, 78]. The crystal structure of

R2Ir2O7 is shown in Fig. 4.13a, and the symmetry of R2Ir2O7 is the same

as that of the diamond lattice. Furthermore, pyrochlore iridates are the first
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candidate that Weyl fermions can emerge in the real material [2].

Most pyrochlore iridates have an all-in-all-out (AIAO) antiferromag-

netic order as shown in Fig. 4.13b. It is predicted that the AIAO order in-

duces the WSM state with 4 pairs of Weyl nodes by breaking time-reversal

symmetry (TRS) [2]. Nevertheless, as the AIAO order pushes the Weyl

nodes toward the Brillouin zone boundary, the Weyl nodes are annihilated by

pairs, and the charge gap is opened at the Fermi level. The WSM state, there-

fore, appears only at the very verge of the gapped state and exists within an

infinitesimal temperature range [109]. In almost every compound except R

= Pr, the emergence of AIAO order at TN accompanies a metal-to-insulator

transition as shown in Fig. 4.13c [2]. Despite the abundant theoretical pre-

dictions [1, 23, 57, 69, 78], thus, experimental realization of WSM states in

pyrochlore iridates remains elusive.

The Pr2Ir2O7 single crystal (bulk) is close to the critical point that

metal-to-insulator and paramagnetic-to-antiferromagnetic transitions of py-

rochlore iridates [3]. This is paramagnetic and metallic down to a few mK

and the resistivity does not increase significantly [33]. The electronic band

structure forms a Luttinger semimetal (LSM) state where a quadratic band

crossing is across the Fermi level at Γ point [6] This quadratic band crossing

can break into diverse topological semimetal phases by symmetry-breaking

perturbations [6, 10, 126]. Here, our experimental team succeeds to fabri-

cate pure strained PIO thin films and utilize the strain as a tuning pertur-

bation to find the magnetic WSM phase. The AHE observation evinces the

Weyl nodes that give rise to Berry curvature. Magnetotransport results de-

liver a compelling piece of evidence that chiral anomaly emerges from the

Weyl nodes. The most important clue for a correlated WSM phase is the

T -dependence of the planar Hall Effect. Considering all transport measure-

ments and theoretical predictions, we report that strained PIO thin film is

the magnetic WSM dressed by long-range Coulomb interaction.
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Figure 4.13: (a) The lattice structure of pyrochlore iridates, where red
spheres are Ir and blue spheres are rare-earth ions. (b) Two distinct domains
of pyrochlore iridates, A (AIAO; left) and B (AOAI; right) domains. (c) The
phase diagram of pyrochlore iridates family as a function of rare-earth ionic
radius and temperature [1, 3]. (d) The mean-field calculated exotic phase
diagram of pyrochlore iridates as a function of compressive strain δ and
Hubbard repulsion U . δ is the ratio change of hoppings by the strain and U
is normalized by toxy which is the oxygen-mediated nearest-neighbor hop-
ping term. Pr2Ir2O7 are an LSM at the red line in absence of the strain. (e)
Schematics of the energy band renormalization in Weyl semimetal because
of the correlation effect.

4.3.2 Topological Phase Diagram and Epitaxial Growth
of PIO

We use the Hubbard model to calculate the ground state of strained PIO

by mean-field theory [5, 10, 59]. We draw the phase diagram in terms of U

and δ (the ratio of hopping parameter change by the strain) in Fig. 4.13d,

based on the ground state we calculate. Note that δ indicates the effect of

strain in the calculation, and δ > 0 means that the strain is compressive [12].
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We provide the detail in Ref. 13. We observe that the strain applied to LSM

produces three fascinating topological phases, a magnetic WSM, an axion

insulator, and a TI. Notably, the AIAO order which is absent in the un-

strained bulk PIO emerges from a weak strain in the film (δ < 0.3% for

U = 1.39). The AIAO order induces a magnetic WSM phase containing 4

pairs of Weyl nodes near the Fermi level. When the strain increases to an

intermediate value (0.3% < δ < 0.7%), all Weyl nodes are pair-annihilated

at Γ point as AIAO order decreases, and the band gap is opened at the Fermi

level. Since the time-reversal symmetry is broken, we observe an axion in-

sulator phase where the Fu-Kane Z4 index value is 2. When the strain gets

increased to δ > 0.7%, the AIAO order disappears, and the system turns

into a paramagnetic TI [23]. We concentrate on the magnetic WSM in the

weak strain region δ < 0.3%. When the electronic correlation between Ir-

5d electrons is effective, the renormalization of Weyl nodes occurs, and we

obtain a correlated magnetic WSM phase as shown in Fig. 4.13e.

Our experimental team probes the correlated magnetic WSM by fab-

ricating a weakly strained high-quality PIO thin film. They use a modi-

fied solid-phase epitaxy (SPE) method, whose detail is in Ref. 13, 112. We

present the X-ray diffraction of PIO (111) film on YSZ (111) substrate in

Fig 4.14a, with a bare YSZ substrate as a comparison. The pyrochlore phase

crystallization is excellent which is demonstrated by the strong odd-pair

peaks. The magnified version of X-ray diffraction is shown in Fig. 4.14b.

This indicates that the PIO film is strained since its (222) peak is shifted

away from the bulk one. The reciprocal space map in Fig. 4.14c exhibits

that the compressive strain ∼ 0.2% is applied in the (111) plane of PIO

thin film. The shift of Qz implies that the lattice is elongated along [111]

in accordance with the (222) peak shift in Fig. 4.14b. The weak strain in

our PIO film is accountable for the emergence of AIAO order and associ-

ated magnetic WSM phase as we predict in the mean-field calculations.(See

Fig. 4.13d).
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Figure 4.14: (a) The X-ray diffraction peaks of Pr2Ir2O7 thin films on the
YSZ (111) substrate (a red line) compared with a bare YSZ (a blue line). (b)
The enlarged X-ray diffraction near YSZ (111) peak. The green dashed line
is the position of the bulk Pr2Ir2O7 (222) peak. (c) The reciprocal map of
Pr2Ir2O7 thin films on YSZ substrate near YSZ (331) peaks. ∗ is the peak
position of Pr2Ir2O7 thin film.

4.3.3 AHE in Strained PIO Film

We display the temperature-dependent longitudinal resistivity ρxx(T )

of the PIO films in the absence of a magnetic field in Fig. 4.15a. A Hall-

bar geometry is utilized to measure the transport as shown in the inset of

Fig. 4.15a. When the temperature decreases, both the strained films and the

single crystal present a metallic nature until the resistivity reaches the min-

imum. After then, there is a small upturn at the lower temperature. The re-

sistivity minimum temperature in the strained PIO film (∼ 50 K) is slightly

higher than that of single crystal PIO (∼ 40 K). The resistivity of the strained

film enhances by ∼ 3−10 times that of a single crystal below 300 K because

of the compressive strain. The compressive strain makes the oxygen octahe-

dron surrounding Ir ions more distorted trigonally, leading to the reduction

of Ir-O orbital overlapping and the associated suppression of Ir electron con-

duction [1]. It is similar to the fact that the resistivity of strained Nd2Ir2O7

(NIO) film is greatly raised from that of bulk NIO [12]. Our experimental

team fabricates more samples with a larger compressive strain and confirms

83



Figure 4.15: (a) The longitudinal resistivity for PIO thin film (a red line)
compared with single crystal [33] (a blue line). The inset is the schematics
of the experimental geometry. (b) The Hall resistivity as a function of B at
various temperatures. (c) The comparison between Hall resistivity of PIO
thin film at 2 K (a red line) and PIO single crystal [52] (a blue line). The
arrows are the sweep directions.

that the resistivity gets increased when the strain gets stronger. (See Ref. 13

for the detail.) The tendency that the compressive strain induces insulating

behavior is consistent with the theoretical calculation in Fig. 4.13d. To con-

firm the axion insulator or TI, one needs more exhaustive efforts on these

samples in the future.

An intriguing phenomenon in the strained PIO is shown in Fig. 4.15b.

That is, the AHE appears and persists up to 30 K when B ∥ [111] is applied

in the strained PIO film. The temperature is much higher than the single

crystal samples (∼ 1.5 K) [39, 52, 127] Above 30 K, the Hall response is

linear to B, which implies that the AHE disappears at high temperatures.

Furthermore, what is important is that the Hall resistivity of strained PIO

thin film at 2 K presents a hysteretic behavior and a finite value at B =

0. This is the so-called spontaneous Hall Effect (SHE). The single crystal

sample also shows SHE but at the lower temperature ∼ 0.5 K, as shown

in Fig. 4.15c. The SHE in the PIO thin film is attributed to the TRS and

cubic crystalline symmetry breaking [12]. The TRS is broken by the strain-
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induced AIAO order, and the cubic crystalline symmetry is broken by the

applied compressive strain. It is noteworthy that the AHE in the PIO film

is unconventional, in that the anomalous Hall resistivity is irrelevant to the

magnetization (M) [15]. In conventional viewpoint, the Hall resistivity is

phenomenologically described as ρxy = R0B + 4πRsM . The first term

is the normal Hall Effect while the other term is the AHE. Hence, in the

ferromagnetic systems, the magnetization and spin-orbit coupling give rise

to the AHE [15]. Nevertheless, the AHE in our strained PIO with induced

AIAO order is attributed to the non-trivial Berry curvature (Ωi,k) produced

by the Weyl nodes [128].

4.3.4 Magnetotransport in Strained PIO Film

To access more visions onto Weyl fermions, our experimental team

measures the magnetotransport on the strained PIO film. They apply the

magnetic field in two directions, perpendicular and parallel to the current I

directions. The single crystal PIO sample, previously, shows a giant positive

transverse magnetoresistivity (TMR) when B ∥ [111] ⊥ I is applied [52].

The positive TMR is attributed to the electron localization by the Lorentz

force, which is common in a usual metal.

In our strained PIO system, however, we observe a negative TMR at

2 K with an upturn at a strong field (See Fig. 4.16a.) This feature strongly

contrasts the state of strained PIO to that of bulk PIO, a paramagnetic LSM.

Remarkably, the upturn at the high field in strained PIO film reminds the

TMR in NIO single crystal under pressure [109]. NIO single crystal de-

velops AIAO order at low temperature T < 30 K [3, 109]. The upturn in

the TMR in NIO was illustrated by the domain switching from Ir-AIAO

(4/0) to Ir-3I1O (3/1) state [109]. Such domain switching happens for the

strained PIO film as well. Our previous studies [10] described that the band

structure of pyrochlore iridates depends strongly on the spin configuration.
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When B ∥ [111] is applied, the spin configuration of pyrochlore iridates

varies from 4/0 to 3/1 state. Accordingly, the domain switching makes the

energy band structure near the Fermi energy fluctuate significantly. Theo-

retically, the WSM in the 4/0 spin configuration has 4 pairs of Weyl nodes.

This changes into the WSM with 3 pairs of Weyl nodes by 3/1 spin con-

figuration. The modulation of energy band structure, hence, decreases the

density of states near Fermi energy and induces the upturn of TMR, as same

as the NIO case [109]

Moreover, similar hysteretic properties to NIO [109] appear in our

strained PIO film in Fig. 4.16a. The hysteresis vanishes and the TMR is

positive and linear to B at T > 15 K as shown in Fig. 4.16b. In the hystere-

sis curve of Fig. 4.16a, ρxx for decreasing field sweep (blue lines) is larger

than that for increasing field sweep when B > 0, and vice versa. The hys-

teretic curve can be described by the domain wall dynamics of AIAO order

in pyrochlore iridates. In the absence of a magnetic field, two degenerate

magnetic domains are present, such as the AIAO (A domain) and AOAI (B

domain). The domains are time-reversal symmetry partners [84]. Under a

weak field, two domains simultaneously exist. When B increases, these two

domains can be switched by either B ∥ [111] or B ∥ [1̄1̄1̄] [84, 109]. The

hysteresis appears during the domain switching process. We present the de-

tail of the hysteresis loop at 5 K in Fig. 4.16c. The hysteresis within ±4.5

T comes from the coexistence of the A and B domains. Beyond ±4.5 T, the

difference between increasing and decreasing sweep vanishes as the multi-

domain state turns into a single domain state. When B increases further, the

spins begin to flip and the system turns into a 3/1 spin configuration. Hence,

the hysteresis loop in TMR implies that strained PIO film has an AIAO or-

der below 15 K, in accordance with our theoretical calculations. Note that

there also was a report about the detection of local Ir moments in the film

sample [129]. We also comment that we cannot use neutron scattering ex-

periments to detect Ir moments, since our PIO thin film is only 40 nm-thick
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Figure 4.16: (a,b) Transverse magnetoresistance as a function of B at var-
ious temperatures. TO = 15 K, T ∗ = 30 K, (a) T < TO and (b)
TO ≤ T ≤ T ∗. The red and blue lines are the increasing and decreasing
field sweep, respectively. The inset in (b) is the experimental geometry of
TMR. (c) The enlarged TMR measured at 5 K in (a). (d) Longitudinal mag-
netoresistance as a function of B at various temperatures. The inset is the
experimental geometry of LMR. (e) The values of TMR and LMR under
B = 9 T at various temperatures. (f) The phase diagram of PIO thin films
as a function of temperature. −, +, w., and wo. mean negative components,
positive components, with hysteresis, and without hysteresis for TMR, re-
spectively.

that does not meet their requirements [130].

Mean-field calculation shows that when the LSM meets the AIAO or-

der, it is broken into the magnetic WSM by TRS breaking. Our experimental

team measures the longitudinal magnetoresistivity (LMR: B ∥ I) to detect

the chiral anomaly from the WSM. The chiral anomaly from the WSM is

that the charge pumping between a pair of Weyl nodes by their chiral zero

Landau level [18, 49, 131]. Hence, the chiral anomaly gives rise to negative
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LMR.

The non-hysteretic negative LMR at T < 30 K is observed, as shown in

Fig. 4.16d. In a weak field, the LMR is weakly positive because of the weak

anti-localization in topological matters [18, 49]. We summarize the TMR

and LMR at B = 9 T in Fig. 4.16e. When T < T ∗ = 30 K, the LMR at 9 T

is negative while the TMR at 9 T changes its sign from positive to negative

at 5 K. The peak of TMR at 9 T is at TO = 15 K. Such puzzling behavior of

TMR could be explained by the competition of AIAO order (negative) and

Lorentz force (positive).

When TO < T < T ∗, TMR at 9 T increases by lowering the tempera-

ture, which shows that the system is paramagnetic where the Lorentz force

contribution dominates over that of the AIAO order. When T < TO, TMR at

9 T decreases by lowering temperature as the AIAO order develops. When

T < 7 K, TMR shows a hysteretic behavior, and TMR at 9 T is negative,

which shows that the system is antiferromagnetic where AIAO contribu-

tion dominates over that of the Lorentz force. As result, the range between

7 to 15 K exhibits the concurrence of paramagnetic and antiferromagnetic

phases. More pieces of evidence are in Ref. [13].

Based on the TMR measurements, we draw schematics for phase tran-

sition in Fig. 4.16f The quantum oscillation is not observed in the strained

PIO film, since the mobility is very low [127]. In the single crystal, the mo-

bility is ≈ 10 cm2 V`1 s`1, while in our PIO film, it is ≈ 0.74 cm2 V`1 s`1).

The mobility is far below compared to that in TaAs [49] or SrRuO3 [132].

Note that the mobility should be above 103 cm2 V`1 s`1) to observe quan-

tum oscillation within a few Teslas [133, 134]. Furthermore, as Pr 4f elec-

trons strongly hybridize with Ir 5d electrons [33], the effective mass is too

large to satisfy the condition for quantum oscillations [134]. To observe

quantum transport, one needs to improve the film quality in the future.
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4.3.5 PHE in Strained PIO Film

The chiral anomaly is not the only cause of negative LMR. Since the

current jetting also induces the negative LMR [135], we need further ev-

idence of chiral anomaly. Accordingly, we measure PHE in strained PIO

film to provide evidence that chiral anomaly and AIAO order exist [18,

136–140]. In Fig. 4.17a, we draw schematics of PHE that the Hall voltage

emerges when the magnetic field and current are applied in the same plane,

and ϕ is the angle between B and I . The planar Hall conductivity (PHC) is

divided into two parts in our system,

σPHE
xy = σchiralxy + σAIAO

xy , (4.15)

where σchiralxy and σAIAO
xy are the PHCs from the chiral anomaly and AIAO

order, respectively. In previous studies [125], The chiral anomaly PHC is

given by

σchiralxy (ϕ) = ∆σchiral sinϕ cosϕ, (4.16)

where ∆σchiral = σ∥`σ⊥ is the anisotropy of magnetoconductivity made

by chiral anomaly. σ⊥ and σ∥ are the conductivities under B ⊥ I and B ∥ I
each.

In the gray dots of Figs. 4.17b-d, we present the PHC at different tem-

peratures (2, 4, and 15 K). At 15 K, where both paramagnetic and antifer-

romagnetic states exist, the PHC can be explained by chiral anomaly solely.

However, at 2 and 4 K, the PHC cannot be explained by the chiral anomaly

only, which has a sin 2ϕ dependence in the blue dashed line of Fig. 4.17b.

In this temperature range, our magnetotransport measurements support that

AIAO order emerges and prevails. AIAO order corresponds to a higher-rank

magnetic multipole called an A2-octupole (ωxyz) [12, 141]. Although there

are no dipolar moments in AIAO order, an A2-octupole can induce an or-
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Figure 4.17: (a) Schematics of the experimental geometry of planar Hall Ef-
fect measurement. (b-d) The planar Hall conductivity σPHE

xy as a function of
rotation angle ϕ under B = 9 T at T = 2, 4, and 15 K, respectively. We use
Eqs. 4.16 and 4.18. (e) The PHE coefficients α and β in Eq. 4.18 as a func-
tion of temperature, which is attributed to chiral anomaly and AIAO order,
respectively. (f) The renormalization group calculation for the temperature
dependence of α by the electronic correlation effect. The fitting function is
f(T ) = AT + B lnT + C, where A,B, and C are constants. The inset
shows the lnT dependence of α.

thogonal magnetization M⊥ by its coupling with B [141]. The ”orthogonal

magnetization” is named after the fact that its direction is orthogonal to B.

The detail is in Ref. 13.

The in-plane orthogonal magnetization contributes to PHE as well as a
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chiral anomaly. To sum up, the PHC is given by

σPHE
xy (ϕ) = σ3B

2 sin 2ϕ+ σ4
ω2
xyz

12
B4 sin 4ϕ (4.17)

where σ3 and σ4 are constants. The first term is from the chiral anomaly,

and the second one is from orthogonal magnetization induced by an AIAO

order. The first term is derived from the chiral anomaly, while the second

originates from the AIAO ordering. We set two coefficients α = σ3H
2 and

β = σ4ω
2
xyzH

4/12, and the above equation becomes

σPHE
xy = α sin 2ϕ+ β sin 4ϕ. (4.18)

α and β are the PHC magnitudes induced by the chiral anomaly and A2-

octupole, respectively. We sum up the change of α and β as a function of

temperature in Fig. 4.17e.

The fitting results of Eq. 4.18 is shown in the red lines of Figs. 4.17b-

d. Below T < TO, the two-origin model in Eq. 4.18 is much improved

than chiral anomaly model in Eq. 4.16. This evinces the existence of AIAO

order as well. The small variance of fitting and data might come from the

spin fluctuation. Meanwhile, T0 < T < T ∗, the AIAO order vanishes since

β approaches 0 in the blue dots of Fig. 4.17e. This is consistent with the

conclusion from TMR data in Fig. 4.16f. The chiral anomaly exists up to T ∗

since α is still finite in the red dots of Fig. 4.17e. This indicates that a WSM

phase emerges by B [142]. Our experimental team checks the reproduction

of our experimental results by fabrication of another reference sample. A

coherent conclusion is drawn from the reference sample as well. The detail

is in Ref. 13. To summarize this part, we confirm the existence of chiral

anomaly and AIAO order while excluding the current jetting by the negative

LMR and PHE measurements.

Lastly, we discuss here the correlation effect of the WSM phase by
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investigating the temperature dependence of PHC magnitude α [143]. Di-

mensional analysis shows that

σ3 ∝
e2

ℏ
v3F e

2

µ2
τ, (4.19)

where ℏ is the Planck constant, τ is the scattering time, e is the electron

unit charge, µ is the chemical potential, and vF is the Fermi velocity. The

theoretical prediction of chiral anomaly gives the same results [18]. The

temperature dependence of σ3 and α can be studied by that of vF , µ, and τ .

We obtain those from a one-loop calculation in a WSM phase dressed by a

long-range Coulomb repulsion [143].

vF (T ) = vF0(1 +
Nw + 2

3π
α0 ln

ℏΛ
kBT

)2/(Nw+2),

µ ∝ (1 +
α0

πµ0
T ln

ℏΛ
kBT

), (4.20)

where Nw is the number of Weyl nodes, Λ is a cutoff momentum, and α0 is

a dimensionless coupling constant without interaction. At low T , the scat-

tering time of a WSM dressed by a long-range Coulomb repulsion is [144],

τ ∝ 1 +
2π2

3
(
T

TF
)2, (4.21)

where TF is the Fermi temperature. Therefore, for a small coupling and a

low temperature, α = σ3H2

2 as a function of T is approximated,

α ∝ A T +B lnT + C, (4.22)

where A,B, and C are constants, and the lnT and T terms arise from the

renormalization of vF and µ, respectively. The detail is in Ref. 13.

In Fig. 4.17f, the experimental change of α is in red dots, and the fitting

of Eq. 4.22 is shown in a blue line. The experimental data show great accor-
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dance with the fitting function from the renormalization group calculation.

This demonstrates that the strained PIO system shows the renormalization

of Weyl nodes by electronic correlation. In addition, the lnT component in

α is very strong as shown in the inset of Fig. 4.17f. This indicates the Fermi

velocity is greatly enhanced by the long-range Coulomb repulsion [145].

Only the graphene which is a 2D Dirac semimetal was reported to show

an analogous renormalization effect [122, 145, 146]. Our results imply that

strained PIO film shows a correlated WSM phase whose Fermi velocity is

renormalized logarithmically by long-range Coulomb interaction.

4.3.6 Conclusion

We discover a correlated magnetic WSM phase in the strained PIO film

which is predicted in the theoretical calculation. The emergence of AHE,

negative TMR with the upturn, negative LMR, and PHE evinces the mag-

netic WSM phase in our system. In addition, the analysis of chiral anomaly-

induced PHE α shows that the electronic correlation effect renormalizes the

Fermi velocity of Weyl nodes. We pave a new path of strain-engineering of

CTPs by finding the ”bulk-absent” AIAO magnetic order in PIO film. PIO

is a favorable playground for CTPs since it is expected to host an axion in-

sulator and a TI by applying a larger strain. So far, our works emphasize the

reciprocity of perturbations, magnetism, and topological phases in a corre-

lated spin-orbit coupled system, and encourage future research on correlated

topological phases in new condensed matter systems.
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Chapter 5

Conclusion and Outlook

This dissertation studies the topological semimetals in pyrochlore iri-

dates near the transition point by applying a magnetic field and strain. Here,

we summarize the main results and address the outlooks from the results.

5.1 Summary

In Chap. 3, the magnetic-field induced topological semimetals in py-

rochlore iridates are discussed. First, the experimental results show that

the magnetic field induces topological semimetals, such as Weyl semimetal

(4/0, 3/1) and nodal-line semimetal (2/2) in (NdxPr1−x)2Ir2O7 single crys-

tals. Motivated by the results, the generic topological band structure under a

magnetic field is studied. In paramagnetic metal, QBC with fourfold degen-

eracy exists. Because of the large degeneracy and strong SOC, the Zeeman

field on QBC can induce both anisotropic and isotropic Zeeman terms. The

interplay of Zeeman terms and the exchange energy of Ir electrons leads

to the various topological semimetals in pyrochlore iridates. The control of

three energy scales is controlled by the modulation of spin configuration by

the magnetic field.

In Chap. 4, the strain-induced topological semimetals in pyrochlore

iridates are discussed. First, in relaxed Nd2Ir2O7 thin films, the anomalous

Hall Effect comes from the antiferromagnetic domain wall structure. Then,

the strained Nd2Ir2O7 thin films show the large enhancement of the anoma-

lous Hall Effect. This is from the strain-induced cluster T1-octupoles that

has the same symmetry as the magnetization. Lastly, the strained Pr2Ir2O7

thin films become the correlated Weyl semimetal. The experiment results
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support that the AIAO order sets in and time-reversal symmetry is broken.

Further theoretical analysis of experimental results shows that they are the

interacting Weyl liquid with logarithmically renormalized Fermi velocity

dressed by long-range Coulomb interaction.

5.2 Perpendicular magnetization in antiferromagnets
with higher-rank magnetic multipoles

Some antiferromagnets including pyrochlore iridates develop the mag-

netization perpendicular to the applied magnetic field. Two sources of per-

pendicular magnetization (PM) are known. One is the transverse magnetiza-

tion (TM) that comes from the spin canting, and the other is the orthogonal

magnetization (OM) that comes from the coupling of field to the cluster mul-

tipoles in the Landau theory. We suggest a unified viewpoint for PM. First,

we explain PM by symmetry. PM appears only when all crystalline symme-

tries are broken but C2T , σT , and P . Also, one can determine whether PM

is an even or odd function by symmetry analysis. Then, PM is divided into

OM, spin, and orbital parts. We discuss the origin of spin and orbital PM.

The spin PM comes from spin anisotropy. The orbital PM comes from the

magnetic energy band change. Then, we explain all numerical and experi-

mental observations. Lastly, we show that PM contributes to the anomalous

planar Hall Effect. We build a new guideline for understanding the magnetic

responses of the antiferromagnets with complex structures.

5.3 Planar Hall Effect in Nd2Ir2O7 in thin films

In the previous work, the strained Pr2Ir2O7, which is originally para-

magnetic metal, is known to host the planar Hall Effect. The planar Hall

Effect is decomposed into twofold and fourfold harmonics as a function of

the angle between E⃗ and B⃗. This can be explained by the chiral anomaly

from Weyl semimetal and OM from strain-induced AIAO order. Here, in
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the strained Nd2Ir2O7, which is an originally antiferromagnetic insulator,

the planar Hall Effect has sixfold harmonics in addition to twofold and four-

fold ones. This is because of the OM from strain-induced T1-octupole. We

show the close relationship between the magnetic structure and transport

phenomena in an antiferromagnet.
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국문초록

응집물질에서의 물리는 크게 스핀 오비탈 결합과 전자 간의 상호작

용으로결정된다.스핀오비탈결합과전자간상호작용이모두밴드폭과

비슷하게큰경우,강상위상학적상인바일준금속,액시온부도체,또는

위상 모트 부도체 등이 나타난다. 이들은 모두 특이한 물성을 지녔기에

주목을점점더많이받고있다.

파이로클로르 이리듐 산화물의 화학식은 R2Ir2O7로, 상호작용과 스

핀오비탈결합이모두큰시스템이다.따라서이물질군은강상위상학적

상을 조사할 수 있는 좋은 배경이 된다. 특히, 이 물질군은 낮은 온도에

서 반강자성이 생기면서 바일 준금속이 나타날 수 있는 것으로 예측된

첫 번째 후보이다. 이 때 반강자성의 이름을 All-in-all-out (AIAO)이라고

부르는데이는모든스핀이동시에셀중심을향하거나바깥을향하기때

문이다.

그러나자성바일준금속이라는결정적인증거는아직발견되지않았

는데,두가지이유가있다.첫번째로는이물질군이대부분부도체이므로

바일 준금속을 볼 수 있는 범위가 매우 좁다. 두번째로는 이 물질군에서

바일 준금속이 생기더라도 이에 의해서 나올 수 있는 물성이 정육면체

대칭성에 의해서 모두 사라지기 때문이다. 이 물질군에서 바일 준금속을

찾기 위해서 우리는 이 물질이 반강자성 부도체에서 상자성 도체가 되는

전이점근처에서섭동을걸어주었다.이섭동은바일준금속을볼수있는

범위를넓혀줄뿐아니라대칭성도깨줄것으로예상되었으므로위의어

려움이 모두 극복될 것으로 예상되었다. 섭동으로 이용된 것은 자기장과

변형이다.

첫째로, 자기장이 반강자성 부도체와 상자성 도체 사이에 존재하는

(Ndx Pr1−x)2Ir2O7 단결정에 걸렸을 때 매우 다양한 위상학적 준금속이

관측되었다. 군론을 이용하면 상자성 도체에 존재하는 이차 밴드 겹침이

높은스핀 (J = 3/2)을가지기때문에자기장이걸렸을때일반적인제만
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항 뿐 아니라 비등방성 제만 항이 추가적으로 나오는 것을 볼 수 있었다.

이두제만항과 AIAO사이의상호관계는 4쌍바일, 2쌍바일,이차바일,

그리고 선 겹침 준금속을 만들어 내었다. 이 때 자기장이 파이로클로르

이리듐산화물내부의스핀구조를바꾸면서제만항과 AIAO을조절하는

것으로알려졌다.

둘째로,반강자성부도체인Nd2Ir2O7와상자성도체인 Pr2Ir2O7박막

에각각변형이걸렸다. Nd2Ir2O7의경우변형이부도체-도체전이와함께

자기장이없을때이상홀효과를유도하였다.모델을이용한계산은이것

이 바일 준금속이 아니라 전자 및 양공 주머니가 있는 단순한 도체임을

보였다. 또한 자기장이 없을 때 자화가 없으므로, 이상 홀 효과의 원인은

바일준금속도자화도아니었다.사실변형이유도하는 T1-팔극자가이상

홀 효과의 원인인데, 이는 이 팔극자가 자화랑 대칭성이 같기 때문이다.

반면 Pr2Ir2O7의 경우, 이상 홀 효과, 음의 자기저항, 평면 홀 효과 등 바

일 준금속의 증거가 많이 발견되었다. 그 중에서도 평면 홀 효과는 바일

준금속의카이랄이상과 AIAO으로설명되었다.이졸업논문에서는바일

준금속이파이로클로르준금속에서생기는원인과어떻게하면그것을찾

을 수 있는지를 제공한다. 따라서 이는 파이로클로르 이리듐 산화물에서

새로운위상학적상의실험적발견을촉진할것이다.

주요어 : 위상학적현상,이상홀효과,파이로클로르이리듐산화물,바일

준금속

학번 : 2016-24222
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