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Abstract

Applying Regularized
Schrodinger-Bridge-Based Stochastic
Process in Generative Modeling

Ki-Ung Song

Department of Mathematical Sciences
The Graduate School

Seoul National University

Compared to the existing function-based models in deep generative modeling, the
recently proposed diffusion models have achieved outstanding performance with a
stochastic-process-based approach. But a long sampling time is required for this
approach due to many timesteps for discretization. Schrédinger bridge (SB)-based
models attempt to tackle this problem by training bidirectional stochastic processes
between distributions. However, they still have a slow sampling speed compared to
generative models such as generative adversarial networks. And due to the train-
ing of the bidirectional stochastic processes, they require a relatively long training
time. Therefore, this study tried to reduce the number of timesteps and training
time required and proposed regularization terms to the existing SB models to make
the bidirectional stochastic processes consistent and stable with a reduced num-
ber of timesteps. Fach regularization term was integrated into a single term to

enable more efficient training in computation time and memory usage. Applying



this regularized stochastic process to various generation tasks, the desired transla-
tions between different distributions were obtained, and accordingly, the possibility
of generative modeling based on a stochastic process with faster sampling speed

could be confirmed.

Key words: Deep Learning, Generative Model, Stochastic Process, Diffusion Model,
Schrodinger Bridge

Student Number: 2020-22722
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Chapter 1

Introduction

As deep neural networks become essential elements in modern artificial intelligence
research, various deep generative models and related neural network architectures
have been proposed. One of the most widely known deep generative models is
generative adversarial networks (GANs) [8]. They are based on adversarial training
of generator and discriminator networks and have shown outstanding performance
in various fields. Based on a log-likelihood of desired data distribution P, variational
autoencoders (VAEs) [13] and normalizing flows [12] were proposed. VAEs are
trained with a lower bound of the log-likelihood designed with encoder and decoder
networks. And normalizing flows are trained with an invertible design of neural
network architectures for the exact computation of the log-likelihood. Although
there are differences in specific ways, they all approach generative modeling as a
function.

Recently, diffusion models [9, 23] have been proposed and shown outstanding
performance with a stochastic-process-based approach. Since the latent space of

generative modeling, Z, is assumed to be a Gaussian noise space, diffusion models



first consider the stochastic noising process, say forward process, from P to Z. Then,
they consider a generation process as a corresponding backward stochastic process
of the forward process. Due to their impressive performance and formulation, they
are applied in various fields, including largely pre-trained multimodal models [19,
20].

Under the neural network’s universal approximation property, deep generative
models have achieved remarkable improvement in various generation tasks such
as unconditional generation, image-to-image translation, image super-resolution,
etc. Even though the desired generation outcome varies for each situation, every
situation is to find a proper mapping between two different desired distributions P
and Q with task-dependent conditions. For instance, in the case of an unconditional
data generation task, P is the desired data distribution, and Q is the distribution
of the latent space Z, e.g. Gaussian distribution. And, in the case of an image-to-
image translation task, two different image domains P and Q are given, for instance,
male and female. Then the main objective is to find the proper mapping between P
and Q while preserving the semantic information of the given image, e.g. identity
of the human face. There are various studies on generative model frameworks and
related neural network architecture for each generation task. In other words, the
existing methods on deep generative models rely heavily on what the two specific
distributions P and Q are.

And among many generative models, the two main approaches are competing
for the best performance: GANs and diffusion models. For years, GANs have shown
an ability to generate high-quality images, and diffusion models demonstrated that
they can be better than GANs [7] in an image generation task. However, each model

has its shortcomings. In the case of GANs, various models suffer from unstable



training and failure modes. Among the failure modes, there is a mode collapse
problem where the trained models do not fully cover the desired data space. On
the other hand, diffusion models show relatively stable training and high mode
coverage performance. But the main disadvantage is its slow inference speed since
it needs multiple timesteps to discretize the stochastic process. But, the success of
diffusion models provides a new idea in generative modeling. Since they consider the
generation process as a series of stochastic processes rather than a single function,
it demonstrated that the application of stochastic processes in generative modeling
could achieve both high mode coverage performance and high-quality generation.

As mentioned above, various generation tasks depend on what the desired dis-
tributions P and Q are. And in many cases, there is no need for @ = Z. Even
in generation situations such as text-conditional image generation, text-to-speech
translation, or image captioning, the transformation between two distributions with
different modalities should be considered. Although diffusion models proposed a
multi-stage stochastic-process-based generative modeling rather than a single-stage
function, they depend on the forward process from P to Z. Thus, they cannot con-
struct bidirectional stochastic processes between arbitrary distributions P and Q.
To tackle this problem, various conditioning methods [4, 14] have been proposed.
But, these diffusion-based approaches still suffer from the slow sampling speed.
However, in a generative framework where stochastic processes between arbitrary
distributions are constructed, it can be quite possible to improve the diffusion
model’s disadvantages while maintaining the advantage.

From the perspective of applied mathematics, the problem of transportation
between two distributions P and Q with minimal cost can be expressed as an op-

timal transport (OT) problem. And based on a Schrodinger bridge (SB) problem,



which is an extension of entropy regularized OT problem, the desired bidirectional
stochastic processes can be obtained. Therefore, based on the SB problem’s formu-
lation, some generative modelings [3, 6, 27] were proposed. And the recent work
[3] has proposed an SB-based stochastic process as an extension to the diffusion
model’s stochastic process. SB models require a relatively small number of timesteps
compared to the diffusion models because the bidirectional processes are learnable.
However, they still need a large number of evaluation steps than function-based
generative modelings such as GANGs.

Therefore, by modifying the existing SB-based formulation, this study tried
to construct bidirectional stochastic processes with a reduced number of timesteps
compared to the previous SB-based works. Before the main discussion, the following
section briefly introduces the basic concepts of OT and SB for a better understand-
ing of this study. The presented definitions and flow of explanation mainly referred

to the work of Peyré [18] and Vargas [25].

1.1 Preliminaries

Given two data spaces X and Y, let M(X) and M(Y') be the set of probability
measures, respectively. The optimal transport (OT) problem aims to formulate
minimal-cost transportation from one data space to another. Let T : X — Y be a
continuous map, then a corresponding push-forward operator Ty : M(X) = M(Y)
exists. For discrete measure o = Zyzl a;0,, where 0, is Dirac-Delta function, push-

forward operator T’ can be expressed as

T#Oé = ZaldT(l‘z) (1.1)

=1



More generally, the push-forward measure 3 = Ty« should satisfy

vreew), | fwisw = [ 1T@)dat). (1.2)

where C(Y) is a set of continuous functions on space Y and probability measures o
and S on data space X and Y respectively. Now, given a cost function ¢, Monge’s

OT problem can be formulated as

inf {/X C(%T(fﬂ))do‘(“’”)} ’ (1.3)

st Tya =,

to find the optimal transition from X to Y.

Monge’s OT problem has a deterministic nature. To relax that condition, Kan-
torovich proposed another form of OT problem. Given two discrete measures,
a =31 a0, and B = 3770, bjdy;, let probability vectors as a = (a;) € R"
and b = (bj) € R™. Then, with a cost matrix C', Kantorovich’s OT problem is
given as

min (C,P) = min Ci i P j,
PeU(a,b) P€cU(a,b)
0] (1.4)

st. U(a,b)={P€R™™:Pl, =a and PT1, ="},

where P can be said as a policy matrix that moves measures o to 8. An extension

of the above 1.4 to include continuous measures can be expressed as

inf / c(x,y)dn(x,y),
meU(a,f) JXxY ( ) ( ) (1.5)

st. Ula,B) ={m € M(X xY):projyum = a and projym = [},



where projy » and projy 4 is the push-forwards of the projections projy (z,y) = =
and projy (z,y) = y respectively.
From a perspective of optimization problem on OT, the corresponding dual
problem of 1.4 can be considered. And the dual problem is given as
(f§§1§§0><f’ a) + (g, b), w0
st. R(C)=A{(f,9) e R" xR"™:V(i,j), fi+g; <Cij}.

Similarly, the dual problem formulation of 1.5 with arbitrary probability measures

« and f is given as

s / f(x)do(x / o(v)dB(y).
st R(C) = {(f,9) €C(X) x C(Y) : ¥(z,9), f(z) +9(y) < Cla, )}

(1.7)

This type of dual problem provides a different perspective on the given OT problem.

By adding entropy regularization term in 1.4 and 1.5, stochastic nature can
implicitly conditioned to the OT problem. For policy matrix P, discrete entropy
term is given as H(P) = — Zw P, jlog P; ;, thus the entropy regularized version of
1.4 is given as

in (C.P)— eH(P). 1.8
peHUll(%,b><’ ) — eH(P) (1.8)

Again, the entropy regularized version of 1.5 can be given as below

inf / c(z,y)dn(x,y) + eDgr(m|la x (), (1.9)
meU(a.f) Jxxy

where Dgr,(plg) = [y .y log (d—p)dp is Kullback—Leibler (KL) divergence for distri-

butions p and gq.

SEavk



By refactoring the 1.9 with Gibbs distribution X which is given as
aK(2.y) = exp - C W da(w)as). (1.10)
€
the entropy regularized OT problem 1.9 can be expressed as

inf D K). 1.11
ettt o KkL(7|K) (1.11)

The above form of the problem is often called a static Schrodinger problem. This
is a situation where there the Gibbs distribution K contains information about the
cost function, and path 7 between « and [ is optimized to be close with the Gibbs
distribution as a reference.

By extending this, Schrédinger bridge (SB) problem can be proposed as

inf  Dyp(n|W), 1.12
e o) kL(m[W) (1.12)

where reference measure WV replaces the Gibbs measure and D(P, Q) is a set of path
measures with marginals of desired distribution P and Q. This formulates a more
general situation of finding a path measure between P and Q where cost information
is implicitly reflected in a choice of reference measure. From the perspective of KL
divergence as a distance, it can be interpreted that the process of reducing the
distance between the path measure and reference measure reflects the nature of
OT since the reference measure contains cost information.

The choice of W as a prior knowledge enables different interpretations of the SB
problem. For instance, if W is uniform distribution, then 1.12 becomes equivalent

to 1.11 with entropy. And it was demonstrated that the SB problem is equivalent



to a stochastic control problem with a proper choice of W [25, 17]. Let WY be the
Wiener measure with volatility -, then path measure m € D(P, Q) can be expressed
as a distribution which evolves according to the solution of stochastic differential

equations: forward direction and backward direction of Ito process form as

d$t = ftdt + \f’ydwt,

d$t = btdt + ﬁdwt

(1.13)

With the above forward and backward Ito process, the SB problem can be expressed

as the following two alternate objectives

1
min Dy (7|W7) =minE, [/ Hft||2dt] ,
fe 0o 2v

w€D(P,Q) (114)
s.t. dxy = frdt + \/ydw, xo ~ P, 21 ~ Q,
|
min Dy (m(W7) = min E; {/ ||bt||2dt} ,
TFGD(P,Q) be 0 2’Y (115)

s.t. dxy = bdt + \/ydwy, 1~ Q, 29 ~ P

The above objectives do not provide information about an update rule of drift f;
and b; in a stochastic process. But it means that the SB problem can be formulated
as an optimal control problem with bidirectional stochastic processes minimizing

their energy.



Chapter 2

Related Works

In this chapter, more backgrounds related to this work are presented. First, some
OT-related deep learning studies are briefly introduced with their formulation.
Next, detailed backgrounds related to diffusion models are explained. And lastly,

formulations of SB-based generative modeling are presented.

2.1 Optimal Transport in Deep Learning

The OT-based approaches for deep learning were already widely used in many
places, even before SB. The most widely known result would be WGAN [1]. With
the definition of Kantorovich OT problem 1.5, consider the below:

inf E;|||lz— = inf / x — dm(x,vy), 2.1
it Eelle=yl)= ot [ e=yledr(@a), 21)

where P is a distribution of desired real data and Q is a distribution of generated

fake data. Then by the Kantorovich duality 1.7, the equivalent dual problem can



be expressed as

P Ezp [h(z)] — Eyno [R(y)], (22)

where ||h||, < 1 denotes that h is a 1-Lipschitz function. Now with a generator

network gg and discriminator network dy, the above 2.2 can be expressed as

sup  Egpup [dg(2)] — E.vz [dg(g0(2))] (2.3)
lldgll<1

where Z is a latent space, i.e. Gaussian noise.

More recently, in self-supervised deep learning, SwAV [2] utilized an OT-based
approach. In the process of learning the representation feature vector, latent codes
with discrete values are proposed. Thus, with the OT problem 1.8, Sinkhorn’s algo-
rithm was used to transport one latent code to another. The Sinkhorn’s algorithm
can be derived by applying Lagrangian L(P, f,g) to 1.8 with two dual variables

feR"and g € R™ as

L(P,f,g):<C,P>—€H(P)—<f,le—a>—<g,PTln—b>. (24)

Then, with first-order derivative to each element,

OL(P, f,9)

op, Cij+elog Py j — fi —g; = 0. (2.5)

Thus, the resulting solution of 2.5 is given as

Bij = exp(fi/e) exp(=Ci /€) exp(g;/€). (2.6)

And by refactoring 2.6 as P = diag(u)Kdiag(v), the iterative update rule of

10



Sinkhorn’s algorithm is given as

kil _ 0 k1 _ b
u = W and v = KTU'I‘: (27)

To solve more general OT problems such as 1.9 in iterative form, the term called
iterative proportional fitting (IPF) algorithm is broadly used including Sinkhorn’s
algorithm.

Domain translation is a well-known application of deep generative models. For
this task, it is important to maintain the semantic information of the image during
the translation: e.g. the content of an image in image-to-image translation or the
nuance of a sentence in language translation. For this purpose, the cycle-consistency
loss was proposed by CycleGAN [29] and has been used widely in various domains
of deep learning. Given the two desired data spaces X and Y with measures o and
B respectively, the (unsupervised) domain translation tasks such as image-to-image

translation can be formulated as [5]

inf /X (e, T(x))da(z) + /Y e(S(y).y)dB(y), s

st. Tya=p, Syf=a, ToS=id, SoT =id,

where T and S are the desired functions for translations. And some studies [5,
21] demonstrated that this formulation is known to be equivalent to the form of
Monge’s OT problem 1.3. In other words, when the domain translation tasks such
as image-to-image translation are formulated from the perspective of OT, it can

be interpreted as an implicit cycle-consistency conditioned problem by its nature.

11



2.2 Deep Generative Models

Except for diffusion models, the previously mentioned generative models aim to
train a one-stage function from Z to P. In GANs, a mapping G : Z — P is trained
directly. And in VAESs, two mappings are trained: encoder E : P — Z and decoder
D : Z — P. In normalizing flows, invertible network G : P — Z is trained where
inference is done by G=' : Z — P. However, diffusion models first considered a
transition from P to Z as a stochastic forward process. The forward process is a
noising process and it can be formulated in various ways. One can be formulated

via the Markov process [9] as

zrr1 = N(V Brae, (1 = B)I). (2.9)

Meanwhile, the forward noising process can be formulated as a continuous
stochastic differential equation (SDE), unlike the above discrete Markov process.
This was proposed in the score-based generative model (SGM) [23] which became

the prototype of the diffusion model and its SDE form is expressed as
dry = fi(zi)dt + grdwy. (2.10)

With such a forward process is given, it is known that the corresponding backward

stochastic process is expressed as
dey = [fi(2e) — 9tV log pi(a4)] dt + geduwy, (2.11)

where p; is the marginal distribution of x¢, and V, log p;(x) is called score function

of p¢. Since the numerical computation of the above SDEs requires discretization,

12



with an Euler-Maruyama scheme and discrete-time step size -, the numerical sam-

pling process of the above two processes 2.10 and 2.11 is given as
Tip1 =z + 7 fe(2) + VY92, (2.12)

Ty = Tg41 — [ft+l(33t+1) - gt2+1vx 10g10t+1(90t+1)] + ﬁgtHZ, (2.13)

where z is Gaussian noise. The drift terms f; and g; are derived from the discrete-
time diffusion frameworks such as DDPM [9] and NCSN [22]. The previously men-
tioned discrete noising process 2.9 of DDPM [9] can be induced in a SDE form
2.10. It is known as VPSDE and given as

1
dry = _iﬁtfvtdt + \/Edwt (214)

Since the forward process 2.10 of SGM has a fixed linear drift, it is possible to com-
pute an exact transition kernel that transits x¢ to x;. The corresponding transition

kernel of VPSDE is
p(ze|xo) =N (wt; xoe_% Jo Bls)ds (1 e 5(5)‘15) I) . (2.15)

Another example of SGM type is VESDE. It is induced from the formulation of

NCSN [22] and given as

_  Jdlo*(®)]
d$t = wat, (216)

with its corresponding transition kernel is
p(zilzo) = N (20, (02(t) — 0*(0))I). (2.17)

13



Considering the numerical backward process 2.13 for generation, in addition to the
information of drift f; and g, the information about score function Vlogp:(x)
is also essential. Thus, the training of diffusion models is designed to make neu-
ral network sg(x¢,t) approximate the non-linear drift V, log p;(x;) at each z;. To

achieve this, objective function for training is given as

EJ»’Oﬂf U|S@((L’t,t) -V, logp(xt’xO)H%] . (2.18)

By minimizing the above objective, known as score-matching framework [26], the
neural network sg(z¢,t) can approximate the desired score function V, log p;(x)
properly.

Although diffusion models have shown remarkable performance and scalabil-
ity to various domains, they suffer from slow sampling speed. Thus, many studies
[10, 28, 24, 11] have proposed methods to improve sampling speed. These methods
1) utilize GAN’s approximation ability, 2) introduce a faster numerical algorithm
for solving SDEs, or 3) consider the diffusion process in the latent space, which is
equivalent to diffusion models with non-linear drift f; and ¢; in the original data
space. However, even in these attempts, the diffusion models still require a large
number of timesteps for inference compared to one-stage generative models such
as GANSs. Also, bidirectional stochastic processes between any desired distribution
P and QO cannot be obtained in the framework of diffusion models. As discussed
before, a modality-agnostic transformation between P and Q is required to solve
various real-world generation problems. For instance, at present, text-conditional
image generation and image captioning are approached as separate tasks. But if

the transformation between image and text data spaces are induced together as

14



bidirectional processes, the two tasks can be learned as one framework. Therefore,
there is a need for stochastic-process-based generative modeling between any P and
Q. More research is still needed for the general modality-agnostic transformation
between data distributions with different dimensions. But, the SB formulation can
construct desired stochastic processes between data distributions of the same di-
mension, and it can be seen as an attempt at a more general generative framework

while showing a direction for solving the limitations of the diffusion model.

2.3 Schrodinger Bridge in Generative Modeling

From the SB problem 1.12 perspective, the work of SB-FBSDE [3] consists of two
learnable generative processes: forward and backward stochastic processes. Similar
to the SGM’s forward and backward process, 2.10 and 2.11, SB-based formulation

from the work of [3] is given as
dzy = [ fi(zi) + 97 Ve logy(ay)] dt + giduwy, (2.19)

dxy = [ft(-ft) — g/ Vg log lﬁt(mt)} dt + gsdwy, (2:20)

where V, log ¢;(z;) and V, log @t(xt) are non-linear drift terms. If V, log ¢ (z4) = 0
holds, it can be readily confirmed that it is equivalent to that of 2.10 and 2.11. With
discretization step size 7 and Euler-Maruyama scheme, the sampling process for

numerical computation is given as

Tipr = x + 7 [fe(@e) + 97 Ve log ()| + VAge2, (2.21)
Tp = Tpp1 — [ft—i—l(l‘t—i-l) — 9741V log 1/A1t+1(33t+1)] +VY9t+12. (2.22)
15



The similarity between the forward and backward processes of SB-FBSDE and
those of SGM is straightforward. And since SB-FBSDE has non-linear drift in both
bidirectional processes unlike SGM, SB-based stochastic processes are a generaliza-
tion of that of SGM. While the drift term f; and g; are derived from discrete-time
diffusion models in SGM’s formulation, they are not induced theoretically in the
SB-FBSDE formulation. Since there is no information to construct f; and ¢; in
SB-FBSDE, they were manually set as those of VESDE or simply as f; = 0 and
gt = 1. And unlike diffusion models, the above SB formulation cannot be trained
in the form of score-matching, so two processes 2.19 and 2.20 are transformed into
an equivalent SDE problem to construct a loss objective. In this process, non-
linear drift terms of SB-FBSDE have the following relationship with score function

V. log pPB(z4) of path measure pP® of SB problem:
Vo log () + Vg log ¢y () = Vi log pPB(x). (2.23)

There is another SB-based formulation, Diffusion Schrédinger Bridge (DSB) [6],

which was induced as Markov processes. It is defined as
P (@e|me) = N(@epas ap + v (20), 291) = N(@eg1; Fi(a), 291), (2.24)

P (e|ves1) = N (@ 2041 + vbeg1 (Tes1), 29I) = N (24; Bigr (ve41), 29I),  (2.25)

for t € {1,...,7 — 1} and T is the number of total time step. By letting the

approximation of p/ (z¢|xs11) as

! (@ilzi1) = N (@i 1 — V(@) + 29Ve logplyy (441), 29T), (2.26)

16



if the two processes p/ (4|24 1) and p®(2¢|x11) corresponds, the drift term of p?
can be expressed with the drift term and score function of p{ . Thus, it leads to an

iterative update rule for the backward drift as
by (zi41) = —£ (T441) +29Ve logp{fl(xﬂrl)- (2.27)
And the update rule for the forward drift can be derived similarly as
£ () = b () + 29V, log p) " (z1). (2.28)

With basic calculus and dominated convergence theorem, the followings can be
derived:
PP (@) = N (s B (w1),291),
p{fl(xwrl) =E, P! (w441 ]20)]

= (A7) B pon [expl—[|F'(@0) — 2141]%] /49] (2.29)

Vo log pl (z441) = E rn [F{(x1) = 211] /27,

t|t4+1

Bl i (we41) = Ep{‘»tnﬂ [Te41 + F{' (20) — FY' (2441)] -

Based on this result, as proof of other directions is similar, the following iterative

objectives can be derived:

E rn [IBev1(zer1) = wen — (B (2e) — ' (2er1)) 7], (2.30)

fin
Pit+1

Eypn [|Fy(ze) — 20 = (Bfyy (we41) — B (@), (2.31)

tt+1

where Bf, ; and F"*! can be trained with the objectives 2.30 and 2.31 respectively.

In the DSB framework, the drift term for Brownian motion cannot be addressed

17
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and there is no guarantee that each process p{ and p,lf’ corresponds to a path measure
ptSB of SB problem as in SB-FBSDE. However, the non-linear terms f; and b; are
only core drift terms, reducing the need for manual selection of the linear drift
terms, unlike FBSDE. In other words, since the non-linear drifts of DSB are trained
through the neural networks without manual selection, the approximation property
can be maximized. Thus, the DSB framework can be valid with fewer timesteps
compared to SB-FBSDE. Both SB-FBSDE and DSM can be trained iteratively
with IPF recursion. And since the number of required iterations for each IPF step
is quite large, the training takes a long time for convergence compared to diffusion

models.

18



Chapter 3

Proposed Method

Based on the SB-based formulations, this study tried to construct discrete-time
stochastic processes between any two distributions with smaller timesteps required.
While maximizing the use of non-linear drift as in the DSB framework, the for-
mulation of SB-FBSDE was added as a regularization to make the two different
forward and backward processes coincide as a path measure of the SB problem. The
existing SB-based generative models’ training is unstable with a smaller number of
timesteps and iterations. Thus, to construct stable stochastic processes while reduc-
ing the number of iterations and timesteps required for convergence, the concept of
cycle-consistency proposed by CycleGAN [29] was introduced as a regularization

to SB-based formulation.

3.1 Regularization for Schrodinger Bridge

Consider the SB-FBSDE formulation with fixed Brownian motion drift g, = 1 and

let the both linear and non-linear drift of SB-FBSDE as a single non-linear drift
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as in DSB,
dxy = [fi(w¢) + Vi log by (wy)] dt + dwy = £ () dt + dwy, (3.1)

dl‘t = [ft(xt) — Vm log TZJt(JZt)] dt + d’U)t = —bt(l't)dt + dwt. (32)

When considering the following forward and backward processes where only the

degree of variance differs from 2.24 and 2.25 of DSM,

P (@era|ze) = N (@ep1; v + v (20), /L) = N (wer1; Fi(we),71), 33)

=z = 2 R (2) + /2

P (ze|es1) = N (@ 241 + vbigr (Te41), V1) = N (243 Bega (2441),71), 5.0

= =21 — Y (b (zeg)) + V2
Note that with different degree of variance, the 3.3 and 3.4 can have the same
objective functions 2.30 and 2.31 respectively through the same process of DSM.
Interpreting the above discrete stochastic processes as the Euler-Maruyama scheme
with discretization step size -, the corresponding continuous-time SDEs with for-

ward and backward directions are given as
dIL‘t = ft(l‘t)dt -+ dwt, (35)

dry = —bt(l't)dt ~+ dwy, (36)

Since these expressions 3.5 and 3.6 are equivalent to 3.1 and 3.2 respectively, it

demonstrates that DSB and SB-FBSDE can be related as continuous-time SDEs.
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Note that with the property of SB-FBSDE formulation 2.23, the following holds:
fi(z¢) + be(z) = Va logptSB(:Ut). (3.7)

And in ideal scenario, the path measure p?® of SB problem should coincide with
marginal measure of the forward and backward processes, 3.5 and 3.6. In this case,

the following relationships hold:

Va logp{(mt) =V, logptSB(a:t) =V, logpi’(xt), (3.8)

where p{ and pé’ corresponds to the marginal distribution of forward and backward

processes, 3.5 and 3.6 respectively. Now, through the same process as the work of

DSM, the following holds:

Valogplfi (@is) = By [F(e0) = w11l /7. (39)

t)t+1

Combining the results of 3.7, 3.9, and 3.9, the followings can be derived:

S
Valog piiy" (wes1) = Vo log pl i (ze41),

1 (@er1) + bt (@) = B o [F (20) — 2041] /7,

tlt4+1

Yo (@e41) = Ep{‘»tnﬂ [F () — Fii (we41)]

(3.10)

By (z41) = El’{{ﬁrl (@441 + F () — F'y (2e41)] -

Based on this, as a case of other directions is similar, the following regularization
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objectives are given as

E rn [|1Bi1(zes1) — 2o — (B (20) = Fiiy (2e00)|], (3.11)

t,t4+1

Ebf;;;;l (|1 Fi(ze) — 2 — (B 1 (meg1) — B () |17, (3.12)

where 3.11 holds for ¢ € {0,...,7 — 2} and 3.12 holds for ¢t € {1,...,T — 1}.
And B}, and F"*1 can be iteratively trained with the objectives 3.11 and 3.12
respectively. This objective can be thought as an additional regularization term for
the DSB’s objective function 2.30 and 2.31 since it cannot applied for all time step
tef{0,...,T—1}.

Putting objective term of 2.30 as Lpgp and 3.11 as L.y, the objective of

regularized SB-based formulation can be expressed as
alpsp + (1 — a)[,T@g, (313)

where « is a hyperparameter. Note that the Lpsp and L;.4 are very similar, and
learning these two objectives as separate terms requires more GPU memory by
storing two similar computational graphs. With the convexity of ||-||?, the memory-

efficient objective can be attained as

alpsp + (1 - O‘)Lreg > »Cmemory =
(3.14)

E rn [IB@i1) = wien = (F (21) = aF (z001) = (1= @) Fy (2e41)) 7]

Note that stable forward and backward processes in an ideal scenario should
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satisfy the following

Bt—&—l(Ft(wt)) = Iy, Ft(Bt+1(I't+1)) = Tt11, te {0, e ,T — 1}. (3.15)

Note that the above relation can be considered as a cycle-consistency constraint pro-
posed by CycleGAN [29]. It is essential relation that must hold for entire stochastic
processes, but SB-based processes with small timesteps may not attain this. There-
fore, to reduce the number of iterations and timesteps required for convergence
while maintaining the stability of the constructed stochastic process, the above
cycle-consistency relation can be used as an additional regularization term to the

objective function explicitly. For this, the above relation 3.15 can be expressed as

[Fi(z1)] = @41,

T P{+1|t [Bt+1<$t+1)] = T EItN p’tjltJrl (3 16)
te{0,..., T —1}.
And again, it can be formulated as the following regression problem:
Leye =E pn (B (zes1) — ze]: (3.17)
tt+1

This objective, Ly¢, is an additional term of L,,emory. Note that all objectives
LpsB, Lreg, and Leye have Byyq(2441) term, this is the only term that is evaluated
during training. Thus, for efficient training, By11(z¢+1) should be evaluated once.
If Lpsp, Lreg, and Ly terms are used separately, evaluation of By 1(x41) should
occur multiple times, which is inefficient. By the convexity of || - || and with the

proper setting of the weight 3, the memory-efficient loss objective can be obtained
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as

1
Lp= Ep{,th [ Bi1(2e41) — B+l (o1 — (B (21) — o (Te41) —
(1= ) F (z041)) 2l € = Lonemory + =2 Loy
B+1 B+1

S B+1
Similarly, the loss objective for updating Ft”'|r1 can be obtained as

1
B+1

Lp= Epi”t" ) | Fy () —

: (2t — (B 1 (we41) — aBPy (@) —

(1 — ) By (1)) — ze ||

g
B+1

(3.18)

(3.19)

Thus, the regularized SB-based model, RSB, is trained for the desired bidirectional

stochastic processes by alternating between Lp and L. Since the objective was set

to memory-efficient style, model evaluation Byt1(z¢y1) or Fy(z¢) proceeds only one

for each update. The remaining term of the objectives can be effectively obtained

by a replay-memory [16].
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Chapter 4

Experiments

Based on the regularized SB-based formulation, the proposed RSB experimentally
demonstrated that it can train stochastic processes between any two data spaces
with relatively small timesteps compared to the previous SB models. And its train-
ing was more stable and faster. Since the SB-based stochastic process is free from
the constraints of starting at Z, the experiments were conducted on both uncondi-
tional and conditional generation tasks. And for both types of tasks, the proposed

RSB confirmed its effectiveness.

4.1 Dataset

2D Toy, MNIST, and CelebA were used as datasets for qualitative performance
evaluation of RSB. The 2D Toy dataset consists of intuitive 2-dimensional data,
including 8-Gaussian, Checkerboard, 25-Gaussian, and Circles. And the MNIST is
one of the most widely known datasets in deep learning research and consists of

digits ranging from 0 to 9. Lastly, the CelebA dataset, where various male and
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female faces exist at various ages, was also used to determine whether the RSB can

handle the relatively high-resolution image domain.

4.2 Training

A vanilla GAN model with a gradient penalty (GP) of the form [15] was trained on
the 2D Toy to compare with the proposed RSB. And for other datasets except for
the 2D Toy dataset, the NCSN++ architecture of SGM [23] was used. In addition,
since RSB requires multiple steps of model evaluation, the training can be very
slow if the model is evaluated for each update iteration. To mitigate this issue,
the replay memory was generated by inferencing with a large batch size at once
and the generated replay memory was used for multiple iterations. Also, for faster
training, in the case of unconditional generation, since the forward noising process
from P to Z is relatively easy to be trained, half of the number of iterations was

used at each IPF stage compared to training of the backward process.

4.3 Results

The existing SB models, DSB and SB-FBSDE, can be compared to RSB for per-
formance evaluation. Since SB-FBSDE depends heavily on continuous-time SDEs,
SB-FBSDE requires 100 steps even for a 2D Toy dataset. Thus it could not be
trained for small timesteps such as T' = 4,8. And since DSB was formulated in a
relatively discrete-time setting compared to SB-FBSDE, DSB showed better perfor-
mance when the number of timesteps is restricted to be small. Thus, the proposed

RSB was compared to DSB.
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Figure 4.1: Qualitative results on 8-Gaussians of 2D Toy

4.3.1 Results with 2D Toy

Firstly, RSB was trained for unconditional generation of 8-Gaussians of 2D Toy.
Both RSB and DSB were trained with 8 timesteps, 10K iterations for the forward
process, and 20K iterations for the backward process. And hyperparameters for
RSB was set to @ = 0.5 and 8 = 2.5. See Figure 4.1 for comparison. While DSB
didn’t converge to the desired data space, RSB almost converged.

Next, an unconditional generation of 25-Gaussians which is much more com-
plicated than 8-Gaussians was testified. Both RSB and DSB were trained with 8
timesteps, 20K iterations for the forward process, and 40K iterations for the back-
ward process. And hyperparameters for RSB was set to « = 0.5 and 8 = 5. And
GAN was trained for 60K iterations. See Figure 4.2 for comparison between DSB,
RSB and GAN. While DSB showed instability where the training did not progress
significantly after the intermediate stage, RSB showed fast convergence in the in-
termediate stage, and the rest of the training stayed stable. This indicates that
the existing SB-based methods are not suitable for a small number of discretized
timesteps while RSB is. And although GAN was trained for a sufficient training

time, mode collapse occurred that it could not cover all modes of 25-Gaussians. The
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result shows that stochastic-process-based generative modeling can complement the
existing function-based one.

Since the SB-based formulation enables a stochastic process between any data
spaces, the proposed RSB was tested on the data translation, i.e. the case of con-
ditional generation, between 8-Gaussians and Circles data space. Both RSB and
DSB were trained with 8 timesteps, 10K iterations for the forward process, and
20K iterations for the backward process. And hyperparameters for RSB was set
to o = 0.5 and § = 2.5. And GAN was trained for 30K iterations. See Figure
4.3 for comparison. An interesting result is that when the conventional GAN was
trained to generate the Circles data space from the 8-Gaussians data space, not
the latent space, the training was not done properly. And it can be confirmed that
RSB obtained better translation performance than DSB. In addition, it can be
visually confirmed that the trajectories of the trained stochastic process by RSB
and DSB are different. See 4.4 and 4.5. When comparing the forward process from
Circles to 8-Gaussians, the outer circle gathers in the form of 8-Gaussians and the
central circle scatters toward the edge in DSB. In the case of RSB, the outer circle
and the central circle are scattered and gathered to create 8 modes and they move
to the desired place. Therefore, it can be concluded that applying regularization
to the existing SB-based formulation changes the trajectories drawn by stochastic
processes leading to fast training with smaller timesteps required.

These results from the 2D Toy show the possibility that the failure modes
existing in both unconditional and conditional generation of GANs can be improved

through stochastic-process-based generative models.
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Figure 4.3: Qualitative results on data translation task between 8-Gaussians and

Circles of 2D Toy
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Figure 4.4: Detailed qualitative results of DSB on data translation between 8-
Gaussians and Circles of 2D Toy. The top two rows illustrate the forward process
from Circles to 8-Gaussians. And other rows illustrate the backward process from
8-Gaussians to Circles.
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from Circles to 8-Gaussians. And other rows illustrate the backward process from

Gaussians and Circles of 2D Toy. The top two rows illustrate the forward process
8-Gaussians to Circles.

Figure 4.5: Detailed qualitative results of RSB on data translation between 8-
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4.3.2 Results with MNIST

With the MNIST dataset, RSB and DSB were compared for an unconditional gen-
eration task. Both RSB and DSB were trained with 16 timesteps, 8K iterations
for the forward process, and 16K iterations for the backward process. And hyper-
parameters for RSB was set to a = 0.5 and 8 = 5. The total iterations spent for
training are relatively insufficient for training the existing SB models. See Figure
4.6 for results. In the case of DSB, the training has not progressed significantly, but
in the case of RSB, the training state has significantly progressed. It indicates that
by adding regularization to the SB-based formulation, RSB reduces the number of

iterations required for sufficient training compared to the existing SB models.

4.3.3 Results with CelebA

Recall that the advantage of SB-based formulation is that it can construct bidirec-
tional stochastic processes between any two data spaces, eliminating the need for
conditioning the generation starting from the latent space. Therefore, the proposed
RSB explored this possibility through the task of image-to-image translation and
the single image super-resolution. The previous SB models [3, 6] mainly demon-
strated their performance on unconditional generation tasks, while the image size
stayed in 32x32 size. But, since the RSB reduced the required number of timesteps
and training time, it experimentally confirmed that the SB-based process could
play a role in the relatively high-resolution data space of the CelebA dataset with
128x128 size.

The image-to-image translation task is to translate the image of the source data
space to that of the target data space while maintaining the semantic information

of the source image. There are various possible scenarios in image-to-image trans-
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(b) Translated Image

Figure 4.7: Qualitative results on image-to-image translation task between male
and female of CelebA. The top row illustrates the source images. And the bottom
row illustrates the translated images.

lation, and in this experiment, the translation between male and female faces was
considered. The RSB trained the discrete-time stochastic processes between the
data space of the male face and the female face. And the forward and backward
processes were trained with o = 0.5, 8 = 10, 4 timesteps, and 48K total iterations
each.

The qualitative results from RSB are in Figure 4.7. And Figure 4.8 shows the

Figure 4.8: Detailed translation process from male to female with 4 timesteps
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) LR(x8) Input

) SR Output

Figure 4.9: Qualitative results on super-resolution task of CelebA. The top row
illustrates the LR images. And the bottom row illustrates the SR outputs.

detailed translation process trained by the regularized stochastic process with 4
timesteps only. The results show that the face of the source domain can be trans-
lated to the target domain while maintaining semantic information such as iden-
tity, facial expression, and pose. Note that masculinity or femininity was properly
changed without a large change in hairstyles. It is seen as a result of SB-based
formulation as an OT problem with implicit cycle-consistency. And it seems that
implicit cycle-consistency was strongly applied.

Similarly, the RSB was trained to handle the single image super-resolution task.
In this task, RSB constructed the stochastic processes between the data space of
low-resolution images and super-resolution images. And it was trained with o = 0.5,
B = 10, 8 timesteps, and 48K total iterations for each forward and backward
process. The qualitative results from RSB are in Figure 4.9. And Figure 4.10 shows

the detailed super-resolution process of trained RSB. The desired super-resolution
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Figure 4.10: Detailed super-resolution process from LR(x8) to SR

(SR) space was set to be 128x128 size and the low-resolution (LR) input was
downsampled with x8 scale. The results show that the desired SR outputs were

attained while maintaining the semantic information of LR input properly.
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Chapter 5

Conclusion

This study tried to utilize bidirectional stochastic processes based on the Schrédinger
bridge (SB) problem for deep generative modeling. The existing SB-based gener-
ative models have been proposed to improve the slow sampling speed of diffusion
models and showed their potential. However, compared to generative models such as
GANSs, a large number of timesteps and a long training time are still required. This
study aimed to reduce the number of timesteps and training time required by the
existing SB models. In the existing SB-based framework, the bidirectional stochas-
tic processes become unstable with a small number of discretization timesteps be-
cause they are not consistent with each other. Therefore, this work proposed reg-
ularization terms to maintain the consistency between the bidirectional stochastic
processes. By applying this regularized SB-based process to both conditional and
unconditional generation tasks, it was possible to properly train stochastic pro-

cesses between two arbitrary distributions even with smaller timesteps.

37



Bibliography

1]

M. ARJOVSKY, S. CHINTALA, AND L. BoTTOU, Wasserstein generative ad-

versarial networks, in International conference on machine learning, PMLR,

2017, pp. 214-223.

M. CaroN, I. Misra, J. MAIRAL, P. GovAL, P. BOJANOWSKI, AND
A. JouLIN, Unsupervised learning of visual features by contrasting cluster as-
signments, Advances in Neural Information Processing Systems, 33 (2020),

pp. 9912-9924.

T. CHEN, G.-H. Liu, AND E. A. THEODOROU, Likelihood training of
schrodinger bridge using forward-backward sdes theory, in International Con-

ference on Learning Representations, 2022.

J. Cuoi, S. KM, Y. JEONG, Y. GWON, AND S. YOON, llvr: Condi-

tioning method for denoising diffusion probabilistic models, arXiv preprint

arXiv:2108.02938, (2021).

E. DE BEZENAC, I. AYED, AND P. GALLINARI, Optimal unsupervised domain

translation, arXiv preprint arXiv:1906.01292, (2019).

38



[6]

[11]

V. DE BorroLl, J. THORNTON, J. HENG, AND A. DOUCET, Diffusion
schrodinger bridge with applications to score-based generative modeling, Ad-

vances in Neural Information Processing Systems, 34 (2021).

P. DHARIWAL AND A. NICHOL, Diffusion models beat gans on image synthesis,

Advances in Neural Information Processing Systems, 34 (2021).

I. GooDpFELLOW, J. POUGET-ABADIE, M. Mirza, B. Xu, D. WARDE-
FARLEY, S. OzAIR, A. COURVILLE, AND Y. BENGIO, Generative adversarial

nets, Advances in neural information processing systems, 27 (2014).

J. Ho, A. JAIN, AND P. ABBEEL, Denoising diffusion probabilistic models,

Advances in Neural Information Processing Systems, 33 (2020), pp. 6840-6851.

A. JOLICOEUR-MARTINEAU, K. L1, R. PICHE-TAILLEFER, T. KACHMAN,
AND I. MITLIAGKAS, Gotta go fast when generating data with score-based mod-

els, arXiv preprint arXiv:2105.14080, (2021).

D. Kim, B. NaA, S. J. Kwon, D. LEg, W. KANG, AND [.-C. MOON, Maxi-
mum likelihood training of implicit nonlinear diffusion models, arXiv preprint

arXiv:2205.13699, (2022).

D. P. KINGMA AND P. DHARIWAL, Glow: Generative flow with invertible 1x1

convolutions, Advances in neural information processing systems, 31 (2018).

D. P. KINGMA AND M. WELLING, An introduction to variational autoen-

coders, arXiv preprint arXiv:1906.02691, (2019).

39



[14]

[16]

[17]

[18]

[19]

[20]

[21]

C. MENG, Y. HE, Y. Song, J. Song, J. Wu, J.-Y. ZHU, AND S. ER-
MON, Sdedit: Guided image synthesis and editing with stochastic differential

equations, in International Conference on Learning Representations, 2021.

L. MESCHEDER, A. GEIGER, AND S. NOWOZIN, Which training methods for

gans do actually converge?, in International conference on machine learning,

PMLR, 2018, pp. 3481-3490.

V. MniH, K. KavukcuoGLu, D. SILVER, A. GRAVES, I. ANTONOGLOU,
D. WIERSTRA, AND M. RIEDMILLER, Playing atari with deep reinforcement

learning, arXiv preprint arXiv:1312.5602, (2013).

M. PAVON AND A. WAKOLBINGER, On Free Energy, Stochastic Control, and

Schriodinger Processes, Birkhauser Boston, Boston, MA, 1991, pp. 334-348.

G. PEYRE, M. CUTURI, ET AL., Computational optimal transport, Center for

Research in Economics and Statistics Working Papers, (2017).

A. RaMmEsH, P. DHARIWAL, A. NicHoL, C. CHU, AND M. CHEN, Hier-

archical text-conditional image generation with clip latents, arXiv preprint

arXiv:2204.06125, (2022).

C. SAHARIA, W. CHAN, S. SAXENA, L. L1, J. WHANG, E. DENTON, S. K. S.
GHASEMIPOUR, B. K. AvAN, S. S. ManDAvI, R. G. LOPES, ET AL., Pho-
torealistic text-to-image diffusion models with deep language understanding,

arXiv preprint arXiv:2205.11487, (2022).

F. SANTAMBROGIO, Optimal transport for applied mathematicians, Birkauser,

NY, 55 (2015), p. 94.

40



22]

[24]

[25]

[26]

[27]

28]

[29]

Y. SONG AND S. ERMON, Generative modeling by estimating gradients of

the data distribution, Advances in Neural Information Processing Systems, 32

(2019).

Y. SoNG, J. SOHL-DICKSTEIN, D. P. KiNGMA, A. KUMAR, S. ERMON,

AND B. POOLE, Score-based generative modeling through stochastic differential

equations, arXiv preprint arXiv:2011.13456, (2020).

A. Vanpar, K. KREIS, AND J. KAUTZ, Score-based generative modeling in

latent space, Advances in Neural Information Processing Systems, 34 (2021),

pp. 11287-11302.

F. VARGAS, Machine-learning approaches for the empirical schrodinger bridge

problem, tech. rep., University of Cambridge, Computer Laboratory, 2021.

P. VINCENT, A connection between score matching and denoising autoen-

coders, Neural computation, 23 (2011), pp. 1661-1674.

G. WANG, Y. Jiao, Q. XU, Y. WANG, AND C. YANG, Deep generative learn-

ing via schrodinger bridge, in International Conference on Machine Learning,

PMLR, 2021, pp. 10794-10804.

Z. X1a0, K. KREIS, AND A. VAHDAT, Tackling the generative learning
trilemma with denoising diffusion gans, arXiv preprint arXiv:2112.07804,
(2021).

J.-Y. Zuu, T. PARK, P. IsoLA, AND A. A. EFROS, Unpaired image-to-image
translation using cycle-consistent adversarial networks, in Proceedings of the

IEEE international conference on computer vision, 2017, pp. 2223-2232.

41



AR

1
T

tod, =]

S|

=3} v

@o

N

Tor
ol
s

wAIE si2st

2t

Fed o] 2

Tor

o

ol

[ L A BT

gt 18 of
w7} o 45

S

A&

al
=
=

ol

)

of 325}

=

ol

PRI 71| =P 7] BejA] =

o

A%

~

o|]

—~
“_00

AZE | 2] ARGof| A Hok

o

J|J
~

o

N

—

@)

<
T

o)
Tor

o
—_

g, 24t A B, E P B

"

SHH: 2020-22722



	1. Introduction
	1.1 Preliminaries

	2 Related Works
	2.1 Optimal Transport in Deep Learning
	2.2 Deep Generative Models
	2.3 Schrodinger Bridge in Generative Modeling

	3 Proposed Method
	3.1 Regularization for Schrodinger Bridge

	4 Experiments
	4.1 Dataset
	4.2 Training
	4.3 Results
	4.3.1 Results with 2D Toy
	4.3.2 Results with MNIST
	4.3.3 Results with CelebA


	5 Conclusion
	The bibliography
	Abstract (in Korean)


<startpage>10
1. Introduction 1
 1.1 Preliminaries 4
2 Related Works 9
 2.1 Optimal Transport in Deep Learning 9
 2.2 Deep Generative Models 12
 2.3 Schrodinger Bridge in Generative Modeling 15
3 Proposed Method 19
 3.1 Regularization for Schrodinger Bridge 19
4 Experiments 25
 4.1 Dataset 25
 4.2 Training 26
 4.3 Results 26
  4.3.1 Results with 2D Toy 27
  4.3.2 Results with MNIST 33
  4.3.3 Results with CelebA 33
5 Conclusion 37
The bibliography 38
Abstract (in Korean) 42
</body>

