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Abstract

Applying Regularized
Schrödinger-Bridge-Based Stochastic

Process in Generative Modeling

Ki-Ung Song

Department of Mathematical Sciences

The Graduate School

Seoul National University

Compared to the existing function-based models in deep generative modeling, the

recently proposed diffusion models have achieved outstanding performance with a

stochastic-process-based approach. But a long sampling time is required for this

approach due to many timesteps for discretization. Schrödinger bridge (SB)-based

models attempt to tackle this problem by training bidirectional stochastic processes

between distributions. However, they still have a slow sampling speed compared to

generative models such as generative adversarial networks. And due to the train-

ing of the bidirectional stochastic processes, they require a relatively long training

time. Therefore, this study tried to reduce the number of timesteps and training

time required and proposed regularization terms to the existing SB models to make

the bidirectional stochastic processes consistent and stable with a reduced num-

ber of timesteps. Each regularization term was integrated into a single term to

enable more efficient training in computation time and memory usage. Applying
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this regularized stochastic process to various generation tasks, the desired transla-

tions between different distributions were obtained, and accordingly, the possibility

of generative modeling based on a stochastic process with faster sampling speed

could be confirmed.

Key words:Deep Learning, Generative Model, Stochastic Process, Diffusion Model,

Schrödinger Bridge

Student Number: 2020-22722
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Chapter 1

Introduction

As deep neural networks become essential elements in modern artificial intelligence

research, various deep generative models and related neural network architectures

have been proposed. One of the most widely known deep generative models is

generative adversarial networks (GANs) [8]. They are based on adversarial training

of generator and discriminator networks and have shown outstanding performance

in various fields. Based on a log-likelihood of desired data distribution P, variational

autoencoders (VAEs) [13] and normalizing flows [12] were proposed. VAEs are

trained with a lower bound of the log-likelihood designed with encoder and decoder

networks. And normalizing flows are trained with an invertible design of neural

network architectures for the exact computation of the log-likelihood. Although

there are differences in specific ways, they all approach generative modeling as a

function.

Recently, diffusion models [9, 23] have been proposed and shown outstanding

performance with a stochastic-process-based approach. Since the latent space of

generative modeling, Z, is assumed to be a Gaussian noise space, diffusion models
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first consider the stochastic noising process, say forward process, from P to Z. Then,

they consider a generation process as a corresponding backward stochastic process

of the forward process. Due to their impressive performance and formulation, they

are applied in various fields, including largely pre-trained multimodal models [19,

20].

Under the neural network’s universal approximation property, deep generative

models have achieved remarkable improvement in various generation tasks such

as unconditional generation, image-to-image translation, image super-resolution,

etc. Even though the desired generation outcome varies for each situation, every

situation is to find a proper mapping between two different desired distributions P

and Q with task-dependent conditions. For instance, in the case of an unconditional

data generation task, P is the desired data distribution, and Q is the distribution

of the latent space Z, e.g. Gaussian distribution. And, in the case of an image-to-

image translation task, two different image domains P andQ are given, for instance,

male and female. Then the main objective is to find the proper mapping between P

and Q while preserving the semantic information of the given image, e.g. identity

of the human face. There are various studies on generative model frameworks and

related neural network architecture for each generation task. In other words, the

existing methods on deep generative models rely heavily on what the two specific

distributions P and Q are.

And among many generative models, the two main approaches are competing

for the best performance: GANs and diffusion models. For years, GANs have shown

an ability to generate high-quality images, and diffusion models demonstrated that

they can be better than GANs [7] in an image generation task. However, each model

has its shortcomings. In the case of GANs, various models suffer from unstable
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training and failure modes. Among the failure modes, there is a mode collapse

problem where the trained models do not fully cover the desired data space. On

the other hand, diffusion models show relatively stable training and high mode

coverage performance. But the main disadvantage is its slow inference speed since

it needs multiple timesteps to discretize the stochastic process. But, the success of

diffusion models provides a new idea in generative modeling. Since they consider the

generation process as a series of stochastic processes rather than a single function,

it demonstrated that the application of stochastic processes in generative modeling

could achieve both high mode coverage performance and high-quality generation.

As mentioned above, various generation tasks depend on what the desired dis-

tributions P and Q are. And in many cases, there is no need for Q = Z. Even

in generation situations such as text-conditional image generation, text-to-speech

translation, or image captioning, the transformation between two distributions with

different modalities should be considered. Although diffusion models proposed a

multi-stage stochastic-process-based generative modeling rather than a single-stage

function, they depend on the forward process from P to Z. Thus, they cannot con-

struct bidirectional stochastic processes between arbitrary distributions P and Q.

To tackle this problem, various conditioning methods [4, 14] have been proposed.

But, these diffusion-based approaches still suffer from the slow sampling speed.

However, in a generative framework where stochastic processes between arbitrary

distributions are constructed, it can be quite possible to improve the diffusion

model’s disadvantages while maintaining the advantage.

From the perspective of applied mathematics, the problem of transportation

between two distributions P and Q with minimal cost can be expressed as an op-

timal transport (OT) problem. And based on a Schrödinger bridge (SB) problem,
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which is an extension of entropy regularized OT problem, the desired bidirectional

stochastic processes can be obtained. Therefore, based on the SB problem’s formu-

lation, some generative modelings [3, 6, 27] were proposed. And the recent work

[3] has proposed an SB-based stochastic process as an extension to the diffusion

model’s stochastic process. SB models require a relatively small number of timesteps

compared to the diffusion models because the bidirectional processes are learnable.

However, they still need a large number of evaluation steps than function-based

generative modelings such as GANs.

Therefore, by modifying the existing SB-based formulation, this study tried

to construct bidirectional stochastic processes with a reduced number of timesteps

compared to the previous SB-based works. Before the main discussion, the following

section briefly introduces the basic concepts of OT and SB for a better understand-

ing of this study. The presented definitions and flow of explanation mainly referred

to the work of Peyré [18] and Vargas [25].

1.1 Preliminaries

Given two data spaces X and Y , let M(X) and M(Y ) be the set of probability

measures, respectively. The optimal transport (OT) problem aims to formulate

minimal-cost transportation from one data space to another. Let T : X → Y be a

continuous map, then a corresponding push-forward operator T# : M(X) → M(Y )

exists. For discrete measure α =
∑n

i=1 aiδxi where δx is Dirac-Delta function, push-

forward operator T# can be expressed as

T#α =
n∑

i=1

aiδT (xi). (1.1)
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More generally, the push-forward measure β = T#α should satisfy

∀f ∈ C(Y ),

∫
Y
f(y)dβ(y) =

∫
X
f(T (x))dα(x), (1.2)

where C(Y ) is a set of continuous functions on space Y and probability measures α

and β on data space X and Y respectively. Now, given a cost function c, Monge’s

OT problem can be formulated as

inf
T

{∫
X
c(x, T (x))dα(x)

}
,

s.t. T#α = β,

(1.3)

to find the optimal transition from X to Y .

Monge’s OT problem has a deterministic nature. To relax that condition, Kan-

torovich proposed another form of OT problem. Given two discrete measures,

α =
∑n

i=1 aiδxi and β =
∑m

j=1 bjδxj , let probability vectors as a = (ai) ∈ Rn

and b = (bj) ∈ Rm. Then, with a cost matrix C, Kantorovich’s OT problem is

given as

min
P∈U(a,b)

⟨C,P ⟩ = min
P∈U(a,b)

∑
i,j

Ci,jPi,j ,

s.t. U(a, b) = {P ∈ Rn×m
+ : P1m = a and P T1n = b},

(1.4)

where P can be said as a policy matrix that moves measures α to β. An extension

of the above 1.4 to include continuous measures can be expressed as

inf
π∈U(α,β)

∫
X×Y

c(x, y)dπ(x, y),

s.t. U(α, β) = {π ∈ M(X × Y ) : projX#π = α and projY#π = β},
(1.5)
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where projX# and projY# is the push-forwards of the projections projX(x, y) = x

and projY (x, y) = y respectively.

From a perspective of optimization problem on OT, the corresponding dual

problem of 1.4 can be considered. And the dual problem is given as

max
(f,g)∈R(C)

⟨f, a⟩+ ⟨g, b⟩,

s.t. R(C) = {(f, g) ∈ Rn × Rm : ∀(i, j), fi + gj ≤ Cij}.
(1.6)

Similarly, the dual problem formulation of 1.5 with arbitrary probability measures

α and β is given as

sup
(f,g)∈R(C)

∫
X
f(x)dα(x) +

∫
Y
g(y)dβ(y),

s.t. R(C) = {(f, g) ∈ C(X)× C(Y ) : ∀(x, y), f(x) + g(y) ≤ C(x, y)}.
(1.7)

This type of dual problem provides a different perspective on the given OT problem.

By adding entropy regularization term in 1.4 and 1.5, stochastic nature can

implicitly conditioned to the OT problem. For policy matrix P , discrete entropy

term is given as H(P ) = −
∑

i,j Pi,j logPi,j , thus the entropy regularized version of

1.4 is given as

min
P∈U(a,b)

⟨C,P ⟩ − ϵH(P ). (1.8)

Again, the entropy regularized version of 1.5 can be given as below

inf
π∈U(α,β)

∫
X×Y

c(x, y)dπ(x, y) + ϵDKL(π|α× β), (1.9)

where DKL(p|q) =
∫
X×Y log (dpdq )dp is Kullback–Leibler (KL) divergence for distri-

butions p and q.

6



By refactoring the 1.9 with Gibbs distribution K which is given as

dK(x, y) = exp−c(x, y)
ϵ

dα(x)dβ(y), (1.10)

the entropy regularized OT problem 1.9 can be expressed as

inf
π∈U(α,β)

DKL(π|K). (1.11)

The above form of the problem is often called a static Schrödinger problem. This

is a situation where there the Gibbs distribution K contains information about the

cost function, and path π between α and β is optimized to be close with the Gibbs

distribution as a reference.

By extending this, Schrödinger bridge (SB) problem can be proposed as

inf
π∈D(P,Q)

DKL(π|W), (1.12)

where reference measureW replaces the Gibbs measure and D(P,Q) is a set of path

measures with marginals of desired distribution P and Q. This formulates a more

general situation of finding a path measure between P andQ where cost information

is implicitly reflected in a choice of reference measure. From the perspective of KL

divergence as a distance, it can be interpreted that the process of reducing the

distance between the path measure and reference measure reflects the nature of

OT since the reference measure contains cost information.

The choice of W as a prior knowledge enables different interpretations of the SB

problem. For instance, if W is uniform distribution, then 1.12 becomes equivalent

to 1.11 with entropy. And it was demonstrated that the SB problem is equivalent
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to a stochastic control problem with a proper choice of W [25, 17]. Let Wγ be the

Wiener measure with volatility γ, then path measure π ∈ D(P,Q) can be expressed

as a distribution which evolves according to the solution of stochastic differential

equations: forward direction and backward direction of Ito process form as

dxt = ftdt+
√
γdwt,

dxt = btdt+
√
γdwt.

(1.13)

With the above forward and backward Ito process, the SB problem can be expressed

as the following two alternate objectives

min
π∈D(P,Q)

DKL(π|Wγ) = min
ft

Eπ

[∫ 1

0

1

2γ
∥ft∥2dt

]
,

s.t. dxt = ftdt+
√
γdwt, x0 ∼ P, x1 ∼ Q,

(1.14)

min
π∈D(P,Q)

DKL(π|Wγ) = min
bt

Eπ

[∫ 1

0

1

2γ
∥bt∥2dt

]
,

s.t. dxt = btdt+
√
γdwt, x1 ∼ Q, x0 ∼ P

(1.15)

The above objectives do not provide information about an update rule of drift ft

and bt in a stochastic process. But it means that the SB problem can be formulated

as an optimal control problem with bidirectional stochastic processes minimizing

their energy.
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Chapter 2

Related Works

In this chapter, more backgrounds related to this work are presented. First, some

OT-related deep learning studies are briefly introduced with their formulation.

Next, detailed backgrounds related to diffusion models are explained. And lastly,

formulations of SB-based generative modeling are presented.

2.1 Optimal Transport in Deep Learning

The OT-based approaches for deep learning were already widely used in many

places, even before SB. The most widely known result would be WGAN [1]. With

the definition of Kantorovich OT problem 1.5, consider the below:

inf
π∈U(P,Q)

Eπ [∥x− y∥2] = inf
π∈U(P,Q)

∫
X×X

∥x− y∥2 dπ(x, y), (2.1)

where P is a distribution of desired real data and Q is a distribution of generated

fake data. Then by the Kantorovich duality 1.7, the equivalent dual problem can
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be expressed as

sup
∥h∥L≤1

Ex∼P [h(x)]−Ey∼Q [h(y)] , (2.2)

where ∥h∥L ≤ 1 denotes that h is a 1-Lipschitz function. Now with a generator

network gθ and discriminator network dϕ, the above 2.2 can be expressed as

sup
∥dϕ∥L≤1

Ex∼P [dϕ(x)]−Ez∼Z [dϕ(gθ(z))] , (2.3)

where Z is a latent space, i.e. Gaussian noise.

More recently, in self-supervised deep learning, SwAV [2] utilized an OT-based

approach. In the process of learning the representation feature vector, latent codes

with discrete values are proposed. Thus, with the OT problem 1.8, Sinkhorn’s algo-

rithm was used to transport one latent code to another. The Sinkhorn’s algorithm

can be derived by applying Lagrangian L(P, f, g) to 1.8 with two dual variables

f ∈ Rn and g ∈ Rm as

L(P, f, g) = ⟨C,P ⟩ − ϵH(P )− ⟨f, P1m − a⟩ − ⟨g, P T1n − b⟩. (2.4)

Then, with first-order derivative to each element,

∂L(P, f, g)

∂Pi,j
= Ci,j + ϵ logPi,j − fi − gj = 0. (2.5)

Thus, the resulting solution of 2.5 is given as

Pi,j = exp(fi/ϵ) exp(−Ci,j/ϵ) exp(gj/ϵ). (2.6)

And by refactoring 2.6 as P = diag(u)Kdiag(v), the iterative update rule of
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Sinkhorn’s algorithm is given as

uk+1 =
a

Kvk
and vk+1 =

b

KTuk
. (2.7)

To solve more general OT problems such as 1.9 in iterative form, the term called

iterative proportional fitting (IPF) algorithm is broadly used including Sinkhorn’s

algorithm.

Domain translation is a well-known application of deep generative models. For

this task, it is important to maintain the semantic information of the image during

the translation: e.g. the content of an image in image-to-image translation or the

nuance of a sentence in language translation. For this purpose, the cycle-consistency

loss was proposed by CycleGAN [29] and has been used widely in various domains

of deep learning. Given the two desired data spaces X and Y with measures α and

β respectively, the (unsupervised) domain translation tasks such as image-to-image

translation can be formulated as [5]

inf
T,S

∫
X
c(x, T (x))dα(x) +

∫
Y
c(S(y), y)dβ(y),

s.t. T#α = β, S#β = α, T ◦ S = id, S ◦ T = id,

(2.8)

where T and S are the desired functions for translations. And some studies [5,

21] demonstrated that this formulation is known to be equivalent to the form of

Monge’s OT problem 1.3. In other words, when the domain translation tasks such

as image-to-image translation are formulated from the perspective of OT, it can

be interpreted as an implicit cycle-consistency conditioned problem by its nature.
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2.2 Deep Generative Models

Except for diffusion models, the previously mentioned generative models aim to

train a one-stage function from Z to P. In GANs, a mapping G : Z → P is trained

directly. And in VAEs, two mappings are trained: encoder E : P → Z and decoder

D : Z → P. In normalizing flows, invertible network G : P → Z is trained where

inference is done by G−1 : Z → P. However, diffusion models first considered a

transition from P to Z as a stochastic forward process. The forward process is a

noising process and it can be formulated in various ways. One can be formulated

via the Markov process [9] as

xt+1 = N (
√
βtxt, (1− βt)I). (2.9)

Meanwhile, the forward noising process can be formulated as a continuous

stochastic differential equation (SDE), unlike the above discrete Markov process.

This was proposed in the score-based generative model (SGM) [23] which became

the prototype of the diffusion model and its SDE form is expressed as

dxt = ft(xt)dt+ gtdwt. (2.10)

With such a forward process is given, it is known that the corresponding backward

stochastic process is expressed as

dxt =
[
ft(xt)− g2t∇x log pt(xt)

]
dt+ gtdwt, (2.11)

where pt is the marginal distribution of xt, and ∇x log pt(xt) is called score function

of pt. Since the numerical computation of the above SDEs requires discretization,
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with an Euler-Maruyama scheme and discrete-time step size γ, the numerical sam-

pling process of the above two processes 2.10 and 2.11 is given as

xt+1 = xt + γft(xt) +
√
γgtz, (2.12)

xt = xt+1 − γ
[
ft+1(xt+1)− g2t+1∇x log pt+1(xt+1)

]
+
√
γgt+1z, (2.13)

where z is Gaussian noise. The drift terms ft and gt are derived from the discrete-

time diffusion frameworks such as DDPM [9] and NCSN [22]. The previously men-

tioned discrete noising process 2.9 of DDPM [9] can be induced in a SDE form

2.10. It is known as VPSDE and given as

dxt = −1

2
βtxtdt+

√
βtdwt. (2.14)

Since the forward process 2.10 of SGM has a fixed linear drift, it is possible to com-

pute an exact transition kernel that transits x0 to xt. The corresponding transition

kernel of VPSDE is

p(xt|x0) = N
(
xt;x0e

− 1
2

∫ t
0 β(s)ds,

(
1− e−

∫ t
0 β(s)ds

)
I
)
. (2.15)

Another example of SGM type is VESDE. It is induced from the formulation of

NCSN [22] and given as

dxt =

√
d[σ2(t)]

dt
dwt, (2.16)

with its corresponding transition kernel is

p(xt|x0) = N
(
x0, (σ

2(t)− σ2(0))I
)
. (2.17)
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Considering the numerical backward process 2.13 for generation, in addition to the

information of drift ft and gt, the information about score function ∇x log pt(xt)

is also essential. Thus, the training of diffusion models is designed to make neu-

ral network sθ(xt, t) approximate the non-linear drift ∇x log pt(xt) at each xt. To

achieve this, objective function for training is given as

Ex0,t

[
∥sθ(xt, t)−∇x log p(xt|x0)∥22

]
. (2.18)

By minimizing the above objective, known as score-matching framework [26], the

neural network sθ(xt, t) can approximate the desired score function ∇x log pt(xt)

properly.

Although diffusion models have shown remarkable performance and scalabil-

ity to various domains, they suffer from slow sampling speed. Thus, many studies

[10, 28, 24, 11] have proposed methods to improve sampling speed. These methods

1) utilize GAN’s approximation ability, 2) introduce a faster numerical algorithm

for solving SDEs, or 3) consider the diffusion process in the latent space, which is

equivalent to diffusion models with non-linear drift ft and gt in the original data

space. However, even in these attempts, the diffusion models still require a large

number of timesteps for inference compared to one-stage generative models such

as GANs. Also, bidirectional stochastic processes between any desired distribution

P and Q cannot be obtained in the framework of diffusion models. As discussed

before, a modality-agnostic transformation between P and Q is required to solve

various real-world generation problems. For instance, at present, text-conditional

image generation and image captioning are approached as separate tasks. But if

the transformation between image and text data spaces are induced together as
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bidirectional processes, the two tasks can be learned as one framework. Therefore,

there is a need for stochastic-process-based generative modeling between any P and

Q. More research is still needed for the general modality-agnostic transformation

between data distributions with different dimensions. But, the SB formulation can

construct desired stochastic processes between data distributions of the same di-

mension, and it can be seen as an attempt at a more general generative framework

while showing a direction for solving the limitations of the diffusion model.

2.3 Schrödinger Bridge in Generative Modeling

From the SB problem 1.12 perspective, the work of SB-FBSDE [3] consists of two

learnable generative processes: forward and backward stochastic processes. Similar

to the SGM’s forward and backward process, 2.10 and 2.11, SB-based formulation

from the work of [3] is given as

dxt =
[
ft(xt) + g2t∇x logψt(xt)

]
dt+ gtdwt, (2.19)

dxt =
[
ft(xt)− g2t∇x log ψ̂t(xt)

]
dt+ gtdwt, (2.20)

where∇x logψt(xt) and∇x log ψ̂t(xt) are non-linear drift terms. If∇x logψt(xt) = 0

holds, it can be readily confirmed that it is equivalent to that of 2.10 and 2.11. With

discretization step size γ and Euler-Maruyama scheme, the sampling process for

numerical computation is given as

xt+1 = xt + γ
[
ft(xt) + g2t∇x logψt(xt)

]
+
√
γgtz, (2.21)

xt = xt+1 − γ
[
ft+1(xt+1)− g2t+1∇x log ψ̂t+1(xt+1)

]
+
√
γgt+1z. (2.22)
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The similarity between the forward and backward processes of SB-FBSDE and

those of SGM is straightforward. And since SB-FBSDE has non-linear drift in both

bidirectional processes unlike SGM, SB-based stochastic processes are a generaliza-

tion of that of SGM. While the drift term ft and gt are derived from discrete-time

diffusion models in SGM’s formulation, they are not induced theoretically in the

SB-FBSDE formulation. Since there is no information to construct ft and gt in

SB-FBSDE, they were manually set as those of VESDE or simply as ft = 0 and

gt = 1. And unlike diffusion models, the above SB formulation cannot be trained

in the form of score-matching, so two processes 2.19 and 2.20 are transformed into

an equivalent SDE problem to construct a loss objective. In this process, non-

linear drift terms of SB-FBSDE have the following relationship with score function

∇x log p
SB
t (xt) of path measure pSBt of SB problem:

∇x logψt(xt) +∇x log ψ̂t(xt) = ∇x log p
SB
t (xt). (2.23)

There is another SB-based formulation, Diffusion Schrödinger Bridge (DSB) [6],

which was induced as Markov processes. It is defined as

pf (xt+1|xt) = N (xt+1;xt + γft(xt), 2γI) = N (xt+1;Ft(xt), 2γI), (2.24)

pb(xt|xt+1) = N (xt;xt+1 + γbt+1(xt+1), 2γI) = N (xt;Bt+1(xt+1), 2γI), (2.25)

for t ∈ {1, . . . , T − 1} and T is the number of total time step. By letting the

approximation of pf (xt|xt+1) as

pf (xt|xt+1) ≈ N (xt;xt+1 − γft(xt+1) + 2γ∇x log p
f
t+1(xt+1), 2γI), (2.26)
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if the two processes pf (xt|xt+1) and pb(xt|xt+1) corresponds, the drift term of pb

can be expressed with the drift term and score function of pft . Thus, it leads to an

iterative update rule for the backward drift as

bn
t+1(xt+1) = −fnt (xt+1) + 2γ∇x log p

f,n
t+1(xt+1). (2.27)

And the update rule for the forward drift can be derived similarly as

fn+1
t (xt) = −bn

t+1(xt) + 2γ∇x log p
b,n
t (xt). (2.28)

With basic calculus and dominated convergence theorem, the followings can be

derived:

pf,n(xt+1|xt) = N (xt+1;F
n
t (xt), 2γI),

pf,nt+1(xt+1) = E
pf,nt

[pf,n(xt+1|xt)]

= (4πγ)−d/2 E
pf,nt

[
exp[−∥Fn

t (xt)− xt+1∥2]/4γ
]
,

∇x log p
f,n
t+1(xt+1) = E

pf,n
t|t+1

[Fn
t (xt)− xt+1] /2γ,

Bn
t+1(xt+1) = E

pf,n
t|t+1

[xt+1 + Fn
t (xt)− Fn

t (xt+1)] .

(2.29)

Based on this result, as proof of other directions is similar, the following iterative

objectives can be derived:

E
pf,nt,t+1

[∥Bt+1(xt+1)− xt+1 − (Fn
t (xt)− Fn

t (xt+1))∥2], (2.30)

E
bb,nt,t+1

[∥Ft(xt)− xt − (Bn
t+1(xt+1)−Bn

t+1(xt))∥2], (2.31)

where Bn
t+1 and F

n+1
t can be trained with the objectives 2.30 and 2.31 respectively.

In the DSB framework, the drift term for Brownian motion cannot be addressed

17



and there is no guarantee that each process pft and pbt corresponds to a path measure

pSBt of SB problem as in SB-FBSDE. However, the non-linear terms ft and bt are

only core drift terms, reducing the need for manual selection of the linear drift

terms, unlike FBSDE. In other words, since the non-linear drifts of DSB are trained

through the neural networks without manual selection, the approximation property

can be maximized. Thus, the DSB framework can be valid with fewer timesteps

compared to SB-FBSDE. Both SB-FBSDE and DSM can be trained iteratively

with IPF recursion. And since the number of required iterations for each IPF step

is quite large, the training takes a long time for convergence compared to diffusion

models.
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Chapter 3

Proposed Method

Based on the SB-based formulations, this study tried to construct discrete-time

stochastic processes between any two distributions with smaller timesteps required.

While maximizing the use of non-linear drift as in the DSB framework, the for-

mulation of SB-FBSDE was added as a regularization to make the two different

forward and backward processes coincide as a path measure of the SB problem. The

existing SB-based generative models’ training is unstable with a smaller number of

timesteps and iterations. Thus, to construct stable stochastic processes while reduc-

ing the number of iterations and timesteps required for convergence, the concept of

cycle-consistency proposed by CycleGAN [29] was introduced as a regularization

to SB-based formulation.

3.1 Regularization for Schrödinger Bridge

Consider the SB-FBSDE formulation with fixed Brownian motion drift gt = 1 and

let the both linear and non-linear drift of SB-FBSDE as a single non-linear drift
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as in DSB,

dxt = [ft(xt) +∇x logψt(xt)] dt+ dwt = ft(xt)dt+ dwt, (3.1)

dxt =
[
ft(xt)−∇x log ψ̂t(xt)

]
dt+ dwt = −bt(xt)dt+ dwt. (3.2)

When considering the following forward and backward processes where only the

degree of variance differs from 2.24 and 2.25 of DSM,

pf (xt+1|xt) = N (xt+1;xt + γft(xt), γI) = N (xt+1;Ft(xt), γI),

→ xt+1 = xt + γft(xt) +
√
γz

(3.3)

pb(xt|xt+1) = N (xt;xt+1 + γbt+1(xt+1), γI) = N (xt;Bt+1(xt+1), γI),

→ xt = xt+1 − γ (−bt+1(xt+1)) +
√
γz.

(3.4)

Note that with different degree of variance, the 3.3 and 3.4 can have the same

objective functions 2.30 and 2.31 respectively through the same process of DSM.

Interpreting the above discrete stochastic processes as the Euler-Maruyama scheme

with discretization step size γ, the corresponding continuous-time SDEs with for-

ward and backward directions are given as

dxt = ft(xt)dt+ dwt, (3.5)

dxt = −bt(xt)dt+ dwt, (3.6)

Since these expressions 3.5 and 3.6 are equivalent to 3.1 and 3.2 respectively, it

demonstrates that DSB and SB-FBSDE can be related as continuous-time SDEs.
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Note that with the property of SB-FBSDE formulation 2.23, the following holds:

ft(xt) + bt(xt) = ∇x log p
SB
t (xt). (3.7)

And in ideal scenario, the path measure pSBt of SB problem should coincide with

marginal measure of the forward and backward processes, 3.5 and 3.6. In this case,

the following relationships hold:

∇x log p
f
t (xt) = ∇x log p

SB
t (xt) = ∇x log p

b
t(xt), (3.8)

where pft and pbt corresponds to the marginal distribution of forward and backward

processes, 3.5 and 3.6 respectively. Now, through the same process as the work of

DSM, the following holds:

∇x log p
f,n
t+1(xt+1) = E

pf,n
t|t+1

[Fn
t (xt)− xt+1] /γ. (3.9)

Combining the results of 3.7, 3.9, and 3.9, the followings can be derived:

∇x log p
SB,n
t+1 (xt+1) = ∇x log p

f,n
t+1(xt+1),

fnt+1(xt+1) + bn
t+1(xt+1) = E

pf,n
t|t+1

[Fn
t (xt)− xt+1] /γ,

γbn+1
t+1 (xt+1) = E

pf,n
t|t+1

[
Fn
t (xt)− Fn

t+1(xt+1)
]
,

Bn
t+1(xt+1) = E

pf,n
t|t+1

[
xt+1 + Fn

t (xt)− Fn
t+1(xt+1)

]
.

(3.10)

Based on this, as a case of other directions is similar, the following regularization
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objectives are given as

E
pf,nt,t+1

[∥Bt+1(xt+1)− xt+1 − (Fn
t (xt)− Fn

t+1(xt+1))∥2], (3.11)

E
bb,nt,t+1

[∥Ft(xt)− xt − (Bn
t+1(xt+1)−Bn

t (xt))∥2], (3.12)

where 3.11 holds for t ∈ {0, . . . , T − 2} and 3.12 holds for t ∈ {1, . . . , T − 1}.

And Bn
t+1 and Fn+1

t can be iteratively trained with the objectives 3.11 and 3.12

respectively. This objective can be thought as an additional regularization term for

the DSB’s objective function 2.30 and 2.31 since it cannot applied for all time step

t ∈ {0, . . . , T − 1}.

Putting objective term of 2.30 as LDSB and 3.11 as Lreg, the objective of

regularized SB-based formulation can be expressed as

αLDSB + (1− α)Lreg, (3.13)

where α is a hyperparameter. Note that the LDSB and Lreg are very similar, and

learning these two objectives as separate terms requires more GPU memory by

storing two similar computational graphs. With the convexity of ∥·∥2, the memory-

efficient objective can be attained as

αLDSB + (1− α)Lreg ≥ Lmemory =

E
pf,nt,t+1

[∥B(xt+1)− xt+1 − (Fn
t (xt)− αFn

t (xt+1)− (1− α)Fn
t+1(xt+1))∥2].

(3.14)

Note that stable forward and backward processes in an ideal scenario should
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satisfy the following

Bt+1(Ft(xt)) = xt, Ft(Bt+1(xt+1)) = xt+1, t ∈ {0, . . . , T − 1}. (3.15)

Note that the above relation can be considered as a cycle-consistency constraint pro-

posed by CycleGAN [29]. It is essential relation that must hold for entire stochastic

processes, but SB-based processes with small timesteps may not attain this. There-

fore, to reduce the number of iterations and timesteps required for convergence

while maintaining the stability of the constructed stochastic process, the above

cycle-consistency relation can be used as an additional regularization term to the

objective function explicitly. For this, the above relation 3.15 can be expressed as

E
xt+1∼ pf

t+1|t
[Bt+1(xt+1)] = xt, Ext∼ pb

t|t+1
[Ft(xt)] = xt+1,

t ∈ {0, . . . , T − 1}.
(3.16)

And again, it can be formulated as the following regression problem:

Lcyc = E
pf,nt,t+1

[∥Bt+1(xt+1)− xt∥2]. (3.17)

This objective, Lcyc, is an additional term of Lmemory. Note that all objectives

LDSB, Lreg, and Lcyc have Bt+1(xt+1) term, this is the only term that is evaluated

during training. Thus, for efficient training, Bt+1(xt+1) should be evaluated once.

If LDSB, Lreg, and Lcyc terms are used separately, evaluation of Bt+1(xt+1) should

occur multiple times, which is inefficient. By the convexity of ∥ · ∥2 and with the

proper setting of the weight β, the memory-efficient loss objective can be obtained
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as

LB = E
pf,nt,t+1

[
∥Bt+1(xt+1)−

1

β + 1
(xt+1 − (Fn

t (xt)− αFn
t (xt+1)−

(1− α)Fn
t+1(xt+1))

)
− β

β + 1
xt∥2

]
≤ 1

β + 1
Lmemory +

β

β + 1
Lcyc.

(3.18)

Similarly, the loss objective for updating Fn+1
t can be obtained as

LF = E
pb,nt,t+1

[
∥Ft(xt)−

1

β + 1

(
xt − (Bn

t+1(xt+1)− αBn
t+1(xt)−

(1− α)Bn
t (xt)))−

β

β + 1
xt+1∥2

]
.

(3.19)

Thus, the regularized SB-based model, RSB, is trained for the desired bidirectional

stochastic processes by alternating between LB and LF . Since the objective was set

to memory-efficient style, model evaluation Bt+1(xt+1) or Ft(xt) proceeds only one

for each update. The remaining term of the objectives can be effectively obtained

by a replay-memory [16].
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Chapter 4

Experiments

Based on the regularized SB-based formulation, the proposed RSB experimentally

demonstrated that it can train stochastic processes between any two data spaces

with relatively small timesteps compared to the previous SB models. And its train-

ing was more stable and faster. Since the SB-based stochastic process is free from

the constraints of starting at Z, the experiments were conducted on both uncondi-

tional and conditional generation tasks. And for both types of tasks, the proposed

RSB confirmed its effectiveness.

4.1 Dataset

2D Toy, MNIST, and CelebA were used as datasets for qualitative performance

evaluation of RSB. The 2D Toy dataset consists of intuitive 2-dimensional data,

including 8-Gaussian, Checkerboard, 25-Gaussian, and Circles. And the MNIST is

one of the most widely known datasets in deep learning research and consists of

digits ranging from 0 to 9. Lastly, the CelebA dataset, where various male and
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female faces exist at various ages, was also used to determine whether the RSB can

handle the relatively high-resolution image domain.

4.2 Training

A vanilla GAN model with a gradient penalty (GP) of the form [15] was trained on

the 2D Toy to compare with the proposed RSB. And for other datasets except for

the 2D Toy dataset, the NCSN++ architecture of SGM [23] was used. In addition,

since RSB requires multiple steps of model evaluation, the training can be very

slow if the model is evaluated for each update iteration. To mitigate this issue,

the replay memory was generated by inferencing with a large batch size at once

and the generated replay memory was used for multiple iterations. Also, for faster

training, in the case of unconditional generation, since the forward noising process

from P to Z is relatively easy to be trained, half of the number of iterations was

used at each IPF stage compared to training of the backward process.

4.3 Results

The existing SB models, DSB and SB-FBSDE, can be compared to RSB for per-

formance evaluation. Since SB-FBSDE depends heavily on continuous-time SDEs,

SB-FBSDE requires 100 steps even for a 2D Toy dataset. Thus it could not be

trained for small timesteps such as T = 4, 8. And since DSB was formulated in a

relatively discrete-time setting compared to SB-FBSDE, DSB showed better perfor-

mance when the number of timesteps is restricted to be small. Thus, the proposed

RSB was compared to DSB.
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(a) Ground Truth (b) DSB (c) RSB

Figure 4.1: Qualitative results on 8-Gaussians of 2D Toy

4.3.1 Results with 2D Toy

Firstly, RSB was trained for unconditional generation of 8-Gaussians of 2D Toy.

Both RSB and DSB were trained with 8 timesteps, 10K iterations for the forward

process, and 20K iterations for the backward process. And hyperparameters for

RSB was set to α = 0.5 and β = 2.5. See Figure 4.1 for comparison. While DSB

didn’t converge to the desired data space, RSB almost converged.

Next, an unconditional generation of 25-Gaussians which is much more com-

plicated than 8-Gaussians was testified. Both RSB and DSB were trained with 8

timesteps, 20K iterations for the forward process, and 40K iterations for the back-

ward process. And hyperparameters for RSB was set to α = 0.5 and β = 5. And

GAN was trained for 60K iterations. See Figure 4.2 for comparison between DSB,

RSB and GAN. While DSB showed instability where the training did not progress

significantly after the intermediate stage, RSB showed fast convergence in the in-

termediate stage, and the rest of the training stayed stable. This indicates that

the existing SB-based methods are not suitable for a small number of discretized

timesteps while RSB is. And although GAN was trained for a sufficient training

time, mode collapse occurred that it could not cover all modes of 25-Gaussians. The
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(a) Ground Truth (b) GAN

(c) DSB(intermediate) (d) DSB

(e) RSB(intermediate) (f) RSB

Figure 4.2: Qualitative results on 25-Gaussians of 2D Toy
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result shows that stochastic-process-based generative modeling can complement the

existing function-based one.

Since the SB-based formulation enables a stochastic process between any data

spaces, the proposed RSB was tested on the data translation, i.e. the case of con-

ditional generation, between 8-Gaussians and Circles data space. Both RSB and

DSB were trained with 8 timesteps, 10K iterations for the forward process, and

20K iterations for the backward process. And hyperparameters for RSB was set

to α = 0.5 and β = 2.5. And GAN was trained for 30K iterations. See Figure

4.3 for comparison. An interesting result is that when the conventional GAN was

trained to generate the Circles data space from the 8-Gaussians data space, not

the latent space, the training was not done properly. And it can be confirmed that

RSB obtained better translation performance than DSB. In addition, it can be

visually confirmed that the trajectories of the trained stochastic process by RSB

and DSB are different. See 4.4 and 4.5. When comparing the forward process from

Circles to 8-Gaussians, the outer circle gathers in the form of 8-Gaussians and the

central circle scatters toward the edge in DSB. In the case of RSB, the outer circle

and the central circle are scattered and gathered to create 8 modes and they move

to the desired place. Therefore, it can be concluded that applying regularization

to the existing SB-based formulation changes the trajectories drawn by stochastic

processes leading to fast training with smaller timesteps required.

These results from the 2D Toy show the possibility that the failure modes

existing in both unconditional and conditional generation of GANs can be improved

through stochastic-process-based generative models.
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(a) Ground Truth (b) GAN

(c) DSB (d) RSB

Figure 4.3: Qualitative results on data translation task between 8-Gaussians and
Circles of 2D Toy
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Figure 4.4: Detailed qualitative results of DSB on data translation between 8-
Gaussians and Circles of 2D Toy. The top two rows illustrate the forward process
from Circles to 8-Gaussians. And other rows illustrate the backward process from
8-Gaussians to Circles.

31



Figure 4.5: Detailed qualitative results of RSB on data translation between 8-
Gaussians and Circles of 2D Toy. The top two rows illustrate the forward process
from Circles to 8-Gaussians. And other rows illustrate the backward process from
8-Gaussians to Circles.

(a) Ground Truth (b) DSB (c) RSB

Figure 4.6: Qualitative results of MNIST generation
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4.3.2 Results with MNIST

With the MNIST dataset, RSB and DSB were compared for an unconditional gen-

eration task. Both RSB and DSB were trained with 16 timesteps, 8K iterations

for the forward process, and 16K iterations for the backward process. And hyper-

parameters for RSB was set to α = 0.5 and β = 5. The total iterations spent for

training are relatively insufficient for training the existing SB models. See Figure

4.6 for results. In the case of DSB, the training has not progressed significantly, but

in the case of RSB, the training state has significantly progressed. It indicates that

by adding regularization to the SB-based formulation, RSB reduces the number of

iterations required for sufficient training compared to the existing SB models.

4.3.3 Results with CelebA

Recall that the advantage of SB-based formulation is that it can construct bidirec-

tional stochastic processes between any two data spaces, eliminating the need for

conditioning the generation starting from the latent space. Therefore, the proposed

RSB explored this possibility through the task of image-to-image translation and

the single image super-resolution. The previous SB models [3, 6] mainly demon-

strated their performance on unconditional generation tasks, while the image size

stayed in 32x32 size. But, since the RSB reduced the required number of timesteps

and training time, it experimentally confirmed that the SB-based process could

play a role in the relatively high-resolution data space of the CelebA dataset with

128x128 size.

The image-to-image translation task is to translate the image of the source data

space to that of the target data space while maintaining the semantic information

of the source image. There are various possible scenarios in image-to-image trans-
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(a) Source Image

(b) Translated Image

Figure 4.7: Qualitative results on image-to-image translation task between male
and female of CelebA. The top row illustrates the source images. And the bottom
row illustrates the translated images.

lation, and in this experiment, the translation between male and female faces was

considered. The RSB trained the discrete-time stochastic processes between the

data space of the male face and the female face. And the forward and backward

processes were trained with α = 0.5, β = 10, 4 timesteps, and 48K total iterations

each.

The qualitative results from RSB are in Figure 4.7. And Figure 4.8 shows the

Figure 4.8: Detailed translation process from male to female with 4 timesteps
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(a) LR(×8) Input

(b) SR Output

Figure 4.9: Qualitative results on super-resolution task of CelebA. The top row
illustrates the LR images. And the bottom row illustrates the SR outputs.

detailed translation process trained by the regularized stochastic process with 4

timesteps only. The results show that the face of the source domain can be trans-

lated to the target domain while maintaining semantic information such as iden-

tity, facial expression, and pose. Note that masculinity or femininity was properly

changed without a large change in hairstyles. It is seen as a result of SB-based

formulation as an OT problem with implicit cycle-consistency. And it seems that

implicit cycle-consistency was strongly applied.

Similarly, the RSB was trained to handle the single image super-resolution task.

In this task, RSB constructed the stochastic processes between the data space of

low-resolution images and super-resolution images. And it was trained with α = 0.5,

β = 10, 8 timesteps, and 48K total iterations for each forward and backward

process. The qualitative results from RSB are in Figure 4.9. And Figure 4.10 shows

the detailed super-resolution process of trained RSB. The desired super-resolution
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Figure 4.10: Detailed super-resolution process from LR(×8) to SR

(SR) space was set to be 128x128 size and the low-resolution (LR) input was

downsampled with ×8 scale. The results show that the desired SR outputs were

attained while maintaining the semantic information of LR input properly.
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Chapter 5

Conclusion

This study tried to utilize bidirectional stochastic processes based on the Schrödinger

bridge (SB) problem for deep generative modeling. The existing SB-based gener-

ative models have been proposed to improve the slow sampling speed of diffusion

models and showed their potential. However, compared to generative models such as

GANs, a large number of timesteps and a long training time are still required. This

study aimed to reduce the number of timesteps and training time required by the

existing SB models. In the existing SB-based framework, the bidirectional stochas-

tic processes become unstable with a small number of discretization timesteps be-

cause they are not consistent with each other. Therefore, this work proposed reg-

ularization terms to maintain the consistency between the bidirectional stochastic

processes. By applying this regularized SB-based process to both conditional and

unconditional generation tasks, it was possible to properly train stochastic pro-

cesses between two arbitrary distributions even with smaller timesteps.
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국문초록

기존의 심층 생성 모델링의 함수 기반 모델들과 비교하여, 최근 제안된 확산 생성 모

델은 확률 과정 기반의 접근을 통해 우수한 성능을 달성했다. 그러나 이 접근 방식은

이산화를 위한 많은 수의 타임스텝으로 인해 긴 샘플링 시간을 필요로 한다. 슈뢰딩거

브리지 기반 모델은 분포 간의 양방향 확률 과정을 학습하여 이러한 문제를 해결하려

고 시도한다. 그러나 이 역시 생성적 적대 모델과 같은 생성 모델들에 비하면 샘플링

속도가 여전히 느리다. 그리고 양방향 확률 과정의 학습으로 인해 상대적으로 긴 학습

시간을필요로한다.따라서본연구는필요한타임스텝수와학습시간을줄이는것을

시도하였고 기존의 슈뢰딩거 브리지 모델에 정칙화 항들을 제안하여 감소된 타임스텝

에서도 양방향 확률 과정을 일관적이고 안정적으로 만들었다. 각 정칙화 항들은 계산

시간과 메모리 사용에서 보다 효율적인 훈련을 가능하게 하기 위해 하나의 항으로 통

합되었다. 이렇게 정칙화된 확률 과정을 다양한 생성 문제에 적용하여 서로 다른 분포

간에 원하는 변환들을 얻을 수 있었고 이에 더 빠른 샘플링 속도를 가지는 확률과정

기반의 생성 모델링의 가능성이 확인될 수 있었다.

주요어휘: 딥러닝, 생성 모델, 확률 과정, 분산 생성 모델, 슈뢰딩거 브리지
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