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Abstract

Dynamics on homogeneous spaces
and Diophantine approximation

Taehyeong Kim
Department of Mathematical Sciences

The Graduate School
Seoul National University

Dynamics of group actions on homogeneous spaces, which is referred to as “ho-
mogeneous dynamics”, has a lot of connections to number theory. These con-
nections have been intensively and extensively studied over the past decades,
and have produced various and abundant number-theoretic results.

In this thesis, we focus on the relationship between homogeneous dynam-
ics and Diophantine approximation, and consider the following three objects
in Diophantine approximation: Dirichlet non-improvable affine forms, badly
approximable affine forms, and weighted singular vectors.

We improve equidistribution results in homogeneous dynamics in terms
of weak L' estimates, and establish local ubiquity systems for Dirichlet non-
improvable affine forms using Transference Principle in Diophantine approxi-
mation. These developments imply zero-infinite phenomena for Hausdorff mea-
sures of Dirichlet non-improvable affine forms.

Next, we establish an effective version of entropy rigidity, which implies
the effective upper bound of Hausdorff dimension of badly approximable affine
forms by constructing “well-behaved” o-algebras and certain invariant mea-
sures with large entropy. We further characterize full Hausdorff-dimensionality
of badly approximable affine forms for fixed matrix by a Diophantine condition
of singularity on average. We also consider Diophantine approximation over
global function fields and have similar results in this setting.

Finally, we improve lattice point counting in geometry of numbers, which
arises from the fractal structure of weighted singular vectors. Combining the
improvement and the shadowing property in homogeneous dynamics, we ob-
tain the sharp lower bound of Hausdorff dimension of weighted singular vec-
tors.

Key words: Homogeneous dynamics, Diophantine approximation, Entropy
rigidity, Geometry of numbers, Ubiquitous system, Global function field,
Student Number: 2016-23082
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Chapter 1

Introduction

After the celebrated work of Margulis [Mar87] on Oppenheim conjecture, the
rigidity phenomenon in homogeneous dynamics has been intensively and ex-
tensively studied over the past decades. These extensive studies have produced
various and abundant number-theoretic results: the proof of Oppenheim con-
jecture [Mar87] and its quantitative versions [DM93, EMM98, EMMO05], the
proof of Baker-Sprindzuk conjecture [KM98], proof of arithmetic quantum
unique ergodicity [Lin06], an important partial result on Littlewood conjec-
ture [EKLO6], etc.

The present thesis is focused on the metric theory of Diophantine ap-
proximation, which originates from the problem of the approximation of real
numbers by rational numbers. Since Dani’s work [Dan85] on the relation be-
tween Diophantine approximation and homogeneous dynamics, various dy-
namical methods such as equidistribution, mixing, or measure rigidity have
been widely used in the study of metric Diophantine approximation [KM98,
KM99, KLW04, EKLO06].

More precisely, the theory of Diophantine approximation is concerned with
the following question: if A is an m x n real matrix (interpreted as a system
of m linear forms in n variables), how small, in terms of the size of q € Z",
can be the distance from Aq to Z™? This question can be seen in terms of
homogeneous dynamics as follows. The homogeneous space associated with
Diophantine approximation is SL4(R)/ SL4(Z) for d = m + n, which is identi-
fied with the space of lattices in R? with covolume 1. By Mahler’s compactness
criterion of SLy(R)/ SL4(Z), Diophantine approximation of a matrix A can be
described by cusp excursions of the orbit (a;Aa)i>0 of the diagonal flow as
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follows:

et/m[ 0 I, A
_ m Ayg=|"™ z.
at ( 0 et/"1n> and - Ag < 0 In>

The property that the matrix A has good Diophantine approximation is equiv-
alent to the property that the orbit (a;A4)i>0 has excursions into small cusp
neighborhood. This observation allows us to use various dynamical methods
in the study of metric Diophantine approximation.

In the theory of Diophantine approximation, the starting point is Dirichlet
theorem: For any A € My, ,(R) and T > 1, there exist p € Z™ and q € Z"\{0}
such that

1
(1.1) |Aq —p|™ < 7 and lal™ <T.

Dirichlet theorem implies the following corollary, which will be called Dirichlet
corollary: For any A € M, ,(R) there exist infinitely many q € Z" such that

(1.2) |Aq — p||™ < for some p € Z™.

lall”
The above two statements give a rate of approximation that works for all real
matrices. However, if we replace the right-hand sides of (1.1) and (1.2) by
faster decaying functions of T and ||q||™ respectively, then one can ask sizes
of corresponding sets of matrices satisfying the improved systems, which leads
to the metric theory of Diophantine approximation.

In this thesis, we study metrical properties of the following four main
objects using both dynamical methods and number-theoretical methods:

1. Dirichlet non-improvable affine forms, based on the joint work with
Wooyeon Kim [KK22],

2. badly approzimable affine forms, based on the joint work with Wooyeon
Kim and Seonhee Lim [KKL],

3. badly approximable affine forms on global function fields, based on the
joint work with Seonhee Lim and Frédéric Paulin [KLP],

4. weighted singular vectors, based on the joint work with Jaemin Park

[KP).
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1.1 Dirichlet non-improvable affine forms

Classically, the improvability of Dirichlet corollary, i.e. the inequality (1.2),
has been studied for a long time. To consider the improvability of (1.2), let
an approximating function % : Ry — R4 be given. Then we say that A €
My, n(R) is ¥-approzimable if there exist infinitely many q € Z" such that 1

(1.3) [Aq —p[™ < ¢([lal[*) for some p € Z™.

Denote by Wi, (1) the set of t-approximable matrices in the unit cube
[0,1)™". Then the set W, (1) satisfies the following zero-one law with re-
spect to the Lebesgue measure.

Theorem 1.1.1 (Khintchine-Groshev Theorem). Given a non-increasing 1,
the set Wy, n (1) has zero (resp. full) Lebesgue measure if and only if the series
> p (k) converges (resp. diverges).

To distinguish between sizes of null sets, we can consider Hausdorff mea-
sure and dimension as the appropriate tools. Since the set Wi, (1) is always
containing m(n — 1)-dimensional hyperplanes, we may focus on s-dimensional
Hausdorff measures with s > m(n — 1). The following result was proved by
Jarnik in 1931 for n = 1 and [DV97] in general.

Theorem 1.1.2 (Jarnik). Let ¢ be a non-increasing function. Then for s >
m(n — 1),

0 : oo m+n—1 m -
H (Wi (1)) = IR (5 ) =
Ho([0,1]™) if So2 g (M

where 1(g) = 1(g") 7.

Here, H*([0, 1]™") is infinity for s < mn. On the other hand, H™" compa-
rable to the mn-dimensional Lebesgue measure, hence, Theorem 1.1.2 implies
Khintchine-Groshev Theorem.

It is worth mentioning that Jarnik’s theorem was indeed proved for any
dimension functions f, not just the functions of the form f(r) := r*® stated in

'Here, we follow the definition given in [KM99, KW19] but, in Chapter 2, we will use the
slightly different definition, such as [BV10], where the inequality ||[Aq —p|| < ¢ (||ql]) is used
instead of (1.3).
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Theorem 1.1.2, see [DV97]. Regarding inhomogeneous Diophantine approxi-
mation, the analogue of Jarnik’s theorem for doubly metric case was proved
in [HKS20] and for singly metric case in [Bug04(1)].

For similar generalizations in the setting of Dirichlet’s Theorem, let us give
the following definition: for a non-increasing function 1 : [Ty, 00) — R, where
To > 1 is fixed, we say that A € M, ,(R) is ¢-Dirichlet if the system

[Aq —p[|™ <¢(T) and |lq|* <T

has a nontrivial integral solution for all large enough 7. Surprisingly, no zero-
one law analogous to Khintchine-Groshev Theorem was known until recently
when Kleinbock and Wadleigh [KW18] proved a zero-one law on the Lebesgue
measure of Dirichlet improvable numbers, that is, m = n = 1. The Hausdorff
measure-theoretic results for Dirichlet non-improvable numbers analogous to
Theorem 1.1.2 have also been established in [HKWW18] for a general class
of dimension functions f called the essentially sub-linear dimension functions.
For the non-essentially sub-linear dimension functions, the relevant results are
in [BHS]. For general m,n € N, Kleinbock, Strémbergsson, and Yu [KSY21]
recently gave sufficient conditions on v to ensure that the set of -Dirichlet
m X n matrices has zero or full Lebesgue measure.

Now, we focus our attention on inhomogeneous Diophantine approximation
replacing the values of a system of linear forms Aq by those of a system of
affine forms q — Aq + b, where A € M,, ,(R) and b € R™. Let Mmm(R) =
My, n(R) x R™. Following [KW19], for a non-increasing function v : [Ty, 00) —
R, we say that a pair (A,b) € an(R) is - Dirichlet if there exist p € Z™
and q € Z" such that

(1.4) [Aq+b —p[|" <¢(T) and |[q* <T

~

whenever T is large enough. Denote by Dy, ,, (1)) the set of 1-Dirichlet pairs in
the unit cube [0, 1]™"*™. Note that in this definition, the case q = 0 is allowed
so that (A, b) is always ¢-Dirichlet for any b € Z™.

Recently, Kleinbock and Wadleigh established the following zero-one law
for the set ﬁmm(zﬁ) with respect to the Lebesgue measure.

Theorem 1.1.3. [KW19] Given a non-increasing 1, the set lA)mn(z/J) has zero
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(resp. full) Lebesque measure if and only if the series

1
(15) 257

diverges (resp. converges).

As mentioned in [KW19, Section 7], one can naturally ask whether Theo-
rem 1.1.3 can be extended along two directions:

e Zero-infinity law for a Hausdorff measure,
e Singly metric case (b fixed).

Although Theorem 1.1.3 provides the Lebesgue measure of the set ﬁm,n(¢),
nothing was known about the Hausdorff dimension of this set. In this thesis,
we give an analogue of Theorem 1.1.3 for the Hausdorff measure by establish-
ing the zero-infinity law analogous to Theorem 1.1.2. Let us state our main
theorem.

Theorem 1.1.4. Given a decreasing function ¥ with limp_,oc ¥(T) = 0 and
0 < s < mn+m, the s-dimensional Hausdorff measure of Dy, ()¢ is given

by

1 mn+m-—s
~ 0 if 2311 ¢(7ql)q2 (qnl
Hs(Dm,n(w)c) — 1/’(‘12’"

mn+m—s
HOU™™ ke () =

Moreover, the convergent case still holds for every mon-increasing function 1)
without the assumption limp_o ¥ (T) = 0.

On the other hand, Theorem 1.1.3 provides only the information on Lebesgue
measure in the doubly metric case, i.e. it computes Lebesgue measure of the
set ﬁmn () C an A more refined question in inhomogeneous Diophantine
approximation is fixing b € R™ and asking the analogous question for the
slices of Dy, (). For fixed b € R™, let D, (1) := {A € My n(R) : (A,b) €
ﬁmn(w)} The following theorem answers the question for the singly metric
case.
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Theorem 1.1.5. Given a decreasing function ¥ with limp_,. ¥(T) = 0 and
0 < s < mn, the s-dimensional Hausdorff measure of Dﬁ’w(@b)c s given by

1 mn—s
B (0)) — T
b 1 mn—s
s mn ) e el e -
HA[0, ™) i Xt g <¢(q)7’}’b> -

for every b € R™ \ Z™. Moreover, the convergent case still holds for ev-
ery b € R™ and every non-increasing function v without the assumption

Theorem 1.1.4 and Theorem 1.1.5 can be applied to compute the Haus-
dorff dimension of the Dirichlet non-improvable set for some specific functions
explicitly. For example, let 1,(q) := ¢~ and ¥,(q) := ¢~ *(log ¢)® for a > 0,
b > 0. Our results directly gives the following: For 0 < a < 1, the Hausdorff

dimension of 13517,1(10(171;)0 is s :=mn — m,fi(j;aa) and
R 0 if p > mtna
5 (ng(iﬂa,b)c) = {st mn . ::.:;:La
«([0,2]™m) if b < DA

for every b € R™ \ Z™. More explicitly, H**(]0,1]™") = H™"([0,1]™") =< 1
if a = 1, and H®([0,1]™") = oo otherwise. For the doubly metric case, the
Hausdorff dimension of Dy, n(105)¢ is s +m and

~ 0 if p > mtna
H8a+m(Dm,n(wa,b>c) - . men
Heetm (o, [mtmy f p < mene,

Also, we can observe that the Hausdorff dimension is always bigger than mn—n
for the singly metric case and mn+m —n for the doubly metric case regardless
of the choice of 1.

We remark that the above results for ¢, can be stated in terms of wuni-
form Diophantine exponents. We denote by w(A, b) the supremum of the real
numbers w for which, for all sufficiently large T, the inequalities

[Aq+b—pl| <T™" and |[q| <T

have an integral solution p € Z™ and q € Z". For further details and references
regarding the above notion, see [BLO05, B16]. Considering ¢, with a = =, we

6
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have the following corollary by the definition.
Corollary 1.1.6. For any w > 0,

n — muw
14+ w

dimg {(A,b) € M, n(R) x R™ : W(A,b) < w} = min {mn +m —

dimp {A € Myn(R) : @(A,b) < w} = min {mn - n_mwmn}

14+w
for every b € R™ \ Z™. Therefore, for any 0 < w < 1=,
dimp {(A,b) € Myn(R) x R™ : G(A,b) = w} = mn +m — ”;ﬂ
w
n —muw

dimpg {A € My, n(R) : W(A,b) =w} =mn —

14w
for every b € R™\ Z™.

1.2 Badly approximable affine forms

The simplest way to improve Dirichlet corollary is to replace the right hand
side of (1.2) by o for 0 <'e < 1. It is well known that the set of matrices
satisfying that the improved system is solvable has full Lebesgue measure
[Gro38] and the exceptional set has full Hausdorff dimension [Sch69]. The
elements of the exceptional set are called badly approximable linear forms.

In this thesis, we consider the inhomogeneous Diophantine approximation:
the distribution of Aq modulo Z™ near a “target” b € R™. Although Dirichlet
theorem does not hold anymore, there exist infinitely many ¢ € Z such that

g —b—p| < 1/|q| for some p € Z
for almost every (a,b) € R? and moreover,

liminf |¢|lga —b—p| =0
P.q€L|q|—o0
for almost every (a, b) € R? by the inhomogeneous Khintchine theorem ([Cas57,
Theorem II in Chapter VII]).
Similarly to numbers, for an m x n real matrix A € My, »(R), we study
Ag € R™ modulo Z™ near the target b € R™ for vectors g € Z™. In this general

,mn—l—m},
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situation as well, using inhomogeneous Khintchine-Groshev theorem ([Sch64,
Theorem1] or [Spr79, Chapterl, Theorem 15]), we have

liminf |q||"(Ag—b)" =0

qeZ™,||q||—00

for almost every (A,b) € M, »(R) x R™. Here, (v) := i%f |lv — p|| denotes
peL™

the distance from v € R™ to the nearest integral vector with respect to the
supremum norm || - ||.

The exceptional set of the above equality is our object of interest. We
will consider the exceptional set with weights in the following sense. Let us
first fix, throughout the paper, an m-tuple and an n-tuple of positive reals
r = (ry, - ,"m), s = (81,--+,8,) such that Z rp=1= Z sj. The

1<i<m 1<j<n
special case where r; = 1/mand s; = 1/nforalli=1,..., mandj=1,...,n
is called the unweighted case.

Define the r-quasinorm of x € R™ and s-quasinorm of y € R™ by

1 L
= ;|7 d = 5.
el := max |oif7 and - lylls = max Jy;|*
Denote (x), := i%f |lx — p|ls- We call A e-bad for b € R™ if
peEL™

(1.6) liminf ||¢||s(Ag — b)r > €.
q€Z™,lg|lr—o0

Denote

Bad(e) := {(A4,b) € My, n(R) x R™ : A is e-bad for b},

Bad(e) := {b € R™ : A is e-bad for b}, Bada:= | JBada(e),
e>0
Bad’(c) := {A € My n(R) : Ais ebad for b}, Bad”:= | ] Bad’(c).

e>0

The set Bad® can be seen as the set of badly approximable systems of m
linear forms in n variables. This set is of Lebesgue measure zero [Gro38], but
has full Hausdorff dimension mn [Sch69]. See [PV02, KTV06, KW10] for the
weighted setting.

For any b, Bad® also has zero Lebesgue measure [Sch66] and full Hausdorff
dimension for every b [ET11]. Indeed, it is shown that Bad® is a winning



CHAPTER 1. INTRODUCTION

set [ET11] and even a hyperplane winning set [HKS20], a property which
implies full Hausdorff dimension. On the other hand, the set Bad 4 also has
full Hausdorff dimension for every A [BHKV10]. See [Har12, HM17, BM17]
for the weighted setting.

The sets Bad® and Bad, are unions of subsets Bad’(¢) and Bad/(e)
over € > 0, respectively, thus a more refined question is whether the Haus-
dorff dimension of Bad®(¢), Bad 4 (€) could still be of full dimension. For the
homogeneous case (b = 0), the Hausdorff dimension Bad®(e) is less than the
full dimension mn (see [BK13, Sim18] for the unweighted case and [KM19]
for the weighted case). Thus, a natural question is whether Bad®(e) can have
full Hausdorff dimension for some b. Our first main result says that in the
unweighted case, Bad®(e) cannot have full Hausdorff dimension for any b. We
provide an effective bound on the dimension in terms of € as well.

Theorem 1.2.1. For the unweighted case, i.e. 7; = 1/m and s; = 1/n for all
t=1,...,mand j = 1,...,n, there exist ¢ > 0 and My > 0 depending only
on d such that for any € > 0 and b € R™,

dimy Bad®(e) < mn — ce™o.

As for the set Bad 4(€), it was showed in [LSS19] that Hausdorff dimension
of Bad 4(€) is less than the full dimension m for almost every A. In fact, it
was shown that one can associate to A a certain point x4 in the space of
unimodular lattices SLy(R)/SL4(Z) such that if x4 has no escape of mass on
average for a certain diagonal flow, which is satisfied by almost every point,
then the Hausdorff dimension of Bad 4(¢) is less than m.

In this thesis, we provide an effective bound on the dimension in terms of
€ and a certain Diophantine property of A as follows. We say that an m x n
matrix A is singular on average if for any € > 0

1
lim — {l €{l,---,N}:3gecZ"st. (Ag)r < 27" and 0 < ||¢||s < 2l}’ =1.
N—oo N

Theorem 1.2.2. For any A € My, o(R) which is not singular on average,

there exists a constant c(A) > 0 depending on A such that for any € > 0,

dimy Bada(€) < m — ¢(A) 557

On the other hand, it was showed in [BKLR21]| that in the one-dimensional
case (m =n = 1), Bad,(¢) has full Hausdorff dimension for some e > 0 if and
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only if @ € R is singular on average. We generalize this characterization to the
general dimensional setting.

Theorem 1.2.3. Let A € My, ,(R) be a matriz. Then the following are equiv-
alent:

1. For some € > 0, the set Bad z(€) has full Hausdorff dimension.
2. A is singular on average.

Note that the implication (1) == (2) of Theorem 1.2.3 follows from
Theorem 1.2.2. The other direction will be shown in Section 3.6.

1.3 Badly approximable affine forms over global func-

tion field

As an extension of Diophantine approximation, we can consider Diophantine
approximation over a local field of positive characteristic, which goes back to
E. Artin, who first introduced continued fractions over a local field of positive
characteristic [Art24]. In this setting, there are numerous results on Diophan-
tine approximation, see for instance [Las00] or [Bug04(1), Chapter 9].

On the other hand, little is known about Diophantine approximation over
general global function fields. Thus, we will consider Diophantine approxima-
tion over global function fields. Let us start with the following setting of global
function fields.

Let K be any global function field over a finite field F, of ¢ elements
for a prime power ¢, that is, the function field of a geometrically connected
smooth projective curve C over F,. The most studied example in Diophantine
approximation in positive characteristic is the case of the field K = Fy(Z) of
rational fractions in one variable Z over F,, where C = P! is the projective
line, but we emphasize the fact that our work applies in the general situation
above.

We fix a (normalized) discrete valuation v on K. Let K, and O, be the
completion of K with respect to v and its valuation ring, respectively. We fix
a uniformizer 7, € K, which satisfies v(m,) = 1. Let k, = O, /m,O, be the
residual field and let g, be its cardinality. The (normalized) absolute value

(@)

| - | associated with v is defined by || = g, . For every o € Z>1, let
|l : K — [0,+00] be the norm (&1, ...,&) — maxj<i<s | & |. We denote by

dimg the Hausdorff dimension of the subsets of K7 for this standard norm.

10



CHAPTER 1. INTRODUCTION

The discrete object analogous to the set of integers Z in R is the affine
algebra R, of the curve C minus the point v. If K = Fy(Z) and v = [1 : (]
is the standard point at infinity of C = P!, then R, = F,[Z] is the ring of
polynomials in Z over F,.

Let m,n € Z>1. Let us fix, throughout the paper, two weights consisting of

a m-tuple r = (r1,--- ,7,) and a n-tuple s = (s1,--- , $,) of positive integers
such that we have |r| = Z T = Z sj. The r-quasinorm of § € K" and
1<i<m 1<j<n

s-quasinorm of @ € K" are given by

1 L
1€l = max [&7 and [[6]ls= max 6;]" .

We denote by (£), = ir}l%f || € —x || the (weighted) distance from & to the set
XER™

R of integral vectors in K.
Let € > 0. A matrix A € M,, ,,(K,) is said to be e-bad for a vector 6 € K"
if

(1.7) liminf || x|[s (Ax—0)r > €.

XGR'JLv || X ||S_>OO

Denote by Bad 4(¢€) the set of vectors 8 € K" such that A is e-bad for 6. Given
two subsets U and V' of a given set, we denote U —V ={x € U : x ¢ V}.
We say that a matrix A € My, ,(K,) is (r,s)-singular on average if for every
€ > 0, we have

(1.8)

N—oo

For the basic example of function field, when K = F,[Z] and v = [1 : 0],
Bugeaud and Zhang [BZ19] found a sufficient condition (and an equivalent one
when n =m = 1) on A for the Hausdorff dimension of Bad 4(¢€) to be full. We
first strenghten and extend their result to general function fields.

Theorem 1.3.1. Let A € M, ,,(K,) be a matriz. The following assertions
are equivalent:

1. there exists € > 0 such that the set Bada(€) has full Hausdorff dimen-
ston,

2. the matriz A is (r,s)-singular on average.

11

1
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CHAPTER 1. INTRODUCTION

We also provide an effective upper bound on the Hausdorff dimension in
terms of €, which is a new result even in the basic case K = F,[Z] and v =
[1:0].

Theorem 1.3.2. For every A € My, »n(K,) which is not (r,s)-singular on
average, there ezists a constant c(A) > 0 depending only on A, r, s, such that

clrl

for every e > 0, we have dimy Bad 4(¢) < m — c(A)m.

1.4 Weighted singular vectors

The simplest way to improve Dirichlet theorem is to replace the right hand
side of (1.1) by & for 0 < € < 1 and such matrix A € M, ,(R) is called
e-Dirichlet improvable. A matrix A € My, o(R) is called singular if it is e-
Dirichlet improvable for all € > 0, and denote by Sing(m,n) the set of singular
m X n matrices.

The name singular derives from the fact that the set of singular vectors
is a Lebesgue nullset. On the other hand, the computation of the Hausdorff
dimension of the set of singular vectors, or more generally singular matri-
ces, has been a challenge until the breakthrough [DFSU] using a variational
principle in the parametric geometry of numbers. Historically, the first break-
through was made in [Chell] to prove that the Hausdorff dimension of the
set of 2-dimensional singular vectors is 4/3, which was extended in [CC16] to
d-dimensional singular vectors. They proved that the set of d-dimensional sin-
gular vectors has Hausdorff dimension d?/(d + 1). For general m x n singular
matrices, it was proved in [KKLM17] that the Hausdorff dimension of m x n

singular matrices is at most mn(1— min) , and finally, it was shown in [DFSU]|
that the upper bound is sharp.

In this thesis, we consider the weighted version of the singularity as fol-
lows: Let w = (wy,...,wq) € ]Rio be an ordered d-tuple of positive real
numbers such that > ,w; = 1 and w; > --- > wy. We say that a vector
x=(x1,...,2q) € R? is w-singular if for every € > 0 there exists Tp > 1 such

that for all T' > Ty the system of inequalities

1 €
(1.9) lnéllagxd]qa:i —pi|™i < T and 0<q¢g<T

admits an integer solution (p, q) = (p1,...,pa, q) € Z* x Z. Denote by Sing(w)
the set of w-singular vectors in R%. Here and hereafter we always assume that

12



CHAPTER 1. INTRODUCTION

the weight vector w satisfies the above assumption.

In the weighted setting, it was shown in [LSST20] that the set of 2-

1
14wy
of this thesis is to extend this 2-dimensional result to higher dimensions re-

dimensional w-singular vectors has Hausdorff dimension 2 — . The aim

garding the lower bound of the Hausdorff dimension.

Theorem 1.4.1. For d > 2, the Hausdorff dimension of Sing(w) is at least

1
d— 5o

One of the main ingredients of the proof of Theorem 1.4.1 is Dani’s cor-
respondence, which means that w-singular vectors correspond to certain di-
vergent trajectories in the space Lgy; of unimodular lattices in R4*!. More
precisely, let a; := diag (e**’, ..., e, e7!) € SLgy1(R) and let

I
h(z) = ( 5 Qf) € SLgy1(R)  for z € RY,

where I is the d x d identity matrix. Then x is w-singular if and only if the
diagonal orbit (ash(x)Z*),_

Our method for the proof of Theorem 1.4.1 is basically extension of the
method in [LSST20], hence we also have the following result as in [LSST20,
Theorem 1.5].

is divergent.

Theorem 1.4.2. For any A € Lq1 and any nonempty open subset U in RY,
the Hausdorff dimension of the set

{z €U : (ath(x)A),;5q is divergent}
is at least d — ﬁ
Theorem 1.4.2 implies the following corollary as in [LSST20, Corollary 1.6].

Corollary 1.4.3. The Hausdorff dimension of the set
{A € Lay1: (a1);5q is divergent}
is at least dim SLg41(R) — ﬁ =(d+1)?-1- ﬁ

Recently, Solan [Sol] established a variational principle in the parametric
geometry of numbers for general flows. Following his notations, we consider

13



CHAPTER 1. INTRODUCTION

the following two subgroups:

H={g9ge€SLg+1(R):a_gay — 1441 as t — oo},
H' = {h(z) € SLg;1(R) : z € RY}.

Note that H is the unstable horospherical subgroup of a;. In the unweighted
setting (w1 = -+ = wy), the two subgroups H and H' are the same, but
in general, H is bigger than H’. One of the applications of the variational
principle for general flows in [Sol] is to give an upper bound of the Hausdorff
dimension of the set

Sing(H,A;ar) ={h € H : (athA) ;> is divergent}.

More precisely, [Sol, Corollary 2.34] implies that the Hausdorff dimension of
Sing(H, A; at) is at most dim H — ﬁ On the other hand, Theorem 1.4.2

implies that the Hausdorff dimension of Sing(H, A; a;) is at least dim H — ﬁ,

hence we have the following corollary.

Corollary 1.4.4. The Hausdorff dimension of Sing(H, A; a;) is dim H — ﬁ

The thesis is organized as follows. In Chapter 2, we obtain some weak L'
estimates and establish local ubiquity systems. Combining these two results
and Transference Principle in Diophantine approximation, we conclude the
proof of the main theorems in Section 1.1. In Chapter 3, we review classical
entropy theory, interpret the entropy theory in terms of homogeneous dynam-
ics, and establish the effective version of variational principle. By constructing
some “well-behaved” o-algebras and certain invariant measures with large en-
tropy, we conclude the effective upper bound of the main theorems in Section
1.2. For the lower bound part, we characterize the singularity on average in
terms of best approximation vectors and construct modified Bugeaud-Laurent
sequences, which implies the lower bound of the main theorems in Section
1.2. In Chapter 4, we review global function fields and develop some basic
Diophantine properties in the global function field setting. Following Chap-
ter 3, we establish the effective variational principle and construct certain
“well-behaved” o-algebras and invariant measures with large entropy, which
concludes the effective upper bound of the main theorem in Section 1.3. We
also characterize the singularity on average and construct modified Bugeaud-
Zhang sequences to obtain the lower bound part in the main theorem in Section
1.3. In Chapter 5, we review some notions : rooted trees, fractal structures,

14



CHAPTER 1. INTRODUCTION

and self-affine structures. Then we calculate the lower bound of Hausdorff di-
mension of the fractal set related to the self-affine structure. We construct the
self-affine structure related to weighted singular vectors and estimate sharp
lattice point counting, which concludes the main theorems in Section 1.4.

15



Chapter 2

Equidistribution and
Ubiquitous system

2.1 Preliminaries

2.1.1 Hausdorff measure and auxiliary lemmas

Below we give a brief introduction to Hausdorff measure and dimension. For
further details, see [Fall4].

Let E be a subset of a Euclidean space R*. For § > 0, a cover C of E is
called a d-cover of E if diam(C) < for all C € C. For 0 < s <k, let

H5(E) = inf Z diam(C)?,

where the infimum is taken over all finite or countable d-cover C of E. Then

the s-dimensional Hausdorff measure of a set E is defined by
HP(F) = lim Hi(E).
0—0
Finally, the Hausdorff dimension of E is given by
dimy(E) = inf{s > 0: H*(E) = 0}.

The following principle commonly known as the Mass Distribuiton Princi-
ple [Fall4, §4.1] will be used to show the divergent part of Theorem 1.1.4.

16



CHAPTER 2. EQUIDISTRIBUTION AND UBIQUITOUS SYSTEM

Lemma 2.1.1 (Mass Distribution Principle). Let p be a probability measure
supported on F C R¥. Suppose there are positive constants ¢ > 0, 1o > 0, and
0 < s <k such that

n(B) < er’

for any ball B with radius r < ro. If E is a subset of F with u(E) = XA > 0
then H*(E) > \/c.

We state the Hausdorff measure version of the Borel-Cantelli lemma [BD99,
Lemma 3.10] which will allow us to estimate the Hausdorff measure of the
convergent part of Theorem 1.1.4 and Theorem 1.1.5.

Lemma 2.1.2 (Hausdorff-Cantelli). Let {B;};>1 be a sequence of measurable
sets in R* and suppose that for some 0 < s < k,

Z diam(B;)® < oo.

Then
H?(limsup B;) = 0.
1—+00
2.1.2 Homogeneous dynamics

Our argument is based on the Dani correspondence, which forms a connection
between Diophantine approximation and homogeneous dynamics. The classi-
cal Dani correspondence for homogeneous Diophantine approximation dates
back to [Dan85] (See also [KM99]). The analogous correspondence between
inhomogeneous Diophantine approximation and the dynamics in the space of
grids have been used in [Kle99, Shall, ET11, LSS19, GV18]. In this section,
we introduce the space of grids in R™*" and the diagonal flow on this space.
For d =m + n, let

Gd = SLd(R) and éd = ASLd(R) = Gd X Rd,

and let
Dy=SL4(Z) and Tyq= ASL4(Z) =Ty x Z%

Elements of G will be denoted by (g, w), where g € Gy and w € R%. Denote by
X4 = G4/T 4 the space of unimodular lattices in R? and denote by Xg = Gy /Ty
the space of unimodular grids, i.e. affine shifts of unimodular lattices in R%.

17



CHAPTER 2. EQUIDISTRIBUTION AND UBIQUITOUS SYSTEM

For simplicity, let G := G4, X := X4 and denote by mx the Haar probability
measure on X;. For t € R, let

ap = diag(et/m, cetm et e*t/").

Let us denote by

I, A I A b ~
= m d = m
uA (0 In) €Gy and wuap <(0 In) ,(0>> € Gy

for A € My, »(R) and (A4,b) € an(R) Let us also denote by

Ag=usZ% € X and Agp = uA’bZd € )/Ed7

where uA’bZd = { (Aq +h= p> pEeEZ™,qe Z”}. The expanding horo-
q

spherical subgroup of G4 with respect to {a; : t > 0} isgiven by H := {u4 : A € M, n(R)}.
On the other hand, the nonerpanding horospherical subgroup of G4 with re-
spect to {a; : t > 0} is given by

H:= { (Z g) : P € My m(R),Q € M, ,,(R), R € M, ,n(R),det(P)det(Q) = 1} .
Note that H is the complementary subgroup to H. We denote by myg and m g
the left-invariant Haar measure on H and H, respectively.

Let d be a right invariant metric on G. We can take d to satisfy ||g —id|| <
d(g,id) for g in the sufficiently small ball B¢ (id), where ||-|| is the supremum
norm on My 4(R). This metric induces metrics on H, H, and X by restriction.

We let BE (id), BH (id), BH (id), and BX (id) denote the open ball in G, H, H,
and X of radius r centered at the identity, respectively.

Following [KW19], we define the functions A : X4 — [—00, 00) by

A(A) := log inf |[v]],

which can be considered as the logarithm of a height function.

Lemma 2.1.3. [KM99, Lemma 8.3] Let m,n € N and Ty € Ry be given.
Suppose ¢ : [Tp,00) — Ry is a continuous, non-increasing function. Then

18



CHAPTER 2. EQUIDISTRIBUTION AND UBIQUITOUS SYSTEM

there exists a unique continuous function
z = zy : [to,00) = R,

where to 1= - log Ty — - log ¢ (To), such that
1. the function t — t + nz(t) is strictly increasing and unbounded;

2. the function t — t —mz(t) is nondecreasing;
3. (et ) = e=ttm) for all t > tg.

The following lemma reduces the inhomogeneous Diophantine approxima-
tion problem to the shrinking target problem on the space of grids.

Lemma 2.1.4. [KM99, KW19] Let ¢ : [Tp,00) — R4 be a non-increasing
continuous function, and let z = zy, be the function associated to 1 by Lemma
2.1.3. Then (A,b) € ﬁm,n(7/1) if and only if A(aiAay) < zy(t) for all suffi-
ciently large t.

Remark 2.1.5. In other words, Lemma 2.1.4 means that

Dyn(¥)¢ = limsup {(4,b) : A(asAap) > 2z4(1)},

t—o00

ZA)EWL(@&)C = limsup {A : A(aAap) > 2p(t)}-

t—00
Here, the limsup sets are taken for real values t € R. However, in the proof of
the convergent part, we are going to work with limsup sets taken fort € N to
apply the Hausdorff-Cantelli lemma. Thus, in the Section 3, we will use the
following alternative: there exists a constant Cy > 0 satisfying

Dyn(#) € limsup {(A,b) : AarAap) = 24(t) = Co},

t—o0,teN

DP ()¢ C limsup {A: AlaAap) > 2(t) — Co} .
t—o0,teN
This alternative holds since zy is uniformly continuous by Lemma 2.1.3 and
A is uniformly continuous on the set A™Y([z,]) for any z € R ([KW19,
Lemma 2.1]).

Lemma 2.1.6. Let v : [Ty, 00) — Ry be a non-increasing continuous function,
and let z = zy be the function associated to 1 by Lemma 2.1.5. For 0 < s <

19 ‘
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CHAPTER 2. EQUIDISTRIBUTION AND UBIQUITOUS SYSTEM

mn, we have

00 1 mn—s
1 qn ) —(mn) (2(t) - mn=sy)
Z <00 — Z < 00.
2 i
a=[Tb] v(a)g (1/1(61) "

t= |—t01

Proof. Note that if 0 < s < mn — n, both of the sum is infinity regardless of

1, thus we may assume mn —n < s < mn. Following [KM99] and [KW19]
replace the sums with integrals

1 mn—s
S 1 xTn o0 mn—s
dr and / ei(m+n)(z(t)77mn t)dt
/TO V(@) (Wxﬁn)

to

respectively. Define

P:= —logoyoexp:[Ip,00) =R and A(t):=t+ nz(t).

Since ¥(e*) = e PN we have

> 1 fl?”ll e o0 mn—s mn—s
dxr = / e_(l_ n )>‘+(1+ m )P(A)d)\
T, Y(@)r? <¢(x)ﬁl> 1

ogTo

Using P(A(t)) =t —mz(t), we also have
/ o () (2(0) -2 ) 4y
to

_ /°° e(l’"’;S)H(lM’:ﬁ)P(A)d{ moy, "
!

og To m+n m+n

PQ)

[T e (1) POy g
m+n 10gT()

L / e—(l—LZ_S)/\+(1+m7n_s)P(/\)dp()\),
m+n log Tp

The second term in the last line can be expressed by

n / e~ (152 D (14252 POY g p )
m+n Jj

ogTh
- _1 o0 mn—s mn S
_n <1+ mn s) / o (1-mn )/\d( (1 —)P(A))
m+n m log Ty
20
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Using integration by parts, the last integral is

/°° e (1= 2222 )0 g (14222 POy
1

ogTo

_ <1_ mn—8> /°° e~ (152 (L2522 PO) g
It

n og Ty

+ (lim 6—(1—%)>\+(1+mf;s)P(}\) _ To(lTr”;S)w(To)—(l-&-W)) )

A—00

mn—s
n

Note that hm e (1= Pt (+25=2) PO 0 if the integral

A—00
o
/ o (1= =2 A+ (142222 ) P(N) g
log Ty
converges. Thus the convergence of

1 mn—s
o 1 :C; o0 mn—s
dx or / o~ (mAn) (2(t) = =2=2t) oy
/TO P(z)z? (1[)($)T}L> to

implies the convergence of the other one since all summands are positive except

mn—s mn—s)

the finite value —TO_(l_ " )w(TO)_(lJr m

O]

2.2 Equidistribution and Weak-L! estimate

To obtain the upper bound of Hausdorff dimension, we will basically count the
number of covering balls following the ideas from [KKLM17]. We are going
to use the equidistribution of expanding subgroup of the a;-action on X to
compute the Lebesgue measure of the set of points visiting the shrinking target
for each time ¢, following the “thickening” technique of Margulis [Mar04]. We
also refer to the formulation of [KM96]|. However, if we apply the thickening
argument for L? functions as usual, it does not give the optimal dimension
upper bound. To obtain the optimal dimension bound, we need a L™ estimate
as the following Proposition 2.2.1. L' norm of a function f on X is defined
by [|fllLrw(xy = J\SJUE)MTTL)(({ZL' € X :|f(z)] > M}), and LY*(X) is the space

of measurable functions with finite L>*-norm.

Proposition 2.2.1. Let H, H be the mazimal expanding, nonexpanding sub-
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group of Gy, respectively. Assume that f € LY (X) is a nonnegative function

satisfying the following condition: there exist c,rg > 0 such that ¢ < |ff((h;““))\

for any h € Bfg(id), x € X. Then for any x € X, there exist a constant
K = K(x) > 0 such that

mu({h € B (id) : f(a;hz) > M}) < %

for all M > 0, t > 0, i.e. for any x € X, H(at)*foLl,w(B{I(id)) is uniformly
bounded for all t > 0, where the function f, : H — R is defined by f.(h) =
f(hz).

Proof. Fix x € X and let Eyy := {h € Bf(id) : f(a;hxz) > M}. For con-
tradiction, suppose that for any K > 0, there exist ¢, M > 0 such that
mu(Ene) > % Let EM’t = {ﬁh th € Eng, he Bﬁ(id)}, where 0 < r < rq

is a small real number to be determined later. Then for any hh € EMyt,
f(ashhz) = f((asha; Dagha) > cf (aghz) > M

since azha; ! € Bfl(id). We partition Bf!(id) into Dy, -- Dy so that a map
7z G — X defined by m,(g9) = gz is injective on each D;. Note that the
number of the partition N is not depending on K. Choose r small enough so

N
that m, is injective on B (id)D; for all 1 <4 < N. Let Ene = |_| E;, where

i=1
E; = EM,t N D;, then

mx({y € X : f(y) =2 cM}) =mx({y € X : f(ay) = cM})
> mx({ﬁhx €X:hhe EMyt})
> mg({}}h €G:heB3d),he EZ})
= m g (BI (id))m (B,)
for all 1 < i < N. Summing over 1 < i < N, we have
Nmx({y € X : f(y) > eM}) > mg(BE (id)ymu (Eary)

H
m (B (id)) K

> M

and it implies || f||z1.w(x) = oo since K > 0 is arbitrary and ¢,r, N are inde-

22



CHAPTER 2. EQUIDISTRIBUTION AND UBIQUITOUS SYSTEM

pendent to K. It contradicts the assumption f € L% (X). O

2.3 Application to Diophantine approximation

2.3.1 Successive minima function

Let \;(A) denote the j-th successive minimum of a lattice A C R? i.e. the
infimum of A such that the ball B/ﬂ\{d(O) contains j independent vectors of
A. The following inequality explains the relationship between the successive
minima functions A\; and A4.

Theorem 2.3.1 (Mahler’s inequality, [Cas59], Theorem VI in Chapter VIII).
For any lattice A C R, 1 < A(A*)A\g(A) < d! holds, where A* is the dual
lattice of A.

Note that the Haar measure my is invariant under the dual operation since
the dual operation is induced by the transpose of the inverse of a matrix, which
is an automorphism of GG. Another ingredient we will use is Siegel’s integral
formula.

Theorem 2.3.2 (Siegel’s integral formula). For a compactly supported inte-
grable function f € L'(R?), we define a function f on X by

fay= > f)

veA\{0}

Then for any f as above, fX fdmx = fRd fdmpa.

In the following Proposition 2.3.3 and 2.3.4, we will show that the function
)\g satisfies the assumption of Proposition 2.2.1.

Proposition 2.3.3. \4 € Lb¥(X).
Proof. For any r > 0,

mX({A Ad(A) > (d!)dr_d}) = mx({A: \a(A) > dir™'})

(2.1)
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thus A4 € L*(X). In (3.28), the second line is by Mahler’s inequality, the
third line is by the invariance of myx under the dual operation, the fourth line
is using the fact that A;(A) <7 implies x5, (0)(A) > 1, and the last line is by
Siegel’s integral formula. O

Proposition 2.3.4. For any 0 < ¢ < 1, there exists r > 0 such that for any
g € G with d(g,id) < r, cAg(A) < Ag(gA) < ¢ *Ag(A) holds for any A € X

Proof. 1t suffices to show the statement under the stronger assumption that
both of g and g~! are in the ball B (id). Then there exist independent vectors
V1, ,vg € A such that [|vr| < [|ve|| < -+ < lvgl]] = Aa(A). For each 1 < i <
d,

lgvi = vill < dllg —adl[[[vi]| < drAa(A),

thus ||gvi|| < (14dr)Aq(A). It implies A\g(gA) < (14dr)Ag(A) since guy, - - - , gvg

1

are independent vectors. Applying this for g7 and gA, instead of g and A, we

have
Aa(A) = Aa(g~gA) < (1+dr)Aa(gA).

Thus for any A € X and g € BE(id), (1+dr) "' \g(A) < Ag(gA) < (1+dr)Ag(A)
holds. O

2.3.2 The number of covering balls

In this subsection, we will construct a sequence of coverings for ﬁm,n(@b)c
and Dg?n(w)c to apply Hausdorff-Cantelli Theorem. Recall that we adopt the
supremum norm || - || on [0, 1]™".

Proposition 2.3.5. Let Cy > 0 be a constant described in Remark 2.1.5. For
t €N, let Z := {Ae€[0,1]™" :log(dAg(atAa)) > 2zy(t) — Co}. Then Z; can
be covered with Ke™ ™ E=20®) balls in M, ,(R) of radius %e_(%‘*'%)t for a

constant K > 0 depending only on the dimension d.

Proof. [0,1]™™ can be covered with p(< e™*™?) cubes Dy, Dy,--- , D, with
sides parallel to the axes of R™" and of sidelength r < e~(m+a)t and having
mutually disjoint interiors.

Lemma 2.3.6. Fort €N, let
Z; = {A€[0,1)]™ : log(d*\y(atAa)) > zpr) —Co— 1} .
For anyt>1, if D;NZy # ¢ for some 1 < i <p, then D; C Z,.
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Proof. Assume that there exists 2 € D; but x ¢ Z/ for some t > 0. Choose a
point y € D; N Zy, then ||z — y|| < r and

()t (g —
||arug—ya_s — id|| = H (Im ¢ I(x y)> —id

141
< etz —y)| < 1.

Thus, for g = ajuy—ya—y, it satisfies ||g —id|| < 1 and a;Ay = gayA,. On the
other hand, log(d*Aq(aiAz)) < zy(t) — Co — 1, log(dAa(athy)) > z4(t) — Co
hold since = ¢ Z!, y € Z;. We can take independent vectors vy, - -- ,vq € R% in
the lattice a; A, satisfying ||v;|| < d%ezw(t)_c(’_l for all 1 < ¢ < d. Let w; = gv;,
then w;’s are independent vectors in the lattice a;A, and satisfy

2 0—Coo1 _ L -
lwill < dllgllllvill < 2dljvi]] < Ze* =™ < Sere=Co

for all 1 < i < d. Thus we obtain log(dAg(atAy)) < 2z (t)—Cp but it contradicts

toy € Z;. O
Let p' := |{D; : D; N Z; # ¢} | and by reordering the D;’s if necessary, we

p/
can assume that {Dl, e ,Dp/} ={D;: D;NZ; # ¢}. Then Z;, C U D; C Z

i=1
by Lemma 2.3.6. Now we will apply Proposition 2.2.1 for the function /\fii with
the base point = = Z?. By Proposition 2.3.3 and Proposition 2.3.4, )\g satisfies

the conditions of Proposition 2.2.1. Then we have
1 Oy
mgmn(Z;) < mgmn ({A € [0,1]™™ : Ag(agAn) > ﬁe%(t) Co 1})

1
= my ({h € Byl (id) : Aga:hZ?) > dwedwmcw)})
< e_dzlb(t)'

/

p
On the other hand, mgmn (Z;) > Z mgmn (D;) = p'e”% holds, thus we finally

i=1
obtain p’ < e¥=2v(®) Tt means that Z; can be covered by < et=2¢(®) many
p/
balls of r-radius since Z; C U D;. O
i=1
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1 mn—s
Proposition 2.3.7. Let 0 < s < mn. If 322, ;o ) " T)Li < 00,
then H*(limsup Z;) = 0 and 7—[5+m(hm sup Zy x [0,1]™) = 0.

t—o0

1 mn—s
Proof. By Lemma 2.1.6, the assumption > 2, W (Mq?)tl) < oo is
q m

equivalent to Y .o, e~ (:O—"05) o For each t € N, let us de-
note by Dy, Dys, - - ,Dtpt the balls of radius %e*#*i)t covering Z; as in
Proposition 2.3.5. Note that p;, the number of the balls, is not greater than
Kelmtn)(t=2x(1) by Proposition 2.3.5. By applying Lemma 2.1.2 to a sequence
of balls { Dy} 1 <j<p,» We have H*(limsup Z;) < H*(limsup Dy;) = 0.

t—ro0 t—ro0

We prove the second statement by a similar argument. Proposition 2.3.5

implies that Z; x [0,1]™ can be covered with K " te(m+n)(t=2u() balls of
ERat

. Applying Lemma 2.1.2 again, we have H*""(lim sup Z; x

radius %6_(
t—o0

0,1]™) = 0.
O

The convergent part of Theorem 1.1.4 and 1.1.5 follows this proposition.

Proof of Theorem 1.1.4 and 1.1.5. We first prove the singly metric case, The-
orem 1.1.5. We claim that log(dAg(atAa)) > A(arAap) for every b € R™. Let
v1,- -+ ,vg be independent vectors satisfying [|v;|| < Ag(arAa) for 1 < i < d.

Then there exists a vector of a;A4p which can be written as a form of
d

Zaivi for some —1 < a; < 1’s, so the length of the shortest vector is
=1

< ZHUZH Thus, A(aiAap) < logZHvzH < log(dAg(atA4)). It implies
=1

Df,’l’n(@b) C limsup {4 € [0,1]™" : A(aiAap) > zy(t) — Co} C limsup Z; by
t—o0

t—o0
Lemma 2.1.4, thus we obtain Hs(ﬁf’nm(w)c) < H*(limsup Z;) = 0 by Proposi-
t—
tion 2.3.7. -
Similarly for the doubly metric case, together with the second statement
of Proposition 2.3.7,

Dy (10)¢ C limsup { (A, b) € [0, 1]+ : A(arAap) > 2,(t) — Co}

t—o00

C limsup Z; x [0, 1]™

t—o00
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provides the proof of Theorem 1.1.4. ]

2.4 Local ubiquitous system

2.4.1 Historical Remarks

The proof of the divergent parts of Theorem 1.1.5, that is the singly metric
case, is based on the ubiquity framework developed in [BDV06, BV09]. The
concept of ubiquitous systems goes back to [BS70] and [DRV90] as a method
of determining lower bounds for the Hausdorff dimension of limsup sets. This
concept was developed by Beresnevich, Dickinson and Velani in [BDV06] to
provide a very general and abstract approach for establishing the Hausdorff
measure of a large class of limsup sets. In this subsection, we introduce a
simplified form of ubiquitous systems to deal with the specific application as
in [BDVO06, Section 12.1].

We consider [0,1]"" with the supremum norm || - ||. Let R := (Ra)acs

mn

be a family of resonant sets R, C [0,1]™" indexed by a countable set .J.

We assume that each resonant set R, is an (m — 1)n-dimensional, rational
hyperplane following [BDV06, Section 12.1]. Let 8 : J — RT : a + f, be a
positive function on J for which the number of o € J with ., bounded above
is always finite. Given a set S C [0,1]™", let

A(S,r) :={X €[0,1]™" : dist(X, S) < r},

where dist(X,S) := inf{||X — Y] : Y € S}. Fix a decreasing function ¥ :
R* — RT, which is called the approzimating function. For N € N, let

A(¥,N) := U ARy, U(Ba))
acJ : 2N-1<B,<2N
and let

A(T) :=limsup A(V, N) A(¥,N).
W N_*°°p MﬂlNUM

Throughout, p : RT — RT will denote a function satisfying lim;_,. p(t) =
0 and is usually referred to as the ubiquitous function. Let

A(p,N) := U A(Ra, p(Ba))-

acJ : 2N-1<p,<2N

27



CHAPTER 2. EQUIDISTRIBUTION AND UBIQUITOUS SYSTEM

Definition 2.4.1 (Local ubiquity). Let B be an arbitrary ball in [0,1]™".
Suppose that there exist a ubiquitous function p and an absolute constant k > 0
such that

(2.2) BN A(p,N)| > #|B| for N > No(B),

where | - | denotes the Lebesque measure on [0,1]™". Then the pair (R, ) is
said to be a locally ubiquitous system relative to p.

With notations in [BDV06], the Lebesgue measure on [0,1]™" is of type
(M2) with § = mn and the intersection conditions are also satisfied with
v = (m — 1)n (see [BDV06, Section 12.1]). These conditions are not stated
here but these extra conditions exist and need to be established for the more
abstract ubiquity.

Finally, a function h is said to be 2-reqular if there exists a positive constant
A < 1 such that for N sufficiently large

R(2V L) < AR(2V).
The following theorem is a simplified version of [BV09, Theorem 1].

Theorem 2.4.2. [BV09, Theorem 1] Suppose that (R, 3) is a local ubiquitous
system relative to p and that V is an approximating function. Furthermore,
suppose that p is 2-reqular. Then for (m — 1)n < s < mn

0 Nys—(m—1)n
W) = (o) ST e
N=1

2.4.2 Transference Principle on Diophantine approximation

Let d = m~+n and assume that 1 : [T, c0) — Ry be a decreasing function sat-
isfying limr—,oc ¥(T') = 0. Denote by |- ||z and |- |z the distance to the nearest
integral vector and integer, respectively. Define the function 1 : [Sp, 00) — R4
by

~ 1

D(8) = (v7HST™) ™,
where Sy = (Ty)~'/™. We associate ¢-Dirichlet non-improvability with @Z—
approximability via a transference lemma as follows.
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Lemma 2.4.3 (A transference lemma, [Cas57]). Given (A4,b) € ]T/[/m,n(R), if
the system

ItAx||z < d b - x|z0(S) and |x|| <d '|b-x|zS

has a nontrivial solution x € Z™ for an unbounded set of S > Sy, then (A,b) €

Dy (1)°.

Proof. Using part A of Theorem XVII in Chapter V of [Cas57] with C' =
()™ and X = T/ the fact that

lAq = bz <H(T)Y™ and |q < T/
for some q € Z" implies that
[b x|z < dmax(T"|| Ax|z, (T)"/™||x]))

holds for all x € Z™. Thus the lemma follows with S = ¢ (T)~*/™ and ¢(S) =
T=Y™ since limg 00 %(T) = 0. O

Thus we adopt the following notations for each S > Sy and 0 < e < 1/2:

e Let Wg, be the set of A € [0, 1]™" such that there exists x4 g € Z™\ {0}
satisfying

I*Axasllz < d 'ep(S) and ||xas| < d'eS.

o Ws.:={(A,b) €[0,1]™ ™ : A e Ws, and |b- x|z > €}.

e For fixed b € R™, let W, g be the set of A € [0,1]™" such that there
exists x € Z™ \ {0} satisfying
(i) ‘b : X‘Z > €,
(i) [|'Ax|lz < dteyp(S) and ||x|| < dLeS.

o Wy :=limsup Wy g..
S—o00

Note that A € W, if and only if

HtAxA,SHZ <V (U) and |xas|<U,
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where
(2.3) U (U) :=d 'eip(de U).

By Lemma 2.4.3, lim sup Wsﬁ C ﬁm,n(z/})c and Wy C ﬁfn,n(w)c.

We remark thats Hrono sup W is the set of ¥ .-approximable matrices, that
is, limsup Wg, = {AS—EwO[O, 1™ : A € Wym(¥,)}. Here and hereafter, as
men‘figrizd before in footnote 1, we adopt the slightly different definition for

U .-approximability, where the inequality ||’ Ax||z < ¥(||x]||) is used instead of
(1.3). Then, Wy can be considered as the set of W.-approximable matrices
with solutions restricted on the set {x € Z™ : |b - x|z > €}.

2.4.3 Mass distributions on V.-approximable matrices

In this subsection, we prove the divergent part of Theorem 1.1.4 using mass
distributions on W.-approximable matrices following [AB18].

Lemma 2.4.4. For each 0 < s < mn and 0 < € < 1/2, let Uy = d 'eSp.

Then,
1 mn—s
00 1 1 00 U s—n(m—1)
Z - ( el 1> <00 = Z hm+"‘1< E}Em) < 0.
o YD \ () h=[Uo]

Proof. Since W (h) = dep(de 1h),

_ _ ~ s—n(m—1)
) U, (h s—n(m—1) 00
Z pmtn—l ( f(L )) <00 < Z gmitnt <¢(q)> < o0.

h=[Uo] 4=[50] a

Thus, similar to Lemma 2.1.6, we may assume mn —n < s < mn and replace
the sums with integrals

1 mn—s ~ s—n(m—1)
* 1 T e ()
d d mAnl d
/To 1/)(%)562 (1,/}(95)51) T an /SO ) ( y ) Y,
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respectively. Since J(y) = w_l(y_m)_%, we have

o J(y) s—n(m—1)
/ ym-i—n— 1 < > dy
So )

Using integration by parts,

/oo xmflfi (w(x)fl)n—i-l—%

To

= (Jim o () () )
- - 1 o0 S S
+ <8 nim )> w(x)_”_1+ﬁxm_2_ﬁdx.

n T

Observe that

00 o0
"‘p(x)in*lJr%wm*Q*%dx = w(x)inipr%wmili%dbg%
i To

Thus the convergence of f;j ¢(x)_”_1+%xm_2_%dx gives that

lim xm_l_%w(a@)_”_Hi < o0.
T—r00

Hence the convergence of

1 mn—s ~ s—n(m—1)
o zn ey ()
d m+n—1 [ Y\I/ d
/To 1/}(3;)372 <¢(x)$l> r or /So Y ( Y ) Y

implies the convergence of the other one since all summands are positive except
the finite value —Tgn "%ZJ(TO)_”_Hm, .
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Lemma 2.4.5. [AB18, Section 5] Assume that

00 1 q% mn—s B
o <¢<q>%> -

Fiz 0 < e < 1/2. Then, for any n > 1, there exists a probability measure pn on

lim sup W . satisfying the condition that for any arbitrary ball D of sufficiently
S—o0
small radius (D) we have

(D)
n(D) < —

where the implied constant does not depend on D or n.

Proof. Note that limsup Wg, = {4 € [0,1]™" : 'A € W, ;m(¥e)}. By Lemma
S—00
oo 1 (We(h) s—n(m—1) o . )
2.4.4, 302 Bt (ST = 00, which is the divergent assumption
of Jarnik’s Theorem (Theorem 1.1.2) for W,, ,,(¥,). From the proof of Jarnik’s
Theorem in [AB18] and the construction of a probability measure in [ABIS,

Section 5] we can obtain a probability measure p on limsup Wg . satisfying
S—o0
the above condition. O

Let us give a proof of the divergence part of Theorem 1.1.4.

Proof of Theorem 1.1.4. If s = mn + m, then it follows from Theorem 1.1.3.
Assume that m < s < mn + m and fix 0 < € < 1/2. For any fixed n > 1,

let ;1 be a probability measure on limsup Wg . as in Lemma 2.4.5 with s —m
S—o00
instead of s. Consider the product measure v = pu X mgm, where mgm is

the canonical Lebesgue measure on R™, and let m; and w5 be the natural

projections from R ™ to R™" and R™, respectively. For any fixed integer
S—1
N >1,let Ve = Wse\ | ) Wie and Vs = {(4,b) € Ws, : A € Vs, } and

k=N
EA,S,E = {b S [0, 1]m : |b'XA,S‘Z > 6}. Note that mRm(EA’,gye) > 1—2e¢. Using
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Fubini’s theorem, we have

v( U Wsjg) =u( U ‘75,6) = Z I/(‘7576)

S>N S>N S>N
> > (1 =20 (V) = (1 —26)u( | Ws,e)
S>N S>N
=1 - 2e.

Since N > 1 is arbitrary, we have v(lim sup nge) >1-—2e.
S—o00

For any arbitrary ball B C R™ ™ of sufficiently small radius r(B), we
have
r(B)*

(2.4) v(B) = p(m1(B)) x mpm (m2(B)) < m_—

where the implied constant does not depend on B or n. If 0 < s < m, we have
(2.4) with g in Lemma 2.4.5 with s = 0.
By the Mass Distribution Principle (Lemma 2.1.1) and Lemma 2.4.3, we
have
Hs(ﬁm,n(@b)c) > H*(lim sup ste) > (1 —2€)n

S—o0

and the proof is finished by taking n — oc.

2.4.4 Establishing the local ubiquity

The singly metric case is more complicated than the doubly metric case. In
this subsection, we will prove Theorem 1.1.5 by establishing the ubiquitous
system for Wy, . with an appropriate € as follows.

For b = (b1,...,by) € R™\ Z™, define

|bjlz
2.5 b) := AL
(25) (b) 1§jsfv?, bjlz>0 4

Note that the fact that b € R™ \ Z™ implies ¢(b) > 0. The following lemma
will be used when we count the number of integral vectors z € Z™ such that

(2.6) b -zl; < e(b).
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Lemma 2.4.6. For b = (by,...,by) € R™\ Z™, let (b) be as in (2.5) and
1 <i < m be an index such that e(b) = %. Then, for any x € Z™, at most
one of x and X+ e; satisfies (2.6), where e; denotes the vector with a 1 in the
tth coordinate and 0’s elsewhere.

Proof. Observe that if |b - x|z < ¢(b), then
b (x£ei)lz—|£bilz| < b-x|z < e(b).
By definition of ¢(b), we have
[b- (x+e)lz > [bilz — e(b) > ¢(b).
O

Now we fix b € R"™ \ Z™ and write ¢y := €(b) and ¥ := ¥, as we set in
(2.3) and (2.5). Let

J:={(x,y) €Z™ xZ" : |ly| < m||x|] and |b - x|z > ey}, Y(h):=
Q= (X,Y) € J? /Ba = Hx”a Ra = {A S [O, 1]mn : tAX = y}

Note that Wy, = A(¥) and the family R of resonant sets R, consists of

(m — 1)n-dimensional, rational hyperplanes.

os} m+n—1 [ Yo(h) s—n(m=1) —
By Lemma 2.4.4, we may assume that > 0~ h —7 =

00. Then we can find a strictly increasing sequence of positive integers {h; };en
such that (m-1)
S—\m—1)n
S gt (‘I’O(h)) -1
hi—1<h<h; h

and h; > 2h;_1. Put w(h) := i if hi—1 < h < h;. Then w is 2-regular and

oo s—n(m—1)

Wo(h
hz:l pmtn—l <O}E )) w(h)™ = co.

For a constant ¢ > 0, define the ubiquitous function p. : Rt — R* by

14+n
ch™ ™ ifm=1
2.7 pe(h) = —— ’
27) (%) {ch " w(h) it m>2,
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Clearly the ubiquitous function is 2-regular.

Theorem 2.4.7. The pair (R,[) is a locally ubiquitous system relative to

p = pc for some constant ¢ > 0.

Proof of Theorem 1.1.5. For fixed b = (by,....by) € R™ \ Z™, assume that
b; ¢ Z. If b; is rational, then there is 0 < € < 1/2 such that |kb;|z > € for
infinitely many positive integer k. If b; is irrational, then the set {kb; (mod 1) :
k € Z} is dense in [0, 1]. Hence, for any fixed 0 < € < 1/2, |kb;|7 > € holds for
infinitely many positive integer k. Let us denote that increasing sequence by
(kj)32,. This observation implies that the set {A € [0,1]™" : [|* Akje;[lz = 0},
which is the finite union of (m — 1)n-dimensional hyperplanes, is a subset of
Wh « for each j € N. Hence for any 0 < s < (m — 1)n

HA(DP, ,(1)°) > 1A (W) = H*([0,1]™").

Now assume that (m — 1)n < s < mn. It follows from Theorem 2.4.2 and
Theorem 2.4.7 that

H (D (9)) > H(Whey) = HE([0,1]™).

Here, we use the fact that the divergence and convergence of the sums

o0

Z oNef(9Ny  and Z R f(h) coincide
N=1
for any monotonic function f: Rt — Rt and « € R. O
Recall that we adopt the supremum norm || - || on [0,1]™". We consider

m =1 and m > 2, separately.

Proof of Theorem 2.4.7 for m = 1. Note that, for (z,y) € J, the resonant
set R(Iy) is the one point set {¥ := (L,...,%)} and A(Ryy,p(2V)) =
B(¥,p(2")), the ball of radius p(2") centered at ¥. We basically follow the
strategy in [Tho04, Chapter 3].

Let B an arbitrary square in [0,1]" and write B = [[ [, w], 1 =
(liyovoslp), w = (ug,...,u,). We restrict y to ged(z,y) = 1 and ¥ € B.

35



CHAPTER 2. EQUIDISTRIBUTION AND UBIQUITOUS SYSTEM

Observe that

y
@8) BnaeNI= U U B(L.@Y)|+06e").
IN=17<oN zl<y<zu
|b'$|z>_eo ged(z,y)=1

Here, z1 < y < xu means that zl; < y; < zu; for all 1 <7 < n. Let

T(N):z{%é@”:(:n,y)EJ ged(z,y) =1, 21 <y < zu, 2N_1<:L'§2N},

G(N) = {%eT(N):B(%,p( ))mB( (2N)>:®, v? (;é %)GT(N)}.

Lemma 2.4.8. For N large enough

1. #T(N) > ¢1| B2V for some constant 0 < ¢y < 1.

2. #G(N) > LET(N).
Thus, it follows from Lemma 2.4.8 that for N large enough

rhus. of (2.8) > | | | B( 2N)) +0(p(2V))

YeG(N)
= #G(N) x 2'(2)" + 0(p(2"))
> SHT(N) x 2°p(2")" + O(p

> e 2B+ 0(p(2V)) =

™)

(2
L
—c"e, 2" 4B
2°¢

Thus the local ubiquity follows from (2.8).

Proof of (1) in Lemma 2.4.8. Note that for a > 0 and ¢ € N

Yo=Y > uwd=>_ud) Y 1

1<k<al 1<k<ad d| ged(k,0) d|e 1<k’<al/d
(29) ged(k,£)=1
=Y ud]at/d] = ap(t) + O(7(L)).
d|e

where 7(¢) = > de 1, the number of divisors of £. Here and hereafter, u, ¢,
and [-] stand for the Mé&bius function, Euler function, and floor function,

respectively.
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Fix small 0 < € < % — 1. Note that ﬁ quvzl wlq) — % as N — oo (see

[HW60, Theorem 330]) and 7(h) = O(h%) for any § > 0 (see [HW60, Theorem
315]). Thus, for N large enough and for § > 0 small enough,

#TWN) = Y > 1=y > >

oN—lcgp<oN z1<y<zu aN—1cg<oN zl; <yz<xu1 zl1 <y1<zuy
|b-z|z>eq ged(w,y)=1 [b-z|z>€0 1=2,..,n  ged(z,y1)=1
n—1 n—1
> ) (IBlp(z)z" = + O(z""'7(x)))
2N —1<g<aWN
‘b-x‘|Z>Eo

v

Z |B‘so(x)2(N71)(nfl) + O(2N(n+5))

N1 gl
‘b-m|z>60

Sl D SO DR Eaclcalan)

2N—l<g<2aN oN=lcgp<oN
|b-2]7<e0

> |Bl2V-Dm-D) (32 _ i B 6) (22N _ 92N-1)) _ ¢ | BJaN (D).

T
The second line is by (2.9) and the fifth line is by Lemma 2.4.6. O

Proof of (2) in Lemma 2.4.8. Let B(N) := T(N)\ G(N). By definition, ¥ €
B(N) if and only if there is a point 2 (# ¥) € T(N) such that

B (%,p(QN)> nB 2N)> oy

The coprimeness condition ensures that the centers % and $ of the balls are
distinct. Thus, we have 0 < H% — %H < 2p(2N), or, equivalently,

0 < ||ty — zs|| < 2xtp(2M).
It follows that the associated 4-tuple (y,z,s,t) is an element of the set

V(N) = {(Y7$7sat) :0< ”ty - :L'SH < 22N+1p(2N)7 ng(an) = ng(ta S) =1,
Nl gzt <2V zl1<y <zu, t1<s<tu}

Hence, #B(N) < #V(N) and it is enough to show that #V(N) < $#T(N).
Observe that if n = 1, then V (V) is empty by taking ¢ < % We consider n = 2
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and n > 2, separately.

Case n = 2. Note that 22V *1p(2N) = 2c2V/2 1f (y, x,s,t) € V(N), then there
exist a1, az with |a;| < 2¢2N/2 and at least one of a;’s being nonzero, such that
ty; — xs; = a; for all i = 1,2. Let us denote by V(aj,as, N) the set of the
above (y,x,s,t) € V(N) for given aq, as.

We first consider the case either a; = 0 or as = 0. Given 2V 1 < z,t < 2V
and a, the number of solutions (y,s) € [1,2V]? of the equation ty — xs = a is
less than 2gced(x, t) since the general solution of this equation is of the form
(Yo +pm, S0 +pm) for p € Z. It follows that the number of elements
(y,x,s,t) € V(N) such that either a; = 0 or aa = 0 is bounded above by
(2.10)

> #V(a,0N)+ > #V(0,a3,N)

N N
1<]a1|<2¢22 1<]a2|<2¢272
<4 > #{(y1,51) 1 tyr — xs1 = a1} # {(y2, 52) : ty2 — w52 = 0}
1§a1§202%

(z,t)e(2N—12N)2

<4 Z Z (2gcd(x, t))2

1<a; <22y (z1)e(@N 1 2N]2

- ged(z,t)|ar
=16 » > I#{(x)e @V 2V ged(r,t) = d}

1Sd<2V | oo <00

d|ay
27 oN—11\ 2 -

< ¥ e (5r) =owai)

1<d<2N

We now consider the case a; # 0 and ay # 0. Note that if (y,z,s,t) €
V (a1, a2, N), then we have

(2.11) a1ys — asy = kx

for some k € Z. Thus we will count the set of (a1, as, k, x, y1,y2) satisfying the
equation (2.11) where 2V—1 < 2 < 2N Lz <y < wiz, and 1 < |a;] < 2¢2N/?
for i = 1,2. Let us denote by V(N) the above set. We will only present the
counting for the case a; > 0 and as > 0, but the counting estimates remains
the same for the cases of the other signs, and the proof also still works similarly.

For fixed a; > 0 and ag > 0, let us count the set of (k,z,y1,y2) such that
(a1,az2,k,x,y1,y2) € V(N). It follows from the equation (2.11) and l;z < y; <
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u;x for ¢ = 1,2 that
a1l2 — agU1 S k S aiua — a2l1.

Denoting by d = ged(ai,az), it follows from the equation (2.11) that d|kx.
Thus we can write d = dydg, where d;|k and dz|x, and denote by a; = a;/d for
i=1,2, ¥ =k/dy, and 2’ = x/dy. Then we have

(2.12) ajys — ayy; = K2’

If (y1,92) is a solution of (2.12), then the general solution of (2.12) is of the
form (g1 + pay, J2 + pal) with p € Z. Hence the number of solution (y1,y2) of
(2.12) with l;z < y; < u;z for i = 1,2 is at most

[, 50 (50 o

since (u; — l;)z/a; > 1 with ¢ = 1,2 for all large enough N. Hence it follows

that for any small enough § > 0,

Z #{(k,z,y1,v2) : (a1,a2,k,z,y1,y2) € V(N)}

1<a,a0<2c2N/2

< Z Z Z 9 min <(u1 a/ll):c’ (u2 a/2l2)x> '

1<ai,as<2c2NV/2 d=d1da dy|k,dz|x 1
2N —1cg<olN
ailo—asu1 <k<aius—azly

Note that

) 2min <(u1 ;/11)337 (u2 ;/212)33)

dllkzd2|':[j 1
N1 cg<oN
aila—asu1 <k<aijuz—asli

<5 ’Vag(ul —11) + a1 (ug — zg)w PNW . ((ul — )z (ug — ZQ)I')

d1 d2 a’l ’ a’2
<4 ag(ul — ll) + al(uQ — lg) 1 gmin (u1 — ll)QN (ug — ZQ)QN
- dq do a’l ’ CL/2
—1 —1 —11)d
< 92N+2 ((ag(ul 1) + ax(us — I)) min <u1 1 U 2) n (ur — ) 1) .
al a9 ay
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Hence we have

Z #{(kaxaybgﬂ) : (a17a27kax7ylay2) € V(N)}

1<ay,a2<2c2N/2

< Z 7(d) (22N+3(u1 — 1) (ug — lp) + d22N+2(u1a—1l1)>

1<ay,an<2c2N/2

—1
< Z Z d6 <22N+3’B‘+22N+2 (ula/ 1))

1d<2e2V/2 1 g1 gy < 22N/ 1

<<Z:<d1

1<d<2c2N/2

(a+9)
< A|B23N 4 O(N22N+ T,

223N’B| + N22N+ >

Combining with the cases of other signs, we have

1+6)N

(2.13) #V(N) < 3|B|23N + O(N2*V+ 727,

We next claim that » ;4| jas)<2e2v/2 #V (a1, a2, N) < 24V (N) by show-
ing that for fixed (a1,a9,k,x,y1,y2) € V(N), there are at most two pairs
of (s1,s2,t) such that (y,z,s,t) € V(IN). To see this, observe that ty; =
a; (mod z) for i« = 1,2 and ged(y,x) = 1. Since ged(y,z) = 1, there exist
a1,y € Z such that ajy; + asys = 1(mod z). It follows that ¢t = a1 + asas
is uniquely determined modulo x for fixed a;, y; and z. Since ¢ < 2z, the num-
ber of possible ¢ is at most two. Once t is determined, then s; and so are also
determined uniquely, thus the claim follows.

Hence, combining (2.10), (2.13), and the above claim, we have

(1+8)N
2

#V(N) < 2|B|2?N + O(N22N+ + N23M).

By taking § < 1, for all large enough N, #V(N) < Cc?|B|23V for some
absolute constant C' > 0. It follows that #V(N) < $#T(N) for sufficiently
large N by choosing ¢ < (55 )1/2

Case n > 2. For fixed 2V~ < 2,t < 2V, we denote by

d = ged(z,t), 2’ = g, t =

, A=22NF1,9N) and A = g

t
d
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We will count the following set: for 0 < a < A,
Ver(a) :={(y,s) : t'y—a's=a, 2l <y <zu, t{ <s<tu}
Claim 1. #V,(0) < max([d(u —¢)],1).
Proof. Since (t',2') =1, 2’|y holds. Thus

x(u

1) = max(fau - o1.1),

#y: 2|y, 20 <y < au} < max <[
T
which concludes the claim since s is uniquely determined by . O

Now assume that a # 0 and A" > 1. Let yo = yo(x,t) and sp = so(z,t) be
the integers with the smallest absolute value such that

t'yo = ag (mod z’) and 2'sg = —by (mod t'),

for some 0 < ag = ap(x,t) < A" and 0 < by = by(x,t) < A’. We remark that
such yg and sg are unique since ag # 0.

Claim 2. ag = by and t'yg — 2'sg = ap.
Proof. Let y, s be such that t'yg — 2’s = ag and t'y — 2'sg = by. Then

Is| = t"yo — ao < % + t'|yol < %0 + 'yl a0+ |bo + 2's0]

/! - ! - ! !

Since n > 2, for all large enough N,

agp + bo < 2714/ _ 24 < 2c2(0= )N

T 2 = oN-1 < L
Hence we have |s| = |[sg|, and similarly |y| = |yo|. If s = —sp, then on one
hand, 2’s = bp(mod t'); on the other hand, since t'yp — 2's = ap, we have
¥'s = —ag = 2/ — ap(mod t'). Tt cannot happen that by = 2’ — ag since
2’ > 2A" > ag + bg. Hence we get s = sg, and similarly y = yo. It concludes
the claim. ]
. / N
Claim 3. 1 < |yo, |so] < [QAL,—‘ = [%ﬂ < 2wl
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Proof. Consider the set P = {t’, 2t ..., PA—DU,/—‘ t’} modulo z/. Partition [1,2']N
N into | A’] consecutive integers. Then the number of the partitions is at most
{ﬁ—‘ It follows from A’ > 1 that 2| A’| > A’, hence, {ﬁ—‘ < [%ﬁ‘ By the
pigeonhole principle, there are at least two elements of P in the same partition,
say it' and jt' with ¢ # j. Then (i — j)t’ (mod 2’) is contained in [1, |A’]] or
[—|A’], —1]. The fact that |i — j| < PA—“J,I—‘ and the minimality of yo imply the
claim for yg. Similarly, we can conclude the claim for so. O

Claim 4. If |yo| < (u — £)ag or |sp| < (u — £)ayp, then

A/
> #Vas(a) < 10A(u—0).
a=1

Proof. Tt suffices to show the case |yo| < (u — l)ap. Let
A ={zl <y <zu:y=k(mod yo)} = {2k, 2k + |vol, - , 2k + axlyo|} -

for 0 <k <|yo| — 1. Then z € N is the element such that zl < z < zl + |yo|

and zr = k(mod 1), and ai € N satisfies o < x(‘Z;'l). Partition A; into

M = uf—/j consecutive integers. Recall that Z > fle, > 1 holds. Then the
’ alu=t)

number of the partitions is at most [%+H] < L0l — 41,

2a,

Let P = {z, 2. + |vol, -+, 2, + (M — 1)|yo|} be a partition of M consec-
utive integers, where z; € Aj. To count the number of y € P such that
t'y = a (mod z') with 1 < a < A’, we see the set ¢ P modulo z/. Write
'z, = w(mod z’) for some 0 < w < 2. Then the elements of ¢'P can be writ-
ten {w, w + ag, -+ ,w~+ (M — 1)ag} or {w — ag,--- ,w — (M — 1)ap} (mod )
depending on the sign of yg. Since Mag = {%Jag < &/, there are at most (%]
elements in ¢ P which are congruent to a modulo z’ for some 1 < a < A'.

To sum up, for each Ay, there are at most

A o +1 2A" (2apz(u —1) + 2ag|yo
[—1-T 1<=— ( ( , ol 4
agp M agp ' |yo
4Ad(u —1) 4A" 24
’y0| x ag

number of y such that y € Ay and 'y = a(mod 2’) for some 1 < a < A’. Since
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there are |yo| number of Ay’s and s is uniquely determined by y, we have

A/

4A d(u —1 4A" 24
> #¥asta) <l (e 4 2+ 20
a=1

|yo| x agp

4A 24’
+ |yo| + ’y0|
x ago

=4A(u —1)

< 4A(u—1) + 44— D)2 + 24" (u — 1) < 10A(u — 1).

Kl
Here we used the assumption |yp| < (u — l)ag in the last line. O

We remark that under the assumption of Claim 4, the counting of V. ;(a)’s
is good enough for our purpose. Thus we will count the set of x,t’s such that
90, S0, @ may not satisfy the assumption of Claim 4.

Note that ged(yo,s0) = 1, otherwise it contradicts to the minimality of
Y0, So. Through Claim 3, we consider the following sets and the map:

N N
Sgood - {(yovsﬂuaﬂ) : ‘?/0| S 2n+17 |80| S 2n+1) ng(y07SO) = ]-7
(u =€)~  min(|yol, [s0]) < ap < A},

N N
Spad = {(¥0, 50,a0) : [yo| <27 |so| < 2= ged(yo, s0) = 1,
1 <ap < (u—£)""min(|yol, o))},
m: (2N 2N 5 (2, t) = (yo(2, 1), so(2,t), ao(2,t)) € Sgood U Sbad-

Let us first count the set 77 (Spaq). For (yo, 50, a0) € Spad, assume that
there exists t(,, x(, such that t{yo—x(so = ap. Since ged(yo, so) = 1, all solutions
of t'yy — x’'sy = ag can be represented in the form

(t/, J}/) = (t6 + kso, x'o + kyo), k e 7.
Thus, for each d > 1,

#{(z,t) € @V 2N L yo(w,t) = wo, so(w,t) = so, ged(z,t) =d}

oN 9N
<min | —\,—|.
- (d\sol d\yo|>
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Summing over 1 < d < oN , we have

#{(z,1) € (2N 9N12 o, t) = yo, so(z,t) = S0}

1 2N 9N 2N 2N
< Z min< )<len< )
1z @ [sol” [yl [s0l” 9ol
Since n > 2, it follows that for all small enough § > 0,
2N 2N
#r (Sbad) < > N min ( )
N [sol” [yol
lyol,|so|<2m T
1<ao<(u—€) = min(|yo|,|s0|)
2N N

w—0 " min [ —, — | min s
- < Y Nw-o <‘SO|,|yO) (1ol Iso])

N
lyol,|so|<2m !

<(u—207" N2Nmin<|yo| |S°|>
< ) Z 0l |yol
lvol, \50|<2”+1

< (’LL _ 6)71N72N+% < 2(275)]\7
n
Now, for each 1 <i<n and 0 < a < A’, let us denote by
V;7t(a) = {(yi,8:) : t'y; — 2’5y = a, vl <y < wuy, th < s < tuyl

Then we have

n A
#N < Y [ #vi

(z,t)e(2N-12N]2i=1a=0

For (z,t) € 7~ (Sgo0a) and sufficiently large N,
(2. 15)

Z #Vi Vi ,(0) < 10A(u; — ;) + max(A(w; — 1;), 1) < 11A(u; — I;).

We applied Claim 4 for the first term, and Claim 1 for the second term.
For each 0 < a < A’, the number of solutions (y, s) of

t’y—a:’8:a, 1<y<z, 1<s<t

44



CHAPTER 2. EQUIDISTRIBUTION AND UBIQUITOUS SYSTEM

is at most d, hence #V; ,(a) < d. For (2,t) € 7! (Shaq), it follows that

A/
(2.16) D #Vi(a) < (A +1)d < 24,
a=0

Therefore, combining (2.14), (2.15), and (2.16), we have

n

#V(N) < (#7 (Sgooa)) [ [ A(wi — &) + (#7(Spaa)) (24)"
=1
< 92N gn H(Uz N gz) + O(QN(n+1_6)) < Cn|B’2N(n+1)’
i=1

hence #V(N) < Cc®| B2V for sufficiently large N and some absolute
constant C' > 0. It follows that #V(N) < %#T(N ) for sufficiently large N by
choosing ¢ < (£4)1/. O

This proves Theorem 2.4.7 for m = 1. O

Proof of Theorem 2.4.7 for m > 2. Note that it suffices to show that
(2.17) |A(p, N)] -1 as N — o0

for the local unbiquity. Instead of the strategy for m = 1, we will use mean
and variance techniques in [DV97] using the auxiliary function w in (2.7).

Without loss of generality we may assume that ¢g = e(b) = %. Let I(N)
denote the set of vectors x = (z1,...,xy,) € Z™ such that

1. NS.CL‘lSQN,

2. Fort1=2,...,m,

3. ged(x) =1,
4. |b : X‘Z > €.

Denote by J(N) :={(x,y) € I(N) x Z" : ||y|| < m||x]||}. Then J(N) C J.
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Let XA (xy) be the characteristic function

1 if Ae Ay,
XA ey (A) = . Ge)
0 otherwise,
where
Apy) = ARy N7 mw(2N)|[x]| 7).

Also, for a matrix A € [0, 1]™", define
Z/N(A) = Z XA(x,y) (tA)'
(x,y)E€J(N)

Thus v (A) is the number of resonant sets Ry for (x,y) € J(IN) which are
‘close’ to ‘A, i.e. such that ||'Ax — y|| < §(NV), where §(N) := N~ nw(2N).
Denote by uny and 012\, the mean and variance respectively, that is

N ::/ vN(A)dA and % ::/ V3 (A)dA — p%;.
[O,I]mn [071]77171

Since ||x||7! < N~ for any x € I(N), we have

A(R(xy), N™nw(@N) x| ™) € A(R(xy), p(2N))

x,y)s
by taking ¢ < 2", Thus, we claim that
|Zn] — 0 as N — oo,

where Zy = vy (0) = {4 € [0,1]™ : vn(A) = 0}, which implies (2.17) by
replacing N with 2V—1,

Lemma 2.4.9. For N large enough, O'J2V < py and puy > cow(QN)% for some
positive constant cy independent of N.

Proof. Suppose that N is large enough so that §(N) = N~ nw(2N) < 1. By
Lemma 8 in [Spr79], for x € I(N),

/ XA ey (A)dA = [{A € [0,1]™ : ||"Ax||z < 6(N)}|
y:(xy)es(n) 7 0"
= (26(N))" = 2" N "™ (2N)".
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Hence

= Y[ Xapy (A= Y 2N (N
(xy)es(n) 0L xCI(N)

Let S(i) denote the set of vectors x € Z™ satisfying the condition (7) in
the definition I(N) for each i = 1,2, 3,4. Note that

d o1 > 1— > 1.

x€I(N) x€S(HNS(2)NSB3)  xeS(1)NS(2)NS(4)°

Following [Spr79, p.40],

2 1= 3> )

x€S(1)NS(2)NS(3) xeS(l)ﬂS(Q) d| ged(x)

- Z Z:u {$¢€Z:d’xi,1§$i§]\]1}‘

N<z1<2N d|z; i=2 w(2N)2m-1)

= d) | —————
52 ]

N<z1<2N d|z;

> (N“zdmﬁo(zvmzzdm))

N<z1<2N w(2N)z d|zy d|z1

N
. (1) + O(r(21)) if m =2,
N<m<an W(2N)2 21
- Nm_l 1 m—2 :
Z H 1 T + O(N™ *1(x1)) if m > 3.

N<m<on W(2N)Z o
p prime

ol

Fix small 0 < € < %—%. Note that %Zé\[ﬂ# — % as N — oo (see
[Har98, Lemma 2.4]) and 7(h) = O(h?) for any 6 > 0 (see [HW60, Theorem
315]). In the case m = 2, we have

2 1= <7§2 N 6) w(ivz\j)%

x€S(1)NS(2)NS(3)
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for all large enough N. If m > 3, then

1
11 <1_pm‘1> >p£[me (1_192

p|9§1
p prime
hence we have that for all large enough NV
6 N™
> 1zl T
3 ™ w(2N)2

x€S(1)NS(2)NS(3)

On the other hand, it follows from Lemma 2.4.6 that
Nm

x€S(1)NS(2)NS(4)

1

S5

Taking ¢y = 2" ( e) > 0, it follows that
"3 1> quw(2N)z.

=2"N""
x€I(N)

UN

To prove that 0% < uy, we note that, for x # x' € I(N)

Z / Ay, y) )XA(xQ /)(A)dA
yi(x,y)EJ(N (0,1
=l{Ae [07 1] : H AXIIZ <O(N)}H x {Ae[0,1]™: |*AX||lz < 6(N)}

— 22nN_2mw(2N)2n.

by Lemma 9 in [Spr79]. Thus we have

/ v (A)dA
[0’1}mn
= Y Y[ X (A (4104
x€I(N)x'€I(N) y:(x,y)€J(N) y':(x",y")EJ(N)
=pn +2"N72Mw(@N)? YT 1<y + e
x#x'el(N)
By definition of 012\,, we have
JJQV < UN-
¥ [,
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Note that

o= [ on) - undAz [ () - ) dA = i 2]
[0’1}mn ZN

This together with Lemma 2.4.9 implies that

1
|Zn| < — =0 as N — oo.
HUN
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Chapter 3

Entropy rigidity and Best
approximation vectors

3.1 General entropy theory

In this section, we recall the definitions and basic properties of the entropy
and the relative entropy for o-algebras we use in the later sections. We refer
the reader to [ELW, Chapter 1 & 2] for details.

Definition 3.1.1. Let (X, B, u,T) be a measure-preserving system on a Borel
probability space, and let A,C C B be sub-c-algebras. Suppose that C is count-
ably generated. Note that there exists an A-measurable conull set X' C X and
a system { u;ﬂx e X’ } of measures on X, referred to as conditional measures,
given for instance by [ELW, Theorem 2.2]. The information function of C
giwven A with respect to u is defined by

L,(ClA)(x) = —log 7' ([]e),
where [z]c is the atom of C containing x.

1. The conditional (static) entropy of C given A is defined by

H,(C|A) = /X 1(ClA) (x)du(x),

which is the average of the information. If the o-algebra A is trivial, then
we denote by H,(C) = H,(C|A), which is called the (static) entropy of
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C. Note that the entropy of the countable partition & = {Ay, Aa,...} of
X 1s given by

H,(€) = H(u( == p(As)log u(A;) € [0, 00),

i>1
where 0log 0 = 0.

2. Let A C B be a sub-o-algebra such that T~ A = A. For any countable
partition £ of X, let

1 1 n—1\ _ 1 n—1
hu(T,€) = nhm nH#( 0 )—Tllgf1 nH“( 0 ),
hu(T, €l A) == lim le HA) = i fle nlA
u(T,€|A) : o u(&0 ) Sn u(&o A,

where 56‘_1 = \/?;01 T—%¢. Then the (dynamical) entropy of T is

hy(T) == sup  hu(T,§).
€:Hy(€)<oo

Moreover, the conditional (dynamical) entropy of T given A is

hu(T|A) ;== sup  h,(T,&|A).
§:Hy(§)<oo

We gather the basic properties for the entropy.

Proposition 3.1.2 (Additivity, Monotoniciy, Invariance, and Conti-
nuity). Let (X, B, u,T) be a measure preserving system on a Borel probability
space, let A, C1, and Co be sub-c-algebras of B, and suppose that C1 and Ca
are countably-generated. Then,

1. H,(C1 VvV Ca|A) = H,(C1|A) + Hu(Ca|Cq vV A)
2. HM(CQ|C1 VA) < HH(CQ‘A)
3. H#(Cl \/CQ’A) < Hu(Cl\A) + HIJ(CQ‘A)

4. Hy(Ci|A) = Hy (T[T A)
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5. Let C, / C be an increasing sequence of countably generated sub-o-
algebras of B and C be countably generated. Then

Hyu(ClA) /" Hu(ClA)
as n — 0.

6. Let A, /' Ao be an increasing (or A, \, A a decreasing) sequence of
sub-o-algebras of B. If € is a finite partition, then we have

Hy, (€] An) — Hyu(€|Ax)

as n — 0o.
We refer the reader to Propositions 2.12, 2.13 and Lemma 2.17 of [ELW].

Proposition 3.1.3 (Basic properties). Let (X,B,u,T) be a measure pre-
serving system on a Borel probability space, let & and n be countable partitions
of X with finite entropy, and let A =T~1A C B be a strictly invariant sub-o-
algebra. Then,

hu(T, €| A) < Hy(§lA) < Hy(€) and hy (T, §JA) < hy(T,€);
2. hyu(T, &V | A) < hy (T, §JA) + by (T, n]A);
3. hu(T,n|A) < hy (T, ¢ A) + Hu(nlg V A) < hy(T, €| A) + Hp(n]€);
4o hu(T,E|A) = hy (T, €8|A) for all k > 1;
5. hu(T,€lA) = hy (T €|A) = by (T, €%, |A) for allk > 1if T is invertible;
6. h,(T*|A) = kh,(T|A) for all k > 1; and
7. hy(T|A) = h,(T7YA) if T is invertible.
Moreover,

6. (Future formula)
(T, €JA) = Hy(§]67° V A).
7. (Additivity) If T is invertible,

hyu(T, €V | A) = (T [ A) + (T, €25 V A)
= hu(T5€JA) + Hu(nlnf® V €250 V A).
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Proposition 3.1.4 (Kolmogorov-Sinai for sequence of partitions). Let
(X, B, 1, T) be a measure-preserving system on a Borel probability space. Sup-
pose that (&) is a sequence of partitions of finite entropy with the property
that

o B=\72 (&) mod p and (&) C (§k+1)q° for all k € N, or

o B =\, (8)% mod v and (§) %% C (§pt1) for all k € N if T is
inwvertible.

If A=T7YAC B is a strictly invariant sub-o-algebra, then

hu(T|A) = Sup hy(T, &kl A) = Jim hy (T, &|A).

Proposition 3.1.5 (Entropy and ergodic decomposition). Let (X, B, u,T)
be a measure-preserving system on a Borel probability space, with ergodic de-

composition
= / w5 du()
X

as in [ELW, Theorem 2.7]. Let A C B be a strictly T-invariant sub-o-algebra.
Then

BT, 64) = [ e (T €L Aydu(o)

for any partition & with H,(§) < oo, and
BTIA) = [ e (TLA) ().

3.2 Entropy on homogeneous spaces

3.2.1 General setup

Let G be a closed real linear group (or connected, simply connected real Lie
group) and let I' < G be a lattice. We consider the quotient Y = G/I" with a
G-invariant probability measure my and call it Haar measure on Y. Let dg
be a right invariant metric on G, which induces the metric dy on the space
Y = G/T. Then Y is locally isometric to G, that is, for every y € Y there
exists some r > 0 such that the map g — gy is an isometry from the open
r-ball BS around the identity in G' onto the open r-ball BY (y) around y € Y.
Let ry be the maximal injectivity radius at y € Y which is the supremum of
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r > 0 such that the above map can be an isometry. For any r > 0, we denote
by Y(r) ={y € Y : ry, > r}. It follows from the continuity of the injectivity
radius that Y (r) is compact. Let us denote by

Tmax = inf{r >0:r, <rforallyeY}.

Since I' is a lattice, rmax < 00. Hence we now assume that ry.x < 1 by rescaling
the right invariant metric dg on G. Note that for any r > 1, Y (r) = @.

For any closed subgroup L < GG, we consider the right invariant metric dy,
by restricting dg on L, and similarly denote by BZ the open r-ball around the
identity in L.

In this section, we fix an element a € G which is Ad-diagonalizable over
R. Let GT = {g € Gla*ga™ — id as k — —occo} be the unstable (resp. stable)
horospherical subgroup associated to a (resp. a~!), which is always a closed
subgroup of GG in our setting.

Let L < G be a closed subgroup normalized by a and let [ denote the Lie
algebra of L. We can take a basis {v1, ..., V4im()} of [ so that the adjoint map
Ad, on [ can be considered as the expansion (v;) — (e“v;) for some ¢; > 0.
Now assume that ¢; < 1 for all i. Then for ¢ = (c1, ..., Cgim()), we define the
quasinorm | - |lc by [|z]lc = max; |2;|/¢ for 2 = 3, z;v; € [. We remark that
for z,y € land k € Z,

e using the convexity of the function s — /¢,

l1—minc
(3.1) 2+ ylle < 27mine ([lz]le + [[ylle);

e and
| Adye zl|e = €¥||z|c.

The quasinorm || - || induces the quasi-metric di on the Lie algebra [, thus
induces the quasi-metric dy ¢ locally on L using the logarithm map from L to
[ (see Subsection ?? for the definition of quasi-metric). We similary denote by
BTL *“ the open r-ball around the identity in L with respect to the quasi-metric
dr . For any y € Y, we also denote by dj, . the induced quasi-metric on the
fiber BrLy Y.
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3.2.2 Construction of ¢ !-descending, subordinate algebra and
its entropy properties

In this subsection, our goal is to strengthen results of [EL10, §7] for our quan-
titative purposes.

Definition 3.2.1 (7.25. of [EL10]). Let Gt < G be the unstable horospherical
subgroup associated to a. Let i be an a-invariant measure on'Y and L < GT
be a closed subgroup normalized by a.

1. We say that a countably generated o-algebra A is subordinate to L (mod
w) if for p-a.e. y, there exists § > 0 such that

(3.2) Bf ycylac BE. -y

2. We say that A is a~'-descending if (a=!)"1 A =aA C A.

For each L < G and a-invariant ergodic probability measure p on Y,
there exists a countably generated o-algebra A which is a~!-descending and
subordinate to L [EL10, Proposition 7.37]. We will prove that such a o-algebra
can be constructed so that we also have an explicit upper bound of the measure
of the set violating (3.2) for fixed 6 > 0. In order to prove an effective version of
the variational principle later, we need this quantitative estimate independent
of .

We first introduce some notations that will be used in this subsection. For
a subset B C Y and 6 > 0, we denote by JsB the d-neighborhood of the
boundary of B, i.e.

5B = Y . inf d inf d SY.
5 {y € inf Y(yvszlgB v(y,2) < d}

We also define the neighborhood of the boundary of a countable partition P
by
05P = | 0sP.
PeP

Here, we deal with the entropy with respect to a=!

tended integers ¢ < ¢/ in Z U {£o0},

, so we write for any ex-

E/
/
Pl = \/ a* P,
k=(
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for a given partition P of Y. We will use this notation also for o-algebras.

We first construct a finite partition which has small measures on neigh-
borhoods of the boundary. The following lemma is the main ingredient of the
effectivization in this section. A key feature is that the measure estimate below
is independent of pu.

Lemma 3.2.2. There exists a constant ¢ > 0 only depending on dim G such
that the following holds. Let u be a probability measure on Y. For any r > 0
and any measurable subset Q C Y (2r), there exist a measurable subset K C'Y
and a partition P = {Pi,--- ,Pn} of K such that

1. QO C K C BS Q,
ﬁ'{'

2. For each 1 <i < N, there exists z; € BG Q such that
10

BY -z CPCBY -z,  K=|JBf z

£ =

N|=

3. u(0sP) < (g) u(B%TQ) forany 0 < 6§ < cr.

Proof. Choose a maximal %r—separated set {y1, -+ ,yn} of Q.

Claim There exist a constant ¢ > 0 depending only on dim G, and {g;}Y, C
BS% such that for z; = g;y; and for any 0 < § < cr,
10

39 X (o5 g =) < (1) g

. T
7

Proof of Claim. To prove this claim, we randomly choose each g; with the
independent uniform distribution on BS . Then we have
10

1
G = .
E (ZU(&S(BT ~Zi))> = ch;(BGr)/Bq LHB§+5'giyi\B§5'gz‘yi(y)d'u'(y)de(gZ)
v ? 10 10
1
= Z Fdim G / ma ({92 € B% tr =0 < d(giyi,y) <1+ 5}) dp(y)

dlm G-1
< du < — 1 .
Z lemG / = /B% Q Z Bl? yl (y)

By
10" 10"
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For any y € B%TQ, the number of y;’s contained in Bi2 . -y is at most 10dim &
10 10 ]
since y;’s are 1%'r—sep.su“ated. It implies that 3", 15,, 4 (y) < 104mE for any
WT

yE€ B%TQ. It follows that
10

r

o . o
E (Z 1(05(By - zm) < / 109 Cdp(y) < —u(B%,9Q),
i BCl;2 Q r 10
fOT

where the implied constant is an absolute constant only depending on dim G.
Applying the same argument for 9s(B - z;) instead of 95(BY - z;),
2

(30 (wonsf )+ s 2) ) < Bty ),

)

It follows that for any 0 < 6 < g,

N =
VR
S
N——
vl
=
Sy
S50
B
=
N———
A
7N
=
N———
[N}

P (Z (M(aa(BrG z)) + (05 (BS - Zi))) >

i

Hence, for any 0 < 6 < {5, we have

(3.4)
kg b
PN {Z (1(00-15(BE - 20)) + u(a-15(BE - 20)) < 3 (2 - 5) n(B%ﬁ)}
k>0 7

1
J\ 2
>1-0 <<> > .
r
Thus, there exists ¢ > 0 so that the right-hand side of (3.4) is positive for any

6 < cr. It follows that we can find {gi}f\il such that z; = g;y;’s satisfy (3.3)
for any 0 < 6 < cr. O

Let ¢ > 0 and {g; f\il C BS be as in Claim. The set {zi = giyi}i]il is
10

{5r-separated since {yz}f\il is S5r-separated. Let K := Ufil BY - 2. Since

B?%r y; CBY -z C B%T - y;, we have

N N
G , G G
QQLJlBlgoryngg 1B%r ylgB%rQ
1= 1=
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Now we define a partition P of K inductively as follows:
i—1 N
G G
P=Bz\|JFRu | BY -z
j=1 j=i+1

for 1 <i < N. It is clear from the construction that BY - z; C P; C BS - 2
5
and z; € BGQ for 1 < i < N. We also observe that the é-neighborhood of
10

N
P is contained in U (85(B§ - 2) U Os (Bg . zz)) Hence it follows from Claim
i=1

that for any 0 < § < cr,

1
5\ 2
G, G, . hd G
05P) < 3 (uos(5 ) + wos(5§ ) < () (5G,0),
We need the following thickening lemma.

Lemma 3.2.3. For any r > 6 > 0, we have
BSY(r)cY(r—20) and B§Y(r)¢cCY(r+0)°.

Proof. For any g € Bg" and y € Y (r), we need to show rg, > r —§. Suppose
that 74, < 7 — 0. Then there exist g1,g2 € BTG_(S such that g1gy = gagy, or
equivalently, g_lgz_lglgy = y. But it follows from y € Y (r) that g_lgglglg ¢
BY, hence using the triangular inequality and the right invariance of dg,

r<da(97 195 919,id) = dc (919, 929) < dc(g19,id) + d(g2g, id)
S dG(gl7 Zd) + dG(927 Zd) + 2dG<97 Zd) <,

which is a contradiction. This concludes the first assertion. The second asser-

tion follows similarly. O

Using Lemma 3.2.2 inductively, we have the following partition of Y with
its subpartition having small boundary measures. Recall that Y (r) = @ for
any r > 1 by our choice of the right invariant metric dg on G.

Lemma 3.2.4. Let p be a probability measure on Y. There exists a partition
{Ki}ry of Y such that for each k > 1, the following statements hold:
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1. K, CY(275)\ Y(275+);

2. there exist a partition Py, = {Pg1,---, Pen,} of Ky and a point z; €
Bg,k,l Ky, for each 1 <1 < Ni satisfying

10

G G
Bé27k71 <2 C© Py C Bz—k—l %5

3. 1(05Pr) < (2’”45)%/;(1/(2*’“*1) \ Y(27%*3)) for any 0 < 6 < c27F72
where ¢ > 0 s the constant in Lemma 3.2.2.

Proof. We will construct { K}~ and {Py} .~ using Lemma 3.2.2 inductively.
For each k > 1, let us say that Ki CY and Py satisfy (#y) if they satisfy the
three conditions in the statement. We will also need auxiliary bounded sets
K}, C Y’s and corresponding partitions P;’s during the inductive procedure.
Let us say that K and a partition P;, of K satisfy (&) if they satisfy the
following three conditions.

_ k—1 - k—1

LY ™MH\Uj K C K, C B%z_k_l(Y(Q FONUGZ K,

2. For each 1 < i < Ny, there exists z; € B,-x—1 K}, such that
10

N
G / G / G
B%Q—kfl 2k © Pp; © 3271971 2k, Kp= U Bgfkfl 2k
7 i=1

3. u(osPy,) < (2k+15)%,u(Y(2_k) \ Y(27%+3)) for any 0 < § < 27F1,

Here, U?:1 K means the empty set.

Let us start with the initial step. We first choose ©; = Y (1) and apply
Lemma 3.2.2 with r = 272 and © = ; C Y(}). Then we have a subset
K] C1Y and a partition Pj of K} satisfying (1), (2) of (d1), and p(95P;) <
(225)§M(B%272Q1) for any 0 < 6 < ¢272. Tt follows from Lemma 3.2.3 that

11
3%272}/(1) C Y(3), which implies (3) of (&) since Y (4) = @. Also note that
K| C 3%2721/(1) cY(@d).

Now let Q2 = Y(3) \ K and apply Lemma 3.2.2 again with r = 273 and

Q =Q C Y(%). We have a subset K5 C Y and a partition P} of K} satisfying
P’ 1
Oy C K} C 3%2_392, (2) of (d2), and u(dsP%) < (235)5M(B%2_392) for any

0<§<c273 Set K; = K{ \ K}, then (1) of (&) and (1) of (#) follow since
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Y (2) = @. Since K{ D Y (1), it follows from Lemma 3.2.3 that 3%2_392 C
10

Y (3)\Y(2), which implies (3) of (d2). Define a partition Py = {Py1,..., Pin, }

from P{ = {P[4,..., 1/N1} by Pi; = Pj; \ K} for each 1 < i < Nj. For each

1<i<Nyandyce€ B 22 - 214, observe that y ¢ K since Bg_z - z1; € K| and

K} C B112 4 C B112 ,(Y'\ K7). Hence, B - z1; C Pyp; holds, so (2) of

(1) follows. Since Py; = P{; \ K for each 1 < z < Nj, we have

p(0sP1) < (357’1) + 1(05Py)

7!
< (226)7u(Y(27)\ Y (2) + (2%6)2u(Y (272 \ Y (2))
< (2%0)7p(Y (272 \ Y (22))

for any 0 < § < ¢273. Hence (3) of (#;) follows.

Our desired disjoint sets { Ky };~, and partitions {Py};~, will be obtained
by applying this procedure repeatedly.
Claim For k > 2, suppose that we have disjoint bounded sets K; of Y and
corresponding partitions P; satisfying (#;) for j =1,...,k — 1, and a subset
K}, C Y and a partition P, satisfying (). Then we can find Kj C K and
a partition Py of Ky satisfying (#), and K; ; C Y and a partition P;_; of
K, | satisfying (degy1).
Proof of Claim. Note that K; C Y/(277) C Y/(27%) foreach j = 1,...,k — 1
and K} C 3112 Y (27MY) CY(27F). Let Qe = Y (279)\ (U2 1K UK})
and apply Lemma 3.2.2 with r =27%"2 and Q = Q1 C Y(27%71). Then we
can find K, C Y and a partition P}, = P(,k+1)1’ e ’P(/k+1)Nk+1} of K},
satisfying Qpy1 C K, C B%Z,k,szH, (2) of (dpt1), and p(9sPr ) <
(2F+25)2 u(BS. By 2 Qp1) for any 0 < 6 < 2772 We set K, = K}, \ K},
then (1) of (&j41) follows. Since Uj:1 K; D Y(27%?2) and Ky C K| C
Y (27MO\UYZ] K5, (1) of () follows. It follows from |J}—] KUK} O Y(27F+1)
and Lemma 3.2.3 that B%27k729k+1 C Y(27F 1)\ Y(27%*2), which im-
plies (3) of (&x41). Define a partition P = {Py1, -, Prn,} from P =
{ Pl P, } by P = P\ K], for any 1 < i < Ny For each 1 < i < Ny
and y € Bf,k,l - zi, observe that y ¢ K, since Bg’:k,l -z € K}, and

zmhot
Kjy C© BS, « »Q1 C BG, (Y \ K}). Hence, BS.,_, - zpi C Py holds,
10 10 5

5
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so (2) of (#y) follows. Since Py; = Py, \ K, for each 1 <i < Ny, we have

11(05Pr) < 1(95Py) + 1(9sP 1)
< (2192 u(Y (27 \ Y27 + (28202 p(v (27 \ Y (274 2)
< @)y @\ YY)
for any 0 < 6 < ¢27%~2. Hence (3) of (#) follows. O
This claim concludes the proof of Lemma 3.2.4. O

By [EL10, Lemma 7.29 and 7.45], there are constants o > 0 and dy > 0
depending on a and G such that for every r € (0, 1],
(3.5) a*ka’wak c BY

doe—kar

for any k € Z.

The following lemma is a quantitative modification of [EL10, Lemma 7.31].
We remark that the constants below are independent of yp while the set FEg
depends on pu.

Lemma 3.2.5. Given a-invariant probability measure p on'Y , there exists a
countable partition P of Y such that the following holds.

1. For any P € P there exists j > 1 such that P C Y (277) \ Y/(279+2).
Moreover, there exists z € P such that
ng—j—l *Z g P g Bzcij,1 - Z.
2. Let ¢ > 0 and do > 0 be the constants in Lemma 3.2.2 and (3.5). For

any 0 < < min((mcdo)z, 1), there exists Es C'Y such that

W(Es) < p(Y \ Y(C182)) + Cp67

and B§+ "y C [Ylpge for anyy € Y\ Es, where C1,Ca > 0 are constants
only depending on a and G.

Proof. Let {Kj} , and {P;} 5, be the sets and the partitions we constructed
in Lemma 3.2.4. We set P = U?il P;. Then P is a countable partition of ¥
and the condition (1) directly follows from Lemma 3.2.4.

61



CHAPTER 3. ENTROPY RIGIDITY AND BEST APPROXIMATION
VECTORS

Now we set Es = ;" a*8y,c—kasP and split Ej into two subsets

(e 9] oo

Ej = U ak U Ogye—rasPi |

k=0 - log §
Z*2""[102 sk— 2?oggz1

1+|—Lk§— log§~|

o0 og2 2log 2
" k
B =Ja U Oueres”,
k=0 =1

1

We claim that Ef C Y \ Y((dp + d3)62). To see this, let y € Ej. Then
there exist k > 0 and P € P; for some i > 2 + [ 25k — 21<1)0gg62] such that
y € ak0y ,rasP. By Lemma 3.2.4, P C K; C Y/(27%)\ Y/(277F2) c y(27"+%)°.

It follows from Lemma 3.2.3 that

(3.6) Dype-ragP C BG ,—kagP C BY _rasY (2772)° C V(2772 4 doe ™ 5)".

Using (3.5), it can be easily checked that a*Y (r)¢ C Y (dge*@r)¢ for any 0 <

r < 1. Hence, it follows from (3.6) and i > 2 + [ 25k — 21%;2} that

"0y o-ras P C a"Y (272 4 dpe F5)° C Y ((do + d3)67)".

This proves the claim.
The above claim implies that

(3.7) u(Ef) < (Y \ Y(C167))

for some constant C7 > 0 only depending on a and G.
Next we estimate p(EY). It follows from the a-invariance of p that

log &
1+’—lo(;2 _210g2-‘

where k; € N denotes the smallest number of k such that 1+[ 25 k— 9827 > ;.

log2™" 2log?2
Note that k; > 82 (; — 2) + 1989,
On the other hand, by Lemma 3.2.4 we have
(3.9)  iOue-resP) < (20 (Y (2771 \ Y (27
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for any k > k;, since dpe %5 < d02_i+25% < 272, Hence, we obtain from
(3.8) and (3.9)

u(Es) <

NE
gk

N(adoe—kaépi)

i

Il
—
T
=

S

(2 doeH8) 2 (Y (271 \ Y (27))

=
Nk

B
Il
e

1

i

(3.10) "
< Z(2i+467kia5)%ﬂ(y(27ifl) \ Y(2fi+3))

=1

< 62 iu(y(ri—l) \ Y(2713)) < g3,
=1

In the last line we used the fact that Y (27¢71)\ Y/(27i"3)’s can be overlapped
at most four times. Combining (3.7) and (3.10), we finally have

u(Es) < p(Y \ Y (C102)) + Cad

for some constants C,Cy > 0 only depending on a and G.

It remains to check that B§+ -y C [ylpge for any y € Y\ Es. Let h € B§+
and suppose [hy|pse # [y]pge. Then there is some k > 0 such that a Fhy
and a %y belong to different elements of the partition P. Since a Fha* €
a_kBngak C Bg)e*kaa by (3.5), we have

dy(a_khy, a_ky) < dg(a_khak,id) < dpe .

It follows that both a *hy and a*y belong to Ogye—kasP, hence y € Es. It
concludes that B(SG+ -y C [ylpge for any y € Y'\ E. O

The following proposition is a quantitative version of [EL10, Proposition
7.37]. Given a-invariant measure j, it provides a o-algebra which is a~1-
descending and subordinate to L in the following quantitative sense.

Proposition 3.2.6. Let p be an a-invariant probability measure on Y, and
L < G be a closed subgroup normalized by a. There exists a countably gen-
erated sub-c-algebra A* of Borel o-algebra of Y satisfying

1. a Al c AL, that is, AF is a='-descending,

2. [ylar C BE iy for anyy € Y(27F)\ Y(27F2) with k > 1,
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3. if 0 <0 < min((ggg )2,1), then BY -y C [yl 4z for any y € Y\ Es, where
¢, D > 0 are the constants in Lemma 3.2.2 and (3.5), and Ej is the set
in Lemma 3.2.5.

In particular, the o-algebra A is L-subordinate modulo fu.

Proof. For a given a-invariant probability measure p on Y, let P be the count-
able partition of Y constructed in Lemma 3.2.5. We will construct a countably
generated o-algebra Pl by taking L-plaque in each P € P as an atom of PL.
Then A* := (PL)5° will be the desired o-algebra.

For each P € P, by Lemma 3.2.5(1), there exist j > 1 and z € P such
that P € Y(277)\Y(279™2) and B ,_, -2 C P C BY , , - z. We can find

) 5
Bp C G with diam(Bp) < 277 such that P = 7y (Bp), where 7y : G — Y is
the natural quotient map. Define the o-algebra

Pt =o({ny(BpNS): PP, SE€BgL}).

Then PL is a refinement of P so that atoms of PL are open L-plaques, i.e.
forany y € P € P, [ylpr = [ylp N BL, -y =V, -y, where V,, C BL | is an
open bounded set.

It is clear that P’ is countably generated, hence AY = (PL) is also
countably generated. By construction, we have aAX = (PF)* ¢ AL, which
proves the assertion (1).

For any y € Y (27%)\ Y (27%+2) with k > 1, take P € P such that y € P. By
Lemma 3.2.5(1), there exist j > 1 and z € P such that P € Y/(277)\Y(27772)
and P C BQGJ . - z. Observe that 27972 > 27% and 277 < 275+2 that is,

J—2 < k < j+ 2. Hence we have
Y4z C llpr = Vy -y C By -y C By wir -y,

which proves the assertion (2).

For a given 0 < § < min((y5z )2,1) and y € Y\ Ejs, assume that z = hy
with h € BF. By Lemma 3.2.5(2), Bg;+ -y C [y]pge. Hence it follows that for
any k > 0, a *y and a2 belong to the same atom P C P. Then we have

a_ky, a %2 =a*ha*. (a_ky) e P.

Since a *ha® € B(SL, a %y and a~*z belong to the same atom of PL. This
proves the assertion (3). O

64



CHAPTER 3. ENTROPY RIGIDITY AND BEST APPROXIMATION
VECTORS

As in [LSS19, Lemma 3.4], we need to compare the dynamical entropy and
the static entropy. In [LSS19], the o-algebra 71 (By) is used to deal with the
entropy relative to X, where By is the Borel o-algebra of X. In order to deal
with the entropy relative to the general closed subgroup L < GT normalized
by a, we consider the following tail o-algebra with respect to A% in Proposition
3.2.6: Denote by

oo
(3.11) : ﬂ aF A = (PR

k=1
This tail o-algebra may not be countably generated but it satisfies strictly
a-invariant, i.e. a Al = AL =a 1AL,

Lemma 3.2.7. Let pu be an a-invariant probability measure on' Y, L < G be
a closed subgroup normalized by a, and A" be as in Proposition 3.2.6. Then
the o-algebra (A)>

—00

is the Borel o-algebra of Y modulo p.

Proof. Let P be as in the proof of Proposition 3.2.6. Since (AX)>, = (P¥)>=,
and Y = s, Y(27%) \ Y(27%+2), it is enough to show that for each k > 1
and for pra.e. y € Y(27%)\ Y/(275+2), we have [y] (pry=_ = {y}.

For fixed k > 1, it follows from Poincaré recurrence (e.g. see [EW11, The-
orem 2.11]) that for p-a.e. y € Y (27%) \ Y(27%%2), there exists an increasing
sequence (k;);>1 C N such that

by e Y(27M)\Y(27%?) and k; — oo as i — oo,
By Proposition 3.2.6(2), it follows that for each ¢ > 1
[akiy]AL = [akiy](PL)SO - BQL—IH—I -ty
Since [akiy]('pL)go = iy -k (PLyz = a*iy] (P), using (3.5), we have
[y]('pL)tioki - a*kiBZL_kH cabiy =a” ZBZ iy C B e—akig—ki1 " Y-

Taking i — oo, we conclude that [y]pry= = {y}. O

Proposition 3.2.8. Let p be an a-invariant probability measure on Y and
L < Gt be a closed subgroup normalized by a. Let A" be as in Proposition
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3.2.6 and AL be as in (4.48). Then we have
(3.12) hu(a|~'4£o) = hu(a71|~'4£o) = HM(-AL’“-AL)-
Moreover, (3.12) holds for almost every ergodic component of L.

Proof. Let P~ be as in the proof of Proposition 3.2.6. Since P is countably
generated, we can take an increasing sequence of finite partitions (P,CL) k>10fY
such that P 7 PL. By Lemma 3.2.7, we have By = (PL)>_ = \/?2, (PF)>,
modulo p1, where By is the Borel o-algebra of Y. It is clear that (Pf)>,, C
(PE1)>% for all k& € N. Hence it follow from Kolmogorov-Sinal Theorem
[ELW, Proposition 2.20] that

hu(a™!AL) = lim hy(a™", Py lAL).
k—o0
Using the future formula [ELW, Proposition 2.19 (8)], we have
lim by (o™ Pl AL) = lim H,(PE|(PR)T vV AL)
k—o00 k—o00

It follows from monotonicity and continuity of entropy [ELW, Proposition 2.10,
2.12, and 2.13] that for any fixed k£ > 1

Jim H, (PEI(PERVAL) < Hu(PE(PRRVAL) < lim H,(PFI(PE)FVAL),
hence we have
Hu(PH(PY v AL) < Hu (PRI v AL) < H,(PH(PH)E v AL).
Taking k — oo, it follows that
Tim 1, (PEI(PE)R v AL) = Hu(PH(PY)R v AL) = H, (A |aAb),

which concludes (3.12).

Note that By = (PX)> = /i, (PE)>=, modulo almost every ergodic
component of y. Thus following the same argument as above, we can conclude
(3.12) for almost every ergodic component of f. O

The quantity H,(A*|aAL) is called empirical entropy and is the average
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of the conditional information function
L
Iu(AL’aAL)(x) = —log M%A ([w]A)7

and indeed the entropy contribution of L (see [EL10, 7.8] for definition).

3.2.3 Effective variational principle

We first recall the variational principle. Combining [EL10, Proposition 7.34]
and [EL10, Theorem 7.9], we have the following upper bound of an empirical
entropy (or entropy contribution), and the entropy rigidity.

Theorem 3.2.9 ([EL10]). Let L < G be a closed subgroup normalized by a,
and let | denote the Lie algebra of L. Let i be an a-invariant ergodic probability
measure on Y. If A is a countably generated sub-c-algebra of the Borel o-
algebra which is a='-descending and L-subordinate, then

H,(AlaA) < log | det(Adq])|

and equality holds if and only if p is L-invariant.

This subsection is to effectivize the variational principle. Let L < G be
a closed subgroup normalized by a, mj be the Haar measure on L, and pu
be an a-invariant probability measure on Y. Let A be a countably generated
sub-o-algebra of Borel o-algbera which is a~!-descending and L-subordinate
modulo p. Note that for any j € Zs, the sub-o-algebra a’ A is also countably
generated, a~'-descending, and L-subordinate modulo .

For y € Y, denote by V, C L the shape of the A-atom at y € Y so
that V, - y = [y|la. It has positive mp-measure for p-a.e. y € Y since A
is L-subordinate modulo p. Note that for any j € Zs>o, we have [y]4 =
ajVaija_j Y.

As in [EL10, 7.55] which is the proof of [EL10, Theorem 7.9], let us define
T;jA for p-a.e y € Y to be the normalized push forward of mp|,; V, ;a7 under
the orbit map, i.e.,

' 1
7_aJ.A —

Yy - mL‘ajVaija_j Y,

mr(a!Vy-i,a=7)

which is a probability measure on [y],j 4
The following proposition is an effective version of Theorem 3.2.9.

67



CHAPTER 3. ENTROPY RIGIDITY AND BEST APPROXIMATION
VECTORS

Proposition 3.2.10. Let L < G be a closed subgroup normalized by a and
@ be an a-invariant ergodic probability measure on Y. Fix j € N and denote
by J > 0 the mazimal entropy contribution of L for o/, that is,

J = log | det(Ad,|i)|.

Let A be a countably generated sub-o-algebra of Borel o-algbera which is a™*-

descending and L-subordinate. Suppose that there exist a measurable set K C
Y and r > 0 such that [y|a C BEC .y for any y € K, where B is as in
Subsection 3.2.1. Then we have

H, (Alad A) < T + / log 7 4((Y \ K) U BXSupp n)du(y).
Y

Proof. By for instance [EL10, Theorem 5.9], for py-a.e. y €Y, ,u‘;jA is a prob-
ability measure on [yl,i4 = a/V,—j,a”7 -y, and H,(Ala’ A) can be written
as

H (Alad A) = — /Y log 1% A([y] ) dps(y).

Note that mz (a’ Ba™) = e/m(B) for any measurable B C L. Let

p(y) == p@A([yla) and P (y) == 77 A([y)a).

Then we have

Haar(y): mL(V;J) — mL(Vy) 67‘],

P mp (ajva*jyaij) mL(Va*jy)

hence, applying the ergodic theorem, we have — [, log pH e (1) du(y) = J.

Now we estimate an upper bound of H,(A|a’.A) — J following the compu-
tation in [EL10, 7.55]. Following [EL10, 7.55], we can partition [y],; 4 into a
countable union of A-atoms as follows:

o0

[y]afA = U[wz]fl U Ny7

i=1

where N, is a null set with respect to ,quA. Note that ,quA is supported
on Supp u for p-a.e y. Let us denote by Z = Y\K)uU BTL’CSupp w. If z; €
Y\ Z = K\ BF°Supp p, then we have ,u‘yLJA([:ci]A) = 0 since [z;]4 C BE®-z; C
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K \ Supp p. Thus we have

(Al 4) =T == [ (10gp(2) ~log 0" (2)) du(:)

- /y /Y (log p™*" (2) — log p(2)) dpf A (2)d(y)
_ /Y 3

/e[ .] (log ™" (2) — log p(2)) d,quA(z)du(y)

T, €L
“J X (nz“‘qxiu)) by (el a)duto)

The fifth inequality is by the convexity of the logarithm. This proves the
proposition. ]

In particular, if A = A" then Proposition 3.2.10 still holds without assum-
ing the ergodicity of p.

Corollary 3.2.11. Let L < GT be a closed subgroup normalized by a, i be
an a-invariant probability measure on 'Y, and A" be as in Proposition 3.2.6.
Then Proposition 8.2.10 holds with A = A",

Proof. Writing the ergodic decomposition p = [ ufdu(z), we have

(@l AL) = [ By (@ AL )du(o)
where AL is the o-algebra as in (4.48). By Proposition 3.2.8, we also have

H, (AL A" = / H o (ALl AL)dpa(2).
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Applying Proposition 3.2.10 for each ué we obtain

[ Bt A auz) < 7+ [ [ togr A\ K) U BESupp ) (5)d2)

<J+ /Y log T;j'A((Y \ K) U B,{“7CSUPP M)dﬂ(y)

3.3 Preliminaries for the upper bound
From now on, we fix the following notations:
d=m+mn, G=ASLi(R), I'=ASL4(Z), and Y = G/T.

We use all notations in Subsection 3.2.1 with this setting. In particular, we
choose a right invariant metric dg on G so that 7., < 1. Denote by do the
metric on G induced from the max norm on Mgy 44+1(R). Note that dg and
deo are locally bi-Lipschitz.

Recall the notations a¢, a = a1, U, and W in the introduction. Then the
subgroups U and W are closed subgroups in G* normalized by a, where G+
is the unstable horospherical subgroup associated to a. Denote by u and v the
Lie algebras of U and W, respectively. We can take standard basis for u and
w so that u = R™" = M,, ,,(R) and w = R™ with the associated quasinorms
given by

1

L 1
— L. Tz'+5' — . 771
14 lkes = max [Ag["™ and blle = max ||,
1<j<n
respectively, for any A € M, ,(R) and b € R™. We call these quasinorms
r ® s-quasinorm and r-quasinorm, respectively. It is also satisfies that

| Adg, Allres = etHAHr(@s and || Adg, bl|r = etHth

for any A € M,, »(R) and b € R™. These quasinorms induce the quasi-metrics
dyrgs and dy on u and to, respectively. For simplicity, we keep the notations
dygs and d; as locally defined quasi-metrics on U and L, respectively.

As in Theorem 3.2.9, we can explicitly compute the maximum entropy
contribitions for L = U and W. For L = U, the restricted adjoint map is the
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expansion Ad, : (A;;) — (e"T% A;;) of A € My, ,,, hence

log | det(Adaly)| =Y (ri + 5;) = m +n.
12

For L = W, the restricted adjoint map is the expansion Ad, : (b;) — (€"ib;)
of b € R™, hence
log | det(Adglw)| = > ;= 1.

7

Denote by X = SL4(R)/SL4(Z) and by 7 : Y — X the natural projection
sending a translated lattice x + v to the lattice . Equivalently, it is defined

by 7 ((g 1{) I‘) = gSL4(Z) for g € SLy(R) and v € R?. We also use the

14
0

following notation: w(v) = 11) for v € R%.

3.3.1 Dimensions with quasinorms

Let Z be a space endowed with a quasi-metric dz, which is a symmetric,
positive definite map dz : Z x Z — R>¢ such that, for some constant C', for
all x,y € Z, dz(z,y) < C(dz(z,2) + dz(z,y)). For a bounded subset S C Z,
the lower Minkowski dimension dim,, S with respect to the quasi-metric dy is
defined by
dim,, S := lim inf M
50 log1/6

where Ny, (S,9) is the maximal cardinality of a J-separated subset of S for
dz. If S is unbounded, we let dim,; S = sup{dim, SN K ; K compact}.

At the begining of this section, we consider Lie algebras u and to endowed
with r ® s-quasinorm and r-quasinorm, which induce the quasi-metrics dygs
and d, on u and tv, repectively.

Now, for subsets S C u = R™" and S’ C w = R™, we denote the lower
Minkowski dimensions of these subsets as follows:

dim, ¢S == dim, S, dim S := dim, S,

dim, S’ ;= dim, S',  dim,,S’ := dim,, S’

where dg is the standard metric. We will also consider Hausdorff dimensions
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dimyg S and dimpg S’, always defined with respect to the standard metric. We
refer the reader to [Fall4] for general properties of Minkowski or Hausdorff
dimensions, such as the inequality

Following [LSS19], we will relate dimension dim,, to entropy, and further
to Hausdorff dimension using dim,.o¢ and dim, via the following lemma.

Lemma 3.3.1. [LSS19, Lemma 2.2] For subsets S C u and S’ C 1,
1. dimgu =3, ;(ri +s;) =m+n and dimro =37, =1,
2. dim,.gsS > (m+n) — (r1 + s1)(mn — dim,,;S),

3. dim,.S" > 1 —r1(m — dim,,5’).
3.3.2 Correspondence with dynamics
01

corresponding unimodular grid gZ? 4 v in R?. We denote the (r, s)-quasinorm

KA d
of v = (x,y) € R" x R" by [[v[lrs = max{[[x[[&", ly[ls'}. Let

For y = <g v> I' € Y with ¢ € SLg(R) and v € R%, denote by Ay the

Lo:={yeY :Yvely|v|s>e€},

which is a (non-compact) closed subset of Y. Following [Kle99, Section 1.3],
we say that the pair (A,0) € M, »(R) x R™ is rational if there exists some
(p,q) € Z™ x Z™ such that Aq — b+ p = 0, and irrational otherwise.

Proposition 3.3.2. For any irrational pair (A,b) € My, ,(R) x R™, (A,b) €
Bad(e) if and only if the as-orbit of the point yay is eventually in L., i.e.,
there exists T' > 0 such that azyay € Le for allt > T.

Proof. Suppose that there exist arbitrarily large t’s satisfying a;yap ¢ Le.
Denote e := diag(e™!,--- , ™) € My, ,n(R) and €% := diag(e®!?, - - -, e5nt) €

M, n(R). Then the vectors in the grid A can be represented as

atYA,b

(05 2) () () =)
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for (p,q) € Z™ x Z". Therefore a;x 4y ¢ Le implies that for some ¢ € Z",

m
d

(3.13) e {Ag—Db)y <ed and e tq|ls < €4,

thus |lg|ls(Ag — b)y < €. Since (Ag — b)r # 0 for all ¢, we use the condition
(Aq —b)y < e7te'd for arbitrarily large ¢ to conclude that ||q|ls(Ag — b)y < €
holds for infinitely many ¢’s. This is a contradiction to the assumption that
(A,b) € Bad(e).

On the other hand, if (A4,b) ¢ Bad(e), then since (A4, b) is irrational, there
are infinitely many ¢ € Z" such that ||q||s(Aq — b)r < €. Thus we can choose
arbitrarily large ¢t so that (3.13) hold, which contradicts to the assumption
that the a;-orbit of the point y4 is eventually in L. O

We claim that for a fixed b € R™, the subset Bad}(e) of Bad®(¢) such
that (A,b) is rational is a subset of Bad’(¢). Indeed, if A € Bad®(¢) for
some b and (A,b) is rational, then (Agy — b), = 0 for some ¢y € Z™ and
liminf ||g||s(Ag — b)r > €, thus liminf llglls(A(q¢ — q0))r > €. Therefore, we

llglls—o0 llalls
have

dimpy Bad}(e) < dimy Bad®(¢) = mn — cm,n@ <mn

for some constant ¢, ,, > 0 [KM19].
For a fixed A € M, ,,(R), the subset of Bad 4(¢) such that (A, b) is rational
is of the form Aq + p for some ¢, p € Z™ thus has Hausdorff dimension zero.
In the rest of the article, we will focus on the elements y4 5 that are even-
tually in L..

3.3.3 Covering counting lemma

To construct measures of large entropy in Proposition 3.4.1 and Proposition
3.5.3, we will need the following counting lemma, which is a generalization of
[LSS19, Lemma 2.4].

Here, we consider two cases: L = U and L = W. Fix a standard basis
{e; : i = 1,...,diml} on [. Denote by | - |c both of | - |rgs and | - |,
for simplicity. Let Jr be the maximal entropy contribution for L, that is,
Jr =Y, ¢i- Recall that Jy = m +n, and Jy = 1.

Before state the main result in this subsection, we fix the following nota-
tions. Let Q% C X be such that X \ QY has compact closure. Set Qs =
71(QY%) and denote by 79 > 0 the injectivity radius on ¥ \ Q. Note that
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Y N Qoo C Y(rg). For any D > Jp, choose large enough Tp € N so that
(3.14) [eTD] < o470 o amt

foralli=1,...,diml Fix 0 < rp = rp(Q%) < 1/2 small enough so that

e di and do are bi-Lipschitz on B,%, that is, there is Cy > 1 such that

G
Tp?

for any z,y € B

1

e The following inclusions hold:

1
(3.16) Ble C BY  and BiL(Y N\ Qu) CY(570).

Coor BA¥E T 2

Lemma 3.3.3. For any D > Jr, we fix the above notations. Let y € Y \ Qoo
and I ={t e N | a1y € Qo }. For any non-negative integer T, let

Ey,T = {Z € BTI'/D "y | vt e {]-a . 7T} N Iv dY(atyaatZ) < TD}'

1
The set E, 1 can be covered by CePHUN{L,... T} dr,c-balls of radius rBaXCe*T,

where C is a constant depending on Q% and D, but independent of T.

Proof. For s € {0,...,Tp — 1} and k € Zx>o, let us denote by I, ;(Tp) =
{s,s+Tp,...,s+ kTp} and

;}k ={z € BTLD cy V€ Ig i (Tp) NI, dy (ary, arz) < rp}.

Following the proof of [LSS19, Lemma2.4] with E7 , instead of Ey r, we can
obtain the following claim:

Claim The set EJ, can be covered by CyeL(Tp=1)+D)INL 1 (Tp)| dr,,c-balls

1
of radius Cor Baxce_(5+kTD), where Cj is a constant depending on QY , D and
s, but independent of k.

Proof. We prove the claim by induction on k. Since the number of d c-balls
1

of radius Coorj3™°e™* needed to cover B{JD -y is bounded by a constant Cj
depending on Q% , D and s, the claim holds for k = 0.
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Suppose that E ;| can be covered by N1 = = CyeTp—1)+D)INL k1 (Tp)|
dr, c-balls of radius C’oorg‘"‘“e (s+(k=1)Tp) By the inequality (3.14), any d, c-

1
ball of radius Coor ¢ e~ (T*k=DTb) can be covered by

dim [ e —(s4+(k=1)Tp)e dim [ . dim [ o boJy

[ | o | = LI < T et
(8+k’TD

=1 i=1

— €JLTD€D Jr, — eJL(TD—l)—‘rD’

1
dr,c-balls of radius Coorb“a"ce*(”kTD). Thus if s + kTp € I, then E;’ 5 can be

covered by Ny, = e/tIp=D+P N, | d; .-balls of radius COOTBZ’% e~ (s+kTp)

Suppose that s + kTp ¢ I. Denote by {B; : j = 1,..., Ny_1} the above
covering of £, . Since Ep, C Ef ., theset {E,, NB;j:j=1,...,Ny_1}
covers E;k We now claim that for any x1,z9 € E;k N B;j

1
dp, o(21,23) < 20sor e e~ (THTD),

Indeed, since x1, 2 € Bj C B Y and Bjis a dy, c-ball of radius Coorm“ ~(s+(k=1)Tp)

there are h € BL and hi, ho E Bl 1 such that 1 = hihy

Coo TBqaxc —(s+(k—1)TD)

and za = hohy. It follows from (3.16) that
S+kTDh h CL (S+kTD) C aS+kTDBLC a*(S#»kTD)
Coo T.B1alxc —(s+(k—=1)Tp)

=Ble | c BY .

Coor B%€ ¢TD 270’

Since hy C Y (370) by (3.16), we have

dY (a8+kTD$1, as+kTDx2) — dL (as-‘rkTD hth_IG_(S+kTD), Zd) )
It follows from (3.15) that

1
dL(a8+kTD hth_ a,_(S-i-kTD)’ id) > Cidoo(as-&-kTDh11h2_1a_(s_~_k,TD)7 id)
1 _ B
= g e eI (log huhy il

where (log hlhg_l)i is the i-th coordinate of log hth_1 with respect to the stan-
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dard basis {e; : 1 <7 < dim}.
On the other hand, since s +kTp ¢ I, we have dy (a*t*1y, a*+tF 1o g,) < rp
for each £ = 1,2. Thus dy (a*¥TP 2, a* T+ P g9) < 2rp. Since L = U or L = W,

i.e. commutative subgroups of G, for each i = 1,...,dim [, we have
|(log hihy V)il = |(log by — log ha);| < 2rpCae™Ci+HD),
Note that

1
dL7c(x1, 5132) = dL7c(h1, hg) = max [ ](log h1 — log hz)l’ i

i=1,...,dim

Therefore, we have

1 1
dr.c(z1,22) < magf (2rpCso) i e~ (sTKTD) < 2Coorgaxce*(s+kTD).
’ i=1,....dim

1
By the claim, E; N B; is contained in a single dy, c-ball of radius Cor 57 © e~ (s+kTp)
for each j =1,..., Ny_1. Hence E; i can be covered by N = Nj_1 df c-balls

1
of radius C’oorgaxce_(5+kTD). O

Now, for any non-negative integer T, we can find s € {0,...,Tp — 1} and
k € Z>o such that

TD‘IQI&k(TD)‘ < |Iﬂ{1,...,TH and T —-Tp<s+klIp<T

from the pigeon hole principle. By the above observation, £, r C E;k can be
1
covered by Cyel/tTp=D+DINLk(To)l g, balls of radius Coorfj?<° e~ (+F1D).,
Since T—Tp < s+kTp < T and D > Jp,, E, 1 can be covered by (max, Cy)eP /N {111

1

dr, c-balls of radius CooeTDrBa”e_T. Hence there exists a constant C' > 0 de-

pending on Q% , 7, and D, but independent of T" such that E, 1 can be covered
1

by CePlIN{L,... T} dr, c-balls of radius rl@e_T. O

3.4 Upper bound for Hausdorff dimension of Bad 4(¢)

In this section, we will prove Theorem 1.2.2 by constructing a-invariant proba-
bility measure on Y with large entropy. Here and next section, we will consider
the dynamical entropy of a instead of a~! contrary to Section 5.1. Hence let us
use the following notation: For a given partition Q of Y and a integer ¢ > 1,
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we denote by
q—1
Q(Q) — \/ a'0.

=0
3.4.1 Constructing measure with entropy lower bound

Let us denote by X and Y the one-point compactifications of X and Y, re-
spectively. Let A be a given countably generated o-algebra of X or Y. We
denote by A the o-algebra generated by A and {co}. The diagonal action a;
is extended to the action on X and Y by a;(c0) = oo for ¢ € R. For a finite
partition Q@ = {Q1, -+ ,QN, Qoo } of Y which has only one non-compact ele-
ment oo, denote by Q the finite partition {Q1, - ,Qn, Qoo = Qoo U{o0}} of
Y. Note that Q@) = @(q) for any M € N. We also denote by &?(X) the space
of probability measures on X, and use similar notations for Y, X, and Y.

In this subsection, we construct an a-invariant measure on Y with a lower
bound on the conditional entropy for the proof of Theorem 1.2.2. Here, the con-
ditional entropy will be computed with respect to the o-algebras constructed
in Section 5.1. If x4 has no escape of mass, such measure was constructed in
[LSS19, Proposition 2.3]. The following proposition generalizes the measure
construction for x 4’s with some escape of mass.

Proposition 3.4.1. For A € M, ,(R) fized, let
na = sup {n : x4 has n-escape of mass on average} .

Then there exists s € P(X) with pa(X) =1 —na such that for any € > 0,
there exists an a-invariant measure i € & (7) satisfying

1. Suppp C LU (Y \Y),

2. T«i = WA, in particular, there exists a-invariant measure p € P(Y)
such that

7= (1—na)p~+nadso,

where ds is the dirac delta measure on' Y Y.

3. Let AW be as in Proposition 3.2.6 for i and L = W, and let AY be as
in (4.48). Then we have

hi(alAW) > 1 —n4 —r1(m — dimg Bad a(e)).
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Remark 3.4.2.
1. Note that if na > 0 then x4 has na-escape of mass on average.

2. One can check that na = 0 if and only if x4 is heavy, which is defined
in [LSS19, Definition 1.1].

Proof. Since x4 has ng-escape of mass on average but no more than n4, we
may fix an increasing sequence of integers {k;};~, such that

k;—1
13 - _
=D dakgy s € P(X)

v k=0

with pa(X)=1-1na4.
Let us denote by T™ = [0, 1]™/ ~ the torus in R™, where the equivalence
relation is modulo 1. Let

RAT .= {be T™|Vt > T, asyap € L} N Bada(e).

As explained in Subsection 3.3.2, the subset of Bad 4(¢€) such that (A, b) is

oo
rational has Hausdorff dimension zero. Hence, by Proposition 3.3.2, U RAT

T=1
has Hausdorff dimension equal to dimyg Bad4(€). For any v > 0, it follows

that there exists T, € N satisfying dimpg RAT > dimpy Bad s(e) — 7.

Let ¢4 : T™ — Y be the map defined by ¢4(b) = yap. Note that ¢4 is
an one-to-one Lipschitz map between T and ¢4(T™), so we may consider
a quasinorm on ¢4(T™) induced from the r-quasinorm on R™ and denote it
again by || - [|,.

For each k; > T, let S; be a maximal e_ki—separated subset of R4 with

respect to the r-quasinorm. By Lemma 3.3.1,

log |.S;
(3.17)  liminf 0| %] > dim, (R*") > 1 — r1(m 4 v — dimy Bad z(€)).
1—00 4
Let v; = ﬁ Z dy,, be the normalized counting measure on the set D; :=
beS;

®4(S;) = {yap: b€ S;} C Y. Extracting a subsequence if necessary, we may
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assume without loss of generality that

ki—1
1 d w* R
=% kEO afv; Xy € 2(Y).

The measure p7 is a-invariant since a,p; — p; goes to zero measure.

Choose any sequence of positive real numbers (7;);>1 converging to zero
and let {177} be a family of a-invariant probability measures on Y obtained
from the above construction for each ;. Extracting a subsequence again if
necessary, we may take a weak*-limit measure 1 € Z(Y) of {u77}. We prove
that @ is the desired measure. The measure @ is clearly a-invariant.

(1) We show that for all v > 0, u7(Y \ £L.) = 0. For any b € S; C R4T,
aTyA,b € L holds for T' > T,. Thus we have

m(Y\Cﬁ):klZafl/iY\[, Za vi(Y'\ Le)

_ 1 T’Y
=I5 > b, (YN L) < =

" yeD; 0<k<T,
By taking k; — oo, we have pY(Y \ £L.) = 0 for arbitrary v > 0, hence

Y\ L) = Jlggo p (Y \ Le) =0.

(2) For all v > 0, mu” = pa holds since myv; = d;, for all ¢ > 1. It follows
that m,@ = pa. Hence,
AT\ Y) = lim g% (T \ V) = pa(X\ X) = 4,

]—}OO

so we have a decomposition & = (1 — na)p + N4ds for some a-invariant
pe 2(Y).

(3) We first fix any D > Jy = 1. Recall the notations in Subsection 3.3.3.
Suppose that Q is any finite partition of Y satisfying:

e O contains an atom Q of the form 771(QY%), where X \ QY% has

compact closure,

e VQ € 9~ {Qu}, diam Q < rp = rp(Q%), where 7p is as in Subsection
3.3.3,
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e VQ € Q)= 1, 1 (dQ) = 0.

We will first prove the following statement. For all ¢ > 1,
1 () —— -
(3.18) gHﬁ(Q(q)]Ag) > 1 — r1(m — dimg Bada(e)) — Dii(Qu).

It is clear if 7i(Qx) = 1, so assume that fi(Q)s) < 1, hence for all large
enough 7 > 1, p(Q~) < 1. Now, we fix such j > 1 and write temporarily
7=

Let p > 0 be small enough so that f = 17 (Qs) + p < 1. For large enough
1> 1, we have

B= 1 (Qu) 0> 1i(Qu) = o S 0y (Quc)

il Sil yeD; 0<k<k;

k. Z 5akxA(ng)'

0<k<k;

- =

S

In other words, there exist at most 8k; number of a*z 4’s in QY,, thus for any
y € D;, we have

[{k €{0,... . ki —1}: d*y € Quo}| < ki,

From Lemma 3.3.3 with L = W, if Q is any non-empty atom of Q%) fixing
any y € @, the set

DiNQ = D;N[ylomy C Eyr,—1

Dpki i-balls for d., where C is a constant

k

can be covered Ce

1r
many rD/”e k

depending on Q% and D, but not on k;. Since D; is e Fi-separated with

grl < 1, we get

respect to dy and r
(3.19) Card(D; N Q) < CePPki,

Now let AW = (PW)3°0 = \/22,a*PW be as in Proposition 3.2.6 for u and
L =W, and let AY be as in (4.48). Using the continuity of entropy, we have

(3.20) H,, (Q")]AY) = A H,, (QM)|(PY)7).
—00
Claim H,,(Q*)|(PV)2*) = H,,(Q*)) for all large enough ¢ > 1.
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Proof. Observe that u(¢a(T™)) > 0. If not, it follows from the a-invariance
of p that p(a*¢a(T™)) = 0 for all k& > 0. It implies that j;(a¥¢4(T™)) = 0
for all & > 0, but it contradict to u;(Uy>o a*¢4(T™)) = 1. Let us denote by
3o = p(pa(T™)) > 0 Take 0 < &1 < min((gg5; )2,1) small enough so that

M(Y\Y(Clcslé)) +C'2512 < g, where ¢, D > 0 are the constants in Lemma 3.2.2
and (3.5), and C1, Cy > 0 are the constants in Lemma 3.2.5. Since p(Es, ) < dg
by Lemma 3.2.5, there exists y € ¢4(T™) NY \ Es,. Hence, it follows from
(3.5) and Proposition 3.2.6 that

[y]('pW)t?o = a‘[a "] (PW)ge = ae[a_gy]Aw D aeBg}/a_ey ») Bc‘l}OVeafély'

Since the support of v; is a set of finite points on a single compact W-orbit
¢ (T™), v; is supported on a single atom of (P")% for all large enough ¢ > 1.
This proves the claim. O

Combining (3.19), (3.20), and Claim, it follows that
H,,(Q")AY) = lim H,,(Q")|(PY)) = H,,(Q")
(3.21) o0
> log |Si| — Dpk; —log C.
For any ¢ > 1, write the Euclidean division of large enough k; — 1 by ¢ as

ki_lzqk/+swith86{0,"';q_l}'

By subadditivity of the entropy with respect to the partition, for each p €
{07 aq_1}7

HVZ(Q(kl)’Ag) < Hllpl/i(Q(q)‘AZ) + Haerqk/yi(Q(q)‘Az) + 2q 10g |Q|

Summing those inequalities for p = 0, -+ ;¢ — 1, and using the concave prop-
erty of entropy with respect to the measure, we obtain

qH,,(Q)|AY) sZ  (QOAY)Y 4 26 1og |Q)
k=0

IN

kiH,, (Q9W|AY) + 2¢%10g| Q)
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and it follows from (3.21) that

. 2qlog |Q|
— k; k;
1

> E(log\&! — DBk; —log C — 2q10g\Q|)-

1
5Hui(Q(q)\«4Z) H,,(Q")|AY) ~

Now we can take i — oo because the atoms @ of Q and hence of @(q), satisfy
p?(0Q) = 0. Also, the constants C' and |Q| are independent to k;. Thus we
obtain

1 N
5HW(Q(Q)].AOVK) >1—ri(m+vy—dimygBada(e)) — DS,
and by taking p — 0, we have
1 oy _
gH,ﬂ(Q(Q)]AZ) >1—r1(m + v — dimg Bada(¢)) — D" (Quo).-

Recall that v = «;, and by taking j — oo so that v; — 0, we finally have
(3.18), i.e.,

;Hu(Q(Q)_,A[gg) >1—r1(m— dimy Bada(e)) — Dii(Quo)-

As explained in [L.SS19, Proof of Theorem 4.2, Claim 2], we can construct a
finite partition Q of Y satisfying the bullet-requirements above. Hence,

hﬁ(alﬁ) >1—71(m —dimyg Bad4(¢)) — Di(Qoo),

for any Qo of Q satisfying the bullet-requirements. Moreover, we may take
QY% C X sufficiently small so that i(Qo) is sufficiently close to (Y \Y) = 7.
It completes the proof by taking D — 1. O

3.4.2 The proof of Theorem 1.2.2

In this subsection, we will estimate the dimension upper bound in Theo-
rem 1.2.2 using a-invariant measure with large relative entropy constructed in
Proposition 3.4.1 and the effective variational principle in Proposition 3.2.10.
To use the effective variational principle, we need the following lemma.
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For x € X and H > 1 we set:

ht(x) = sup {Hgval cx=gSLy(Z),v € Vi \ {0}} ,

Xeg={zeX:ht(x) <H}, Yeyg=nu "(X<p).

Note that ht(z) > 1 for any x € X by Minkowski’s theorem and X<y and
Y<p are compact sets for all H > 1 by Mahler’s compact criterion.

Lemma 3.4.3. Let A be a countably generated sub-c-algebra of Borel o-
algbera which is a~'-descending and W -subordinate. Let us fir y € Y<y and
suppose that B(‘;V’r cy C [yla C BY* .y for some 0 < § < r. For any
0<e<l1,ifj > log((2de*1)#5*1) and jo > log((defl)ie_%), then

J —j —i—fg—1 T J . . .
Ty "A@=2L,) <1 —e 17297 ed | where T YA s as in Subsection 3.2.3.

Proof. For z = n(y) € X<p, there exists g € SLy(R) such that x = ¢gSL4(Z)
and inf | gv|| > H'. By Minkowski’s second theorem with a convex body
veZd\ {0}

d

[—1,1]¢, we can choose vectors guy, - - - , gug in gZ% so that H llgvi]| < 1. Then
i=1

for any 1 <1 < d,

lgvill < TT w1~ < &%
i
Let A C R? be the parallelepiped generated by guy,--- , gvg, then ||b]|
dH?1 for any b € A. It follows that [[bT|, < (de_l)i and [|b7||s
(defl)i for any b = (b7,b7) € A, where b € R™ and b~ € R". Note
that the set m7—!(z) C Y is parametrized as follows:

<
<

7N x) = {wb)gl €Y :bec A}.

Write y = w(bg)gI" for some by = (bf, by ) € A. Denote by V,, C W the shape
of A-atom so that V, -y = [y, 4, and = C R™ the corresponding set to V,
containing 0 given by the canonical bijection between W and R™. Since a’!

expands the r-quasinorm with the ratio e/!, we have B:JV-l’g Yy C [Ylgna C
Wr R™ r
€j17' ejl(s

follows:

-y, i.e. B cCEZC Bf&jr. Then the atom [y],j, 4 is parametrized as

[Waira = {w(b)gl : b= (bT,by),b" € b + =},

j . .
and 7,/ 'A can be considered as the normalized Lebesgue measure on the set
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bl +E CR™
Let us consider the following sets:

of = {b+ eR™: ||bH]|, < e*ﬂée%} and O~ = {b* ER™: b ||s < ej%%}.

If b= (bt,b7) € ©F x O, then ||e"2bT||, < ed and |e™%2b ||s < €4, where
er2bt and e~%2b~ denote the vectors such that a/2b = (e™2bt,e™572p7). It
follows that w(b)gl' ¢ a=72L, since

a?w(b,b7) gl = w(e™2bT, e 75207 )a2 g ¢ L.

by the definition of L..

Now we claim that the set ©F x {bg } is contained in the intersection
of (b +Z) x {by} and ©F x ©7. It is enough to show that OF C b + =
and by € @ . Since ||by ||s < (de_l)ﬁ, the latter assertion follows from the
assumption jo > log((dH dil)#e_%). To show the former assertion, fix any
bT € ©T. By the quasi-metric property of || - || as in (3.1), it follows from the
assumptions j; > log((2de_1)#(5—1) and jy > log((de_l)iefg) that

1—rm 1—rm . om 1
167 —bg [l < 27mm (67 [l + [lbg [le) < 277m (e72ea + (de_l)’“m)

< 2t ((dHYY e+ (dHY) ) < 2 T (dH Y e
< e,

Thus we have b+ € bJr +B&” 14 ' b+ + =, which concludes the former assertion.

By the above claim, we obtain
mperm (@+)
mperm (bS_ + E)

mRm(BRmv’r ) e~i2ed

1— 78" Aa™2L) = 78" AW \aT2L) >

m
e J2e¢d

= =
mgn (B, ") enr

This proves the lemma. O

Proof of Theorem 1.2.2. Suppose that A € My, ,(R) is not singular on aver-
age, and let
na = sup{n : x4 has n-escape of mass} < 1.
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By Proposition 3.4.1, there is an a-invariant measure 77 € £ (Y’) such that
Suppfi C LUV \Y), mfi = pa € Z(X), and G(Y \Y) = pa(X \ X) = na.
This measure can be represented by the linear combination

= (1—na)p+ N1,

where 0 is the dirac delta measure on Y \'Y and p € 2(Y) is a-invariant.
There is a compact set K C X such that pa(K) > 0.99u4(X). We can choose
0 <7 < 1such that Y(r) D 7= }(K) and (Y (r)) > 0.99. Note that the choice
of r is independent of € since 4 is only determined by fixed A.

For a-invariant probability measure p on Y, let A" be a countably gen-
erated o-algebra as in Proposition 3.2.6. With respect to this o-algebra, we
have

hg(alAY) > (1 —na) — r1(m — dimy Bad 4(€))

by (3) of Proposition 3.4.1. Since the entropy function is linear with respect
to the measure, it follows that

hp(alAT) > 1 — 1

hu(a|AY) =
plalAs) = —~ —

(m — dimy Bad 4(¢)).

By Proposition 3.2.8, we obtain

1

w w
(3.22) Hy(AY e AV > —

(m — dimy Bad z(¢)).

By Lemma 3.2.5, there exists 0 < § < § such that u(Es) < 0.01. Note
that the constants C, Co > 0 in Lemma 3.2.5 depend only on a and G, hence
0 is independent of € even if the set Fs might depend on e. It follows from
Proposition 3.2.6 that BYY -y C [y|4w C BY -y for any y € Y(r) \ Es. We
write Z = Y (r) \ Es for simplicity. Note that u(Z) > u(Y (r)) — u(Es) > 0.98.

To apply Lemma 3.4.3, choose H > 1 such that Y (r) C Y<y. Note that
the constant H depends only on r. Set

g1 = Nog((2dH* )76 ™")] and jp = [log((dH* ") mme )],

where §’ > 0 will be determined below
Let A=a*AW for k = [log(%m e ~@)] + j2. By Proposition 3.2.6, for
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any y € Z, we have BY -y C [y] 4w C BYY -y, which implies that

B™Y -y clylaw € B -y

orm rT1
Thus, for any y € Z,
BY - (a*y) ClaFylgeaw = la Fyla c B - (aFy).
§Tm e~k r7l e~k

Finally, it follows that for any y € a*Z,
w, w,
B&/r'yc[y]ACBT/r'y7

where
m
d

' - / e
v =2 tme I2¢ and & =e 'r 1irmr.

Now we will use Corollary 3.2.11 with L = W, K = a*Z, and r = /. Note
that the maximal relative entropy of a/! with respect to A" is ji, and p is
supported on a~72L, since Supp pr C L, and p is a-invariant. We also have

BYWrq i, =a 2BV £ =0 2BV L.CaPL 4
T el2r 2 Tmed 2 mrm e

by using the triangular inequality of r-quasinorm as in (3.1) and the definition
of L, for the last inclusion. Applying Corollary 3.2.11, it follows that

(3.23)
Ho(AY [0 A < j, + / log 74" (¥ \ a*Z) U B =~ L) dpu(y)
Y

mrm ¢

gt [ logr A\ UaEL g Jdu(y)
Y

<+ / log 7 A (a™2L_ 4 Ydp(y)
aer‘IYSH

By Lemma 3.4.3 with § = ¢’ and r = 7/, for any y € a*Z N Yy,

ot A (@L 4 )<1—2"rme 1772/ led =1 — e

Y 2" mrm ¢ ’

hence —log 79" A (a™72L 4 ) > e 9. Since n(@*ZNY<py) > 1, it follows

Y 27 mrm ¢
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from (3.23) that

1= H (A |aAW) =1 - ;HM(AW\aleW) - ;HM(A|aj1A)
1 1

1 JTA; —j
> log 7% a2 L d
(3.24) =0 oy g7y y i JAR(Y)
e_jl
> —.
25

Recall that j; is chosen by

m

P L1 1 m
log((2dH® *)rme(2r)r1 6 rm 2rm el2e d )]

— —

J1
¥

1 n
log((2dH V) rm + o €2(20) 71§ 7 27 € d e

IN

)]
d—1 L_}_L 3 1 1 1
<log((2dH* *)rm " sne’(2r)r1d” rm2mm ) — loge
Here, the constants H, r, and ¢ are only depending on fixed A € M, »,(R),
not on €. Combining (3.22) and (3.24), we obtain

m — dimy Bad4(e) > ¢(A) c

log(1/e)’
where the constant ¢(A) > 0 only depends on d, r, s, and A € M,, ,,(R) since
N4 is also only depending on A. It completes the proof. ]

3.5 Upper bound for Hausdorff dimension of Bad’(¢)

In this section, as explained in the introduction, we only consider the un-
weighted setting, that is,

r=(1/m,...,1/m) and s=(1/n,...,1/n).

3.5.1 Constructing measure with entropy lower bound

Similar to Subsection 3.4.1, we will construct an a-invariant measure on Y
with a lower bound on the conditional entropy to the g-algebra AY obtained
in (4.48) and Proposition 3.2.6 with L = U. To control the amount of escape of
mass for the desired measure, we need a modification of [KKLM17, Theorem
1.1] as Proposition 3.5.2 below.
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For any compact set & C X and positive integer £ > 0, and any 0 < 1 < 1,
let

k-1
1
F,e= {A e T™" C My n(R) : Z Saiz (X \ &) < 7 for infinitely many k‘} ,
=0
1 k-1
Fis= {A € T C My n(R) : m Saiz, (X \ ©) < n} .
i=0

Given a compact set S of X, k € N;np € (0,1), and ¢t € N, define the set

k—
mn 1
Z(G,k‘,t,n)::{AGT Ez atz$AX\6)>’f’}

in other words, the set of A € T™" such that up to time k, the proportion of
times i for which the orbit point a*z 4 is in the complement of & is at least
7. The following theorem is one of the main results in [KKLM17].

Theorem 3.5.1. [KKLM17, Theorem 1.5] There existsty > 0 and C > 0 such
that the following holds. For anyt > to there exists a compact set & := &(t) of
X such that for any k € N and n € (0,1), the set Z(S,k,t,n) can be covered
with Ct3ke(mtn—mmntk py1is i T of radius e~ (MHmth,

The following proposition is a slightly stronger variant of [KKLM17, The-
orem 1.1] which will be needed later. We prove this using Theorem 3.5.1.

Proposition 3.5.2. There exists a familiy of compact sets {677}0<n<1 of X
such that the following is true. For any 0 <n <1,

nmn

(325) dlmH(Tmn \ hmsup ﬂ F ’ 6 ) S mn — m

k—o0 n'>n

Proof. Forn € (0,1), let t;, > 3 be the smallest integer such that 310g slogty e,
and &; be the set &(t;) of Theorem 3.5.1. For [ > 3, denote by m > 0 the
smallest real number such that ¢,, = [. Then n; > % for any [ > 4. We note
that these &), can be chosen to satisfy 6;7, C &, for any 0 < n < . Hence,
we can find a family of compact sets & such that & C 6;;, for any [ > 4
and 7, < 7' < m_1. For any n € (0,1), we can choose &, to be a compact set
so that for any —t, <t <t, and = € &}, alz € G,
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Now we will prove that this family of compact sets {&,}, <n<1 Satisfies

k—1
(3.25). Since %Zéaim (X'\ 6,) > n implies
i=0
[io1-1
1 "
@ 5at”ixA(X \ 677) 2 mn,
t'r] Z:O

Tmn\Fr]Z% C Z(&y, (%],tn,n) forany 0 <np<1and ke N.
For any 11 <n' < m, we have t,y = [ and the set Z(&],, (%W,tn/,n/) is
contained in Z(& , [ o 1,1, m). Tt follows that for any 0 < n < 1

t
k ! k
Tmn\ U F/@k C U Z(g'lr;’: ’Vti/—‘vtnlan/) = U (6'//717 [ﬂ:lﬂ?l),
n'>n n'>n K =3
hence
']I‘m”\hmsupﬂF/GI_ U ﬂ UZ 77l’ 7l777l)
n'>n ko>1 k=ko =3

t k
By Theorem 3.5.1, the set U Z(6,,, [l},l, 7;) can be covered with

1=3

t t
Z": CIBTE) lmtn—mymn 11 Z Ot Sk lmn -1
=3 =3
ty
< Z Ct;’;e(m—l—n)mntne(m—i—n—%)mnk
=3
< Ctée(m—&—n)mntne(m—&—n—g)mnk

balls in T™ of radius e~k Here we used M, = %’7 which follows from
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nm > 277:13’1 for any [ > 4. Thus, for any sufficiently large ky € N

10g(0tf]e(m+n)mntn e(m+n— 7 )mnk)

o0 tn
. k .
dimg | () | 2(8),, [71:8m) | < limsup

k=ko =3 k—o00 — log(e—(m+n)k)
; log(C’t%e(ern)mntn) + (m+n — 3)mnk nmn
= lim sup S L
k—o0 (m+n)k 2(m + n)
i i nmn
h t d Tmn\ 1 Fk/ < __nmn_ -
ence we et dinu \ 1km_)S£p ﬂ n ,Gn/) s mn 2(m +n)

n'zn
The construction will basically follow the construction in Proposition 3.4.1.

However, the additional step using Theorem 3.5.2 is necessary to control the
escape of mass since we will allow a small amount of escape of mass.

Proposition 3.5.3. Let {6,7}0<77<1 be the familiy of compact sets of X as
in Proposition 3.5.2. For b fized and ¢ > 0, assume that dimg Bad®(e) >
dimg Bad®(e). Let g := 2(m + n)(1 — %:db(e)). Then there exist an a-
invariant measure i € P (Y') such that

1. Suppzi C LU (Y\Y),

2. mp(X \ &,y) <1 for any no < 1 < 1, in particular, there exist p €
2(Y) and 0 <75 < ny such that

o= (1 =1)p+ oo,
where 8o is the dirac delta measure on Y \'Y.

3. Let AV be as in Proposition 3.2.6 for i and L = U, and let AL be as in
(4.48). Then we have

— ! 1 !
h(alAY) > (1 —72)(d — 370 — dnz).

Proof. For € > 0, denote by R the set Bad®(¢) \ Badj(e), and let

RT :={A€ RNT™ C My n(R)|Vt > T, a1z € L}

The sequence {RT}T>1 is increasing, and R = U RT by Proposition 3.3.2.
B T=1
Since dimy Bad®(e) > dimy Bad(e) > dimy Bad}(e), it follows that dimy R =
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dimpy Bad®(¢). Thus for any 0 < v < o) — (mn — dimy Bad®(¢)), there

exists T, > 1 satisfying

m+n)

3.26 dimy R™ > dimy Bad®(e) — 7.
( ) H H v
Let n = 2(m +n)(1 — Gmi}i:#). Note that 0 < 7 < 1 in the above
range of ~. For k € N, write Fé“ = m Ff;, ., for simplicity. Recall that we
n
n'2>n
have

nmn

(3.27)  dimpg(T™" \ limsup Fk) < mn — = dimy Bad’(e) — v

k—o0 2(m + n)

by Theorem 3.5.2. It follows from (3.26) and (3.27) that

dimp (R™ ﬂhmsuka) > dimy Bad®(e) — ~.

k—00

o0 o0
Since R™» N lim sup Fk = ﬂ U (R n F,’;), we can find an increasing
ko0 N=1k=N
sequence of positive integers {k;} — oo such that

dimg (R N ﬁfl) > dimy Bad®(e) — .

For each k; > T, let S; be a maximal e Fi_separated subset of RT» N ﬁ#
with respect to the quasi-distance dygs. Then by Lemma 3.3.1,

1
lim inf 128151 > g ras(RT N ER)
1—00 k‘z
(3.28) >m +n — (r; + s1)(mn — dimy Bad®(e) + 7)
. :m+n—m+n(mn—dimHBadb(e)+fy)
n
m+n, ..
l— (dimg Bad®(e) — 7).
Let v; = ’ S | Z dy,, be the normalized counting measure

eD; AeS;

on the set D; : {A A€ S} CY and let

ki—1
1
i = kZaqu,u € 2(Y)

k=0
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By extracting a subsequence if necessary, there exists a probability measure
p” which is a weak*-accumulation point of {y;}. The measure p” is clearly an
a-invariant measure since a.p; — i; goes to zero measure.

Choose any sequence of positive real numbers (7;);>1 converging to zero
and (n;)j>1 be the corresponding sequence such that

dimy Bad®(e) — ’yj)

S —9 1—
i = 2(m + n)( <

Let {7} be a family of a-invariant probability measures on Y obtained
from the above construction for each ;. Extracting a subsequence again if
necessary, we may take a weak*-limit measure 1 € Z(Y) of {u77}. We prove
that & is the desired measure. The measure @ is clearly a-invariant.

(1) We show that for any v, 47 (Y \L¢) = 0. Forany A € S; C R, aTya, € L.
holds for 7" > T’,. Thus

T'Y
miY\ Le) = %Z(’“)M(Y\QF%Z( Jovi(Y \ Le) < %
k=0 ¥ k=0 i

By taking limit for k; — oo, we have u?(Y \ L) = 0 for arbitrary -, hence,

Y \ Le) = jli)lgo p (Y \ L) =0

(2) For any ~, if A € S; CFkZ— m F,6 ,then foralli €e Nand n <7’ <1,

n'>n
i—1

Z Oaka, (X \ &) < 1. Therefore for all i € Nand n <7’ <1,

mepti(X \ Gyy) |S’Z Zw* ,(X\ &)

Z ZfsaszX\@ )<77/7

|S’AGS i

hence m.u7(X \ &,/) = lim mpu;(X \ &,/) < 7. Since n; converges to 19, we
71— 00
have

r (X \ &) < of
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for any 1’ > ng. Hence,

AY\Y) < lim mpa(XxX \ &,y) < no,
n"—no
so we have a decomposition i = (1 — )p + s for some p € Z(Y) and
0<% <o
For the rest of the proof, let us check the condition (3).
(3) Suppose that Q is any finite partition of Y satisfying:

e Q contains an atom Q. of the form 77 1(Q%), where X \ Q% has

compact clousre,

e VQ € O\ {Qu}, diam @ < r, with r € (0, 3) such that any dygs-ball of
radius 3r has Euclidean diameter smaller than the injectivity radius on

Y\QDCH
L \V/Q € vij 2 17/[)/7(862) = 07

We will first prove the following statement. For all ¢ > 1,
(3.29)

— -1 im ad’(e
~H(QV[AT) > (m -+ w)(1 - H(@)?) (O‘H;d” (@) ) .

S

It is clear if 7i(Qx) = 1, so assume that fi(Qs) < 1, hence for all large
enough 7 > 1, 47 (Q) < 1. Now we fix such j > 1 and write temporarily
V=%

Let p > 0 be small enough so that 5 := p7(Q) + p < 1. Then

5= @)+ o> m@u) = Tigr O (@)

l|Sl| yeD; 0<k<k;

holds for large enough i. In other words, there exist at most Sk;|S;| number
of a*y’s in Qs with y € D; and 0 < k < k;.
Let S] C S; be the set of A € S;’s such that

(3.30) {0 <k <ki—1:a"yas € Quo}| < B2k
Then we have |S; \ Si| < 8 3 |Si| by the pigeonhole principle, hence

(3.31) 151 > (1 — B2)|Si].
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/
77

Let v = | §{| Z dy be the normalized counting measure on D, where D :=
' y€es!
{yap: A€ S} C Y, then 145(Q) > I?}VZ/(Q) for all measurable set @ C Y.

Thus, for any arbitrary countable partition Q fo Y,

Hy,(Q) =— Y logm(Q)mi(Q) — Y log(rs(Q))mi(Q)
A@ES vi(Q)>1

g/ g/
S toa(2@) 2@
D R T

__Isi 0N (@) - 15 10 151 :
(3:32) =i 2 lst@@) g les gy 3 K@

Y

> (1- 84)(H,(Q) - ).

e

In the last inequality, we use the fact that v/ is a probability measure, thus

there can be at most two elements A of the partition for which v//(A4) > %

From Lemma 3.3.3 with L = U and (3.30), if @ is any non-empty atom of
Q) | fixing any y € Q, for any D > m +n,

D;nQ = D;n [y]g(kz') C Eyki—1

1
can be covered CePVPki many r71+°1 e Fi-balls for dpgs, where C is a constant
depending on Q% ,7, and D, but not on k;. Since D] is e Fi_separated with

respect to dpgs and rﬁ < %, we get

Card(D; N Q) < CePVPki
hence we have
(3.33) H,/(Q")) > log |S]| — DBz k; — log C.

Now let AV = (PY)5° = \/32,a'PY be as in Proposition 3.2.6 for p and
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L ="U, and let Ago be as in (4.48). Using the continuity of entropy, we have
(3.34) H,,(Q")|AY) = Jim H,,(Q")|(PY)7).
—00

Since the support of v; is a set of finite points on a single compact U-orbit,
H,,(QF)|(PV)2°) = H,,(Q*)) for all large enough ¢ > 1. Combining (3.31),
(3.32), (3.33), and (3.34), we have
(3.35)

H,,(Q)|AL) = lim H,,(QU)(PV)) = H,,(Q))

> (1- 34)(H,, (%) — )

3y

1 1 2 1
2 (1= p2)(log|Si| — DB2k; —log € — — + log(1 — 52)).

By the same argument in the proof of Proposition 3.4.1, it follows from
(3.35) that

QAL > o, (00 AL) - 201
1 s . ) )
> /?((1 — p2)(log |Si| — DB2k; — log C — - +log(1 — 32)) — 2qlog ’Q‘)

Now we can take i — co because the atoms @ of Q and hence of Q9 satisfy
1 (0Q) = 0. Also, the constants C, 3, and |Q| are independent to k;. Thus it
follows from the inequality (3.28) that

m-—+n

1y @ _ g}
SH (@A) = (- b (M

(dimy Bad®(e) — 7) — Dﬁé) ,

and by taking p — 0 and D — m + n we have

N

—_ 1 im ad’(e) —
~H,0(Q AT) > (m+m)(1 =1 (@) ) (d ! i@ )

Recall that v = «;, and by taking j — oo so that v; — 0, we finally have
(3.29), i.e.,

N -1 im ad’(e
~H3(@AL) 2 (m-+ m)(1 - 7(Qw) ) (dh’jf” ~ (@) ) .

ol
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As we did in the proof of Proposition 3.4.1, we take a finite partition Q of Y’
satisfying the three bullet-conditions above, and also take Q% C X sufficiently
small so that 77(QY,) is sufficiently close to 7). It follows that

(ol AZ) > (m +n)(1 ~ 73)(— — dimy Bad'(c) -~ 7?)

= (1= 72)(d = 5no — dif?).

[\D\H

O]

3.5.2 Effective equidistribution and the proof of Theorem 1.2.1

In this subsection, we recall some effective equidistribution results which are
necessary for the proof of Theorem 1.2.1. Let g = Lie G(R) and choose an
orthonormal basis for g. Define the (left) differentiation action of g on CS°(X)
by Zf(x) = %f(exp(tZ)x)h:o for f € C(X) and Z in the orthonormal
basis. This also defines for any [ € N, L?-Sobolev norms S; on C2°(Y):

(3.36) Z bt o 7' D(f)| 122,

where D ranges over all the monomials in the chosen basis of degree < [
and ht o 7 is the function assigning 1 over the smallest length of a vector
in the corresponding lattice of the given grid. Let us define the function ( :
(T4\ Q%) x Rt — N by

T2
b,T) := NeN: b
C(0.7) = min {N € N min bl < 7 }-
Then there exists a sufficiently large [ € N such that the following equidistri-
bution theorems hold.

Theorem 3.5.4. [Kim, Theorem 1.3] Let K be a bounded subset in SL4(R)
and V C U be a fixed neighborhood of the identity in U with smooth boundary
and compact closure. Then, for anyt >0, f € C(Y), and y = gw(b)I" with
g€ K and b € T4\ QY, there exists a constant a1 > 0 only depending on d
and 'V so that

_t

(3.37) / flaruy)dmy (u / fdmy + O(S;(f)¢(b, e2m )~ ).
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The implied constant in (3.37) only depends on d, V', and K.

For ¢ € N, define

X, = {gu(p/q)l €Y : g € SLu(R),p € Z*,ged(p,q) = 1},
Iy:={y€ SL4(Z) :~ve1 =e; (mod q)}.

Lemma 3.5.5. The subspace X, C'Y can be identified with the quotient space
SLq(R)/Ty. In particular, this identification is locally bi-Lipschitz.

Proof. The action SL4(R) on X, by the left multiplication is transitive and
Stabgr,,r)(w(e1/q)T") = T'y. To see the transitivity, it is enough to show that
SLy(Z)ey = {p € Z% : ged(p,q) = 1} (mod q). Write D = ged(p) and p’ =
p/D. Since ged(D, q) = 1, there are a,b € Z such that aD +bq = 1. Take A €
GL4(Z) such that det(A) = D and Ae; = p. If we set u = bp’+(a—1)Aes, then
we have p+qu = (A+ux!(ge;+e2))e; and A+uxt(gey+es) € SLy(Z), which
concludes the transitivity. Bi-Lipshitz property of the identification follows
trivially since both X, and SL4(R)/I', are locally isometric to SLg(R). O

Theorem 3.5.6. [KM12, Theorem 2.3] For g € N, let SLy(R)/T'y ~ X, C Y.
Let K be a bounded subset in SLy(R) and V' C U be a fixed neighborhood of
the identity in U with smooth boundary and compact closure. Then, for any
t>0, feCx(Y), andy = gu(2)I" with g € K and p € 72, there exists a
constant ag > 0 only depending on d and V' so that

1 1 —at
(3.38) mU(V)/Vf(atuy)de(u) = .. fdmx, +O(S(f)[I'1: Tgl2e ).

The implied constant in (3.38) only depends on d, V', and K.

Proof. This result was obtained in [KM12, Theorem 2.3] in the case ¢ = 1.
For general g, we refer the reader to [KM, Theorem 5.4] which gave a sketch
of required modification. [KM, Theorem 5.4] is actually stated for different
congruence subgroups from our I'y, but the modification still works and the
additional factor in the error term is also given by [I'; : Fq]%. O

Recall the definition of £, in Subsection 3.3.2. Since we assume the un-
weighted setting, L. = {y € Y : Vv € py, |[v]| > /7).

Lemma 3.5.7. For any small enough ¢ > 0 and q € N, my (Y -1\ Le) < €
and mx,(Ye—1 \ L) > g%,
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Proof. Using Siegel integral formula [MM11, Lemma 2.1] with f = ]lBel/d(O)’
which is the indicator function on e'/%ball centered at 0 in RY we have
my (Y<.-1 \ Le) < €. On the other hands, by [Athl5, Theorem 1] with A =
Baya(0), we have my (L) < 5 +2d It follows from Siegel integral formula on
X that my (Ys-1) = mx(Xse-1) < 2%, Since d > 2, we have

2d¢

_ odd
1+ 2de € >

mY(YSE—l \Ee) > my(Y \ ﬁe) — my(Y>6—1) >

for small enough € > 0, which concludes the first assertion.

To prove the second assertion, observe that for any x € X_ —1/a, |7, Yz)n
(Y\L)| > 1, where mq : X, — X is the natural projection. Since |, (z)| < ¢
and my(z € X : e V4 < ht(z) < e 1) < ¢, we have

my,(Yee1\ Le) > imx(xeX: eV <ht(z) <e ) > g .
O

Proposition 3.5.8. There exist M, M' > 0 such that the following holds. Let
A be a countably generated sub-c-algebra of the Borel o-algebra which is a™!-
descending and U -subordinate. Fix a compact set K C Y. Let 1 < R’ < R,
k= L%dgﬁj, and y € a** K. Suppose that BY, -y C [y]a C BY -y holds. For

e>01et QCY be a set satisfying QU a"3kQ C [,%. IfR > ™' then

R mn
177 Q) > <R) edMHL

where the implied constant only depends on K.

Proof. Denote by V,, C U the shape of A-atom of y so that V, -y = [y]a.

Set V = BY. We have BV a C a** Va1t C V, since %gR/ —4 <4k <
m"l+gR. It follows that
(3.39)
1 1
1— 740 1 d > - 1 d
7 (Q) = mU(%)/ va(uy)dmy (u) o (BY) /a4kVa_4k e(uy)dmy (u)
R 1
—4d
1 d
(R) (mU a*kV a—4k) /a4kva_4k raluy) mU(u)>
RI
(3 (i [ et ).
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Let a=*y = gow(bo)I'. For the constants oq in Theorem 3.5.4 and as in
Theorem 3.5.6, let @ = min(ai,as) and M = 1 (241 + 42E) By [KMOIG,
Lemma 2.4.7(b)] with r = Cei < 1, we can take the approximation function
0 € CX(G) of the identity such that # > 0, Supp C BE(id) ), Jo0 =1, and
S(0) < e —a (959 et Y =0x1y_ S\Lg then we have 1y_ co-1\Ls S <y <
]ly<2671\ ce- Moreover, using Young’s 1nequahty, its Sobolev norm is éounded

as follows

l -l
= ED: It o 7' D() |72 < € Z ID(O) *Ly__y\e. 172

(3.40) g
<e My, e HgZHD N7z < 'Si(6)%,

hence §;(¢) < 6_%5’1(9) < 959,
In the following two cases, we apply Theorem 3.5.4 and 3.5.6 respectively:

2k

(i) C(bo,em) > e M
(ii) C(bo,em) < e ™M

Case (i): Applying Theorem 3.5.4, we have

(3.41)
1

mU(V)
= | e o)D) ) = [ vmy -+ O(S0)c(b0. ) )

= my (Yo \ L) + O () Moy,

/]ly\g(a4kua )de = /wa ua~ de( )
Vv mU

It follows from Lemma 3.5.7 and Ma =2+ (I + dImG) that
1 _
(342) T A /V Ly\o(a®™ ua™*y)dmy (u) > my (Vo1 \ Le) + O(e?) <

Hence, 1 — 7 A(Q) > e( )mn by (3.39) and (3.42).

Case (ii): The assumption ¢ (bo,e%) < ¢ M implies that there exists
q < e M such that ||gbol|z < QQG_%, whence ||by — %H < qe_% < e M=% for
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some p € Z%. Let y = a4kgow(%)F. Then for any u € BY,

dy(akua_"‘ky, akua—4ky/) < e%dy(a_"‘ky, a—4ky/)
k.
= emdy(gow(bo)F,gow(g)F)

= embg — 2| < e Mem,
q

hence
|¢(akua_4ky) 7¢(akua 4k /)‘ < SI(T/J)dY akua—4ky’akua—4ky/)

(3.43)
< S(p)e Me™

3=

Since we are assuming a~3*Q C E;, we have
(3.44)
1
my (V)
1
= () / ﬂy\a—sm(akua *y)dmy (u)

1
mU(V /wa ua” "y)dmy (u)

> 1 / (@b ua~ Py )dmy (u) + O(Si()e M e )

/ 1y (a*ua=*y)dimy (u)

Ydmy + O(S(¥)g2 e + Sy(w)e Me )
X
! dim G dM

> mx, (Y< 2€)~ \ﬁ )—l—O(e_(H' 2a )2 e~k 4~ (+

dlmG) i)

We are using (3.43) for the third line, and Theorem 3.5.6 for the fourth
line. Let M’ = min (24(1 + 490G 4 34M 4 9) 4dm (1 + 42E + (d 4+ 1)M +2)).

2d
If R > e ™' then e 4k < eldc M, so e HSE) =S gmak o (dM+2 gpg
dim G

I - Mo« (dM+2, Combining this with Lemma 3.5.7, it follows

that
1 _ _
(3.45) mU(V)/VILy\Q(aMua Eyydmyr(u) > g % + O(eMT2)
> eMHL | O(dMH2) 5, (AMHL
,\ mn

Hence, 1 — T;‘(Q) > @M+l (%) by (3.39) and (3.45). O
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Proof of Theorem 1.2.1. For fixed b, let g = 2(m + n)(1 — %ﬁdb(e)) as
in Proposition 3.5.3. It is enough to consider the case that Bad®(e) is suffi-
ciently close to the full dimension mn, so we may assume dimy Bad®(¢) >
dimg Bad’(¢) and 79 < 0.01. By Proposition 3.5.3, there is an a-invariant
measure 1 € Z(Y) such that Suppz C L U (Y \Y), and mpu(X \ &,y) <17/
for any 79 <71’ < 1. We also have y € Z(Y) and 0 < 71 < 1o such that

i = (1= M)+ o

In particular, for ' = 0.01, we have pu(m~(Sg,01)) > 0.99. We can choose 0 <
r < 1 such that Y (r) D 7= 1(&g01). Note that the choice of r is independent
of € and b since &g g1 is constructed in Proposition 3.5.2 independent to € and
b.

For such 0 < 7 < 1 and a-invariant probability measure p on Y, let AV be
and a countably generated o-algebra as in Lemma 3.2.2 and 3.2.6, respectively.
With respect to this o-algebra, we have

h(alAT) > (1 —77)(d — 7 — d7j?)

by (3) of Proposition 3.5.3. By the linearlity of the entropy function with
respect to the measure, we have

hu(alAL) > (1+72) 7 (d = o — )
(3.46) L1
>d—2dn? — 5o-
On the other hand, we shall get an upper bound of h,(al.AY) from Propo-
sition 3.2.8 and Corollary 3.2.11. By Lemma 3.2.5, there exists 0 < § < §
such that pu(Es) < 0.01. Note that the constant Cy,Cy > 0 in Lemma 3.2.5
depends only on a and G, hence § is independent of € even if the set Es de-
pends on e. It follows from Proposition 3.2.6 that BY -y C [y]qv € BY -y
for any y € Y(r) \ Es. We write Z = Y(r) \ E;s for simplicity. Note that
w(Z) > w(Y(r)) — p(Es) > 0.98. We also have pu(a**Y (r)) > 0.99 Since p is
a-invariant.
Let M and M’ be the constants in Proposition 3.5.8, ' = (1 — 2%)6%, R =
e M R=¢TIR, and k = | ™R | et 4) = a7 AV and Ay = o AV,

101



CHAPTER 3. ENTROPY RIGIDITY AND BEST APPROXIMATION
VECTORS

where mn .
ji = [~ log (r7H (1 = 24)ei ),
. mn ’
J2 = {—7 ].Og(éﬁM )~| .

Then for y € Z, the atoms with respect to A; and As satisfy

[y].Al C B'/l‘j’v Y,

BY, -y C lyla, C BY - v.

For Q = BgSupp u, note that Q C BVL. C [,% and

a0 = (a**BYa**)a3*Supp pu € (a**BYa*) L. C L

N

since Supp p is a-invariant set. Applying Proposition 3.5.8 with K = Y (r),
A = As, and the same R', R, Q as we just defined, the following holds. For
any € >0 and y € a**Y (r)N Z,

(3.47) 1—772(Q) > Mt

since %’ is bounded below by a constant independent of e. By Proposition

3.2.8, Corollary 3.2.11, and (3.47), we have
(1 + G2)(d = hy(alAL)) = (i + jo)d — Hu(Ai|A2)
> — /Y log 732 () dpu(y)
> [ AR @)dn
atkyY (r)nZz
> (@Y (r) N 2)edMHL 5 0.9edM L

It follows from (3.46) and j; + j2 < log(1/€) that

T IR
ng > @(ani +3m0) = d = hy(alAL) > M

_ dimpy Bad®(e¢)
mn

Since ng = 2(m + n)(1 ), we have

mn — dimy Bad’(¢) > coeX(¢M+2)
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for some constant ¢y > 0 only depending on d. ]

3.6 Characterization of singular on average prop-
erty and Dimension esitimates

In this section, we will show (2) == (1) in Theorem 1.2.3. Let A € M,, ,,(R)
and consider two subgroups

G(A) == AZ"+Z™ CR™ and G('A) :='AZ™ + 7" C R".

If we view alternatively G(A) as a subgroup of classes modulo Z™, lying in the
m-dimensional torus T™, Kronecker’s theorem asserts that G(A) is dense in
T™ if and only if the group G(*A) has maximal rank m+n over Z (See [Casb7,
Chapter I1I, Theorem IV]). Thus, if rankz(G(*A)) < m +n, then Bad4(e) has
full Hausdorff dimension for any € > 0. Hence, throughout this section, we
consider only matrices A for which rankz(G(*A4)) = m + n.

3.6.1 Best approximations

We set up a weighted version of the best approximations following [CGGMS20].
(See also [BL05] and [BKLR21]| for the unweighted setting.)
Given A € M,, »(R), we denote

M(y) = inf Ay = dls.

Our assumption that rankz(G(*A)) equals m + n guarantees that M(y) > 0
for all non-zero y € Z™. One can construct a sequence of y; € Z™ called a
sequence of weighted best approzimations to 'A, which satisfies the following
properties:

1. Setting Y; = ||yi|lr and M; = M (y;), we have

Yi<Yo<--- and M;>My>---,

2. M(y) > M; for all non-zero y € Z™ with ||yl < Yit1.

The sequence (Y;);>1 has at least geometric growth.
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Lemma 3.6.1. [CGGMS20, Lemma 4.3] There exists a positive integer V
such that for all i > 1,
Yirv > 2Y;.

In particular, there exist ¢ > 0 and v > 1 such that
Y; > ¢y’

for all i > 1.

Remark 3.6.2.

1. The first statement in the above lemma can be found in the proof of

[CGGMS20, Lemma 4.3].
2. From the weighted Dirichlet’s Theorem (see [Kle98, Theorem 2.2]), one
can check that MpYir1 <1 for all k> 1.
3.6.2 Characterization of singular on average property

In this section, we will characterize the singular on average property in terms
of best approximations. At first, we will show A is singular on average if and
only if ‘A is singular on average. To do this, following [Cas57, Chapter V], we
prove a transference principle between two homogeneous approximations with
weights. See also [GE15, Ger20).

Definition 3.6.3. Given positive numbers A1, ..., \q, consider the parallelepiped

77:{z:(zl,...,zd)ERd:]zilg)\i, izl,...,d}.
We call the parallelepiped
1
P*=<Sz=(z,...,2q) € R:: |z] gx_]'[xj, i=1,...,d
j=1
the pseudo-compound of P.

Theorem 3.6.4. [GE15] Let P be as in Definition 3.6.3 and let A be a full-
rank lattice in R, Then

P*AA £ {0} = ¢PNA £ {0},
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where ¢ = dQ(dl—U and A* is the dual lattice of A.

Corollary 3.6.5. For positive integer m,n let d = m+n and let A € M, »(R)
and 0 < € < 1 be given. For all large enough X > 1, if there exists a nonzero
q € Z" such that

(3.48) (Ag)r < X' and ||qs < X,
then there exists a nonzeroy € Z™ such that

(3.49) (*Ay)s < ot a)emmtmm Y=L and ly|l. <Y,

rm(1—sn)

1 __rm(=sp)
where ¢ is as in Theorem 3.6.4 and Y = crme sntri(i—sn) X

Proof. Consider the following two parallelepipeds:

emag| S X%, j=1,....n

g El <X i=1,00m
Q=<z=(21,...,2q9) € R": )

p=laz (o o ert; IS0 P=hoom
o 2| <6%5Z7%5, j=1,...,nf"

where

TmSsn rm(1—sn)

0 =esntr-m) and Z =¢ sntril-sn) X,

Observe that the pseudo-compound of P is given by

g 7l <0Z7 i=1,...m
P =<z=(21,...,29) € R*:
,n

Nomag| SOz j=1,...

and that Q C P* since € X " < §Z " and X% < §17% 7% for all i =
1,...,mand j=1,...,n.
Now, the existence of a nonzero solution q € R}' of the inequalities (3.48)

an (Im f) 7¢ # {0},

is equivalent to

n

which implies that

P*N (Im f) 74+ {0}.
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By Theorem 3.6.4, we have

cPn (_LtnA In) 74 + {0},

which concludes the proof of Corollary 3.6.5.
O

Corollary 3.6.6. Let m,n be positive integers and A € My, ,(R). Then A is
singular on average if and only if 'A is singular on average.

Proof. 1t follows from Corollary 3.6.5. 0

Now, we will characterize the singular on average property in terms of best
approximations. Let A € M,, »(R) be a matrix and (yx)r>1 be a sequence of
weighted best approximations to ‘A and write

Vi = llyklle, My = inf [|"Ayz —qlls.
q€EeZ™

Proposition 3.6.7. Let A € My, ,(R) be a matriz and let (yi)r>1 be a se-
quence of best approzimations to 'A. Then the following are equivalent:

1. YA is singular on average.

2. For all e > 0,

li < kMY =0.
k:ggo log Yy, i< iYig1 > e}

Proof. (1) = (2) : Let 0 < e < 1. Observe that for each integer X with
Y < X < Y41, the inequalities

(3.50) I’Ap —qfs <eX ' and 0<|pllr <X

have a solution if and only if X < ML,C Thus, for each integer ¢ € [log, Yy, logy Yii1)
the inequalities (3.50) have no solutions for X = 2¢ if and only if

(3.51) log, € — logy My, < £ < logy Yit1-

Now we assume that *A is singular on average. For given § > 0, if the set
{k € N: MyYi11 > 0} is finite, then it is done. Suppose the set {k € N :
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MYy 41 > 6} is infinite and let
{keN: MYy >0 ={j(1) <j2)<---<jk)<---:keN}.

Set € = 0/2 and fix a positive integer V' in Lemma 3.6.1. For an integer ¢ in
[logs Yj(k)+1 — 1,108 Yj(x)4+1), observe that

logy € —logy Mjx) < logy Y41 — 1.

Hence the inequalities (3.50) have no solutions for X = 2 by (3.51). By
Lemma 3.6.1, logy Y1) 414v—1 > logy Yj(1)41- So, we have log, Yj(x1v)41—1 >
logy Yj(x)41- Now fix i =0,---,V — 1. Then the intervals

[log, Yj(z‘+sV)+1 —1,log, Y}(z‘+sV)+1)a s=1,---,k

are disjoint. Thus, for an integer N € [logy Yj(i4x1v)+1,1082 Yj(it(k+1)v)+1), the
number of £ in {1,---, N} such that (3.50) have no solutions for X = 2 is at
least k. Since ' A is singular on average,

k 1
<= {E € {1l,---,N}:(3.50) have no solutions for X = QZ})
logs Yj(i+(krnyvye1 — NV

tends to 0 with k, which gives % tends to 0 with k£ for all ¢ =
g
0,---,V — 1. Thus, we have m tends to 0 with k.
J

For any k£ > 1, there is an unique positive integer s; such that
J(sk) <k <j(sk+1),

and observe that s; = |{i < k : M;Y;11 > 0}|. Thus, by the monotonicity of
Y:, we have

{i <k: MY > 6} < lim — %

li —— =0.
kggo logy Y k—oo logy Yi(s,)

(2) = (1) : Given 0 < € < 1, the number of integers ¢ in [logy Y%, logy Yit1)
such that (3.50) have no solutions for X = 2¢ is at most

[logy My Yj11 — logg €] < logy MyYjq1 —logye + 1.
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Thus, for an integer N in [log, Vi, log, Yi11), we have

1
N|{£ € {1,---, N} : (3.50) have no solutions for X = 2¢}|

k
1
< N Zl max (0, logy M;Yiy1 — logy e+ 1)
1=

—_

k
< 0,logy M;Y; 11 —1 1).
— 10g2 Yk ;ma‘x( ) Og2 iLi+1 Og2 €+ )

Since M;Y; 11 <1 for each i > 1,

1
log, Yy,

k
Z max (0, logy M;Y;y1 — logg e+ 1)
i=1

< 10g2 Y, (— 10g2€+ 1) |{Z <k: M;Yi11 > 6/2}|.

Therefore, A is singular on average.

3.6.3 Modified Bugeaud-Laurent sequence

In this subsection we construct the following modified Bugeaud-Laurent se-
quence assuming the singular on average property. We refer the reader to
[BLO5, Section 5] for the original version of the Bugeaud-Laurent sequence.

Proposition 3.6.8. Let A € M, ,(R) be such that 'A is singular on average
and let (yg)k>1 be a sequence of weighted best approzimations to *A. For each
S > R > 1, there exists an increasing function ¢ : Z>1 — Z>1 satisfying the
following properties:

1. for any integer i > 1,

(352) YSO(H‘l) > Rch(z) and M‘P(i)YSﬂ(i+1) < R.

1
3.53 lim sup < .
( ) k—00 log Y‘P(k) 10g S
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Proof. The function ¢ is constructed in the following way. Fix a positive in-
teger V in Lemma 3.6.1 and let J = {j € Z>1 : M;Y;41 < R/S3}. Since 'A is
singular on average, by Proposition 3.6.7 with e = R/S3, we have

(3.54) {i<k:ie T} =0.

I
e log Y

If the set 7 is finite, then we have klim Ykl/k = 00 by (3.54), hence the proof
—00

of [BKLR21, Theorem 2.2] implies that there exists a function ¢ : Z>1 — Z>1
for which
Yoirn) = RBYp) and Yoa > B Y4,

The fact that M;Y;+1 < 1 for all ¢ > 1 implies M, ;Y,(;+1) < R. Equation
(3.53) follows from klim Ykl/ k= 00, which concludes the proof of Proposition

—00
3.6.8.
Now, suppose that J is infinite. Then there are two possible cases:

(i) J contains all sufficiently large positive integers.
(ii) There are infinitely many positive integers in J¢.

Case (i). Assume the first case and let ¢)(1) = min{j : J D Z>;}. Define the
auxiliary increasing sequence (¢(4));>1 by

Y(i+1) =min{j € Z>1 : SYy4) <Y},

which is well defined since (Y;);>1 is increasing. Note that ¢ (i + 1) < 9(i) +
[logy STV since Yy (i) 1fiog, s1v = SYyp(;) by Lemma 3.6.1. Let us now define
the sequence (p(7))i>1 by, for each i > 1,

(i) = (i) if MyiyYpur1) < R/S,
Pi+1)—1 otherwise.

Then the sequence (¢(i));>1 is increasing and ¢ > .
Now we claim that for each 7 > 1,

(3.55) Ygo(i+1) > SYLp(z) and Mgo(i)Ygo(i-i-l) < R,

which implies Equation (3.53) since Y, ) > Sk_lY@(l) for all £ > 1. Thus, the
claim concludes the proof of Proposition 3.6.8.
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Proof of Equation (3.55). There are four possible cases on the values of (i)
and (i + 1).

e Assume that ¢(i) = ¥(i) and p(i + 1) = ¥ (i + 1). By the definition of
(i + 1), we have
Yor) = Yoar1) = Yy = 5o
If (i) # 1(i + 1) — 1, then by the definition of ¢(i), we have
M@ Yo(iry) = My Yo < B/S < R.
If (i) =i+ 1) — 1, then p(i + 1) = p(i) + 1, hence
Mo Yeiary) = Mep@Ypip1 <1 < R.

This proves Equation (3.55).

e Assume that (i) = (i) and p(i + 1) = (i + 2) — 1. By the definition
of (i + 1), we have

Yo+ = Yoara-1 2 Yo 2 SYy) = Y-

It follows from the minimality of ¥(i 4 2) that SYy41) > Yyyo)—1- (i +
1) > (i) + 1, then My Yyqp1) < R/S by the definition of (). Hence, we
have

M@y Yp(ir1) = My Yy(ivo)-1 < SMy Yy < R.

If (i + 1) = (i) + 1, then My Yy)41 < R/S? since ¢(i) € J. Hence,

M

(i)Y,

plit1) = My Yoir2)1 < SMyo Y < R/S® < R.

This proves Equation (3.55).

e Assume that (i) = ¢ (i+1)—1 and ¢(i+1) = ¥(i+1). Since (i+1)—1 €
J, we have

Moo Yo(ir1) = My(irn) 1Yoy < R/SP < R.
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If (i + 1) — 1 = (1), then by the definition of ¥ (i + 1), we have

Yoirn _ Yoy _ Yo o o

Yooy Yoy Yew

If (i + 1) — 1 > ¢(i), then we have My ;Y1) > R/S by the definition
of ¢(i), and we have Yy11)—1 < SYyu) < SYy)41 from the minimality of
P(i 4 1). We also have My Yyiy41 < R/S? since ¢(i) € J. Therefore

Youry _ Yoarn _ My@Ypasny R/S S BIS _ o
Yoty Yuarn-1 My@Yyasn-1 SMy@Yyaa — R/S?

This proves Equation (3.55).

e Assume that ¢(i) = ¥(i +1) — 1 and ¢(i + 1) = ¢(i + 2) — 1. By the
previous case computations, we have

Yoir)  Yyi+2)-1 - Yp(it1)

_ > > S.
Yoy  Yyr-1 — Yyi+1)—1

We have SYyit1) > Yy(ir2)—1 from the minimality of (i + 2). Thus since
Y(@i+1)—1€ J, we have

MY, —M Y, —M Y, o1 _
o) Lp(i+1) = Map(i+1) =1 Xap(i+2)—1 = Map(i+1)—1 X ap(i+1) Y¢(i+1) =

This proves Equation (3.55). O

Case (ii). Now we assume the second case and let jo = min J. Partition Zx,
into disjoint subset

szo =CiUDiuCyuUDy -
where C; C J and D; C J¢ are sets of consecutive integers with
max C; < min D; < max D; < min Cj 41

for all ¢ > 1. We consider the following two subcases.
(ii) - 1. If there is iy > 1 such that |C;| < 3[logy STV for all i > i, then we
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have, for ky = min Cj,,

k < ko + (3[logy STV + 1) |[{i < k: ZGJCH
long - long

since there exists an element of J¢ in any finite sequence of 3[log, STV + 1
consecutive integers at least ky. Therefore hm Y, Yk = %0 by (3.54) and this
concludes the proof of Proposition 3.6.8 followmg the proof when 7 is finite
at the beginning.

(ii) - 2. The remaining case is that the set

{i:1C5] > 3[logy SV} ={i(1) <i(2) <---<i(k) <---: ke N}

is infinte.
For each k > 1, let us define an increasing finite sequence (¢x(%))1<i<mg+1
of positive integers by setting (1) = min Cjy and by induction

as long as this set is nonempty. Since Cjy) is a finite sequence of consecutive
positive integers with length at least 3[logy S|V and Y (e, 57y > SY; for
every i > 1 by Lemma 3.6.1, there exists an integer mj > 2 such that ¢ (i) is
defined for i = 1,...,my + 1. Note that (i) belongs to J since Cj;y C J.

As in Case (i), let us define an increasing finite sequence (¢ (7))1<i<m,
of positive integers by

on(i) = V(i) if My, i)Yoy i01) < RB/S,
Yp(i+1) =1 otherwise.
Following the proof of Case (i), we have for each i = 1,...,mj — 1,
(3.56) Yoritr) 2 Y, ) and My, Yo, i41) < R.

Note that @i (mg) < @r+1(1). Let us define an increasing finite sequence
(¢.(1))1<i<ng+1 of positve integers to interpolate between ¢y (my) and pp41(1).
Let jo = ¢r+1(1). If the set {j € Z>y, (m,) * Yj, = RYj} is empty, then we
set ng = 0 and ¢} (1) = jo = r+1(1). Otherwise, follwing [BKLR21, Theorem
2.2], by decreasing induction, let n; € Z>; be the maximal positive integer
such that there exists ji,...,Jn, € Z>1 such that for £ = 1,...,ng, the set

112



CHAPTER 3. ENTROPY RIGIDITY AND BEST APPROXIMATION
VECTORS

{j € L (mp) * Yieo, = RY;} is nonempty and for £ = 1,...,n; + 1, the
integer jy is its largest element. Set ¢} (¢) = jn,+1-; fori =1,...,n;+1. Then
the sequence (¢},(7))1<i<n,+1 is contained in [¢r(my), r4+1(1)] and satisfies
that for i =1,..., ng,

(3.57) ka(i_;'_l) Z Rchﬁg(z) and M¢;€(i)y¢;€(i+1) S R
from the proof of [BKLR21, Theorem 2.2].

Now, putting alternatively together the sequences (¢k(i))1<i<m,—1 and
k—1

(¢4 (9))1<i<r, as k ranges over Zx>1, we define Ny, = >/, (my — 1 + ng) and
(0) or(i — Ng) if 1+ N <i<myp—1+ Ny,
pt) =

Here, we use the standard convention that an empty sum is zero. With Equa-
tion (3.56) for i = 1,...,my — 2 and Equation (3.57) for i = 1,...,ny, since
@i (ng +1) = @ry1(1), it is enough to show the following lemma to prove that
the map ¢ satisfies Equation (3.52).

Lemma 3.6.9. For every k € Z>1, we have

(3.58) Y, ) > RY,

14 - Pr(mg—1) and M(pk(mk—l)ygokﬂ) S R.

Proof. Since ¢}.(1) > ¢r(my) and Equation (3.56) with i = mj, — 1, we have

Yo ) 2 Yorime) 2 Yo me—1) = BY oy (my—1)>

which prove the left hand side of Equation (3.58). If ¢} (1) = ¢x(my), then
Equation (3.56) with ¢ = my — 1 gives the right hand side of Equation (3.58).

Now assume that ¢} (1) > @i(ms). By the maximality of ny, we have
Yooy < BYp,amy)
diction, assume that @i (my) = Yr(mg + 1) —1 > ¢r(my). Following the third

subcase of the proof of Equation (3.55), we have

. First, we will prove that ¢g(my) = 1x(my). For a contra-

Yietmt) My mg) Yo (mi+1)

= > S.
Yd)k(mk-i-l)—l M¢k(mk)y¢k(mk+1)—1

Hence by the construction of ¢} (1), we have ¢ (1) = ¢g(my), which is a
contradiction to our assumption ¢} (1) > px(my).
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To show the right hand side of Equation (3.58), we consider two possible
values of @i (my, — 1).

Assume that ¢(mr — 1) = Yr(my — 1). If Yr(myp — 1) > Pr(myg) — 1,
then by the definition of ¢ (my — 1), we have My, (m,—1) Yy, (my) < B/S. If
Yr(mg — 1) = p(myg) — 1, then ka(mrl)ka(mk) < R/53 < R/S since
Yr(mg) — 1 € J. Since i (my) = Yr(my), we have

Yo
Moy, (my—1) Yy, (1) = My (mi—1) Yo (i) <y - > <R,
e (mg)
which proves the right hand side of Equation (3.58).
Assume that gg(mi — 1) = Yr(my) — 1. Since @g(my) = Yr(my) and
Yr(mg) — 1 € J, we have

M Yo 0y =M Y, LGV
pr(mi—=1) 2o (1) = i (mp) =1 (my) | 3 =Y
e (mg)
which proves the right hand side of Equation (3.58), and concludes the proof
of Lemma 3.6.9. O

Finally, we will show Equation (3.53) for the map ¢. Since there exists an
element of J¢ in any finite sequence of 3[log, SV + 1 consecutive integers in
the complement of Uk21 Ci(k), there exists ¢ > 0 such that for every k > 1,
we have

{i < (k) : j & Uz Cign }| < Co+ B3[logy STV + 1) [{j < ¢(k) : j € T}
log Yo, 1) - log Yo, k) 7

which converges to 0 as k — 400 by (3.54). Let us define

For each integer £ > 1, since Y; 10g, 57 = SY; for every ¢ > 1 by Lemma
3.6.1, and by the maximality of my in the construction of (¢s(7))i1<i<m,, we
have [{j € Ci) : § = @e(me)}| < 2[logy STV. If (i) belongs to Cjy) but
(i 4+ 1) does not, then ¢(i) > @y(my). If ¢(i) and ¢(i + 1) belong to C;(¢),
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then ¢ and ¢, coincide on ¢ and i 4+ 1. Thus, by Equation (3.56), we have

k— n(k) = HZ <k: YSD(Z) < SYSO(Z"i‘l)}‘
< (2[logy STV) {5 < w(k) : 5 ¢ | Ciy }-

E>1
Therefore, we have
k)+k—n(k k
lim sup ———— = limsup n(k) + n(k) = limsup A
k—oo 108Y,) koo log Y, (x) log Y, 1)
n(k) 1

< i = .
- I,ﬁs;fp log S”(k)—le(l) log S

This proves Equation (3.53) and concludes the proof of Proposition 3.6.8.
O

3.6.4 Dimension estimates
Following the notation in [BHKV10], given a sequence {y;} in Z™ \ {0} and
a € (0,1/2), let

Badfy y :={0 € R"™ : |0 -yi|z > a for all i > 1}.

Proposition 3.6.10. [CGGMS20] Let A € My, ,(R) be a matriz and let
(yr)k>1 be a sequence of weighted best approzimations to 'A and let R > 1
and a € (0,1/2) be given. Suppose that there exists an increasing function
¢ : L>1 — L>1 such that for any integer i > 1

MeiyYp(iv1) < R.

1/6
Then Bad({ly@(i)} is a subset of Bada(e) where e = + (46;5”) and 6 =
min{r;,s; : 1 <i<m,1 <j<n}.

Proof. In the proof of [CGGMS20, Theorem 1.11], the condition Y, ;41 >
Richp(iH) is used. However, the assumption M ;)Y ;1) < R also implies
the same conclusion. ]

Proposition 3.6.11. [CGGMS20] For any o € (0,1/2), there exists R(a) > 1
with the following property. Let (yi)k>1 be a sequence in Z™ \ {0} such that
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[Yrrille/llyrlle = R(e) for all k> 1. Then

dimpy (Bado‘ _ ) >m — Climsup ——.
(i} k—oc0 IOgHkar

for some positive constant C = C(«).
Proof. The proof of [CGGMS20, Theorem 6.1] concludes this proposition. [

The two propositions are used in [BKLR21, Theorem 5.1] in the unweighted
setting.

Proof of Theorem 1.2.3 (2) = (1). Suppose A is singular on average. By Corol-
lary 3.6.6, " A is also singular on average. Let (yx)xr>1 be a sequence of weighted
best approximations to { A. Then, by Proposition 3.6.8, Proposition 3.6.10, and
Proposition 3.6.11, for each S > R(«) > 1, we have

dimp (Bada(e)) > dimpy (Bad?ysom})

k
>m — Climsup ————
k—oo 108 Ygo(k)

>m — ¢
- log S
1 o? 1/6 : :
where € = 7 (m) . Taking S — oo, we have dimpy (Bada(e)) = m for
1 o2 1/6
€= =& o) <4mn :
O
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Chapter 4

Diophantine approximation
over global function fields

4.1 Background material for the lower bound

4.1.1 On global function fields

We refer for instance to [Gos96, Ros02], as well as [BPP19, §14.2], for the con-
tent of this section. Let F, be a finite field with ¢ elements, where g is a positive
power of a positive prime. Let K be the function field of a geometrically con-
nected smooth projective curve C over F,, or equivalently an extension of I,
with transcendence degree 1, in which F, is algebraically closed. We denote
by g the genus of C. There is a bijection between the set of closed points of C
and the set of normalized discrete valuations v of K, the valuation of a given
element f € K being the order of the zero or the opposite of the order of the
pole of f at the given closed point. We fix such an element v throughout this
paper, and use the notation K, Oy, 7y, ky, ¢, |- | defined in the introduction.
We furthermore denote by degwv the degree of v, so that
G = qdegv ]

We denote by vol, the normalized Haar measure on the locally compact
additive group K, such that vol,(O,) = 1. For any positive integer d, let Volg
be the normalized Haar measure on K¢ such that vol4(O%) = 1. Note that for
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every g € GLy(K,) we have
dvold(ge) = | det(g)| dvold(z) ,

where det is the determinant of a matrix. For every discrete additive subgroup
A of K2, we again denote by vol? (and simply vol, when d = 1) the measured
induced on K2/A by vold.

Note that the completion K, of K for v is the field k,((m,)) of Laurent
series £ = ),z z;(m,)" in the variable m, over k,, where z; € k, is zero for
1 € Z small enough. We have

__ _—sup{j€Z: Vi<j, ;=0
|z | = g, 5Pl g =0}

and Oy, = ky[[m]] is the local ring of power series z =3, z;(m,)" in the
variable m, over k,.

Recall that the affine algebra R, of the affine curve C — {v} consists of
the elements of K whose only poles are at the closed point v of C. Its field of
fractions is equal to K, hence we can write elements of K as x/y with z,y € R,

and y # 0. By for instance [BPP19, Eq. (14.2)], we have
(4.1) R,NO,=F,.
For every £ € K,,, we denote by
= ] f —
(€)= inf &~

the distance in K, from £ to the set R, of integral points of K.

For instance, if C is the projective line P!, if oo = [1 : 0] is its usual point
at infinity and if Z is a variable name, then g = 0, K = Fy(2), 7o = Z71,
Koo = F,((Z71), O = Fl[Z7Y], ko = Fy, goo = ¢ and Rog = Fy[Z]. In
this setting, there are numerous results on Diophantine approximation in the
fields of formal power series, see for instance [Las00], [Bug04(2), Chap. 9].
On the other hand, little is known about Diophantine approximation over
general global function fields, see for instance [KST17] (for a single valuation
in positive characteristic) for the ground work on the geometry of number for
function fields.
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4.1.2 On the geometry of numbers and Dirichlet’s theorem

Let d be a positive integer. An R, -lattice A in de is a discrete R,-submodule
in K¢ that generates K¢ as a K,-vector space. The covolume of A, denoted by
Covol(A), is defined as the measure of the (compact) quotient space K.2/A :

Covol(A) = vold(K2/A) .

For example, RZ is an R,-lattice in K¢, and by for instance [BPP19, Lem. 14.4)],
we have

(4.2) Covol(R%) = qla=1)e |

Let B(0,7) be the closed ball of radius r centered at zero in K2 with
respect to the norm || - || : (&1,...,&4) — maxi<;<q|&|. For every integer
ke {1,...,d}, the k-th minimum of an R,-lattice A is defined by

Me(A) = min{r > 0 : dimg, (spang, (B(0,r) N A)) > k},

where span g denotes the K,-linear span of a subset of a K,-vector space and
dimg, is the dimension of a K,-vector space. Note that A1 (A), ..., A\g(A) € ¢Z.
The next result follows from [KST17, Theo. 4.4] and Equation (4.2).

Theorem 4.1.1. (Minkowski’s theorem) For every R,-lattice A in K2,
we have

g9~ Covol(A) < A1(A) ... Ag(A) < qg Covol(A) . O

Since A1(A) < -+ < Ag(A), the following result follows immediately from
Minkowski’s theorem 4.1.1.

Corollary 4.1.2. For every R,-lattice A in K2, we have

M(A) < gy COVOI(A)% . O

The following result generalizes [GG17, Theo. 2.1], which is proved only
when K = F,(Z) and v = oo, to all function fields K and valuations v. See
also [KWO08, Theo. 1.3] in the case of the field Q.

Theorem 4.1.3. (Dirichlet’s theorem) For every matrizc A € My, n(Ky)
whose rows are denoted by Ay, ..., Ay, for all (ry,...,ry,) € ZLy and (s, ..., 5,) €
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ZLy with

m n
/ g—1 ’r /
r; > 1+ deg v and E ri—jg_l S5

i=1

there exists an elementy = (yi,...,yn) € R} — {0} such that, for all i =
1,....mand j=1,...,n, we have

(A < quq® g and |y;| < qog? ' g% .

Proof. With A, r},...,r}, and s},...,s] asin the statement, we apply Corol-
lary 4.1.2 with d = m + n to the R,-lattice

!
—-Tr
Ty 0

where [y, is the k x k identity matrix. Since the above two matrices have
determinant 1 by the assumption > i, r; = > %, s, and by Equation (4.2),

i=1"17

we have Covol(A) = ¢(9=D4. Corollary 4.1.2 hence says that there exists (x =
(1, Tm), Y = (Y1, .., yn)) € RE — {0} such that

max{ _max ‘ﬂ'v_ri (x; + Aiy) |, max \Trf)jyj | } < gy Covol(A)% =qq? .
i=1,....,m 7j=1,..,n

Assume for a contradiction that y = 0. Then for e}ll i =1,...,m, since

|7, | = ¢, we have the inequality |z;| < ¢, ¢? "¢y *. Since ri > 1+ é’e;ﬂ

this would imply that |z;| < 1. By Equation (4.1), we have {z € R, : |z| <
1} = {0}. Since z; € R,, we would have that x = 0, contradicting the fact
that (x,y) # 0. Therefore y # 0 and the result follows. O

The following corollary is due to [Kri06, Theo. 1.1] (see also [BZ19, Theo. 3.2]
where the assumption that ¢m is divisible by n is implicit) in the special case
when K =F,(Z) and v = oo and without weights.

Let minr = minj<j<,, ; and similarly for mins, maxr and maxs.
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Corollary 4.1.4. For all A € My, n(Ky) and o € Z>o with o > L4

minr
W’ there exists y € R} — {0} such that

degv4g—1 @ degv+g—1

(Ay)r <q minr g% and [|y|s < g s gy

v

1forz—l ,m

Proof. We apply Theorem 4.1.3 with r, = ar; > 1+ 4 dogv
and s’ = as; for j = 1,...,n, noting that > ;" i = >°7_, s’ since ZZ 1T =

2?21 Sj. O
Remark 4.1.5. When r = (n,n, ,n) cmd s = (m,m, m), the above
result says that for every integer a > =+ + ndegv, there emzsts y € R} — {0}
such that

in Ay —x|| < g Yg, 0" and [y | <gug? g™,
where || - || is the sup norm.

4.1.3 Best approximation sequences with weights

In this subsection, we construct a version with weights, valid for all function
fields, of the best approximation sequences associated with a completely irra-
tional matrix by Bugeaud-Zhang [BZ19].

A matrix A € M,,, ,(K,) is said to be completely irrational if (Ay)y # 0
for every y € R — {0}. Note that this does not depend on the weight r, and
that the fact that A is completely irrational might not necessarily imply that
A is completely irrational.

Remark 4.1.6. Let A € M, ,(K,) be such that 'A is not completely irra-
tional.

(1) The matriz ‘A is (s,r)-singular on average.

(2) For every € > 0 small enough, the set Bad(e) has full Hausdorff di-
mension.

Proof. By assumption, there exist x € R and y = (y1,...,ym) € R]* — {0}
such that Ay —x = 0.
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(1) For every € > 0, if £y = [log,, ||y [lr] then for all integers N > £y and
¢ € {ly,...,N}, we have (!Ay)s = 0 < e ¢; * and ||y |r < ¢, hence A is
(s,r)-singular on average (see Equation (1.8)).

(2) For every 8 = (01,...,0,,) € K", let

m
y-HZZ y; 0, € K, .
j=1

For every € € ]0, m], let Uy = {0 € K" : [(y-0)] > (€| ylx)™mr}. If
€ is small enough, then the set Uy . contains a closed ball of positive radius:
For instance, let jo € {1,...,m} be such that y;, # 0 ; define 6y; = 0 if
J # jo, 60,0 = ;—% and 8y = (6p,1,-..,00,m) ; then it is easy to check using the

ultrametric inequality that the closed ball B(8y, m) is contained in Uy . if

1
€< g™ [yl
Let us prove that Bad 4 (€) contains Uy ¢, which implies that dimy (Bad4(e)) =
m if € is small enough. Let 8 € Uy . and (y’,x') € R]* x (R} —{0}).
If |y |]]Ax' +y' — @ | > 1, then since x' € R — {0} so that || x'||s > 1,

we have

1
If |y ||r |AX +y' = 0| <1, then since y - (Ax' +y') = (Ay) - x'+y -y =
x-xX +y-y €R,, and since 6 € Uy, we have

1
1= [ls [Ax"+y" = 6 || > e

I 1o 4 ¥~ 6] > ¢ 1|| 13 e 1145 + 3" — ]s
1 1
> o (e [y 214 +y' = 0 ) =
1 / / 1 1 e
> o [y X Y O 2 [y o)) 2
Therefore 8 € Bad 4(€), as wanted. -

For every matrix A € My, ,(Ky), a best approzimation sequence for A
with weights (r,s) is a sequence (y;);>1 in R such that, with ¥; = || y; ||s and

MZ = <A Yi>r7
e the sequence (Y;);>1 is positive and strictly increasing,
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e the sequence (M;);>1 is positive and strictly decreasing, and

o for every y € R" — {0} with ||y ||s < Yit+1, we have (Ay), > M;.
We denote by lem r the least common multiple of rq, ..., 7y, and similarly for
lem s.

Lemma 4.1.7. Assume that A € My, n(Ky) is completely irrational.

(1) There ezists a best approximation sequence (y;)i>1 for A with weights
(r,s).

(2) If (yi)i>1 is a best approxzimation sequence for A with weights (r,s), then

) — 7z e /A
i) we have M; € ¢™" and M; € ¢i™*"=" if i is large enough,

- 1z =y ‘
ii) we have Y; € g™ =% and Y; > g™ for every i > 1,

ii1) the sequence (Ml Yi‘i‘l)i>1 s uniformly bounded.

Note that a best approximation sequence might be not unique (and the
terminology “best”, though traditional, is not very appropriate). When m =
n=r =s =1, K=Fy(Z)and v = o0, then A € K, is completely irrational
if and only if A € K, — K, and with (%)km the sequence of convergents of
A (see for instance [Las00]), we may take y; = Q;—; for all i > 1.

If A € Mp,,(K,) is not completely irrational, a best approximation se-
quence for A with weights (r,s) is a finite sequence (y;)i<i<i, in R,', such
that, with Y; = || yi ||s and M; = (Ay;)y,

ol=Y < - <Y,

o My >--->M;, =0,

eforallie {1,...,ip—1} and y € R} — {0} with ||y ||s < Yi41, we have
(Ay)r > M;, and

e which stops at the first ip such that there exists z € R} with 0 < ||z ||s <
Y;, and (Az), = 0.

The proof of Lemma 4.1.7 is similar to the one given after [BZ19, Def. 3.3]
in the particular case when K = F,(Z), v = oo and without weights.

Proof. (1) Let us prove by induction on ¢ > 1 that there exist y1,...,y; in R}
such that, with Y; = ||y; ||s and M; = (Ay; ), for every 1 < j < i, we have
1=Y1<---<Y;,, My >--->M; >0, and (using My = o0 by convention)
(a;) we have (Ay)y > M;_; for every y € R — {0} with ||y ||s < Y3,
(bi) we have (Ay)y > M, for every y € R — {0} with ||y ||s < Y.
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Note that {x € R, : |z | < 1} = R, N O, = F, by Equation (4.1). Hence
the elements with smallest s-quasinorm in R’ — {0} are the elements in the
finite set F' — {0}, which is the set of elements in R’ with s-quasinorm 1.

T L
Furthermore, the set {|y|ls : y € R — {0}} is contained in g, T o
1 7 LZ
g&™="=". Similarly, for every x € K™ — {0}, we have (x), € g5 .

Therefore there exists an element y; € R} with ||y ||s = 1 such that

(Ay1)r =min{ (Ay)r:y € R}, ||ylls=1}.

We thus have Y7 = ||y1 ||s = 1 and M; = (Ay1)r > 0 since A is completely
irrational. There isnoy € R} — {0} with ||y ||s < Y1, and if || y ||s = Y7, then
(Ay)y > Mj, hence the claims (a1) and (by) are satisfied.

Assume by induction that yq,...,y; as above are constructed. Let

S={yeR}: |lylls>Yi, (Ay)r <M;}.

Note that the set {z € R}, 0 < | z||s <Y;} is finite by the discreteness
of R}, and ¢, = min{ (Az);, : z € R}, 0 < | z|s <Y} is positive, since
A is completely irrational. Corollary 4.1.4 of Dirichlet’s theorem implies in
particular, by taking in its statement « large enough, that for every ¢ > 0, there
existsy € R,'—{0} such that (Ay), < e. Applying this with e = min{M;, ¢} >
0 proves that the set S is nonempty. Hence the set S, of elements of S
with minimal s-quasinorm, which is finite again by the discreteness of R}, is

nonempty. Therefore there exists y;11 € Smin such that
(Ayit1)r = min{ (Az)y : 2 € Spin } -

Then Y1 = || yit1 ||ls = min || S'||s > Y; by the definition of the set S. We
also have that M;11 = (Ayit1)r < M; since y;11 € Smin C S, and again by
the definition of S.

Let us now prove that y;;1 satisfies the properties (a;4+1) and (b;+1).

e Let y € R} — {0} be such that ||y |ls < Yit1. If ||y ls < Vi, then by
the induction hypothesis (b;), we have (Ay), > M;, as wanted for Property
(@it1)- If ||y |ls > Yi, then by the definition of S, we have (Ay), > M, as
wanted for Property (a;;+1), otherwise y would be an element of S with s-
quasinorm strictly less than the minimum s-quasinorm of the elements of S,
a contradiction.
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e Let y € R} — {0} be such that ||y|ls < Yit1. Either ||y|ls < Yit1,
in which case, as just seen, (Ay), > M; > M;;1, as wanted for Property
(bit1). Or ||y |ls = Yiq1 > Vi, in which case either (Ay), > M; > M1, as
wanted for Property (b;j11), or (Ay)r < M;, so that y belongs to Sy, hence
(Ay)r > min{ (Az)y : 2 € Spin } = Miy1.

By induction, this proves Assertion (1) of Lemma 4.1.7.

1
(2) i) This follows from the facts that M; € qqlfmz and that M;, 1 < M;.

1

z
ii) Since Y7 = 1, this follows by induction from the facts that Y; € g)™*
and that Y;11 > Y;.

iii) Let a = Llogqv(q—degﬁiﬁ?l Yiy1)] — 1, which satisfies a > —— +
m if i is large enough, by Assertion (2) ii). By Corollary 4.1.4, there
exists y € R} — {0} such that

_deg vtg—1
degv+g—1 degvtg—1 qlogqv (q min s Yvi-l»l)
v

H y Hs S q min s qsl < q min s

=Yin

_degv4g—1

minr ' mins

oot (logy, (7B Yi)2) e okg—1) (ke i) +2de (37 )1

S q min r q,U

Since M; < min{ (Ay)r :y € R}, 0 < ||y|ls < Yit1} by the definition of a
best approximation sequence, the result follows. ]

4.1.4 Transference theorems with weights

In this section, we will show that a matrix A € My, ,(K,) is singular on
average if and only if its transpose A is singular on average. To do this,
following [Cas57, Chap. V], we prove a transference principle between two
problems of homogeneous approximations with weights. See also [GE15, Ger20]
in the disjoint case of the field Q.

Let d € Z>2 be a positive integer at least 2. For all £ = (£1,...,&y) and
0= (0,...,0;) in K2, we denote

d
£60=2 &bk
k=1
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Let ay,...,aq € Z be integers and let a = ZZ:1 . We consider the paral-
lelepiped

P={t=(&,....80 €K} :Vk=1,....d, |&]|<q*}.

Following Schmidt’s terminology [Sch80, page 109] in the case of the field Q
(building on Mahler’s compound one), we call the parallelepiped

d
s 1 a; a—a
P :{Sz(glv"'vgd)Ede:Vk:L"wda |€k|§qak qulzqv k}
vo=1

the pseudocompound of P. Note that P and P* are preserved by the multi-
plication of the components of their elements by elements of O,.

Theorem 4.1.8. With P and P* as above, for every F € SLy(K,),
i PPOFYRY) £ {0}, then P F(RY) £ {0},

where

= [ (a1 S0

Remark 4.1.9. The R,-lattice 'F~Y(R%) is called the dual lattice of the R,-

v

lattice F(RZ) since we have z-w € R, for all z € *F~Y(R%) and w € F(RY).

v v

They have the same covolume as R, since det(F) = 1.

Proof. Let z = (21,...,249) € P*NtF~Y(RY) — {0} and ko = max{k € Z>q :
z € 7FP*}. Up to permuting the coordinates, we may assume that, for all
k=2,...,d, we have

(4.3) |z1|=¢qy 7" and |z | < gy TR0

With Fj, the k-th row of F, let us consider the R,-lattice A = M(R?)

()
where 4
-1
Ty D g1 26k

,ﬂ_gd‘i‘OQ Fy
M=

rhitedp,
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By subtracting to the first row a linear combination of the other rows,
and since det F' = 1, the determinant of the above matrix M is equal to
gt Dhatazon=l By Equations (4.3) and (4.2), we thus have

Covol(A) = det(M) Covol(RY) = gl=ro=(d=1a 4lg=1)d

Since d > 2 and (5 > dfll(d + 1+ (‘ggglz))d), Corollary 4.1.2 applied to the
R,-lattice A gives that

AL(A) < gy Covol(A)d < 1.

Hence, by the definition of the first minimum A;(A), there exists w € R¢—{0}
such that for every k = 2,...,d, we have

(4.4) lz-F(w)|<q'<1 and |Fj(w)|<glater.

Since z € 'F~1(RY) and w € RY, we have z- F'(w) € R, by the above Remark.
The first inequality of Equation (4.4) hence implies that z - F'(w) = 0, which
means that

d
ZlFl(W) = —ZZka<W) .
k=2

By the ultrametric property of | - |, by Equations (4.3) and (4.4), we have

@ T Fi(w) | = |21 Fi (W) < max | 2 F(w)|

a—Q—kK +ar . atB4—kK
< max ¢X o oqu = g0 Ba—ro

~ 9<k<d

Therefore | Fi(w) | < g7 and with the second inequality of Equation (4.4),
we conclude that F(w) € mhip. O

Corollary 4.1.10. There exist k1, ka, k3, kg > 0 with ko > 0, depending only
1

onm, n, g, degv, r and s, such that for all A € M, ,,(K,) and € € qu, ,
for every large enough Y € q%zl, if there exists y € R — {0} such that

(4.5) (Ay)r <eY™! and |y|s<Y,
then there exists x € R)* — {0} such that

(4.6) (Ax)s < @' e X1 and || x| <X,
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where X = q;2 e ™ Y.

Proof. Let |s| = Z;‘:l sj. Denoting o = —log, € € Z>1 and ay =log, Y €
Z>1, we define § = ¢, and Z = ¢? Y where

ac—1 |s|
@ e Jo = (2 )]
U B e 1 A AT

sl 1, and that a5 and oz are nonnega-

Note that as is well defined since —-— >

tive. We have

1 1
(‘S’( + )_]‘) Oé§<O[6 17
minr mins
|s| |s|
hence( - —1)045+1<a€— — Qg ,
min s inr
(4.8) therefore (ﬂ - 1) as <oz < ae — |S| as .
mins minr

Let d = m + n > 2. Let us consider the following parallelepipeds

Vi=1,...,m, |[&|<eiY T
Vi=1,...n, |&meil <Y [

Q:{fz(fl,...,fd)Ede:

Vizl,...,m, |fZ’§Z”
Vi=1,...,n, [{uyj| <06%Z27%

P:{gz(gl,...,gd)ede:

Since > ") r; = > 7 s, the pseudocompound P* of P is equal to

Vi=1,...,m, |&|<obl z }

= = Kdl
P {5 A S T | Emys | < OI703 Z2%

By the right inequality of Equation (4.8), for every i = 1,...,m, we have

) Is|
slslz=ri — q—|S|046—7“z'OéZ Y Tio> qv_rl(az—‘rminra‘s) YT > iy T
v - - .

By the left inequality of Equation (4.8), for every j =1,...,n, we have
5‘5‘_5jzsj _ q;(|5|78j)015+8j042 YSj Z qij(azf(%*l)aé) Ysj Z YSj .

Therefore Q is contained in P*.
Now, by the assumption of Corollary 4.1.10, let y € R* — {0} be such that
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the inequalities (4.5) are satisfied. Then there exists (x',y) € R x (R} —{0})

such that
| Ay — x'||r < e Y1 and lylls<Y.
Therefore
I, A
on ( ) RE+ {0} .

0 I,

Since @ C P*, this implies that

* Im A d
ol Hecm

By Theorem 4.1.8, we have

I 0
—Ba m d
m, Pﬂ(_tA In>Rv7é{O}.

Then there exists (x,y’) € (R)* x R}') — {0} such that
(4.9) Imi x|l < Z and ||mjd(="Ax = y')ls <627

The above inequality on the left-hand side and the two equalities of Equa-
tion (4.7) give

Bd sl ae—1
Ba_ Bd Bd sl gy ee=1
Il < gF"F Z = qir 7y < g TG ey
5 sl _
_Pd —_ _mins ~
< qéninr—H e Islghrtmms) 1Y .
B sl _ ) ‘
If k3 = migr +1> 0 and R4 = W > 0, this proves the I‘lght
minr ' mins

inequality in Equation (4.6) with X = ¢3¢ " Y.
The right inequality in Equation (4.9), since 84 > 0 and by using the left
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inequality in Equation (4.8) and the definition (4.7) of «as, gives

Bd Is|

—as—0oyg _

Bd Bq
<tAX>S g qénins 6Z—1 — q’lt)nins Y 1 g qénins minsa‘s—i_ﬁ'g 6_/'434 X_l

Bg sl ((%1)—1)—&-&3—&-1“;"5_110(6
—1

1 1 |S‘(minr+mins>71

minr " mins

< qu X!
Bq Is] 1
mins m(m“)“?’ 1

— q'u minr ' mins E‘Sl(m_‘—m)_l X—l .

This proves the left inequality in Equation (4.6) for appropriate positive con-
stants k1 and ks.

If x = 0, then we have y' # 0 and ||y’ |s < ¢t~ e"2t51 Y1 which
contradicts the fact that y’ € R if Y is large enough. This concludes the
proof of Corollary 4.1.10. O

Corollary 4.1.11. Let m,n be positive integers and A € My, n(Ky). Then A

is (r,s)-singular on average if and only if *A is (s,r)-singular on average.

Proof. This follows from Corollary 4.1.10. O

It follows from this corollary and from Remark 4.1.6 that if A € M,, ,(K,)
is such that A is not completely irrational, then A is (r,s)-singular on average.

4.2 Characterisation of singular on average prop-
erty

In this section, we give a characterisation of the singular on average property
with weights in terms of an asymptotic property in average of the best ap-
proximation sequence with weights. In the real case, the relation between the
singular property and the best approximation sequence has been studied in
[Chell, Chevl3, CC16, LSST20]. Also in the real case, and with weights, the
relation (similar to the one below) between the singular on average property
and the best approximation sequence has been studied in [KKL, Prop. 6.7].
For the sake of later applications, we work with transposes of matrices.

Theorem 4.2.1. Let A € My, n(Ky) and let (y;)i>1 be a best approzima-
tion sequence in K™ for 'A with weights (s,r). The following statements are
equivalent.
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1. For alla > 1 and € > 0, we have

1
lim — #{¢e{l,...,N}: 3y e R"—{0}, (Ay)s<ea ", ||y|s <a‘}=1.
N—ooo N

2. The matriz 'A is (s,r)-singular on average.

3. There exists a > 1 such that for every e > 0, we have

1
lim — #{¢e{l,...,N}: Iy e R"—{0}, (Ay)s<ea ", ||y|s <a‘}=1.
N—oco N

4. For every € >0, we have

im card{igk:MiYiH>e'}:0.
k—oo log, Yi

Proof. Since Assertion (2) is Assertion (1) for a = ¢, > 1, it is immediate that
(1) implies (2) implies (3).

Let us first prove that Assertion (3) implies Assertion (4). Let a > 1 be as
in Assertion (3) and let €’ € ]0,1[. Let € = %/ > 0.

We may assume that the set I = {i € Z>1 : M;Yi41 > €'} is infinite, other-
wise Assertion (4) is clear since limg_,o Yy = +00. We consider the increasing
sequence (ij);jez., of positive integers such that I = {i; : j > 1}. For every
j =1, by taking_ the logarithm in base a, we thus have log, ¢’ — log, M;; <
log, Yi;+1, hence

(4.10) log, € —log, M;; <log,Yi +1—1.
Note that for every ¢ > 1 and X € [Y;, Y;;1[, the system of inequalities
(4.11) (Ay)s<eX' and 0<|yl.<X

has a solution y € R™ if and only if M; < ¢ X !. Indeed, if the latter inequality
is satisfied, then y; is a solution of the system (4.11) since M; = (!Ay;)s and
X >Y; =|yillr- Conversely, if this system has a solution, then since

M; < min{ (*Ay)s:y € B, 0< |y < Yigr)

by the definition of a best approximation sequence, the inequality M; < e X!
holds since X < Yji1. Hence, for every integer ¢ € [log,Y;,log, Yit1], the
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system of inequalities (4.11) has no integral solutions for X = a’ if and only if
(4.12) log, € —log, M; < ¢ <log, Yiy1 .

There exists an integer jo > 1 such that for every integer j > jo, we
have log, Yj;+1 > 2 by Lemma 4.1.7 (2) ii). If £ is the integer in the interval
log, Yi;+1 — 1,log, Yi;+1[ (which is half-open and has length 1, hence does
contain one and only one integer), then ¢ > 1 and by Equations (4.10) and
(4.12), the system (4.11) has no integral solutions for X = a’.

Let u = [(lemr)(log,, a)], which belongs to Z>1. By Lemma 4.1.7 (2) ii),
for every k € Z>1, since the sequence (i;);cz., is increasing, we have

u

Yieoutl = @™ Y1 > a Y41 .
The intervals [log, Y;,;+1—1,10g, Vi, +1[ and [log, Y;,,, +1—1,108, Vi, ;) +1l
are hence disjoint for every j € Zx>1. Thus, if j is large enough, with N; =
[log, Yi,,+1], the number n(Nj) of integers £ € {1,..., N;} such that the sys-
tem of inequalities (4.11) has no integral solutions for X = a is at least j — jo.

- N; : . )
logj}/i?j-i,-l] < n(Nj]) tends to 0 as j — +oo, by Assertion (3). This

Therefore r
implies that W tends to 0 as j — 4o0.
a Z]'

For every integer k > 1, let j(k) > 1 be the unique positive integer such
that we have ;) < k < ij(x)41, s0 that j(k) = card{i < k : M;Yi11 > €'}.
Hence, since (Y;);>1 is increasing, we have

1 i(k
card{igk:MiY;H>e'}< 1 v lim ‘7(7)

=0
~ Ina koo log,Y; ’

lim
k—o0 logqv Yk (k)

which proves Assertion (4).

Let us now prove that Assertion (4) implies Assertion (1). Let @ > 1 and
€ €]0,1[. By Lemma 4.1.7 (2) iii), let ¢ > 1 be such that for every i > 1, we
have M;Y;11 < a°. By Equation (4.12), since the number of integer points in
an open interval is at most equal to its length, for every ¢ > 1, the number of
integers ¢ € [log, Y;,log, Yi+1] such that the system of inequalities (4.11) has

14

no integral solutions for X = a* is at most

loga Y;Jrl - (loga €— loga MZ) = (loga MiniJrl - loga 6) .

For every N > 1 large enough, let ky > 1 be such that N € [log, Y%, ,log, Yiy+1]
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and let n’/(N) be the number of integers ¢ € {1,..., N} such that the system
of inequalities (4.11) has no integral solutions for X = a’. Then

n'(N)
N

kn
1
< N Z_Zl max {0, log, M;Y;y+1 — log, e}

< (e—1 dii < kny: MY > .
< (e log ) oy cand {i < by s Mi¥isr > )
This last term tends to 0 as N — +oco by Assertion (4) applied with ¢ = e.
Therefore limpy_, 4 # = 0, thus proving Assertion (1). O

4.3 Full Hausdorff dimension for singular on aver-
age matrices

4.3.1 Modified Bugeaud-Zhang sequences

In this subsection, we construct a subsequence with controlled growth of the
best approximation sequence with weights of a matrix, assuming that its trans-
pose is singular on average for those weights. We use as inspiration [BZ19, page
470] in the special case of K = F(Z) and v = vo, and the first claim of the
proof of [BKLR21, Theo. 2.2] in the case of the field Q (with characteristic
z€ero).

Proposition 4.3.1. Let A € M, ,(K,) be such that 'A is completely ir-
rational and (s,r)-singular on average. Let (y;)icz., be a best approzima-
tion sequence in K™ for 'A with weights (s,r), and let ¢ > 0 be such that
M;Yii1 < g5 for every i € Z>1. For all a > b > 0, there exists an increasing
map ¢ : Zi>1 — Z>1 such that

(1) for every i € Z>1, we have

(4.13) Yorn) 2 dy Yo and My Yo < 4)'°,
(2) we have
k 1
4.14 limsup ——— < —.
( ) k—o0 logqv ch(k’) a

Proof. Let A, (yi)iez21 and a,b be as in the statement. We start by proving
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a particular case, that will be useful in two of the four cases below.

1
Lemma 4.3.2. If furthermore we have limy_,o, Y," = +00, then there exists

an increasing map ¢ : Z>1 — Z>1 such that Equations (4.13) and (4.14) are
satisfied.

1

Proof. The fact that limg_, Y,f = +o00 implies that the set
Jo=1{j € Z>1: Vi > q) Y5}

is infinite. We construct the increasing sequence (¢(i))icz., of positive integers
by stacks {©(ix + 1),...,(igs1)} with ixy1 > ig, by induction on k € Z>p.
For k=0, let i9p = 0, let 3 = 1 and let (1) be the smallest element of Jj.

For k € Z>¢, assume that iy, and (i) are constructed such that ¢(ix) € Jo
and Equation (4.13) holds for every ¢ < i — 1. Let us construct ix11 and (i +
1),...,0(ig+1) such that ¢(ixr1) € Jo and Equation (4.13) holds for every
i <igy1—1. Let jo be the smallest element of 7y greater than ¢(ix). Let v/ = 0
if the set {j > ¢(ix) : Yj, > ¢4 Y;} is empty. Otherwise, let 7' € Z>1 be the
maximal integer such that by induction there exist ji,jo,...,j € Z>1 such
that for £ = 1,...,7/, the set {j > ¢(ix) : Yj,_, > ¢4 Y;} is nonempty and for
¢=1,...,r"+1 the integer jy is its largest element. Since the sequence (Y;)icz- ,
is increasing, this in particular implies that jy_1 > jofor £ =1,... 7 +1, which
itself ensures the finiteness of . Now we define ix11 =i + 1’ + 1 and

90(7'/6 + 1) :jT'a gp(zk + 2) = j?"’—17 R gO(Zk +T'/> = jlv SO(Z’HJ) = jO .

By construction, for £ =1,...,r’, we have

_ b _ b
Yotirer) = Yi_, 2 @ Yoy = @ Yo(irto) -

As (i + 1) = jw > @(i), we have Y, 11) = Yoa+1 = @) Yo, since
(i) € Jo. Note that ¢(ig+1) = jo € Jo. This proves the claim on the left
hand side of Equation (4.13) for ¢ < ip4; — 1.

By the maximality property of j,. _, in the above construction, for every
=1,...,7", we have Y ;, 1o41) = Y, , < ¢ Y, 41 = ¢ Yo(in+0)+1- BY
the maximality of 7’ in the above construction, we have Yo(ip+1) < ¢ Yo +1-
Hence, by the definition of ¢, for every £ =0, ...,7’, we have

b b
Mo (ie0)Yoliprer1) < Mogirey Yotiproe1 @ < @0 ° -
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This proves the claim on the right hand side of Equation (4.13) for i < i1 —1.
ﬁ = 0, Equation (4.14) is satisfied for ¢, and this
concludes the proof of Lemma 4.3.2. O

Since limg_,oo

Now in what follows, we will discuss four cases on the configuration in Zx>
of the set
T ={j € Zz1: M; Yj1 < g5}

By Theorem 4.2.1 (4) applied with ¢ = ¢2t¢73¢ we have

(4.15)

im card{igk:ie 37}:0.
k—o0 logqv k
Case 1. Assume first that J is finite.

By Equation (4.15), we then have limy_,, ﬁ = 0, hence Proposition
qv
4.3.1 follows from Lemma 4.3.2.

Case 2. Let us now assume that there exists j. € Z>1 such that j € J for
every j > Jj«.

Let us consider the auxiliary increasing sequence (¢(7))icz., of positive
integers defined by induction by setting (1) = min{j. € Z>; : _Vj > Jx, J €
J} and, for every i > 1,

P(i+1) =min{j € Z>1 : ¢ Yyu) <V}

Since the sequence (Yz‘)z‘ezzl is increasing and converges to 400, this is well
defined, and v is increasing, hence takes value in J by the assumption of Case
2. Let us now define the sequence ((4))iez., by, for every i € Z>1,

o(i) = (i) if My Yousn) < @47,
P(i+1) —1 otherwise.

Note that the sequence ((i))icz,, is increasing with ¢ > .
Let ¢ € Z>1. Let us prove that
(4.16) Yorn) 2 a5 You and My Yo < a0,

by discussing on the values of ¢(i) and (i + 1). This implies that Equation
(4.13) is satisfied since a > b, and that Equation (4.14) is satisfied since by
induction Y, ) > qa (k=1) Y1) for every k € Z>1.
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e Assume that ¢(i) = ¥(i) and p(i + 1) = ¥ (i + 1). By the definition of
(i + 1), we have
Yotr) = Yoiirn) 2 @ Yoi) = @ Yoo -
If (i) # 1(i + 1) — 1, then by the definition of ¢(i), we have

M) Yo(ir1) = Mygpy Yousn) S @yt < gt

If (i) =1(i+1) —1, then p(i + 1) = (i) + 1 and by the definition of ¢, we
have
c b+c
Moy Yo(ir1) = Moy Y1 < a5 < ¢y -

This proves Equation (4.16).

e Assume that ¢(i) = ¢(i) and ¢(i + 1) = ¢(i +2) — 1. Since the sequence
(Yi)iez, is increasing and by the definition of (i + 1), we have

Yot = Yoara—1 2 Yo 2 @ You) = @ Yoo -

We have gy Yyi+1) > Yy@+2)—1 by the minimality property of (i + 2). If
Y(i +1) > (i) + 1, then My Yy < q¥T°=% by the dichotomy in the
definition of (7). Hence

M) Y1) = Mygs) Yogra—1 < Mya) Yoarn 6o < @y %0 = a)te

If (i + 1) = ¥(i) + 1, then My Yyy41 < g5 since (i) € J. Hence

Moy Yo(irn) = Mygy Yyira—1 < My Yyme @5 < a0 >q0 < g™

This proves Equation (4.16).
e Assume that (i) = ¢ (i+1)—1 and ¢(i+1) = ¥(i+1). Since (i+1)—1 €

J, we have

Moy Yp(ie1) = My(is1)—1Yygir) < @577 < gbte .

If (i+ 1) — 1 =1)(i), then by the definition of ¥ (i 4+ 1), we have

Y, Yo Yo
ei+l) TG+ (it > ¢7 .

Yoo  Yearn-1 Yy
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If (i +1) =1 > 9(i), then we have My Yy (iy1) > ¢¥+¢ by the dichotomy
in the definition of (i), we have Yy11)—1 < ¢ Yy@u) < @ Yy@)41 by the

minimality property of ¥ (i + 1), and we have My Yo+ < qbTe73% since

(i) € J. Therefore

Yw(i-‘rl) _ Yl/)(i+1) _ sz(z) Y¢(i+1) > qg+c—a qs-l-c—a :qa .
Yoy Y- My Yoarn-1 — My Yoo a8~ @ g2 "

This proves Equation (4.16).
o Assume that ¢(i) = ¢¥(i +1) — 1 and ¢(i + 1) = ¢(i + 2) — 1. By the

previous case computations, we have

Yory _ Yuaio-1 o Vet
Yoy  Yyu+n-1 — Yy(tn)—1

>y -
We have gy Yy (i11) > Yy(i42)—1 by the minimality property of ¥ (i+2). Hence
since ¥(i +1) — 1 € J, we have

Yp(ir2)-1
M@y Yo(iv1) = Mypr1)-1Yp+2)-1 = Myt -1Yp+1) (7}, : )
P(i+1)

b+c—3 b
< gt gl < gt

This proves Equation (4.16) and concludes the proof of Case 2.

Case 3. Let us now assume that J and ¢/ are both infinite, and that the
number of sequences of consecutive elements of 7 with length at least 3a is
finite.

Let jo = min J. Let us write the set Z>,, = UieZ>1 C; U D; as the disjoint
union of nonempty finite sequences C; of consecutive integers in J and finite
nonempty sequences D; of consecutive integers in ¢/ with max C; < min D; <
max D; < minCj;q for all ¢ € Z>q. Under the assumption of Case 3, let
i9 € Z>1 be such that card C; < 3a for every i > ig. Let ko = min Cj,.

Then there exists an element of ¢ in any finite sequence of 3[a] 4+ 1 con-
secutive integers at least ko, so that for every k € Z>; we have

k <k0+(3((ﬂ+1) card{i<k:ie T}
logqﬂ Y. — logqv Y: ’

which converges to 0 as k — +oo by Equation (4.15) and since limy_,o, Y; =
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el

+o0o. Therefore limy_, Y,* = +o0o0, and Lemma 4.3.2 implies Proposition
4.3.1.

Case 4. Let us finally assume that J and ¢ are both infinite, and that there
are infinitely many sequences of consecutive elements of 7 with length at least
3a.

With the notation (C;)icz., and (D;)iez., of the beginning of Case 3, let
(ik)kez~, be the increasing sequence of positive integers such that {i €Z>1:
card C;Z 3a} = {ix 1 k € Z>1}.

For every k € Z>1, let us define an increasing finite sequence (Y5, (%)) 1<i<m;+1
of positive integers by setting 1,(1) = min C;, and by induction

'(Z)k(l + ]') = mln{j € Clk : qg Y@L%(Z) < YY]} )

as long as this set is nonempty. Since Cj, is a finite sequence of consecutive
1

positive integers with length at least 3a and Y;11 > ¢;"™* Y; for every i € Z>1,
there exists my € Z>2 such that (i) is defined for ¢ = 1,...,my + 1. Note
that () belongs to J for i = 1,...,my4 since C;, C J.

As in Case 2, let us define an increasing finite sequence (¢ (i))1<i<m, of
positive integers by

(i) = { 1/%(2:) if ka('i) Y1) < @,
Yrp(i +1) —1 otherwise.

As in the proof of Case 2, since for i = 1, ..., my, the integers ¥ (7), Yx(i+ 1)
as well as ¢ (i + 1) — 1 belong to J, we have, for every i = 1,...,my — 1,
(4.17) Youit1) 2 45 Yo and My, ) Y1) < a0

Since @i (my) € C;, and @ry1(1) € Cj,,,, we have pr(my) < pr41(1). Let
us define an increasing finite sequence (¢} (7))1<i<r,+1 of positive integers that
will allow us to interpolate between o (my) and @gy1(1). Let jo = pr1(1). If
{7 € Zspyimp) * Yio = ¢} Y;} is empty, let 7, = 0 and ¢} (1) = jo = pr41(1).
Otherwise, by decreasing induction, let 7, € Z>; be the maximal positive
integer such that there exist ji,... ,j,,;v € Z>1 such that for £ =1,... 7, the
set {J € Zxyp(my)  Yie, = % Y;} is nonempty and for £ = 1,...,7} + 1, the
integer j, is its largest element. As in the part of the proof of Case 1 that does
not need some belonging to Jo, the sequence (¢}, (i) = jr;c+1—i)1gi§r;c+1 is well
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defined, it is contained in [¢g(my), pr+1(1)], and for i = 1,..., 7, we have

b b
(4.18) chgc(i—i-l) > 4y YQD;C(I) and Mcp;(z) Y(p;(i+1) < qvJrc .
Putting alternatively together the sequences (¢ (7))1<i<m,—1 and (¢}, (i))lgigr;
as k ranges over Z>1, we now define (with the standard convention that an

empty sum is zero) Ny = ]Z:_ll (mg —1+7y) and

(0) ok (i — Ni) if 14+ N <i<my—1+ Ny
1) =
v @2(i+1*mk*N1¢) ifmquNkSigT;C*lekarNk.

By Equation (4.17) for i = 1,...,my — 2, by Equation (4.18) fori =1,... 7},

and since ¢} (1}, + 1) = @x11(1), in order to prove that the map ¢ satisfies
Equation (4.13), hence Assertion (1) of Proposition 4.3.1, we only have to
prove the following lemma.

Lemma 4.3.3. For every k € Z>1, we have

b+c

b
(4.19) Yor) 2 @ Yorm-1)  and - Mo, 1) Yo ) < o

@

Proof. Since ¢} (1) = ¢x(my), hence Y1 (1) = Y, (m,), the left hand side
of Equation (4.19) follows from the left hand side of Equation (4.17) with
i =my — 1. If ¢,.(1) = pr(my), then the right hand side of Equation (4.19)
follows from the right hand side of Equation (4.17) with i = my, — 1.

Let us hence assume that ¢} (1) > ¢r(my), so that

b a
(4.20) Yor) < @ Yormy) < 9o Yor(mi)

by the maximality of 7. Let us prove that ¢ (my) = 15 (my). For a contradic-
tion, assume otherwise that @i (my) = ¥r(mr+1)—1 > Yr(my). As in the third
subcase of Case 2, we have My, (m,) Yy, (my+1) > @4+¢=¢ by the dichotomy in
the definition of y(my), we have Yy, (m,+1)—1 < @ Yo ime) < @5 Yoo (mp)+1
by the minimality property of ¢ (my + 1), and we have My, (m,) Yo, (mp)+1 <
qll;+cf3a

have

since 1 (my) € J. Therefore, as in the third subcase of Case 2, we

ka(mk+1) _ Ml/’k(mk) ka(mk-i-l) > @
Yl/)k(mk-i—l)—l ka(mk) ka(mk+1)—1 B

Hence by the construction of ¢} (1), we have ¢} (1) = ¢ (my), a contradiction
to our assumption that ¢} (1) > ¢ (my). We now discuss on the two possible
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values of @i (my, — 1).

First assume that @ (mr—1) = ¥r(mg—1). If g(mr—1) # i (my)—1 then
My, (mp—1) Y (mp) < ¢¥*°~ by the dichotomy in the definition of oy (my, —1).
If on the contrary wk(mk — 1) = ’l/)k(mk) — 1 then ka(mkfl) Y¢k(mk) <

gbre3e < gbte=a since the integer ¥ (my) — 1 belong to J as my > 2. Since
o (my) = Yr(my) by Equation (4.20), we have
Y,
?r (1) -
Moy (mi—1) Yo (1) = My (mi—1) Yyr(my) <Y - ) <@g =gt

e (mg)
This proves the right hand side of Equation (4.19).
Now assume that @i (mg—1) = ¢ (my) — 1. Again since i (my) = Yr(my),

since the integer ¥ (my) — 1 belongs to J as my > 2, and by Equation (4.20),
we have

Y,

@, (1) btc—3 b
MWk(mk—l) Y%(l) = ka(mk)—l ka(mk) <Y IZ )) < (:I’U+c “qy < qU+C .
r(mg

This proves the right hand side of Equation (4.19), and concludes the proof
of Lemma 4.3.3. O

Finally, let us prove Assertion (2) of Proposition 4.3.1. Since there exists
an element of ¢7 in any finite sequence of 3[a] + 1 consecutive integers in the
complement of Ukez>1 Cj,, there exists ¢g > 0 such that, for every k € Z>1,
we have

card{j < (k) : j ¢ UkeZZl Ci} o + 3fa]l+1) card{j < p(k):j€ T}
logg, Y(r) B logg, Y(r) ’

which converges to 0 as & — +00 as seen at the end of the proof of Case
3. Let us define n(k) = card{i < k : Y,y > ¢ Yyi41)}- For every £ € Zx1,
1

since Yj11 > ¢i™* Y for every j € Z>1, and by the maximality of my in
the construction of (W(i))lgigmw we have card{j € Cj, : j > pi(my)} <
2 [a] minr. If p(2) belongs to C;, but ¢(i + 1) does not, then ¢(i) > @p(my).
Since when ¢(7) and ¢(i + 1) belong to C;, for some ¢ € Z>1, then ¢ and ¢y
coincide on 4 and ¢ + 1, and since Equation (4.17) holds, we hence have

k=n(k) = #{i < k: Y0 < ¢ Yo} <2[a] minr #{j <o) :j ¢ |J Ci

kGZZl
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Hence
lim sup ————— = limsup n(k) + k — n(k) = lim sup n(k)
k—too 1084 Yo)  kotoo  108g Yo(k) k—-+oo 108q, Yoo(k)
. n(k) 1
< lim sup S ()=D) =-.
koo logg, qu Yoq)

This proves Equation (4.14) and concludes the proof of Proposition 4.3.1. [

4.3.2 Lower bound on the Hausdorff dimension of Bad 4(e)

In this subsection, we use the scheme of proof in the real case of [CGGMS20,
Theo. 6.1], which is a weighted version of [BKLR21, Theo. 5.1], in order to
estimate the lower bound on the Hausdorff dimension of the e-bad sets of
(r,s)-singular in average matrices.

For a given sequence (y;);>1 in R — {0} and for every 6 > 0, let
Bad‘gyi)i21 ={0¢c (m,0)™:Vi>1 |(8-y)|>5}.
Proposition 4.3.4. Let A € M, ,(K,) be such that 'A is completely irra-
tional and let (y;)i>1 be a best approzimation sequence in K™ for ‘A with
weights (s,r). Suppose that there exist b,c > 0 and an increasing function

@ : L>1 — ZL>1 such that

Vi€Zz1, MyipyYour) < qg+c :

Then for every 6 € 10,1], if e = § s T ns q;07¢, then the set Bad?y ©)is1
(i) )i>

is contained in the set Bad g(€).

Proof. Fix 6 € ]0,1] and 6 € Bad‘(syw(i))izl. Let ¢ = §mns ¢, "~¢. For every
(y',x') in RJ® x R} such that || x[|s > €1Y,,(1), let k be the unique element of
Z>1 for which

Yo < e 1% lls < Yowe) »

which exists since ||x'[|s > €Y, 1) and since the sequence (Y(;)i>1 is in-
creasing, converging to +oc. Let X, ) € R} be such that My = || ‘Ay ) —

Xy (k) |ls- Then by the ultrametric inequality, the assumption of the proposition,
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the fact that €; qb+c =4 ins < 1 and the definition of Bad’ .., we have
v Veo(i))iz1
(CAY o) =Xt ] < o My [ 157 < o (€1 Moy Vi)™
(4:21) < (0 a™)™ = 0< gl 1yeay 0= 1.

Observe that

Yok) -0 = Yo (AX) + Vo) Y — Yow) - (AX +y' —6)
= ("Aypmy) X' —xpm) X + L=y - (AX +y' - 0),
where £ = X,) - X' + Yor) - Y € Ry. Thus we have, using the equality case

of the ultrametric inequality for the second equality below with the strict

inequality in Equation (4.21), and again the definition of Bad((sy¢(i>)¢>1 for the

last inequality below,

Vo) - (AX +y" = 0)] = [("Ay o) — Xok) - X' — Yooy - 0 + ¢
= max {|(‘Ay,r) — Xp(r) - X'|s [ Vo) -0 — L1}
= 1Yo 0 L] = yom) - 0)| =6

Hence, we have

0 < |ypm) - (A +y —0)| < lrgr}agﬁY&]k) |AX" +y' — 0],

which implies, since § < 1, that

1
/ / . T oLt
YoullAx'+y' = 0ll- 2 min §7 = dmnr.

Finally, for every (y',x’) in R)" x R} such that || x’[|s > €1Y,,(1), we have

1 41
|| X/ ||S HAX/ +y, - 0”[‘ > €1 Ysp(k) HAX/ + y, — OHI. Z (Sminr+mins qv b—c .

By Equation (1.7), this implies that 8 € Bad(e) for € = § e+ mns a0
O

Proposition 4.3.5. For every § € |0, -4 [, there exist b = b(8) > 0 and

@gm

C = C(6) > 0 such that for every sequence (yi)icz, in R;" — {0} satisfying
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| yig1 |l > qg lyille for all i € Z>1, we have

k
dimpy Bad(gy,),> >m—Climsup —— .
izt k—o0 logqv (NI

Proof. Fix § € ]0, q%[ Let

“log,
(4.22) b= b(6) = —ow

minr

which is positive since § < 1. By the mass distribution principle (see for
instance [Fall4, page 60]), it is enough to prove that there exist a (Borel,
9 and constants C, Cy,rg > 0,

(yi)iz1’
with C' depending only on §, such that, for every closed ball B of radius

positive) measure p, supported on Bad

r < 19, we have

: k
m—Climsupy_, Toggy Tyi Tl

uw(B) < Cyr

We adapt by modifying it quite a lot the measure construction in the proof
of [CGGMS20, Theo. 6.1].

By convention, let Yy = 1 and ng; = 0 for j = 1,...,m. For every k € Z>1,
define Yy = || yx ||r, which is at least 1 since y; € R, — {0}, and for every
j=1,...,m,let ng; € Z>o be such that

(4.23) g ™ <Y < gyt

Note that the sequence (1 j)rezs, is nondecreasing, for all j =1,...,m.
For every k € Z>o, let us consider the polydisc
1, _ 1
T(Y;) = B(0, — Y, ")x---xB(0, —
Qv

v

Yk—rm) — E(O7 qu_nk’l_l)X' . 'XE(O, qv—nhm—l) ’

where B(0,7’) is the closed ball of radius 7’ > 0 and center 0 in K,. Note that
II(Yy) = (m,O,) ™ is the open unit ball of KJ* and that II(Y%) is an additive
subgroup of K". Since the residual field k, = O, /m,O, lifts as a subfield of
order g, of K, for every ¢ € Z>(, we have a disjoint union

B(0,q,) = || (am +B(0,q,° "))

aekv
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Hence by induction, the polydisc II(Y%) is the disjoint union of

Nk+1,5 Nk
A1 = H gt

1<5<m

translates of the polydisc II(Yy1). Note that

(4.24) A > [] %Y et = a7 (e, )
1<j<m
For every k € Z>q, let us fix some elements 01 x11,...,07,,, k+1 in (1,O0y)™

(which are not unique in the ultrametric space K") such that

AV

(V) = | | (Oipsr + 0 (Vir)) -
=1

By convention, let us define Zy 5 = 0 and Iy = {II(Yp)}. For every k € Z>1,
let us define
Zk,é = {0 S (m(’)v)m : ‘(yk . 0>| < (5}

and
Io={0i1+  +0, e+ 1Y) :Vjie{l,... .k}, 1<i; <A;}.
Lemma 4.3.6. For every k € Z>1, we have
(1) for every I' € Ijyq, if I' N Zy 5 # O then I' C Zy 5,
(2) for every I € I, we have voly)'(I N Zy5) < § Yk_|r|.

Proof. (1)IfI' € Iy and I'NZy 5 # 0, let @ € I'NZy, 5. Then for every ' € I’,
if z,2’ € R, are such that [(yy -0)| = |(yr - 0) — x| and |(yx - (6/ — 0))| =
|(yx - (6/ — @) — 2'|, then by the ultrametric inequality, since 8 € Zj 5 and
0'—0 € T1(Y}1 1), by the assumption of Proposition 4.3.5, and by the definition
of b, we have

[{yk - 0)] < lyi- (0 + (0" = 0)) — (z +2')| < max {[{yx-0)|, [(yi (6’ —0))[}

<max{5 ax Y ql ];_Tlﬂ}<max{5 q bmmr}zé'
<j<m

This inequality |(yx - €')] < ¢ is actually strict, since |(yx - )] < ¢ and by
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Equation (4.22), we have ¢, !7®™inr = ¢~1§ < §. Since I’ is contained in
I(Yp) = (myOy) ™, we thus have that 8’ € Z, 5 and this proves Assertion (1).

(2) Let jo € {1,...,m} besuch that Y}, = |yk7j0]1/7"f0 where y, = (Yk,1,-- - Yk,m)-

In particular, yg j, is nonzero. For every z € R, let
Li(z)={0 € K" 1y -0 ==z},
which is an affine hyperplane of K" transverse to the jp-axis, and let

N(k,z) ={0" € (1,0,)™ : 3’ € Ly(z), |0}, —u},| < 8Y, ™ and Vj # jo,0; = u’},

which is the intersection with the open unit ball in K* of the (§ Yk_rjo)—
thickening along the jp-axis of the affine hyperplane Lg(z).

Fix I € Ij. Since vol,(B)(0,7")) = qv“(’gqv” < ¢/ for all ¥ > 0, and by
Fubini’s theorem, we have

(4.25) Vol (I NN (k,2) <8Y, ™ Ty, " =sy, ™.
J#jo

Claim 1. Let us prove that the set Zj, s is contained in the union of the sets
N (k, z) for z € R,.

Proof. Let @ = (61,...,0n,) € Zis and let z € R, be such that |(y; - 6)| =
| ¥k - 0 — z|. Let us define u; = 0; if j # jo,

_ - E]'#jo Yr,i¥j

Uiy =
Jo
Yk, 50

and u = (uq,...,up), which is the projection of @ on the affine hyperplane
Ly (z) along the jo-axis. Then, since 8 € Zj, 5, we have

3, — g = YOOk O gy

Yk jol Yk, jo |

Since Zy, 5 is contained in (7,0,)™, this proves Claim 1. O

Claim 2. Let us prove that there exists a unique z € R,, such that I N Zj s
is contained in I NN (k, 2).
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Proof. By Claim 1, the set I N Z 5 is contained in (J,cp I NN (k, 2). Assume
for a contradiction that there exist two distinct elements 2,2z’ in R, such
that there exist @ € T NN (k,z) and @ € I NN (k,2'). Let u € Li(z) and
u’ € Li(2') be the projections of 6 and 6’ along the jp-axis on Lg(z) and
Ly(2') respectively.

Let j € {1,...,m}. Note that 8 — 8’ € TI(Y}) since I € Iy. If j # jo, then
’0]‘ — 0/| < i y, ",

= Tk

v

Juj — uj| =

Furthermore, by the ultrametric inequality, since @ (respectively 6’) is con-
tained in the (0 Y,;Tjo)—thickening along the jo-axis of Lx(z) (respectively
Li(2')), and since 6 < q%, we have

|uj0 - u;'0| = |(uj0 - ejo) + (ejo - 9;’ ) (9/ Jo)|
< max{‘ujo - 6j0‘7 ’0j0 - j0’7 ‘ jo T jo|}
. 1 . 1 _
<max{0Y, °, —V, }=—Yy, "
Qv Qv

This implies since u € Li(z) and v’ € Li(z) that

S R

1<|z—-2| = u-— u'| < max uwi—ui| < max YV, — Y, 7 =—
| | |y1€ Y& - | 12i%m ‘yk‘,JH j ]’ 12i%m k 7 k )

which is a contradiction since g, > 1. This proves Claim 2. O

By Equation (4.25), Claim 2 concludes the proof of Assertion (2) of Lemma
4.3.6. ]

Since every element I’ of I, is a translate of I1(Yy41), and by Equation
(4.23), we have

m

vol?' (I') = vol' (1(Yy41)) H y EELITE > gm2m YkJr‘i~| :

For every I € I, there are Ap,q elements I’ € I, contained in I, they
are pairwise disjoint and they have the same volume vol}'(II(Y;41)). Among
them, those who meet Zj, 5 are actually contained in I N Z; s by Lemma 4.3.6

Vol (INZy5) Therefore, by Equation (4.24)

(1), thus their number is at most m
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and Lemma 4.3.6 (2), we have

L'(INZ
card {I" €Iy : I' C I, I'NZs=0} > Apyq — voly'( ,0)

voly" (I1(Y11))
3 B 5 Y_M
> gy " (Ve Yy O = oy T
k+1

(4.26) = (Y, O,

where ¢; = ¢, ™ — ¢2™d belongs to |0, 1] by the assumption on 4.

Now, let us define by induction Jy = Iy and for every k € Z>o,

Jii= e ICJ InZs=0}
JEJ,

By Equation (4.26) and by induction, we have

k
(4.27) card Jpp1 =[] e (Vi V7O = ¢f (VY M
j=1

By Lemma 4.3.6 (1) and by induction, we have

k
Top1 ={J € Lyr Vi €{1,..., k}, JNZj5 =0} ={J € Ly : T C ) “Zjs},
j=1

where ¢ denotes the complement in (,0,)™. Hence (|J Ji), -, is a decreasing

k>1
sequence of compact subsets of (m,0,)™, whose intersection is contained in

)
M1 “Zrs = Bad(y,) .

For every k € Z>q, let us define a measure

e = (vol'(IL(Yy,)) card Ji)~ Z voli' | 7,
JeJy

which is a probability measure with support |J Ji. By the compactness of
(myO,)™, any weakstar accumulation point g of the sequence (ug)r>1 is a
probability measure with support in Bad‘(syi)Dl.

For every closed ball B in (m,0,)™ with radius ' € 0,79 = Y, ™%, let
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k € Z>1 be such that

(4.28) Y < <y

Note that [t] < t+1 < g, ¢ if¢ > 1, and that ¢/ ¢;**7 " > Ym0y g > 1

for every j = 1,...,m, by Equation (4.23). Then B can be covered by a subset
of I y1 with cardinality at most

TT I @] < oym adm v

m
j=1

Lot ¢ = 8w 0, which depends (besides on m, ¢, and r) only on 4.

minr

Defining Cy = ¢3™ Ylm, by Equations (4.27) and (4.28), we thus have

pest(B) < g2 ()" VI (card Jin) T < g2 (7)™ e v

k
<y (T’)m_clogqu Yi

Therefore, since the ball B is closed and open and since v’ < r¢ < 1, we have

: k
m—C limsupy_, oo Togg, Yy
)

. ’ m—C’ﬁ ’
w(B) < limsup Cy (') g0 Yk = C (r')

k—o0

which concludes the proof of Proposition 4.3.5. O

4.3.3 Proof that Assertion (2) implies Assertion (1) in Theorem
1.3.1

Suppose that A is (r,s)-singular on average. Then by Corollary 4.1.11, the
matrix ‘A is also (s,r)-singular on average. By Remark 4.1.6 (2), in order to
prove that there exists € > 0 such that Bad 4(¢€) has full Hausdorff dimension,
we may assume that the matrix ‘A is completely irrational.

By Lemma 4.1.7, let (yx)kez., be a best approximation sequence in K"
for the matrix ‘A with weights (s,r), and let ¢ > 0 be such that M;Y;41 <
q; for every i € Z>1. Fix some § € ]0, qv%[ and let b = b(0) > 0 and
C = C(9) > 0 as in Proposition 4.3.5. By Proposition 4.3.1, for every a > b,
we have a subsequence (y,x))x>1 such that the properties (4.13) and (4.14)
are satisfied. Proposition 4.3.4, whose assumption is sa‘lcisﬁed by the second
+

inequality in Equation (4.13) and where ¢ = § e T ins q; "¢, gives that
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Bad 4(¢€) contains Bad‘(syw(i))bl. Therefore, using Proposition 4.3.5 applied to

the sequence (Ygo(i))zéb whose assumption is satisfied by the first inequality
in Equation (4.13), and using Equation (4.14) for the last inequality, we have

k
dimy Bad z(e) > dimpy Bad‘gy%(i))i>1 >m—Climsup ————— >m — g )

koo 108y, Yo(h) a
Letting a tend to +oo, this concludes the proof that Assertion (2) implies
Assertion (1) in Theorem 1.3.1. O
4.4 Background material for the upper bound

4.4.1 Homogeneous dynamics

Let Ky, Oy, my, Ry, gy be as in Subsection 4.1.1. Let m,n € N — {0} and d =
m + n. We fix some weights r = (r1,...,7,) and s = (s1,...,8,) as in the
introduction. In this subsection, we introduce the space of unimodular grids
Y in K2 and the diagonal flow (a‘),cz acting on this space. Let

Go =SLg¢(K,) and G = ASL4(K,) = SLg(K,) x K2,
and let

I = SLg(R,) and T = ASL4(R,) = SLq(R,) x RZ.
The product in G is given by
(4.29) (g,u) - (¢, u') = (99, u + gu)

for all g,¢’ € Go and u,u’ € K2. We also view G as a subgroup of SLg;1(K,)

by
G = {(g Z{) 1 g € SLy(Ky), u e de} .

We shall identify Gg with the corresponding subgroup of G. We consider
the one-parameter diagonal subgroup (a‘)sez of Go, where a = diag (()a_, a;)
and

a_ =diag (m,™,...,m, ™) € GLy(K,) and a; = diag(7',...,m") € GL,(Ky) .

v
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Note that for all 8 € K", £ € K' and ¢ € Z, we have
(4.30) I a’ o v = qﬁ [0 and | aﬁ Ells= que 1€1s -

We denote by G the unstable horospherical subgroup for a in G' and by
U the unipotent radical of GG, that is,

I; u

+ _ BT 0 0 _ d . d

G —{gEG.egr_nooaga =TIy} and U-{(O 1>.u€KU}.
I, O

LetU+:G+mU={ 0 I,

0 O

Tw € Kvm}, which is a closed subgroup

— o £

in G normalized by a.
Let us define
X = Go/ro and y = G/F .

Even though we have Covol(R%) = ¢9~1? by Equation (4.2), we say that
an R,-lattice A in K¢ is unimodular if Covol(A) = Covol(R%). A translate
in the affine space K2 of an unimodular lattice is called an unimodular grid.
We identify the homogeneous space X = SL4(K,)/ SL4(R,) with the space of
unimodular lattices in K¢ by the equivariant homeomorphism

v=gTo~ As =g R},

and the homogeneous space Y = ASL4(K,)/ ASL4(R,) with the space of uni-
modular grids by the equivariant homeomorphism

(4.31) y:<g T)FHT\y:gRg—i-u.

We denote by 7 : Y — X the natural projection map (forgetting the transla-
tion factor), which is a proper map. Note that the fibers of 7 are exactly the
orbits of U in Y, and in particular each orbit under U™ in ) is contained in
some fiber of 7 (see Lemma 4.4.3 for a precise understanding of the U -orbits).

For every N € N— {0}, we denote by dgr, (k) the right-invariant distance
on SLy(K,) defined by for all g, h € SLy(K,)

dst,y () (9, ) = max{In(1 + [ gh™" —id || ), In(L + [ hg™ —id[])}
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where ||| ||| is the operator norm on My (K,) defined by the sup norm || ||
on KN. We endow every closed subgroup H of G with the right-invariant
distance dy on H, which is the restriction to H of the distance dsr,, | (x,)- For
instance, identifying the additive group K™ with U™ by the map w — @ =
I, 0 w
0 I, 0], we have

0 0 1
(4.32) Vuw,w € K™, dy(@,w) =In(1+ |w—w']),
We also consider the distance dy+ ,,, on U induced from the norm || - || on
K7, that is,
(4.33) Vw,w' € KM, dys p(@,w) = [Jw—'|].

Then it is clear that (U™, dy+ ,,) is isometric to (K", || -||). On the other hand,
observe that (K", - ||) or (U",dy+ ,,) are locally bi-Lipschitz to (U™, dy+).
So, we fix small 0 < ry < 1 such that for any w,w’ € K"

o~ 1 N
(438)  dpe(@0) <o = Slw— || < dys (@) < - o]

We endow Y = G/T" with the quotient distance dy of the distance dg on

G, defined by
Yyy €Y, dy(y.y) =min de(y7, 7)

for any representatives y and y’ of the classes y and y' in G/T’ respectively.
This is a well defined distance since the canonical projection G — )Y is a
covering map and the distance dg on G is right-invariant. Given any closed
subgroup H of G, we denote by B (z,r) (respectively By(x,r)) the open ball
of center x and radius r > 0 for the distance dp (respectively dy), and by B
the open ball By (id,r). Note that for all y € Y and r > 0, we have (for the
left action of subsets of G on ))

By(y,r) = BSy.

In particular, we denote by BY "M the open ball of center id and radius r > 0
for the distance dg+ ,, on U™.
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Lemma 4.4.1. For all e >0 and k € Z>o, we have

—kpUT _k Ut —kpU*T,m _k Ut,m
a BE a” C Bln(1+€q;ktl\irxr) and a Bg a” C ng;kminr’
Similary, we have
kpUT _—k U+ kpUtm _—k Ut,m
a B€ a C Bln(1+€q5maxr) and a Bg a C Beqllfmaxr'

Proof. The proof of the second claim being similar, we only prove the first
k

one. For every w = (wy,...,wy,) € K", we have a~ %% a* = a_"w and
—k rik —kminr
= g S| < .
oo = mas [t < gt ]
The result hence follows from Equations (4.32) and (4.33). O

Given a point z in ) (and similarly for x in X'), we define the injectivity
radius of ) at x to be

inj(z) =sup{r >0:V~vy el —{id}, Bg(@ r)NBa(@y,7)=0},

which does not depend on the choice of ¥ € G such that x = zT', and is positive
and finite since the canonical projection G — ) is a nontrivial covering map.
For every r > 0, we denote the r-thick part of ) by

Y(r)={ze€Y:injlx) >r}.

It follows from the finiteness of a (quotient) Haar measure of ) that Y(r) is a
compact subset of ) for every r» > 0, and that the Haar measure of the r-thin
part Y — Y(r) tends to 0 as r goes to 0. For every compact subset K of Y,
there exists r > 0 such that K C Y(r).

4.4.2 Dani correspondence

In this subsection, we give an interpretation of the property for a matrix A €
Mnn(Ky) to be (r,s)-singular on average in terms of dynamical properties
of the action of the one-parameter diagonal subgroup (a‘)scz on the space of
unimodular lattices, as originally developped by Dani (see for instance [K1e99,
A
§4]). For every A € M, n(Ky), let uy = 6” I € Gy.
n
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Proposition 4.4.2. A matric A € My, ,(Ky) is (r,s)-singular on average if
and only if the forward orbit {a’usaR% : £ € Z>o} in X of the lattice uaRZ
under a diverges on average in X, that is, if and only if for any compact subset
Q of X, we have

.1 ’
A}gnooﬁ card{¢ € {1,--- ,N}:a"usTo€Q}=0.

Proof. Let @ be a compact subset of X'. By Mahler’s compactness criterion
(see for instance [KST17, Theo. 1.1]), there exists € € ]0,1[ such that @ is

contained in
Xoe={gR} € X:V(6,¢) € gRI—{0} C K"x K}, max{||0|r,[|&|s} > e},

which is the subset of X' consisting of the unimodular lattices with systole (for
an appropriate quasinorm) larger than e. Observe that by Equation (4.30),
for all sufficiently large ¢ € Zs>i, there exists an element y € R — {0}
such that (Ay), < eq;* and ||y ||s < eqf, if and only if we have a‘usR? =

VA

a 0 I A
- m Riec Xx — X-..

(o al)\o 1) >

With £, = [—log,, ], it follows that

0<card{¢e{l,---,N}:ausR € Q}
< card{fe{l,--- ,N}:a‘uas R € X-..}
= card{f € {L,--- \N}: By € R} — {0}, (Ay)r <eq;”, |lyls < ear}

2
ET _(p_ _
< CaI'd{EE {17 7N}:ﬂy€R§_{O}7 <AY>1'§ ;qv (¢ 66)7 ||Y||s S%{ Ze}
2

<Uletcard{fe{l,--- N —Ll}: fy € R} — {0}, (Ay), < Z—qv_g, lylls < qf}.

After dividing by N (or equivalently by N — £.) this last expression, its limit
as IV tends to 0 exists and is equal to 0 if A is (r,s)-singular on average (see
Equation (1.8)). Hence we have limy_o 3 card{¢ € {1,--- ,N} : a®uu I €
Q} = 0 by the above string of (in)equalities.

The converse implication follows similarly by taking for the compact set Q)
the subset As.. O
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We denote by || |sr the quasi-norm on K¢ = K™ x K" defined by

d a
[ (0,8) llrs = max {||0[l;™, [ £]ls" } -
Let € > 0. We define
(4.35) Lo={yeY:Vuel, |uls>e}.

By Mahler’s compactness criterion (see for instance [KST17, Theo. 1.1]) and
since the natural projection 7 : Y — X is proper, the subset L. is compact.

For every 0 € K", we denote by y4 ¢ the unimodular grid usRZ — (8).

Lemma 4.4.3. For every A € My, n(Ky), the map KJ' — Y defined by
0 — yae induces a local bi-Lipschitz map ¢ from T™ = K"/R]" endowed
with the quotient distance drm of the distance on K" defined by the standard
norm || ||, and the UT -orbit Uty o endowed with the restriction of the distance
dy of Y. In particular, the map ¢ is isometry onto the Ut-orbit Utya
endowed with the distance dy+ ,, of U in Equation (4.33).

Proof. The map K,* — Y defined by 6@ — ya¢ is clearly invariant under
translations by R;", and induces a bijection

(4.36) ¢4 :60 mod R)" — YA,0

from T™ = K" /R™ to the orbit Uty4 . This orbit is contained in the fiber
7 (za) of 4 = uag R™ for the natural projection 7 : J — X, as already

seen.
I, A 0

For all A € My, »n(K,) and @ € K", let upg = | 0 I, 0] € G, so
0O 0 1

that we have ya9 = ua,_oI. For all 8,0’ € T™, denoting lifts of them to
K™ by 0,6 respectively, identifying K¢ with K™ x K.*, and using Equation
(4.29) and right-invariance of dg,

dy(¢A(0)7 ¢A(9/)) = inf dU+ ((id7 (‘T - 57 0))7 (id7 (_5/7 O)))

TeERM

= inf In(1+6-6 —=z|).
TER™
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Thus it follows from Equation (4.34) that if dr= (6, 80") < ¢; %, then

51(6.8)) < dy(64(6),64(8)) < drn(6,0').
O

Proposition 4.4.4. Let ¢ > 0. For every (A, 0) € My, n(K,) x K" such that
0 € Bad 4(¢), one of the following statements holds.

1. There exists y € R such that (Ay — 0), = 0. Note that given A, there
are only countably many 0 satisfying this statement.

2. The forward a-orbit of the point ya g is eventually in L., that is, there
exists T > 0 such that for every £ > T, we have a* yae € Le.

Proof. Assume for a contradiction that both statements do not hold. Then
there exist infinitely many ¢ € Z>; such that aEyAﬁ ¢ L., hence such that
there exists y, € R with (Ay, — 0), < ¢;% @ and ||y, ||s < ¢’cd. Since the
statement (1) does not hold, the inequality

1y [ls{Ay —)r <e

has infinitely many solutions y € R,', which contradicts the assumption 8 €

Bad 4(e). O

4.4.3 Entropy, partition construction, and effective variational
principle

In this subsection, after recalling the basic definitions and properties about
entropy (using [ELW] as a general reference, and in particular its Chapter 2),
we give the preliminary constructions of o-algebras and results on entropy that
will be needed in Section 4.5. In particular, we give an effective and positive
characteristic version of the variational principle for conditional entropy of
[EL10, §7.55], adapting to the function field case the result of [KKL].

Let (X,B,u) be a standard Borel probability space. For every set E of
subsets of X, we denote by o(F) the o-algebra of subsets of X generated by
E. Let P be a (finite or) countable B-measurable partition of X. Let A, C and
C' be sub-o-algebras of B. Suppose that C and C’ are countably generated.

For every x € X, we denote by [z]p the atom of x for P, which is the
element of the partition P containing 2. We denote by [z]¢ the atom of z for C,
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which is the intersection of all elements of C containing x. Note that [x],p) =
[z]p. We denote by (u})zcx an A-measurable family of (Borel probability)
conditional measures of p with respect to A on X, given for instance by [EL10,
Theo. 5.9].

Using the standard convention 0log, 0 =0 and using log, instead of log
for computational purposes in the field K, the entropy of the partition P with
respect to p is defined by

Hy(P) ==Y u(P)log,, u(P) € [0,00].
pep

Recall the (logarithmic) cardinality majoration
(4.37) H,(P) <log,, (card P) .

The information function of C given A with respect to u is the measurable
map 1,(C|A) : X — [0, 00| defined by

VreX, L(ClA) ()= —log, ui(lele) .

The conditional entropy of C given A with respect to u is defined by
(4.38) H,\(ClA) = /X L.(ClA) dy .

Recall the additivity property H,(CVC' | A) = H,(C|C'V.A)+ H,(C'| A) (see
for instance [ELW, Prop. 2.13]) so that if A C C' C C, we have

(4.39) H,(C|A) =H,C|C)+ H,(C'|A) .
Let T : (X,B,n) — (X,B,u) be a measure-preserving transformation.

Assume that the o-algebra A is strictly T-invariant, i.e., 7' A = A. If the
partition P has finite entropy with respect to u, let

n—1 n—1
h(T,PlA) = lim_ %H,( \/ T7'P|A) = gﬁ%ﬂ% \/ T7PlA) .
=0 - =0

The conditional (dynamical) entropy of T' given A is

hu(T|-’4) = Sup h#(T,P]A) )
P
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where the upper bound is taken on all countable B-measurable partitions P
of X with finite entropy with respect to pu.

With the above notations, the following result is proven in [KKL, Prop. 2.2
and Appendix A].

Proposition 4.4.5 (Entropy and ergodic decomposition). IfT-1A C A,
then for every countable B-measurable partition P with finite entropy with

respect to u, we have

ho(T, P|A) = /X he (T, PIA) dyu(z) and (T} A) = /X e (TIA) dp() . O

We now work in the standard Borel space ) of unimodular grids, endowed
with the distance dy (see Section 4.4.1). Let § > 0. For every subset B of ),
we define the §-boundary OsB of B by

OsB={ycY: inf dy(y,y inf  dy(y,y") <9
sB={yey: mt dyly.y)+ f dy(yy’)<s}

if B and Y — B are nonempty, and 5B = () otherwise. Note that for all subsets
B and B’ of Y, we have

(4.40) 0s(B U B/) C 0sBUOsB' and Os(B — B'n B) C 9sBU 0sB' .

We also have 9sB C 0y B if § < ¢’. Given any set P of subsets of ), we define
the d-boundary OsP of P by

OsP = U 0sB .
BeP

Lemma 4.4.6. For every r > 0, there exist 6, € |0,r]| and a finite measurable
partition P = {Py,..., Py, Px} by closed and open subsets of Y such that

1. the subset Ps, is contained in the r-thin part Y — Y(r),

2. for every i € {1,..., N}, there exists y; € Y(r) such that BSy; C P, C
By, 2
r y27

3. the set 05, P is empty.

Proof. Choose a finite maximal r-separated subset {yi,...,yn} of Y(r) for
the distance dy, which exists by the compactness of Y(r). By induction on
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1=1,..., N, we define a Borel subset P, of ) by

Pz'ZBrGyz‘—<UPU U BG%)-

J=t+1

Define Py, =Y — U;V:1 P;, which is also a Borel subset of ).

By construction, we have P; C By;. Since the set {yi,...,yn} is e
separated, the intersection of open balls Bgyi N Bgyj = By(yi, 5) N By (y;, 5)
is empty if j > ¢. By construction, the intersection Bgyi N P; is empty if j <.
Therefore P; contains Bgyi, and Assertion (ii) follows.

By construction, we have U;V:1 P; C Ujvzl BYy; = U§V11 By(yj,r), and the
later union contains Y(r), since the e-separated set {y1,...,yn} is maximal.
Assertion (i) follows.

For every s > 0, let ny = [mgi&q:l)"‘ € Z and 9, = 1n(1fq‘§§i1) > 0.
For all 6 > 0 and y € Y, assume that there exists a point z € 9;By(y, s).
Let 2/ € By(y,s) and 2" ¢ By(y,s) be such that dy(z,z') + dy(z,2") <
§. Since the operator norm on My 1(K,) has values in {0} U ¢Z, the set
{dy(y,vy) : y,y € Y} of values of the distance function dy on ) is contained
in {0}U{In(14q?) : n € Z}. Since s € | In(1+¢*~1),In(1+¢")], we hence have
dy(y,2') < In(1 + ¢»~1) since 2/ € By(y, s) and dy(y,2"”) > In(1 + ¢7) since
2" ¢ By(y,s). Therefore by the triangle inequality and the inverse triangle
inequality, we have

§ > dy(z,2) +dy(z,2") > dy(2,2") > dy(y, 2") — dy(y,2)
>In(l+q¢p) —In(1+q") =4,

Hence 95 By(y, s) is empty for every § € 0, d].
By Equation (4.40), for every 6 > 0, we have

N N
0sP < | 0s(By;) U U (BSy)) -
Hence Assertion (iii) follows with ¢, = min{d",r}.
2
Note that since the distance dg has values in {0} U {In(1 + ¢) : n € Z},

the open balls in G are open and compact, and since the canonical projection
G — ) is open and continuous, the subsets P; of ) are by construction open
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and compact, and P, is closed and open. ]

Let C be a countably generated g-algebra of subsets of ). Note that for
every j € Z, the o-algebra a’C is also countably generated and
[Yaic = o’ [a™7yle -
We say that C is a~!-descending if aC is contained in C. In particular, for all

y €Y and j € Z>(, we have

[Yle C [Ylwc -

Given a Borel probability measure p on ) and a closed subgroup H of G, we
say that C is H -subordinated modulo p if for y-almost every y € ), there exists
r =1y € ]0,1] such that we have

By C [yle € Bfj,y .

If C is U -subordinated modulo x and if furthermore p is a-invariant, since a
normalises UT and by Lemma 4.4.1, for every j € Z, the o-algebra a’C is also
Ut-subordinated modulo .

For every o-algebra A of subsets of ), for all a,b in Z U {£oo} with a < b,
we define a o-algebra A% of subsets of ) by

b

A =\/ aiA:a( U aiA).

i=a a<i<b

Note that if A is countably generated, then so is A%.

Proposition 4.4.7. For every r € |0,1[, there exists a countably generated
sub-o-algebra AUT of the Borel o-algebra of Y such that

1. the countably generated o-algebra AU s a~!-descending,
2. for every y € Y(r), we have [y] o+ C BU"y,

3. for every y € ), we have Bgy C [y] qu+, where 6, € ]0,7] is as in
Lemma 4.4.6.

Let p be a Borel a-invariant ergodic probability measure on Y with u(Y(r)) > 0.
Then AVT is Ut -subordinated modulo .

159



CHAPTER 4. DIOPHANTINE APPROXIMATION OVER GLOBAL
FUNCTION FIELDS

Proof. Fix r € ]0,1]. Let P = {Pi,...,Pn,Px} be a partition given by
Lemma 4.4.6 for this r. We prove a preliminary result on the countably gen-

[e.o]

erated sub-o-algebra o(P)&°.

Lemma 4.4.8. For every y € Y, we have B(ISJ:y C [y]a(p)go.

Proof. Let h € Bg . Assume for a contradiction that hy ¢ [Ylo(p)ze- Then
there exists k € Zx>( such that a~*hy and a*y belong to different atoms of
the partition P. Let @« = minr > 0. By Lemma 4.4.1, we have
(4.41)

dy(a=*hy, a7 *y) < dg(a™Fha®,id) = dy+ (a7 ha*,id) < ¢; %6, <6, <r.

It follows that both a=*hy and a~—*y belong to the §,-boundary ds P of P. But
the set 05, P is empty by Lemma 4.4.6 (3), which gives a contradiction. [

By Lemma 4.4.6, for every i € {1,..., N}, there exist y; € J(r) and a Borel
subset V; of )V contained in BTG such that P; = Vjy;. Let PUT be the sub-o-
algebra of the Borel o-algebra of ) generated by the subsets Py, N7~ 1(W),
where W is a Borel subset of X, and the subsets ((U*B) N V;)y;, where i €
{1,...,N} and B is a Borel subset of G. Then PUT s countably generated,
since the Borel o-algebra of X is countably generated and U™ is a closed
subgroup of G. For every y € ), the atom of y for PUT s equal to

Uy if ye Py
4.42 =
(442) lpo+ {Pm(B}!*y) if 3ie{l,...,.N}, yeP;.

Let us now define AV = (PU")%°, which is a countably generated sub-
o-algebra of the Borel o-algebra of ), since so is PUT. Note that a A" =
(PUT)3° ¢ AUT | which proves Assertion (1).

For every y € Y(r), since P», C Y — Y(r) by Lemma 4.4.6 (1) and by
Equation (4.42), we have [y] o+ C [ylpu+ C BY "y, which proves Assertion
(2).

In order to prove the last Assertion (3), let us take y € Y and h € BC;UTJr and
let us prove that hy € [y] ,s+. Since we have hy € [y]y(p)e by Lemma 4.4.8,
for every k > 0, there exists i € {1,..., N, oo} such that the points a=*y and
a~*hy = a=*ha*(a=*y) both belong to P; € P. If i = oo, then by Equation
(4.42), the points a=*y and a=*hy lie in the same atom [a_ky]PU+ = UaFy
since a *ha® € Ut. Assume that 1 < i < N. Since h € ngj, it follows from
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Equation (4.41) that a *ha* € By+. Hence by Equation (4.42), the points
a~*y and a~*hy lie in the same atom [a*ky]Pm = PN (BY aky) of PUT.
This proves Assertion (3).

Now let p be an a-invariant ergodic probability measure on ) with u(Y(r)) >
0. By ergodicity, for py-almost every y € ), there exists k € Z>; such that
a~*y € Y(r). Since aF AUT © AU"| by Assertion (1) and by Lemma 4.4.1, we
have

ki.—k kpUt —k Ut
[:‘/L4U‘F C [y]akAU+ =a [Cl y]AU+ Ca Br a "y C B1H(1+qlvcmaxr)y .

With Assertion (3), this proves that AU" is U*t-subordinated modulo w0

Let us introduce some material before stating and proving our next Lemma
4.4.9. The map dr g : K" x K" = [0, +00[ defined by

(443) v 57 €, € Kvm7 dem,I‘(£7 5/) = ” E - 5/ Hr

is an ultrametric distance on K, since the r-pseudonorm || ||, satisfies the

ultrametric inequality : for all €, ¢’ € K, we have

(4.44) 1€+ & e < max{[| €]l 1€ ]I},

with equality if || £ # || &'||r- Note that the map similar to dgm . in the
real case of [KKL] is not a distance if m > 2 for general r. For every € > 0,
we denote by BeK 7T the open ball of center 0 and radius € in K" for dgm r.
Note that the distance dxm » is biholder equivalent to the standard one: For
all £,& € K" such that ||€ — &' | <1, we have

(4.45) 1€ — € | ™ < dicgpe(€,€) < || €— € || 7 .

We also endow the quotient space T = K"/R]" with the quotient
distance dpm, of the distance dgm, on K" defined by Equation (4.43).
For every A € M, »(K,), we denote by dy+y, o the distance on the orbit
Utyao = ¢a(T™) induced from dym ., that is,

dyrty o0 (04(0),04(0")) = drm £(0,6)).

Then the homeomorphism ¢4 defined in Lemma 4.4.3 is also isometry for the
distances dym » and dir+y, v
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Using the identification w — @ between K™ and UT (see Subsection
4.4.1), for every € > 0, we denote by BE“’ the open ball of radius € in U™
centered at the identity element for the distance dy+, on U™ induced from
the distance dgm, on K. The map u — uyap from U™ onto UTya is 1-
Lipschitz and locally isometric for the distances dy+  and dyy+,,  »- Improving
Lemma 4.4.1, for all € > 0 and k € Z, we have

(4.46) a kBUtrak = BGUqT,f :

Again using the (locally compact) topological group identification w — @
between (K™, +) and U, we endow UT with the Haar measure m;+ which
corresponds to the normalized Haar measure vol})" of K" (see Section 4.1.1).
For every j € Z, the Jacobian Jac; with respect to the measure m+ of the
homeomorphism ¢; : v +— @ v a™/ from Ut to Ut (which is constant since
¢; is a group automorphism and my+ is bi-invariant) is easy to compute: we
have

(4.47) Jac; = ¢J I*I.

We consider the following tail o-algebra:

(o olNe o]
Ut i AUt . Ut . Ut
(4.48) AL = \/ al AV = lim (AY7)R = lim (PY7)7.
k=1i=k
This o-algebra may not be countably generated, but it is strictly a-invariant,

ie., aAl" = AU = a1 AU" hence we will use this o-algebra to observe the
entropy relative to U™T.

Lemma 4.4.9. For every r € |0,1[, let AU be as in Proposition 4.4.7 and
AU be as in Equation (4.48). Let p be an a-invariant ergodic probability
measure on Y. Then

hu(a ™ AL") < rl .
Furthermore, if u(Y(r)) > 0, then
hu(a ™ AL") = Hy (A7 [a A”") .

Proof. Let us prove the first assertion. By [EL10, Prop. 7.44], there exists a
countable Borel-measurable partition G with finite entropy which is a generator

for a modulo y, such that o(G)§ is a~!-descending and GT-subordinated
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modulo p. Following the proof of [LSS19, Lemma 3.4], it follows from [ELW,
Prop. 2.19 (8) and Theo. 2.20] that

hu(a ALY = Hu(0(G)o ()5 v AL ).

Using the continuity and monotonicity of entropy [ELW, Prop. 2.12 and Prop.
2.13], we have

H,(0(@)lo(@)F v AL) = lim H,(o(@)lo(@)F v (A7 )F)

< lim H,(c(G)F V (AU ")[a(a(G)5 v (AVT)5%).

Note that for each £ > 1 the o-algebra o (G )8"\/(./4UJr )7° is countably generated,
a~!-descending, and U *-subordinated since [y] (AU 2o C Uy for all y € Y and

since o(G)5° is Gt-subordinated. Thus by [EL10, Prop. 7.34] (recalling that
we are using logarithms with base ¢,), we have

] U+ kBU+ —k
Hu(o(@)F v (A7) a(0(@)F v (A7) = lim ool (Z L

)

where ug+ is the leaf-wise measure of p at © € ) with respect to U™ as defined
in [EL10, Theo. 6.3]. By [EL10, Theo. 6.30] (which applies since U™ is abelian,
hence unimodular) and by Equation (4.47) (see also [EL10, §7.42]), we have

lim sup =0
koo k2 gl :
hence we have . .
. log, ¥ (a"BY a7
lim < |r|
k—o0 k

This proves the first assertion of the lemma.

To prove the second assertion, let us take a sequence of finite partitions
(PY " )i>1 of Y such that o(PY") 2 PUT| which is possible since PU" is
countably generated. Since p is ergodic and u()(r)) > 0, for p almost every
y € ), there exists an increasing sequence of positive integers (k;)i>1 such
that a*y € Y(r). By Proposition 4.4.7(2), we have [ak"y]AU+ C BU"akiy for
all ¢ > 1. Hence it follows from Lemma 4.4.1 that

U+
—k; minr

— q kiqki —k; gUT ki
[y](pUJf)ioki =a [Cl y](pUJF)So Ca Br ary C Bln(lJrrqv )

Y.
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Taking i — 0o, we have [y] (U)o = {y} for u almost every y € ). It means
that (PU)>_ = By modulo j, where By is the Borel o-algebra of V. It follows
that \/32, (P7)% = (PU7)> = By modulo i, and (P{)> € (P>
for each k£ > 1. Again using [ELW, Prop. 2.19 (8) and Theo. 2.20] and the
continuity of entropy, we have

h(a=HALT) = Jim (o™t PETIAL)
= lim H, (P (P v AL)
= H,(PUT|(PV)5° v AL)
= H,(PY"[(PY)3°) = Hu(A”" [aAY").

This proves the second assertion of the lemma. O

Let us introduce some more material before stating and proving our final
Proposition 4.4.10 of Subsection 4.4.3. Let A be a countably generated sub-o-
algebra of the Borel o-algebra of V. For all j € Z>¢ and y € ), let

(4.49) VEA={ueU" 1uy € [ylual,

which is a Borel subset of U™, called the U™ -shape of the atom [y], 4. Note
that for every j € Z>q, we have

V;/aJ.A =d V'uf_ljy a’.

Let us define a Borel-measurable family (T“jA of Borel measures on ),

Yy )yey )
that we call the U™ -subordinated Haar measure of o’ A, as follows:
o if mU+(Vya]A) is equal to 0 or oo, we set T;J‘A =0,

e otherwise, T;]A is the push-forward of the normalized measure

1

by the map u — uy.

Now let i be a Borel a-invariant probability measure on ), such that A
is UT-subordinated modulo p. In particular, for p-almost every y € ), the
atom Vy“jA has positive and finite my+-measure, hence the measure T;j'A is
a probability measure with support in [y],; 4. Furthermore, if z € [y], 4 then
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there exists u € U™ such that z = uy, V;‘jA = Vy“jAufl, and T;‘jA = T;jA, by
the right-invariance of mg+.

The following proposition is a function field analog of the effective real case
version [KKL, Prop. 2.10, §2.4] of [EL10, §7.55].

Proposition 4.4.10. Let p be a Borel a-invariant ergodic probability measure
on 'Y and let A be a countably generated sub-o-algebra of the Borel o-algebra
of Y which is a~'-descending and U™t -subordinated modulo . Fiz j € Z>1 and
a U™ -saturated Borel subset K' of Y. Suppose that there exists € > 0 such that
[2]4 C BV T, for every z € K'. Then we have

H, (Alad A) < jlr| + / log 7 4((Y — K') U BV *Supp 1) du(y).
Yy

Proof. We fix u1, A, j, K’ and € as in the statement. By for instance [EL10,
Theo. 5.9], let (“Z]A>y ey be a measurable family of conditional measures of

p with respect to a’/ A, so that for p-almost every y € ), the measure u;jA
is a probability measure on Y giving full measure to the atom [y], 4, with

ng A — ng A'if 2 € [y]aia, and such that the following disintegration formula
holds true:
(4.50) 17 =/ ps A dp(y) -

yey

Let p, : y — ,u;jA([y]A) and pr : Yy — T;jA([y]A), which are nonneg-
ative and measurable functions on ). Since A is a~!-descending and U*-
subordinated modulo p, the atom [y] 4 contains an open neighborhood of y
in the atom [y, 4 for p-almost every y € V. In particular, the function p; is
p-almost everywhere positive.

Since A is countably generated and a~'-descending, for every y € Y, the
atom of y for a/ A is countably partitioned into atoms for A up to measure 0,
that is, there exist a finite or countable subset I, of [y], 4 and a usz—measure
zero subset Ny of [y],i 4 such that

(4.51) [Yloia =Ny U | | [2]a

z€ly

Let I}, = {x € I : [¥] 4 N Supp p # 0}.
Lemma 4.4.11. Let x € I,
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(1) If w ¢ T, then A ([z]4) = 0.
(2) If x € I, then [z]4 is contained in (¥ — K') U BUtr Supp p.

Proof. (1) This follows since Supp ,ung is contained in Supp u.

(2) If = € I, there exists z € [x]4 N Supp p. For every 2’ € [x]4, we have
either 2/ € Y — K’ or 2/ € K'. In the second case, since A is U T-subordinated
and K’ is UT-saturated, we have z € [z]4 = [¢/]a € U'2’ € K'. Hence by
the assumption of Proposition 4.4.10, we have 2’ € [z]4 = [2]4 C BU' Ty

Bg o Supp p, which proves the result.

O]

By the definition of the U%t-subordinated Haar measure of a/A, for u-

almost every y € ), we have

mU*(VyA) . mU*(VyA) o my+ (VyA)

p’l’(y) =

Hence, by the a-invariance of ;1 and by Equation (4.47), we have

[ tom pe(2) duz) = ~log,, Jac; =~ x|
z€Y
We have

Hy(Ala?A) —j |r]

- /ey (logg, Pu(z) — log,, p-(2)) du(z)
B / y/ N (log,, pr(z) —log,, pu(z)) dM;jA(Z) du(y)
ye z€

:/ / (log,, pr(2) — log,, pu(2)) dus'A(2) du(y)
yey :EEI’ Ze[m]A

aJ.A T ;
/ > log,, @LA([ t‘l; s A ([2]4) du(y)

eyxEI’ x
< [ g, (3 (L) duty)
yey mEI’
s/ym%@WW—man%ww»W@,
ye
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e by the definition of the conditional entropy in Equation (4.38),

e by the disintegration formula (4.50),

e since ,ugj“‘l gives full measure to [y], 4 which is partitionned as in Equa-
tion (4.51), and by Lemma 4.4.11 (1),

e since when z varies in [z]4 C [y]4i4, the values p,(z) = p¥A([2]4) =
MZjA([x}A) and p-(z) = 794([2]4) = ;jA([:c]A) are constant,

e by the concavity property of the logarithm,

e by Lemma 4.4.11 (2).

This proves the result. O

4.5 Upper bound on the Hausdorff dimension of
BadA(e)

4.5.1 Constructing measures with large entropy

In this subsection, we construct, as in [KKL, Prop. 4.1] in the real case, an
a-invariant probability measure on ) giving an appropriate lower bound on
the conditional entropy of a relative to the o-algebra Ag: defined in Equation
(4.48) with respect to the o-algebra AUT constructed in Proposition 4.4.7.

For any point x in a measurable space, we denote by A, the unit Dirac
measure at z. We denote by — the weak-star convergence of Borel measures
on any locally compact space.

Let us denote by X = X U {ccx} and Y = Y U {ooy} the one-point
compactifications of X and ), respectively. We denote by 7 : Y — X the
unique continuous extension of the natural projection 7 : Y — X', mapping ooy
to coy. The left actions of a on X and ) continuously extend to actions on X
and Y fixing the points at infinity coy and coy. For every countably generated
o-algebra A of subsets of X or ), we denote by A the countably generated
o-algebra of subsets of X or ) generated by A and its point at infinity. For a
finite partition @ = {Q1,...,QN,Qx} of Y with only one unbounded atom
Qoo, we denote by Q the finite partition {Q1,...,QN, Qs = Qoo U {00y}} of
Y. Note that \/f:a a—tQ = \/i’:a a"t 9 for all a,bin Z with a < b.

For every n € [0, 1], we say that an element x € X has n-escape of mass
on average under the action of a if for every compact subset @ of X,

| ¢
l}\l&lélofﬁ card {{€{l,--- ,N}:a2 ¢ Q} >n.
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When 1 = 1, as defined in the Introduction and in Proposition 4.4.2, we
say that x diverges on average in X under the action of a. For every A €
Mn(Ky), we denote by 4 = uaR)" € X its associated unimodular lattice
(see Section 4.4.2), and by n4 € [0, 1] the upper bound of the elements 1 € [0, 1]
such that x4 has n-escape of mass on average. Note that this upper bound is
actually a maximum.

Proposition 4.5.1. For every A € M, ,(K,), there exists a Borel probability
measure pa on X with pa(X) = 1 —na such that for every e > 0, there
exists an a-invariant Borel probability measure Ti on Y satisfying the following
properties.

1. The support of @ is contained in LU {ooy}, where L. is defined in
Equation (4.35).

2. We have Tt = pa. In particular, there exists an a-invariant Borel prob-
ability measure  on Y such that

= (1—-na)p+nalu,.

3. For everyr €]0,1[, let AU be the o-algebra of subsets of Y constructed
in Proposition 4.4.7 and let AOUJ be as in Equation (4.48). Then

hiz(a™AL) = hy(a] ALY) > [r|(1—14) —maxr (m—dimy Bada(e)) .

Proof. Since x 4 has n-escape of mass on average but does not have (n4 + 9)-
escape of mass on average for any § > 0, there exists an increasing sequence
of positive integers (k;);cz., such that, for the weak-star convergence of Borel
probability measures on the compact space X, as i — +00, we have

ki—1
1 *
(4.52) = E Aak“ — A,
v k=0

and pa is a Borel probability measure on X with pa(X) = 1 — 4. This is
equivalent to pa({oox}) = na.

Let € > 0. For every T € Z>q, with the notation of Subsection 4.4.2 (see
in particular Equations (4.35) and (4.36)), let
Rr={0€T™:Vk>T,a"¢(0) € L} NBad(e) .
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By Proposition 4.4.4, since a countable subset of K" has Hausdorff dimension
0, we have dimpg (U%O:1 RT) = dimy Bad 4(¢). Thus, for every j € Z>, there
exists Tj € Z>q satisfying

1
dimH RTJ- > dimH BadA(e) — 3 .

For all 4,j € Z>1 such that k; > T}, let S; ; be a maximal qv_ki—separated
subset of Ry, for the distance drm, defined after Equation (4.45). Then
Rr; can be covered by card S;; open balls of radius g, " ki for dpm r- Bach

open ball of radius g, ki for dpm r can be covered by ] o1 Qv kirj /q; Fimaxr —

fi(m maxr—|r]) open balls of radius g; ¥ ™8T with respect to the standard dis-
tance dpm (defining the Hausdorff dimension of subsets of T™). Since the lower

Minskowski dimension is at least equal to the Hausdorff dimension, we have

0g,, (qﬁi(mmaxr_lrb card Si,j)

ki maxr)

lim inf

1
1 Z dlmH RTJ- Z dlmH BadA(é) - =,
i—00 ]quv (QU ]

which implies that

log,, card S;
(453)  liminf —oe “C 207

1—00 ki

1
> |r| — maxr (m 4+ - —dimgy BadA(e)) .
J

Let us define the Borel probability measures

V; 4 A
= card SU 0; ¢4(0) -
i3

which is the normalized counting measure on the finite subset ¢ 4(S; ;) of the
Ut-orbit ¢4(T™) = Utyao C 7 (z4), and

~ 1 koo
V,L»] - E a*ylij ’

b o<k<k;—1

which is the average of the previous one on the first k; points of the a-orbit.
Since ) is compact, extracting diagonally a subsequence if necessary, we may
assume that v; ; weak-star converges as i — 400 towards an a-invariant Borel
probability measure ji;, and that fi; weak-star converges as j — 400 towards
an a-invariant Borel probability measure . Let us prove that [ satisfies the
three assertions of Proposition 4.5.1.
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(1) For all k > T; and 0 € S;; C Ry, we have a"¢4(8) € L. by the definition
of Rr,. Since afui,j is a probability measure, we hence have

T;

T}
i (V= Le) Zau”y L) Zauwy z)gk—

Since L U {ooy} is closed in Y and by taking limits first as i — +oo then as
j — +o00, we therefore have fi()) — L) = 0. This proves Assertion (1).

(2) Since ¢(S;;) is contained in the fiber above x4 of T and since v;; is a
probability measure, we have 7,v; ; = A, ,. By the linearity and equivariance
of 7., we hence have

1 1
Talig = 1 E O T Vi = o E Agry, -
b 0<k<k;—1 Y 0<k<k;—1

By the weak-star continuity of 7, and Equation (4.52), we thus have

T = lim lim 7T = lm pug = pg .
*H J—>+00 i—+00 iy = Jj—+oo H H

Note that the point at infinity coy is an isolated point in the support of i by
Assertion (1), since L is compact. We hence have

(4.54) r({ooy}) = (T ({oox})) = pa({oox}) = na .

(3) Suppose that Q is any finite Borel-measurable partition of ) satisfying

(i) the partition Q contains an atom Q4 of the form 7~1(Q%, ), where X —
Q7. has compact closure,

(ii) there exists £y > 1 such that for every atom @ € Q different from Qo
and for any y € Q, diam (UTy N Q) < ¢; 0™ for the distance dir+ m-

(iii) for all Q@ € Q and j € Z>1, we have [1;(0Q) = 0 and f(0Q) = 0.

We first prove the following entropy bound: For every M € Z>,
(4.55)

1 DN DT — .

MHE(U(Q(M))‘ ALY > [r|(1 = B(Qu)) — maxr (m — dimy Bada(e)) ,
where QM) = \/;y:?)l a~*Q. Since Equation (4.55) is clear if fi( Q) = 1, we

170



CHAPTER 4. DIOPHANTINE APPROXIMATION OVER GLOBAL
FUNCTION FIELDS

may assume that 7i( Q) < 1, hence that 11;( Q) < 1 for all large enough
j > 1. Now, we fix such a j > 1.
Take p > 0 small enough so that ;( Q) + p < 1 and let

(4.56) B=1;(Qu) +p-

Then for all large enough i € Zx>1, since ¢4(S;;) C 7N za) and Qo =
71(Q%,) by Property (i) of Q, we have

ki1
_ 1 d
= [i; ~z’ j c0) — A 00
B=15(Qu) +p > (Qo) ki card Si, kZ:O Ggq:ij ak¢A(0)(Q )
k

i—1
1< *

= k. Z AakxA(Qoo) :
' k=0

Thus, for every 8 € T™, since a*$4(0) € Qo implies that a¥zs € Q% by
Property (i) of Q, we have

(4.57) card{k € {0,..., ki — 1} : a¥¢4(0) € Quo} < Bk .

Let us prove the following counting lemma inspired by [ELMV12, Lem. 4.5]
and [LSS19, Lem. 2.4], where {; is given by Property (ii) of Q.

Lemma 4.5.2. There ezists a constant C' > 0 depending only on r and £y
such that for all A € My n(Ky), @ € T™ and T € Z>o, defining y = ¢4(0),
I={k€Zso:d"y € Qu}, and

E,7r={z¢ Uty:Vke{0,..., T} —1I, dU+7m(aky,akz) < qv_eoma’“r },
the set By 1 can be covered by C’qqlrl card(I0{0, T (1osed balls of radius qq,_(zﬁT)
for the distance di+y, -

Proof. As in the proof of [LSS19, Lemma 2.4], we proceed by induction on 7.
By the compactness of T™, there exists a constant C' € Z>; depending only
on r and ¢y such that the metric space (T™, drm ») can be covered by C closed
balls of radius ¢, . Since ¢4 : T™ — U'y is an isometry for the distances
drm » and dgr+, v, the orbit U™y can be covered by C closed balls for dir+y, v Of
radius ¢; ‘. Thus the lemma holds for 7' = 0. Let Ny = qu‘,ﬂcard(m{o”"T}).

Assume by induction that E, 71 can be covered by Np_; balls for dy+,,
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—(lo+T-1)

of radius g, . Note that for every k € Z, since 7°O,/(7¥*10,) has

order g, every closed ball in K, of radius ¢, k¥ is the disjoint union of ¢, closed

—(€0+T—1)

ball of radius ¢;*~!. Hence every closed ball for dr+y, ¢ of radius gy in

Uy can be covered by qu‘ closed balls for dy;+,, , of radius g, Go+T) Therefore,

it T" € I, then Eyr = E,r_1 can be covered by Ny = qLﬂNT,l closed balls
for dyy+, , of radius g, (bo+T),

Suppose conversely that T' ¢ I, so that in particular Ny = Np_. Denote
the above covering of Ey, 1 by {B; : ¢ =1,..., Ny_1}. Since we have E, 1 C
Eyr_1, theset {E,7NB;:i=1,...,Np_1} is a covering of E, 7.

Claim. Foralli=1,..., Ny and z1, 20 € E, 7NB;, we have dyj+,, (21, 22) <
q*(foJrT)

v .

Proof. Since T ¢ I, we have dy+,,(a’y,a’zj) < q; o™X for each j = 1,2.

T29) < qyfomaxr by the ultrametric inequality

Thus we have dp+,,(a” 21, a
property of || - ||. Note that since z1,20 € Uty = UTyag, there exist 8, =
(01,1,...,01m) and @2 = (021,...,02,,) in T™ such that (denoting in the
same way lifts of 8; and 03 to K") we have 21 = ya9, and 22 = ya 9,. With

|( )| the map defined after Equation (4.1), it follows that we have

max @y (01, — 02,5)| = drm (al61,0702) = dy+ (a7 ya6,, 07 Yae,)

= dU-»-’m(ClTZl, ClTZQ) < qv_&) maxr.
Hence, we have
1
dyty, (21, 22) = dpm £ (01,62) = max [(01; — Oa;)|" < gy Lt
1<i<m

which concludes the claim. O

By the above claim, the intersection E,r N B; is contained in a single

ball for dy+,, , of radius q;(ZMT) for each ¢ = 1,..., Ny_;. Thus E,  can be

covered by Ny = Np_y balls for dr+, . of radius qv—(fo—i-T)' 0

Recall that as constructed in the proof of Proposition 4.4.7, there exist
a Borel-measurable partition P = {Py,...,Py,Px} of Y with N + 1 ele-
ments, and a countably generated Borel-measurable o-algebra PUT of subsets
of Y, with [yl v+ = [ylp N BY"y for every y € Y(r) by Equation (4.42),
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such that we have AU = (PU+) We now consider the sequence of o-
algebras {(PU )7° }e>1, which is decreasing sequence conversing to .A , Le.,
(PUT)2° N, A" Note that for each £ > 1, the g-algebra (PU ") is countably
generated.

If Q is any atom of the finite partition Q%) = \/’,z;_ol akQ of Y, then fixing
any y € @, by Property (ii) of Q, the intersection ¢(S; ;) N Q is contained
in Ey,—1 with the notation of Lemma 4.5.2. It follows from Lemma 4.5.2

and Equation (4.57) that ¢4(S; ;) N Q can be covered by C qq‘)rlﬁ M closed balls

S botki=l) _ ¢t g% where C depends only on r

and {y. Since S; ; is q, ki_separated (hence g, “+!q; *i-separated since £g > 1)

for dyr+y, . » of radius qv

with respect to dpm r, and since ¢ : (T", drm ) = (UTya0,dy+y, ,,r) is an
isometry, we have

card(¢a(S;;) N Q) < qur‘ﬁki .

Since v; ; is the normalised counting measure on ¢4(.S; ; ) for all large enough
{ € Z>1, we have H,, (o o(Qk ))|(77U+) ) = l,”(o*( ki))). Since the map
U = —log,, is nonincreasing, it hence follows that

Hy, (o (QE)|(PY)3) = Hyyy (0(Q) = 7 vig(Q)¥ (115(Q)

QeQki)
card(¢a(Sij) N Q)
- ()T
QEEQ;M) (@) ( card S; ; )
C %o |r|Bk:
>U(——— vij(Q)
(card Si i e

= log,, (card S;;) — [r| B k; —log,, C.
By taking ¢ — oo it follows from the continuity of entropy that

(4.58) H,, ,(0(Q%N)]|AL") > log, (card S;;) — |r| Bk; — log,, C.

Since AOUO+ is strictly a-invariant, by the subadditivity and concavity prop-
erties of the entropy as in the proof of [LSS19, Eq. (2.9)], for every M € Z>1,
we have
(4. 59)

— H~

2 M log,, (card Q)
M ‘

(o(QU)]AL) > ;

Hy, (a(QH))[ AL —

1
ki
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Therefore, since v; j(coy) = 0, it follows from Equations (4.59) and (4.58) that

1 — v aoFy _ L
7 ((QUD)ALY) = oty (r(QU)IAL)
> k:l (log,, (card S; ;) — |r|Bk; —log,, C —2M log, (card Q)).

Now we can take i — 0o since the atoms @ of the partition Q and hence of
the partition QM) satisfy £;(0Q) = 0 by the property (iii) of Q. Also, the
constants C' and card Q are independent of k;. Thus it follows from Equation
(4.53) that

%Hﬁj( U(Q(M))‘TZ;F) > |r|(1 — B) —maxr (m+ ; —dimy Bad 4(¢)) .

By taking p — 0 in Equation (4.56), we have

1
—H

7 i (0(QUMALT) = [r|(1 - Jij(Qu)) — maxr <m+;—dimH Bad(e))

Hence, it follows by taking j — oo and by using the property (iii) of Q that

1 DN ATF — .
g ((o(QU)ALT) > Ir|(1 ~ (@) — maxr (m — dimy Bad(e))
which proves Equation (4.55).
Hence, by taking M — oo, we have

ha(a™ | ALT) = hala] AL ) > |r| (1~ (@) — maxr (m— dimp Bada(e))

provided that we have a partition Q satisfying the above requirements (i), (ii)
and (iii). After taking a sufficiently small neighborhood of infinity Q% in X,
so that if Qoo = 7 H(Q%,), then 11(Q) is sufficiently close to fi(coy) = na,
we can indeed construct a finite Borel-measurable partition Q of ) satisfying
Properties (i), (ii) and (iii), by following the procedure in [LSS19, Proof of
Theorem 4.2, Claim 2]. This proves Assertion (3). O
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4.5.2 Effective upper bound on dimy Bad4(¢)

For every ¢ € Z<, with Ay the shortest length function of a nonzero vector of
an R,-lattice (see Subsection 4.1.2), we define

£

X0 = {zeX M) >d¢} and V2 = 2w .

Note that by Corollary 4.1.2, we have Aj(z) < ¢, for all z € X, thus X =
Uézfoo P By Mabhler’s compactness criterion (see for instance [KST17,

Theo. 1.1]), the subsets XZ% and V2% are compact.

Lemma 4.5.3. Let p/ be an a-invariant Borel probability measure on Y and let

A be a countably generated sub-c-algebra of the Borel o-algebra of Y which is

a~t-descending and U™ -subordinated modulo 1. For all v’ > §' >0, € € ]0,1]

and { € Z<o, let ji,j2 be integers satisfying
d—(d—1)¢

> ————— —log,, § and jo >
minr

d—(d-1)¢ n

I .
mins d %6y €

Ify € V2 satisfies ng/+’ra_j1y C la=Pyla C Bng’ra_jly, then we have

7—;]1-4(11—]256) <1-— (qv—(h-l-n)(r’)—leg) )
Proof. Let z = 7(y), which belongs to XZ%. Since z is a unimodular R,-
lattice, by Minkowski’s theorem 4.1.1, we hence have

gV () < (M (@) (@) < M@)ha(@) - Ma(e) < gf

therefore A\g(x) < qg_(d_l)z. There are linearly independent vectors vy, ..., vy
in the R,-lattice x such that ||v;]| < g?™ V! Let A be the parallelepiped in

de generated by vy, ..., vq, that is,
A={tiw+ - +tquge K: Yi=1,....d, |t;|]<1}.

We identify K2 with K™ x K*. Then for every b = (b=, b") € A with b~ €
d—(d—1)¢
K" and b* € K, we have ||b|| < gi ", hence | b~ [l < g, "™ and
d—(d—1)¢

b |ls < g» ™™ since £ < 0. Note that the fiber 7—!(z) can be parametrized
as follows: Fixing g € Gy with © = gI'g, since A is a fondamental domain for
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the action of RY on K2, we have

7Y z) = {w(b)gl' : b € A}, where w(b) = (Ig 11)> .

In particular, there exists by = (by, by ) € A such that y = w(bg)gT.

With a slightly simplified notation, let V, be the UT-shape of the atom
[Y]gi1 4 (see Equation (4.49)), so that we have Vyy = [y], 4. Let 2 = {0 €
K" : w(0,0) € V,} be the Borel set corresponding to V, by the canonical
bijection 8 — w(6,0) (see above Equation (4.33)) between K and U*. Note
that 0 € Z as ;41 € V. Since ot expands the r-quasinorm on K" with ratio
exactly ¢! (see Equation (4.30)), and by the assumption on y in the statement
of Lemma 4.5.3, we have B;l(;y C [Ylgra C Bég:fy, hence

K1;rrl k)
q% 1s7

(4.60) BE T c=c BN
qQu'Tr

The atom [y],j, 4 can be parametrized by
Wl a = {w(b)gl': b~ €by +E, b=(b",b{)} .

and 701 A
Y

Borel set (with positive measure) b, + = of K"

is the pushforward measure of the normalized Haar measure on the

Let us consider the sets
O ={b e K™:|b | <q?2d} and OF ={bT e K" :||b* s < ¢/2ed} .
If b= (b",bt) € © x OF, then [|[a”?b~ |, < €4 and [|a?bT|s < €d by
Equation (4.30). By the definition of L. in Equation (4.35), and since the grid
a2gR!™ + (a”?b~, a’?b™) contains the vector (a”>b™, a’?b™), we have

02w (b)gl = w(a’?b™, a?bt)a2¢T ¢ L. .

Hence we have w(b)gl' ¢ a=72L,, so that
(461)  Blana—a LoD w( (b +2) x (b)) 1O x 67))gT .
Claim. We have the inclusion ©~ x {b{} C ((by +E) x {bj}) N (6~ x OT).
Proof. We only have to prove that by € ©T and that ©~ C by + Z. Since
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d—(d—1)¢
(by,bg) € A, we have || b{ ||ls < ¢» ™° , hence the former assertion follows
. . d—(d—1)¢
from the assumption that jo > n(nins — 4 log, €.

In order to prove the latter assertion, let us fix b~ € ©~. Recall that the
r-quasinorm || - ||, satisfies the ultrametric inequality property, see Equation
(4.44). Hence, it follows from the assumptions jo > % — 7log, € and
g1 > W —log,, ¢', since € < 1, that

d—(d—1)¢

Ib™ = by [l < max{[[b™ [lr, [ by [} < max {g; e, g, ™

d—(d—1)¢ d—(d—1)¢ d—(d—1)¢ .
" min min r minr !
gmax{qv ® €,q }:% <qy'd.

K" r
al'e <
b, + Z, which concludes the latter assertion. ]

Hence by the left inclusion in Equation (4.60), we have b~ € by + B

Now by Equation (4.61), by the above claim and by the right inclusion in
Equation (4.60), we have

] ) ) ) me(@—) mgm (BK_{;I'&)
L=y A @ L) = 7 A [yl g — 0 L) 2 > e
Y Y mrigp(bg +5) 7 mgp (B T)
Q'
—jo m
q €d\|r| e 1 mr]
- ( ;Jlr/ ) = (4 (1472) (57 ed )
v
This proves the lemma. ]

Proof of Theorem 1.3.2. We fix a matrix A € M,, ,,(K,) which is not (r, s)-
singular on average, or equivalently by Proposition 4.4.2 and the definition of
na just before Lemma 4.5.1, we assume that 74 < 1. We also fix € € |0, 1] and
ro € |0, 1] which is in Equation (4.34).

By Proposition 4.5.1, there exist an a-invariant Borel probability measure
7z on Y (depending on ¢) and an a-invariant Borel probability measure p on )
(unique since n4 < 1) such that

Supppu C LU {Ooy}’ Tl = pa, and [ = (1 - UA)M + WAAOO); .

Take a compact subset Ky of X such that pua(Ky) > 0.99 ua(X) = 0.99 (1 —
na). Write K = 77 1(Kp) and choose r € ]0,7¢[ such that K C Y(r). Then
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w(Y(r)) > p(K) > 0.99 since ng < 1. Note that the choices of K and r are
independent of e since the measure p4 depends only on A (see Proposition
4.5.1 and Equation (4.52)).

For such an r > 0, let AU" be the o-algebra of subsets of ) constructed
in Proposition 4.4.7. Proposition 4.5.1 (3) gives the inequality

haz(a™t AL ) > |r|(1 — na) — maxr (m — dimy Bada(e)) .

By the linearity of entropy (and since the entropy of a~! vanishes on the fixed
set {coy}), we have

(4.62)

hu(a™' AL) =

1 — maxr
hz(a™ ' AUT) > |r| —
1— nA N( | 0 ) | | 1— na

(m — dimpy Bad 4(¢)) .
In order to use Lemma 4.4.9 and Proposition 4.4.10, we need an ergodicity

assumption on the measures that appear in these statements. We will choose an
appropriate ergodic component of u. Let us denote the ergodic decomposition

= / pe dp(y).
yey

Let E={y €Y : pu5(K) > 0.9}. It follows from pu(K) > 0.99 that

of u by

0.99 < /yug(K) du(y) < p(E) +0.9u(Y — E) =09+ 0.1 u(E),

hence p(E) > 0.9. By Equation (4.62), we have

maxr
1 —na

/y%a‘lr AL) duly) = hu(a™| AL > x| - (m—dimp Bada(e))
Since hug(a71| AUTY < |r| for every y € Y by Lemma 4.4.9, we have

| hla™ AL duty) < el 9 - ).
Y—FE

Hence
[ g @ AL diuty) = el ()~ 5 dimis Bada(€)
E —TA
maxr

> ,u(E)( (m — dimp BadA(e))) .

r_i
S YTy
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Therefore, there exists z € ) such that pé(K) > 0.9 and

maxr

09 =10 (m — dimyg Bad 4(¢)) .

- +

hye (@' AL) = Ir| =
We denote A = p€ for such a z € Y. Then ) is an a-invariant ergodic Borel
probability measure on ) and Supp A C Suppu C L. By Lemma 4.4.9, we
have

maxr

Ut Ut -
(4.63)  H\(AT e AT 2 Il - g

(m — dimpy Bad 4(¢)) .

We will apply Lemma 4.5.3 with ¢/ = X and A = a* AU for some k > 1.
Take an integer ¢ < 0 such that K C qufE, which depends only on A. Set

jlz{d—(d—l)é

minr

d—(d-1)¢ n

— / y f—
log,, 6-| +1 and jo [ p—— 7

log,, 6-| +1,
where ¢’ will be determined later on.

Let k = [logqv (rﬁ e_%)] +jo+1land A= akAUT, By the properties
of AUY given in Proposition 4.4.7 and since K C Y(r), for every y € K, we
have

BY'y clylw+ € By

It follows from Equations (4.34) and (4.45) that since r < rg, for any y € K,

Ut, Ut, Ut,
yC BgT/me - [y]AU+ C B;, "ycB” ' y.

rmaxr

BU+,I‘
(5,/2) e

Hence, by Equation (4.46), we have
Ut, — — — Ut,
y L afycia ky]u,u,ﬁ =[aFyla C qukr

—k
—k 1 1 a y .
4" (5, /2) s

p Tmaxr

Thus for every y € a*K, we have
(4.64) By Ty Clylac BY Ty
where, by the definition of k, we take

o1 M _ 1 1
=gyt and ¢ =gyt mee (6,/2)mr 1
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Equation (4.64) implies that for every y € a/1**K, we have
Utr —j —J1 Ut —j;
(4.65) By, "a 'y Cla'yla C B, Ta Tty

Now, we will use Proposition 4.4.10 with j = j;, K’ = a*K (which is U*-
saturated since so is K and as a normalizes UT), and € = ' (which satisfies
the assumption of Proposition 4.4.10 by Equation (4.64)). We claim that

(4.66) Béjj’:% L. C Le.

m
d

Indeed, for all y € L. and @ € K™ such that |6, < g,'e
vector v = (u~,u") in the grid w(8,0)y, we can write u = v + (6, 0) for some

, for every

v = (v—,v") in the grid A, associated with y (see Equation (4.31)). Since
y € L., we have (see Equation (4.35)) || v ||rs = max{||v™ ||r%, | v* ||S’%} > e
Since ut = o™, if ||t ||S% > ¢, then w(0,0)y € L. Otherwise || v~ ”r% > €.
We then have || 0 ||, < ¢;'ed < ed < |[v™ ;. It follows from the equality case
of the ultrametric inequality property of || ||, that

o™ lle =116+ v [l = max {[| 0 ||x, [|[v7 I} = [[v7 [lr > €7 .

Hence w(0,0)y € L., which proves Equation (4.66).

By Proposition 4.4.7, the o-algebra AV s a~!-descending and U *-subordinated
modulo A, and so is A = a=*AU" since a normalizes UT. Note that Supp A C
a~72L, since ) is a-invariant. By Equations (4.46) and (4.66), we have
U_+’rm LeCa 20, .

1

U+ . s U+ s
B, Ta2Le=a2B" " Lc=a B
qo-r’ Gy €d

Note that we have _
AV —a"K) =0
for A\-almost every y € a* K, since then (see just above Proposition 4.4.10) the

support Supp 7914 i5 contained in [y] a1 4, Which is contained in U™y, hence

v
in a* K since a normalizes U and K = 7~ (Ky) is UT-saturated. Therefore,
it follows from Proposition 4.4.10 for the first line, from the fact that the

integrated function is nonpositive (hence its integral on a smaller domain is
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larger) for the third line, that
HA(A*A) < le] + [ Tog,, 7" A((9) - oK) U BY "Supp A) dA(w)
Yy
< il + [ Jogg, A — "K) UaRL) dA(w)
Y
<+ [ log,, 75" () — 0 K) Ua L) dA(y)
ak Kotk gkny=db
= j1|r| —i—/ log,, T;le(a*hﬁe) d\(y) .
ak Knad1+k KNy =db
We now apply Lemma 4.5.3 with as said above ¢/ = X and A = aik.AUJr,
and with y € a"t*K N V24 which satisfies the assumption of Lemma 4.5.3
by Equation (4.65). Thus
r|

— 1 g Dl

ALy <1 - (q;(jﬁh)r’_%%)‘

Hence

e - (oD
—log,, 7" (a2 L.) > —log,, (1 — gy U=V > e
v

Note that A(a*K N atTFK N quﬁ) > % since \ is a-invariant, K C V2% and
AMK) > 0.9, so that the three sets a*K, a/'**K and Y>% have A\-measure
> 0.9, hence their pairwise intersections have A-measure > 2 x 0.9 -1 = 0.8,
and their triple intersection has A-measure > 2 x 0.8 — 1 = 0.6. It follows
from Equation (4.39) and the invariance under a of A, hence of the conditional

entropy, that

it| = Hy (A" | a AU) = || ;HA(AUW I AUY) = || — ;HA(A| a1 A)

1 ' .
> = log,, 7o' (a2 L) dA(y)
J1 Jak Knai1tk KnYy>4b
. qu| q;71|1‘|
2Ing, 1
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Therefore, by Equation (4.63), we have

[r|  —jilr]
maxr . + Qv Qo
_— —d Bad > |r| — Hy(AY Uty> _2v 2v
090 —11) (m — dimy Bad a(€)) > |r| A(AY |aAYT) > S o

Observe that
rd—(d—1)¢
J1= 7( ) —logqvé’W—i—l
minr
1
_d— d—lg (5T.2minr . m
_ #AO%((/#%—JWHH
mimr q T maxr
rd—(d—1)¢ d—(d-1)¢ n
= — =1
minr + [ mins d %8qu 6—‘
1
m ((sr/Z)minr
+1—Elogqve—logqv271—| ].

1
1 1 5 2 minr
- —|—7>—logqv 7( / )1 +4 —log, €.
mimmr maxs qv’)" maxr

< (d—(@-1)0)(

The constants 14, ¢, 6, and r depend only on the fixed matrix A € M, »(

K,).

Hence there exists a constant ¢(A) > 0 depending only on d, r, s and A such

that
el

m — dimy Bad4(e) > ¢(A) m .
@

This proves Theorem 1.3.2.
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Chapter 5

Weighted singular vectors

5.1 Fractal sutructure and Hausdorff dimension

5.1.1 Fractal structure

A tree T is a connected graph without cycles. If we take a vertex 79 and fix it
(we call it a root), then T is a rooted tree. In this paper, we identify 7 with
the set of vertices of 7. It can be checked directly from the definition of T
that any 7 € T can be joined to 19 by a unique geodesic edge path. We define
the height of T as the length of the geodesic edge path joining 7, 79 and denote
the set of vertices of height n by 7,. For any 7 € T, there exists a unique
Tn—1 € Tn—1 such that 7 and 7,1 are adjacent. Then we say 7 is a son of
Tn—1 and denote the set of all sons of 7,,—1 by T (7,—1). The boundary of T,
denoted by 9T, is the set of all sequences {7} = {7n}nenu{oy Where 7, is a
son of 7,1 for all n € N.

A fractal structure on R? is a pair (7, 3) where 7 is a rooted tree and
§ is a map from 7T to the set of nonempty compact subsets of R%. A fractal
associated to (7, 3) is a set

FT.8)= U 8.
{mn}€8T n=0
A fractal structure (7, 3) is said to be regular if it satisfies the followings:
e cach vertex of 7 has at least one son;

e if 7 is a son of 7/, then 3(7) C B(7');
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e for any {7,} € 9T, diam 3(7,) — 0 as n — oc.

5.1.2 Self-affine structure and lower bound

A self-affine structure on RY is a fractal structure (7, 3) on R? such that for
7 € T the compact subset 3(7) of R? is given by a d-dimensional rectangle
with size LW (1) x --- x L@ (7). A self-affine structure is regular if it is a

regular fractal structure.

The following theorem is a generalization of [LSST20, Theorem 2.1] for

d-dimensional self-affine structures.

Theorem 5.1.1. Let (T,[) be a regular self-affine structure on R? that asso-
ciates to sequences {pn},{Chn}, {Lg)} for 3 =1,...,d of positive real numbers

indexed by N U {0} with the following properties:

1. The sequence {Lg)} is decreasing in n € NU{0} for each j =1,...,d.

2. There exists 1 < ¥ < d such that
LW =...= L0 < ) <o < L@ gngd LU (1) = LY
forallm e NU{0}, j=1,...,d, and 7 € Tp;

3. Co=1and #T (1) > C, for alln € N and 7 € Tp_1;

4. pn <1 for alln € N and

dist(B(7), B(K)) > pns1 L)
for all T, € Ty, and distinct T,k € T (1,).

We denote by

Pn = HC“
=0
D, = max{i >n: L¥ > LV},

log(P L(l) t ot . D_n ZC
s=sup{t>0: lim 8Bn(Ln ) prir - ILidnia i CY) =00 .
n—00 max{D, —n,1}

If s > d— ¢, then dimyg F(T,[) > s.

184



CHAPTER 5. WEIGHTED SINGULAR VECTORS

Using Theorem 5.1.1, we obtain the following corollary which is a gener-
alization of [LSST20, Corollary 2.3 and Corollary 2.4] for d-dimensional self-

affine structures.

Corollary 5.1.2. With the notations in Theorem 5.1.1, suppose that there

exists k,ng € N such that for all n > ng the followings hold:

(1)
(i) L(d) < L(l) and Lgm)o 1<L()

no—1°
kn—1
(ii) ek < O, < ek,
(iii) e " < p, < e /K,
(iv) phCu TTj—gr L /Ly 2 0"
If the limit
- log (Cn ¢, LY /ijll)
lim N N
e —log (L4/LY))

exists and is equal to r > 0, then dimg F(T,8) >d—(+r.

Proof of Corollary 5.1.2. By the assumptions (iii) and (iv), since the sequence

{Lg)} is decreasing in n € NU {0} for each j =1,...,d, we have

d
log | C), H ng)/LSZl = 0(n),
j=t+1

which implies that — log (L,(ll)/ LSL) — 00 as n — o0o. Hence, using

IOg (Pn H?:€+1 L%])) 1Og (CO H] =l+1 L(()J)) + Z:‘L:l 1Og (C’L H?:Z-i—l Ll(])/L'Ej—)l)
—log LY ~1og L — 320y 1og (L4 /L)) |

it follows that

log <Cn | Lg)/L,(fll) log (Pn | J Lg))
lim N N = lim 0
e —1og (L4/L)) nsee _log L,
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Let us denote by

~ log (Pn H;‘lzul LS)>
s=d—0+r=d—{+ lim ®)
n—o00 —log Ly,

By the regularity of the given self-affine structure (7, 8), we have that Lq(ll) —0

as n — oo, which implies

O s
(5.1) s = sup t>0cnlg)goPn(Ln ) H F:OO
j=l+1 =n

We will show that dimpg F(7,3) > s using the equality (5.1).
Recall that D,, = max<i > n: LZ(-d) > Lg)}. Since the sequence {Lg)} is
decreasing in n € NU {0} for each j = 1,...,d, we have

kn (d) n (d)
(@ _ p(@ L; (d) Ly

i=kno ~i—1 i=no “ki—1
S L](CCQO—I (zl) by assumption (7)

1=mng Li—l
I Ly

no—1 (1
’ Lglo)—l

<Ly by assumption (7).

Hence we have D,, < kn.
Given ¢t > 0, € > 0, it follows from the assumptions (ii), (iii), and D,, < kn
. n(n+1l)e
that pf, 1Cp,41 < eFPntl) < eklbntl) Since p¢ = ([, Ci)¢ > e 2=,

we have

(5.2) PDn+1CD, 11 < P,

for all large enough n > 1. Similarly, it follows from the assumptions (iii), (iv),

186



CHAPTER 5. WEIGHTED SINGULAR VECTORS

and D,, < kn that

Dntl d L(]) Dp+1
,OfLH H pr (%) > e~ th(n+1) H ik > eftk(nJrl)(kn_i_ 1)fk(kn7n)
i=ntl J=t+1 L i=n+1
> e—tk(n-i-l)—k(kn—n) log(kn—&—l).

. . _n(ntle | .
The inequality P, ¢ <e”~ 2 implies that

Dp+1
(5.3) PZH H C H .
i=n+1 j=tr1 L

for all large enough n > 1.
Fix a real number t with d — ¢ < t < s and take sufficiently small e such
that d — ¢ < t/(1 — 3¢) < s. By the equality (5.1), we have

d
(5.4) lim P, (L) (1=39) H

n—oo

LY
T

for all large enough n > 1.
For all large enough n > 1 so that the above inequalities (5.2), (5.3), and
(5.4) hold, it follows from (5.2) that

Dy, Dn+1
Po(LMYply TT PG = P ohy T eiC
i=n+1 i=n+1
o (122} B 1
— —€
=P, (L) P ' O H C LJ
j=t+1 LD, ) i=nt1 j=t+1 Ly
R AR 1
—€
an (Ln)pn+1 HW H L)
j=t+1 Ltn i=n+1 _£+1 1
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Using (5.3) and (5.4), we have

d ()
L
(1) L—e (L)Yt on_ —€
P TI o€ P(L) 11 )5
i=n+1 j=t+1 +n
1-3e
d )
> PﬁfE(Lgll))t =n P;QGPE
. S
j=L+1 =n
wya-so 17 L -
= | Pa(Ly,”) H e F,
j=0+1
> Pr.
It follows that for all large enough n > 1,
Dy, n
1 (L)t > elog P, 2> D, —
og( zlgrlpl )_eog > en _Ek—l( n),

where the implied constant is independent of n. Hence dimgy F(7T,3) > t by
Theorem 5.1.1. Since we choose arbitrary ¢t with d — ¢ < t < s, it concludes
Corollary 5.1.2. O

By elementary squares of 5(7) for 7 € T, we mean closed squares contained
in B(7) whose side length is equal to L) (7).

Lemma 5.1.3. For n € NU{0} with D,, > n, let k € T,, and T € T;—1 where
n+1<i < D,. Then for any elementary square S of B(k),

#{r' € T(r): B(r') N S # @} < (16d)"p; "

Proof. Through this proof, we denote the size of a rectange R in R? by I;(R) x
- X ld(R)
For a fixed elementary square S of 3(k), let Ry = B(7) NS and

S={B(r)NS:7 € T(r),5(')NS # ).
If Ry = @, then there is nothing to prove since #{7' € T(r) : (') N S #

@} =0.
Let j; € {1,...,d — 1} be an integer such that Ll(.d) > > LZ(”H) >
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LS) > ng") > > Lf;l). Note that j; > (. Let R{, be the rectangle with the
same center as Ry such that

lj(Rg):{ZlLE{) for j=1,...,7

ALY forj=ji+1,....d.
Similarly, for R € S let R’ be the rectange with the same center such that

LR — L+ Lr forj=1,...,5;
’ Ly for j = j; +1,...,d.

We denote by ro (resp. r) the center of Ry, (resp. R'). Here, we note that
ro and r are contained in both §(7) and S. For x € R’ and j =1,...,d,

L (R) + min(Lz@l, L%l)) <

1
< glj(Rf))-

| =

25 — (ro);] < |zj —rj| + |rj — (ro);| <

Thus for all R € S, R’ C Ry,

For any distinct Ry, Ry € S, let 71,7} € T(7) be such that Ry = S(r{) N S
and Ry = B(14)NS, and let 71, 72 be the centers of R}, Rj, respectively. Suppose
lr1 — 72lloc = |(11); — (r2);] > 0 for some j = 1,...,j;. Then for any x € R}
and y € R}, we have

|25 —yjl > |(r1); = (r2);] = |25 — (r1);] = lyj — (r2)5]

1 ; 1 1
> —=dist(3(r1), B(5)) + LY = 515(RA) = 515(R5)

Pi (1 ; 1 1
2 <\/3Lz(')l + LE”) = 5li(R1) = 5l(Rs)
3pi (1)
= L7 > 0.
4\/g 1—1

Thus R} N R, = .
Now we suppose |71 —r2|loc = |(r1); — (2);| > 0 for some j = j; +1,...,d.
Observe that

LY > 1(Ry) + 1(Ra) + jgdistm(f{), B(r3)) > 1i(Ra) + 1j(Ra),
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which implies that

n

1 1 1
|(r1)j = (r2);| = LY — Sli(B) = Sli(Re) > iL(l)-
Thus, for any fixed Ry e Sand j =j;+1,...,d,
#{R2 € S\ {R1} : |Ir1 = r2]los = |(r1); — (r2);] and By N Ry # &} < 1.

Combining above two arguments, we conclude that every points of Ry, is
covered by at most d — j; + 1 rectangles of {R’ : R € S}. It follows that

Pi_ () 1\ 47 G) . _Pi () Ty
<4\f * 1) (L) " s < (L el (L) " s
= vol(R")#S

< (d = ji + 1) vol(Ry)
< du (Lgl_)l)ji (Lm)d "
hence, using j; > £,
#S < dHI248 I < (16d)p;
This inequality completes the proof. O

Let p be the unique probability measure on F (7, 5) satisfying the following
property: For all y € F(T, ) and n € N,

Wz € FITB) i mal@) = maly)}) 1
W({e € FIT.B): Tt (@) = 70 0)))  #T (rat (@)

where x = ()5 B(7n(z)). We remark that for any n € Nand € T, it follows
from (5.5) that

(5.5)

(5.6) n(sm)) < B0

.Cy, P,

(

Co.
Lemma 5.1.4. Let n € N and k € T,,. Then for any elementary square S of
B(k), one has

D,
w(8) < (16d) PPt T pfei
1=n-+1
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Proof. 1f D,, = n, then it follows from (5.6). Assume D,, > n. Applying Lemma
5.13fori=n+1,...,D,, we have

Dy,
(5.7) #{r € Tp, : B(r)N S # o} < (16a)" P TT "

i=n+1

Since SNF(T, B) can be covered by rectangles {3(7) : 7 € Tp,, B(T)NS # &},

we have

pS) < D )
ﬁ(sz?g;é@

Dy,
<uBr) [] ¢ -#{rep,:B(r)nS +2}

1=n+1

Dy,
< (16a)" PPt T prfci
i=n+1

In the last inequality, we use (5.6) and (5.7). O

Let U be an open subset of R? with U N F(T,B) # @. If UN F(T,B)
is a single point set, then we denote by n(U) the smallest n € N such that
diam(U) > pn+1L,(11). In that case, there is a unique k = x(U) € Ty such
that UNF(T,pB) C B(r). If UNF(T,B) contains more than two points, then
we denote by n(U) the largest n € N such that U N F(T,B8) C B(x) for some
k= k(U) € T,. We note that diam(U) > Pn(U)+1L7(11()[]) by the assumption (4)
of Theorem 5.1.1.

Lemma 5.1.5. Let U be an open subset of RY with U N F(T,B) # @. Let
n =n(U) and K = k(U). Then there is a family S of elementary squares of
B(k) such that

1. Uges S D UNF(T,B);
t
2. (L) - #8 < 20-4prt diam(U)! for all t > d — L.

Proof. If diam(U) < L%l), then there exists an elementary square S of B(k)
such that S D UNF(T,B). We set S = {S} so that S satisfies two conditions.
Now we assume diam(U) > LY. Then U N F (T,pB) can be covered by

d—1{
—‘ elementary sqaures. Let & be the family of these elementary
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squares. Then

d—¢ d—¢
t t | diam(U) _¢ [ diam(U) !
(20) -5 = () { L w = ( W) )
t
: t
gt <dlafn<U>> (£9)' <214, diam(U)"

O

Proof of theorem 5.1.1. For a real number ¢ such that d — ¢ < t < s, there
exists ng = no(t) such that for all n > ny,

t Dn
(58)  Pn (Lg)) phir I PiCi = (16d)*mtPr=mt} > (16) 4P,
i=n+1

Let U be an open cover of F(T, /). Assume that for all U € U, diam(U)
is small enough so that n(U) > ng. Since F(T,3) is compact, there exists a
finite subcover Uy such that for all U € Uy, U N F(T,B) # <.

For U € Uy, let Sy be a family of elementary squares given by Lemma
5.1.5. Let Q = Upey, Su and n(S) = n(U) for S € Sy. We note that S may
belong to different Syy. However, n(S) is well-difined since a side length of S

is LS()U). Then Q covers F(T, ) and hence
' t
Z diam(U)" > 2d 7 Z Pr(S)+1 ( n(s)) by Lemma 5.1.5
Uely SeQ
1 2
d(Dn—n) p—1 L1
Z 5d 7 Z(l&l) ( )Pn(S) H p; C;~ by (5.8)
SeQ i=n+1
1
> 2d=t Z w(S) by Lemma 5.1.4
SeQ
1
2 gd-t-

Thus we have dimpg F (7, 8) > t. Since we choose arbitrary t with d—¢ < t < s,
the proof is completed. ]
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5.2 Counting lattice points in convex sets

In this section, we will generalize the results in [LSST20, §3.2] for R? to the
general R9T!. In §5.2.1, we first recall the notations and lemmas in [LSST20,
§3.1].

5.2.1 Preliminaries for lattice point counting

For a positive integer D > 1, we write the D-dimensional Euclidean space by
Ep = RP . For a convex body K C R” and a lattice A € RP let \;(K,A) (i =
1,..., D) be the i-th successive minimum of A with respect to K, that is, the
infimum of those numbers A such that AK N A contains ¢ linearly independent
vectors. Let vol(-) be the Lebesgue measure on R” and let cov(A) be the
covolume of a lattice A, which is the Lebesgue measure of a fundamental

domain of A. Denote by
vol(K

cov(A)

~—

0(K,A) :=

For an affine subspace H of R”, let volg(-) be the Lebesgue measure on
H with respect to the subspace Riemannian structure. We write volg(S) =
voly (S N H) for a Borel measurable subset S of R” by abuse of notation.
We say that a subspace H of RP is A-rational if H N A is a lattice in H,
and denote by covy(A) the covolume of the lattice H N'A in H. We also use
the same notations for the dual vector space £7, with respect to the standard
Euclidean structure.

We use || - || for the Euclidean norms on R” and &%,. For a normed vector
space V, denote by B,.(V) (or B, if V = RP) the ball of radius r centered at
0 € V. We use K-norms on R” and &} defined by

{HV\K:inf{r>0:v€rK}, v € RP,
el = supyex [ (V)] ¢ €&

Recall that Lp is the space of unimodular lattices in R”, which can be
identified with the homogeneous space SLp(R)/SLp(Z). For g € SLp(R) let
g* be the adjoint action on £}, defined by ¢ +— @og. Then g* can be represented
by the transpose of ¢ with respect to the standard basis ey, ...,ep of R? and
the dual basis e7, ..., e}, of £7,.
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The dual lattice of A in RP is the lattice in &} defined by
N ={p €&, :p(v) €L, Vv eA}
Let us define the following two sets:

Ke=Ke(D)={AeLp:|v||>€ YWweA~{0}} ={A e Lp:  (B1,A) > €};
Ké=KD)={AeLp:|ell =€ Ype A" ~{0}}.

Since £}, can be naturally identified with /\Ig “'RP with the standard Eu-
clidean structure, we have A* = /\g LA

A nonzero vector v € A is said to be primitive if (1/n)v ¢ A for all n € N.
The set of primitive vectors in A is denoted by A.

We summarize the lemmas in [LSST20, §3.1].

Lemma 5.2.1. Let D > 2. For every lattice A in RP and every bounded
centrally symmetric conver subset K of RP with \g(K,A) < 1 we have

#(K N A) = (C(D)™ +n(K,N)) - 6(K, A)
where C is the Riemann -function and
’n(K7 A)| <p )‘D(K7 A) - )‘D(Ka A) IOg >‘1(K7 A)

Lemma 5.2.2. Let D > 2. For every lattice A in RP and every bounded
centrally symmetric conver subset K of RP with Ap(K,A) <1 we have

#(E N (ANA0}) = (1 + (K, A)) - 0(K, A)
where |o(K,N)| <p Ap(K,A)
Lemma 5.2.3. Let K and A be as in Lemma 5.2.2. Then
#(KNA)=p0(K,AN).

Lemma 5.2.4. Let D > 1. Let A be a lattice in RP and K be a bounded
centrally symmetric convex subset of RP with nonempty interior. Then

#(K°NA) xp #(KNA)=<p #(KNA).
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Lemma 5.2.5. Let K and A be as in Lemma 5.2.2. If \i(K,A) < s < <
Nj1(K,A) where 1 <i < j <D, then

s i<< #(KNA) < s\’

s PgsknA) P \s)
Lemma 5.2.6. Let D > 2. Let K be a bounded centrally symmetric convex
subset of RP with nonempty interior and let ¢ € 5~ {0}. Then

volp, (K) =<p [[¢llvol(K)/[l¢] -

We need the following auxiliary lemma.

Lemma 5.2.7. Given D > 2 and r > 0, let A € K(D), and let v,w € A be
any nonzero linearly independent vectors. Then there exists a positive constant
d = (D) >0 such that ||v Awl| > rP=2.

Proof. Let A’ be the 2-dimensional sublattice of A generated by v,w. By
Minkowski’s second theorem, we have

(59) HV VAN WH > COV(A/) >>9 /\1(31, A/))\Q(Bl, A,> > /\1(31, A))\Q(Bl, A)
Agian by Minkowski’s second theorem, we have

1 <p M(B1,A) - Ap(Bi,A) < A\ (Bi, M) Ao(B1, M) Ap(By, A)P~2
(5.10) 1
< )\1(31,/\))\2(3171\)m-

The last inequality comes from A € KCf(D). The result is following by combin-
ing (5.9) and (5.10). O
5.2.2 Lattice point counting in R%+!

For d > 2 and a (d + 1)-tuple r = (r1,...,74+1) of positive real numbers, we
estimate the number of lattice points in the set

My ={(21,...,2q41) €RI s |2y <y, Vi=1,...,d +1}.

Let
M::{¢€5§+1:|$ﬂ§n, Vi=1,...,d+ 1},

where the element ¢ € &7, is represented by ¢ = Zfill zfel.
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Lemma 5.2.8. Let d > 2. For any real number cy > 1, there exists positive
real number & < 1 such that for every lattice A in R™1 and every (d+1)-tuple
r of positive real numbers with

)\d—i-l(Mra A) < ¢ and — >\d+1(Mr7 A) log )\1 (Mr, A) < c

one has
1 -~ Co
———O(Mp, AN <H#M.NA) < ———0(M,, N).
Proof. The proof follows directly from Lemma 5.2.1. 0
Now we fix real numbers s,r1,...,7441 such that 0 < s < 1/2, r; > 1
for each i = 1,...,d, and r441 = 1. Denote by r = (r1,...,74+1), Tm =

maxi<j<d 7, and 7, = minj<;<4 ;. Define a norm
lelle = max {r|zf|:i=1,...,d+1}.
It follows from the definition that

(5.11) lelle < llellan < (d+ 1)@l
For ¢ > 0 let
Ny(r,s) = {gp €&y |zf| <s, Vi=1,....,d, and ||¢|, < q}.

Note that Ny(r,s) = M} where r’ = (r{,...,7),q) with r; = min{q/r;, s}. For
a lattice A in R and i = 1,...,d+ 1, let ¢;(A,r, s) be the infimum of those
positive real number ¢ such that Ny(r,s) N A contains ¢ linearly independent
vectors. We will give an upper bound of the number of

S(Ar,s) = {V € MyNA: @(v) = 0 for some ¢ € N(g41)g,, (r,5) N K*} ,

where A* is the set of primitive vectors in A*.

Lemma 5.2.9. Ford > 2, let A be a unimodular lattice in R4TY with g1 (A, r, s) >
-2
s~*. Then

1. if rop = rar and g (A, 1, s) < ds= /%1y, then
#S(A,r,5) < s1/2 - vol(My);
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2. if ry < 7rar and qar1(A,r, s)log gar1 (A, r,s) < sryy, then

#S(A,r,5) < 5% - vol(My).

Proof. For simplicity, we denote by N, = Ny(r,s), ¢ = ¢i(A,r,s) and S =
S<A r, 8) If N(d+1)er
that Ngi1)er,, N A% is nonempty. It follows from the definition that

NA* is empty then there is nothing to prove. We assume

(5.12) #8 < > #(H, N My N A)

‘PEN(dJrl)srA/[ NA*

with the notation H, = kerep.

We first claim that for every ¢ € Ng 1)y, N K*,

ST

vol(My) < VOI(MI»).

(5.13) #(H,N My NA) < <
7 [ o]l

where the second inequality follows from (5.11). If #(H, N M, N 7\) <d+1,
then it follows from (5.11) that

vol(My) _ 260Dy pgry 2008 Dp oy
- = > #(H,N My N A
[l ae d+ Dl (d+ 1)Zsrar ( ).

Otherwise, H, N M, N A has d linearly independent vectors, hence it follows
from Lemma 5.2.3 and Lemma 5.2.6 that

volg,, (M) ol vol(My) vol(M,)
< ,
cov,(A)  covp, (Aol ar eIz,

#(H,N My N A) <

which concludes the claim.
By (5.12) and (5.13), it suffices to estimate

ni= > ol

@EN(d-!—l)er OK*

S TS S / I
(d+1)sry (d+1)srar I

ell
¢€N(d+1 er Y

(5.14)

We denote the first and second terms in the last line by 7y, 72, respectively.
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Observe that

(@D 1, (o)
_ q r
N2 = E /q 5——dg

S q
SDGN(d-&-l)er NA*

(d+1)srpr
(5.15) _ / v Ll
q1

~ q
SOGN(cH»l)er NA*

</(d+1)er #(qux*)
B q

dg.
) 7

where 1, denotes the indicator function of the set {z € R: z < ¢}.
Fori=2,...,d,if ¢—1 < ¢ < g then #(N;NA*) =i <d. Thus

qd A* qd
(5.16) / #(Nqizﬁf\)dq < / %dq < i < 52 < S1/27
q q q1

1 q Q1
where the third inequality follows from the assumption g; > s 2.

Proof of the assertion (1). We claim that n < s~ Y2 under the assumption
of (1), which concludes the assertion (1). Assume that r,, = rj; and gg41 <
ds~1/2ry;. Observe that by definition

(5.17) Nigyrys—1/2ey = Mg o (ai1ys—1/20)"
We have an upper bound of 77 as

Nigiays-1/2y, NA*) vol(Ngy )
(5.18) m < # (d1)s~/2ry ) < ( (d+1)s—1/2
(d+1)sra (d+ 1)srar

7‘1\{)

< 973/2 < 12,

The first inequality follows from s < 1/2, the second inequality follows from
Lemma 5.2.3, and the third inequality follows from (5.17).
For an upper bound of 7, we first compute

/(d+1)er #(N, N %) e /(d+1>57‘M #(N(a+1)sry NAY) d
3 4= 2 q
ST M q ST M q
(519) < #(N(dJrl)er N A*)
- ST M
< 81/2,
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CHAPTER 5. WEIGHTED SINGULAR VECTORS

where the last inequality can be shown by the same as (5.18).
If srar < qq, then it follows from (5.16) and (5.19) that 7. < s1/2. Now we
suppose that srys > qq4. For all ¢4 < q < sryr = sry,, observe that

7
ST M

N,

ST

Nq = qu/rl,...,q/deLﬂ =

Since Aq(Ng, A) = Aa(55-Nor,,, A) < 1 < srar/q, it follows from Lemma 5.2.5
that

d
#(N,NA%) < # (qNSTM n A*) < <q> #(Nyy,, NAY).

STy ST M

By sry < ds~/2r,; and Lemma 5.2.3, we have

STy

d
< <q> vol(Ny-1/2,., )

d
#(N,NA") < (q) #(Nyg-12,,, N A7)

ST\
2 2.-1/2
S
< <q> s=1/2p, <« 4
ST M v

The last line follows from ﬁ <1 and s < 1. Thus we have

STM N. N K* STM o—1/2
/ #(‘;’Q)dq<</ i dg < s'/2.
qa q qa M

It follows that 7o < s'/2 under the assumption of (1), which concludes the
assertion (1). O

Proof of the assertion (2). We will prove that 7 < s? under the assumption
of (2). By the assumption, we have gz, 1 > q1 > s 2 > 4 50 that qgy1 < sry <

(d + 1)srp since ggi1logqarr < srar. Thus Nt N A* contains d + 1

s
linearly independent vectors. By Lemma 5.2.3, we have

#(N(d+1)STM N A*) VOI(N(d—l—l)er)
(d+ 1)sry (d+ 1)sry

(5.20) m < < st < s
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By (5.15), it suffices to show that

(d+1)srar N. N K*
/ qu < $2.
q

; ¢
We split the domain of integration as (q1,qq) U (qa;qa+1) U (ga+1,sTar) U
(srar, (d+ 1)sras) and estimate upper bounds of the integrals.

For each ¢ € (srar, (d+ 1)sray), it follows from Lemma 5.2.3 that # (N, N
A*) < vol(N,) < s?q. Thus we have

(d+1)srar N K* (d+1)srpr od
(5.21) / qu < / %dq = s%log(d + 1) < s2.

2
T M q ™M

For each ¢ € (qa+1,s7m), it follows from Lemma 5.2.3 that #(N, N K*) <
vol(N,) < s971¢?/rpr. Thus we have

(5 22) /STM wdq < /STM Sd;ldq < Sd < 82.
da+1 ¢ gay1 "M -

By (5.16), the integral over (g1, qq) is bounded above by s2.
Now it remains to show that the integral over (qq, g4+1) is bounded above
by s%. Let H = Spang(N,, N A*). We claim that for every q € (¢4, ga+1),

(5.23) volgr(Ny) < L voly (N,,.,).

dd+1
If H contains e |, then the claim is easily checked from the definition of N,.
Otherwise, we let pr* be the orthogonal projection onto Spang{ej,...,e}}.
Then the volume of pr*(NN,) is at most ¢/qq1 times the volume of pr* (N, , )
since q/rar < qa+1/7m < . Thus we prove the claim.
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CHAPTER 5. WEIGHTED SINGULAR VECTORS

For each ¢ € (g4, qq4+1), we have

voly (Ng)
cov g (A¥)

1y (N,
< q Vo H( Qd+1) by (523)
Gat1 covp(A*)

< L#(N,MJrl NHNA") by Lemma 5.2.3
dd+1

< L#(N;d+1 NHNA") by Lemma 5.2.4
qd+1

q o x q *
= qTH#(qu“ NAY) < o (Nggpy NAY)

< Lvol(quH) by Lemma 5.2.3
dd+1
gd-19d+14

M

#(Ny N ) < by Lemma 5.2.3

<

Therefore, we have

dd+1 NN K* dd+1 1 1
(5.24) / #( 12 )dq<</ 2lanly o 20011080 o
q

. q 0 STAM ¢ ST M

By combining (5.16), (5.21), (5.22), and (5.24), the proof of (2) is completed.

O

This proves Lemma 5.2.9. O
For a weight vector w = (w,...,wy) as in the introduction, let 1 < ¢ <

d — 1 be the unique integer such that wy = -+ = wy > wpp1 > -+ > wg,

and denote by & = max(1, %). For a fixed lattice A € R*! and fixed r, s,
we denote ¢;(A,r,s) by ¢;(A) and Ny(r,s) by N, for simplicity. Let us fix a
constant C' > 1 which is an implied constant for the conclusion of Lemma
5.2.9 (1) and (2).

Lemma 5.2.10. Let d > 2, s = €2, r = (r1,...,7q41) = (eet,... e’ 1),
AeHNL),,, andap = diag(e®l, ... evd e~t). Then there exists a positive
real number € < 1 and ¢ = c(d) > (d 4+ 1) such that for all e,t > 0 with
ce—wat/2d%) < ¢ < €, one has

#S (a1, s) < /2. vol(My).
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Proof. We will prove the lemma for ¢ < 1/C? and the constant ¢ will be
determined later. By Lemma 5.2.9 (1), it suffices to show that

(5.25) a(aN) > 572 and  qapr(aA) < ds™2ry.
First, note that
Ny (aA)" = Ngna A" = a”,(af Ny N AY),

where a; denotes the transpose of a;. Hence it is enough to show that aj N2
has no nonzero lattice point of A* for the first inequality of (5.25). Since d > 2
and wy < 1/d, we have

_wat _wat
<e 23 <ce 243 <€,

e

e

that is, s72 < ris. Thus we have
_ * _ *
NS—2 - M(S—Q/rl,.‘.,s_Q/n,s—Q) - M(e—5e—t,...,e_5e—t,e—4)7
which implies that
* *
A N572 = M(€*5e(“)171)t,..,,6756<wd71)t,67467t).

Since for alli =1,...,d

€ S C 711)7(1; S 7(d71)wdt > (w;—=1)t
e 2d e 7 e 7 ,
(d+1)1/14 (d+ 1)1/14 -
we have e Pe(wi—t < \/% for all i = 1,...,d. It is clear that e *e™t <
2
€

€_5e(wd_l)t <

SR Thus aj Ny-2 is contained in the interior of B2 (&, ;).
Since A € K7, there is no lattice point of A in ajf N-.

To show the second inequality of (5.25), we will construct a basis for A*
of which vectors are contained in Ny —1/2, = Nget. Since det > rq > rqs, we
have

* L kAgH e
a’t Ndet - at M(s,..‘,s,det) - M(sewlt,,,,sewdt,d)‘

Let 1/2 < r < 1 be such that regy 1 € A from the assumption A € L) ;.
Let pr : R — RY be the orthogonal projection onto Span (e, ..., eg4). Note
that pr(A) is a lattice with covolume 1/r in RY. If v € A satisfies || pr(v)| =
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A1(B1,pr(A)), then since A € K, it follows from Lemma 5.2.7 with D = d+1
that

(5.26) A (B1,pr(A)) > rA(By, pr(A) = |[v Aregi| > @ (23t

for some ¢; = ¢1(d) < 1. Since cov(pr(A)) = 1/r, it follows from the Minkowski’s
second theorem and (5.26) that for any 0 < ¢ < ¢;

A1) @D X\ y(By, pr(A)) < Ai(By,pr(A)) - - Ag(By, pr(A)) < 1,
hence there exists co = c2(d) > 1 such that
(5.27) Ai(By, pr(A)) < ea(e )17,

Let {v® : i = 1,...,d} be a Minkowski reduced basis for pr(A) such
that [[v®| < 29)\;(By, pr(A)). For each i = 1,...,d, let v; € A be such that
pr(v;) = v® and lef 1 (vi)] < 1. Then the vectors vi,...,va, Vi1 = r€441
form a basis for A. Recall that £7, | can be naturally identified with /\% Ré+1
with the standard Euclidean structure. Under this identification, we have A* =
/\% A, hence the vectors A\, v; for i = 1,...,d + 1 forms a basis for /\CZIA
We now claim that the vectors /\j# v, for i = 1,...,d + 1 are contained in
ay Nyt via the above identification, which proves that gg41(a:A) < ds—2r,.

Foreachi=1,...,d+ 1, write

d+1 4
Avi=> = e
i h=1 k#h

Note that |xd+11)\ =1/r <2 <d and ac((iJ)rl = 0 for each i = 1,...,d since

Vi+1 = reqy1. By the definition of v; and (5.27), since € < 1, we can choose
large enough c3 = c3(d) > (d + 1)‘12/7 foreachi=1,...,d,

_ _1)2
Ivill < /14 @)% < 24V2e(e7) 470" < ()",

Thus foreachi=1,...,d+1and h=1,...,d,

7 _ _1)2
o1 < | A vsl| < Tl < ey @™

i i
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From the assumption ce~wdt/ (2d%) < €, it follows that
2d° —wat < (62)d3 < (€2>d(d71)2+1.
Choosing ¢ = czl,)/m2 > (d + 1)/, we have
|x§:)| < Cg(€—2>d(d—1)2 < it — gevat < gewit

which concludes the claim. O

Lemma 5.2.11. Letd > 2, r = (r1,...,7441), by = diag (Bt’l, . ,Bt7d+1), and
A € K%, where

cel6— 7 (WeprtFwa))t if 1<i</,

r; = ee(g"’_wi)t lf e + 1 S 1 S d,
|1 if i=d+1,
and
elEwi—g(Werttwa))t e | <<y
brs = { e(1HOwit if (+1<i<d,
¢t if i=d+1.

Then there exists a positive real number § < 1 such that for all s,t > 0 with
e < e < s<§ whered = @min ({wd,fwl — %(’U)£+1 4+ 4 wd)), one has

(5.28) #S(bA, 1, s) < svol(My).

Proof. Note that r,, = r1 < rpy = rpp1. Take tg = to(wi,...,wg) > 0 such
that for any ¢ > ¢y we have

(5.29) e20" > (E+ —)t.

Denoting by ¢4 = =%, then ¢y € (0,1) depends only on the weights wy, . .., wg,
and the inequality (5.29) holds whenever e~ < ¢;. Let

(1 1 vol(By)\ /* -
§ = min C,C4,\/m, a1 <1
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By Lemma 5.2.9 (2), it suffices to show that for e < e < 5 < 3,
q(0:A) > 572 and  qgpq(beA) log qag1 (b:A) < see(twer)t

Since e < € < s, it follows from s 3e¢~! < ¢* < €% that s72/r; < s for
alli=1,...,d, hence
by Ny—2 = b, M* _,

S 3_2
PRI T4

’8_2)

_ *
= M(ei(u’l _1)t€71872,...,€§(wd71)t671572’3*§t5*2) .

Since § < —4—, we have for all i = 1,....d,

S 8 s o60t < o (Ewr—G(weprttwa)t 5 E(wi—1)t

Vd+1 - '

and

>0 > e 00 pmEwat 5 o7

vd+1

hence it follows that b, N,—2 is contained in the interior of B.» (€j41)- Since
A € K%, there is no lattice point of A in EZstz, which concludes g1 (b;A) > s72

as in the proof of the first inequality of (5.25).

Since £ = max(1, deg) < d, we have

1 1
(5.30) se > €2 > e oWl 5 omogWat,

which implies that

wq _wg _1
ezl =¢ 2 leWdl < g naWaleWal < geeWdl

hence e6+3Mt < rgs. On the other hand, it is clear that rps < e(&%)t, hence

- )
by N (e+wgy/2) is the set of ¢ = ae} + -+ + xf+1e2+1 € &3, such that

27| < selEwimg (et Fw) )t for 1 <i<¥,
2| < e Telewit e for (4+1<i<d,
2] < ezwat for i = d + 1.

It follows from A € K%, that A\q (B, A*) > €2. By Minkowski’s second theorem,
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we have
2d+1
vol(By)’

2\ g41(B1, A*) < X\ (B1, A*) - Agy1(By, A%) <

hence A\gy1(B1,A*) < 3{4(4]_31 )e_2d Thus there exists a Minkowski reduced basis

©1, .., par1 of A* such that [|p;] < AT 20 < ¢ 3d forall §=1,...d+ 1

vol( B1)
since €t < 3¢ < V%ﬁl) Recall that w; = --- = wy, hence it can be easily

checked that ¢;’s are contained in 6:N6(5+wd/2)t. Thus qqq1(beA) < elétwa/2)t
so that

7 T wq w
ga1(BA) log ga 1 (B A) < el (g + e

2

<& by (5.20)

< seelétwalt by (5.30)

< seel§twes1)t

O

5.3 Lower bound
5.3.1 Construction of the fractal set
For a given weight vector w = (wi,...,wy), recall that 1 < ¢ < d — 1 is
the unique integer such that wy = -+ = wy > wpy1 > -+ > wy, and € =

max(1, %) (see §5.2.2). We choose a real number ¢y > 1 such that

1 2 1 o
5.31 —<(Z-¢)—— and —2 <1,
(5:31) 10 <c0 “) Cd+1) Cd+1)
using 1 < {(d+1) < 2. Let ¢ < 1 be a positive real number as in Lemma 5.2.8
with respect to the above cg, and let €,§ < 1 be positive real numbers as in

Lemmas 5.2.10 and 5.2.11, respectively. We fix the constants €,¢,r > 0 with
the following properties:

1 o (~ o~
1. 0 <e<r < qgrga min{é, 8}

2. t > 1 will be chosen large enough so that (5.34), (5.39), (5.41), (5.42),
(5.44), (5.45), (5.46), (5.47) hold.
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Let {e,} and {t,} be the sequence defined as follows: for n € N,
1. €, =¢/n;
2. t, —t,_1 =¢&nt and tg = 1.

We will construct the tree 7 whose vertices are in the set Q% of ratio-
nal vectors and the map 3 from V7T to the set of compact subsets in R4+,
inductively. We first set the root of 7 to be zero, that is, 79 = 0 and define

B(mo) ={z € R%: |(70)i — ] < e Wil i =1,. .. ,d}.
For each 7 € T, with n > 1, let
B(r) ={z e RY: |1; — 2] < epre ilnti=tn i =1, ... d}.

14

Recall that a; = diag (ewlt, . .,e“’dt,e_t) and h(x) = (0 Qf) for x € R,

Denote by

1 1
(6 Z(wz+1+ +wd)nt e ¢ (’LUZ+1+ +wd)nt; €w£+1nt) ey ewdnt7 1)

b, = diag

g e ey

Note that the first ¢ terms of b,, are the same.
For each k € T,—1, we define T (k) as the set of all 7 € B(k) with the
following properties:

atnh(T)Zd'H €Ly,
(5.32) az, h(T)ZT € K,
bnas, h(1T)ZH € K.

It follows from the definitions of 7(x) and L7, that 7 € Q? and for any
7 € T (k) there exists the unique vector

(5.33) V(1) € {regp1 : 1/2 < r <1} Nay, h(r)Z9HL.

Note that (d+1)-th coordinate of v(7) is ge~t» for some ¢ € Z such that 1/2 <
ge~» < 1. Since t,, > t,,_1 + 1, T,, has empty intersection with Uo<i<n—1 Tis
which implies that 7 is a rooted tree.
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For each 7 € T (k) with k € T,,_1, define
Br)={z € R?: |5 — 2| < ene™ 1700 Wi =1,...,d}.

Note that for each 7 € T(k), it follows from the definitions of B and A that
B(1) C B(k). If follows from Lemma 5.3.1 below that each vertex of 7 has
sons by choosing ¢ > 1 large enough so that for any n € N

1
(5.34) ﬁezegdm > 1.

Hence the pair (7, 3) is a regular self-affine structure.

Lemma 5.3.1. For everyn € N and y € T,—1 one has

= edebdnt < L (y) < 9d+1ed Ednt,

For fixed n € N and y € T,,_1, we let

A=ay, hYZT e Ll N IC;E_I,

A1 = ag, h(y)Z™ = aguh,
Aoy = bnatnh(y)ZdH = bnafntAa

and for = € f(y),

A (z) atnh(l‘)Zd"'l = ay, h(x — y)a;nlAl,
Ao(z) = bpay, h(z) 24 = buag, h(x — y)a;llbgll\g.

1

The lattices Aq(x) and Az(z) satisfy Aq(z) € L), N K% and Ax(x) € K
if and only if € T (y). Hence Lemma 5.3.1 follows from the following lemma.

Lemma 5.3.2. Letn € N and y € Tp—1. Then

1 -
(5.35) Toene™ ™ < #{z € Bly) : M(w) € Ly} <27 et
. 8
(5.36) #{z € By) : M(z) € Ll ~ Ko} < meieédnt’
) * 1 n
(5.37) #{z € B(y) : Aa(x) € L N K} < ﬁegeéd ¢

Proof. Let x € B(y) with Ay(z) € Ly, Then there exists s, such that 1/2 <
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sy < 1and Aj(x) NRegy1 = {szeq+1}. We denote szeq41 by v(z).

First, we prove (5.35). It can be checked by a direct calculation that the
map  — ag, h(y — :r)a;}v(m) is a bijection from {x € B(y) : A1(z) € Ly, }to
M N Ay where

M = {(21,, Za41) : max |zi] < ene™™|zap1], 1/2 < |zg41] < 1}
1<i<d
Thus it suffices to estimate #(M N Ay). Let

1
MW = : | < —epeft <1
{(zla 7Zd+1) fg?SXd|Z’L| > 26716 ) ‘Zd-f-l’ = }

1 1
M® = {(z1,. 0 2441) lfg%x |z < ien \2d+1’ )

Since MM M®) ¢ M c 2M ), we have

~

(5.38)  #(MWNA) —#MIDNRy) <HMNA) <#2MPNA).

We will use Lemma 5.2.8 to estimate #(M® N Kl) for ¢ = 1,2. Since
A € /C* C IC*Q, it follows from the natural identification £;* = R? and

MlnkOWSkl second theorem that there exist contants C1,Cs > 0 depending
only on d such that

)\1 (Bl, A) Z Cléid and )\d+1(Bl,A) S CQG,;Q
Since A = agnltAl, for i = 1,2, we have

(M, Ay) = M(ag, MD,A) > X (ag, MY, A)

Cl —&nt _2d
Z )\1 (B(d+1)e'5"t7A) 2 me €n

and
Aar1 (M@ A1) = Agga(agy MO, A) < Mg (ag, MP,A)

> )\d—‘rl(B%Ene(l*wl)fntaA) < 2C26(w171)£nt67;3'

Thus we can choose t > 1 large enough so that for all n € N

(5.39)  Ag1i(M® A) <€ and  — A1 (M@, A log A (M@, Ay) <@
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Using Lemma 5.2.8 and (5.38), we have

2 1 d _&dnt n €0 d+1 _d _gdnt
— = M HMNA) < ——2 m,
(o) qarpeie™ <#OMNR) < gy el

By (5.31), we complete the proof of (5.35).
Next, we prove (5.36) and (5.37). Let s1 = €2

ns So =T, a(l) = a{nt; CL(2) =

bpagnt, and
S;={z € By): Ai(z) € Lo~ K, } for j =1,2.
Recall that
S(A,r,s) = {V € M,NA: ¢(v) = 0 for some p € Nigj1)er,, (r,8) N K*} .
We will show that
(5.40) #8j < #S(Njiry,55) (1=1,2)

for some r; and apply Lemma 5.2.10 and 5.2.11.
Let 2 and 2® be vectors in R? such that

zi(l) = (y; — $¢)e(wi+1)t” for 1 < <d;
(2) (yi — xi)e_%(w£+1+.,.+wd)nt+(wi+1)tn if1<i<d,
P (i — @g)eintt it Dt ifl+1<i<d.

Then h(29)) = aWay, _ h(y — x)(aPas, )" for j =1,2 and

|zi(1)] < €™ =: 7"51) for 1 < <d;
)] < enel i wenttwa)nt — () ey <<y,
2
LT g elEtwint —. 7"52) ifr+1<i<d.

Since v(z) € A1(z) N Ag(x), for j = 1,2,

w;(z) == h(zV)v(z) € A;.

Forr; = (rgj), e ,rgj), 1), the map S; — My, ij given by x — w;(x) is injec-
tive. Hence, in order to show (5.40), we should find ¢; € N(d+1)sjr§j) (rj,s5)NAT
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such that ¢j(w;(x)) = 0. It follows from the definition of S; that for x € Sj,
aWay,  h(x)ZH ¢ K, Then there exists ¢; € /AX; such that ||h(2))*p;| <
sj, where h(z\9)* is the adjoint action defined by g*p(v) = ¢(gv) for all
g€SLgp1(R), p €&, ,and v € R4, Tt follows from direct calculation that

d .
h(zD)* g, = (g)j(el), ceilea), Y 2 gjen) + SDj(ed-i-l)) :
=1

By choosing t > 1 large enough so that for all n € N
(5.41) et > 1,
it follows from ||h(20))*p;| < s; that

lpj(e;)| <s; forl<i<d,

pi(ear1)| < s; + ds;rlh) < (d+1)s;r().

Hence we have ¢; € N (d+1)s;7 . It follows that

|0j(w; ()] = Ih(z(j))*%(h(*z(”) §(@))] = [h(z7) g;(v(2))]
< h(z9) gj(earn)| < [A(zD) 05l < 55 < L.

Since pj(w;(x)) € Z, it follows that ¢;(w;(x)) = 0. This proves (5.40).
We choose t > 1 large enough so that for all n € N

(5.42) ce wiknt/ Q%) ¢ and e < ¢

Since A € K C K7, and (5.42), it follows from Lemma 5.2.10 and 5.2.11
that

81 < #S(Al,rl,sl) < \/avol( 1‘1) = 2d+1\/76d€£dnt
So < #S8(Aa,ra, 89) < rvol(My,) = 2d+1r6de£dnt

By the assumption (1) for € and r, this complete the proof. ]
The following lemma is d-dimensional version of [LSST20, Lemma 4.1].

Lemma 5.3.3. F(7, /) C Sing(w).
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Proof. This lemma directly follows from the same argument in the proof of
[LSST20, Lemma 4.1]. O

5.3.2 The lower bound calculation

In this subsection we complete the proof of main results.

Proposition 5.3.4. Let w = (wy,...,wq) € Rio where wy = -+ = wy >
Wwepp > o0 > wg > 0 and Z?:l w; = 1 and let (T,B) be the self-affine
strunction on R® in the previous section. Then

1

) - g '
dimyg F(T,8) > d T

We will prove Proposition 5.3.4 using Corollary 5.1.2. Let C, Lg), ey Lgld)
be the positive constants defined as follows:

C, = eiegdm, L,(f) = 2epe Wilnt1Tin =1 d.

It can be easily checked that a regular self-affine structure (7, /) satisfies
assumptions (1), (2), and (3) of Theorem 5.1.1. For the assumption (4) of
Theorem 5.1.1, we need the following lemma.

Lemma 5.3.5. Let n € N be large and 7 € T,_1. Then

d—1
dist(8(z), B(y)) > nglLe%(we+1+-~-+wd—£f)nt’
4\/g6n71

where x,y € T (1) are distinct and ¢ is the positive constant in Lemma 5.2.7.

Proof. By the construction of 7 and the definition of b,, there are 1/2 <
Sz, 8y < 1 such that

Zd+1 Zd+1

Sz€d+1 € bpag, h(x) , Syeqr1 € bpag, h(y)

Let us denote by

v = bpag, h(y — ) (bnar,) ' se€qi1 € bnar, h(y)ZH,
d
VA Sy€qi1 = Sz Sy Z u;€; N\ €.
i=1
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Observe that

{(yi — a;)e(witDin—g(wenttwant g ] << g,
U; =

(y; — x;)e(witDintwint for ¢ +1<4i<d.

Since x and y are distinct, the vectors v and eyeq are linearly independent,
hence it follows from Lemma 5.2.7 that

(5.43) Vi|[ulloo = spsyllull = |V A syeas || > ¢rt,

where u = (ug,...,uq) € R and || - || s denotes the max norm.
Let 2/ € f(z) and ¢’ € B(y). Suppose that ||u|lec = |u;| for some 1 < i < /.
Then it follows from (5.43) that

1y — || > |y; — il > [yi — x| — |2 — 23] = lyi — vl
1 C/Td_l 1
> e—(wi—l—l)tn—ﬁ-z(wg+1+~~~+wd)nt < N 26ne—ﬁwi(n+l)t—é(we+1+~~~+wd)nt>

Vd

(5.44)
> e*(wi+1)tn+%(wé+1+---+wd)ntC T

e%(wé+1+'"+wd—€f)m

e%(we+1+“'+wd*§5)nt.

We choose t > 1 large enough so that the third line (5.44) holds for all n € N.
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On the other hand, if ||ul|s = |u;| for some £+ 1 < ¢ < d, then we have

ly' — 'l > i — 2i| = |yi — @] — @ — @] — |yi — v

> e_(wi+1)t"_wi”t (Clrdl — % ewmt—fwi(n—i—l)t)
- n
Vd
d—1
(5.45) > e—(wi+1)tn—w,-ntcl7”7
B 2vd
d—
> L(l_)lLe(wl_wi)tn—(f-ﬁ-wi)nt
- 4\/6?671_1
C’?“d_l
> M T i)t —(Erwnt
4\/&6“_1
d—1
(5.46) > b T wgtwa—Ent

et 4\/3671—1

We choose t > 1 large enough so that the third line (5.45) and last line (5.46)
hold for all n € N.
This concludes the proof of the lemma. O

We choose t > 1 large enough so that for all n € N

c’rd_l

P 4\/g€n71

since wyq1 + -+ - +wyq < &L. The assumption (4) of Theorem 5.1.1 follows from
Lemma 5.3.5.

(5.47) 6%(w£+1+-"+wdf£€)nt <1

Proof of Proposition 5.3.4. We prove the proposition applying Corollary 5.1.2.
It can be easily checked that for k > 4£dt, the assumptions of Corollary 5.1.2
hold. Then we have

log(Cp L™ . Lt /D L@
—log(Ly /LYY
~&dnt — E(wppy + - Fwg)(n + 1)t — &(d — £)nt + o(n)
N Ewy(n+ 1)t + &nt + o(n)
(- (wepr +--Fwa) _, 1
1+ wy 1+ wy

as n — oo
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CHAPTER 5. WEIGHTED SINGULAR VECTORS

Hence Corollary 5.1.2 implies

1 1
di >d—=0)+10— =d-— .
O
Proof of Theorem 1.4.1. If wy = --+ = wy, then the result follows from [CC16,
Theorem 1.1]. If there exists 1 < ¢ < d — 1 such that w; = -+ = wy > wpyq >

-+ > wy, then the result follows from Lemma 5.3.3 and Proposition 5.3.4. [

Proof of Theorem 1.4.2. This theorem directly follows from the same argu-

ment in the proof of [LSST20, Theorem 1.5].
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