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Abstract

Dynamics on homogeneous spaces
and Diophantine approximation

Taehyeong Kim
Department of Mathematical Sciences

The Graduate School
Seoul National University

Dynamics of group actions on homogeneous spaces, which is referred to as “ho-
mogeneous dynamics”, has a lot of connections to number theory. These con-
nections have been intensively and extensively studied over the past decades,
and have produced various and abundant number-theoretic results.

In this thesis, we focus on the relationship between homogeneous dynam-
ics and Diophantine approximation, and consider the following three objects
in Diophantine approximation: Dirichlet non-improvable affine forms, badly
approximable affine forms, and weighted singular vectors.

We improve equidistribution results in homogeneous dynamics in terms
of weak L1 estimates, and establish local ubiquity systems for Dirichlet non-
improvable affine forms using Transference Principle in Diophantine approxi-
mation. These developments imply zero-infinite phenomena for Hausdorff mea-
sures of Dirichlet non-improvable affine forms.

Next, we establish an effective version of entropy rigidity, which implies
the effective upper bound of Hausdorff dimension of badly approximable affine
forms by constructing “well-behaved” σ-algebras and certain invariant mea-
sures with large entropy. We further characterize full Hausdorff-dimensionality
of badly approximable affine forms for fixed matrix by a Diophantine condition
of singularity on average. We also consider Diophantine approximation over
global function fields and have similar results in this setting.

Finally, we improve lattice point counting in geometry of numbers, which
arises from the fractal structure of weighted singular vectors. Combining the
improvement and the shadowing property in homogeneous dynamics, we ob-
tain the sharp lower bound of Hausdorff dimension of weighted singular vec-
tors.

Key words: Homogeneous dynamics, Diophantine approximation, Entropy
rigidity, Geometry of numbers, Ubiquitous system, Global function field,
Student Number: 2016-23082
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Chapter 1

Introduction

After the celebrated work of Margulis [Mar87] on Oppenheim conjecture, the

rigidity phenomenon in homogeneous dynamics has been intensively and ex-

tensively studied over the past decades. These extensive studies have produced

various and abundant number-theoretic results: the proof of Oppenheim con-

jecture [Mar87] and its quantitative versions [DM93, EMM98, EMM05], the

proof of Baker-Sprindžuk conjecture [KM98], proof of arithmetic quantum

unique ergodicity [Lin06], an important partial result on Littlewood conjec-

ture [EKL06], etc.

The present thesis is focused on the metric theory of Diophantine ap-

proximation, which originates from the problem of the approximation of real

numbers by rational numbers. Since Dani’s work [Dan85] on the relation be-

tween Diophantine approximation and homogeneous dynamics, various dy-

namical methods such as equidistribution, mixing, or measure rigidity have

been widely used in the study of metric Diophantine approximation [KM98,

KM99, KLW04, EKL06].

More precisely, the theory of Diophantine approximation is concerned with

the following question: if A is an m × n real matrix (interpreted as a system

of m linear forms in n variables), how small, in terms of the size of q ∈ Zn,
can be the distance from Aq to Zm? This question can be seen in terms of

homogeneous dynamics as follows. The homogeneous space associated with

Diophantine approximation is SLd(R)/SLd(Z) for d = m+ n, which is identi-

fied with the space of lattices in Rd with covolume 1. By Mahler’s compactness

criterion of SLd(R)/SLd(Z), Diophantine approximation of a matrix A can be

described by cusp excursions of the orbit (atΛA)t≥0 of the diagonal flow as

1



CHAPTER 1. INTRODUCTION

follows:

at =

(
et/mIm 0

0 e−t/nIn

)
and ΛA =

(
Im A

0 In

)
Zd.

The property that the matrix A has good Diophantine approximation is equiv-

alent to the property that the orbit (atΛA)t≥0 has excursions into small cusp

neighborhood. This observation allows us to use various dynamical methods

in the study of metric Diophantine approximation.

In the theory of Diophantine approximation, the starting point is Dirichlet

theorem: For any A ∈Mm,n(R) and T > 1, there exist p ∈ Zm and q ∈ Zn\{0}
such that

(1.1) ∥Aq− p∥m ≤ 1

T
and ∥q∥n < T.

Dirichlet theorem implies the following corollary, which will be called Dirichlet

corollary : For any A ∈Mm,n(R) there exist infinitely many q ∈ Zn such that

(1.2) ∥Aq− p∥m <
1

∥q∥n
for some p ∈ Zm.

The above two statements give a rate of approximation that works for all real

matrices. However, if we replace the right-hand sides of (1.1) and (1.2) by

faster decaying functions of T and ∥q∥n respectively, then one can ask sizes

of corresponding sets of matrices satisfying the improved systems, which leads

to the metric theory of Diophantine approximation.

In this thesis, we study metrical properties of the following four main

objects using both dynamical methods and number-theoretical methods:

1. Dirichlet non-improvable affine forms, based on the joint work with

Wooyeon Kim [KK22],

2. badly approximable affine forms, based on the joint work with Wooyeon

Kim and Seonhee Lim [KKL],

3. badly approximable affine forms on global function fields, based on the

joint work with Seonhee Lim and Frédéric Paulin [KLP],

4. weighted singular vectors, based on the joint work with Jaemin Park

[KP].

2



CHAPTER 1. INTRODUCTION

1.1 Dirichlet non-improvable affine forms

Classically, the improvability of Dirichlet corollary, i.e. the inequality (1.2),

has been studied for a long time. To consider the improvability of (1.2), let

an approximating function ψ : R+ → R+ be given. Then we say that A ∈
Mm,n(R) is ψ-approximable if there exist infinitely many q ∈ Zn such that 1

(1.3) ∥Aq− p∥m < ψ(∥q∥n) for some p ∈ Zm.

Denote by Wm,n(ψ) the set of ψ-approximable matrices in the unit cube

[0, 1]mn. Then the set Wm,n(ψ) satisfies the following zero-one law with re-

spect to the Lebesgue measure.

Theorem 1.1.1 (Khintchine-Groshev Theorem). Given a non-increasing ψ,

the set Wm,n(ψ) has zero (resp. full) Lebesgue measure if and only if the series∑
k ψ(k) converges (resp. diverges).

To distinguish between sizes of null sets, we can consider Hausdorff mea-

sure and dimension as the appropriate tools. Since the set Wm,n(ψ) is always

containing m(n− 1)-dimensional hyperplanes, we may focus on s-dimensional

Hausdorff measures with s > m(n − 1). The following result was proved by

Jarńık in 1931 for n = 1 and [DV97] in general.

Theorem 1.1.2 (Jarńık). Let ψ be a non-increasing function. Then for s >

m(n− 1),

Hs(Wm,n(ψ)) =

0 if
∑∞

q=1 q
m+n−1

(
ψ̂(q)
q

)s−m(n−1)

<∞,

Hs([0, 1]mn) if
∑∞

q=1 q
m+n−1

(
ψ̂(q)
q

)s−m(n−1)

= ∞,

where ψ̂(q) = ψ(qn)
1
m .

Here, Hs([0, 1]mn) is infinity for s < mn. On the other hand, Hmn compa-

rable to the mn-dimensional Lebesgue measure, hence, Theorem 1.1.2 implies

Khintchine-Groshev Theorem.

It is worth mentioning that Jarńık’s theorem was indeed proved for any

dimension functions f , not just the functions of the form f(r) := rs stated in

1Here, we follow the definition given in [KM99, KW19] but, in Chapter 2, we will use the
slightly different definition, such as [BV10], where the inequality ∥Aq−p∥ < ψ(∥q∥) is used
instead of (1.3).

3



CHAPTER 1. INTRODUCTION

Theorem 1.1.2, see [DV97]. Regarding inhomogeneous Diophantine approxi-

mation, the analogue of Jarńık’s theorem for doubly metric case was proved

in [HKS20] and for singly metric case in [Bug04(1)].

For similar generalizations in the setting of Dirichlet’s Theorem, let us give

the following definition: for a non-increasing function ψ : [T0,∞) → R+, where

T0 > 1 is fixed, we say that A ∈Mm,n(R) is ψ-Dirichlet if the system

∥Aq− p∥m < ψ(T ) and ∥q∥n < T

has a nontrivial integral solution for all large enough T . Surprisingly, no zero-

one law analogous to Khintchine-Groshev Theorem was known until recently

when Kleinbock and Wadleigh [KW18] proved a zero-one law on the Lebesgue

measure of Dirichlet improvable numbers, that is, m = n = 1. The Hausdorff

measure-theoretic results for Dirichlet non-improvable numbers analogous to

Theorem 1.1.2 have also been established in [HKWW18] for a general class

of dimension functions f called the essentially sub-linear dimension functions.

For the non-essentially sub-linear dimension functions, the relevant results are

in [BHS]. For general m,n ∈ N, Kleinbock, Strömbergsson, and Yu [KSY21]

recently gave sufficient conditions on ψ to ensure that the set of ψ-Dirichlet

m× n matrices has zero or full Lebesgue measure.

Now, we focus our attention on inhomogeneous Diophantine approximation

replacing the values of a system of linear forms Aq by those of a system of

affine forms q 7→ Aq+ b, where A ∈ Mm,n(R) and b ∈ Rm. Let M̃m,n(R) :=
Mm,n(R)×Rm. Following [KW19], for a non-increasing function ψ : [T0,∞) →
R+, we say that a pair (A,b) ∈ M̃m,n(R) is ψ-Dirichlet if there exist p ∈ Zm

and q ∈ Zn such that

(1.4) ∥Aq+ b− p∥m < ψ(T ) and ∥q∥n < T

whenever T is large enough. Denote by D̂m,n(ψ) the set of ψ-Dirichlet pairs in

the unit cube [0, 1]mn+m. Note that in this definition, the case q = 0 is allowed

so that (A,b) is always ψ-Dirichlet for any b ∈ Zm.
Recently, Kleinbock and Wadleigh established the following zero-one law

for the set D̂m,n(ψ) with respect to the Lebesgue measure.

Theorem 1.1.3. [KW19] Given a non-increasing ψ, the set D̂m,n(ψ) has zero

4



CHAPTER 1. INTRODUCTION

(resp. full) Lebesgue measure if and only if the series

(1.5)
∑
j

1

ψ(j)j2

diverges (resp. converges).

As mentioned in [KW19, Section 7], one can naturally ask whether Theo-

rem 1.1.3 can be extended along two directions:

• Zero-infinity law for a Hausdorff measure,

• Singly metric case (b fixed).

Although Theorem 1.1.3 provides the Lebesgue measure of the set D̂m,n(ψ),

nothing was known about the Hausdorff dimension of this set. In this thesis,

we give an analogue of Theorem 1.1.3 for the Hausdorff measure by establish-

ing the zero-infinity law analogous to Theorem 1.1.2. Let us state our main

theorem.

Theorem 1.1.4. Given a decreasing function ψ with limT→∞ ψ(T ) = 0 and

0 ≤ s ≤ mn +m, the s-dimensional Hausdorff measure of D̂m,n(ψ)
c is given

by

Hs(D̂m,n(ψ)
c) =


0 if

∑∞
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn+m−s
<∞,

Hs([0, 1]mn+m) if
∑∞

q=1
1

ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn+m−s
= ∞.

Moreover, the convergent case still holds for every non-increasing function ψ

without the assumption limT→∞ ψ(T ) = 0.

On the other hand, Theorem 1.1.3 provides only the information on Lebesgue

measure in the doubly metric case, i.e. it computes Lebesgue measure of the

set D̂m,n(ψ) ⊆ M̃m,n. A more refined question in inhomogeneous Diophantine

approximation is fixing b ∈ Rm and asking the analogous question for the

slices of D̂m,n(ψ). For fixed b ∈ Rm, let D̂b
m,n(ψ) := {A ∈Mm,n(R) : (A,b) ∈

D̂m,n(ψ)}. The following theorem answers the question for the singly metric

case.

5
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Theorem 1.1.5. Given a decreasing function ψ with limT→∞ ψ(T ) = 0 and

0 ≤ s ≤ mn, the s-dimensional Hausdorff measure of D̂b
m,n(ψ)

c is given by

Hs(D̂b
m,n(ψ)

c) =


0 if

∑∞
q=1

1
ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn−s
<∞,

Hs([0, 1]mn) if
∑∞

q=1
1

ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn−s
= ∞.

for every b ∈ Rm \ Zm. Moreover, the convergent case still holds for ev-

ery b ∈ Rm and every non-increasing function ψ without the assumption

limT→∞ ψ(T ) = 0.

Theorem 1.1.4 and Theorem 1.1.5 can be applied to compute the Haus-

dorff dimension of the Dirichlet non-improvable set for some specific functions

explicitly. For example, let ψa(q) := q−a and ψa,b(q) := q−a(log q)b for a > 0,

b ≥ 0. Our results directly gives the following: For 0 < a ≤ 1, the Hausdorff

dimension of D̂b
m,n(ψa,b)

c is sa := mn− mn(1−a)
m+na and

Hsa(D̂b
m,n(ψa,b)

c) =

{
0 if b > m+na

m+n ,

Hsa([0, 1]mn) if b ≤ m+na
m+n

for every b ∈ Rm \ Zm. More explicitly, Hsa([0, 1]mn) = Hmn([0, 1]mn) ≍ 1

if a = 1, and Hsa([0, 1]mn) = ∞ otherwise. For the doubly metric case, the

Hausdorff dimension of D̂m,n(ψa,b)
c is sa +m and

Hsa+m(D̂m,n(ψa,b)
c) =

{
0 if b > m+na

m+n ,

Hsa+m([0, 1]mn+m) if b ≤ m+na
m+n .

Also, we can observe that the Hausdorff dimension is always bigger thanmn−n
for the singly metric case and mn+m−n for the doubly metric case regardless

of the choice of ψ.

We remark that the above results for ψa can be stated in terms of uni-

form Diophantine exponents. We denote by ŵ(A,b) the supremum of the real

numbers w for which, for all sufficiently large T , the inequalities

∥Aq+ b− p∥ < T−w and ∥q∥ < T

have an integral solution p ∈ Zm and q ∈ Zn. For further details and references

regarding the above notion, see [BL05, B16]. Considering ψa with a = mw
n , we

6



CHAPTER 1. INTRODUCTION

have the following corollary by the definition.

Corollary 1.1.6. For any w > 0,

dimH {(A,b) ∈Mm,n(R)× Rm : ŵ(A,b) ≤ w} = min

{
mn+m− n−mw

1 + w
,mn+m

}
,

dimH {A ∈Mm,n(R) : ŵ(A,b) ≤ w} = min

{
mn− n−mw

1 + w
,mn

}
for every b ∈ Rm \ Zm. Therefore, for any 0 < w ≤ n

m ,

dimH {(A,b) ∈Mm,n(R)× Rm : ŵ(A,b) = w} = mn+m− n−mw

1 + w
,

dimH {A ∈Mm,n(R) : ŵ(A,b) = w} = mn− n−mw

1 + w

for every b ∈ Rm \ Zm.

1.2 Badly approximable affine forms

The simplest way to improve Dirichlet corollary is to replace the right hand

side of (1.2) by ϵ
∥q∥n for 0 < ϵ < 1. It is well known that the set of matrices

satisfying that the improved system is solvable has full Lebesgue measure

[Gro38] and the exceptional set has full Hausdorff dimension [Sch69]. The

elements of the exceptional set are called badly approximable linear forms.

In this thesis, we consider the inhomogeneous Diophantine approximation:

the distribution of Aq modulo Zm near a “target” b ∈ Rm. Although Dirichlet

theorem does not hold anymore, there exist infinitely many q ∈ Z such that

|qα− b− p| < 1/|q| for some p ∈ Z

for almost every (α, b) ∈ R2 and moreover,

lim inf
p,q∈Z,|q|→∞

|q||qα− b− p| = 0

for almost every (α, b) ∈ R2 by the inhomogeneous Khintchine theorem ([Cas57,

Theorem II in Chapter VII]).

Similarly to numbers, for an m × n real matrix A ∈ Mm,n(R), we study

Aq ∈ Rm modulo Zm near the target b ∈ Rm for vectors q ∈ Zn. In this general

7
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situation as well, using inhomogeneous Khintchine-Groshev theorem ([Sch64,

Theorem1] or [Spr79, Chapter1, Theorem 15]), we have

lim inf
q∈Zn,∥q∥→∞

∥q∥n⟨Aq − b⟩m = 0

for almost every (A, b) ∈ Mm,n(R) × Rm. Here, ⟨v⟩ := inf
p∈Zm

∥v − p∥ denotes

the distance from v ∈ Rm to the nearest integral vector with respect to the

supremum norm ∥ · ∥.
The exceptional set of the above equality is our object of interest. We

will consider the exceptional set with weights in the following sense. Let us

first fix, throughout the paper, an m-tuple and an n-tuple of positive reals

r = (r1, · · · , rm), s = (s1, · · · , sn) such that
∑

1≤i≤m
ri = 1 =

∑
1≤j≤n

sj . The

special case where ri = 1/m and sj = 1/n for all i = 1, . . . ,m and j = 1, . . . , n

is called the unweighted case.

Define the r-quasinorm of x ∈ Rm and s-quasinorm of y ∈ Rn by

∥x∥r := max
1≤i≤m

|xi|
1
ri and ∥y∥s := max

1≤j≤n
|yj |

1
sj .

Denote ⟨x⟩r := inf
p∈Zm

∥x− p∥r. We call A ϵ-bad for b ∈ Rm if

(1.6) lim inf
q∈Zn,∥q∥r→∞

∥q∥s⟨Aq − b⟩r ≥ ϵ.

Denote

Bad(ϵ) := {(A, b) ∈Mm,n(R)× Rm : A is ϵ-bad for b} ,

BadA(ϵ) := {b ∈ Rm : A is ϵ-bad for b} , BadA :=
⋃
ϵ>0

BadA(ϵ),

Badb(ϵ) := {A ∈Mm,n(R) : A is ϵ-bad for b} , Badb :=
⋃
ϵ>0

Badb(ϵ).

The set Bad0 can be seen as the set of badly approximable systems of m

linear forms in n variables. This set is of Lebesgue measure zero [Gro38], but

has full Hausdorff dimension mn [Sch69]. See [PV02, KTV06, KW10] for the

weighted setting.

For any b, Badb also has zero Lebesgue measure [Sch66] and full Hausdorff

dimension for every b [ET11]. Indeed, it is shown that Badb is a winning

8
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set [ET11] and even a hyperplane winning set [HKS20], a property which

implies full Hausdorff dimension. On the other hand, the set BadA also has

full Hausdorff dimension for every A [BHKV10]. See [Har12, HM17, BM17]

for the weighted setting.

The sets Badb and BadA are unions of subsets Badb(ϵ) and BadA(ϵ)

over ϵ > 0, respectively, thus a more refined question is whether the Haus-

dorff dimension of Badb(ϵ), BadA(ϵ) could still be of full dimension. For the

homogeneous case (b = 0), the Hausdorff dimension Bad0(ϵ) is less than the

full dimension mn (see [BK13, Sim18] for the unweighted case and [KM19]

for the weighted case). Thus, a natural question is whether Badb(ϵ) can have

full Hausdorff dimension for some b. Our first main result says that in the

unweighted case, Badb(ϵ) cannot have full Hausdorff dimension for any b. We

provide an effective bound on the dimension in terms of ϵ as well.

Theorem 1.2.1. For the unweighted case, i.e. ri = 1/m and sj = 1/n for all

i = 1, . . . ,m and j = 1, . . . , n, there exist c > 0 and M0 > 0 depending only

on d such that for any ϵ > 0 and b ∈ Rm,

dimH Badb(ϵ) ≤ mn− cϵM0 .

As for the set BadA(ϵ), it was showed in [LSS19] that Hausdorff dimension

of BadA(ϵ) is less than the full dimension m for almost every A. In fact, it

was shown that one can associate to A a certain point xA in the space of

unimodular lattices SLd(R)/SLd(Z) such that if xA has no escape of mass on

average for a certain diagonal flow, which is satisfied by almost every point,

then the Hausdorff dimension of BadA(ϵ) is less than m.

In this thesis, we provide an effective bound on the dimension in terms of

ϵ and a certain Diophantine property of A as follows. We say that an m × n

matrix A is singular on average if for any ϵ > 0

lim
N→∞

1

N

∣∣∣{l ∈ {1, · · · , N} : ∃q ∈ Zn s.t. ⟨Aq⟩r < ϵ2−l and 0 < ∥q∥s < 2l
}∣∣∣ = 1.

Theorem 1.2.2. For any A ∈ Mm,n(R) which is not singular on average,

there exists a constant c(A) > 0 depending on A such that for any ϵ > 0,

dimH BadA(ϵ) ≤ m− c(A) ϵ
log(1/ϵ) .

On the other hand, it was showed in [BKLR21] that in the one-dimensional

case (m = n = 1), Badα(ϵ) has full Hausdorff dimension for some ϵ > 0 if and

9
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only if α ∈ R is singular on average. We generalize this characterization to the

general dimensional setting.

Theorem 1.2.3. Let A ∈Mm,n(R) be a matrix. Then the following are equiv-

alent:

1. For some ϵ > 0, the set BadA(ϵ) has full Hausdorff dimension.

2. A is singular on average.

Note that the implication (1) =⇒ (2) of Theorem 1.2.3 follows from

Theorem 1.2.2. The other direction will be shown in Section 3.6.

1.3 Badly approximable affine forms over global func-

tion field

As an extension of Diophantine approximation, we can consider Diophantine

approximation over a local field of positive characteristic, which goes back to

E. Artin, who first introduced continued fractions over a local field of positive

characteristic [Art24]. In this setting, there are numerous results on Diophan-

tine approximation, see for instance [Las00] or [Bug04(1), Chapter 9].

On the other hand, little is known about Diophantine approximation over

general global function fields. Thus, we will consider Diophantine approxima-

tion over global function fields. Let us start with the following setting of global

function fields.

Let K be any global function field over a finite field Fq of q elements

for a prime power q, that is, the function field of a geometrically connected

smooth projective curve C over Fq. The most studied example in Diophantine

approximation in positive characteristic is the case of the field K = Fq(Z) of
rational fractions in one variable Z over Fq, where C = P1 is the projective

line, but we emphasize the fact that our work applies in the general situation

above.

We fix a (normalized) discrete valuation v on K. Let Kv and Ov be the

completion of K with respect to v and its valuation ring, respectively. We fix

a uniformizer πv ∈ K, which satisfies v(πv) = 1. Let kv = Ov/πvOv be the

residual field and let qv be its cardinality. The (normalized) absolute value

| · | associated with v is defined by |x | = q
−v(x)
v . For every σ ∈ Z≥1, let

∥ ∥ : K σ
v → [0,+∞[ be the norm (ξ1, . . . , ξσ) 7→ max1≤i≤σ | ξi |. We denote by

dimH the Hausdorff dimension of the subsets of K σ
v for this standard norm.

10
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The discrete object analogous to the set of integers Z in R is the affine

algebra Rv of the curve C minus the point v. If K = Fq(Z) and v = [1 : 0]

is the standard point at infinity of C = P1, then Rv = Fq[Z] is the ring of

polynomials in Z over Fq.
Let m,n ∈ Z≥1. Let us fix, throughout the paper, two weights consisting of

a m-tuple r = (r1, · · · , rm) and a n-tuple s = (s1, · · · , sn) of positive integers

such that we have |r| =
∑

1≤i≤m
ri =

∑
1≤j≤n

sj . The r-quasinorm of ξ ∈ Km
v and

s-quasinorm of θ ∈ K n
v are given by

∥ ξ ∥r = max
1≤i≤m

| ξi |
1
ri and ∥θ ∥s = max

1≤j≤n
|θj |

1
sj .

We denote by ⟨ξ⟩r = inf
x∈Rm

v

∥ ξ−x ∥r the (weighted) distance from ξ to the set

Rm
v of integral vectors in Km

v .

Let ϵ > 0. A matrix A ∈ Mm,n(Kv) is said to be ϵ-bad for a vector θ ∈ Km
v

if

(1.7) lim inf
x∈Rn

v , ∥x ∥s→∞
∥x ∥s ⟨Ax− θ⟩r ≥ ϵ .

Denote byBadA(ϵ) the set of vectors θ ∈ Km
v such that A is ϵ-bad for θ. Given

two subsets U and V of a given set, we denote U − V = {x ∈ U : x /∈ V }.
We say that a matrix A ∈ Mm,n(Kv) is (r, s)-singular on average if for every

ϵ > 0, we have

(1.8)

lim
N→∞

1

N
card{ ℓ ∈ {1, . . . , N} : ∃ y ∈ Rn

v −{0}, ⟨Ay⟩r ≤ ϵ q− ℓ
v , ∥y ∥s ≤ qℓv } = 1 .

For the basic example of function field, when K = Fq[Z] and v = [1 : 0],

Bugeaud and Zhang [BZ19] found a sufficient condition (and an equivalent one

when n = m = 1) on A for the Hausdorff dimension of BadA(ϵ) to be full. We

first strenghten and extend their result to general function fields.

Theorem 1.3.1. Let A ∈ Mm,n(Kv) be a matrix. The following assertions

are equivalent:

1. there exists ϵ > 0 such that the set BadA(ϵ) has full Hausdorff dimen-

sion,

2. the matrix A is (r, s)-singular on average.

11
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We also provide an effective upper bound on the Hausdorff dimension in

terms of ϵ, which is a new result even in the basic case K = Fq[Z] and v =

[1 : 0].

Theorem 1.3.2. For every A ∈ Mm,n(Kv) which is not (r, s)-singular on

average, there exists a constant c(A) > 0 depending only on A, r, s, such that

for every ϵ > 0, we have dimH BadA(ϵ) ≤ m− c(A) ϵ |r|

ln(1/ϵ) .

1.4 Weighted singular vectors

The simplest way to improve Dirichlet theorem is to replace the right hand

side of (1.1) by ϵ
T for 0 < ϵ < 1 and such matrix A ∈ Mm,n(R) is called

ϵ-Dirichlet improvable. A matrix A ∈ Mm,n(R) is called singular if it is ϵ-

Dirichlet improvable for all ϵ > 0, and denote by Sing(m,n) the set of singular

m× n matrices.

The name singular derives from the fact that the set of singular vectors

is a Lebesgue nullset. On the other hand, the computation of the Hausdorff

dimension of the set of singular vectors, or more generally singular matri-

ces, has been a challenge until the breakthrough [DFSU] using a variational

principle in the parametric geometry of numbers. Historically, the first break-

through was made in [Che11] to prove that the Hausdorff dimension of the

set of 2-dimensional singular vectors is 4/3, which was extended in [CC16] to

d-dimensional singular vectors. They proved that the set of d-dimensional sin-

gular vectors has Hausdorff dimension d2/(d+ 1). For general m× n singular

matrices, it was proved in [KKLM17] that the Hausdorff dimension of m× n

singular matrices is at most mn(1− 1
m+n) , and finally, it was shown in [DFSU]

that the upper bound is sharp.

In this thesis, we consider the weighted version of the singularity as fol-

lows: Let w = (w1, . . . , wd) ∈ Rd>0 be an ordered d-tuple of positive real

numbers such that
∑

iwi = 1 and w1 ≥ · · · ≥ wd. We say that a vector

x = (x1, . . . , xd) ∈ Rd is w-singular if for every ϵ > 0 there exists T0 > 1 such

that for all T > T0 the system of inequalities

(1.9) max
1≤i≤d

|qxi − pi|
1
wi <

ϵ

T
and 0 < q < T

admits an integer solution (p, q) = (p1, . . . , pd, q) ∈ Zd×Z. Denote by Sing(w)

the set of w-singular vectors in Rd. Here and hereafter we always assume that

12
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the weight vector w satisfies the above assumption.

In the weighted setting, it was shown in [LSST20] that the set of 2-

dimensional w-singular vectors has Hausdorff dimension 2 − 1
1+w1

. The aim

of this thesis is to extend this 2-dimensional result to higher dimensions re-

garding the lower bound of the Hausdorff dimension.

Theorem 1.4.1. For d ≥ 2, the Hausdorff dimension of Sing(w) is at least

d− 1
1+w1

.

One of the main ingredients of the proof of Theorem 1.4.1 is Dani’s cor-

respondence, which means that w-singular vectors correspond to certain di-

vergent trajectories in the space Ld+1 of unimodular lattices in Rd+1. More

precisely, let at := diag
(
ew1t, . . . , ewdt, e−1

)
∈ SLd+1(R) and let

h(x) :=

(
Id x

0 1

)
∈ SLd+1(R) for x ∈ Rd,

where Id is the d × d identity matrix. Then x is w-singular if and only if the

diagonal orbit
(
ath(x)Zd+1

)
t≥0

is divergent.

Our method for the proof of Theorem 1.4.1 is basically extension of the

method in [LSST20], hence we also have the following result as in [LSST20,

Theorem 1.5].

Theorem 1.4.2. For any Λ ∈ Ld+1 and any nonempty open subset U in Rd,
the Hausdorff dimension of the set

{x ∈ U : (ath(x)Λ)t≥0 is divergent}

is at least d− 1
1+w1

.

Theorem 1.4.2 implies the following corollary as in [LSST20, Corollary 1.6].

Corollary 1.4.3. The Hausdorff dimension of the set

{Λ ∈ Ld+1 : (atΛ)t≥0 is divergent}

is at least dimSLd+1(R)− 1
1+w1

= (d+ 1)2 − 1− 1
1+w1

.

Recently, Solan [Sol] established a variational principle in the parametric

geometry of numbers for general flows. Following his notations, we consider

13
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the following two subgroups:

H = {g ∈ SLd+1(R) : a−tgat → Id+1 as t→ ∞},
H ′ = {h(x) ∈ SLd+1(R) : x ∈ Rd}.

Note that H is the unstable horospherical subgroup of a1. In the unweighted

setting (w1 = · · · = wd), the two subgroups H and H ′ are the same, but

in general, H is bigger than H ′. One of the applications of the variational

principle for general flows in [Sol] is to give an upper bound of the Hausdorff

dimension of the set

Sing(H,Λ; at) = {h ∈ H : (athΛ)t≥0 is divergent}.

More precisely, [Sol, Corollary 2.34] implies that the Hausdorff dimension of

Sing(H,Λ; at) is at most dim H − 1
1+w1

. On the other hand, Theorem 1.4.2

implies that the Hausdorff dimension of Sing(H,Λ; at) is at least dimH− 1
1+w1

,

hence we have the following corollary.

Corollary 1.4.4. The Hausdorff dimension of Sing(H,Λ; at) is dim H− 1
1+w1

.

The thesis is organized as follows. In Chapter 2, we obtain some weak L1

estimates and establish local ubiquity systems. Combining these two results

and Transference Principle in Diophantine approximation, we conclude the

proof of the main theorems in Section 1.1. In Chapter 3, we review classical

entropy theory, interpret the entropy theory in terms of homogeneous dynam-

ics, and establish the effective version of variational principle. By constructing

some “well-behaved” σ-algebras and certain invariant measures with large en-

tropy, we conclude the effective upper bound of the main theorems in Section

1.2. For the lower bound part, we characterize the singularity on average in

terms of best approximation vectors and construct modified Bugeaud-Laurent

sequences, which implies the lower bound of the main theorems in Section

1.2. In Chapter 4, we review global function fields and develop some basic

Diophantine properties in the global function field setting. Following Chap-

ter 3, we establish the effective variational principle and construct certain

“well-behaved” σ-algebras and invariant measures with large entropy, which

concludes the effective upper bound of the main theorem in Section 1.3. We

also characterize the singularity on average and construct modified Bugeaud-

Zhang sequences to obtain the lower bound part in the main theorem in Section

1.3. In Chapter 5, we review some notions : rooted trees, fractal structures,
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and self-affine structures. Then we calculate the lower bound of Hausdorff di-

mension of the fractal set related to the self-affine structure. We construct the

self-affine structure related to weighted singular vectors and estimate sharp

lattice point counting, which concludes the main theorems in Section 1.4.
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Chapter 2

Equidistribution and

Ubiquitous system

2.1 Preliminaries

2.1.1 Hausdorff measure and auxiliary lemmas

Below we give a brief introduction to Hausdorff measure and dimension. For

further details, see [Fal14].

Let E be a subset of a Euclidean space Rk. For δ > 0, a cover C of E is

called a δ-cover of E if diam(C) ≤ δ for all C ∈ C. For 0 ≤ s ≤ k, let

Hs
δ(E) = inf

∑
C∈C

diam(C)s,

where the infimum is taken over all finite or countable δ-cover C of E. Then

the s-dimensional Hausdorff measure of a set E is defined by

Hs(E) = lim
δ→0

Hs
δ(E).

Finally, the Hausdorff dimension of E is given by

dimH(E) = inf{s ≥ 0 : Hs(E) = 0}.

The following principle commonly known as the Mass Distribuiton Princi-

ple [Fal14, §4.1] will be used to show the divergent part of Theorem 1.1.4.
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Lemma 2.1.1 (Mass Distribution Principle). Let µ be a probability measure

supported on F ⊂ Rk. Suppose there are positive constants c > 0, r0 > 0, and

0 ≤ s ≤ k such that

µ(B) ≤ crs

for any ball B with radius r ≤ r0. If E is a subset of F with µ(E) = λ > 0

then Hs(E) ≥ λ/c.

We state the Hausdorff measure version of the Borel-Cantelli lemma [BD99,

Lemma 3.10] which will allow us to estimate the Hausdorff measure of the

convergent part of Theorem 1.1.4 and Theorem 1.1.5.

Lemma 2.1.2 (Hausdorff-Cantelli). Let {Bi}i≥1 be a sequence of measurable

sets in Rk and suppose that for some 0 ≤ s ≤ k,∑
i

diam(Bi)
s <∞.

Then

Hs(lim sup
i→∞

Bi) = 0.

2.1.2 Homogeneous dynamics

Our argument is based on the Dani correspondence, which forms a connection

between Diophantine approximation and homogeneous dynamics. The classi-

cal Dani correspondence for homogeneous Diophantine approximation dates

back to [Dan85] (See also [KM99]). The analogous correspondence between

inhomogeneous Diophantine approximation and the dynamics in the space of

grids have been used in [Kle99, Sha11, ET11, LSS19, GV18]. In this section,

we introduce the space of grids in Rm+n and the diagonal flow on this space.

For d = m+ n, let

Gd = SLd(R) and Ĝd = ASLd(R) = Gd ⋊Rd,

and let

Γd = SLd(Z) and Γ̂d = ASLd(Z) = Γd ⋊ Zd.

Elements of Ĝd will be denoted by ⟨g,w⟩, where g ∈ Gd andw ∈ Rd. Denote by

Xd = Gd/Γd the space of unimodular lattices in Rd and denote by X̂d = Ĝd/Γ̂d
the space of unimodular grids, i.e. affine shifts of unimodular lattices in Rd.
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For simplicity, let G := Gd, X := Xd and denote by mX the Haar probability

measure on Xd. For t ∈ R, let

at := diag(et/m, . . . , et/m, e−t/n, . . . , e−t/n).

Let us denote by

uA :=

(
Im A

0 In

)
∈ Gd and uA,b :=

〈(
Im A

0 In

)
,

(
b

0

)〉
∈ Ĝd

for A ∈Mm,n(R) and (A,b) ∈ M̃m,n(R). Let us also denote by

ΛA := uAZd ∈ X and ΛA,b := uA,bZd ∈ X̂d,

where uA,bZd =

{(
Aq+ b− p

q

)
: p ∈ Zm,q ∈ Zn

}
. The expanding horo-

spherical subgroup ofGd with respect to {at : t > 0} is given byH := {uA : A ∈Mm,n(R)}.
On the other hand, the nonexpanding horospherical subgroup of Gd with re-

spect to {at : t > 0} is given by

H̃ :=

{(
P 0

R Q

)
: P ∈Mm,m(R), Q ∈Mn,n(R), R ∈Mn,m(R),det(P ) det(Q) = 1

}
.

Note that H̃ is the complementary subgroup to H. We denote by mH and mH̃

the left-invariant Haar measure on H and H̃, respectively.

Let d be a right invariant metric on G. We can take d to satisfy ||g− id|| ≤
d(g, id) for g in the sufficiently small ball BG

r (id), where || · || is the supremum

norm on Md,d(R). This metric induces metrics on H, H̃, and X by restriction.

We let BG
r (id), B

H
r (id), BH̃

r (id), and BX
r (id) denote the open ball in G,H, H̃,

and X of radius r centered at the identity, respectively.

Following [KW19], we define the functions ∆ : X̂d → [−∞,∞) by

∆(Λ) := log inf
v∈Λ

∥v∥,

which can be considered as the logarithm of a height function.

Lemma 2.1.3. [KM99, Lemma 8.3] Let m,n ∈ N and T0 ∈ R+ be given.

Suppose ψ : [T0,∞) → R+ is a continuous, non-increasing function. Then
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there exists a unique continuous function

z = zψ : [t0,∞) → R,

where t0 :=
m

m+n log T0 −
n

m+n logψ(T0), such that

1. the function t 7→ t+ nz(t) is strictly increasing and unbounded;

2. the function t 7→ t−mz(t) is nondecreasing;

3. ψ(et+nz(t)) = e−t+mz(t) for all t ≥ t0.

The following lemma reduces the inhomogeneous Diophantine approxima-

tion problem to the shrinking target problem on the space of grids.

Lemma 2.1.4. [KM99, KW19] Let ψ : [T0,∞) → R+ be a non-increasing

continuous function, and let z = zψ be the function associated to ψ by Lemma

2.1.3. Then (A,b) ∈ D̂m,n(ψ) if and only if ∆(atΛA,b) < zψ(t) for all suffi-

ciently large t.

Remark 2.1.5. In other words, Lemma 2.1.4 means that

D̂m,n(ψ)
c = lim sup

t→∞
{(A,b) : ∆(atΛA,b) ≥ zψ(t)} ,

D̂b
m,n(ψ)

c = lim sup
t→∞

{A : ∆(atΛA,b) ≥ zψ(t)} .

Here, the limsup sets are taken for real values t ∈ R. However, in the proof of

the convergent part, we are going to work with limsup sets taken for t ∈ N to

apply the Hausdorff-Cantelli lemma. Thus, in the Section 3, we will use the

following alternative: there exists a constant C0 > 0 satisfying

D̂m,n(ψ)
c ⊆ lim sup

t→∞,t∈N
{(A,b) : ∆(atΛA,b) ≥ zψ(t)− C0} ,

D̂b
m,n(ψ)

c ⊆ lim sup
t→∞,t∈N

{A : ∆(atΛA,b) ≥ zψ(t)− C0} .

This alternative holds since zψ is uniformly continuous by Lemma 2.1.3 and

∆ is uniformly continuous on the set ∆−1([z,∞]) for any z ∈ R ([KW19,

Lemma 2.1]).

Lemma 2.1.6. Let ψ : [T0,∞) → R+ be a non-increasing continuous function,

and let z = zψ be the function associated to ψ by Lemma 2.1.3. For 0 ≤ s ≤
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mn, we have

∞∑
q=⌈T0⌉

1

ψ(q)q2

(
q

1
n

ψ(q)
1
m

)mn−s
<∞ ⇐⇒

∞∑
t=⌈t0⌉

e−(m+n)(z(t)−mn−s
mn

t) <∞.

Proof. Note that if 0 ≤ s ≤ mn − n, both of the sum is infinity regardless of

ψ, thus we may assume mn−n < s ≤ mn. Following [KM99] and [KW19], we

replace the sums with integrals

∫ ∞

T0

1

ψ(x)x2

(
x

1
n

ψ(x)
1
m

)mn−s
dx and

∫ ∞

t0

e−(m+n)(z(t)−mn−s
mn

t)dt

respectively. Define

P := − log ◦ψ ◦ exp : [T0,∞) → R and λ(t) := t+ nz(t).

Since ψ(eλ) = e−P (λ), we have

∫ ∞

T0

1

ψ(x)x2

(
x

1
n

ψ(x)
1
m

)mn−s
dx =

∫ ∞

log T0

e−(1−
mn−s
n )λ+(1+mn−s

m )P (λ)dλ

Using P (λ(t)) = t−mz(t), we also have∫ ∞

t0

e−(m+n)(z(t)−mn−s
mn

t)dt

=

∫ ∞

log T0

e−(1−
mn−s
n )λ+(1+mn−s

m )P (λ)d

[
m

m+ n
λ+

n

m+ n
P (λ)

]
=

m

m+ n

∫ ∞

log T0

e−(1−
mn−s
n )λ+(1+mn−s

m )P (λ)dλ

+
n

m+ n

∫ ∞

log T0

e−(1−
mn−s
n )λ+(1+mn−s

m )P (λ)dP (λ).

The second term in the last line can be expressed by

n

m+ n

∫ ∞

log T0

e−(1−
mn−s
n )λ+(1+mn−s

m )P (λ)dP (λ)

=
n

m+ n

(
1 +

mn− s

m

)−1 ∫ ∞

log T0

e−(1−
mn−s
n )λd(e(1+

mn−s
m )P (λ))

20



CHAPTER 2. EQUIDISTRIBUTION AND UBIQUITOUS SYSTEM

Using integration by parts, the last integral is∫ ∞

log T0

e−(1−
mn−s
n )λd(e(1+

mn−s
m )P (λ))

=

(
1− mn− s

n

)∫ ∞

log T0

e−(1−
mn−s
n )λ+(1+mn−s

m )P (λ)dλ

+

(
lim
λ→∞

e−(1−
mn−s
n )λ+(1+mn−s

m )P (λ) − T
−(1−mn−s

n )
0 ψ(T0)

−(1+mn−s
m )

)
.

Note that lim
λ→∞

e−(1−
mn−s
n )λ+(1+mn−s

m )P (λ) = 0 if the integral

∫ ∞

log T0

e−(1−
mn−s
n )λ+(1+mn−s

m )P (λ)dλ

converges. Thus the convergence of

∫ ∞

T0

1

ψ(x)x2

(
x

1
n

ψ(x)
1
m

)mn−s
dx or

∫ ∞

t0

e−(m+n)(z(t)−mn−s
mn

t)dt

implies the convergence of the other one since all summands are positive except

the finite value −T−(1−mn−s
n )

0 ψ(T0)
−(1+mn−s

m ).

2.2 Equidistribution and Weak-L1 estimate

To obtain the upper bound of Hausdorff dimension, we will basically count the

number of covering balls following the ideas from [KKLM17]. We are going

to use the equidistribution of expanding subgroup of the at-action on X to

compute the Lebesgue measure of the set of points visiting the shrinking target

for each time t, following the “thickening” technique of Margulis [Mar04]. We

also refer to the formulation of [KM96]. However, if we apply the thickening

argument for L2 functions as usual, it does not give the optimal dimension

upper bound. To obtain the optimal dimension bound, we need a L1,w estimate

as the following Proposition 2.2.1. L1,w norm of a function f on X is defined

by ||f ||L1,w(X) := sup
M>0

MmX({x ∈ X : |f(x)| ≥M}), and L1,w(X) is the space

of measurable functions with finite L1,w-norm.

Proposition 2.2.1. Let H, H̃ be the maximal expanding, nonexpanding sub-
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group of Gd, respectively. Assume that f ∈ L1,w(X) is a nonnegative function

satisfying the following condition: there exist c, r0 > 0 such that c < |f(h̃x)f(x) |
for any h̃ ∈ BH̃

r0(id), x ∈ X. Then for any x ∈ X, there exist a constant

K = K(x) > 0 such that

mH(
{
h ∈ BH

1 (id) : f(athx) ≥M
}
) ≤ K

M

for all M > 0, t > 0, i.e. for any x ∈ X, ||(at)∗fx||L1,w(BH1 (id)) is uniformly

bounded for all t > 0, where the function fx : H → R is defined by fx(h) =

f(hx).

Proof. Fix x ∈ X and let EM,t :=
{
h ∈ BH

1 (id) : f(athx) ≥M
}
. For con-

tradiction, suppose that for any K > 0, there exist t,M > 0 such that

mH(EM,t) >
K
M . Let ÊM,t :=

{
h̃h : h ∈ EM,t, h̃ ∈ BH̃

r (id)
}
, where 0 < r < r0

is a small real number to be determined later. Then for any h̃h ∈ ÊM,t,

f(ath̃hx) = f((ath̃a
−1
t )athx) > cf(athx) ≥ cM

since ath̃a
−1
t ∈ BH̃

r (id). We partition BH
1 (id) into D1, · · ·DN so that a map

πx : G → X defined by πx(g) = gx is injective on each Di. Note that the

number of the partition N is not depending on K. Choose r small enough so

that πx is injective on BH̃
r (id)Di for all 1 ≤ i ≤ N . Let EM,t =

N⊔
i=1

Ei, where

Ei = EM,t ∩Di, then

mX({y ∈ X : f(y) ≥ cM}) = mX({y ∈ X : f(aty) ≥ cM})

≥ mX(
{
h̃hx ∈ X : h̃h ∈ ÊM,t

}
)

≥ mG(
{
h̃h ∈ G : h̃ ∈ BH̃

r (id), h ∈ Ei

}
)

≍ mH̃(B
H̃
r (id))mH(Ei)

for all 1 ≤ i ≤ N . Summing over 1 ≤ i ≤ N , we have

NmX({y ∈ X : f(y) ≥ cM}) ≫ mH̃(B
H̃
r (id))mH(EM,t)

>
mH̃(B

H̃
r (id))K

M

and it implies ∥f∥L1,w(X) = ∞ since K > 0 is arbitrary and c, r,N are inde-
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pendent to K. It contradicts the assumption f ∈ L1,w(X).

2.3 Application to Diophantine approximation

2.3.1 Successive minima function

Let λj(Λ) denote the j-th successive minimum of a lattice Λ ⊆ Rd i.e. the

infimum of λ such that the ball BRd
λ (0) contains j independent vectors of

Λ. The following inequality explains the relationship between the successive

minima functions λ1 and λd.

Theorem 2.3.1 (Mahler’s inequality, [Cas59], Theorem VI in Chapter VIII).

For any lattice Λ ⊆ Rd, 1 ≤ λ1(Λ
∗)λd(Λ) ≤ d! holds, where Λ∗ is the dual

lattice of Λ.

Note that the Haar measuremX is invariant under the dual operation since

the dual operation is induced by the transpose of the inverse of a matrix, which

is an automorphism of G. Another ingredient we will use is Siegel’s integral

formula.

Theorem 2.3.2 (Siegel’s integral formula). For a compactly supported inte-

grable function f ∈ L1(Rd), we define a function f̂ on X by

f̂(Λ) =
∑

v∈Λ\{0}

f(v).

Then for any f as above,
∫
X f̂dmX =

∫
Rd fdmRd.

In the following Proposition 2.3.3 and 2.3.4, we will show that the function

λdd satisfies the assumption of Proposition 2.2.1.

Proposition 2.3.3. λdd ∈ L1,w(X).

Proof. For any r > 0,

(2.1)

mX(
{
Λ : λdd(Λ) ≥ (d!)dr−d

}
) = mX(

{
Λ : λd(Λ) ≥ d!r−1

}
)

≤ mX({Λ : λ1(Λ
∗) ≤ r})

= mX({Λ : λ1(Λ) ≤ r})

≤
∫
Λ∈X

χ̂Br(0)(Λ)dmX(Λ)

=

∫
Rd
χBr(0)dmRd ≍ rd,
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thus λdd ∈ L1,w(X). In (3.28), the second line is by Mahler’s inequality, the

third line is by the invariance of mX under the dual operation, the fourth line

is using the fact that λ1(Λ) ≤ r implies χ̂Br(0)(Λ) ≥ 1, and the last line is by

Siegel’s integral formula.

Proposition 2.3.4. For any 0 < c < 1, there exists r > 0 such that for any

g ∈ G with d(g, id) < r, cλd(Λ) < λd(gΛ) < c−1λd(Λ) holds for any Λ ∈ X.

Proof. It suffices to show the statement under the stronger assumption that

both of g and g−1 are in the ball BG
r (id). Then there exist independent vectors

v1, · · · , vd ∈ Λ such that ∥v1∥ ≤ ∥v2∥ ≤ · · · ≤ ∥vd∥ = λd(Λ). For each 1 ≤ i ≤
d,

∥gvi − vi∥ ≤ d||g − id||∥vi∥ ≤ drλd(Λ),

thus ∥gvi∥ ≤ (1+dr)λd(Λ). It implies λd(gΛ) ≤ (1+dr)λd(Λ) since gv1, · · · , gvd
are independent vectors. Applying this for g−1 and gΛ, instead of g and Λ, we

have

λd(Λ) = λd(g
−1gΛ) ≤ (1 + dr)λd(gΛ).

Thus for any Λ ∈ X and g ∈ BG
r (id), (1+dr)

−1λd(Λ) < λd(gΛ) < (1+dr)λd(Λ)

holds.

2.3.2 The number of covering balls

In this subsection, we will construct a sequence of coverings for D̂m,n(ψ)
c

and D̂b
m,n(ψ)

c to apply Hausdorff-Cantelli Theorem. Recall that we adopt the

supremum norm ∥ · ∥ on [0, 1]mn.

Proposition 2.3.5. Let C0 > 0 be a constant described in Remark 2.1.5. For

t ∈ N, let Zt := {A ∈ [0, 1]mn : log(dλd(atΛA)) ≥ zψ(t)− C0}. Then Zt can

be covered with Ke(m+n)(t−zψ(t)) balls in Mm,n(R) of radius 1
2e

−( 1
m
+ 1
n
)t for a

constant K > 0 depending only on the dimension d.

Proof. [0, 1]mn can be covered with p(≍ e(m+n)t) cubes D1, D2, · · · , Dp with

sides parallel to the axes of Rmn and of sidelength r ≤ e−( 1
m
+ 1
n
)t and having

mutually disjoint interiors.

Lemma 2.3.6. For t ∈ N, let

Z ′
t :=

{
A ∈ [0, 1]mn : log(d2λd(atΛA)) ≥ zψ(t) − C0 − 1

}
.

For any t ≥ 1, if Di ∩ Zt ̸= ϕ for some 1 ≤ i ≤ p, then Di ⊂ Z ′
t.
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Proof. Assume that there exists x ∈ Di but x /∈ Z ′
t for some t > 0. Choose a

point y ∈ Di ∩ Zt, then ∥x− y∥ ≤ r and

||atux−ya−t − id|| =

∣∣∣∣∣
∣∣∣∣∣
(
Im e(

1
m
+ 1
n
)t(x− y)

In

)
− id

∣∣∣∣∣
∣∣∣∣∣

≤ ∥e(
1
m
+ 1
n
)t(x− y)∥ ≤ 1.

Thus, for g = atux−ya−t, it satisfies ||g − id|| ≤ 1 and atΛy = gatΛx. On the

other hand, log(d2λd(atΛx)) < zψ(t) − C0 − 1, log(dλd(atΛy)) ≥ zψ(t) − C0

hold since x /∈ Z ′
t, y ∈ Zt. We can take independent vectors v1, · · · , vd ∈ Rd in

the lattice atΛx satisfying ∥vi∥ < 1
d2
ezψ(t)−C0−1 for all 1 ≤ i ≤ d. Let wi = gvi,

then wi’s are independent vectors in the lattice atΛy and satisfy

∥wi∥ ≤ d||g||∥vi∥ ≤ 2d∥vi∥ <
2

d
ezψ(t)−C0−1 <

1

d
ezψ(t)−C0

for all 1 ≤ i ≤ d. Thus we obtain log(dλd(atΛy)) < zψ(t)−C0 but it contradicts

to y ∈ Zt.

Let p′ := | {Di : Di ∩ Zt ̸= ϕ} | and by reordering the Di’s if necessary, we

can assume that
{
D1, · · · , Dp′

}
= {Di : Di ∩ Zt ̸= ϕ}. Then Zt ⊆

p′⋃
i=1

Di ⊆ Z ′
t

by Lemma 2.3.6. Now we will apply Proposition 2.2.1 for the function λdd with

the base point x = Zd. By Proposition 2.3.3 and Proposition 2.3.4, λdd satisfies

the conditions of Proposition 2.2.1. Then we have

mRmn(Z
′
t) ≤ mRmn

({
A ∈ [0, 1]mn : λd(atΛA) ≥

1

d2
ezψ(t)−C0−1

})
≍ mH

({
h ∈ BH

1 (id) : λdd(athZd) ≥
1

d2d
ed(zψ(t)−C0−1)

})
≪ e−dzψ(t).

On the other hand, mRmn(Z
′
t) ≥

p′∑
i=1

mRmn(Di) = p′e−dt holds, thus we finally

obtain p′ ≪ ed(t−zψ(t)). It means that Zt can be covered by ≪ ed(t−zψ(t)) many

balls of r-radius since Zt ⊆
p′⋃
i=1

Di.
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Proposition 2.3.7. Let 0 ≤ s ≤ mn. If
∑∞

q=1
1

ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn−s
< ∞,

then Hs(lim sup
t→∞

Zt) = 0 and Hs+m(lim sup
t→∞

Zt × [0, 1]m) = 0.

Proof. By Lemma 2.1.6, the assumption
∑∞

q=1
1

ψ(q)q2

(
q
1
n

ψ(q)
1
m

)mn−s
< ∞ is

equivalent to
∑∞

t=1 e
−(m+n)(z(t)−mn−s

mn
t) < ∞. For each t ∈ N, let us de-

note by Dt1, Dt2, · · · , Dtpt the balls of radius 1
2e

−( 1
m
+ 1
n
)t covering Zt as in

Proposition 2.3.5. Note that pt, the number of the balls, is not greater than

Ke(m+n)(t−zψ(t)) by Proposition 2.3.5. By applying Lemma 2.1.2 to a sequence

of balls {Dtj}t∈N,1≤j≤pt , we have Hs(lim sup
t→∞

Zt) ≤ Hs(lim sup
t→∞

Dtj) = 0.

We prove the second statement by a similar argument. Proposition 2.3.5

implies that Zt × [0, 1]m can be covered with Ke
m+n
n

te(m+n)(t−zψ(t)) balls of

radius 1
2e

−( 1
m
+ 1
n
)t. Applying Lemma 2.1.2 again, we have Hs+m(lim sup

t→∞
Zt ×

[0, 1]m) = 0.

The convergent part of Theorem 1.1.4 and 1.1.5 follows this proposition.

Proof of Theorem 1.1.4 and 1.1.5. We first prove the singly metric case, The-

orem 1.1.5. We claim that log(dλd(atΛA)) ≥ ∆(atΛA,b) for every b ∈ Rm. Let
v1, · · · , vd be independent vectors satisfying ∥vi∥ ≤ λd(atΛA) for 1 ≤ i ≤ d.

Then there exists a vector of atΛA,b which can be written as a form of
d∑
i=1

αivi for some −1 ≤ αi ≤ 1’s, so the length of the shortest vector is

≤
d∑
i=1

∥vi∥. Thus, ∆(atΛA,b) ≤ log

d∑
i=1

∥vi∥ ≤ log(dλd(atΛA)). It implies

D̂b
m,n(ψ)

c ⊆ lim sup
t→∞

{A ∈ [0, 1]mn : ∆(atΛA,b) ≥ zψ(t)− C0} ⊆ lim sup
t→∞

Zt by

Lemma 2.1.4, thus we obtain Hs(D̂b
m,n(ψ)

c) ≤ Hs(lim sup
t→∞

Zt) = 0 by Proposi-

tion 2.3.7.

Similarly for the doubly metric case, together with the second statement

of Proposition 2.3.7,

D̂m,n(ψ)
c ⊆ lim sup

t→∞

{
(A,b) ∈ [0, 1]mn+m : ∆(atΛA,b) ≥ zψ(t)− C0

}
⊆ lim sup

t→∞
Zt × [0, 1]m
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provides the proof of Theorem 1.1.4.

2.4 Local ubiquitous system

2.4.1 Historical Remarks

The proof of the divergent parts of Theorem 1.1.5, that is the singly metric

case, is based on the ubiquity framework developed in [BDV06, BV09]. The

concept of ubiquitous systems goes back to [BS70] and [DRV90] as a method

of determining lower bounds for the Hausdorff dimension of limsup sets. This

concept was developed by Beresnevich, Dickinson and Velani in [BDV06] to

provide a very general and abstract approach for establishing the Hausdorff

measure of a large class of limsup sets. In this subsection, we introduce a

simplified form of ubiquitous systems to deal with the specific application as

in [BDV06, Section 12.1].

We consider [0, 1]mn with the supremum norm ∥ · ∥. Let R := (Rα)α∈J
be a family of resonant sets Rα ⊂ [0, 1]mn indexed by a countable set J .

We assume that each resonant set Rα is an (m − 1)n-dimensional, rational

hyperplane following [BDV06, Section 12.1]. Let β : J → R+ : α 7→ βα be a

positive function on J for which the number of α ∈ J with βα bounded above

is always finite. Given a set S ⊂ [0, 1]mn, let

∆(S, r) := {X ∈ [0, 1]mn : dist(X,S) < r},

where dist(X,S) := inf{∥X − Y ∥ : Y ∈ S}. Fix a decreasing function Ψ :

R+ → R+, which is called the approximating function. For N ∈ N, let

∆(Ψ, N) :=
⋃

α∈J : 2N−1<βα≤2N

∆(Rα,Ψ(βα))

and let

Λ(Ψ) := lim sup
N→∞

∆(Ψ, N) =

∞⋂
M=1

∞⋃
N=M

∆(Ψ, N).

Throughout, ρ : R+ → R+ will denote a function satisfying limt→∞ ρ(t) =

0 and is usually referred to as the ubiquitous function. Let

∆(ρ,N) :=
⋃

α∈J : 2N−1<βα≤2N

∆(Rα, ρ(βα)).
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Definition 2.4.1 (Local ubiquity). Let B be an arbitrary ball in [0, 1]mn.

Suppose that there exist a ubiquitous function ρ and an absolute constant κ > 0

such that

(2.2) |B ∩∆(ρ,N)| ≥ κ|B| for N ≥ N0(B),

where | · | denotes the Lebesgue measure on [0, 1]mn. Then the pair (R, β) is

said to be a locally ubiquitous system relative to ρ.

With notations in [BDV06], the Lebesgue measure on [0, 1]mn is of type

(M2) with δ = mn and the intersection conditions are also satisfied with

γ = (m − 1)n (see [BDV06, Section 12.1]). These conditions are not stated

here but these extra conditions exist and need to be established for the more

abstract ubiquity.

Finally, a function h is said to be 2-regular if there exists a positive constant

λ < 1 such that for N sufficiently large

h(2N+1) ≤ λh(2N ).

The following theorem is a simplified version of [BV09, Theorem 1].

Theorem 2.4.2. [BV09, Theorem 1] Suppose that (R, β) is a local ubiquitous

system relative to ρ and that Ψ is an approximating function. Furthermore,

suppose that ρ is 2-regular. Then for (m− 1)n < s ≤ mn

Hs(Λ(Ψ)) = Hs([0, 1]mn) if
∞∑
N=1

Ψ(2N )s−(m−1)n

ρ(2N )n
= ∞.

2.4.2 Transference Principle on Diophantine approximation

Let d = m+n and assume that ψ : [T0,∞) → R+ be a decreasing function sat-

isfying limT→∞ ψ(T ) = 0. Denote by ∥ ·∥Z and | · |Z the distance to the nearest

integral vector and integer, respectively. Define the function ψ̃ : [S0,∞) → R+

by

ψ̃(S) =
(
ψ−1(S−m)

)− 1
n ,

where S0 = ψ(T0)
−1/m. We associate ψ-Dirichlet non-improvability with ψ̃-

approximability via a transference lemma as follows.
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Lemma 2.4.3 (A transference lemma, [Cas57]). Given (A,b) ∈ M̃m,n(R), if
the system

∥tAx∥Z < d−1|b · x|Zψ̃(S) and ∥x∥ < d−1|b · x|ZS

has a nontrivial solution x ∈ Zm for an unbounded set of S ≥ S0, then (A,b) ∈
D̂m,n(ψ)

c.

Proof. Using part A of Theorem XVII in Chapter V of [Cas57] with C =

ψ(T )1/m and X = T 1/n, the fact that

∥Aq− b∥Z ≤ ψ(T )1/m and ∥q∥ ≤ T 1/n

for some q ∈ Zn implies that

|b · x|Z ≤ dmax(T 1/n∥tAx∥Z, ψ(T )1/m∥x∥)

holds for all x ∈ Zm. Thus the lemma follows with S = ψ(T )−1/m and ψ̃(S) =

T−1/n since limT→∞ ψ(T ) = 0.

Thus we adopt the following notations for each S ≥ S0 and 0 < ϵ < 1/2 :

• LetWS,ϵ be the set of A ∈ [0, 1]mn such that there exists xA,S ∈ Zm\{0}
satisfying

∥tAxA,S∥Z < d−1ϵψ̃(S) and ∥xA,S∥ < d−1ϵS.

• ŴS,ϵ := {(A,b) ∈ [0, 1]mn+m : A ∈WS,ϵ and |b · xA,S |Z > ϵ}.

• For fixed b ∈ Rm, let Wb,S,ϵ be the set of A ∈ [0, 1]mn such that there

exists x ∈ Zm \ {0} satisfying

(i) |b · x|Z > ϵ,

(ii) ∥tAx∥Z < d−1ϵψ̃(S) and ∥x∥ < d−1ϵS.

• Wb,ϵ := lim sup
S→∞

Wb,S,ϵ.

Note that A ∈WS,ϵ if and only if

∥tAxA,S∥Z < Ψϵ(U) and ∥xA,S∥ < U,
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where

(2.3) Ψϵ(U) := d−1ϵψ̃(dϵ−1U).

By Lemma 2.4.3, lim sup
S→∞

ŴS,ϵ ⊂ D̂m,n(ψ)
c and Wb,ϵ ⊂ D̂b

m,n(ψ)
c.

We remark that lim sup
S→∞

WS,ϵ is the set of Ψϵ-approximable matrices, that

is, lim sup
S→∞

WS,ϵ = {A ∈ [0, 1]mn : tA ∈ Wn,m(Ψϵ)}. Here and hereafter, as

mentioned before in footnote 1, we adopt the slightly different definition for

Ψϵ-approximability, where the inequality ∥tAx∥Z < Ψϵ(∥x∥) is used instead of

(1.3). Then, Wb,ϵ can be considered as the set of Ψϵ-approximable matrices

with solutions restricted on the set {x ∈ Zm : |b · x|Z > ϵ}.

2.4.3 Mass distributions on Ψϵ-approximable matrices

In this subsection, we prove the divergent part of Theorem 1.1.4 using mass

distributions on Ψϵ-approximable matrices following [AB18].

Lemma 2.4.4. For each 0 ≤ s ≤ mn and 0 < ϵ < 1/2, let U0 = d−1ϵS0.

Then,

∞∑
q=⌈T0⌉

1

ψ(q)q2

(
q

1
n

ψ(q)
1
m

)mn−s
<∞ ⇐⇒

∞∑
h=⌈U0⌉

hm+n−1

(
Ψϵ(h)

h

)s−n(m−1)

<∞.

Proof. Since Ψϵ(h) = d−1ϵψ̃(dϵ−1h),

∞∑
h=⌈U0⌉

hm+n−1

(
Ψϵ(h)

h

)s−n(m−1)

<∞ ⇐⇒
∞∑

q=⌈S0⌉

qm+n−1

(
ψ̃(q)

q

)s−n(m−1)

<∞.

Thus, similar to Lemma 2.1.6, we may assume mn− n < s ≤ mn and replace

the sums with integrals

∫ ∞

T0

1

ψ(x)x2

(
x

1
n

ψ(x)
1
m

)mn−s
dx and

∫ ∞

S0

ym+n−1

(
ψ̃(y)

y

)s−n(m−1)

dy,
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respectively. Since ψ̃(y) = ψ−1(y−m)−
1
n , we have

∫ ∞

S0

ym+n−1

(
ψ̃(y)

y

)s−n(m−1)

dy

=

∫ ∞

S0

ymn+m−1−s (ψ−1(y−m)
)m−1− s

n dy

=
1

m

∫ ∞

(S0)m
tn−

s
m
(
ψ−1(t−1)

)m−1− s
n dt

=
1

m

∫ ∞

ψ−1(S−m
0 )

xm−1− s
nψ(x)−n+

s
mdψ(x)−1

=
1

m

(
n+ 1− s

m

)−1
∫ ∞

T0

xm−1− s
nd
(
ψ(x)−1

)n+1− s
m

Using integration by parts,∫ ∞

T0

xm−1− s
nd
(
ψ(x)−1

)n+1− s
m

=
(
lim
x→∞

xm−1− s
nψ(x)−n−1+ s

m − T
m−1− s

n
0 ψ(T0)

−n−1+ s
m

)
+

(
s− n(m− 1)

n

)∫ ∞

T0

ψ(x)−n−1+ s
mxm−2− s

ndx.

Observe that∫ ∞

T0

ψ(x)−n−1+ s
mxm−2− s

ndx =

∫ ∞

T0

ψ(x)−n−1+ s
mxm−1− s

nd log x.

Thus the convergence of
∫∞
T0
ψ(x)−n−1+ s

mxm−2− s
ndx gives that

lim
x→∞

xm−1− s
nψ(x)−n−1+ s

m <∞.

Hence the convergence of

∫ ∞

T0

1

ψ(x)x2

(
x

1
n

ψ(x)
1
m

)mn−s
dx or

∫ ∞

S0

ym+n−1

(
ψ̃(y)

y

)s−n(m−1)

dy

implies the convergence of the other one since all summands are positive except

the finite value −Tm−1− s
n

0 ψ(T0)
−n−1+ s

m .
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Lemma 2.4.5. [AB18, Section 5] Assume that

∞∑
q=1

1

ψ(q)q2

(
q

1
n

ψ(q)
1
m

)mn−s
= ∞.

Fix 0 < ϵ < 1/2. Then, for any η > 1, there exists a probability measure µ on

lim sup
S→∞

WS,ϵ satisfying the condition that for any arbitrary ball D of sufficiently

small radius r(D) we have

µ(D) ≪ r(D)s

η
,

where the implied constant does not depend on D or η.

Proof. Note that lim sup
S→∞

WS,ϵ = {A ∈ [0, 1]mn : tA ∈ Wn,m(Ψϵ)}. By Lemma

2.4.4,
∑∞

h=1 h
m+n−1

(
Ψϵ(h)
h

)s−n(m−1)
= ∞, which is the divergent assumption

of Jarńık’s Theorem (Theorem 1.1.2) forWn,m(Ψϵ). From the proof of Jarńık’s

Theorem in [AB18] and the construction of a probability measure in [AB18,

Section 5] we can obtain a probability measure µ on lim sup
S→∞

WS,ϵ satisfying

the above condition.

Let us give a proof of the divergence part of Theorem 1.1.4.

Proof of Theorem 1.1.4. If s = mn +m, then it follows from Theorem 1.1.3.

Assume that m ≤ s < mn + m and fix 0 < ϵ < 1/2. For any fixed η > 1,

let µ be a probability measure on lim sup
S→∞

WS,ϵ as in Lemma 2.4.5 with s−m

instead of s. Consider the product measure ν = µ × mRm , where mRm is

the canonical Lebesgue measure on Rm, and let π1 and π2 be the natural

projections from Rmn+m to Rmn and Rm, respectively. For any fixed integer

N ≥ 1, let VS,ϵ = WS,ϵ \
S−1⋃
k=N

Wk,ϵ and V̂S,ϵ = {(A,b) ∈ ŴS,ϵ : A ∈ VS,ϵ} and

EA,S,ϵ = {b ∈ [0, 1]m : |b ·xA,S |Z > ϵ}. Note that mRm(EA,S,ϵ) ≥ 1− 2ϵ. Using
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Fubini’s theorem, we have

ν(
⋃
S≥N

ŴS,ϵ) = ν(
⋃
S≥N

V̂S,ϵ) =
∑
S≥N

ν(V̂S,ϵ)

≥
∑
S≥N

(1− 2ϵ)µ(VS,ϵ) = (1− 2ϵ)µ(
⋃
S≥N

WS,ϵ)

= 1− 2ϵ.

Since N ≥ 1 is arbitrary, we have ν(lim sup
S→∞

ŴS,ϵ) ≥ 1− 2ϵ.

For any arbitrary ball B ⊂ Rmn+m of sufficiently small radius r(B), we

have

(2.4) ν(B) = µ(π1(B))×mRm(π2(B)) ≪ r(B)s

η
,

where the implied constant does not depend on B or η. If 0 ≤ s < m, we have

(2.4) with µ in Lemma 2.4.5 with s = 0.

By the Mass Distribution Principle (Lemma 2.1.1) and Lemma 2.4.3, we

have

Hs(D̂m,n(ψ)
c) ≥ Hs(lim sup

S→∞
ŴS,ϵ) ≫ (1− 2ϵ)η

and the proof is finished by taking η → ∞.

2.4.4 Establishing the local ubiquity

The singly metric case is more complicated than the doubly metric case. In

this subsection, we will prove Theorem 1.1.5 by establishing the ubiquitous

system for Wb,ϵ with an appropriate ϵ as follows.

For b = (b1, . . . , bm) ∈ Rm \ Zm, define

(2.5) ϵ(b) := min
1≤j≤m, |bj |Z>0

|bj |Z
4

.

Note that the fact that b ∈ Rm \ Zm implies ϵ(b) > 0. The following lemma

will be used when we count the number of integral vectors z ∈ Zm such that

(2.6) |b · z|Z ≤ ϵ(b).
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Lemma 2.4.6. For b = (b1, . . . , bm) ∈ Rm \ Zm, let ϵ(b) be as in (2.5) and

1 ≤ i ≤ m be an index such that ϵ(b) = |bi|Z
4 . Then, for any x ∈ Zm, at most

one of x and x+ ei satisfies (2.6), where ei denotes the vector with a 1 in the

ith coordinate and 0’s elsewhere.

Proof. Observe that if |b · x|Z ≤ ϵ(b), then∣∣|b · (x± ei)|Z − | ± bi|Z
∣∣ ≤ |b · x|Z ≤ ϵ(b).

By definition of ϵ(b), we have

|b · (x± ei)|Z ≥ |bi|Z − ϵ(b) > ϵ(b).

Now we fix b ∈ Rm \ Zm and write ϵ0 := ϵ(b) and Ψ0 := Ψϵ0 as we set in

(2.3) and (2.5). Let

J := {(x,y) ∈ Zm × Zn : ∥y∥ ≤ m∥x∥ and |b · x|Z > ϵ0}, Ψ(h) :=
Ψ0(h)

h
,

α := (x,y) ∈ J, βα := ∥x∥, Rα := {A ∈ [0, 1]mn : tAx = y}.

Note that Wb,ϵ0 = Λ(Ψ) and the family R of resonant sets Rα consists of

(m− 1)n-dimensional, rational hyperplanes.

By Lemma 2.4.4, we may assume that
∑∞

h=1 h
m+n−1

(
Ψ0(h)
h

)s−n(m−1)
=

∞. Then we can find a strictly increasing sequence of positive integers {hi}i∈N
such that ∑

hi−1<h≤hi

hm+n−1

(
Ψ0(h)

h

)s−(m−1)n

> 1

and hi > 2hi−1. Put ω(h) := i
1
n if hi−1 < h ≤ hi. Then ω is 2-regular and

∞∑
h=1

hm+n−1

(
Ψ0(h)

h

)s−n(m−1)

ω(h)−n = ∞.

For a constant c > 0, define the ubiquitous function ρc : R+ → R+ by

(2.7) ρc(h) :=

{
ch−

1+n
n if m = 1,

ch−
m+n
n ω(h) if m ≥ 2,
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Clearly the ubiquitous function is 2-regular.

Theorem 2.4.7. The pair (R, β) is a locally ubiquitous system relative to

ρ = ρc for some constant c > 0.

Proof of Theorem 1.1.5. For fixed b = (b1, . . . .bm) ∈ Rm \ Zm, assume that

bi /∈ Z. If bi is rational, then there is 0 < ϵ < 1/2 such that |kbi|Z > ϵ for

infinitely many positive integer k. If bi is irrational, then the set {kbi (mod 1) :

k ∈ Z} is dense in [0, 1]. Hence, for any fixed 0 < ϵ < 1/2, |kbi|Z > ϵ holds for

infinitely many positive integer k. Let us denote that increasing sequence by

(kj)
∞
j=1. This observation implies that the set {A ∈ [0, 1]mn : ∥tAkjei∥Z = 0},

which is the finite union of (m − 1)n-dimensional hyperplanes, is a subset of

Wb,ϵ for each j ∈ N. Hence for any 0 ≤ s ≤ (m− 1)n

Hs(Db
m,n(ψ)

c) ≥ Hs(Wb,ϵ) = Hs([0, 1]mn).

Now assume that (m− 1)n < s ≤ mn. It follows from Theorem 2.4.2 and

Theorem 2.4.7 that

Hs(Db
m,n(ψ)

c) ≥ Hs(Wb,ϵ0) = Hs([0, 1]mn).

Here, we use the fact that the divergence and convergence of the sums

∞∑
N=1

2Nαf(2N ) and

∞∑
h=1

hα−1f(h) coincide

for any monotonic function f : R+ → R+ and α ∈ R.

Recall that we adopt the supremum norm ∥ · ∥ on [0, 1]mn. We consider

m = 1 and m ≥ 2, separately.

Proof of Theorem 2.4.7 for m = 1. Note that, for (x,y) ∈ J , the resonant

set R(x,y) is the one point set {y
x :=

(y1
x , . . . ,

yn
x

)
} and ∆(Rx,y, ρ(2

N )) =

B(yx , ρ(2
N )), the ball of radius ρ(2N ) centered at y

x . We basically follow the

strategy in [Tho04, Chapter 3].

Let B an arbitrary square in [0, 1]n and write B =
∏n
i=1[li, ui], l =

(l1, . . . , ln), u = (u1, . . . , un). We restrict y to gcd(x,y) = 1 and y
x ∈ B.

35



CHAPTER 2. EQUIDISTRIBUTION AND UBIQUITOUS SYSTEM

Observe that

(2.8) |B ∩∆(ρ,N)| ≥

∣∣∣∣∣∣∣∣∣
⋃

2N−1<x≤2N

|b·x|Z>ϵ0

⋃
xl≤y≤xu
gcd(x,y)=1

B
(y
x
, ρ(2N )

)∣∣∣∣∣∣∣∣∣+O(ρ(2N )).

Here, xl < y < xu means that xli < yi < xui for all 1 ≤ i ≤ n. Let

T (N) :=
{y
x
∈ Qn : (x,y) ∈ J, gcd(x,y) = 1, xl ≤ y ≤ xu, 2N−1 < x ≤ 2N

}
,

G(N) :=
{y
x
∈ T (N) : B

(y
x
, ρ(2N )

)
∩B

(s
t
, ρ(2N )

)
= ∅, ∀s

t

(
̸= y

x

)
∈ T (N)

}
.

Lemma 2.4.8. For N large enough

1. #T (N) ≥ c1|B|2N(n+1) for some constant 0 < c1 < 1.

2. #G(N) ≥ 1
2#T (N).

Thus, it follows from Lemma 2.4.8 that for N large enough

r.h.s. of (2.8) ≥

∣∣∣∣∣∣
⊔

y
x
∈G(N)

B
(y
x
, ρ(2N )

)∣∣∣∣∣∣+O(ρ(2N ))

= #G(N)× 2nρ(2N )n +O(ρ(2N ))

≥ 1

2
#T (N)× 2nρ(2N )n +O(ρ(2N ))

≥ cnc12
n−1|B|+O(ρ(2N )) ≥ 1

2
cnc12

n−1|B|.

Thus the local ubiquity follows from (2.8).

Proof of (1) in Lemma 2.4.8. Note that for α > 0 and ℓ ∈ N

(2.9)

∑
1≤k≤αℓ

gcd(k,ℓ)=1

1 =
∑

1≤k≤αℓ

∑
d| gcd(k,ℓ)

µ(d) =
∑
d|ℓ

µ(d)
∑

1≤k′≤αℓ/d

1

=
∑
d|ℓ

µ(d)⌊αℓ/d⌋ = αφ(ℓ) +O(τ(ℓ)).

where τ(ℓ) =
∑

d|ℓ 1, the number of divisors of ℓ. Here and hereafter, µ, φ,

and ⌊·⌋ stand for the Möbius function, Euler function, and floor function,

respectively.
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Fix small 0 < ϵ < 3
π2 − 1

4 . Note that 1
N2

∑N
q=1 φ(q) →

3
π2 as N → ∞ (see

[HW60, Theorem 330]) and τ(h) = O(hδ) for any δ > 0 (see [HW60, Theorem

315]). Thus, for N large enough and for δ > 0 small enough,

#T (N) =
∑

2N−1<x≤2N

|b·x|Z>ϵ0

∑
xl≤y≤xu
gcd(x,y)=1

1 ≥
∑

2N−1<x≤2N

|b·x|Z>ϵ0

∑
xli≤yi≤xui
i=2,...,n

∑
xl1≤y1≤xu1
gcd(x,y1)=1

1

≥
∑

2N−1<x≤2N

|b·x|Z>ϵ0

(
|B|φ(x)xn−1 +O(xn−1τ(x))

)
≥

∑
2N−1<x≤2N

|b·x|Z>ϵ0

|B|φ(x)2(N−1)(n−1) +O(2N(n+δ))

≥ |B|2(N−1)(n−1)

 ∑
2N−1<x≤2N

φ(x)−
∑

2N−1<x≤2N

|b·x|Z≤ϵ0

x

+O(2N(n+δ))

≥ |B|2(N−1)(n−1)

(
3

π2
− 1

4
− ϵ

)
(22N − 22(N−1)) = c1|B|2N(n+1).

The second line is by (2.9) and the fifth line is by Lemma 2.4.6.

Proof of (2) in Lemma 2.4.8. Let B(N) := T (N) \G(N). By definition, y
x ∈

B(N) if and only if there is a point s
t

(
̸= y

x

)
∈ T (N) such that

B
(y
x
, ρ(2N )

)
∩B

(s
t
, ρ(2N )

)
̸= ∅.

The coprimeness condition ensures that the centers y
x and s

t of the balls are

distinct. Thus, we have 0 <
∥∥y
x − s

t

∥∥ ≤ 2ρ(2N ), or, equivalently,

0 < ∥ty − xs∥ ≤ 2xtρ(2N ).

It follows that the associated 4-tuple (y, x, s, t) is an element of the set

V (N) := {(y, x, s, t) : 0 < ∥ty − xs∥ ≤ 22N+1ρ(2N ), gcd(x,y) = gcd(t, s) = 1,

2N−1 < x, t ≤ 2N , xl ≤ y ≤ xu, tl ≤ s ≤ tu}

Hence, #B(N) ≤ #V (N) and it is enough to show that #V (N) < 1
2#T (N).

Observe that if n = 1, then V (N) is empty by taking c < 1
2 . We consider n = 2
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and n > 2, separately.

Case n = 2. Note that 22N+1ρ(2N ) = 2c2N/2. If (y, x, s, t) ∈ V (N), then there

exist a1, a2 with |ai| ≤ 2c2N/2 and at least one of ai’s being nonzero, such that

tyi − xsi = ai for all i = 1, 2. Let us denote by V (a1, a2, N) the set of the

above (y, x, s, t) ∈ V (N) for given a1, a2.

We first consider the case either a1 = 0 or a2 = 0. Given 2N−1 < x, t ≤ 2N

and a, the number of solutions (y, s) ∈ [1, 2N ]2 of the equation ty − xs = a is

less than 2gcd(x, t) since the general solution of this equation is of the form

(y0 + p x
gcd(x,t) , s0 + p t

gcd(x,t)) for p ∈ Z. It follows that the number of elements

(y, x, s, t) ∈ V (N) such that either a1 = 0 or a2 = 0 is bounded above by

(2.10)∑
1≤|a1|≤2c2

N
2

#V (a1, 0, N) +
∑

1≤|a2|≤2c2
N
2

#V (0, a2, N)

≤ 4
∑

1≤a1≤2c2
N
2

(x,t)∈(2N−1,2N ]2

# {(y1, s1) : ty1 − xs1 = a1}# {(y2, s2) : ty2 − xs2 = 0}

≤ 4
∑

1≤a1≤2c2
N
2

∑
(x,t)∈(2N−1,2N ]2

gcd(x,t)|a1

(2gcd(x, t))2

= 16
∑

1≤d≤2N

∑
1≤a1≤2c2

N
2

d|a1

d2#
{
(x, t) ∈ (2N−1, 2N ]2 : gcd(x, t) = d

}

≪
∑

1≤d≤2N

2
N
2

d
d2
(
2N−1

d

)2

= O(N2
5
2
N ).

We now consider the case a1 ̸= 0 and a2 ̸= 0. Note that if (y, x, s, t) ∈
V (a1, a2, N), then we have

(2.11) a1y2 − a2y1 = kx

for some k ∈ Z. Thus we will count the set of (a1, a2, k, x, y1, y2) satisfying the

equation (2.11) where 2N−1 < x ≤ 2N , lix ≤ yi ≤ uix, and 1 ≤ |ai| ≤ 2c2N/2

for i = 1, 2. Let us denote by V̄ (N) the above set. We will only present the

counting for the case a1 > 0 and a2 > 0, but the counting estimates remains

the same for the cases of the other signs, and the proof also still works similarly.

For fixed a1 > 0 and a2 > 0, let us count the set of (k, x, y1, y2) such that

(a1, a2, k, x, y1, y2) ∈ V̄ (N). It follows from the equation (2.11) and lix ≤ yi ≤
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uix for i = 1, 2 that

a1l2 − a2u1 ≤ k ≤ a1u2 − a2l1.

Denoting by d = gcd(a1, a2), it follows from the equation (2.11) that d|kx.
Thus we can write d = d1d2, where d1|k and d2|x, and denote by a′i = ai/d for

i = 1, 2, k′ = k/d1, and x
′ = x/d2. Then we have

(2.12) a′1y2 − a′2y1 = k′x′.

If (ȳ1, ȳ2) is a solution of (2.12), then the general solution of (2.12) is of the

form (ȳ1 + pa′1, ȳ2 + pa′2) with p ∈ Z. Hence the number of solution (y1, y2) of

(2.12) with lix ≤ yi ≤ uix for i = 1, 2 is at most

min

(⌈
(u1 − l1)x

a′1

⌉
,

⌈
(u2 − l2)x

a′2

⌉)
≤ 2min

(
(u1 − l1)x

a′1
,
(u2 − l2)x

a′2

)
since (ui − li)x/a

′
i ≥ 1 with i = 1, 2 for all large enough N . Hence it follows

that for any small enough δ > 0,∑
1≤a1,a2≤2c2N/2

#{(k, x, y1, y2) : (a1, a2, k, x, y1, y2) ∈ V̄ (N)}

≤
∑

1≤a1,a2≤2c2N/2

∑
d=d1d2

∑
d1|k,d2|x

2N−1<x≤2N

a1l2−a2u1≤k≤a1u2−a2l1

2min

(
(u1 − l1)x

a′1
,
(u2 − l2)x

a′2

)
.

Note that∑
d1|k,d2|x

2N−1<x≤2N

a1l2−a2u1≤k≤a1u2−a2l1

2min

(
(u1 − l1)x

a′1
,
(u2 − l2)x

a′2

)

≤ 2

⌈
a2(u1 − l1) + a1(u2 − l2)

d1

⌉⌈
2N

d2

⌉
min

(
(u1 − l1)x

a′1
,
(u2 − l2)x

a′2

)
≤ 4

(
a2(u1 − l1) + a1(u2 − l2)

d1
+ 1

)
2N

d2
min

(
(u1 − l1)2

N

a′1
,
(u2 − l2)2

N

a′2

)
≤ 22N+2

(
(a2(u1 − l1) + a1(u2 − l2))min

(
u1 − l1
a1

,
u2 − l2
a2

)
+

(u1 − l1)d1
a1

)
.
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Hence we have∑
1≤a1,a2≤2c2N/2

#{(k, x, y1, y2) : (a1, a2, k, x, y1, y2) ∈ V̄ (N)}

≤
∑

1≤a1,a2≤2c2N/2

τ(d)

(
22N+3(u1 − l1)(u2 − l2) + d22N+2 (u1 − l1)

a1

)

≪
∑

1≤d≤2c2N/2

∑
1≤a′1,a′2≤

2c2N/2

d

dδ
(
22N+3|B|+ 22N+2 (u1 − l1)

a′1

)

≪
∑

1≤d≤2c2N/2

(
1

d2−δ
c223N |B|+ 1

d1−δ
N22N+N

2

)
≪ c2|B|23N +O(N22N+

(1+δ)N
2 ).

Combining with the cases of other signs, we have

(2.13) #V̄ (N) ≪ c2|B|23N +O(N22N+
(1+δ)N

2 ).

We next claim that
∑

1≤|a1|,|a2|≤2c2N/2 #V (a1, a2, N) ≤ 2#V̄ (N) by show-

ing that for fixed (a1, a2, k, x, y1, y2) ∈ V̄ (N), there are at most two pairs

of (s1, s2, t) such that (y, x, s, t) ∈ V (N). To see this, observe that tyi ≡
ai (mod x) for i = 1, 2 and gcd(y, x) = 1. Since gcd(y, x) = 1, there exist

α1, α2 ∈ Z such that α1y1 + α2y2 ≡ 1(mod x). It follows that t ≡ a1α1 + a2α2

is uniquely determined modulo x for fixed ai, yi and x. Since t < 2x, the num-

ber of possible t is at most two. Once t is determined, then s1 and s2 are also

determined uniquely, thus the claim follows.

Hence, combining (2.10), (2.13), and the above claim, we have

#V (N) ≪ c2|B|23N +O(N22N+
(1+δ)N

2 +N2
5
2
N ).

By taking δ < 1, for all large enough N , #V (N) ≤ Cc2|B|23N for some

absolute constant C > 0. It follows that #V (N) < 1
2#T (N) for sufficiently

large N by choosing c < ( c12C )
1/2.

Case n > 2. For fixed 2N−1 < x, t ≤ 2N , we denote by

d = gcd(x, t), x′ =
x

d
, t′ =

t

d
, A = 22N+1ρ(2N ), and A′ =

A

d
.
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We will count the following set: for 0 ≤ a ≤ A′,

Vx,t(a) := {(y, s) : t′y − x′s = a, xℓ ≤ y ≤ xu, tℓ ≤ s ≤ tu}.

Claim 1. #Vx,t(0) ≤ max(⌈d(u− ℓ)⌉, 1).

Proof. Since (t′, x′) = 1, x′|y holds. Thus

#{y : x′|y, xℓ ≤ y ≤ xu} ≤ max

(⌈
x(u− ℓ)

x′

⌉
, 1

)
= max(⌈d(u− ℓ)⌉, 1),

which concludes the claim since s is uniquely determined by y.

Now assume that a ̸= 0 and A′ ≥ 1. Let y0 = y0(x, t) and s0 = s0(x, t) be

the integers with the smallest absolute value such that

t′y0 ≡ a0 (mod x′) and x′s0 ≡ −b0 (mod t′),

for some 0 < a0 = a0(x, t) ≤ A′ and 0 < b0 = b0(x, t) ≤ A′. We remark that

such y0 and s0 are unique since a0 ̸= 0.

Claim 2. a0 = b0 and t′y0 − x′s0 = a0.

Proof. Let y, s be such that t′y0 − x′s = a0 and t′y − x′s0 = b0. Then

|s| = |t′y0 − a0|
x′

≤ a0 + t′|y0|
x′

≤ a0 + t′|y|
x′

=
a0 + |b0 + x′s0|

x′

≤ a0 + b0
x′

+ |s0|.

Since n > 2, for all large enough N ,

a0 + b0
x′

≤ 2A′

x′
=

2A

x
≤ 2c2(1−

1
n
)N

2N−1
< 1.

Hence we have |s| = |s0|, and similarly |y| = |y0|. If s = −s0, then on one

hand, x′s ≡ b0(mod t′); on the other hand, since t′y0 − x′s = a0, we have

x′s ≡ −a0 ≡ x′ − a0(mod t′). It cannot happen that b0 = x′ − a0 since

x′ > 2A′ ≥ a0 + b0. Hence we get s = s0, and similarly y = y0. It concludes

the claim.

Claim 3. 1 ≤ |y0|, |s0| ≤
⌈
2x′

A′

⌉
=
⌈
2x
A

⌉
≤ 2

N
n
+1.
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Proof. Consider the set P =
{
t′, 2t′, . . . ,

⌈
2x′

A′

⌉
t′
}
modulo x′. Partition [1, x′]∩

N into ⌊A′⌋ consecutive integers. Then the number of the partitions is at most⌈
x′

⌊A′⌋

⌉
. It follows from A′ ≥ 1 that 2⌊A′⌋ ≥ A′, hence,

⌈
x′

⌊A′⌋

⌉
≤
⌈
2x′

A′

⌉
. By the

pigeonhole principle, there are at least two elements of P in the same partition,

say it′ and jt′ with i ̸= j. Then (i − j)t′ (mod x′) is contained in [1, ⌊A′⌋] or
[−⌊A′⌋,−1]. The fact that |i− j| ≤

⌈
2x′

A′

⌉
and the minimality of y0 imply the

claim for y0. Similarly, we can conclude the claim for s0.

Claim 4. If |y0| ≤ (u− ℓ)a0 or |s0| ≤ (u− ℓ)a0, then

A′∑
a=1

#Vx,t(a) ≤ 10A(u− ℓ).

Proof. It suffices to show the case |y0| ≤ (u− l)a0. Let

Ak := {xl ≤ y ≤ xu : y ≡ k(mod y0)} = {zk, zk + |y0|, · · · , zk + αk|y0|} .

for 0 ≤ k ≤ |y0| − 1. Then zk ∈ N is the element such that xl ≤ zk < xl + |y0|
and zk ≡ k(mod y0), and αk ∈ N satisfies αk ≤ x(u−l)

|y0| . Partition Ak into

M = ⌊ x′a0 ⌋ consecutive integers. Recall that x′

a0
≥ x′

A′ ≥ 1 holds. Then the

number of the partitions is at most ⌈αk+1
M ⌉ ≤

x(u−l)
|y0|

+1

x′
2a0

+ 1.

Let P = {z′k, z′k + |y0|, · · · , z′k + (M − 1)|y0|} be a partition of M consec-

utive integers, where z′k ∈ Ak. To count the number of y ∈ P such that

t′y ≡ a (mod x′) with 1 ≤ a ≤ A′, we see the set t′P modulo x′. Write

t′z′k ≡ w(mod x′) for some 0 ≤ w < x′. Then the elements of t′P can be writ-

ten {w,w + a0, · · · , w + (M − 1)a0} or {w − a0, · · · , w − (M − 1)a0} (mod x′)

depending on the sign of y0. Since Ma0 = ⌊ x′a0 ⌋a0 ≤ x′, there are at most ⌈A′

a0
⌉

elements in t′P which are congruent to a modulo x′ for some 1 ≤ a ≤ A′.

To sum up, for each Ak, there are at most

⌈A
′

a0
⌉ · ⌈αk + 1

M
⌉ ≤ 2A′

a0

(
2a0x(u− l) + 2a0|y0|

x′|y0|
+ 1

)
=

4A′d(u− l)

|y0|
+

4A′

x′
+

2A′

a0

number of y such that y ∈ Ak and t′y ≡ a(mod x′) for some 1 ≤ a ≤ A′. Since
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there are |y0| number of Ak’s and s is uniquely determined by y, we have

A′∑
a=1

#Vx,t(a) ≤ |y0|
(
4A′d(u− l)

|y0|
+

4A′

x′
+

2A′

a0

)
= 4A(u− l) +

4A|y0|
x

+
2A′|y0|
a0

≤ 4A(u− l) + 4A(u− l)
a0
x

+ 2A′(u− l) ≤ 10A(u− l).

Here we used the assumption |y0| ≤ (u− l)a0 in the last line.

We remark that under the assumption of Claim 4, the counting of Vx,t(a)’s

is good enough for our purpose. Thus we will count the set of x, t’s such that

y0, s0, a0 may not satisfy the assumption of Claim 4.

Note that gcd(y0, s0) = 1, otherwise it contradicts to the minimality of

y0, s0. Through Claim 3, we consider the following sets and the map:

Sgood = {(y0, s0, a0) : |y0| ≤ 2
N
n
+1, |s0| ≤ 2

N
n
+1, gcd(y0, s0) = 1,

(u− ℓ)−1min(|y0|, |s0|) ≤ a0 ≤ A′},

Sbad = {(y0, s0, a0) : |y0| ≤ 2
N
n
+1, |s0| ≤ 2

N
n
+1, gcd(y0, s0) = 1,

1 ≤ a0 < (u− ℓ)−1min(|y0|, |s0|)},
π : (2N−1, 2N ]2 ∋ (x, t) 7→ (y0(x, t), s0(x, t), a0(x, t)) ∈ Sgood ∪ Sbad.

Let us first count the set π−1(Sbad). For (y0, s0, a0) ∈ Sbad, assume that

there exists t′0, x
′
0 such that t′0y0−x′0s0 = a0. Since gcd(y0, s0) = 1, all solutions

of t′y0 − x′s0 = a0 can be represented in the form

(t′, x′) = (t′0 + ks0, x
′
0 + ky0), k ∈ Z.

Thus, for each d ≥ 1,

#
{
(x, t) ∈ (2N−1, 2N ]2 : y0(x, t) = y0, s0(x, t) = s0, gcd(x, t) = d

}
≤ min

(
2N

d|s0|
,
2N

d|y0|

)
.
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Summing over 1 ≤ d ≤ 2N , we have

#
{
(x, t) ∈ (2N−1, 2N ]2 : y0(x, t) = y0, s0(x, t) = s0

}
≤

∑
1≤d≤2N

1

d
min

(
2N

|s0|
,
2N

|y0|

)
≪ N min

(
2N

|s0|
,
2N

|y0|

)
.

Since n > 2, it follows that for all small enough δ > 0,

(2.14)

#π−1(Sbad) ≪
∑

|y0|,|s0|≤2
N
n +1

1≤a0<(u−ℓ)−1 min(|y0|,|s0|)

N min

(
2N

|s0|
,
2N

|y0|

)

≤
∑

|y0|,|s0|≤2
N
n +1

N(u− ℓ)−1min

(
2N

|s0|
,
2N

|y0|

)
min(|y0|, |s0|)

≤ (u− ℓ)−1
∑

|y0|,|s0|≤2
N
n +1

N2N min

(
|y0|
|s0|

,
|s0|
|y0|

)

≪ (u− ℓ)−1N
2

n
2N+ 2N

n ≪ 2(2−δ)N .

Now, for each 1 ≤ i ≤ n and 0 ≤ a ≤ A′, let us denote by

V i
x,t(a) := {(yi, si) : t′yi − x′si = a, xℓi ≤ yi ≤ xui, tℓi ≤ si ≤ tui}.

Then we have

#V (N) ≤
∑

(x,t)∈(2N−1,2N ]2

n∏
i=1

A′∑
a=0

#V i
x,t(a).

For (x, t) ∈ π−1(Sgood) and sufficiently large N ,

(2.15)
A′∑
a=1

#V i
x,t(a) + #V i

x,t(0) ≤ 10A(ui − li) + max(A(ui − li), 1) ≤ 11A(ui − li).

We applied Claim 4 for the first term, and Claim 1 for the second term.

For each 0 ≤ a ≤ A′, the number of solutions (y, s) of

t′y − x′s = a, 1 ≤ y ≤ x, 1 ≤ s ≤ t
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is at most d, hence #V i
x,t(a) ≤ d. For (x, t) ∈ π−1(Sbad), it follows that

(2.16)
A′∑
a=0

#V i
x,t(a) ≤ (A′ + 1)d ≤ 2A.

Therefore, combining (2.14), (2.15), and (2.16), we have

#V (N) ≪
(
#π−1(Sgood)

) n∏
i=1

A(ui − ℓi) +
(
#π−1(Sbad)

)
(2A)n

≪ 22NAn
n∏
i=1

(ui − ℓi) +O(2N(n+1−δ)) ≪ cn|B|2N(n+1),

hence #V (N) ≤ Ccn|B|2N(n+1) for sufficiently large N and some absolute

constant C > 0. It follows that #V (N) < 1
2#T (N) for sufficiently large N by

choosing c < ( c12C )
1/n.

This proves Theorem 2.4.7 for m = 1.

Proof of Theorem 2.4.7 for m ≥ 2. Note that it suffices to show that

(2.17) |∆(ρ,N)| → 1 as N → ∞

for the local unbiquity. Instead of the strategy for m = 1, we will use mean

and variance techniques in [DV97] using the auxiliary function ω in (2.7).

Without loss of generality we may assume that ϵ0 = ϵ(b) = |b1|Z
4 . Let I(N)

denote the set of vectors x = (x1, . . . , xm) ∈ Zm such that

1. N ≤ x1 ≤ 2N ,

2. For i = 2, . . . ,m,

1 ≤ xi ≤
N

ω(2N)
1

2(m−1)

,

3. gcd(x) = 1,

4. |b · x|Z > ϵ0.

Denote by J(N) := {(x,y) ∈ I(N)× Zn : ∥y∥ ≤ m∥x∥}. Then J(N) ⊂ J .
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Let χ∆(x,y)
be the characteristic function

χ∆(x,y)
(A) :=

{
1 if A ∈ ∆(x,y),

0 otherwise,

where

∆(x,y) := ∆(R(x,y), N
−m
n ω(2N)∥x∥−1).

Also, for a matrix A ∈ [0, 1]mn, define

νN (A) :=
∑

(x,y)∈J(N)

χ∆(x,y)
(tA).

Thus νN (A) is the number of resonant sets R(x,y) for (x,y) ∈ J(N) which are

‘close’ to tA, i.e. such that ∥tAx − y∥ < δ(N), where δ(N) := N−m
n ω(2N).

Denote by µN and σ2N the mean and variance respectively, that is

µN :=

∫
[0,1]mn

νN (A)dA and σ2N :=

∫
[0,1]mn

ν2N (A)dA− µ2N .

Since ∥x∥−1 ≤ N−1 for any x ∈ I(N), we have

∆(R(x,y), N
−m
n ω(2N)∥x∥−1) ⊂ ∆(R(x,y), ρ(2N))

by taking c < 2
m+n
n . Thus, we claim that

|ZN | → 0 as N → ∞,

where ZN := ν−1
N (0) = {A ∈ [0, 1]mn : νN (A) = 0}, which implies (2.17) by

replacing N with 2N−1.

Lemma 2.4.9. For N large enough, σ2N ≤ µN and µN ≥ c0ω(2N)
1
2 for some

positive constant c0 independent of N .

Proof. Suppose that N is large enough so that δ(N) = N−m
n ω(2N) < 1

2 . By

Lemma 8 in [Spr79], for x ∈ I(N),∑
y:(x,y)∈J(N)

∫
[0,1]mn

χ∆(x,y)
(A)dA = |{A ∈ [0, 1]mn : ∥tAx∥Z < δ(N)}|

= (2δ(N))n = 2nN−mω(2N)n.
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Hence

µN =
∑

(x,y)∈J(N)

∫
[0,1]mn

χ∆(x,y)
(A)dA =

∑
x∈I(N)

2nN−mω(2N)n.

Let S(i) denote the set of vectors x ∈ Zm satisfying the condition (i) in

the definition I(N) for each i = 1, 2, 3, 4. Note that∑
x∈I(N)

1 ≥
∑

x∈S(1)∩S(2)∩S(3)

1−
∑

x∈S(1)∩S(2)∩S(4)c
1.

Following [Spr79, p.40],∑
x∈S(1)∩S(2)∩S(3)

1 =
∑

x∈S(1)∩S(2)

∑
d| gcd(x)

µ(d)

=
∑

N≤x1≤2N

∑
d|x1

µ(d)

m∏
i=2

∣∣∣∣∣
{
xi ∈ Z : d|xi, 1 ≤ xi ≤

N

ω(2N)
1

2(m−1)

}∣∣∣∣∣
=

∑
N≤x1≤2N

∑
d|x1

µ(d)

⌊
N

dω(2N)
1

2(m−1)

⌋m−1

=
∑

N≤x1≤2N

 Nm−1

ω(2N)
1
2

∑
d|x1

µ(d)

dm−1
+O

Nm−2
∑
d|x1

|µ(d)|
dm−2



=



∑
N≤x1≤2N

N

ω(2N)
1
2

φ(x1)

x1
+O(τ(x1)) if m = 2,

∑
N≤x1≤2N

Nm−1

ω(2N)
1
2

∏
p|x1

p prime

(
1− 1

pm−1

)
+O(Nm−2τ(x1)) if m ≥ 3.

Fix small 0 < ϵ < 6
π2 − 1

2 . Note that 1
N

∑N
q=1

φ(q)
q → 6

π2 as N → ∞ (see

[Har98, Lemma 2.4]) and τ(h) = O(hδ) for any δ > 0 (see [HW60, Theorem

315]). In the case m = 2, we have

∑
x∈S(1)∩S(2)∩S(3)

1 ≥
(

6

π2
− ϵ

)
N2

ω(2N)
1
2
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for all large enough N . If m ≥ 3, then

∏
p|x1

p prime

(
1− 1

pm−1

)
>

∏
p prime

(
1− 1

p2

)
=

6

π2
,

hence we have that for all large enough N ,

∑
x∈S(1)∩S(2)∩S(3)

1 ≥
(

6

π2
− ϵ

)
Nm

ω(2N)
1
2

.

On the other hand, it follows from Lemma 2.4.6 that∑
x∈S(1)∩S(2)∩S(4)c

1 ≤ 1

2

Nm

ω(2N)
1
2

.

Taking c0 = 2n
(

6
π2 − 1

2 − ϵ
)
> 0, it follows that

µN = 2nN−mω(2N)n
∑

x∈I(N)

1 ≥ c0ω(2N)
1
2 .

To prove that σ2N ≤ µN , we note that, for x ̸= x′ ∈ I(N),

∑
y:(x,y)∈J(N)

∑
y′:(x′,y′)∈J(N)

∫
[0,1]mn

χ∆(x,y)
(A)χ∆(x′,y′)(A)dA

= |{A ∈ [0, 1]mn : ∥tAx∥Z < δ(N)}| × |{A ∈ [0, 1]mn : ∥tAx′∥Z < δ(N)}|
= 22nN−2mω(2N)2n.

by Lemma 9 in [Spr79]. Thus we have∫
[0,1]mn

ν2N (A)dA

=
∑

x∈I(N)

∑
x′∈I(N)

∑
y:(x,y)∈J(N)

∑
y′:(x′,y′)∈J(N)

∫
[0,1]mn

χ∆(x,y)
(A)χ∆(x′,y′)(A)dA

= µN + 22nN−2mω(2N)2n
∑

x ̸=x′∈I(N)

1 ≤ µN + µ2N .

By definition of σ2N , we have

σ2N ≤ µN .
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Note that

σ2N =

∫
[0,1]mn

(νN (A)− µN )
2 dA ≥

∫
ZN

(νN (A)− µN )
2 dA = µ2N |ZN |.

This together with Lemma 2.4.9 implies that

|ZN | ≤
1

µN
→ 0 as N → ∞.
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Chapter 3

Entropy rigidity and Best

approximation vectors

3.1 General entropy theory

In this section, we recall the definitions and basic properties of the entropy

and the relative entropy for σ-algebras we use in the later sections. We refer

the reader to [ELW, Chapter 1 & 2] for details.

Definition 3.1.1. Let (X,B, µ, T ) be a measure-preserving system on a Borel

probability space, and let A, C ⊆ B be sub-σ-algebras. Suppose that C is count-

ably generated. Note that there exists an A-measurable conull set X ′ ⊂ X and

a system
{
µAx |x ∈ X ′} of measures on X, referred to as conditional measures,

given for instance by [ELW, Theorem 2.2]. The information function of C
given A with respect to µ is defined by

Iµ(C|A)(x) = − logµAx ([x]C),

where [x]C is the atom of C containing x.

1. The conditional (static) entropy of C given A is defined by

Hµ(C|A) :=

∫
X
Iµ(C|A)(x)dµ(x),

which is the average of the information. If the σ-algebra A is trivial, then

we denote by Hµ(C) = Hµ(C|A), which is called the (static) entropy of
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C. Note that the entropy of the countable partition ξ = {A1, A2, . . . } of

X is given by

Hµ(ξ) = H(µ(A1), . . . ) = −
∑
i≥1

µ(Ai) logµ(Ai) ∈ [0,∞],

where 0 log 0 = 0.

2. Let A ⊆ B be a sub-σ-algebra such that T−1A = A. For any countable

partition ξ of X, let

hµ(T, ξ) := lim
n→∞

1

n
Hµ(ξ

n−1
0 ) = inf

n≥1

1

n
Hµ(ξ

n−1
0 ),

hµ(T, ξ|A) := lim
n→∞

1

n
Hµ(ξ

n−1
0 |A) = inf

n≥1

1

n
Hµ(ξ

n−1
0 |A),

where ξn−1
0 =

∨n−1
i=0 T

−iξ. Then the (dynamical) entropy of T is

hµ(T ) := sup
ξ:Hµ(ξ)<∞

hµ(T, ξ).

Moreover, the conditional (dynamical) entropy of T given A is

hµ(T |A) := sup
ξ:Hµ(ξ)<∞

hµ(T, ξ|A).

We gather the basic properties for the entropy.

Proposition 3.1.2 (Additivity, Monotoniciy, Invariance, and Conti-

nuity). Let (X,B, µ, T ) be a measure preserving system on a Borel probability

space, let A, C1, and C2 be sub-σ-algebras of B, and suppose that C1 and C2
are countably-generated. Then,

1. Hµ(C1 ∨ C2|A) = Hµ(C1|A) +Hµ(C2|C1 ∨ A)

2. Hµ(C2|C1 ∨ A) ≤ Hµ(C2|A)

3. Hµ(C1 ∨ C2|A) ≤ Hµ(C1|A) +Hµ(C2|A)

4. Hµ(C1|A) = Hµ(T
−1C1|T−1A)
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5. Let Cn ↗ C be an increasing sequence of countably generated sub-σ-

algebras of B and C be countably generated. Then

Hµ(C|A) ↗ Hµ(C|A)

as n→ ∞.

6. Let An ↗ A∞ be an increasing (or An ↘ A∞ a decreasing) sequence of

sub-σ-algebras of B. If ξ is a finite partition, then we have

Hµ(ξ|An) → Hµ(ξ|A∞)

as n→ ∞.

We refer the reader to Propositions 2.12, 2.13 and Lemma 2.17 of [ELW].

Proposition 3.1.3 (Basic properties). Let (X,B, µ, T ) be a measure pre-

serving system on a Borel probability space, let ξ and η be countable partitions

of X with finite entropy, and let A = T−1A ⊆ B be a strictly invariant sub-σ-

algebra. Then,

1. hµ(T, ξ|A) ≤ Hµ(ξ|A) ≤ Hµ(ξ) and hµ(T, ξ|A) ≤ hµ(T, ξ);

2. hµ(T, ξ ∨ η|A) ≤ hµ(T, ξ|A) + hµ(T, η|A);

3. hµ(T, η|A) ≤ hµ(T, ξ|A) +Hµ(η|ξ ∨ A) ≤ hµ(T, ξ|A) +Hµ(η|ξ);

4. hµ(T, ξ|A) = hµ(T, ξ
k
0 |A) for all k ≥ 1;

5. hµ(T, ξ|A) = hµ(T
−1, ξ|A) = hµ(T, ξ

k
−k|A) for all k ≥ 1 if T is invertible;

6. hµ(T
k|A) = khµ(T |A) for all k ≥ 1; and

7. hµ(T |A) = hµ(T
−1|A) if T is invertible.

Moreover,

6. (Future formula)

hµ(T, ξ|A) = Hµ(ξ|ξ∞1 ∨ A).

7. (Additivity) If T is invertible,

hµ(T, ξ ∨ η|A) = hµ(T, ξ|A) + hµ(T, η|ξ∞−∞ ∨ A)

= hµ(T, ξ|A) +Hµ(η|η∞1 ∨ ξ∞−∞ ∨ A).

52



CHAPTER 3. ENTROPY RIGIDITY AND BEST APPROXIMATION
VECTORS

Proposition 3.1.4 (Kolmogorov-Sinăı for sequence of partitions). Let

(X,B, µ, T ) be a measure-preserving system on a Borel probability space. Sup-

pose that (ξk) is a sequence of partitions of finite entropy with the property

that

• B =
∨∞
k=1(ξk)

∞
0 mod µ and (ξk)

∞
0 ⊆ (ξk+1)

∞
0 for all k ∈ N, or

• B =
∨∞
k=1(ξk)

∞
−∞ mod µ and (ξk)

∞
−∞ ⊆ (ξk+1)

∞
−∞ for all k ∈ N if T is

invertible.

If A = T−1A ⊆ B is a strictly invariant sub-σ-algebra, then

hµ(T |A) = sup
k
hµ(T, ξk|A) = lim

k→∞
hµ(T, ξk|A).

Proposition 3.1.5 (Entropy and ergodic decomposition). Let (X,B, µ, T )
be a measure-preserving system on a Borel probability space, with ergodic de-

composition

µ =

∫
X
µExdµ(x)

as in [ELW, Theorem 2.7]. Let A ⊆ B be a strictly T -invariant sub-σ-algebra.

Then

hµ(T, ξ|A) =

∫
X
hµEx (T, ξ|A)dµ(x)

for any partition ξ with Hµ(ξ) <∞, and

hµ(T |A) =

∫
X
hµEx (T |A)dµ(x).

3.2 Entropy on homogeneous spaces

3.2.1 General setup

Let G be a closed real linear group (or connected, simply connected real Lie

group) and let Γ < G be a lattice. We consider the quotient Y = G/Γ with a

G-invariant probability measure mY and call it Haar measure on Y . Let dG
be a right invariant metric on G, which induces the metric dY on the space

Y = G/Γ. Then Y is locally isometric to G, that is, for every y ∈ Y there

exists some r > 0 such that the map g 7→ gy is an isometry from the open

r-ball BG
r around the identity in G onto the open r-ball BY

r (y) around y ∈ Y .

Let ry be the maximal injectivity radius at y ∈ Y which is the supremum of
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r > 0 such that the above map can be an isometry. For any r > 0, we denote

by Y (r) = {y ∈ Y : ry ≥ r}. It follows from the continuity of the injectivity

radius that Y (r) is compact. Let us denote by

rmax = inf{r > 0 : ry ≤ r for all y ∈ Y }.

Since Γ is a lattice, rmax <∞. Hence we now assume that rmax ≤ 1 by rescaling

the right invariant metric dG on G. Note that for any r > 1, Y (r) = ∅.

For any closed subgroup L < G, we consider the right invariant metric dL
by restricting dG on L, and similarly denote by BL

r the open r-ball around the

identity in L.

In this section, we fix an element a ∈ G which is Ad-diagonalizable over

R. Let G+ =
{
g ∈ G|akga−k → id as k → −∞

}
be the unstable (resp. stable)

horospherical subgroup associated to a (resp. a−1), which is always a closed

subgroup of G in our setting.

Let L < G+ be a closed subgroup normalized by a and let l denote the Lie

algebra of L. We can take a basis {v1, . . . , vdim(l)} of l so that the adjoint map

Ada on l can be considered as the expansion (vi) 7→ (ecivi) for some ci > 0.

Now assume that ci ≤ 1 for all i. Then for c = (c1, . . . , cdim(l)), we define the

quasinorm ∥ · ∥c by ∥x∥c = maxi |xi|1/ci for x =
∑

i xivi ∈ l. We remark that

for x, y ∈ l and k ∈ Z,

• using the convexity of the function s 7→ s1/ci ,

(3.1) ∥x+ y∥c ≤ 2
1−min c
min c (∥x∥c + ∥y∥c);

• and

∥Adak x∥c = ek∥x∥c.

The quasinorm ∥ · ∥c induces the quasi-metric dl,c on the Lie algebra l, thus

induces the quasi-metric dL,c locally on L using the logarithm map from L to

l (see Subsection ?? for the definition of quasi-metric). We similary denote by

BL,c
r the open r-ball around the identity in L with respect to the quasi-metric

dL,c. For any y ∈ Y , we also denote by dL,c the induced quasi-metric on the

fiber BL
ry · y.
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3.2.2 Construction of a−1-descending, subordinate algebra and

its entropy properties

In this subsection, our goal is to strengthen results of [EL10, §7] for our quan-
titative purposes.

Definition 3.2.1 (7.25. of [EL10]). Let G+ < G be the unstable horospherical

subgroup associated to a. Let µ be an a-invariant measure on Y and L < G+

be a closed subgroup normalized by a.

1. We say that a countably generated σ-algebra A is subordinate to L (mod

µ) if for µ-a.e. y, there exists δ > 0 such that

(3.2) BL
δ · y ⊂ [y]A ⊂ BL

δ−1 · y.

2. We say that A is a−1-descending if (a−1)−1A = aA ⊆ A.

For each L < G+ and a-invariant ergodic probability measure µ on Y ,

there exists a countably generated σ-algebra A which is a−1-descending and

subordinate to L [EL10, Proposition 7.37]. We will prove that such a σ-algebra

can be constructed so that we also have an explicit upper bound of the measure

of the set violating (3.2) for fixed δ > 0. In order to prove an effective version of

the variational principle later, we need this quantitative estimate independent

of µ.

We first introduce some notations that will be used in this subsection. For

a subset B ⊂ Y and δ > 0, we denote by ∂δB the δ-neighborhood of the

boundary of B, i.e.

∂δB = {y ∈ Y : inf
z∈B

dY (y, z) + inf
z /∈B

dY (y, z) < δ}.

We also define the neighborhood of the boundary of a countable partition P
by

∂δP =
⋃
P∈P

∂δP.

Here, we deal with the entropy with respect to a−1, so we write for any ex-

tended integers ℓ ≤ ℓ′ in Z ∪ {±∞},

Pℓ′
ℓ =

ℓ′∨
k=ℓ

akP,
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for a given partition P of Y . We will use this notation also for σ-algebras.

We first construct a finite partition which has small measures on neigh-

borhoods of the boundary. The following lemma is the main ingredient of the

effectivization in this section. A key feature is that the measure estimate below

is independent of µ.

Lemma 3.2.2. There exists a constant c > 0 only depending on dimG such

that the following holds. Let µ be a probability measure on Y . For any r > 0

and any measurable subset Ω ⊂ Y (2r), there exist a measurable subset K ⊂ Y

and a partition P = {P1, · · · , PN} of K such that

1. Ω ⊆ K ⊆ BG
11
10
r
Ω,

2. For each 1 ≤ i ≤ N , there exists zi ∈ BG
r
10
Ω such that

BG
r
5
· zi ⊆ Pi ⊆ BG

r · zi, K =

N⋃
i=1

BG
r · zi,

3. µ(∂δP) ≤
(
δ
r

) 1
2 µ(BG

12
10
r
Ω) for any 0 < δ < cr.

Proof. Choose a maximal 9
10r-separated set {y1, · · · , yN} of Ω.

Claim There exist a constant c > 0 depending only on dimG, and {gi}Ni=1 ⊂
BG

r
10

such that for zi = giyi and for any 0 < δ < cr,

(3.3)
∑
i

(
µ(∂δ(B

G
r · zi)) + µ(∂δ(B

G
r
2
· zi))

)
≤
(
δ

r

) 1
2

µ(BG
12
10
r
Ω).

Proof of Claim. To prove this claim, we randomly choose each gi with the

independent uniform distribution on BG
r
10
. Then we have

E

(∑
i

µ(∂δ(B
G
r · zi))

)
=
∑
i

1

mG(BG
r
10
)

∫
BGr

10

∫
Y
1BGr+δ·giyi\B

G
r−δ·giyi

(y)dµ(y)dmG(gi)

≍
∑
i

1

rdimG

∫
Y
mG

({
gi ∈ BG

r
10

: r − δ ≤ d(giyi, y) < r + δ
})

dµ(y)

≪
∑
i

1

rdimG

∫
BG11

10 r+δ
·yi
δrdimG−1dµ ≤ δ

r

∫
BG12

10 r
Ω

∑
i

1B 12
10 r

·yi(y)dµ(y).
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For any y ∈ BG
12
10
r
Ω, the number of yi’s contained in B 12

10
r · y is at most 10dimG

since yi’s are 9
10r-separated. It implies that

∑
i 1B 12

10 r
·yi(y) ≤ 10dimG for any

y ∈ BG
12
10
r
Ω. It follows that

E

(∑
i

µ(∂δ(B
G
r · zi))

)
≪ δ

r

∫
BG12

10 r
Ω
10dimGdµ(y) ≪ δ

r
µ(BG

12
10
r
Ω),

where the implied constant is an absolute constant only depending on dimG.

Applying the same argument for ∂δ(B
G
r
2
· zi) instead of ∂δ(B

G
r · zi),

E

(∑
i

(
µ(∂δ(B

G
r · zi)) + µ(∂δ(B

G
r
2
· zi))

))
≪ δ

r
µ(BG

12
10
r
Ω).

It follows that for any 0 < δ < r
10 ,

P

(∑
i

(
µ(∂δ(B

G
r · zi)) + µ(∂δ(B

G
r
2
· zi))

)
≥ 1

2

(
δ

r

) 1
2

µ(BG
12
10
r
Ω)

)
≪
(
δ

r

) 1
2

.

Hence, for any 0 < δ < r
10 , we have

(3.4)

P

⋂
k≥0

{∑
i

(
µ(∂2−kδ(B

G
r · zi)) + µ(∂2−kδ(B

G
r
2
· zi))

)
<

1

2

(
2−kδ

r

) 1
2

µ(BG
12
10
r
Ω)

}
> 1−O

((
δ

r

) 1
2

)
.

Thus, there exists c > 0 so that the right-hand side of (3.4) is positive for any

δ < cr. It follows that we can find {gi}Ni=1 such that zi = giyi’s satisfy (3.3)

for any 0 < δ < cr.

Let c > 0 and {gi}Ni=1 ⊂ BG
r
10

be as in Claim. The set {zi = giyi}Ni=1 is

7
10r-separated since {yi}Ni=1 is 9

10r-separated. Let K :=
⋃N
i=1B

G
r · zi. Since

BG
9
10
r
· yi ⊆ BG

r · zi ⊆ BG
11
10
r
· yi, we have

Ω ⊆
N⋃
i=1

BG
9
10
r
· yi ⊆ K ⊆

N⋃
i=1

BG
11
10
r
· yi ⊆ BG

11
10
r
Ω.
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Now we define a partition P of K inductively as follows:

Pi = BG
r · zi \

i−1⋃
j=1

Pj ∪
N⋃

j=i+1

BG
r
2
· zj


for 1 ≤ i ≤ N . It is clear from the construction that BG

r
5
· zi ⊆ Pi ⊆ BG

r · zi
and zi ∈ BG

r
10
Ω for 1 ≤ i ≤ N . We also observe that the δ-neighborhood of

P is contained in

N⋃
i=1

(
∂δ(B

G
r · zi) ∪ ∂δ(BG

r
2
· zi)

)
. Hence it follows from Claim

that for any 0 < δ < cr,

µ(∂δP) ≤
∑
i

(
µ(∂δ(B

G
r · zi)) + µ(∂δ(B

G
r
2
· zi))

)
≤
(
δ

r

) 1
2

µ(BG
12
10
r
Ω).

We need the following thickening lemma.

Lemma 3.2.3. For any r > δ > 0, we have

BG
δ Y (r) ⊂ Y (r − δ) and BG

δ Y (r)c ⊂ Y (r + δ)c.

Proof. For any g ∈ BG
δ and y ∈ Y (r), we need to show rgy ≥ r − δ. Suppose

that rgy < r − δ. Then there exist g1, g2 ∈ BG
r−δ such that g1gy = g2gy, or

equivalently, g−1g−1
2 g1gy = y. But it follows from y ∈ Y (r) that g−1g−1

2 g1g /∈
BG
r , hence using the triangular inequality and the right invariance of dG,

r ≤ dG(g
−1g−1

2 g1g, id) = dG(g1g, g2g) ≤ dG(g1g, id) + dG(g2g, id)

≤ dG(g1, id) + dG(g2, id) + 2dG(g, id) < r,

which is a contradiction. This concludes the first assertion. The second asser-

tion follows similarly.

Using Lemma 3.2.2 inductively, we have the following partition of Y with

its subpartition having small boundary measures. Recall that Y (r) = ∅ for

any r > 1 by our choice of the right invariant metric dG on G.

Lemma 3.2.4. Let µ be a probability measure on Y . There exists a partition

{Kk}∞k=1 of Y such that for each k ≥ 1, the following statements hold:
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1. Kk ⊆ Y (2−k) \ Y (2−k+2);

2. there exist a partition Pk = {Pk1, · · · , PkNk} of Kk and a point zi ∈
BG

2−k−1

10

Kk for each 1 ≤ i ≤ Nk satisfying

BG
1
5
2−k−1 · zi ⊆ Pki ⊆ BG

2−k−1 · zi;

3. µ(∂δPk) ≤ (2k+4δ)
1
2µ(Y (2−k−1) \ Y (2−k+3)) for any 0 < δ < c2−k−2,

where c > 0 is the constant in Lemma 3.2.2.

Proof. We will construct {Kk}k≥1 and {Pk}k≥1 using Lemma 3.2.2 inductively.

For each k ≥ 1, let us say that Kk ⊂ Y and Pk satisfy (♠k) if they satisfy the

three conditions in the statement. We will also need auxiliary bounded sets

K ′
k ⊂ Y ’s and corresponding partitions P ′

k’s during the inductive procedure.

Let us say that K ′
k and a partition P ′

k of K ′
k satisfy (♣k) if they satisfy the

following three conditions.

1. Y (2−k+1) \
⋃k−1
j=1 Kj ⊆ K ′

k ⊆ BG
11
10

2−k−1(Y (2−k+1) \
⋃k−1
j=1 Kj),

2. For each 1 ≤ i ≤ Nk, there exists zki ∈ B 2−k−1

10

K ′
k such that

BG
1
5
2−k−1 · zki ⊆ P ′

ki ⊆ BG
2−k−1 · zki, K ′

k =
N⋃
i=1

BG
2−k−1 · zki,

3. µ(∂δP ′
k) ≤ (2k+1δ)

1
2µ(Y (2−k) \ Y (2−k+3)) for any 0 < δ < c2−k−1.

Here,
⋃0
j=1Kj means the empty set.

Let us start with the initial step. We first choose Ω1 = Y (1) and apply

Lemma 3.2.2 with r = 2−2 and Ω = Ω1 ⊂ Y (12). Then we have a subset

K ′
1 ⊂ Y and a partition P ′

1 of K ′
1 satisfying (1), (2) of (♣1), and µ(∂δP ′

1) ≤
(22δ)

1
2µ(BG

12
11

2−2Ω1) for any 0 < δ < c2−2. It follows from Lemma 3.2.3 that

BG
12
10

2−2Y (1) ⊂ Y (12), which implies (3) of (♣1) since Y (4) = ∅. Also note that

K ′
1 ⊂ BG

11
10

2−2Y (1) ⊂ Y (12).

Now let Ω2 = Y (12) \K
′
1 and apply Lemma 3.2.2 again with r = 2−3 and

Ω = Ω2 ⊂ Y (14). We have a subset K ′
2 ⊂ Y and a partition P ′

2 of K ′
2 satisfying

Ω2 ⊂ K ′
2 ⊂ BG

11
10

2−3Ω2, (2) of (♣2), and µ(∂δP ′
2) ≤ (23δ)

1
2µ(BG

12
10

2−3Ω2) for any

0 < δ < c2−3. Set K1 = K ′
1 \K ′

2, then (1) of (♣2) and (1) of (♠1) follow since

59



CHAPTER 3. ENTROPY RIGIDITY AND BEST APPROXIMATION
VECTORS

Y (2) = ∅. Since K ′
1 ⊃ Y (1), it follows from Lemma 3.2.3 that BG

12
10

2−3Ω2 ⊂
Y (14)\Y (2), which implies (3) of (♣2). Define a partition P1 = {P11, . . . , P1N1}
from P ′

1 = {P ′
11, . . . , P

′
1N1

} by P1i = P ′
1i \K ′

2 for each 1 ≤ i ≤ N1. For each

1 ≤ i ≤ N1 and y ∈ BG
2−2

5

· z1i, observe that y /∈ K ′
2 since BG

2−2 · z1i ⊆ K ′
1 and

K ′
2 ⊆ BG

11
10

2−3Ω2 ⊂ BG
11
10

2−3(Y \ K ′
1). Hence, B

G
2−2

5

· z1i ⊂ P1i holds, so (2) of

(♠1) follows. Since P1i = P ′
1i \K ′

2 for each 1 ≤ i ≤ N1, we have

µ(∂δP1) ≤ µ(∂δP ′
1) + µ(∂δP ′

2)

≤ (22δ)
1
2µ(Y (2−1) \ Y (22)) + (23δ)

1
2µ(Y (2−2) \ Y (2))

≤ (25δ)
1
2µ(Y (2−2) \ Y (22))

for any 0 < δ < c2−3. Hence (3) of (♠1) follows.

Our desired disjoint sets {Kk}k≥1 and partitions {Pk}k≥1 will be obtained

by applying this procedure repeatedly.

Claim For k ≥ 2, suppose that we have disjoint bounded sets Kj of Y and

corresponding partitions Pj satisfying (♠j) for j = 1, . . . , k − 1, and a subset

K ′
k ⊂ Y and a partition P ′

k satisfying (♣k). Then we can find Kk ⊆ K ′
k and

a partition Pk of Kk satisfying (♠k), and K
′
k+1 ⊂ Y and a partition P ′

k+1 of

K ′
k+1 satisfying (♣k+1).

Proof of Claim. Note that Kj ⊂ Y (2−j) ⊂ Y (2−k) for each j = 1, . . . , k − 1

and K ′
k ⊂ BG

11
10

2−k−1Y (2−k+1) ⊂ Y (2−k). Let Ωk+1 = Y (2−k) \ (
⋃k−1
j=1 Kj ∪K ′

k)

and apply Lemma 3.2.2 with r = 2−k−2 and Ω = Ωk+1 ⊂ Y (2−k−1). Then we

can find K ′
k+1 ⊂ Y and a partition P ′

k+1 =
{
P ′
(k+1)1, · · · , P

′
(k+1)Nk+1

}
of K ′

k+1

satisfying Ωk+1 ⊂ K ′
k+1 ⊂ BG

11
10

2−k−2Ωk+1, (2) of (♣k+1), and µ(∂δP ′
k+1) ≤

(2k+2δ)
1
2µ(BG

12
10

2−k−2Ωk+1) for any 0 < δ < c2−k−2. We set Kk = K ′
k \K ′

k+1,

then (1) of (♣k+1) follows. Since
⋃k−1
j=1 Kj ⊃ Y (2−k+2) and Kk ⊂ K ′

k ⊂
Y (2−k)\

⋃k−1
j=1 Kj , (1) of (♠k) follows. It follows from

⋃k−1
j=1 Kj∪K ′

k ⊃ Y (2−k+1)

and Lemma 3.2.3 that BG
12
10

2−k−2Ωk+1 ⊂ Y (2−k−1) \ Y (2−k+2), which im-

plies (3) of (♣k+1). Define a partition Pk = {Pk1, · · · , PkNk} from P ′
k ={

P ′
k1, · · · , P ′

kNk

}
by Pki = P ′

ki \K ′
k+1 for any 1 ≤ i ≤ Nk. For each 1 ≤ i ≤ Nk

and y ∈ BG
2−k−1

5

· zki, observe that y /∈ K ′
k+1 since BG

2−k−1 · zki ⊆ K ′
k and

K ′
k+1 ⊆ BG

11
10

2−k−2Ωk+1 ⊂ BG
11
10

2−k−2(Y \K ′
k). Hence, B

G
2−k−1

5

· zki ⊂ Pki holds,
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so (2) of (♠k) follows. Since Pki = P ′
ki \K ′

k+1 for each 1 ≤ i ≤ N1, we have

µ(∂δPk) ≤ µ(∂δP ′
k) + µ(∂δP ′

k+1)

≤ (2k+1δ)
1
2µ(Y (2−k) \ Y (2−k+3)) + (2k+2δ)

1
2µ(Y (2−k−1) \ Y (2−k+2))

≤ (2k+4δ)
1
2µ(Y (2−k−1) \ Y (2−k+3))

for any 0 < δ < c2−k−2. Hence (3) of (♠k) follows.

This claim concludes the proof of Lemma 3.2.4.

By [EL10, Lemma 7.29 and 7.45], there are constants α > 0 and d0 > 0

depending on a and G such that for every r ∈ (0, 1],

(3.5) a−kBG+

r ak ⊂ BG
d0e−kαr

for any k ∈ Z.
The following lemma is a quantitative modification of [EL10, Lemma 7.31].

We remark that the constants below are independent of µ while the set Eδ
depends on µ.

Lemma 3.2.5. Given a-invariant probability measure µ on Y , there exists a

countable partition P of Y such that the following holds.

1. For any P ∈ P there exists j ≥ 1 such that P ⊆ Y (2−j) \ Y (2−j+2).

Moreover, there exists z ∈ P such that

BG
1
5
2−j−1 · z ⊆ P ⊆ BG

2−j−1 · z.

2. Let c > 0 and d0 > 0 be the constants in Lemma 3.2.2 and (3.5). For

any 0 < δ < min(( c
16d0

)2, 1), there exists Eδ ⊂ Y such that

µ(Eδ) < µ(Y \ Y (C1δ
1
2 )) + C2δ

1
2

and BG+

δ ·y ⊂ [y]P∞
0

for any y ∈ Y \Eδ, where C1, C2 > 0 are constants

only depending on a and G.

Proof. Let {Kj}j≥1 and {Pj}j≥1 be the sets and the partitions we constructed

in Lemma 3.2.4. We set P =
⋃∞
j=1 Pj . Then P is a countable partition of Y

and the condition (1) directly follows from Lemma 3.2.4.
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Now we set Eδ =
⋃∞
k=0 a

k∂d0e−kαδP and split Eδ into two subsets

E′
δ =

∞⋃
k=0

ak

 ∞⋃
i=2+⌈ α

log 2
k− log δ

2 log 2
⌉

∂d0e−kαδPi

 ,

E′′
δ =

∞⋃
k=0

ak

1+⌈ α
log 2

k− log δ
2 log 2

⌉⋃
i=1

∂d0e−kαδPi

 .

We claim that E′
δ ⊂ Y \ Y ((d0 + d20)δ

1
2 ). To see this, let y ∈ E′

δ. Then

there exist k ≥ 0 and P ∈ Pi for some i ≥ 2 + ⌈ α
log 2k − log δ

2 log 2⌉ such that

y ∈ ak∂d0e−kαδP . By Lemma 3.2.4, P ⊂ Ki ⊂ Y (2−i) \ Y (2−i+2) ⊂ Y (2−i+2)c.

It follows from Lemma 3.2.3 that

(3.6) ∂d0e−kαδP ⊂ BG
d0e−kαδ

P ⊂ BG
d0e−kαδ

Y (2−i+2)c ⊂ Y (2−i+2 + d0e
−kαδ)c.

Using (3.5), it can be easily checked that akY (r)c ⊂ Y (d0e
kαr)c for any 0 <

r < 1. Hence, it follows from (3.6) and i ≥ 2 + ⌈ α
log 2k −

log δ
2 log 2⌉ that

ak∂d0e−kαδP ⊂ akY (2−i+2 + d0e
−kαδ)c ⊂ Y ((d0 + d20)δ

1
2 )c.

This proves the claim.

The above claim implies that

(3.7) µ(E′
δ) ≤ µ(Y \ Y (C1δ

1
2 ))

for some constant C1 > 0 only depending on a and G.

Next we estimate µ(E′′
δ ). It follows from the a-invariance of µ that

(3.8) µ(E′′
δ ) ≤

∞∑
k=0

1+⌈ α
log 2

k− log δ
2 log 2

⌉∑
i=1

µ(∂d0e−kαδPi) =
∞∑
i=1

∞∑
k=ki

µ(∂d0e−kαδPi),

where ki ∈ N denotes the smallest number of k such that 1+⌈ α
log 2k−

log δ
2 log 2⌉ ≥ i.

Note that ki ≥ log 2
α (i− 2) + log δ

2α .

On the other hand, by Lemma 3.2.4 we have

(3.9) µ(∂d0e−kαδPi) ≤ (2i+4d0e
−kαδ)

1
2µ(Y (2−i−1) \ Y (2−i+3))
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for any k ≥ ki, since d0e
−kαδ ≤ d02

−i+2δ
1
2 < c2−i−2. Hence, we obtain from

(3.8) and (3.9)

(3.10)

µ(E′′
δ ) ≤

∞∑
i=1

∞∑
k=ki

µ(∂d0e−kαδPi)

≤
∞∑
i=1

∞∑
k=ki

(2i+4d0e
−kαδ)

1
2µ(Y (2−i−1) \ Y (2−i+3))

≪
∞∑
i=1

(2i+4e−kiαδ)
1
2µ(Y (2−i−1) \ Y (2−i+3))

≪ δ
1
2

∞∑
i=1

µ(Y (2−i−1) \ Y (2−i+3)) ≪ δ
1
2 .

In the last line we used the fact that Y (2−i−1) \Y (2−i+3)’s can be overlapped

at most four times. Combining (3.7) and (3.10), we finally have

µ(Eδ) < µ(Y \ Y (C1δ
1
2 )) + C2δ

1
2

for some constants C1, C2 > 0 only depending on a and G.

It remains to check that BG+

δ · y ⊂ [y]P∞
0

for any y ∈ Y \Eδ. Let h ∈ BG+

δ

and suppose [hy]P∞
0

̸= [y]P∞
0
. Then there is some k ≥ 0 such that a−khy

and a−ky belong to different elements of the partition P. Since a−khak ∈
a−kBG+

δ ak ⊂ BG
d0e−kαδ

by (3.5), we have

dY (a
−khy, a−ky) ≤ dG(a

−khak, id) ≤ d0e
−kαδ.

It follows that both a−khy and a−ky belong to ∂d0e−kαδP, hence y ∈ Eδ. It

concludes that BG+

δ · y ⊂ [y]P∞
0

for any y ∈ Y \ Eδ.

The following proposition is a quantitative version of [EL10, Proposition

7.37]. Given a-invariant measure µ, it provides a σ-algebra which is a−1-

descending and subordinate to L in the following quantitative sense.

Proposition 3.2.6. Let µ be an a-invariant probability measure on Y , and

L < G+ be a closed subgroup normalized by a. There exists a countably gen-

erated sub-σ-algebra AL of Borel σ-algebra of Y satisfying

1. aAL ⊂ AL, that is, AL is a−1-descending,

2. [y]AL ⊂ BL
2−k+1 · y for any y ∈ Y (2−k) \ Y (2−k+2) with k ≥ 1,
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3. if 0 < δ < min(( c
16d0

)2, 1), then BL
δ · y ⊂ [y]AL for any y ∈ Y \Eδ, where

c,D > 0 are the constants in Lemma 3.2.2 and (3.5), and Eδ is the set

in Lemma 3.2.5.

In particular, the σ-algebra AL is L-subordinate modulo µ.

Proof. For a given a-invariant probability measure µ on Y , let P be the count-

able partition of Y constructed in Lemma 3.2.5. We will construct a countably

generated σ-algebra PL by taking L-plaque in each P ∈ P as an atom of PL.

Then AL := (PL)∞0 will be the desired σ-algebra.

For each P ∈ P, by Lemma 3.2.5(1), there exist j ≥ 1 and z ∈ P such

that P ∈ Y (2−j) \ Y (2−j+2) and BG
2−j−1

5

· z ⊆ P ⊆ BG
2−j−1 · z. We can find

BP ⊂ G with diam(BP ) ≤ 2−j such that P = πY (BP ), where πY : G → Y is

the natural quotient map. Define the σ-algebra

PL = σ
({
πY (BP ∩ S) : P ∈ P, S ∈ BG/L

})
.

Then PL is a refinement of P so that atoms of PL are open L-plaques, i.e.

for any y ∈ P ∈ P, [y]PL = [y]P ∩ BL
2−j · y = Vy · y, where Vy ⊂ BL

2−j is an

open bounded set.

It is clear that PL is countably generated, hence AL = (PL)∞0 is also

countably generated. By construction, we have aAL = (PL)∞1 ⊂ AL, which

proves the assertion (1).

For any y ∈ Y (2−k)\Y (2−k+2) with k ≥ 1, take P ∈ P such that y ∈ P . By

Lemma 3.2.5(1), there exist j ≥ 1 and z ∈ P such that P ∈ Y (2−j)\Y (2−j+2)

and P ⊆ BG
2−j−1 · z. Observe that 2−j+2 > 2−k and 2−j < 2−k+2, that is,

j − 2 < k < j + 2. Hence we have

[y]AL ⊂ [y]PL = Vy · y ⊂ BL
2−j · y ⊂ BL

2−k+1 · y,

which proves the assertion (2).

For a given 0 < δ < min(( c
16d0

)2, 1) and y ∈ Y \ Eδ, assume that z = hy

with h ∈ BL
δ . By Lemma 3.2.5(2), BG+

δ · y ⊂ [y]P∞
0
. Hence it follows that for

any k ≥ 0, a−ky and a−kz belong to the same atom P ⊂ P. Then we have

a−ky, a−kz = a−khak · (a−ky) ∈ P.

Since a−khak ∈ BL
δ , a

−ky and a−kz belong to the same atom of PL. This

proves the assertion (3).
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As in [LSS19, Lemma 3.4], we need to compare the dynamical entropy and

the static entropy. In [LSS19], the σ-algebra π−1(BX) is used to deal with the

entropy relative to X, where BX is the Borel σ-algebra of X. In order to deal

with the entropy relative to the general closed subgroup L < G+ normalized

by a, we consider the following tail σ-algebra with respect to AL in Proposition

3.2.6: Denote by

(3.11) AL
∞ :=

∞⋂
k=1

akAL =

∞⋂
k=1

(
PL
)∞
k
.

This tail σ-algebra may not be countably generated but it satisfies strictly

a-invariant, i.e. aAL
∞ = AL

∞ = a−1AL
∞.

Lemma 3.2.7. Let µ be an a-invariant probability measure on Y , L < G+ be

a closed subgroup normalized by a, and AL be as in Proposition 3.2.6. Then

the σ-algebra (AL)∞−∞ is the Borel σ-algebra of Y modulo µ.

Proof. Let PL be as in the proof of Proposition 3.2.6. Since (AL)∞−∞ = (PL)∞−∞
and Y =

⋃
k≥1 Y (2−k) \ Y (2−k+2), it is enough to show that for each k ≥ 1

and for µ-a.e. y ∈ Y (2−k) \ Y (2−k+2), we have [y](PL)∞−∞
= {y}.

For fixed k ≥ 1, it follows from Poincaré recurrence (e.g. see [EW11, The-

orem 2.11]) that for µ-a.e. y ∈ Y (2−k) \ Y (2−k+2), there exists an increasing

sequence (ki)i≥1 ⊂ N such that

akiy ∈ Y (2−k) \ Y (2−k+2) and ki → ∞ as i→ ∞.

By Proposition 3.2.6(2), it follows that for each i ≥ 1

[akiy]AL = [akiy](PL)∞0 ⊂ BL
2−k+1 · akiy.

Since [akiy](PL)∞0 = aki [y]a−ki (PL)∞0
= aki [y](PL)∞−ki

, using (3.5), we have

[y](PL)∞−ki
⊂ a−kiBL

2−k+1 · akiy = a−kiBL
2−k+1a

ki · y ⊂ BL
d0e−αki2−k+1 · y.

Taking i→ ∞, we conclude that [y](PL)∞−∞
= {y}.

Proposition 3.2.8. Let µ be an a-invariant probability measure on Y and

L < G+ be a closed subgroup normalized by a. Let AL be as in Proposition
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3.2.6 and AL
∞ be as in (4.48). Then we have

(3.12) hµ(a|AL
∞) = hµ(a

−1|AL
∞) = Hµ(AL|aAL).

Moreover, (3.12) holds for almost every ergodic component of µ.

Proof. Let PL be as in the proof of Proposition 3.2.6. Since PL is countably

generated, we can take an increasing sequence of finite partitions (PL
k )k≥1 of Y

such that PL
k ↗ PL. By Lemma 3.2.7, we have BY = (PL)∞−∞ =

∨∞
k=1(PL

k )
∞
−∞

modulo µ, where BY is the Borel σ-algebra of Y . It is clear that (PL
k )

∞
−∞ ⊆

(PL
k+1)

∞
−∞ for all k ∈ N. Hence it follow from Kolmogorov-Sinăı Theorem

[ELW, Proposition 2.20] that

hµ(a
−1|AL

∞) = lim
k→∞

hµ(a
−1,PL

k |AL
∞).

Using the future formula [ELW, Proposition 2.19 (8)], we have

lim
k→∞

hµ(a
−1,PL

k |AL
∞) = lim

k→∞
Hµ(PL

k |(PL
k )

∞
1 ∨ AL

∞)

It follows from monotonicity and continuity of entropy [ELW, Proposition 2.10,

2.12, and 2.13] that for any fixed k ≥ 1

lim
ℓ→∞

Hµ(PL
k |(PL

ℓ )
∞
1 ∨AL

∞) ≤ Hµ(PL
k |(PL

k )
∞
1 ∨AL

∞) ≤ lim
ℓ→∞

Hµ(PL
ℓ |(PL

k )
∞
1 ∨AL

∞),

hence we have

Hµ(PL
k |(PL)∞1 ∨ AL

∞) ≤ Hµ(PL
k |(PL

k )
∞
1 ∨ AL

∞) ≤ Hµ(PL|(PL
k )

∞
1 ∨ AL

∞).

Taking k → ∞, it follows that

lim
k→∞

Hµ(PL
k |(PL

k )
∞
1 ∨ AL

∞) = Hµ(PL|(PL)∞1 ∨ AL
∞) = Hµ(AL|aAL),

which concludes (3.12).

Note that BY = (PL)∞−∞ =
∨∞
k=1(PL

k )
∞
−∞ modulo almost every ergodic

component of µ. Thus following the same argument as above, we can conclude

(3.12) for almost every ergodic component of µ.

The quantity Hµ(AL|aAL) is called empirical entropy and is the average
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of the conditional information function

Iµ(AL|aAL)(x) = − logµaA
L

x ([x]A),

and indeed the entropy contribution of L (see [EL10, 7.8] for definition).

3.2.3 Effective variational principle

We first recall the variational principle. Combining [EL10, Proposition 7.34]

and [EL10, Theorem 7.9], we have the following upper bound of an empirical

entropy (or entropy contribution), and the entropy rigidity.

Theorem 3.2.9 ([EL10]). Let L < G+ be a closed subgroup normalized by a,

and let l denote the Lie algebra of L. Let µ be an a-invariant ergodic probability

measure on Y . If A is a countably generated sub-σ-algebra of the Borel σ-

algebra which is a−1-descending and L-subordinate, then

Hµ(A|aA) ≤ log | det(Ada|l)|

and equality holds if and only if µ is L-invariant.

This subsection is to effectivize the variational principle. Let L < G+ be

a closed subgroup normalized by a, mL be the Haar measure on L, and µ

be an a-invariant probability measure on Y . Let A be a countably generated

sub-σ-algebra of Borel σ-algbera which is a−1-descending and L-subordinate

modulo µ. Note that for any j ∈ Z≥0, the sub-σ-algebra a
jA is also countably

generated, a−1-descending, and L-subordinate modulo µ.

For y ∈ Y , denote by Vy ⊂ L the shape of the A-atom at y ∈ Y so

that Vy · y = [y]A. It has positive mL-measure for µ-a.e. y ∈ Y since A
is L-subordinate modulo µ. Note that for any j ∈ Z≥0, we have [y]ajA =

ajVa−jya
−j · y.

As in [EL10, 7.55] which is the proof of [EL10, Theorem 7.9], let us define

τa
jA

y for µ-a.e y ∈ Y to be the normalized push forward ofmL|ajV
a−jya

−j under

the orbit map, i.e.,

τa
jA

y =
1

mL(ajVa−jya
−j)

mL|ajV
a−jya

−j · y,

which is a probability measure on [y]ajA.

The following proposition is an effective version of Theorem 3.2.9.
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Proposition 3.2.10. Let L < G+ be a closed subgroup normalized by a and

µ be an a-invariant ergodic probability measure on Y . Fix j ∈ N and denote

by J ≥ 0 the maximal entropy contribution of L for aj, that is,

J = log | det(Adaj |l)|.

Let A be a countably generated sub-σ-algebra of Borel σ-algbera which is a−1-

descending and L-subordinate. Suppose that there exist a measurable set K ⊂
Y and r > 0 such that [y]A ⊂ BL,c

r · y for any y ∈ K, where BL,c
r is as in

Subsection 3.2.1. Then we have

Hµ(A|ajA) ≤ J +

∫
Y
log τa

jA
y ((Y \K) ∪BL,c

r Suppµ)dµ(y).

Proof. By for instance [EL10, Theorem 5.9], for µ-a.e. y ∈ Y , µa
jA
y is a prob-

ability measure on [y]ajA = ajVa−jya
−j · y, and Hµ(A|ajA) can be written

as

Hµ(A|ajA) = −
∫
Y
logµa

jA
y ([y]A)dµ(y).

Note that mL(a
jBa−j) = eJmL(B) for any measurable B ⊂ L. Let

p(y) := µa
jA
y ([y]A) and pHaar(y) := τa

jA
y ([y]A).

Then we have

pHaar(y) =
mL(Vy)

mL(ajVa−jya
−j)

=
mL(Vy)

mL(Va−jy)
e−J ,

hence, applying the ergodic theorem, we have −
∫
Y log pHaar(y)dµ(y) = J .

Now we estimate an upper bound of Hµ(A|ajA)− J following the compu-

tation in [EL10, 7.55]. Following [EL10, 7.55], we can partition [y]ajA into a

countable union of A-atoms as follows:

[y]ajA =

∞⋃
i=1

[xi]A ∪Ny,

where Ny is a null set with respect to µa
jA
y . Note that µa

jA
y is supported

on Suppµ for µ-a.e y. Let us denote by Z = (Y \ K) ∪ BL,c
r Suppµ. If xi ∈

Y \Z = K \BL,c
r Suppµ, then we have µa

jA
y ([xi]A) = 0 since [xi]A ⊂ BL,c

r ·xi ⊆
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K \ Suppµ. Thus we have

Hµ(A|ajA)− J = −
∫
Y

(
log p(z)− log pHaar(z)

)
dµ(z)

=

∫
Y

∫
Y

(
log pHaar(z)− log p(z)

)
dµa

jA
y (z)dµ(y)

=

∫
Y

∑
xi∈Z

∫
z∈[xi]A

(
log pHaar(z)− log p(z)

)
dµa

jA
y (z)dµ(y)

=

∫
Y

∑
xi∈Z

log

(
τa

jA
y ([xi]A)

µajAy ([xi]A)

)
µa

jA
y ([xi]A)dµ(y)

≤
∫
Y
log

∑
xi∈Z

τa
jA

y ([xi]A)

 dµ(y)

≤
∫
Y
log τa

jA
y (Z)dµ(y).

The fifth inequality is by the convexity of the logarithm. This proves the

proposition.

In particular, if A = AL then Proposition 3.2.10 still holds without assum-

ing the ergodicity of µ.

Corollary 3.2.11. Let L < G+ be a closed subgroup normalized by a, µ be

an a-invariant probability measure on Y , and AL be as in Proposition 3.2.6.

Then Proposition 3.2.10 holds with A = AL.

Proof. Writing the ergodic decomposition µ =
∫
µEz dµ(z), we have

hµ(a
j |AL

∞) =

∫
hµEz (a

j |AL
∞)dµ(z),

where AL
∞ is the σ-algebra as in (4.48). By Proposition 3.2.8, we also have

Hµ(AL|ajAL) =

∫
HµEz

(AL|ajAL)dµ(z).
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Applying Proposition 3.2.10 for each µEz we obtain∫
HµEz

(AL|ajAL)dµ(z) ≤ J +

∫
Y

∫
Y
log τa

jA
y ((Y \K) ∪BL,c

r SuppµEz )dµ
E
z (y)dµ(z)

≤ J +

∫
Y
log τa

jA
y ((Y \K) ∪BL,c

r Suppµ)dµ(y).

3.3 Preliminaries for the upper bound

From now on, we fix the following notations:

d = m+ n, G = ASLd(R), Γ = ASLd(Z), and Y = G/Γ.

We use all notations in Subsection 3.2.1 with this setting. In particular, we

choose a right invariant metric dG on G so that rmax ≤ 1. Denote by d∞ the

metric on G induced from the max norm on Md+1,d+1(R). Note that dG and

d∞ are locally bi-Lipschitz.

Recall the notations at, a = a1, U , and W in the introduction. Then the

subgroups U and W are closed subgroups in G+ normalized by a, where G+

is the unstable horospherical subgroup associated to a. Denote by u and w the

Lie algebras of U and W , respectively. We can take standard basis for u and

w so that u = Rmn = Mm,n(R) and w = Rm with the associated quasinorms

given by

∥A∥r⊗s = max
1≤i≤m
1≤j≤n

|Aij |
1

ri+sj and ∥b∥r = max
1≤i≤m

|bi|
1
ri ,

respectively, for any A ∈ Mm,n(R) and b ∈ Rm. We call these quasinorms

r⊗ s-quasinorm and r-quasinorm, respectively. It is also satisfies that

∥Adat A∥r⊗s = et∥A∥r⊗s and ∥Adat b∥r = et∥b∥r,

for any A ∈Mm,n(R) and b ∈ Rm. These quasinorms induce the quasi-metrics

dr⊗s and dr on u and w, respectively. For simplicity, we keep the notations

dr⊗s and dr as locally defined quasi-metrics on U and L, respectively.

As in Theorem 3.2.9, we can explicitly compute the maximum entropy

contribitions for L = U and W . For L = U , the restricted adjoint map is the
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expansion Ada : (Aij) 7→ (eri+sjAij) of A ∈Mm,n, hence

log | det(Ada|u)| =
∑
i,j

(ri + sj) = m+ n.

For L = W , the restricted adjoint map is the expansion Ada : (bi) 7→ (eribi)

of b ∈ Rm, hence
log | det(Ada|w)| =

∑
i

ri = 1.

Denote by X = SLd(R)/SLd(Z) and by π : Y → X the natural projection

sending a translated lattice x + v to the lattice x. Equivalently, it is defined

by π

((
g v

0 1

)
Γ

)
= g SLd(Z) for g ∈ SLd(R) and v ∈ Rd. We also use the

following notation: w(v) =

(
Id v

0 1

)
for v ∈ Rd.

3.3.1 Dimensions with quasinorms

Let Z be a space endowed with a quasi-metric dZ , which is a symmetric,

positive definite map dZ : Z × Z → R≥0 such that, for some constant C, for

all x, y ∈ Z, dZ(x, y) ≤ C(dZ(x, z) + dZ(z, y)). For a bounded subset S ⊂ Z,

the lower Minkowski dimension dimdZ
S with respect to the quasi-metric dZ is

defined by

dimdZ
S := lim inf

δ→0

logNdZ (S, δ)

log 1/δ
,

where NdZ (S, δ) is the maximal cardinality of a δ-separated subset of S for

dZ . If S is unbounded, we let dimdZ
S = sup{dimdZ

S ∩K ; K compact}.
At the begining of this section, we consider Lie algebras u and w endowed

with r ⊗ s-quasinorm and r-quasinorm, which induce the quasi-metrics dr⊗s

and dr on u and w, repectively.

Now, for subsets S ⊂ u = Rmn and S′ ⊂ w = Rm, we denote the lower

Minkowski dimensions of these subsets as follows:

dimr⊗sS := dimdr⊗s
S, dimMS := dimdE

S,

dimrS
′ := dimdrS

′, dimMS
′ := dimdE

S′

where dE is the standard metric. We will also consider Hausdorff dimensions
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dimH S and dimH S
′, always defined with respect to the standard metric. We

refer the reader to [Fal14] for general properties of Minkowski or Hausdorff

dimensions, such as the inequality

dimMS ≥ dimH S.

Following [LSS19], we will relate dimension dimM to entropy, and further

to Hausdorff dimension using dimr⊗s and dimr via the following lemma.

Lemma 3.3.1. [LSS19, Lemma 2.2] For subsets S ⊂ u and S′ ⊂ w,

1. dimr⊗su =
∑

i,j(ri + sj) = m+ n and dimrw =
∑

i ri = 1,

2. dimr⊗sS ≥ (m+ n)− (r1 + s1)(mn− dimMS),

3. dimrS
′ ≥ 1− r1(m− dimMS

′).

3.3.2 Correspondence with dynamics

For y =

(
g v

0 1

)
Γ ∈ Y with g ∈ SLd(R) and v ∈ Rd, denote by Λy the

corresponding unimodular grid gZd+ v in Rd. We denote the (r, s)-quasinorm

of v = (x,y) ∈ Rm × Rn by ∥v∥r,s = max{∥x∥
d
m
r , ∥y∥

d
n
s }. Let

Lϵ := {y ∈ Y : ∀v ∈ Λy, ∥v∥r,s ≥ ϵ} ,

which is a (non-compact) closed subset of Y . Following [Kle99, Section 1.3],

we say that the pair (A, b) ∈ Mm,n(R) × Rm is rational if there exists some

(p, q) ∈ Zm × Zn such that Aq − b+ p = 0, and irrational otherwise.

Proposition 3.3.2. For any irrational pair (A, b) ∈Mm,n(R)×Rm, (A, b) ∈
Bad(ϵ) if and only if the at-orbit of the point yA,b is eventually in Lϵ, i.e.,
there exists T ≥ 0 such that atyA,b ∈ Lϵ for all t ≥ T .

Proof. Suppose that there exist arbitrarily large t’s satisfying atyA,b /∈ Lϵ.
Denote ert := diag(er1t, · · · , ermt) ∈Mm,m(R) and est := diag(es1t, · · · , esnt) ∈
Mn,n(R). Then the vectors in the grid ΛatyA,b can be represented as

at

((
Im A

0 In

)(
p

q

)
+

(
−b
0

))
=

(
ert(Aq + p− b)

e−stq

)
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for (p, q) ∈ Zm × Zn. Therefore atxA,b /∈ Lϵ implies that for some q ∈ Zn,

(3.13) et⟨Aq − b⟩r < ϵ
m
d and e−t∥q∥s < ϵ

n
d ,

thus ∥q∥s⟨Aq − b⟩r < ϵ. Since ⟨Aq − b⟩r ̸= 0 for all q, we use the condition

⟨Aq − b⟩r < e−tϵ
m
d for arbitrarily large t to conclude that ∥q∥s⟨Aq − b⟩r < ϵ

holds for infinitely many q’s. This is a contradiction to the assumption that

(A, b) ∈ Bad(ϵ).

On the other hand, if (A, b) /∈ Bad(ϵ), then since (A, b) is irrational, there

are infinitely many q ∈ Zn such that ∥q∥s⟨Aq − b⟩r < ϵ. Thus we can choose

arbitrarily large t so that (3.13) hold, which contradicts to the assumption

that the at-orbit of the point yA,b is eventually in Lϵ.

We claim that for a fixed b ∈ Rm, the subset Badb0(ϵ) of Badb(ϵ) such

that (A, b) is rational is a subset of Bad0(ϵ). Indeed, if A ∈ Badb(ϵ) for

some b and (A, b) is rational, then ⟨Aq0 − b⟩r = 0 for some q0 ∈ Zm and

lim inf
∥q∥s→∞

∥q∥s⟨Aq − b⟩r ≥ ϵ, thus lim inf
∥q∥s→∞

∥q∥s⟨A(q − q0)⟩r ≥ ϵ. Therefore, we

have

dimH Badb0(ϵ) ≤ dimH Bad0(ϵ) = mn− cm,n
ϵ

log 1/ϵ
< mn

for some constant cm,n > 0 [KM19].

For a fixed A ∈Mm,n(R), the subset of BadA(ϵ) such that (A, b) is rational

is of the form Aq + p for some q, p ∈ Zm thus has Hausdorff dimension zero.

In the rest of the article, we will focus on the elements yA,b that are even-

tually in Lϵ.

3.3.3 Covering counting lemma

To construct measures of large entropy in Proposition 3.4.1 and Proposition

3.5.3, we will need the following counting lemma, which is a generalization of

[LSS19, Lemma 2.4].

Here, we consider two cases: L = U and L = W . Fix a standard basis

{ei : i = 1, . . . ,dim l} on l. Denote by ∥ · ∥c both of ∥ · ∥r⊗s and ∥ · ∥r,
for simplicity. Let JL be the maximal entropy contribution for L, that is,

JL =
∑

i ci. Recall that JU = m+ n, and JW = 1.

Before state the main result in this subsection, we fix the following nota-

tions. Let Q0
∞ ⊂ X be such that X ∖ Q0

∞ has compact closure. Set Q∞ =

π−1(Q0
∞) and denote by r0 > 0 the injectivity radius on Y ∖ Q∞. Note that
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Y ∖Q∞ ⊂ Y (r0). For any D > JL, choose large enough TD ∈ N so that

(3.14) ⌈eciTD⌉ ≤ eciTDe
D−JL
dim l

for all i = 1, . . . ,dim l. Fix 0 < rD = rD(Q
0
∞) < 1/2 small enough so that

• dG and d∞ are bi-Lipschitz on BG
rD

, that is, there is C∞ ≥ 1 such that

for any x, y ∈ BG
rD

,

(3.15)
1

C∞
d∞(x, y) ≤ dG(x, y) ≤ C∞d∞(x, y).

• The following inclusions hold:

(3.16) BL,c

C∞r
1

max c
D TD

⊂ BL
1
2
r0

and BG
rD

(Y ∖Q∞) ⊂ Y (
1

2
r0).

Lemma 3.3.3. For any D > JL, we fix the above notations. Let y ∈ Y ∖Q∞
and I = {t ∈ N | aty ∈ Q∞}. For any non-negative integer T , let

Ey,T = {z ∈ BL
rD

· y | ∀t ∈ {1, . . . , T}∖ I, dY (aty, atz) ≤ rD}.

The set Ey,T can be covered by CeD|I∩{1,...,T}| dL,c-balls of radius r
1

max c
D e−T ,

where C is a constant depending on Q0
∞ and D, but independent of T .

Proof. For s ∈ {0, . . . , TD − 1} and k ∈ Z≥0, let us denote by Is,k(TD) =

{s, s+ TD, . . . , s+ kTD} and

Esy,k = {z ∈ BL
rD

· y : ∀t ∈ Is,k(TD)∖ I, dY (aty, atz) ≤ rD}.

Following the proof of [LSS19, Lemma2.4] with Esy,k instead of Ey,T , we can

obtain the following claim:

Claim The set Esy,k can be covered by Cse
(JL(TD−1)+D)|I∩Is,k(TD)| dL,c-balls

of radius C∞r
1

max c
D e−(s+kTD), where Cs is a constant depending on Q0

∞, D and

s, but independent of k.

Proof. We prove the claim by induction on k. Since the number of dL,c-balls

of radius C∞r
1

max c
D e−s needed to cover BL

rD
· y is bounded by a constant Cs

depending on Q0
∞, D and s, the claim holds for k = 0.
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Suppose that Esy,k−1 can be covered byNk−1 = Cse
(JL(TD−1)+D)|I∩Is,k−1(TD)|

dL,c-balls of radius C∞r
1

max c
D e−(s+(k−1)TD). By the inequality (3.14), any dL,c-

ball of radius C∞r
1

max c
D e−(s+(k−1)TD) can be covered by

dim l∏
i=1

⌈
e−(s+(k−1)TD)ci

e−(s+kTD)ci

⌉
=

dim l∏
i=1

⌈eTDci⌉ ≤
dim l∏
i=1

eciTDe
D−JL
dim l

= eJLTDeD−JL = eJL(TD−1)+D,

dL,c-balls of radius C∞r
1

max c
D e−(s+kTD). Thus if s+ kTD ∈ I, then Esy,k can be

covered by Nk = eJL(TD−1)+DNk−1 dL,c-balls of radius C∞r
1

max c
D e−(s+kTD).

Suppose that s + kTD /∈ I. Denote by {Bj : j = 1, . . . , Nk−1} the above

covering of Esy,k−1. Since E
s
y,k ⊂ Esy,k−1, the set {Esy,k ∩Bj : j = 1, . . . , Nk−1}

covers Esy,k. We now claim that for any x1, x2 ∈ Esy,k ∩Bj

dL,c(x1, x2) ≤ 2C∞r
1

max c
D e−(s+kTD).

Indeed, since x1, x2 ∈ Bj ⊂ BL
rD

·y andBj is a dL,c-ball of radius C∞r
1

max c
D e−(s+(k−1)TD),

there are h ∈ BL
rD

and h1, h2 ∈ BL,c

C∞r
1

max c
D e−(s+(k−1)TD)

such that x1 = h1hy

and x2 = h2hy. It follows from (3.16) that

as+kTDh1h
−1
2 a−(s+kTD) ⊂ as+kTDBL,c

C∞r
1

max c
D e−(s+(k−1)TD)

a−(s+kTD)

= BL,c

C∞r
1

max c
D eTD

⊂ BL
1
2
r0
.

Since hy ⊂ Y (12r0) by (3.16), we have

dY (a
s+kTDx1, a

s+kTDx2) = dL(a
s+kTDh1h

−1
2 a−(s+kTD), id).

It follows from (3.15) that

dL(a
s+kTDh1h

−1
2 a−(s+kTD), id) ≥ 1

C∞
d∞(as+kTDh1h

−1
2 a−(s+kTD), id)

=
1

C∞
max

i=1,...,dim l
eci(s+kTD)|(log h1h−1

2 )i|,

where (log h1h
−1
2 )i is the i-th coordinate of log h1h

−1
2 with respect to the stan-
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dard basis {ei : 1 ≤ i ≤ dim l}.
On the other hand, since s+kTD /∈ I, we have dY (a

s+kTDy, as+kTDxℓ) ≤ rD
for each ℓ = 1, 2. Thus dY (a

s+kTDx1, a
s+kTDx2) ≤ 2rD. Since L = U or L =W ,

i.e. commutative subgroups of G, for each i = 1, . . . ,dim l, we have

|(log h1h−1
2 )i| = |(log h1 − log h2)i| ≤ 2rDC∞e

−ci(s+kTD).

Note that

dL,c(x1, x2) = dL,c(h1, h2) = max
i=1,...,dim l

|(log h1 − log h2)i|
1
ci

Therefore, we have

dL,c(x1, x2) ≤ max
i=1,...,dim l

(2rDC∞)
1
ci e−(s+kTD) ≤ 2C∞r

1
max c
D e−(s+kTD).

By the claim, Esy,k∩Bj is contained in a single dL,c-ball of radius C∞r
1

max c
D e−(s+kTD)

for each j = 1, . . . , Nk−1. Hence E
s
y,k can be covered by Nk = Nk−1 dL,c-balls

of radius C∞r
1

max c
D e−(s+kTD).

Now, for any non-negative integer T , we can find s ∈ {0, . . . , TD − 1} and

k ∈ Z≥0 such that

TD|I ∩ Is,k(TD)| ≤ |I ∩ {1, . . . , T}| and T − TD < s+ kTD ≤ T

from the pigeon hole principle. By the above observation, Ey,T ⊂ Esy,k can be

covered by Cse
(JL(TD−1)+D)|I∩Is,k(TD)| dL,c-balls of radius C∞r

1
max c
D e−(s+kTD).

Since T−TD < s+kTD ≤ T andD > JL, Ey,T can be covered by (maxsCs)e
D|I∩{1,....T}|

dL,c-balls of radius C∞e
TDr

1
max c
D e−T . Hence there exists a constant C > 0 de-

pending on Q0
∞, r, and D, but independent of T such that Ey,T can be covered

by CeD|I∩{1,....T}| dL,c-balls of radius r
1

max c
D e−T .

3.4 Upper bound for Hausdorff dimension of BadA(ϵ)

In this section, we will prove Theorem 1.2.2 by constructing a-invariant proba-

bility measure on Y with large entropy. Here and next section, we will consider

the dynamical entropy of a instead of a−1 contrary to Section 5.1. Hence let us

use the following notation: For a given partition Q of Y and a integer q ≥ 1,
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we denote by

Q(q) =

q−1∨
i=0

a−iQ.

3.4.1 Constructing measure with entropy lower bound

Let us denote by X and Y the one-point compactifications of X and Y , re-

spectively. Let A be a given countably generated σ-algebra of X or Y . We

denote by A the σ-algebra generated by A and {∞}. The diagonal action at
is extended to the action on X and Y by at(∞) = ∞ for t ∈ R. For a finite

partition Q = {Q1, · · · , QN , Q∞} of Y which has only one non-compact ele-

ment Q∞, denote by Q the finite partition {Q1, · · · , QN , Q∞ = Q∞∪{∞}} of

Y . Note that Q(q) = Q(q)
for any M ∈ N. We also denote by P(X) the space

of probability measures on X, and use similar notations for Y , X, and Y .

In this subsection, we construct an a-invariant measure on Y with a lower

bound on the conditional entropy for the proof of Theorem 1.2.2. Here, the con-

ditional entropy will be computed with respect to the σ-algebras constructed

in Section 5.1. If xA has no escape of mass, such measure was constructed in

[LSS19, Proposition 2.3]. The following proposition generalizes the measure

construction for xA’s with some escape of mass.

Proposition 3.4.1. For A ∈Mm,n(R) fixed, let

ηA = sup {η : xA has η-escape of mass on average} .

Then there exists µA ∈ P(X) with µA(X) = 1− ηA such that for any ϵ > 0,

there exists an a-invariant measure µ ∈ P(Y ) satisfying

1. Suppµ ⊂ Lϵ ∪ (Y ∖ Y ),

2. π∗µ = µA, in particular, there exists a-invariant measure µ ∈ P(Y )

such that

µ = (1− ηA)µ+ ηAδ∞,

where δ∞ is the dirac delta measure on Y ∖ Y .

3. Let AW be as in Proposition 3.2.6 for µ and L = W , and let AW
∞ be as

in (4.48). Then we have

hµ(a|AW
∞) ≥ 1− ηA − r1(m− dimH BadA(ϵ)).
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Remark 3.4.2.

1. Note that if ηA > 0 then xA has ηA-escape of mass on average.

2. One can check that ηA = 0 if and only if xA is heavy, which is defined

in [LSS19, Definition 1.1].

Proof. Since xA has ηA-escape of mass on average but no more than ηA, we

may fix an increasing sequence of integers {ki}i≥1 such that

1

ki

ki−1∑
k=0

δakxA
w∗
−→ µA ∈ P(X)

with µA(X) = 1− ηA.

Let us denote by Tm = [0, 1]m/∼ the torus in Rm, where the equivalence

relation is modulo 1. Let

RA,T := {b ∈ Tm|∀t ≥ T, atyA,b ∈ Lϵ} ∩BadA(ϵ).

As explained in Subsection 3.3.2, the subset of BadA(ϵ) such that (A, b) is

rational has Hausdorff dimension zero. Hence, by Proposition 3.3.2,
∞⋃
T=1

RA,T

has Hausdorff dimension equal to dimH BadA(ϵ). For any γ > 0, it follows

that there exists Tγ ∈ N satisfying dimH R
A,Tγ ≥ dimH BadA(ϵ)− γ.

Let ϕA : Tm → Y be the map defined by ϕA(b) = yA,b. Note that ϕA is

an one-to-one Lipschitz map between Tm and ϕA(Tm), so we may consider

a quasinorm on ϕA(Tm) induced from the r-quasinorm on Rm and denote it

again by ∥ · ∥r.
For each ki ≥ Tγ , let Si be a maximal e−ki-separated subset of RA,Tγ with

respect to the r-quasinorm. By Lemma 3.3.1,

(3.17) lim inf
i→∞

log |Si|
ki

≥ dimr(R
A,Tγ ) ≥ 1− r1(m+ γ − dimH BadA(ϵ)).

Let νi =
1

|Si|

∑
b∈Si

δyA,b be the normalized counting measure on the set Di :=

ϕA(Si) = {yA,b : b ∈ Si} ⊂ Y . Extracting a subsequence if necessary, we may
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assume without loss of generality that

µi =
1

ki

ki−1∑
k=0

ak∗νi
w∗
−→ µγ ∈ P(Y ).

The measure µγ is a-invariant since a∗µi − µi goes to zero measure.

Choose any sequence of positive real numbers (γj)j≥1 converging to zero

and let {µγj} be a family of a-invariant probability measures on Y obtained

from the above construction for each γj . Extracting a subsequence again if

necessary, we may take a weak∗-limit measure µ ∈ P(Y ) of {µγj}. We prove

that µ is the desired measure. The measure µ is clearly a-invariant.

(1) We show that for all γ > 0, µγ(Y \ Lϵ) = 0. For any b ∈ Si ⊆ RA,Tγ ,

aT yA,b ∈ Lϵ holds for T > Tγ . Thus we have

µi(Y \ Lϵ) =
1

ki

ki−1∑
k=0

ak∗νi(Y \ Lϵ) =
1

ki

Tγ∑
k=0

ak∗νi(Y \ Lϵ)

=
1

ki|Si|
∑

y∈Di,0≤k≤Tγ

δaky(Y \ Lϵ) ≤
Tγ
ki
.

By taking ki → ∞, we have µγ(Y \ Lϵ) = 0 for arbitrary γ > 0, hence

µ(Y \ Lϵ) = lim
j→∞

µγj (Y \ Lϵ) = 0.

(2) For all γ > 0, π∗µ
γ = µA holds since π∗νi = δxA for all i ≥ 1. It follows

that π∗µ = µA. Hence,

µ(Y \ Y ) = lim
j→∞

µγj (Y \ Y ) = µA(X \X) = ηA,

so we have a decomposition µ = (1 − ηA)µ + ηAδ∞ for some a-invariant

µ ∈ P(Y ).

(3) We first fix any D > JW = 1. Recall the notations in Subsection 3.3.3.

Suppose that Q is any finite partition of Y satisfying:

• Q contains an atom Q∞ of the form π−1(Q0
∞), where X ∖ Q0

∞ has

compact closure,

• ∀Q ∈ Q∖ {Q∞}, diamQ < rD = rD(Q
0
∞), where rD is as in Subsection

3.3.3,
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• ∀Q ∈ Q, ∀j ≥ 1, µγj (∂Q) = 0.

We will first prove the following statement. For all q ≥ 1,

(3.18)
1

q
Hµ(Q

(q)|AW
∞) ≥ 1− r1(m− dimH BadA(ϵ))−Dµ(Q∞).

It is clear if µ(Q∞) = 1, so assume that µ(Q∞) < 1, hence for all large

enough j ≥ 1, µγj (Q∞) < 1. Now, we fix such j ≥ 1 and write temporarily

γ = γj .

Let ρ > 0 be small enough so that β = µγ(Q∞) + ρ < 1. For large enough

i ≥ 1, we have

β = µγ(Q∞) + ρ > µi(Q∞) =
1

ki|Si|
∑

y∈Di,0≤k<ki

δaky(Q∞)

=
1

ki

∑
0≤k<ki

δakxA(Q
0
∞).

In other words, there exist at most βki number of akxA’s in Q
0
∞, thus for any

y ∈ Di, we have

|{k ∈ {0, . . . , ki − 1} : aky ∈ Q∞}| < βki.

From Lemma 3.3.3 with L = W , if Q is any non-empty atom of Q(ki), fixing

any y ∈ Q, the set

Di ∩Q = Di ∩ [y]Q(ki) ⊂ Ey,ki−1

can be covered CeDβki many r
1/r1
D e−ki-balls for dr, where C is a constant

depending on Q0
∞ and D, but not on ki. Since Di is e−ki-separated with

respect to dr and r
1/r1
D < 1

2 , we get

(3.19) Card(Di ∩Q) ≤ CeDβki .

Now let AW = (PW )∞0 =
∨∞
i=0 a

iPW be as in Proposition 3.2.6 for µ and

L =W , and let AW
∞ be as in (4.48). Using the continuity of entropy, we have

(3.20) Hνi(Q(ki)|AW
∞) = lim

ℓ→∞
Hνi(Q(ki)|(PW )∞ℓ ).

Claim Hνi(Q(ki)|(PW )∞ℓ ) = Hνi(Q(ki)) for all large enough ℓ ≥ 1.
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Proof. Observe that µ(ϕA(Tm)) > 0. If not, it follows from the a-invariance

of µ that µ(akϕA(Tm)) = 0 for all k ≥ 0. It implies that µi(a
kϕA(Tm)) = 0

for all k ≥ 0, but it contradict to µi(
⋃
k≥0 a

kϕA(Tm)) = 1. Let us denote by

δ0 = µ(ϕA(Tm)) > 0. Take 0 < δ1 < min(( c
16d0

)2, 1) small enough so that

µ(Y \Y (C1δ
1
2
1 ))+C2δ

1
2
1 < δ0, where c,D > 0 are the constants in Lemma 3.2.2

and (3.5), and C1, C2 > 0 are the constants in Lemma 3.2.5. Since µ(Eδ1) < δ0
by Lemma 3.2.5, there exists y ∈ ϕA(Tm) ∩ Y \ Eδ1 . Hence, it follows from

(3.5) and Proposition 3.2.6 that

[y](PW )∞ℓ
= aℓ[a−ℓy](PW )∞0

= aℓ[a−ℓy]AW ⊃ aℓBW
δ1 a

−ℓy ⊃ BW
d0eαℓδ1

y.

Since the support of νi is a set of finite points on a single compact W -orbit

ϕA(Tm), νi is supported on a single atom of (PW )∞ℓ for all large enough ℓ ≥ 1.

This proves the claim.

Combining (3.19), (3.20), and Claim, it follows that

(3.21)
Hνi(Q(ki)|AW

∞) = lim
ℓ→∞

Hνi(Q(ki)|(PW )∞ℓ ) = Hνi(Q(ki))

≥ log |Si| −Dβki − logC.

For any q ≥ 1, write the Euclidean division of large enough ki − 1 by q as

ki − 1 = qk′ + s with s ∈ {0, · · · , q − 1} .

By subadditivity of the entropy with respect to the partition, for each p ∈
{0, · · · , q − 1},

Hνi(Q(ki)|AW
∞) ≤ Hapνi(Q(q)|AW

∞) + · · ·+Hap+qk′νi
(Q(q)|AW

∞) + 2q log |Q|.

Summing those inequalities for p = 0, · · · , q− 1, and using the concave prop-

erty of entropy with respect to the measure, we obtain

qHνi(Q(ki)|AW
∞) ≤

ki−1∑
k=0

Hakνi(Q
(q)|AW

∞)M0 + 2q2 log |Q|

≤ kiHµi(Q(q)|AW
∞) + 2q2 log |Q|,
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and it follows from (3.21) that

1

q
Hµi(Q(q)|AW

∞) ≥ 1

ki
Hνi(Q(ki)|AW

∞)− 2q log |Q|
ki

≥ 1

ki

(
log |Si| −Dβki − logC − 2q log |Q|

)
.

Now we can take i→ ∞ because the atoms Q of Q and hence of Q(q)
, satisfy

µγ(∂Q) = 0. Also, the constants C and |Q| are independent to ki. Thus we

obtain

1

q
Hµγ (Q

(q)|AW
∞) ≥ 1− r1(m+ γ − dimH BadA(ϵ))−Dβ,

and by taking ρ→ 0, we have

1

q
Hµγ (Q

(q)|AW
∞) ≥ 1− r1(m+ γ − dimH BadA(ϵ))−Dµγ(Q∞).

Recall that γ = γj , and by taking j → ∞ so that γj → 0, we finally have

(3.18), i.e.,

1

q
Hµ(Q

(q)|AW
∞) ≥ 1− r1(m− dimH BadA(ϵ))−Dµ(Q∞).

As explained in [LSS19, Proof of Theorem 4.2, Claim 2], we can construct a

finite partition Q of Y satisfying the bullet-requirements above. Hence,

hµ(a|AW ) ≥ 1− r1(m− dimH BadA(ϵ))−Dµ(Q∞),

for any Q∞ of Q satisfying the bullet-requirements. Moreover, we may take

Q0
∞ ⊂ X sufficiently small so that µ(Q∞) is sufficiently close to µ(Y \Y ) = ηA.

It completes the proof by taking D → 1.

3.4.2 The proof of Theorem 1.2.2

In this subsection, we will estimate the dimension upper bound in Theo-

rem 1.2.2 using a-invariant measure with large relative entropy constructed in

Proposition 3.4.1 and the effective variational principle in Proposition 3.2.10.

To use the effective variational principle, we need the following lemma.
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For x ∈ X and H ≥ 1 we set:

ht(x) = sup
{
∥gv∥−1 : x = gSLd(Z), v ∈ Zd \ {0}

}
,

X≤H = {x ∈ X : ht(x) ≤ H} , Y≤H = π−1(X≤H).

Note that ht(x) ≥ 1 for any x ∈ X by Minkowski’s theorem and X≤H and

Y≤H are compact sets for all H ≥ 1 by Mahler’s compact criterion.

Lemma 3.4.3. Let A be a countably generated sub-σ-algebra of Borel σ-

algbera which is a−1-descending and W -subordinate. Let us fix y ∈ Y≤H and

suppose that BW,r
δ · y ⊂ [y]A ⊂ BW,r

r · y for some 0 < δ < r. For any

0 < ϵ < 1, if j1 ≥ log((2dHd−1)
1
rm δ−1) and j2 ≥ log((dHd−1)

1
sn ϵ−

n
d ), then

τa
j1A

y (a−j2Lϵ) ≤ 1− e−j1−j2r−1ϵ
m
d , where τa

j1A
y is as in Subsection 3.2.3.

Proof. For x = π(y) ∈ X≤H , there exists g ∈ SLd(R) such that x = gSLd(Z)
and inf

v∈Zd\{0}
∥gv∥ ≥ H−1. By Minkowski’s second theorem with a convex body

[−1, 1]d, we can choose vectors gv1, · · · , gvd in gZd so that

d∏
i=1

∥gvi∥ ≤ 1. Then

for any 1 ≤ i ≤ d,

∥gvi∥ ≤
∏
j ̸=i

∥gvj∥−1 ≤ Hd−1.

Let ∆ ⊂ Rd be the parallelepiped generated by gv1, · · · , gvd, then ∥b∥ ≤
dHd−1 for any b ∈ ∆. It follows that ∥b+∥r ≤ (dHd−1)

1
rm and ∥b−∥s ≤

(dHd−1)
1
sn for any b = (b+, b−) ∈ ∆, where b+ ∈ Rm and b− ∈ Rn. Note

that the set π−1(x) ⊂ Y is parametrized as follows:

π−1(x) = {w(b)gΓ ∈ Y : b ∈ ∆} .

Write y = w(b0)gΓ for some b0 = (b+0 , b
−
0 ) ∈ ∆. Denote by Vy ⊂W the shape

of A-atom so that Vy · y = [y]aj1A, and Ξ ⊂ Rm the corresponding set to Vy
containing 0 given by the canonical bijection between W and Rm. Since aj1
expands the r-quasinorm with the ratio ej1 , we have BW,r

ej1δ
· y ⊂ [y]aj1A ⊂

BW,r
ej1r

· y, i.e. BRm,r
ej1δ

⊂ Ξ ⊂ BRm,r
ej1r

. Then the atom [y]aj1A is parametrized as

follows:

[y]aj1A =
{
w(b)gΓ : b = (b+, b−0 ), b

+ ∈ b+0 + Ξ
}
,

and τa
j1A

y can be considered as the normalized Lebesgue measure on the set
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b+0 + Ξ ⊂ Rm.
Let us consider the following sets:

Θ+ =
{
b+ ∈ Rm : ∥b+∥r ≤ e−j2ϵ

m
d

}
and Θ− =

{
b− ∈ Rn : ∥b−∥s ≤ ej2ϵ

n
d

}
.

If b = (b+, b−) ∈ Θ+ ×Θ−, then ∥erj2b+∥r ≤ ϵ
m
d and ∥e−sj2b−∥s ≤ ϵ

n
d , where

erj2b+ and e−sj2b− denote the vectors such that aj2b = (erj2b+, e−sj2b−). It

follows that w(b)gΓ /∈ a−j2Lϵ since

aj2w(b+, b−)gΓ = w(erj2b+, e−sj2b−)aj2gΓ /∈ Lϵ

by the definition of Lϵ.
Now we claim that the set Θ+ ×

{
b−0
}

is contained in the intersection

of (b+0 + Ξ) ×
{
b−0
}
and Θ+ × Θ−. It is enough to show that Θ+ ⊂ b+0 + Ξ

and b−0 ∈ Θ−. Since ∥b−0 ∥s ≤ (dHd−1)
1
sn , the latter assertion follows from the

assumption j2 ≥ log((dHd−1)
1
sn ϵ−

n
d ). To show the former assertion, fix any

b+ ∈ Θ+. By the quasi-metric property of ∥ · ∥r as in (3.1), it follows from the

assumptions j1 ≥ log((2dHd−1)
1
rm δ−1) and j2 ≥ log((dHd−1)

1
sn ϵ−

n
d ) that

∥b+ − b+0 ∥r ≤ 2
1−rm
rm (∥b+∥r + ∥b+0 ∥r) ≤ 2

1−rm
rm (e−j2ϵ

m
d + (dHd−1)

1
rm )

≤ 2
1−rm
rm ((dHd−1)−

1
sn ϵ+ (dHd−1)

1
rm ) ≤ 2

1−rm
rm

+1(dHd−1)
1
rm

≤ ej1δ.

Thus we have b+ ∈ b+0 +BRm,r
ej1δ

⊂ b+0 +Ξ, which concludes the former assertion.

By the above claim, we obtain

1− τa
j1A

y (a−j2Lϵ) = τa
j1A

y (Y \ a−j2Lϵ) ≥
mRm(Θ

+)

mRm(b
+
0 + Ξ)

≥
mRm(B

Rm,r
e−j2ϵ

m
d
)

mRm(B
Rm,r
ej1r

)
=
e−j2ϵ

m
d

ej1r
.

This proves the lemma.

Proof of Theorem 1.2.2. Suppose that A ∈ Mm,n(R) is not singular on aver-

age, and let

ηA = sup {η : xA has η-escape of mass} < 1.
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By Proposition 3.4.1, there is an a-invariant measure µ ∈ P(Y ) such that

Suppµ ⊂ Lϵ ∪ (Y \ Y ), π∗µ = µA ∈ P(X), and µ(Y \ Y ) = µA(X \X) = ηA.

This measure can be represented by the linear combination

µ = (1− ηA)µ+ ηAδ∞,

where δ∞ is the dirac delta measure on Y \ Y and µ ∈ P(Y ) is a-invariant.

There is a compact set K ⊂ X such that µA(K) > 0.99µA(X). We can choose

0 < r < 1 such that Y (r) ⊃ π−1(K) and µ(Y (r)) > 0.99. Note that the choice

of r is independent of ϵ since µA is only determined by fixed A.

For a-invariant probability measure µ on Y , let AW be a countably gen-

erated σ-algebra as in Proposition 3.2.6. With respect to this σ-algebra, we

have

hµ(a|AW
∞) ≥ (1− ηA)− r1(m− dimH BadA(ϵ))

by (3) of Proposition 3.4.1. Since the entropy function is linear with respect

to the measure, it follows that

hµ(a|AW
∞) =

1

1− ηA
hµ(a|AW

∞) ≥ 1− r1
1− ηA

(m− dimH BadA(ϵ)).

By Proposition 3.2.8, we obtain

(3.22) Hµ(AW |aAW ) ≥ 1− r1
1− ηA

(m− dimH BadA(ϵ)).

By Lemma 3.2.5, there exists 0 < δ < c
2 such that µ(Eδ) < 0.01. Note

that the constants C1, C2 > 0 in Lemma 3.2.5 depend only on a and G, hence

δ is independent of ϵ even if the set Eδ might depend on ϵ. It follows from

Proposition 3.2.6 that BW
δ · y ⊂ [y]AW ⊂ BW

r · y for any y ∈ Y (r) \ Eδ. We

write Z = Y (r) \Eδ for simplicity. Note that µ(Z) ≥ µ(Y (r))− µ(Eδ) > 0.98.

To apply Lemma 3.4.3, choose H ≥ 1 such that Y (r) ⊂ Y≤H . Note that

the constant H depends only on r. Set

j1 = ⌈log((2dHd−1)
1
rm δ′

−1
)⌉ and j2 = ⌈log((dHd−1)

1
sn ϵ−

n
d )⌉,

where δ′ > 0 will be determined below.

Let A = a−kAW for k = ⌈log(2
1
rm r

1
r1 ϵ−

m
d )⌉+ j2. By Proposition 3.2.6, for
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any y ∈ Z, we have BW
δ · y ⊂ [y]AW ⊂ BW

r · y, which implies that

BW,r

δ
1
rm

· y ⊂ [y]AW ⊂ BW,r

r
1
r1

· y.

Thus, for any y ∈ Z,

BW,r

δ
1
rm e−k

· (a−ky) ⊂ [a−ky]a−kAW = [a−ky]A ⊂ BW,r

r
1
r1 e−k

· (a−ky).

Finally, it follows that for any y ∈ akZ,

BW,r
δ′ · y ⊂ [y]A ⊂ BW,r

r′ · y,

where

r′ = 2−
1
rm e−j2ϵ

m
d and δ′ = e−1r

− 1
r1 δ

1
rm r′.

Now we will use Corollary 3.2.11 with L =W , K = akZ, and r = r′. Note

that the maximal relative entropy of aj1 with respect to AW is j1, and µ is

supported on a−j2Lϵ since Suppµ ⊆ Lϵ and µ is a-invariant. We also have

BW,r
r′ a−j2Lϵ = a−j2BW,r

ej2r′
Lϵ = a−j2BW,r

2
− 1
rm ϵ

m
d

Lϵ ⊆ a−j2L
2
− d
mrm ϵ

by using the triangular inequality of r-quasinorm as in (3.1) and the definition

of Lϵ for the last inclusion. Applying Corollary 3.2.11, it follows that

(3.23)

Hµ(AW |aj1AW ) ≤ j1 +

∫
Y
log τa

j1AW
y ((Y \ akZ) ∪BW,r

r′ a−j2Lϵ)dµ(y)

≤ j1 +

∫
Y
log τa

j1AW
y ((Y \ akZ) ∪ a−j2L

2
− d
mrm ϵ

)dµ(y)

≤ j1 +

∫
akZ∩Y≤H

log τa
j1AW

y (a−j2L
2
− d
mrm ϵ

)dµ(y)

By Lemma 3.4.3 with δ = δ′ and r = r′, for any y ∈ akZ ∩ Y≤H ,

τa
j1AW

y (a−j2L
2
− d
mrm ϵ

) ≤ 1− 2−
1
rm e−j1−j2r′−1ϵ

m
d = 1− e−j1 ,

hence − log τa
j1AW

y (a−j2L
2
− d
mrm ϵ

) ≥ e−j1 . Since µ(akZ ∩Y≤H) ≥ 1
2 , it follows
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from (3.23) that

(3.24)

1−Hµ(AW |aAW ) = 1− 1

j1
Hµ(AW |aj1AW ) = 1− 1

j1
Hµ(A|aj1A)

≥ − 1

j1

∫
akZ∩Y≤H

log τa
j1A

y (a−j2L
2
− d
mrm ϵ

)dµ(y)

≥ e−j1

2j1
.

Recall that j1 is chosen by

j1 = ⌈log((2dHd−1)
1
rm e(2r)

1
r1 δ−

1
rm 2

1
rm ej2ϵ−

m
d )⌉

≤ ⌈log((2dHd−1)
1
rm

+ 1
sn e2(2r)

1
r1 δ−

1
rm 2

1
rm ϵ−

n
d ϵ−

m
d )⌉

≤ log((2dHd−1)
1
rm

+ 1
sn e3(2r)

1
r1 δ−

1
rm 2

1
rm )− log ϵ

Here, the constants H, r, and δ are only depending on fixed A ∈ Mm,n(R),
not on ϵ. Combining (3.22) and (3.24), we obtain

m− dimH BadA(ϵ) ≥ c(A)
ϵ

log(1/ϵ)
,

where the constant c(A) > 0 only depends on d, r, s, and A ∈Mm,n(R) since
ηA is also only depending on A. It completes the proof.

3.5 Upper bound for Hausdorff dimension of Badb(ϵ)

In this section, as explained in the introduction, we only consider the un-

weighted setting, that is,

r = (1/m, . . . , 1/m) and s = (1/n, . . . , 1/n).

3.5.1 Constructing measure with entropy lower bound

Similar to Subsection 3.4.1, we will construct an a-invariant measure on Y

with a lower bound on the conditional entropy to the σ-algebra AU
∞ obtained

in (4.48) and Proposition 3.2.6 with L = U . To control the amount of escape of

mass for the desired measure, we need a modification of [KKLM17, Theorem

1.1] as Proposition 3.5.2 below.
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For any compact set S ⊂ X and positive integer k > 0, and any 0 < η < 1,

let

Fη,S =

{
A ∈ Tmn ⊂Mm,n(R) :

1

k

k−1∑
i=0

δaixA(X \S) < η for infinitely many k

}
,

F kη,S =

{
A ∈ Tmn ⊂Mm,n(R) :

1

k

k−1∑
i=0

δaixA(X \S) < η

}
.

Given a compact set S of X, k ∈ N, η ∈ (0, 1), and t ∈ N, define the set

Z(S, k, t, η) :=

{
A ∈ Tmn :

1

k

k−1∑
i=0

δatixA(X \S) ≥ η

}
;

in other words, the set of A ∈ Tmn such that up to time k, the proportion of

times i for which the orbit point atixA is in the complement of S is at least

η. The following theorem is one of the main results in [KKLM17].

Theorem 3.5.1. [KKLM17, Theorem 1.5] There exists t0 > 0 and C > 0 such

that the following holds. For any t > t0 there exists a compact set S := S(t) of

X such that for any k ∈ N and η ∈ (0, 1), the set Z(S, k, t, η) can be covered

with Ct3ke(m+n−η)mntk balls in Tmn of radius e−(m+n)tk.

The following proposition is a slightly stronger variant of [KKLM17, The-

orem 1.1] which will be needed later. We prove this using Theorem 3.5.1.

Proposition 3.5.2. There exists a familiy of compact sets {Sη}0<η<1 of X

such that the following is true. For any 0 < η ≤ 1,

(3.25) dimH(Tmn \ lim sup
k→∞

⋂
η′≥η

F kη′,Sη′ ) ≤ mn− ηmn

2(m+ n)
.

Proof. For η ∈ (0, 1), let tη ≥ 3 be the smallest integer such that
3 log tη
tη

< ηmn
4 ,

and S′
η be the set S(tη) of Theorem 3.5.1. For l ≥ 3, denote by ηl > 0 the

smallest real number such that tηl = l. Then ηl ≥ 2ηl−1

3 for any l ≥ 4. We note

that these S′
η can be chosen to satisfy S′

η′ ⊆ S′
η for any 0 < η ≤ η′. Hence,

we can find a family of compact sets S′′
η such that S′

ηl
⊆ S′′

η′ for any l ≥ 4

and ηl ≤ η′ < ηl−1. For any η ∈ (0, 1), we can choose Sη to be a compact set

so that for any −tη ≤ t ≤ tη and x ∈ S′′
η, a

tx ∈ Sη.
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Now we will prove that this family of compact sets {Sη}0<η<1 satisfies

(3.25). Since 1
k

k−1∑
i=0

δaixA(X \Sη) ≥ η implies

1

⌈ ktη ⌉

⌈ k
tη

⌉−1∑
i=0

δatηixA(X \S′′
η) ≥ η,

Tmn \ F kη,Sη ⊆ Z(S′′
η, ⌈ ktη ⌉, tη, η) for any 0 < η < 1 and k ∈ N.

For any ηl+1 < η′ ≤ ηl, we have tη′ = l and the set Z(S′′
η′ , ⌈

k
tη
⌉, tη′ , η′) is

contained in Z(S′
ηl
, ⌈ k
tηl

⌉, l, ηl). It follows that for any 0 < η < 1

Tmn \
⋃
η′≥η

F k
η′,Sk

η′
⊆
⋃
η′≥η

Z(S′′
η′ , ⌈

k

tη′
⌉, tη′ , η′) ⊆

tη⋃
l=3

Z(S′
ηl
, ⌈k
l
⌉, l, ηl),

hence

Tmn \ lim sup
k→∞

⋂
η′≥η

F kη′,Sη′ ⊆
⋃
k0≥1

∞⋂
k=k0

tη⋃
l=3

Z(S′
ηl
, ⌈k
l
⌉, l, ηl).

By Theorem 3.5.1, the set

tη⋃
l=3

Z(S′
ηl
, ⌈k
l
⌉, l, ηl) can be covered with

tη∑
l=3

Cl3⌈
k
l
⌉e(m+n−ηl)mn⌈ kl ⌉l ≤

tη∑
l=3

Ct3ηe
3 log l
l

ke(m+n−ηl)mn(k+tη)

≤
tη∑
l=3

Ct3ηe
(m+n)mntηe(m+n− 3ηl

4
)mnk

≤ Ct4ηe
(m+n)mntηe(m+n− η

2
)mnk

balls in Tmn of radius e−(m+n)k. Here we used ηtη ≥ 2η
3 which follows from
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ηl ≥ 2ηl−1

3 for any l ≥ 4. Thus, for any sufficiently large k0 ∈ N

dimH

 ∞⋂
k=k0

tη⋃
l=3

Z(S′
ηl
, ⌈k
l
⌉, l, ηl)

 ≤ lim sup
k→∞

log(Ct4ηe
(m+n)mntηe(m+n− η

2
)mnk)

− log(e−(m+n)k)

= lim sup
k→∞

log(Ct4ηe
(m+n)mntη) + (m+ n− η

2 )mnk

(m+ n)k
= mn− ηmn

2(m+ n)
,

hence we get dimH(Tmn \ lim sup
k→∞

⋂
η′≥η

F kη′,Sη′ ) ≤ mn− ηmn

2(m+ n)
.

The construction will basically follow the construction in Proposition 3.4.1.

However, the additional step using Theorem 3.5.2 is necessary to control the

escape of mass since we will allow a small amount of escape of mass.

Proposition 3.5.3. Let {Sη}0<η<1 be the familiy of compact sets of X as

in Proposition 3.5.2. For b fixed and ϵ > 0, assume that dimH Badb(ϵ) >

dimH Bad0(ϵ). Let η0 := 2(m + n)(1 − dimH Badb(ϵ)
mn ). Then there exist an a-

invariant measure µ ∈ P(Y ) such that

1. Suppµ ⊆ Lϵ ∪ (Y \ Y ),

2. π∗µ(X \ Sη′) ≤ η′ for any η0 ≤ η′ < 1, in particular, there exist µ ∈
P(Y ) and 0 ≤ η̂ ≤ η0 such that

µ = (1− η̂)µ+ η̂δ∞,

where δ∞ is the dirac delta measure on Y \ Y .

3. Let AU be as in Proposition 3.2.6 for µ and L = U , and let AU
∞ be as in

(4.48). Then we have

hµ(a|AU
∞) ≥ (1− η̂

1
2 )(d− 1

2
η0 − dη̂

1
2 ).

Proof. For ϵ > 0, denote by R the set Badb(ϵ) \Badb0(ϵ), and let

RT := {A ∈ R ∩ Tmn ⊂Mm,n(R)|∀t ≥ T, atxA,b ∈ Lϵ} .

The sequence
{
RT
}
T≥1

is increasing, and R =

∞⋃
T=1

RT by Proposition 3.3.2.

Since dimH Badb(ϵ) > dimH Bad0(ϵ) ≥ dimH Badb0(ϵ), it follows that dimH R =
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dimH Badb(ϵ). Thus for any 0 < γ < mn
2(m+n) − (mn − dimH Badb(ϵ)), there

exists Tγ ≥ 1 satisfying

(3.26) dimH R
Tγ > dimH Badb(ϵ)− γ.

Let η = 2(m + n)(1 − dimH Badb(ϵ)−γ
mn ). Note that 0 < η < 1 in the above

range of γ. For k ∈ N, write F̃ kη :=
⋂
η′≥η

F kη′,Sη′ for simplicity. Recall that we

have

(3.27) dimH(Tmn \ lim sup
k→∞

F̃ kη ) ≤ mn− ηmn

2(m+ n)
= dimH Badb(ϵ)− γ

by Theorem 3.5.2. It follows from (3.26) and (3.27) that

dimH(R
Tγ ∩ lim sup

k→∞
F̃ kη ) > dimH Badb(ϵ)− γ.

Since RTγ ∩ lim sup
k→∞

F̃ kη =
∞⋂
N=1

∞⋃
k=N

(RTγ ∩ F̃ kη ), we can find an increasing

sequence of positive integers {ki} → ∞ such that

dimH(R
Tγ ∩ F̃ kiη ) > dimH Badb(ϵ)− γ.

For each ki ≥ Tγ let Si be a maximal e−ki-separated subset of RTγ ∩ F̃ kiη
with respect to the quasi-distance dr⊗s. Then by Lemma 3.3.1,

(3.28)

lim inf
i→∞

log |Si|
ki

≥ dimr⊗s(R
Tγ ∩ F̃ kiη )

> m+ n− (r1 + s1)(mn− dimH Badb(ϵ) + γ)

= m+ n− m+ n

mn
(mn− dimH Badb(ϵ) + γ)

=
m+ n

mn
(dimH Badb(ϵ)− γ).

Let νi =
1

|Si|

∑
y∈Di

δy =
1

|Si|
∑
A∈Si

δyA,b be the normalized counting measure

on the set Di := {yA,b : A ∈ Si} ⊂ Y and let

µi =
1

ki

ki−1∑
k=0

ak∗νi
w∗
−→ µγ ∈ P(Y )
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By extracting a subsequence if necessary, there exists a probability measure

µγ which is a weak*-accumulation point of {µi}. The measure µγ is clearly an

a-invariant measure since a∗µi − µi goes to zero measure.

Choose any sequence of positive real numbers (γj)j≥1 converging to zero

and (ηj)j≥1 be the corresponding sequence such that

ηj = 2(m+ n)(1− dimH Badb(ϵ)− γj
mn

).

Let {µγj} be a family of a-invariant probability measures on Y obtained

from the above construction for each γj . Extracting a subsequence again if

necessary, we may take a weak∗-limit measure µ ∈ P(Y ) of {µγj}. We prove

that µ is the desired measure. The measure µ is clearly a-invariant.

(1) We show that for any γ, µγ(Y \Lϵ) = 0. For any A ∈ Si ⊆ RTγ , aT yA,b ∈ Lϵ
holds for T > Tγ . Thus

µi(Y \ Lϵ) =
1

ki

ki−1∑
k=0

(ak)∗νi(Y \ Lϵ) =
1

ki

Tγ∑
k=0

(ak)∗νi(Y \ Lϵ) ≤
Tγ
ki
.

By taking limit for ki → ∞, we have µγ(Y \ Lϵ) = 0 for arbitrary γ, hence,

µ(Y \ Lϵ) = lim
j→∞

µγj (Y \ Lϵ) = 0.

(2) For any γ, if A ∈ Si ⊂ F̃ kiη =
⋂
η′≥η

F kiη′,Sη′
, then for all i ∈ N and η ≤ η′ ≤ 1,

1
ki

ki−1∑
k=0

δakxA(X \Sη′) < η′. Therefore for all i ∈ N and η ≤ η′ ≤ 1,

π∗µi(X \Sη′) =
1

|Si|
∑
y∈Di

1

ki

ki−1∑
k=0

π∗δaky(X \Sη′)

=
1

|Si|
∑
A∈Si

1

ki

ki−1∑
k=0

δakxA(X \Sη′) < η′,

hence π∗µ
γ(X \Sη′) = lim

i→∞
π∗µi(X \Sη′) ≤ η′. Since ηj converges to η0, we

have

π∗µ(X \Sη′) ≤ η′
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for any η′ > η0. Hence,

µ(Y \ Y ) ≤ lim
η′→η0

π∗µ(X \Sη′) ≤ η0,

so we have a decomposition µ = (1 − η̂)µ + η̂δ∞ for some µ ∈ P(Y ) and

0 ≤ η̂ ≤ η0.

For the rest of the proof, let us check the condition (3).

(3) Suppose that Q is any finite partition of Y satisfying:

• Q contains an atom Q∞ of the form π−1(Q0
∞), where X ∖ Q0

∞ has

compact clousre,

• ∀Q ∈ Q∖ {Q∞}, diamQ < r, with r ∈ (0, 12) such that any dr⊗s-ball of

radius 3r has Euclidean diameter smaller than the injectivity radius on

Y \Q∞,

• ∀Q ∈ Q, ∀j ≥ 1, µγj (∂Q) = 0,

We will first prove the following statement. For all q ≥ 1,

(3.29)

1

q
Hµ(Q

(q)|AU
∞) ≥ (m+ n)(1− µ(Q∞)

1
2 )

(
dimH Badb(ϵ)

mn
− µ(Q∞)

1
2

)
.

It is clear if µ(Q∞) = 1, so assume that µ(Q∞) < 1, hence for all large

enough j ≥ 1, µγj (Q∞) < 1. Now we fix such j ≥ 1 and write temporarily

γ = γj .

Let ρ > 0 be small enough so that β := µγ(Q∞) + ρ < 1. Then

β = µ(Q∞) + ρ > µi(Q∞) =
1

ki|Si|
∑

y∈Di,0≤k<ki

δaky(Q∞)

holds for large enough i. In other words, there exist at most βki|Si| number

of aky’s in Q∞ with y ∈ Di and 0 ≤ k < ki.

Let S′
i ⊂ Si be the set of A ∈ Si’s such that

(3.30) |{0 ≤ k ≤ ki − 1 : akyA,b ∈ Q∞}| ≤ β
1
2ki.

Then we have |Si \ S′
i| ≤ β

1
2 |Si| by the pigeonhole principle, hence

(3.31) |S′
i| ≥ (1− β

1
2 )|Si|.
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Let ν ′i =
1

|S′
i|

∑
y∈S′

i

δy be the normalized counting measure on D′
i, where D

′
i :=

{yA,b : A ∈ S′
i} ⊂ Y , then νi(Q) ≥ |S′

i|
|Si|ν

′
i(Q) for all measurable set Q ⊆ Y .

Thus, for any arbitrary countable partition Q fo Y ,

(3.32)

Hνi(Q) = −
∑

νi(Q)≤ 1
e

log(νi(Q))νi(Q)−
∑

νi(Q)> 1
e

log(νi(Q))νi(Q)

≥ −
∑

νi(Q)≤ 1
e

log(
|S′
i|

|Si|
ν ′i(Q))

|S′
i|

|Si|
ν ′i(Q)

= −|S′
i|

|Si|
∑

νi(Q)≤ 1
e

log(ν ′i(Q))ν ′i(Q)− |S′
i|

|Si|
log

|S′
i|

|Si|
∑

νi(Q)≤ 1
e

ν ′i(Q)

≥ |S′
i|

|Si|

{
Hν′i

(Q) +
∑

νi(Q)> 1
e

log(ν ′i(Q))ν ′i(Q)
}

≥ (1− β
1
2 )(Hν′i

(Q)− 2

e
).

In the last inequality, we use the fact that ν ′i is a probability measure, thus

there can be at most two elements A of the partition for which ν ′i(A) >
1
e .

From Lemma 3.3.3 with L = U and (3.30), if Q is any non-empty atom of

Q(ki), fixing any y ∈ Q, for any D > m+ n,

D′
i ∩Q = D′

i ∩ [y]Q(ki) ⊂ Ey,ki−1

can be covered CeD
√
βki many r

1
r1+s1 e−ki-balls for dr⊗s, where C is a constant

depending on Q0
∞, r, and D, but not on ki. Since D

′
i is e

−ki-separated with

respect to dr⊗s and r
1

r1+s1 < 1
2 , we get

Card(D′
i ∩Q) ≤ CeD

√
βki ,

hence we have

(3.33) Hν′i
(Q(ki)) ≥ log |S′

i| −Dβ
1
2ki − logC.

Now let AU = (PU )∞0 =
∨∞
i=0 a

iPU be as in Proposition 3.2.6 for µ and
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L = U , and let AU
∞ be as in (4.48). Using the continuity of entropy, we have

(3.34) Hνi(Q(ki)|AU
∞) = lim

ℓ→∞
Hνi(Q(ki)|(PU )∞ℓ ).

Since the support of νi is a set of finite points on a single compact U -orbit,

Hνi(Q(ki)|(PU )∞ℓ ) = Hνi(Q(ki)) for all large enough ℓ ≥ 1. Combining (3.31),

(3.32), (3.33), and (3.34), we have

(3.35)

Hνi(Q(ki)|AU
∞) = lim

ℓ→∞
Hνi(Q(ki)|(PU )∞ℓ ) = Hνi(Q(ki))

≥ (1− β
1
2 )(Hν′i

(Q(ki))− 2

e
)

≥ (1− β
1
2 )(log |Si| −Dβ

1
2ki − logC − 2

e
+ log(1− β

1
2 )).

By the same argument in the proof of Proposition 3.4.1, it follows from

(3.35) that

1

q
Hµi(Q(q)|AU

∞) ≥ 1

ki
Hνi(Q(ki)|AU

∞)− 2q log |Q|
ki

≥ 1

ki

(
(1− β

1
2 )(log |Si| −Dβ

1
2ki − logC − 2

e
+ log(1− β

1
2 ))− 2q log |Q|

)
.

Now we can take i→ ∞ because the atoms Q of Q and hence of Q(q), satisfy

µγ(∂Q) = 0. Also, the constants C, β, and |Q| are independent to ki. Thus it

follows from the inequality (3.28) that

1

q
Hµγ (Q

(q)|AU
∞) ≥ (1− β

1
2 )

(
m+ n

mn
(dimH Badb(ϵ)− γ)−Dβ

1
2

)
,

and by taking ρ→ 0 and D → m+ n we have

1

q
Hµγ (Q

(q)|AU
∞) ≥ (m+n)(1−µγ(Q∞)

1
2 )

(
dimH Badb(ϵ)− γ

mn
− µγ(Q∞)

1
2

)
.

Recall that γ = γj , and by taking j → ∞ so that γj → 0, we finally have

(3.29), i.e.,

1

q
Hµ(Q

(q)|AU
∞) ≥ (m+ n)(1− µ(Q∞)

1
2 )

(
dimH Badb(ϵ)

mn
− µ(Q∞)

1
2

)
.
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As we did in the proof of Proposition 3.4.1, we take a finite partition Q of Y

satisfying the three bullet-conditions above, and also take Q0
∞ ⊂ X sufficiently

small so that µ(Q0
∞) is sufficiently close to η̂. It follows that

hµ(a|AU
∞) ≥ (m+ n)(1− η̂

1
2 )(

1

mn
dimH Badb(ϵ)− η̂

1
2 )

= (1− η̂
1
2 )(d− 1

2
η0 − dη̂

1
2 ).

3.5.2 Effective equidistribution and the proof of Theorem 1.2.1

In this subsection, we recall some effective equidistribution results which are

necessary for the proof of Theorem 1.2.1. Let g = LieG(R) and choose an

orthonormal basis for g. Define the (left) differentiation action of g on C∞
c (X)

by Zf(x) = d
dtf(exp(tZ)x)|t=0 for f ∈ C∞

c (X) and Z in the orthonormal

basis. This also defines for any l ∈ N, L2-Sobolev norms Sl on C∞
c (Y ):

(3.36) Sl(f)2 =
∑
D

∥ht ◦ πlD(f)∥2L2 ,

where D ranges over all the monomials in the chosen basis of degree ≤ l

and ht ◦ π is the function assigning 1 over the smallest length of a vector

in the corresponding lattice of the given grid. Let us define the function ζ :

(Td \Qd)× R+ → N by

ζ(b, T ) := min

{
N ∈ N : min

1≤q≤N
∥qb∥Z ≤ T 2

N

}
.

Then there exists a sufficiently large l ∈ N such that the following equidistri-

bution theorems hold.

Theorem 3.5.4. [Kim, Theorem 1.3] Let K be a bounded subset in SLd(R)
and V ⊂ U be a fixed neighborhood of the identity in U with smooth boundary

and compact closure. Then, for any t ≥ 0, f ∈ C∞
c (Y ), and y = gw(b)Γ with

g ∈ K and b ∈ Td \ Qd, there exists a constant α1 > 0 only depending on d

and V so that

(3.37)
1

mU (V )

∫
V
f(atuy)dmU (u) =

∫
Y
fdmY +O(Sl(f)ζ(b, e

t
2m )−α1).
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The implied constant in (3.37) only depends on d, V , and K.

For q ∈ N, define

Xq :=
{
gw(p/q)Γ ∈ Y : g ∈ SLd(R),p ∈ Zd, gcd(p, q) = 1

}
,

Γq := {γ ∈ SLd(Z) : γe1 ≡ e1 (mod q)}.

Lemma 3.5.5. The subspace Xq ⊂ Y can be identified with the quotient space

SLd(R)/Γq. In particular, this identification is locally bi-Lipschitz.

Proof. The action SLd(R) on Xq by the left multiplication is transitive and

StabSLd(R)(w(e1/q)Γ) = Γq. To see the transitivity, it is enough to show that

SLd(Z)e1 ≡ {p ∈ Zd : gcd(p, q) = 1} (mod q). Write D = gcd(p) and p′ =

p/D. Since gcd(D, q) = 1, there are a, b ∈ Z such that aD+ bq = 1. Take A ∈
GLd(Z) such that det(A) = D and Ae1 = p. If we set u = bp′+(a−1)Ae2, then

we have p+qu = (A+u×t(qe1+e2))e1 and A+u×t(qe1+e2) ∈ SLd(Z), which
concludes the transitivity. Bi-Lipshitz property of the identification follows

trivially since both Xq and SLd(R)/Γq are locally isometric to SLd(R).

Theorem 3.5.6. [KM12, Theorem 2.3] For q ∈ N, let SLd(R)/Γq ≃ Xq ⊂ Y .

Let K be a bounded subset in SLd(R) and V ⊂ U be a fixed neighborhood of

the identity in U with smooth boundary and compact closure. Then, for any

t ≥ 0, f ∈ C∞
c (Y ), and y = gw(pq )Γ with g ∈ K and p ∈ Zd, there exists a

constant α2 > 0 only depending on d and V so that

(3.38)
1

mU (V )

∫
V
f(atuy)dmU (u) =

∫
Xq

fdmXq +O(Sl(f)[Γ1 : Γq]
1
2 e−α2t).

The implied constant in (3.38) only depends on d, V , and K.

Proof. This result was obtained in [KM12, Theorem 2.3] in the case q = 1.

For general q, we refer the reader to [KM, Theorem 5.4] which gave a sketch

of required modification. [KM, Theorem 5.4] is actually stated for different

congruence subgroups from our Γq, but the modification still works and the

additional factor in the error term is also given by [Γ1 : Γq]
1
2 .

Recall the definition of Lϵ in Subsection 3.3.2. Since we assume the un-

weighted setting, Lϵ = {y ∈ Y : ∀v ∈ µy, ∥v∥ ≥ ϵ1/d}.

Lemma 3.5.7. For any small enough ϵ > 0 and q ∈ N, mY (Y≤ϵ−1 \ Lϵ) ≍ ϵ

and mXq(Y≤ϵ−1 \ Lϵ) ≫ q−dϵ.
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Proof. Using Siegel integral formula [MM11, Lemma 2.1] with f = 1B
ϵ1/d

(0),

which is the indicator function on ϵ1/d-ball centered at 0 in Rd, we have

mY (Y≤ϵ−1 \ Lϵ) ≪ ϵ. On the other hands, by [Ath15, Theorem 1] with A =

Bϵ1/d(0), we have mY (Lϵ) < 1
1+2dϵ

. It follows from Siegel integral formula on

X that mY (Y>ϵ−1) = mX(X>ϵ−1) ≤ 2dϵd. Since d ≥ 2, we have

mY (Y≤ϵ−1 \ Lϵ) ≥ mY (Y \ Lϵ)−mY (Y>ϵ−1) >
2dϵ

1 + 2dϵ
− 2dϵd ≫ ϵ

for small enough ϵ > 0, which concludes the first assertion.

To prove the second assertion, observe that for any x ∈ X>ϵ−1/d , |π−1
q (x)∩

(Y \Lϵ)| ≥ 1, where πq : Xq → X is the natural projection. Since |π−1
q (x)| ≤ qd

and mX(x ∈ X : ϵ−1/d < ht(x) ≤ ϵ−1) ≍ ϵ, we have

mXq(Y≤ϵ−1 \ Lϵ) ≥ q−dmX(x ∈ X : ϵ−1/d < ht(x) ≤ ϵ−1) ≫ q−dϵ.

Proposition 3.5.8. There exist M,M ′ > 0 such that the following holds. Let

A be a countably generated sub-σ-algebra of the Borel σ-algebra which is a−1-

descending and U -subordinate. Fix a compact set K ⊂ Y . Let 1 < R′ < R,

k = ⌊mn logR′

4d ⌋, and y ∈ a4kK. Suppose that BU
R′ · y ⊂ [y]A ⊂ BU

R · y holds. For

ϵ > 0 let Ω ⊂ Y be a set satisfying Ω ∪ a−3kΩ ⊆ L ϵ
2
. If R′ ≥ ϵ−M

′
, then

1− τAy (Ω) ≫
(
R′

R

)mn
ϵdM+1,

where the implied constant only depends on K.

Proof. Denote by Vy ⊂ U the shape of A-atom of y so that Vy · y = [y]A.

Set V = BU
1 . We have BU

e−
4d
mnR′

⊆ a4kV a−4k ⊆ Vy since mn logR′

d − 4 ≤ 4k ≤
mn logR′

d . It follows that

(3.39)

1− τAy (Ω) =
1

mU (Vy)

∫
Vy

1Y \Ω(uy)dmU (u) ≥
1

mU (BU
R)

∫
a4kV a−4k

1Y \Ω(uy)dmU (u)

≥ e−4d

(
R′

R

)mn( 1

mU (a4kV a−4k)

∫
a4kV a−4k

1Y \Ω(uy)dmU (u)

)
= e−4d

(
R′

R

)mn( 1

mU (V )

∫
V
1Y \Ω(a

4kua−4ky)dmU (u)

)
.
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Let a−4ky = g0w(b0)Γ. For the constants α1 in Theorem 3.5.4 and α2 in

Theorem 3.5.6, let α = min(α1, α2) and M = 1
α

(
2 + l + dimG

2d

)
. By [KM96,

Lemma 2.4.7(b)] with r = Cϵ
1
d < 1, we can take the approximation function

θ ∈ C∞
c (G) of the identity such that θ ≥ 0, Supp θ ⊆ BG

r (id),
∫
G θ = 1, and

Sl(θ) ≪ ϵ−
1
d
(l+dimG

2
). Let ψ = θ ∗1Y≤ϵ−1\L ϵ

4
, then we have 1Y≤(2ϵ)−1\L ϵ

2
≤ ψ ≤

1Y≤2ϵ−1\L ϵ
8
. Moreover, using Young’s inequality, its Sobolev norm is bounded

as follows:

(3.40)

Sl(ψ)2 =
∑
D

∥ht ◦ πlD(ψ)∥2L2 ≪ ϵ−l
∑
D

∥D(θ) ∗ 1Y≤ϵ−1\L ϵ
4
∥2L2

≪ ϵ−l∥1Y≤ϵ−1\L ϵ
4
∥2L1

∑
D

∥D(θ)∥2L2 ≪ ϵ−lSl(θ)2,

hence Sl(ψ) ≪ ϵ−
l
2Sl(θ) ≤ ϵ−(l+dimG

2d
).

In the following two cases, we apply Theorem 3.5.4 and 3.5.6 respectively:

(i) ζ(b0, e
2k
m ) ≥ ϵ−M

(ii) ζ(b0, e
2k
m ) < ϵ−M

Case (i): Applying Theorem 3.5.4, we have

(3.41)
1

mU (V )

∫
V
1Y \Ω(a

4kua−4ky)dmU (u) ≥
1

mU (V )

∫
V
ψ(a4kua−4ky)dmU (u)

=
1

mU (V )

∫
V
ψ(a4kug0w(b0)Γ)dmU (u) =

∫
Y
ψdmY +O(Sl(ψ)ζ(b0, e

2k
m )−α)

= mY (Y≤ϵ−1 \ L ϵ
4
) +O(ϵ−(l+dimG

2d
)ϵMα).

It follows from Lemma 3.5.7 and Mα = 2 + (l + dimG
2d ) that

(3.42)
1

mU (V )

∫
V
1Y \Ω(a

4kua−4ky)dmU (u) ≥ mY (Y≤ϵ−1 \ L ϵ
4
) +O(ϵ2) ≍ ϵ.

Hence, 1− τAy (Ω) ≫ ϵ
(
R′

R

)mn
by (3.39) and (3.42).

Case (ii): The assumption ζ(b0, e
2k
m ) < ϵ−M implies that there exists

q ≤ ϵ−M such that ∥qb0∥Z ≤ q2e−
2k
m , whence ∥b0− p

q ∥ ≤ qe−
2k
m ≤ ϵ−Me−

2k
m for
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some p ∈ Zd. Let y′ = a4kg0w(
p
q )Γ. Then for any u ∈ BU

1 ,

dY (akua−4ky, akua−4ky′) ≪ e
k
mdY (a−4ky, a−4ky′)

= e
k
mdY (g0w(b0)Γ, g0w(

p

q
)Γ)

≍ e
k
m ∥b0 −

p

q
∥ ≤ ϵ−Me−

k
m ,

hence

(3.43)
|ψ(akua−4ky)− ψ(akua−4ky′)| ≪ Sl(ψ)dY (akua−4ky, akua−4ky′)

≪ Sl(ψ)ϵ−Me−
k
m .

Since we are assuming a−3kΩ ⊆ L ϵ
2
, we have

(3.44)
1

mU (V )

∫
V
1Y \Ω(a

4kua−4ky)dmU (u)

=
1

mU (V )

∫
V
1Y \a−3kΩ(a

kua−4ky)dmU (u)

≥ 1

mU (V )

∫
V
ψ(akua−4ky)dmU (u)

≥ 1

mU (V )

∫
V
ψ(akua−4ky′)dmU (u) +O(Sl(ψ)ϵ−Me−

k
m )

=

∫
Xq

ψdmY +O(Sl(ψ)q
d
2 e−αk + Sl(ψ)ϵ−Me−

k
m )

≥ mXq(Y≤(2ϵ)−1 \ L ϵ
8
) +O(ϵ−(l+dimG

2d
)− dM

2 e−αk + ϵ−(l+dimG
2d

)−Me−
k
m ).

We are using (3.43) for the third line, and Theorem 3.5.6 for the fourth

line. LetM ′ = min
(
4d
α (l + dimG

2d + 3dM
2 + 2), 4dm(l + dimG

2d + (d+ 1)M + 2)
)
.

If R′ > ϵ−M
′
, then e−4dk < e4dϵM

′
, so ϵ−(l+dimG

2d
)− dM

2 e−αk ≪ ϵdM+2 and

ϵ−(l+dimG
2d

)−Me−
k
m ≪ ϵdM+2. Combining this with Lemma 3.5.7, it follows

that

(3.45)

1

mU (V )

∫
V
1Y \Ω(a

4kua−4ky)dmU (u) ≫ q−dϵ+O(ϵdM+2)

≫ ϵdM+1 +O(ϵdM+2) ≫ ϵdM+1.

Hence, 1− τAy (Ω) ≫ ϵdM+1
(
R′

R

)mn
by (3.39) and (3.45).
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Proof of Theorem 1.2.1. For fixed b, let η0 = 2(m + n)(1 − dimH Badb(ϵ)
mn ) as

in Proposition 3.5.3. It is enough to consider the case that Badb(ϵ) is suffi-

ciently close to the full dimension mn, so we may assume dimH Badb(ϵ) >

dimH Bad0(ϵ) and η0 ≤ 0.01. By Proposition 3.5.3, there is an a-invariant

measure µ ∈ P(Y ) such that Suppµ ⊆ Lϵ ∪ (Y \ Y ), and π∗µ(X \Sη′) ≤ η′

for any η0 ≤ η′ ≤ 1. We also have µ ∈ P(Y ) and 0 ≤ η̂ ≤ η0 such that

µ = (1− η̂)µ+ η̂δ∞.

In particular, for η′ = 0.01, we have µ(π−1(S0.01)) ≥ 0.99. We can choose 0 <

r < 1 such that Y (r) ⊃ π−1(S0.01). Note that the choice of r is independent

of ϵ and b since S0.01 is constructed in Proposition 3.5.2 independent to ϵ and

b.

For such 0 < r < 1 and a-invariant probability measure µ on Y , let AU be

and a countably generated σ-algebra as in Lemma 3.2.2 and 3.2.6, respectively.

With respect to this σ-algebra, we have

hµ(a|AU
∞) ≥ (1− η̂

1
2 )(d− η̂ − dη̂

1
2 )

by (3) of Proposition 3.5.3. By the linearlity of the entropy function with

respect to the measure, we have

(3.46)
hµ(a|AU

∞) ≥ (1 + η̂
1
2 )−1(d− 1

2
η0 − dη̂

1
2 )

≥ d− 2dη̂
1
2 − 1

2
η0.

On the other hand, we shall get an upper bound of hµ(a|AU
∞) from Propo-

sition 3.2.8 and Corollary 3.2.11. By Lemma 3.2.5, there exists 0 < δ < c
2

such that µ(Eδ) < 0.01. Note that the constant C1, C2 > 0 in Lemma 3.2.5

depends only on a and G, hence δ is independent of ϵ even if the set Eδ de-

pends on ϵ. It follows from Proposition 3.2.6 that BU
δ · y ⊂ [y]AU ⊂ BU

r · y
for any y ∈ Y (r) \ Eδ. We write Z = Y (r) \ Eδ for simplicity. Note that

µ(Z) ≥ µ(Y (r)) − µ(Eδ) > 0.98. We also have µ(a4kY (r)) > 0.99 Since µ is

a-invariant.

LetM andM ′ be the constants in Proposition 3.5.8, r′ = (1−2
1
d )ϵ

1
d , R′ =

ϵ−M
′
, R = e

mn
d
r
δR

′, and k = ⌊mn logR′

4d ⌋. Let A1 = a−j1AU and A2 = aj2AU ,
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where
j1 = ⌈−mn

d
log
(
r−1(1− 2

1
d )ϵ

1
d

)
⌉,

j2 = ⌈−mn
d

log(δϵM
′
)⌉.

Then for y ∈ Z, the atoms with respect to A1 and A2 satisfy

[y]A1 ⊂ BU
r′ · y,

BU
R′ · y ⊂ [y]A2 ⊂ BU

R · y.

For Ω = BU
r′Suppµ, note that Ω ⊆ BU

r Lϵ ⊆ L ϵ
2
and

a−3kΩ = (a−3kBU
r′a

3k)a−3kSuppµ ⊆ (a−3kBU
r′a

3k)Lϵ ⊆ L ϵ
2

since Suppµ is a-invariant set. Applying Proposition 3.5.8 with K = Y (r),

A = A2, and the same R′, R, Ω as we just defined, the following holds. For

any ϵ > 0 and y ∈ a4kY (r) ∩ Z,

(3.47) 1− τA2
y (Ω) ≫ ϵdM+1

since R′

R is bounded below by a constant independent of ϵ. By Proposition

3.2.8, Corollary 3.2.11, and (3.47), we have

(j1 + j2)(d− hµ(a|AU
∞)) = (j1 + j2)d−Hµ(A1|A2)

≥ −
∫
Y
log τA2

y (Ω)dµ(y)

≥
∫
a4kY (r)∩Z

(1− τA2
y (Ω))dµ(y)

≫ µ(a4kY (r) ∩ Z)ϵdM+1 > 0.9ϵdM+1.

It follows from (3.46) and j1 + j2 ≍ log(1/ϵ) that

η
1
2
0 ≫ 1

0.9
(2dη̂

1
2 +

1

2
η0) ≥ d− hµ(a|AU

∞) ≫ ϵdM+2.

Since η0 = 2(m+ n)(1− dimH Badb(ϵ)
mn ), we have

mn− dimH Bad′(ϵ) ≥ c0ϵ
2(dM+2)
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for some constant c0 > 0 only depending on d.

3.6 Characterization of singular on average prop-

erty and Dimension esitimates

In this section, we will show (2) =⇒ (1) in Theorem 1.2.3. Let A ∈ Mm,n(R)
and consider two subgroups

G(A) := AZn + Zm ⊂ Rm and G(tA) := tAZm + Zn ⊂ Rn.

If we view alternatively G(A) as a subgroup of classes modulo Zm, lying in the

m-dimensional torus Tm, Kronecker’s theorem asserts that G(A) is dense in

Tm if and only if the group G(tA) has maximal rank m+n over Z (See [Cas57,

Chapter III, Theorem IV]). Thus, if rankZ(G(
tA)) < m+n, then BadA(ϵ) has

full Hausdorff dimension for any ϵ > 0. Hence, throughout this section, we

consider only matrices A for which rankZ(G(
tA)) = m+ n.

3.6.1 Best approximations

We set up a weighted version of the best approximations following [CGGMS20].

(See also [BL05] and [BKLR21] for the unweighted setting.)

Given A ∈Mm,n(R), we denote

M(y) = inf
q∈Zn

∥tAy − q∥s.

Our assumption that rankZ(G(
tA)) equals m + n guarantees that M(y) > 0

for all non-zero y ∈ Zm. One can construct a sequence of yi ∈ Zn called a

sequence of weighted best approximations to tA, which satisfies the following

properties:

1. Setting Yi = ∥yi∥r and Mi =M(yi), we have

Y1 < Y2 < · · · and M1 > M2 > · · · ,

2. M(y) ≥Mi for all non-zero y ∈ Zm with ∥y∥r < Yi+1.

The sequence (Yi)i≥1 has at least geometric growth.
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Lemma 3.6.1. [CGGMS20, Lemma 4.3] There exists a positive integer V

such that for all i ≥ 1,

Yi+V ≥ 2Yi.

In particular, there exist c > 0 and γ > 1 such that

Yi ≥ cγi

for all i ≥ 1.

Remark 3.6.2.

1. The first statement in the above lemma can be found in the proof of

[CGGMS20, Lemma 4.3].

2. From the weighted Dirichlet’s Theorem (see [Kle98, Theorem 2.2]), one

can check that MkYk+1 ≤ 1 for all k ≥ 1.

3.6.2 Characterization of singular on average property

In this section, we will characterize the singular on average property in terms

of best approximations. At first, we will show A is singular on average if and

only if tA is singular on average. To do this, following [Cas57, Chapter V], we

prove a transference principle between two homogeneous approximations with

weights. See also [GE15, Ger20].

Definition 3.6.3. Given positive numbers λ1, . . . , λd, consider the parallelepiped

P =
{
z = (z1, . . . , zd) ∈ Rd : |zi| ≤ λi, i = 1, . . . , d

}
.

We call the parallelepiped

P∗ =

z = (z1, . . . , zd) ∈ Rd : |zi| ≤
1

λi

d∏
j=1

λj , i = 1, . . . , d


the pseudo-compound of P.

Theorem 3.6.4. [GE15] Let P be as in Definition 3.6.3 and let Λ be a full-

rank lattice in Rd. Then

P∗ ∩ Λ∗ ̸= {0} =⇒ cP ∩ Λ ̸= {0},
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where c = d
1

2(d−1) and Λ∗ is the dual lattice of Λ.

Corollary 3.6.5. For positive integer m,n let d = m+n and let A ∈Mm,n(R)
and 0 < ϵ < 1 be given. For all large enough X ≥ 1, if there exists a nonzero

q ∈ Zn such that

(3.48) ⟨Aq⟩r ≤ ϵX−1 and ∥q∥s ≤ X,

then there exists a nonzero y ∈ Zm such that

(3.49) ⟨tAy⟩s ≤ c(
1
rm

+ 1
sn

)ϵ
rmsn

sn+r1(1−sn)Y −1 and ∥y∥r ≤ Y,

where c is as in Theorem 3.6.4 and Y = c
1
rm ϵ

− rm(1−sn)
sn+r1(1−sn)X.

Proof. Consider the following two parallelepipeds:

Q =

{
z = (z1, . . . , zd) ∈ Rd :

|zi| ≤ ϵriX−ri , i = 1, . . . ,m

|zm+j | ≤ Xsj , j = 1, . . . , n

}
,

P =

{
z = (z1, . . . , zd) ∈ Rd :

|zi| ≤ Zri , i = 1, . . . ,m

|zm+j | ≤ δsjZ−sj , j = 1, . . . , n

}
,

where

δ = ϵ
rmsn

sn+r1(1−sn) and Z = ϵ
− rm(1−sn)
sn+r1(1−sn)X.

Observe that the pseudo-compound of P is given by

P∗ =

{
z = (z1, . . . , zd) ∈ Rd :

|zi| ≤ δZ−ri , i = 1, . . . ,m

|zm+j | ≤ δ1−sjZsj , j = 1, . . . , n

}

and that Q ⊂ P∗ since ϵriX−ri ≤ δZ−ri and Xsj ≤ δ1−sjZsj for all i =

1, . . . ,m and j = 1, . . . , n.

Now, the existence of a nonzero solution q ∈ Rnv of the inequalities (3.48)

is equivalent to

Q∩

(
Im A

In

)
Zd ̸= {0},

which implies that

P∗ ∩

(
Im A

In

)
Zd ̸= {0}.
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By Theorem 3.6.4, we have

cP ∩

(
Im
−tA In

)
Zd ̸= {0},

which concludes the proof of Corollary 3.6.5.

Corollary 3.6.6. Let m,n be positive integers and A ∈Mm,n(R). Then A is

singular on average if and only if tA is singular on average.

Proof. It follows from Corollary 3.6.5.

Now, we will characterize the singular on average property in terms of best

approximations. Let A ∈ Mm,n(R) be a matrix and (yk)k≥1 be a sequence of

weighted best approximations to tA and write

Yk = ∥yk∥r, Mk = inf
q∈Zn

∥tAyk − q∥s.

Proposition 3.6.7. Let A ∈ Mm,n(R) be a matrix and let (yk)k≥1 be a se-

quence of best approximations to tA. Then the following are equivalent:

1. tA is singular on average.

2. For all ϵ > 0,

lim
k→∞

1

log Yk
|{i ≤ k :MiYi+1 > ϵ}| = 0.

Proof. (1) =⇒ (2) : Let 0 < ϵ < 1. Observe that for each integer X with

Yk ≤ X < Yk+1, the inequalities

(3.50) ∥tAp− q∥s ≤ ϵX−1 and 0 < ∥p∥r ≤ X

have a solution if and only ifX ≤ ϵ
Mk

. Thus, for each integer ℓ ∈ [log2 Yk, log2 Yk+1)

the inequalities (3.50) have no solutions for X = 2ℓ if and only if

(3.51) log2 ϵ− log2Mk < ℓ < log2 Yk+1.

Now we assume that tA is singular on average. For given δ > 0, if the set

{k ∈ N : MkYk+1 > δ} is finite, then it is done. Suppose the set {k ∈ N :
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MkYk+1 > δ} is infinite and let

{k ∈ N :MkYk+1 > δ} = {j(1) < j(2) < · · · < j(k) < · · · : k ∈ N} .

Set ϵ = δ/2 and fix a positive integer V in Lemma 3.6.1. For an integer ℓ in

[log2 Yj(k)+1 − 1, log2 Yj(k)+1), observe that

log2 ϵ− log2Mj(k) < log2 Yj(k)+1 − 1.

Hence the inequalities (3.50) have no solutions for X = 2ℓ by (3.51). By

Lemma 3.6.1, log2 Yj(k)+1+V−1 ≥ log2 Yj(k)+1. So, we have log2 Yj(k+V )+1−1 ≥
log2 Yj(k)+1. Now fix i = 0, · · · , V − 1. Then the intervals

[log2 Yj(i+sV )+1 − 1, log2 Yj(i+sV )+1), s = 1, · · · , k

are disjoint. Thus, for an integer N ∈ [log2 Yj(i+kV )+1, log2 Yj(i+(k+1)V )+1), the

number of ℓ in {1, · · · , N} such that (3.50) have no solutions for X = 2ℓ is at

least k. Since tA is singular on average,

k

log2 Yj(i+(k+1)V )+1
≤ 1

N

∣∣∣{ℓ ∈ {1, · · · , N} : (3.50) have no solutions for X = 2ℓ
}∣∣∣

tends to 0 with k, which gives i+1+kV
log2 Yj(i+1+kV )

tends to 0 with k for all i =

0, · · · , V − 1. Thus, we have k
log2 Yj(k)

tends to 0 with k.

For any k ≥ 1, there is an unique positive integer sk such that

j(sk) ≤ k < j(sk + 1),

and observe that sk = |{i ≤ k : MiYi+1 > δ}|. Thus, by the monotonicity of

Yk, we have

lim
k→∞

1

log2 Yk
|{i ≤ k :MiYi+1 > δ}| ≤ lim

k→∞

sk
log2 Yj(sk)

= 0.

(2) =⇒ (1) : Given 0 < ϵ < 1, the number of integers ℓ in [log2 Yk, log2 Yk+1)

such that (3.50) have no solutions for X = 2ℓ is at most

⌈log2MkYk+1 − log2 ϵ⌉ ≤ log2MkYk+1 − log2 ϵ+ 1.
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Thus, for an integer N in [log2 Yk, log2 Yk+1), we have

1

N
|{ℓ ∈ {1, · · · , N} : (3.50) have no solutions for X = 2ℓ}|

≤ 1

N

k∑
i=1

max (0, log2MiYi+1 − log2 ϵ+ 1)

≤ 1

log2 Yk

k∑
i=1

max (0, log2MiYi+1 − log2 ϵ+ 1) .

Since MiYi+1 ≤ 1 for each i ≥ 1,

1

log2 Yk

k∑
i=1

max (0, log2MiYi+1 − log2 ϵ+ 1)

≤ 1

log2 Yk
(− log2 ϵ+ 1) |{i ≤ k :MiYi+1 > ϵ/2}|.

Therefore, tA is singular on average.

3.6.3 Modified Bugeaud-Laurent sequence

In this subsection we construct the following modified Bugeaud-Laurent se-

quence assuming the singular on average property. We refer the reader to

[BL05, Section 5] for the original version of the Bugeaud-Laurent sequence.

Proposition 3.6.8. Let A ∈Mm,n(R) be such that tA is singular on average

and let (yk)k≥1 be a sequence of weighted best approximations to tA. For each

S > R > 1, there exists an increasing function φ : Z≥1 → Z≥1 satisfying the

following properties:

1. for any integer i ≥ 1,

(3.52) Yφ(i+1) ≥ RYφ(i) and Mφ(i)Yφ(i+1) ≤ R.

2.

(3.53) lim sup
k→∞

k

log Yφ(k)
≤ 1

logS
.
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Proof. The function φ is constructed in the following way. Fix a positive in-

teger V in Lemma 3.6.1 and let J = {j ∈ Z≥1 :MjYj+1 ≤ R/S3}. Since tA is

singular on average, by Proposition 3.6.7 with ϵ = R/S3, we have

(3.54) lim
k→∞

1

log Yk
|{i ≤ k : i ∈ J c}| = 0.

If the set J is finite, then we have lim
k→∞

Y
1/k
k = ∞ by (3.54), hence the proof

of [BKLR21, Theorem 2.2] implies that there exists a function φ : Z≥1 → Z≥1

for which

Yφ(i+1) ≥ RYφ(i) and Yφ(i)+1 ≥ R−1Yφ(i+1).

The fact that MiYi+1 ≤ 1 for all i ≥ 1 implies Mφ(i)Yφ(i+1) ≤ R. Equation

(3.53) follows from lim
k→∞

Y
1/k
k = ∞, which concludes the proof of Proposition

3.6.8.

Now, suppose that J is infinite. Then there are two possible cases:

(i) J contains all sufficiently large positive integers.

(ii) There are infinitely many positive integers in J c.

Case (i). Assume the first case and let ψ(1) = min{j : J ⊃ Z≥j}. Define the

auxiliary increasing sequence (ψ(i))i≥1 by

ψ(i+ 1) = min{j ∈ Z≥1 : SYψ(i) ≤ Yj},

which is well defined since (Yi)i≥1 is increasing. Note that ψ(i + 1) ≤ ψ(i) +

⌈log2 S⌉V since Yψ(i)+⌈log2 S⌉V ≥ SYψ(i) by Lemma 3.6.1. Let us now define

the sequence (φ(i))i≥1 by, for each i ≥ 1,

φ(i) =

{
ψ(i) if Mψ(i)Yψ(i+1) ≤ R/S,

ψ(i+ 1)− 1 otherwise.

Then the sequence (φ(i))i≥1 is increasing and φ ≥ ψ.

Now we claim that for each i ≥ 1,

(3.55) Yφ(i+1) ≥ SYφ(i) and Mφ(i)Yφ(i+1) ≤ R,

which implies Equation (3.53) since Yφ(k) ≥ Sk−1Yφ(1) for all k ≥ 1. Thus, the

claim concludes the proof of Proposition 3.6.8.
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Proof of Equation (3.55). There are four possible cases on the values of φ(i)

and φ(i+ 1).

• Assume that φ(i) = ψ(i) and φ(i + 1) = ψ(i + 1). By the definition of

ψ(i+ 1), we have

Yφ(i+1) = Yψ(i+1) ≥ SYψ(i) = SYφ(i).

If ψ(i) ̸= ψ(i+ 1)− 1, then by the definition of φ(i), we have

Mφ(i)Yφ(i+1) =Mψ(i)Yψ(i+1) ≤ R/S ≤ R.

If ψ(i) = ψ(i+ 1)− 1, then φ(i+ 1) = φ(i) + 1, hence

Mφ(i)Yφ(i+1) =Mφ(i)Yφ(i)+1 ≤ 1 ≤ R.

This proves Equation (3.55).

• Assume that φ(i) = ψ(i) and φ(i+ 1) = ψ(i+ 2)− 1. By the definition

of ψ(i+ 1), we have

Yφ(i+1) = Yψ(i+2)−1 ≥ Yψ(i+1) ≥ SYψ(i) = SYφ(i).

It follows from the minimality of ψ(i+2) that SYψ(i+1) > Yψ(i+2)−1. If ψ(i+

1) > ψ(i) + 1, then Mψ(i)Yψ(i+1) ≤ R/S by the definition of φ(i). Hence, we

have

Mφ(i)Yφ(i+1) =Mψ(i)Yψ(i+2)−1 ≤ SMψ(i)Yψ(i+1) ≤ R.

If ψ(i+ 1) = ψ(i) + 1, then Mψ(i)Yψ(i)+1 ≤ R/S3 since ψ(i) ∈ J . Hence,

Mφ(i)Yφ(i+1) =Mψ(i)Yψ(i+2)−1 ≤ SMψ(i)Yψ(i)+1 ≤ R/S2 ≤ R.

This proves Equation (3.55).

• Assume that φ(i) = ψ(i+1)−1 and φ(i+1) = ψ(i+1). Since ψ(i+1)−1 ∈
J , we have

Mφ(i)Yφ(i+1) =Mψ(i+1)−1Yψ(i+1) ≤ R/S3 ≤ R.
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If ψ(i+ 1)− 1 = ψ(i), then by the definition of ψ(i+ 1), we have

Yφ(i+1)

Yφ(i)
=

Yψ(i+1)

Yψ(i+1)−1
=
Yψ(i+1)

Yψ(i)
≥ S.

If ψ(i + 1) − 1 > ψ(i), then we have Mψ(i)Yψ(i+1) > R/S by the definition

of φ(i), and we have Yψ(i+1)−1 < SYψ(i) ≤ SYψ(i)+1 from the minimality of

ψ(i+ 1). We also have Mψ(i)Yψ(i)+1 ≤ R/S3 since ψ(i) ∈ J . Therefore

Yφ(i+1)

Yφ(i)
=

Yψ(i+1)

Yψ(i+1)−1
=

Mψ(i)Yψ(i+1)

Mψ(i)Yψ(i+1)−1
≥ R/S

SMψ(i)Yψ(i)+1
≥ R/S

R/S2
= S.

This proves Equation (3.55).

• Assume that φ(i) = ψ(i + 1) − 1 and φ(i + 1) = ψ(i + 2) − 1. By the

previous case computations, we have

Yφ(i+1)

Yφ(i)
=
Yψ(i+2)−1

Yψ(i+1)−1
≥

Yψ(i+1)

Yψ(i+1)−1
≥ S.

We have SYψ(i+1) > Yψ(i+2)−1 from the minimality of ψ(i + 2). Thus since

ψ(i+ 1)− 1 ∈ J , we have

Mφ(i)Yφ(i+1) =Mψ(i+1)−1Yψ(i+2)−1 =Mψ(i+1)−1Yψ(i+1)

(
Yψ(i+2)−1

Yψ(i+1)

)
≤ R.

This proves Equation (3.55).

Case (ii). Now we assume the second case and let j0 = minJ . Partition Z≥j0
into disjoint subset

Z≥j0 = C1 ⊔D1 ⊔ C2 ⊔D2 ⊔ · · ·

where Ci ⊂ J and Dj ⊂ J c are sets of consecutive integers with

maxCi < minDi ≤ maxDi < minCi+1

for all i ≥ 1. We consider the following two subcases.

(ii) - 1. If there is i0 ≥ 1 such that |Ci| < 3⌈log2 S⌉V for all i ≥ i0, then we
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have, for k0 = minCi0 ,

k

log Yk
≤ k0 + (3⌈log2 S⌉V + 1) |{i ≤ k : i ∈ J c}|

log Yk
,

since there exists an element of J c in any finite sequence of 3⌈log2 S⌉V + 1

consecutive integers at least k0. Therefore lim
k→∞

Y
1/k
k = ∞ by (3.54) and this

concludes the proof of Proposition 3.6.8 following the proof when J is finite

at the beginning.

(ii) - 2. The remaining case is that the set

{i : |Ci| ≥ 3⌈log2 S⌉V } = {i(1) < i(2) < · · · < i(k) < · · · : k ∈ N}

is infinte.

For each k ≥ 1, let us define an increasing finite sequence (ψk(i))1≤i≤mk+1

of positive integers by setting ψk(1) = minCi(k) and by induction

ψk(i+ 1) = min{j ∈ Ci(k) : SYψk(i) ≤ Yj},

as long as this set is nonempty. Since Ci(k) is a finite sequence of consecutive

positive integers with length at least 3⌈log2 S⌉V and Yi+⌈log2 S⌉V ≥ SYi for

every i ≥ 1 by Lemma 3.6.1, there exists an integer mk ≥ 2 such that ψk(i) is

defined for i = 1, . . . ,mk + 1. Note that ψk(i) belongs to J since Ci(k) ⊂ J .

As in Case (i), let us define an increasing finite sequence (φk(i))1≤i≤mk
of positive integers by

φk(i) =

{
ψk(i) if Mψk(i)Yψk(i+1) ≤ R/S,

ψk(i+ 1)− 1 otherwise.

Following the proof of Case (i), we have for each i = 1, . . . ,mk − 1,

(3.56) Yφk(i+1) ≥ SYφk(i) and Mφk(i)Yφk(i+1) ≤ R.

Note that φk(mk) < φk+1(1). Let us define an increasing finite sequence

(φ′
k(i))1≤i≤nk+1 of positve integers to interpolate between φk(mk) and φk+1(1).

Let j0 = φk+1(1). If the set {j ∈ Z≥φk(mk) : Yj0 ≥ RYj} is empty, then we

set nk = 0 and φ′
k(1) = j0 = φk+1(1). Otherwise, follwing [BKLR21, Theorem

2.2], by decreasing induction, let nk ∈ Z≥1 be the maximal positive integer

such that there exists j1, . . . , jnk ∈ Z≥1 such that for ℓ = 1, . . . , nk, the set
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{j ∈ Z≥φk(mk) : Yjℓ−1
≥ RYj} is nonempty and for ℓ = 1, . . . , nk + 1, the

integer jℓ is its largest element. Set φ′
k(i) = jnk+1−i for i = 1, . . . , nk+1. Then

the sequence (φ′
k(i))1≤i≤nk+1 is contained in [φk(mk), φk+1(1)] and satisfies

that for i = 1, . . . , nk,

(3.57) Yφ′
k(i+1) ≥ RYφ′

k(i)
and Mφ′

k(i)
Yφ′

k(i+1) ≤ R

from the proof of [BKLR21, Theorem 2.2].

Now, putting alternatively together the sequences (φk(i))1≤i≤mk−1 and

(φ′
k(i))1≤i≤rk as k ranges over Z≥1, we define Nk =

∑k−1
ℓ=1 (mℓ − 1 + nℓ) and

φ(i) =

{
φk(i−Nk) if 1 +Nk ≤ i ≤ mk − 1 +Nk,

φ′
k(i+ 1−mk −Nk) if mk +Nk ≤ i ≤ rk − 1 +mk +Nk.

Here, we use the standard convention that an empty sum is zero. With Equa-

tion (3.56) for i = 1, . . . ,mk − 2 and Equation (3.57) for i = 1, . . . , nk, since

φ′
k(nk +1) = φk+1(1), it is enough to show the following lemma to prove that

the map φ satisfies Equation (3.52).

Lemma 3.6.9. For every k ∈ Z≥1, we have

(3.58) Yφ′
k(1)

≥ RYφk(mk−1) and Mφk(mk−1)Yφ′
k(1)

≤ R.

Proof. Since φ′
k(1) ≥ φk(mk) and Equation (3.56) with i = mk − 1, we have

Yφ′
k(1)

≥ Yφk(mk) ≥ SYφk(mk−1) ≥ RYφk(mk−1),

which prove the left hand side of Equation (3.58). If φ′
k(1) = φk(mk), then

Equation (3.56) with i = mk − 1 gives the right hand side of Equation (3.58).

Now assume that φ′
k(1) > φk(mk). By the maximality of nk, we have

Yφ′
k(1)

≤ RYφk(mk). First, we will prove that φk(mk) = ψk(mk). For a contra-

diction, assume that φk(mk) = ψk(mk +1)− 1 > ϕk(mk). Following the third

subcase of the proof of Equation (3.55), we have

Yψk(mk+1)

Yψk(mk+1)−1
=

Mψk(mk)Yψk(mk+1)

Mψk(mk)Yψk(mk+1)−1
≥ S.

Hence by the construction of φ′
k(1), we have φ′

k(1) = φk(mk), which is a

contradiction to our assumption φ′
k(1) > φk(mk).
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To show the right hand side of Equation (3.58), we consider two possible

values of φk(mk − 1).

Assume that φk(mk − 1) = ψk(mk − 1). If ψk(mk − 1) > ψk(mk) − 1,

then by the definition of φk(mk − 1), we have Mψk(mk−1)Yψk(mk) ≤ R/S. If

ψk(mk − 1) = ψk(mk) − 1, then Mψk(mk−1)Yψk(mk) ≤ R/S3 ≤ R/S since

ψk(mk)− 1 ∈ J . Since φk(mk) = ψk(mk), we have

Mφk(mk−1)Yφ′
k(1)

=Mψk(mk−1)Yψk(mk)

(
Yφ′

k(1)

Yφk(mk)

)
≤ R,

which proves the right hand side of Equation (3.58).

Assume that φk(mk − 1) = ψk(mk) − 1. Since φk(mk) = ψk(mk) and

ψk(mk)− 1 ∈ J , we have

Mφk(mk−1)Yφ′
k(1)

=Mψk(mk)−1Yψk(mk)

(
Yφ′

k(1)

Yφk(mk)

)
≤ R,

which proves the right hand side of Equation (3.58), and concludes the proof

of Lemma 3.6.9.

Finally, we will show Equation (3.53) for the map φ. Since there exists an

element of J c in any finite sequence of 3⌈log2 S⌉V + 1 consecutive integers in

the complement of
⋃
k≥1Ci(k), there exists c0 ≥ 0 such that for every k ≥ 1,

we have

|{j ≤ φ(k) : j /∈
⋃
k≥1Ci(k)}|

log Yφ(k)
≤ c0 + (3⌈log2 S⌉V + 1) |{j ≤ φ(k) : j ∈ J c}|

log Yφ(k)
,

which converges to 0 as k → +∞ by (3.54). Let us define

n(k) = |{i ≤ k : Yφ(i) ≥ SYφ(i+1)}|.

For each integer ℓ ≥ 1, since Yi+⌈log2 S⌉V ≥ SYi for every i ≥ 1 by Lemma

3.6.1, and by the maximality of mℓ in the construction of (φℓ(i))1≤i≤mℓ , we

have |{j ∈ Ci(ℓ) : j ≥ φℓ(mℓ)}| ≤ 2⌈log2 S⌉V . If φ(i) belongs to Ci(ℓ) but

φ(i + 1) does not, then φ(i) ≥ φℓ(mℓ). If φ(i) and φ(i + 1) belong to Ci(ℓ),
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then φ and φℓ coincide on i and i+ 1. Thus, by Equation (3.56), we have

k − n(k) = |{i ≤ k : Yφ(i) < SYφ(i+1)}|

≤ (2⌈log2 S⌉V )
∣∣{j ≤ φ(k) : j /∈

⋃
k≥1

Ci(k)}
∣∣.

Therefore, we have

lim sup
k→∞

k

log Yφ(k)
= lim sup

k→∞

n(k) + k − n(k)

log Yφ(k)
= lim sup

n(k)

log Yφ(k)

≤ lim sup
k→∞

n(k)

logSn(k)−1Yφ(1)
=

1

logS
.

This proves Equation (3.53) and concludes the proof of Proposition 3.6.8.

3.6.4 Dimension estimates

Following the notation in [BHKV10], given a sequence {yi} in Zm \ {0} and

α ∈ (0, 1/2), let

Badα{yi} := {θ ∈ Rm : |θ · yi|Z ≥ α for all i ≥ 1}.

Proposition 3.6.10. [CGGMS20] Let A ∈ Mm,n(R) be a matrix and let

(yk)k≥1 be a sequence of weighted best approximations to tA and let R > 1

and α ∈ (0, 1/2) be given. Suppose that there exists an increasing function

φ : Z≥1 → Z≥1 such that for any integer i ≥ 1

Mφ(i)Yφ(i+1) ≤ R.

Then Badα{yφ(i)} is a subset of BadA(ϵ) where ϵ = 1
R

(
α2

4mn

)1/δ
and δ =

min{ri, sj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Proof. In the proof of [CGGMS20, Theorem 1.11], the condition Yφ(i)+1 ≥
R−1Yφ(i+1) is used. However, the assumption Mφ(i)Yφ(i+1) ≤ R also implies

the same conclusion.

Proposition 3.6.11. [CGGMS20] For any α ∈ (0, 1/2), there exists R(α) > 1

with the following property. Let (yk)k≥1 be a sequence in Zm \ {0} such that
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∥yk+1∥r/∥yk∥r ≥ R(α) for all k ≥ 1. Then

dimH

(
Badα{yi}

)
≥ m− C lim sup

k→∞

k

log ∥yk∥r
.

for some positive constant C = C(α).

Proof. The proof of [CGGMS20, Theorem 6.1] concludes this proposition.

The two propositions are used in [BKLR21, Theorem 5.1] in the unweighted

setting.

Proof of Theorem 1.2.3 (2) =⇒ (1). SupposeA is singular on average. By Corol-

lary 3.6.6, tA is also singular on average. Let (yk)k≥1 be a sequence of weighted

best approximations to tA. Then, by Proposition 3.6.8, Proposition 3.6.10, and

Proposition 3.6.11, for each S > R(α) > 1, we have

dimH (BadA(ϵ)) ≥ dimH

(
Badα{yφ(i)}

)
≥ m− C lim sup

k→∞

k

log Yφ(k)

≥ m− C

logS

where ϵ = 1
R(α)

(
α2

4mn

)1/δ
. Taking S → ∞, we have dimH (BadA(ϵ)) = m for

ϵ = 1
R(α)

(
α2

4mn

)1/δ
.
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Chapter 4

Diophantine approximation

over global function fields

4.1 Background material for the lower bound

4.1.1 On global function fields

We refer for instance to [Gos96, Ros02], as well as [BPP19, §14.2], for the con-
tent of this section. Let Fq be a finite field with q elements, where q is a positive

power of a positive prime. Let K be the function field of a geometrically con-

nected smooth projective curve C over Fq, or equivalently an extension of Fq
with transcendence degree 1, in which Fq is algebraically closed. We denote

by g the genus of C. There is a bijection between the set of closed points of C

and the set of normalized discrete valuations v of K, the valuation of a given

element f ∈ K being the order of the zero or the opposite of the order of the

pole of f at the given closed point. We fix such an element v throughout this

paper, and use the notation Kv, Ov, πv, kv, qv, | · | defined in the introduction.

We furthermore denote by deg v the degree of v, so that

qv = qdeg v .

We denote by volv the normalized Haar measure on the locally compact

additive group Kv such that volv(Ov) = 1. For any positive integer d, let voldv
be the normalized Haar measure on K d

v such that voldv(Od
v) = 1. Note that for
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every g ∈ GLd(Kv) we have

d voldv(gx) = | det(g) | d voldv(x) ,

where det is the determinant of a matrix. For every discrete additive subgroup

Λ of K d
v , we again denote by voldv (and simply volv when d = 1) the measured

induced on K d
v /Λ by voldv.

Note that the completion Kv of K for v is the field kv((πv)) of Laurent

series x =
∑

i∈Z xi(πv)
i in the variable πv over kv, where xi ∈ kv is zero for

i ∈ Z small enough. We have

|x | = q− sup{j∈Z : ∀i<j, xi=0}
v ,

and Ov = kv[[πv]] is the local ring of power series x =
∑

i∈Z≥0
xi(πv)

i in the

variable πv over kv.

Recall that the affine algebra Rv of the affine curve C − {v} consists of

the elements of K whose only poles are at the closed point v of C. Its field of

fractions is equal toK, hence we can write elements ofK as x/y with x, y ∈ Rv
and y ̸= 0. By for instance [BPP19, Eq. (14.2)], we have

(4.1) Rv ∩ Ov = Fq .

For every ξ ∈ Kv, we denote by

|⟨ξ⟩| = inf
x∈Rv

∥ ξ − x ∥

the distance in Kv from ξ to the set Rv of integral points of Kv.

For instance, if C is the projective line P1, if ∞ = [1 : 0] is its usual point

at infinity and if Z is a variable name, then g = 0, K = Fq(Z), π∞ = Z−1,

K∞ = Fq((Z−1)), O∞ = Fq[[Z−1]], k∞ = Fq, q∞ = q and R∞ = Fq[Z]. In
this setting, there are numerous results on Diophantine approximation in the

fields of formal power series, see for instance [Las00], [Bug04(2), Chap. 9].

On the other hand, little is known about Diophantine approximation over

general global function fields, see for instance [KST17] (for a single valuation

in positive characteristic) for the ground work on the geometry of number for

function fields.
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4.1.2 On the geometry of numbers and Dirichlet’s theorem

Let d be a positive integer. An Rv-lattice Λ in K d
v is a discrete Rv-submodule

in K d
v that generates K d

v as a Kv-vector space. The covolume of Λ, denoted by

Covol(Λ), is defined as the measure of the (compact) quotient space K d
v /Λ :

Covol(Λ) = voldv(K
d
v /Λ) .

For example,R d
v is anRv-lattice inK

d
v , and by for instance [BPP19, Lem. 14.4)],

we have

(4.2) Covol(R d
v ) = q(g−1)d .

Let B(0, r) be the closed ball of radius r centered at zero in K d
v with

respect to the norm ∥ · ∥ : (ξ1, . . . , ξd) 7→ max1≤i≤d | ξi | . For every integer

k ∈ {1, . . . , d}, the k-th minimum of an Rv-lattice Λ is defined by

λk(Λ) = min{r > 0 : dimKv(spanKv(B(0, r) ∩ Λ)) ≥ k},

where spanKv denotes the Kv-linear span of a subset of a Kv-vector space and

dimKv is the dimension of a Kv-vector space. Note that λ1(Λ), . . . , λd(Λ) ∈ qZv .

The next result follows from [KST17, Theo. 4.4] and Equation (4.2).

Theorem 4.1.1. (Minkowski’s theorem) For every Rv-lattice Λ in K d
v ,

we have

q−(g−1)d Covol(Λ) ≤ λ1(Λ) . . . λd(Λ) ≤ qdv Covol(Λ) . 2

Since λ1(Λ) ≤ · · · ≤ λd(Λ), the following result follows immediately from

Minkowski’s theorem 4.1.1.

Corollary 4.1.2. For every Rv-lattice Λ in K d
v , we have

λ1(Λ) ≤ qv Covol(Λ)
1
d . 2

The following result generalizes [GG17, Theo. 2.1], which is proved only

when K = Fq(Z) and v = ∞, to all function fields K and valuations v. See

also [KW08, Theo. 1.3] in the case of the field Q.

Theorem 4.1.3. (Dirichlet’s theorem) For every matrix A ∈ Mm,n(Kv)

whose rows are denoted by A1, . . . , Am, for all (r
′
1, . . . , r

′
m) ∈ Z m

≥0 and (s′1, . . . , s
′
n) ∈
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Z n
≥0 with

r′i > 1 +
g − 1

deg v
and

m∑
i=1

r′i =
n∑
j=1

s′j ,

there exists an element y = (y1, . . . , yn) ∈ Rn
v − {0} such that, for all i =

1, . . . ,m and j = 1, . . . , n, we have

|⟨Ai y ⟩| ≤ qv q
g−1 qv

−r′i and | yj | ≤ qv q
g−1 qv

s′j .

Proof. With A, r′1, . . . , r
′
m and s′1, . . . , s

′
n as in the statement, we apply Corol-

lary 4.1.2 with d = m+ n to the Rv-lattice

Λ =



π
−r′1
v 0

. . .

π
−r′m
v

π
s′1
v

. . .

0 π
s′n
v


(
Im A

0 In

)
R d
v ,

where Ik is the k × k identity matrix. Since the above two matrices have

determinant 1 by the assumption
∑m

i=1 r
′
i =

∑n
j=1 s

′
j , and by Equation (4.2),

we have Covol(Λ) = q(g−1)d. Corollary 4.1.2 hence says that there exists (x =

(x1, . . . , xm),y = (y1, . . . , yn)) ∈ R d
v − {0} such that

max
{

max
i=1,...,m

|π−r
′
i

v (xi +Aiy) |, max
j=1,...,n

|π
s′j
v yj |

}
≤ qv Covol(Λ)

1
d = qv q

g−1 .

Assume for a contradiction that y = 0. Then for all i = 1, . . . ,m, since

|πv | = q−1
v , we have the inequality |xi | ≤ qv q

g−1 q
−r′i
v . Since r′i > 1 + g−1

deg v ,

this would imply that |xi | < 1. By Equation (4.1), we have {z ∈ Rv : | z | <
1} = {0}. Since xi ∈ Rv, we would have that x = 0, contradicting the fact

that (x,y) ̸= 0. Therefore y ̸= 0 and the result follows.

The following corollary is due to [Kri06, Theo. 1.1] (see also [BZ19, Theo. 3.2]

where the assumption that cm is divisible by n is implicit) in the special case

when K = Fq(Z) and v = ∞ and without weights.

Let min r = min1≤i≤m ri and similarly for min s, max r and max s.
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Corollary 4.1.4. For all A ∈ Mm,n(Kv) and α ∈ Z≥0 with α > 1
min r +

g−1
(min r)(deg v) , there exists y ∈ Rn

v − {0} such that

⟨Ay⟩r ≤ q
deg v+g−1

min r q−αv and ∥y ∥s ≤ q
deg v+g−1

min s qαv .

Proof. We apply Theorem 4.1.3 with r′i = α ri > 1 + g−1
deg v for i = 1, . . . ,m

and s′j = α sj for j = 1, . . . , n, noting that
∑m

i=1 r
′
i =

∑n
j=1 s

′
j since

∑m
i=1 ri =∑n

j=1 sj .

Remark 4.1.5. When r = (n, n, . . . , n) and s = (m,m, . . . ,m), the above

result says that for every integer α > 1
n + g−1

n deg v , there exists y ∈ Rn
v − {0}

such that

min
x∈Rm

v

∥Ay − x∥ ≤ qv q
g−1 q−αnv and ∥y ∥ ≤ qv q

g−1 qαmv ,

where ∥ · ∥ is the sup norm.

4.1.3 Best approximation sequences with weights

In this subsection, we construct a version with weights, valid for all function

fields, of the best approximation sequences associated with a completely irra-

tional matrix by Bugeaud-Zhang [BZ19].

A matrix A ∈ Mm,n(Kv) is said to be completely irrational if ⟨Ay⟩r ̸= 0

for every y ∈ Rn
v − {0}. Note that this does not depend on the weight r, and

that the fact that A is completely irrational might not necessarily imply that
tA is completely irrational.

Remark 4.1.6. Let A ∈ Mm,n(Kv) be such that tA is not completely irra-

tional.

(1) The matrix tA is (s, r)-singular on average.

(2) For every ϵ > 0 small enough, the set BadA(ϵ) has full Hausdorff di-

mension.

Proof. By assumption, there exist x ∈ Rn
v and y = (y1, . . . , ym) ∈ Rm

v − {0}
such that tA y − x = 0.
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(1) For every ϵ > 0, if ℓ0 = ⌈logqv ∥y ∥r⌉ then for all integers N ≥ ℓ0 and

ℓ ∈ {ℓ0, . . . , N}, we have ⟨ tAy⟩s = 0 ≤ ϵ q− ℓ
v and ∥y ∥r ≤ qℓv, hence

tA is

(s, r)-singular on average (see Equation (1.8)).

(2) For every θ = (θ1, . . . , θm) ∈ Km
v , let

y · θ =
m∑
j=1

yi θi ∈ Kv .

For every ϵ ∈ ]0, 1
∥y ∥r ], let Uy,ϵ =

{
θ ∈ Km

v : |⟨y · θ⟩| ≥ ( ϵ ∥y ∥r)min r
}
. If

ϵ is small enough, then the set Uy,ϵ contains a closed ball of positive radius:

For instance, let j0 ∈ {1, . . . ,m} be such that yj0 ̸= 0 ; define θ0,j = 0 if

j ̸= j0, θ0,j0 = πv
yj0

and θ0 = (θ0,1, . . . , θ0,m) ; then it is easy to check using the

ultrametric inequality that the closed ball B(θ0,
1

q2v ∥y ∥) is contained in Uy,ϵ if

ϵ < q
− 1

min r
v ∥y ∥−1

r .

Let us prove thatBadA(ϵ) contains Uy,ϵ, which implies that dimH

(
BadA(ϵ)

)
=

m if ϵ is small enough. Let θ ∈ Uy,ϵ and (y′,x′) ∈ Rm
v × (Rn

v − {0}).
If ∥y ∥r∥Ax′ + y′ − θ ∥r ≥ 1, then since x′ ∈ Rn

v − {0} so that ∥x′ ∥s ≥ 1,

we have

∥x′ ∥s ∥Ax′ + y′ − θ ∥r ≥
1

∥y ∥r
∥y ∥r ∥Ax′ + y′ − θ∥r ≥

1

∥y ∥r
≥ ϵ .

If ∥y ∥r ∥Ax′+y′−θ ∥r ≤ 1, then since y · (Ax′+y′) = ( tAy) ·x′+y ·y′ =

x · x′ + y · y′ ∈ Rv, and since θ ∈ Uy,ϵ, we have

∥x′ ∥s ∥Ax′ + y′ − θ ∥r ≥
1

∥y ∥r
∥y ∥r ∥Ax′ + y′ − θ ∥r

≥ 1

∥y ∥r
(

max
1≤j≤m

∥y ∥ rjr ∥Ax′ + y′ − θ ∥ rjr
) 1

min r

≥ 1

∥y ∥r
∣∣y · (Ax′ + y′ − θ)

∣∣ 1
min r ≥ 1

∥y ∥r
|⟨y · θ⟩|

1
min r ≥ ϵ .

Therefore θ ∈ BadA(ϵ), as wanted.

For every matrix A ∈ Mm,n(Kv), a best approximation sequence for A

with weights (r, s) is a sequence (yi)i≥1 in Rn
v such that, with Yi = ∥yi ∥s and

Mi = ⟨Ayi⟩r,
• the sequence (Yi)i≥1 is positive and strictly increasing,
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• the sequence (Mi)i≥1 is positive and strictly decreasing, and

• for every y ∈ Rn
v − {0} with ∥y ∥s < Yi+1, we have ⟨Ay⟩r ≥Mi.

We denote by lcm r the least common multiple of r1, . . . , rm, and similarly for

lcm s.

Lemma 4.1.7. Assume that A ∈ Mm,n(Kv) is completely irrational.

(1) There exists a best approximation sequence (yi)i≥1 for A with weights

(r, s).

(2) If (yi)i≥1 is a best approximation sequence for A with weights (r, s), then

i) we have Mi ∈ q
1

lcm r
Z

v and Mi ∈ q
1

lcm r
Z≤0

v if i is large enough,

ii) we have Yi ∈ q
1

lcm s
Z≥0

v and Yi ≥ q
i−1
lcm s
v for every i ≥ 1,

iii) the sequence
(
Mi Yi+1

)
i≥1

is uniformly bounded.

Note that a best approximation sequence might be not unique (and the

terminology “best”, though traditional, is not very appropriate). When m =

n = r1 = s1 = 1, K = Fq(Z) and v = ∞, then A ∈ Kv is completely irrational

if and only if A ∈ Kv −K, and with
(
Pk
Qk

)
k≥0

the sequence of convergents of

A (see for instance [Las00]), we may take yi = Qi−1 for all i ≥ 1.

If A ∈ Mm,n(Kv) is not completely irrational, a best approximation se-

quence for A with weights (r, s) is a finite sequence (yi)1≤i≤i0 in Rn
v , such

that, with Yi = ∥yi ∥s and Mi = ⟨Ayi⟩r,
• 1 = Y1 < · · · < Yi0 ,

• M1 > · · · > Mi0 = 0,

• for all i ∈ {1, . . . , i0 − 1} and y ∈ Rn
v − {0} with ∥y ∥s < Yi+1, we have

⟨Ay⟩r ≥Mi, and

• which stops at the first i0 such that there exists z ∈ Rn
v with 0 < ∥ z ∥s ≤

Yi0 and ⟨A z⟩r = 0.

The proof of Lemma 4.1.7 is similar to the one given after [BZ19, Def. 3.3]

in the particular case when K = Fq(Z), v = ∞ and without weights.

Proof. (1) Let us prove by induction on i ≥ 1 that there exist y1, . . . ,yi in R
n
v

such that, with Yj = ∥yj ∥s and Mj = ⟨Ayj⟩r for every 1 ≤ j ≤ i, we have

1 = Y1 < · · · < Yi, M1 > · · · > Mi > 0, and (using M0 = +∞ by convention)

(ai) we have ⟨Ay⟩r ≥Mi−1 for every y ∈ Rn
v − {0} with ∥y ∥s < Yi,

(bi) we have ⟨Ay⟩r ≥Mi for every y ∈ Rn
v − {0} with ∥y ∥s ≤ Yi.
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Note that {x ∈ Rv : |x | ≤ 1} = Rv ∩ Ov = Fq by Equation (4.1). Hence

the elements with smallest s-quasinorm in Rn
v − {0} are the elements in the

finite set Fnq − {0}, which is the set of elements in Rn
v with s-quasinorm 1.

Furthermore, the set {∥y ∥s : y ∈ Rn
v − {0}} is contained in q

⋃n
j=1

1
sj

Z≥0

v ⊂
q

1
lcm s

Z≥0
v . Similarly, for every x ∈ Km

v − {0}, we have ⟨x⟩r ∈ q
1

lcm r
Z

v .

Therefore there exists an element y1 ∈ Rn
v with ∥y1 ∥s = 1 such that

⟨Ay1⟩r = min{ ⟨Ay⟩r : y ∈ Rn
v , ∥y ∥s = 1 } .

We thus have Y1 = ∥y1 ∥s = 1 andM1 = ⟨Ay1⟩r > 0 since A is completely

irrational. There is no y ∈ Rn
v − {0} with ∥y ∥s < Y1, and if ∥y ∥s = Y1, then

⟨Ay⟩r ≥M1, hence the claims (a1) and (b1) are satisfied.

Assume by induction that y1, . . . ,yi as above are constructed. Let

S = {y ∈ Rn
v : ∥y ∥s > Yi, ⟨Ay⟩r < Mi } .

Note that the set {z ∈ Rn
v , 0 < ∥ z ∥s ≤ Yi} is finite by the discreteness

of Rn
v , and ϵi = min{ ⟨A z⟩r : z ∈ Rn

v , 0 < ∥ z ∥s ≤ Yi } is positive, since

A is completely irrational. Corollary 4.1.4 of Dirichlet’s theorem implies in

particular, by taking in its statement α large enough, that for every ϵ > 0, there

exists y ∈ Rn
v −{0} such that ⟨Ay⟩r < ϵ. Applying this with ϵ = min{Mi, ϵi} >

0 proves that the set S is nonempty. Hence the set Smin of elements of S

with minimal s-quasinorm, which is finite again by the discreteness of Rn
v , is

nonempty. Therefore there exists yi+1 ∈ Smin such that

⟨Ayi+1⟩r = min{ ⟨A z⟩r : z ∈ Smin } .

Then Yi+1 = ∥yi+1 ∥s = min ∥S ∥s > Yi by the definition of the set S. We

also have that Mi+1 = ⟨Ayi+1⟩r < Mi since yi+1 ∈ Smin ⊂ S, and again by

the definition of S.

Let us now prove that yi+1 satisfies the properties (ai+1) and (bi+1).

• Let y ∈ Rn
v − {0} be such that ∥y ∥s < Yi+1. If ∥y ∥s ≤ Yi, then by

the induction hypothesis (bi), we have ⟨Ay⟩r ≥ Mi, as wanted for Property

(ai+1). If ∥y ∥s > Yi, then by the definition of S, we have ⟨Ay⟩r ≥ Mi as

wanted for Property (ai+1), otherwise y would be an element of S with s-

quasinorm strictly less than the minimum s-quasinorm of the elements of S,

a contradiction.
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• Let y ∈ Rn
v − {0} be such that ∥y ∥s ≤ Yi+1. Either ∥y ∥s < Yi+1,

in which case, as just seen, ⟨Ay⟩r ≥ Mi ≥ Mi+1, as wanted for Property

(bi+1). Or ∥y ∥s = Yi+1 > Yi, in which case either ⟨Ay⟩r ≥ Mi ≥ Mi+1, as

wanted for Property (bi+1), or ⟨Ay⟩r < Mi, so that y belongs to Smin, hence

⟨Ay⟩r ≥ min{ ⟨A z⟩r : z ∈ Smin } =Mi+1.

By induction, this proves Assertion (1) of Lemma 4.1.7.

(2) i) This follows from the facts that Mi ∈ q
1

lcm r
Z

v and that Mi+1 < Mi.

ii) Since Y1 = 1, this follows by induction from the facts that Yi ∈ q
1

lcm s
Z

v

and that Yi+1 > Yi.

iii) Let α =
⌊
logqv(q

−deg v+g−1
min s Yi+1)

⌋
− 1, which satisfies α > 1

min r +
g−1

(min r)(deg v) if i is large enough, by Assertion (2) ii). By Corollary 4.1.4, there

exists y ∈ Rn
v − {0} such that

∥y ∥s ≤ q
deg v+g−1

min s qαv < q
deg v+g−1

min s q
logqv (q

−deg v+g−1
min s Yi+1)

v = Yi+1

and

⟨Ay⟩r ≤ q
deg v+g−1

min r q−αv

≤ q
deg v+g−1

min r q
−
(
logqv (q

−deg v+g−1
min s Yi+1)−2

)
v = q(deg v+g−1)

(
1

min r
+ 1

min s

)
+2deg v (Yi+1)

−1 .

Since Mi ≤ min{ ⟨Ay⟩r : y ∈ Rn
v , 0 < ∥y ∥s < Yi+1 } by the definition of a

best approximation sequence, the result follows.

4.1.4 Transference theorems with weights

In this section, we will show that a matrix A ∈ Mm,n(Kv) is singular on

average if and only if its transpose tA is singular on average. To do this,

following [Cas57, Chap. V], we prove a transference principle between two

problems of homogeneous approximations with weights. See also [GE15, Ger20]

in the disjoint case of the field Q.

Let d ∈ Z≥2 be a positive integer at least 2. For all ξ = (ξ1, . . . , ξd) and

θ = (θ1, . . . , θd) in K
d
v , we denote

ξ · θ =

d∑
k=1

ξk θk .
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Let α1, . . . , αd ∈ Z be integers and let α =
∑d

k=1 αk. We consider the paral-

lelepiped

P =
{
ξ = (ξ1, . . . , ξd) ∈ K d

v : ∀ k = 1, . . . , d, | ξk | ≤ qαkv
}
.

Following Schmidt’s terminology [Sch80, page 109] in the case of the field Q
(building on Mahler’s compound one), we call the parallelepiped

P∗ =
{
ξ = (ξ1, . . . , ξd) ∈ K d

v : ∀ k = 1, . . . , d, | ξk | ≤
1

qαkv

d∏
i=1

qαiv = qα−αkv

}
the pseudocompound of P. Note that P and P∗ are preserved by the multi-

plication of the components of their elements by elements of Ov.

Theorem 4.1.8. With P and P∗ as above, for every F ∈ SLd(Kv),

if P∗ ∩ tF−1(R d
v ) ̸= {0}, then π−βdv P ∩ F (R d

v ) ̸= {0},

where

βd =
⌈ 1

d− 1

(
d+ 1 +

(g − 1)d

deg v

)⌉
.

Remark 4.1.9. The Rv-lattice
tF−1(R d

v ) is called the dual lattice of the Rv-

lattice F (R d
v ) since we have z ·w ∈ Rv for all z ∈ tF−1(R d

v ) and w ∈ F (R d
v ).

They have the same covolume as R d
v , since det(F ) = 1.

Proof. Let z = (z1, . . . , zd) ∈ P∗ ∩ tF−1(R d
v ) − {0} and κ0 = max{k ∈ Z≥0 :

z ∈ πkvP∗}. Up to permuting the coordinates, we may assume that, for all

k = 2, . . . , d, we have

(4.3) | z1 | = qα−α1−κ0
v and | zk | ≤ qα−αk−κ0v .

With Fk the k-th row of F , let us consider the Rv-lattice Λ = M(R d
v )

where

M =


π−1
v

∑d
k=1 zkFk

πβd+α2
v F2

...

πβd+αdv Fd

 .
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By subtracting to the first row a linear combination of the other rows,

and since detF = 1, the determinant of the above matrix M is equal to

π
(d−1)βd+α−α1−1
v z1. By Equations (4.3) and (4.2), we thus have

Covol(Λ) = det(M) Covol(R d
v ) = q1−κ0−(d−1)βd

v q(g−1)d .

Since d ≥ 2 and βd ≥ 1
d−1

(
d + 1 + (g−1)d

deg v

)
, Corollary 4.1.2 applied to the

Rv-lattice Λ gives that

λ1(Λ) ≤ qv Covol(Λ)
1
d ≤ 1.

Hence, by the definition of the first minimum λ1(Λ), there exists w ∈ R d
v −{0}

such that for every k = 2, . . . , d, we have

(4.4) | z · F (w) | ≤ q−1
v < 1 and |Fk(w) | ≤ qβd+αkv .

Since z ∈ tF−1(R d
v ) and w ∈ R d

v , we have z ·F (w) ∈ Rv by the above Remark.

The first inequality of Equation (4.4) hence implies that z · F (w) = 0, which

means that

z1F1(w) = −
d∑

k=2

zkFk(w) .

By the ultrametric property of | · |, by Equations (4.3) and (4.4), we have

qα−α1−κ0
v |F1(w) | = | z1F1(w) | ≤ max

2≤k≤d
| zkFk(w) |

≤ max
2≤k≤d

qα−αk−κ0v qβd+αkv = qα+βd−κ0v .

Therefore |F1(w) | ≤ qβd+α1
v and with the second inequality of Equation (4.4),

we conclude that F (w) ∈ πβdv P.

Corollary 4.1.10. There exist κ1, κ2, κ3, κ4 ≥ 0 with κ2 > 0, depending only

on m, n, g, deg v, r and s, such that for all A ∈ Mm,n(Kv) and ϵ ∈ q
Z≤−1
v ,

for every large enough Y ∈ q
Z≥1
v , if there exists y ∈ Rn

v − {0} such that

(4.5) ⟨Ay⟩r ≤ ϵ Y −1 and ∥y ∥s ≤ Y ,

then there exists x ∈ Rm
v − {0} such that

(4.6) ⟨ tAx⟩s ≤ qκ1v ϵκ2 X−1 and ∥x ∥r ≤ X ,
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where X = qκ3v ϵ−κ4 Y .

Proof. Let |s| =
∑n

j=1 sj . Denoting αϵ = − logqv ϵ ∈ Z≥1 and αY = logqv Y ∈
Z≥1, we define δ = q−αδv and Z = qαZv Y where

(4.7) αδ =
⌊ αϵ − 1

|s|
(

1
min r +

1
min s

)
− 1

⌋
and αZ =

⌈( |s|
min s

− 1
)
αδ

⌉
.

Note that αδ is well defined since |s|
min s ≥ 1, and that αδ and αZ are nonnega-

tive. We have (
|s|
( 1

min r
+

1

min s

)
− 1
)
αδ ≤ αϵ − 1 ,

hence
( |s|
min s

− 1
)
αδ + 1 ≤ αϵ −

|s|
min r

αδ ,

therefore
( |s|
min s

− 1
)
αδ ≤ αZ ≤ αϵ −

|s|
min r

αδ .(4.8)

Let d = m+ n ≥ 2. Let us consider the following parallelepipeds

Q =

{
ξ = (ξ1, . . . , ξd) ∈ K d

v :
∀ i = 1, . . . ,m, | ξi | ≤ ϵri Y −ri

∀ j = 1, . . . , n, | ξm+j | ≤ Y sj

}
,

P =

{
ξ = (ξ1, . . . , ξd) ∈ K d

v :
∀ i = 1, . . . ,m, | ξi | ≤ Zri

∀ j = 1, . . . , n, | ξm+j | ≤ δsj Z−sj

}
.

Since
∑m

i=1 ri =
∑n

j=1 sj , the pseudocompound P∗ of P is equal to

P∗ =

{
ξ = (ξ1, . . . , ξd) ∈ K d

v :
∀ i = 1, . . . ,m, | ξi | ≤ δ|s| Z−ri

∀ j = 1, . . . , n, | ξm+j | ≤ δ|s|−sjZsj

}
.

By the right inequality of Equation (4.8), for every i = 1, . . . ,m, we have

δ|s|Z−ri = q−|s|αδ−riαZ
v Y −ri ≥ q

−ri(αZ+ |s|
min r

αδ)
v Y −ri ≥ ϵri Y −ri .

By the left inequality of Equation (4.8), for every j = 1, . . . , n, we have

δ|s|−sjZsj = q
−(|s|−sj)αδ+sjαZ
v Y sj ≥ q

sj(αZ−(
|s|

min s
−1)αδ)

v Y sj ≥ Y sj .

Therefore Q is contained in P∗.

Now, by the assumption of Corollary 4.1.10, let y ∈ Rn
v −{0} be such that
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the inequalities (4.5) are satisfied. Then there exists (x′,y) ∈ Rm
v ×(Rn

v −{0})
such that

∥Ay − x′∥r ≤ ϵ Y −1 and ∥y ∥s ≤ Y .

Therefore

Q∩

(
Im A

0 In

)
R d
v ̸= {0} .

Since Q ⊂ P∗, this implies that

P∗ ∩

(
Im A

0 In

)
R d
v ̸= {0} .

By Theorem 4.1.8, we have

π−βdv P ∩

(
Im 0

− tA In

)
R d
v ̸= {0} .

Then there exists (x,y′) ∈ (Rm
v ×Rn

v )− {0} such that

(4.9) ∥πβdv x∥r ≤ Z and ∥πβdv (− tAx− y′)∥s ≤ δ Z−1 .

The above inequality on the left-hand side and the two equalities of Equa-

tion (4.7) give

∥x ∥r ≤ q
βd

min r
v Z = q

βd
min r

+αZ
v Y ≤ q

βd
min r

+1+(
|s|

min s
−1) αϵ−1

|s|( 1
min r+ 1

min s )−1

v Y

≤ q
βd

min r
+1

v ϵ
−

|s|
min s−1

|s|( 1
min r+ 1

min s )−1 Y .

If κ3 = βd
min r + 1 > 0 and κ4 =

|s|
min s

−1

|s|( 1
min r

+ 1
min s

)−1
≥ 0, this proves the right

inequality in Equation (4.6) with X = qκ3v ϵ−κ4 Y .

The right inequality in Equation (4.9), since βd ≥ 0 and by using the left
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inequality in Equation (4.8) and the definition (4.7) of αδ, gives

⟨tAx⟩s ≤ q
βd

min s
v δ Z−1 = q

βd
min s

−αδ−αZ
v Y −1 ≤ q

βd
min s

− |s|
min s

αδ+κ3
v ϵ−κ4 X−1

≤ q

βd
min s

− |s|
min s

(
αϵ−1

|s|
(

1
min r+ 1

min s

)
−1

−1
)
+κ3+

|s|
min s−1

|s|( 1
min r+ 1

min s )−1
αϵ

v X−1

= q

βd
min s

+
|s|

min s

(
1

|s|
(

1
min r+ 1

min s

)
−1

+1
)
+κ3

v ϵ
1

|s|( 1
min r+ 1

min s )−1 X−1 .

This proves the left inequality in Equation (4.6) for appropriate positive con-

stants κ1 and κ2.

If x = 0, then we have y′ ̸= 0 and ∥y′ ∥s ≤ qκ1−κ3v ϵκ2+κ4 Y −1, which

contradicts the fact that y′ ∈ Rn
v if Y is large enough. This concludes the

proof of Corollary 4.1.10.

Corollary 4.1.11. Let m,n be positive integers and A ∈ Mm,n(Kv). Then A

is (r, s)-singular on average if and only if tA is (s, r)-singular on average.

Proof. This follows from Corollary 4.1.10.

It follows from this corollary and from Remark 4.1.6 that if A ∈ Mm,n(Kv)

is such that tA is not completely irrational, then A is (r, s)-singular on average.

4.2 Characterisation of singular on average prop-

erty

In this section, we give a characterisation of the singular on average property

with weights in terms of an asymptotic property in average of the best ap-

proximation sequence with weights. In the real case, the relation between the

singular property and the best approximation sequence has been studied in

[Che11, Chev13, CC16, LSST20]. Also in the real case, and with weights, the

relation (similar to the one below) between the singular on average property

and the best approximation sequence has been studied in [KKL, Prop. 6.7].

For the sake of later applications, we work with transposes of matrices.

Theorem 4.2.1. Let A ∈ Mm,n(Kv) and let (yi)i≥1 be a best approxima-

tion sequence in Km
v for tA with weights (s, r). The following statements are

equivalent.
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1. For all a > 1 and ϵ > 0, we have

lim
N→∞

1

N
#{ ℓ ∈ {1, . . . , N} : ∃ y ∈ Rm

v −{0}, ⟨tAy⟩s ≤ ϵ a− ℓ, ∥y ∥r ≤ aℓ } = 1 .

2. The matrix tA is (s, r)-singular on average.

3. There exists a > 1 such that for every ϵ > 0, we have

lim
N→∞

1

N
#{ ℓ ∈ {1, . . . , N} : ∃ y ∈ Rm

v −{0}, ⟨tAy⟩s ≤ ϵ a− ℓ, ∥y ∥r ≤ aℓ } = 1 .

4. For every ϵ′ > 0, we have

lim
k→∞

1

logqv Yk
card

{
i ≤ k :Mi Yi+1 > ϵ′

}
= 0 .

Proof. Since Assertion (2) is Assertion (1) for a = qv > 1, it is immediate that

(1) implies (2) implies (3).

Let us first prove that Assertion (3) implies Assertion (4). Let a > 1 be as

in Assertion (3) and let ϵ′ ∈ ]0, 1[ . Let ϵ = ϵ′

a > 0.

We may assume that the set I = {i ∈ Z≥1 :MiYi+1 > ϵ′} is infinite, other-

wise Assertion (4) is clear since limk→∞ Yk = +∞. We consider the increasing

sequence (ij)j∈Z≥1
of positive integers such that I = {ij : j ≥ 1}. For every

j ≥ 1, by taking the logarithm in base a, we thus have loga ϵ
′ − logaMij <

loga Yij+1, hence

(4.10) loga ϵ− logaMij < loga Yij+1 − 1 .

Note that for every i ≥ 1 and X ∈ [Yi, Yi+1[ , the system of inequalities

(4.11) ⟨tAy⟩s ≤ ϵX−1 and 0 < ∥y ∥r ≤ X

has a solution y ∈ Rm
v if and only ifMi ≤ ϵX−1. Indeed, if the latter inequality

is satisfied, then yi is a solution of the system (4.11) since Mi = ⟨tAyi⟩s and

X ≥ Yi = ∥yi ∥r. Conversely, if this system has a solution, then since

Mi ≤ min{ ⟨ tAy⟩s : y ∈ Rm
v , 0 < ∥y ∥r < Yi+1 }

by the definition of a best approximation sequence, the inequalityMi ≤ ϵX−1

holds since X < Yi+1. Hence, for every integer ℓ ∈ [loga Yi, loga Yi+1[ , the
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system of inequalities (4.11) has no integral solutions for X = aℓ if and only if

(4.12) loga ϵ− logaMi < ℓ < loga Yi+1 .

There exists an integer j0 ≥ 1 such that for every integer j ≥ j0, we

have loga Yij+1 ≥ 2 by Lemma 4.1.7 (2) ii). If ℓ is the integer in the interval

[loga Yij+1 − 1, loga Yij+1[ (which is half-open and has length 1, hence does

contain one and only one integer), then ℓ ≥ 1 and by Equations (4.10) and

(4.12), the system (4.11) has no integral solutions for X = aℓ.

Let u = ⌈(lcm r)(logqv a)⌉, which belongs to Z≥1. By Lemma 4.1.7 (2) ii),

for every k ∈ Z≥1, since the sequence (ij)j∈Z≥1
is increasing, we have

Yik+u+1 ≥ q
u

lcm r
v Yik+1 ≥ a Yik+1 .

The intervals [loga Yiuj+1−1, loga Yiuj+1[ and [loga Yiu(j+1)+1−1, loga Yiu(j+1)+1[

are hence disjoint for every j ∈ Z≥1. Thus, if j is large enough, with Nj =

⌈loga Yiuj+1⌉, the number n(Nj) of integers ℓ ∈ {1, . . . , Nj} such that the sys-

tem of inequalities (4.11) has no integral solutions for X = aℓ is at least j−j0.
Therefore j−j0

⌈loga Yiuj+1⌉ ≤ n(Nj)
Nj

tends to 0 as j → +∞, by Assertion (3). This

implies that j
loga Yij

tends to 0 as j → +∞.

For every integer k ≥ 1, let j(k) ≥ 1 be the unique positive integer such

that we have ij(k) ≤ k < ij(k)+1, so that j(k) = card{i ≤ k : MiYi+1 > ϵ′}.
Hence, since (Yi)i≥1 is increasing, we have

lim
k→∞

1

logqv Yk
card

{
i ≤ k :MiYi+1 > ϵ′

}
≤ ln qv

ln a
lim
k→∞

j(k)

loga Yij(k)
= 0 ,

which proves Assertion (4).

Let us now prove that Assertion (4) implies Assertion (1). Let a > 1 and

ϵ ∈ ]0, 1[ . By Lemma 4.1.7 (2) iii), let c ≥ 1 be such that for every i ≥ 1, we

have MiYi+1 ≤ ac. By Equation (4.12), since the number of integer points in

an open interval is at most equal to its length, for every i ≥ 1, the number of

integers ℓ ∈ [loga Yi, loga Yi+1[ such that the system of inequalities (4.11) has

no integral solutions for X = aℓ is at most

loga Yi+1 − (loga ϵ− logaMi) =
(
logaMiYi+1 − loga ϵ

)
.

For everyN ≥ 1 large enough, let kN ≥ 1 be such thatN ∈ [loga YkN , loga YkN+1[
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and let n′(N) be the number of integers ℓ ∈ {1, . . . , N} such that the system

of inequalities (4.11) has no integral solutions for X = aℓ. Then

n′(N)

N
≤ 1

N

kN∑
i=1

max
{
0, logaMiYi+1 − loga ϵ

}
≤
(
c− loga ϵ

) 1

loga YkN
card

{
i ≤ kN :MiYi+1 > ϵ

}
.

This last term tends to 0 as N → +∞ by Assertion (4) applied with ϵ′ = ϵ.

Therefore limN→+∞
n′(N)
N = 0, thus proving Assertion (1).

4.3 Full Hausdorff dimension for singular on aver-

age matrices

4.3.1 Modified Bugeaud-Zhang sequences

In this subsection, we construct a subsequence with controlled growth of the

best approximation sequence with weights of a matrix, assuming that its trans-

pose is singular on average for those weights. We use as inspiration [BZ19, page

470] in the special case of K = Fq(Z) and v = v∞, and the first claim of the

proof of [BKLR21, Theo. 2.2] in the case of the field Q (with characteristic

zero).

Proposition 4.3.1. Let A ∈ Mm,n(Kv) be such that tA is completely ir-

rational and (s, r)-singular on average. Let (yi)i∈Z≥1
be a best approxima-

tion sequence in Km
v for tA with weights (s, r), and let c > 0 be such that

MiYi+1 ≤ qcv for every i ∈ Z≥1. For all a > b > 0, there exists an increasing

map φ : Z≥1 → Z≥1 such that

(1) for every i ∈ Z≥1, we have

(4.13) Yφ(i+1) ≥ qbv Yφ(i) and Mφ(i) Yφ(i+1) ≤ qb+cv ,

(2) we have

(4.14) lim sup
k→∞

k

logqv Yφ(k)
≤ 1

a
.

Proof. Let A, (yi)i∈Z≥1
and a, b be as in the statement. We start by proving
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a particular case, that will be useful in two of the four cases below.

Lemma 4.3.2. If furthermore we have limk→∞ Y
1
k
k = +∞, then there exists

an increasing map φ : Z≥1 → Z≥1 such that Equations (4.13) and (4.14) are

satisfied.

Proof. The fact that limk→∞ Y
1
k
k = +∞ implies that the set

J0 = {j ∈ Z≥1 : Yj+1 ≥ qbv Yj}

is infinite. We construct the increasing sequence (φ(i))i∈Z≥1
of positive integers

by stacks {φ(ik + 1), . . . , φ(ik+1)} with ik+1 > ik, by induction on k ∈ Z≥0.

For k = 0, let i0 = 0, let i1 = 1 and let φ(1) be the smallest element of J0.

For k ∈ Z≥0, assume that ik and φ(ik) are constructed such that φ(ik) ∈ J0

and Equation (4.13) holds for every i ≤ ik−1. Let us construct ik+1 and φ(ik+

1), . . . , φ(ik+1) such that φ(ik+1) ∈ J0 and Equation (4.13) holds for every

i ≤ ik+1−1. Let j0 be the smallest element of J0 greater than φ(ik). Let r
′ = 0

if the set {j > φ(ik) : Yj0 ≥ qbv Yj} is empty. Otherwise, let r′ ∈ Z≥1 be the

maximal integer such that by induction there exist j1, j2, . . . , jr′ ∈ Z≥1 such

that for ℓ = 1, . . . , r′, the set {j > φ(ik) : Yjℓ−1
≥ qbv Yj} is nonempty and for

ℓ = 1, . . . , r′+1 the integer jℓ is its largest element. Since the sequence (Yi)i∈Z≥1

is increasing, this in particular implies that jℓ−1 > jℓ for ℓ = 1, . . . , r′+1, which

itself ensures the finiteness of r′. Now we define ik+1 = ik + r′ + 1 and

φ(ik + 1) = jr′ , φ(ik + 2) = jr′−1, . . . , φ(ik + r′) = j1, φ(ik+1) = j0 .

By construction, for ℓ = 1, . . . , r′, we have

Yφ(ik+ℓ+1) = Yjr′−ℓ ≥ qbv Yjr′−ℓ+1
= qbv Yφ(ik+ℓ) .

As φ(ik + 1) = jr′ > φ(ik), we have Yφ(ik+1) ≥ Yφ(ik)+1 ≥ qbv Yφ(ik) since

φ(ik) ∈ J0. Note that φ(ik+1) = j0 ∈ J0. This proves the claim on the left

hand side of Equation (4.13) for i ≤ ik+1 − 1.

By the maximality property of jr′−ℓ in the above construction, for every

ℓ = 1, . . . , r′, we have Yφ(ik+ℓ+1) = Yjr′−ℓ < qbv Yjr′−ℓ+1+1 = qbv Yφ(ik+ℓ)+1. By

the maximality of r′ in the above construction, we have Yφ(ik+1) < qbv Yφ(ik)+1.

Hence, by the definition of c, for every ℓ = 0, . . . , r′, we have

Mφ(ik+ℓ)Yφ(ik+ℓ+1) ≤Mφ(ik+ℓ) Yφ(ik+ℓ)+1 q
b
v ≤ qb+cv .
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This proves the claim on the right hand side of Equation (4.13) for i ≤ ik+1−1.

Since limk→∞
k

logqv Yk
= 0, Equation (4.14) is satisfied for φ, and this

concludes the proof of Lemma 4.3.2.

Now in what follows, we will discuss four cases on the configuration in Z≥1

of the set

J = {j ∈ Z≥1 :Mj Yj+1 ≤ qb+c−3a
v } .

By Theorem 4.2.1 (4) applied with ϵ′ = qb+c−3a
v , we have

(4.15) lim
k→∞

1

logqv Yk
card

{
i ≤ k : i ∈ cJ

}
= 0 .

Case 1. Assume first that J is finite.

By Equation (4.15), we then have limk→∞
k

logqv Yk
= 0, hence Proposition

4.3.1 follows from Lemma 4.3.2.

Case 2. Let us now assume that there exists j∗ ∈ Z≥1 such that j ∈ J for

every j ≥ j∗.

Let us consider the auxiliary increasing sequence (ψ(i))i∈Z≥1
of positive

integers defined by induction by setting ψ(1) = min{j∗ ∈ Z≥1 : ∀ j ≥ j∗, j ∈
J } and, for every i ≥ 1,

ψ(i+ 1) = min{j ∈ Z≥1 : q
a
v Yψ(i) ≤ Yj} .

Since the sequence (Yi)i∈Z≥1
is increasing and converges to +∞, this is well

defined, and ψ is increasing, hence takes value in J by the assumption of Case

2. Let us now define the sequence (φ(i))i∈Z≥1
by, for every i ∈ Z≥1,

φ(i) =

{
ψ(i) if Mψ(i) Yψ(i+1) ≤ qb+c−av ,

ψ(i+ 1)− 1 otherwise.

Note that the sequence (φ(i))i∈Z≥1
is increasing with φ ≥ ψ.

Let i ∈ Z≥1. Let us prove that

(4.16) Yφ(i+1) ≥ qav Yφ(i) and Mφ(i)Yφ(i+1) ≤ qb+cv ,

by discussing on the values of φ(i) and φ(i + 1). This implies that Equation

(4.13) is satisfied since a ≥ b, and that Equation (4.14) is satisfied since by

induction Yφ(k) ≥ q
a (k−1)
v Yφ(1) for every k ∈ Z≥1.
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• Assume that φ(i) = ψ(i) and φ(i + 1) = ψ(i + 1). By the definition of

ψ(i+ 1), we have

Yφ(i+1) = Yψ(i+1) ≥ qav Yψ(i) = qav Yφ(i) .

If ψ(i) ̸= ψ(i+ 1)− 1, then by the definition of φ(i), we have

Mφ(i) Yφ(i+1) =Mψ(i) Yψ(i+1) ≤ qb+c−av ≤ qb+cv .

If ψ(i) = ψ(i+ 1)− 1, then φ(i+ 1) = φ(i) + 1 and by the definition of c, we

have

Mφ(i) Yφ(i+1) =Mφ(i) Yφ(i)+1 ≤ qcv ≤ qb+cv .

This proves Equation (4.16).

• Assume that φ(i) = ψ(i) and φ(i+1) = ψ(i+2)− 1. Since the sequence

(Yi)i∈Z≥1
is increasing and by the definition of ψ(i+ 1), we have

Yφ(i+1) = Yψ(i+2)−1 ≥ Yψ(i+1) ≥ qav Yψ(i) = qav Yφ(i) .

We have qav Yψ(i+1) > Yψ(i+2)−1 by the minimality property of ψ(i + 2). If

ψ(i + 1) > ψ(i) + 1, then Mψ(i) Yψ(i+1) ≤ qb+c−av by the dichotomy in the

definition of φ(i). Hence

Mφ(i) Yφ(i+1) =Mψ(i) Yψ(i+2)−1 ≤Mψ(i) Yψ(i+1) q
a
v ≤ qb+c−av qav = qb+cv .

If ψ(i+ 1) = ψ(i) + 1, then Mψ(i) Yψ(i)+1 ≤ qb+c−3a
v since ψ(i) ∈ J . Hence

Mφ(i) Yφ(i+1) =Mψ(i) Yψ(i+2)−1 ≤Mψ(i) Yψ(i)+1 q
a
v ≤ qb+c−3a

v qav ≤ qb+cv .

This proves Equation (4.16).

• Assume that φ(i) = ψ(i+1)−1 and φ(i+1) = ψ(i+1). Since ψ(i+1)−1 ∈
J , we have

Mφ(i)Yφ(i+1) =Mψ(i+1)−1Yψ(i+1) ≤ qb+c−3a
v ≤ qb+cv .

If ψ(i+ 1)− 1 = ψ(i), then by the definition of ψ(i+ 1), we have

Yφ(i+1)

Yφ(i)
=

Yψ(i+1)

Yψ(i+1)−1
=
Yψ(i+1)

Yψ(i)
≥ qav .
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If ψ(i+1)− 1 > ψ(i), then we have Mψ(i) Yψ(i+1) > qb+c−av by the dichotomy

in the definition of φ(i), we have Yψ(i+1)−1 < qav Yψ(i) ≤ qav Yψ(i)+1 by the

minimality property of ψ(i + 1), and we have Mψ(i) Yψ(i)+1 ≤ qb+c−3a
v since

ψ(i) ∈ J . Therefore

Yφ(i+1)

Yφ(i)
=

Yψ(i+1)

Yψ(i+1)−1
=

Mψ(i) Yψ(i+1)

Mψ(i) Yψ(i+1)−1
≥ qb+c−av

Mψ(i) Yψ(i)+1 qav
≥ qb+c−av

qb+c−3a
v qav

= qav .

This proves Equation (4.16).

• Assume that φ(i) = ψ(i + 1) − 1 and φ(i + 1) = ψ(i + 2) − 1. By the

previous case computations, we have

Yφ(i+1)

Yφ(i)
=
Yψ(i+2)−1

Yψ(i+1)−1
≥

Yψ(i+1)

Yψ(i+1)−1
≥ qav .

We have qav Yψ(i+1) > Yψ(i+2)−1 by the minimality property of ψ(i+2). Hence

since ψ(i+ 1)− 1 ∈ J , we have

Mφ(i)Yφ(i+1) =Mψ(i+1)−1Yψ(i+2)−1 =Mψ(i+1)−1Yψ(i+1)

(Yψ(i+2)−1

Yψ(i+1)

)
≤ qb+c−3a

v qav ≤ qb+cv .

This proves Equation (4.16) and concludes the proof of Case 2.

Case 3. Let us now assume that J and cJ are both infinite, and that the

number of sequences of consecutive elements of J with length at least 3a is

finite.

Let j0 = minJ . Let us write the set Z≥j0 =
⋃
i∈Z≥1

Ci ∪Di as the disjoint

union of nonempty finite sequences Ci of consecutive integers in J and finite

nonempty sequences Di of consecutive integers in cJ with maxCi < minDi ≤
maxDi < minCi+1 for all i ∈ Z≥1. Under the assumption of Case 3, let

i0 ∈ Z≥1 be such that card Ci < 3a for every i ≥ i0. Let k0 = minCi0 .

Then there exists an element of cJ in any finite sequence of 3⌈a⌉+ 1 con-

secutive integers at least k0, so that for every k ∈ Z≥1 we have

k

logqv Yk
≤
k0 + (3⌈a⌉+ 1) card

{
i ≤ k : i ∈ cJ

}
logqv Yk

,

which converges to 0 as k → +∞ by Equation (4.15) and since limk→∞ Yk =
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+∞. Therefore limk→∞ Y
1
k
k = +∞, and Lemma 4.3.2 implies Proposition

4.3.1.

Case 4. Let us finally assume that J and cJ are both infinite, and that there

are infinitely many sequences of consecutive elements of J with length at least

3a.

With the notation (Ci)i∈Z≥1
and (Di)i∈Z≥1

of the beginning of Case 3, let

(ik)k∈Z≥1
be the increasing sequence of positive integers such that {i ∈ Z≥1 :

card Ci ≥ 3a} = {ik : k ∈ Z≥1}.
For every k ∈ Z≥1, let us define an increasing finite sequence (ψk(i))1≤i≤mk+1

of positive integers by setting ψk(1) = minCik and by induction

ψk(i+ 1) = min{ j ∈ Cik : qav Yψk(i) ≤ Yj } ,

as long as this set is nonempty. Since Cik is a finite sequence of consecutive

positive integers with length at least 3a and Yi+1 ≥ q
1

min r
v Yi for every i ∈ Z≥1,

there exists mk ∈ Z≥2 such that ψk(i) is defined for i = 1, . . . ,mk + 1. Note

that ψk(i) belongs to J for i = 1, . . . ,mk+1 since Cik ⊂ J .

As in Case 2, let us define an increasing finite sequence (φk(i))1≤i≤mk of

positive integers by

φk(i) =

{
ψk(i) if Mψk(i) Yψk(i+1) ≤ qb+c−av ,

ψk(i+ 1)− 1 otherwise.

As in the proof of Case 2, since for i = 1, . . . ,mk, the integers ψk(i), ψk(i+1)

as well as ψk(i+ 1)− 1 belong to J , we have, for every i = 1, . . . ,mk − 1,

(4.17) Yφk(i+1) ≥ qav Yφk(i) and Mφk(i) Yφk(i+1) ≤ qb+cv .

Since φk(mk) ∈ Cik and φk+1(1) ∈ Cik+1
, we have φk(mk) < φk+1(1). Let

us define an increasing finite sequence (φ′
k(i))1≤i≤rk+1 of positive integers that

will allow us to interpolate between φk(mk) and φk+1(1). Let j0 = φk+1(1). If

{j ∈ Z≥φk(mk) : Yj0 ≥ qbv Yj} is empty, let r′k = 0 and φ′
k(1) = j0 = φk+1(1).

Otherwise, by decreasing induction, let r′k ∈ Z≥1 be the maximal positive

integer such that there exist j1, . . . , jr′k ∈ Z≥1 such that for ℓ = 1, . . . , r′k, the

set {j ∈ Z≥φk(mk) : Yjℓ−1
≥ qbv Yj} is nonempty and for ℓ = 1, . . . , r′k + 1, the

integer jℓ is its largest element. As in the part of the proof of Case 1 that does

not need some belonging to J0, the sequence (φ
′
k(i) = jr′k+1−i)1≤i≤r′k+1 is well
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defined, it is contained in [φk(mk), φk+1(1)], and for i = 1, . . . , r′k, we have

(4.18) Yφ′
k(i+1) ≥ qbv Yφ′

k(i)
and Mφ′

k(i)
Yφ′

k(i+1) ≤ qb+cv .

Putting alternatively together the sequences (φk(i))1≤i≤mk−1 and (φ′
k(i))1≤i≤r′k

as k ranges over Z≥1, we now define (with the standard convention that an

empty sum is zero) Nk =
∑k−1

ℓ=1 (mℓ − 1 + r′ℓ) and

φ(i) =

{
φk
(
i−Nk

)
if 1 +Nk ≤ i ≤ mk − 1 +Nk

φ′
k

(
i+ 1−mk −Nk

)
if mk +Nk ≤ i ≤ r′k − 1 +mk +Nk .

By Equation (4.17) for i = 1, . . . ,mk−2, by Equation (4.18) for i = 1, . . . , r′k,

and since φ′
k(r

′
k + 1) = φk+1(1), in order to prove that the map φ satisfies

Equation (4.13), hence Assertion (1) of Proposition 4.3.1, we only have to

prove the following lemma.

Lemma 4.3.3. For every k ∈ Z≥1, we have

(4.19) Yφ′
k(1)

≥ qbv Yφk(mk−1) and Mφk(mk−1) Yφ′
k(1)

≤ qb+cv .

Proof. Since φ′
k(1) ≥ φk(mk), hence Yφ′

k(1)
≥ Yφk(mk), the left hand side

of Equation (4.19) follows from the left hand side of Equation (4.17) with

i = mk − 1. If φ′
k(1) = φk(mk), then the right hand side of Equation (4.19)

follows from the right hand side of Equation (4.17) with i = mk − 1.

Let us hence assume that φ′
k(1) > φk(mk), so that

(4.20) Yφ′
k(1)

≤ qbv Yφk(mk) ≤ qav Yφk(mk)

by the maximality of r′k. Let us prove that φk(mk) = ψk(mk). For a contradic-

tion, assume otherwise that φk(mk) = ψk(mk+1)−1 > ψk(mk). As in the third

subcase of Case 2, we have Mψk(mk) Yψk(mk+1) > qb+c−av by the dichotomy in

the definition of φk(mk), we have Yψk(mk+1)−1 < qav Yψk(mk) ≤ qav Yψk(mk)+1

by the minimality property of ψk(mk + 1), and we have Mψk(mk) Yψk(mk)+1 ≤
qb+c−3a
v since ψk(mk) ∈ J . Therefore, as in the third subcase of Case 2, we

have
Yψk(mk+1)

Yψk(mk+1)−1
=

Mψk(mk) Yψk(mk+1)

Mψk(mk) Yψk(mk+1)−1
≥ qav .

Hence by the construction of φ′
k(1), we have φ

′
k(1) = φk(mk), a contradiction

to our assumption that φ′
k(1) > φk(mk). We now discuss on the two possible
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values of φk(mk − 1).

First assume that φk(mk−1) = ψk(mk−1). If ψk(mk−1) ̸= ψk(mk)−1 then

Mψk(mk−1) Yψk(mk) ≤ qb+c−av by the dichotomy in the definition of φk(mk−1).

If on the contrary ψk(mk − 1) = ψk(mk) − 1 then Mψk(mk−1) Yψk(mk) ≤
qb+c−3a
v ≤ qb+c−av since the integer ψk(mk) − 1 belong to J as mk ≥ 2. Since

φk(mk) = ψk(mk) by Equation (4.20), we have

Mφk(mk−1) Yφ′
k(1)

=Mψk(mk−1) Yψk(mk)

( Yφ′
k(1)

Yφk(mk)

)
≤ qb+c−av qav = qb+cv .

This proves the right hand side of Equation (4.19).

Now assume that φk(mk−1) = ψk(mk)−1. Again since φk(mk) = ψk(mk),

since the integer ψk(mk)− 1 belongs to J as mk ≥ 2, and by Equation (4.20),

we have

Mφk(mk−1) Yφ′
k(1)

=Mψk(mk)−1 Yψk(mk)

( Yφ′
k(1)

Yφk(mk)

)
≤ qb+c−3a

v qav ≤ qb+cv .

This proves the right hand side of Equation (4.19), and concludes the proof

of Lemma 4.3.3.

Finally, let us prove Assertion (2) of Proposition 4.3.1. Since there exists

an element of cJ in any finite sequence of 3⌈a⌉+ 1 consecutive integers in the

complement of
⋃
k∈Z≥1

Cik , there exists c0 ≥ 0 such that, for every k ∈ Z≥1,

we have

card{j ≤ φ(k) : j /∈
⋃
k∈Z≥1

Cik}
logqv Yφ(k)

≤
c0 + (3⌈a⌉+ 1) card

{
j ≤ φ(k) : j ∈ cJ

}
logqv Yφ(k)

,

which converges to 0 as k → +∞ as seen at the end of the proof of Case

3. Let us define n(k) = card{i ≤ k : Yφ(i) ≥ qav Yφ(i+1)}. For every ℓ ∈ Z≥1,

since Yj+1 ≥ q
1

min r
v Yj for every j ∈ Z≥1, and by the maximality of mℓ in

the construction of
(
φℓ(i)

)
1≤i≤mℓ

, we have card{j ∈ Ciℓ : j ≥ φℓ(mℓ)} ≤
2 ⌈a⌉min r. If φ(i) belongs to Ciℓ but φ(i + 1) does not, then φ(i) ≥ φℓ(mℓ).

Since when φ(i) and φ(i + 1) belong to Ciℓ for some ℓ ∈ Z≥1, then φ and φℓ
coincide on i and i+ 1, and since Equation (4.17) holds, we hence have

k−n(k) = #{i ≤ k : Yφ(i) < qav Yφ(i+1)} ≤ 2 ⌈a⌉ min r #{j ≤ φ(k) : j /∈
⋃

k∈Z≥1

Cik} .
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Hence

lim sup
k→+∞

k

logqv Yφ(k)
= lim sup

k→+∞

n(k) + k − n(k)

logqv Yφ(k)
= lim sup

k→+∞

n(k)

logqv Yφ(k)

≤ lim sup
k→+∞

n(k)

logqv q
a(n(k)−1)
v Yφ(1)

=
1

a
.

This proves Equation (4.14) and concludes the proof of Proposition 4.3.1.

4.3.2 Lower bound on the Hausdorff dimension of BadA(ϵ)

In this subsection, we use the scheme of proof in the real case of [CGGMS20,

Theo. 6.1], which is a weighted version of [BKLR21, Theo. 5.1], in order to

estimate the lower bound on the Hausdorff dimension of the ϵ-bad sets of

(r, s)-singular in average matrices.

For a given sequence (yi)i≥1 in Rm
v − {0} and for every δ > 0, let

Badδ(yi)i≥1
= {θ ∈ (πvOv)m : ∀ i ≥ 1, |⟨θ · yi⟩| ≥ δ } .

Proposition 4.3.4. Let A ∈ Mm,n(Kv) be such that tA is completely irra-

tional and let (yi)i≥1 be a best approximation sequence in Km
v for tA with

weights (s, r). Suppose that there exist b, c > 0 and an increasing function

φ : Z≥1 → Z≥1 such that

∀ i ∈ Z≥1, Mφ(i)Yφ(i+1) ≤ qb+cv .

Then for every δ ∈ ]0, 1], if ϵ = δ
1

min r
+ 1

min s q−b−cv , then the set Badδ(yφ(i))i≥1

is contained in the set BadA(ϵ).

Proof. Fix δ ∈ ]0, 1] and θ ∈ Badδ(yφ(i))i≥1
. Let ϵ1 = δ

1
min s q−b−cv . For every

(y′,x′) in Rm
v ×Rn

v such that ∥x′ ∥s ≥ ϵ1Yφ(1), let k be the unique element of

Z≥1 for which

Yφ(k) ≤ ϵ−1
1 ∥x′ ∥s < Yφ(k+1) ,

which exists since ∥x′ ∥s ≥ ϵ1Yφ(1) and since the sequence (Yφ(i))i≥1 is in-

creasing, converging to +∞. Let xφ(k) ∈ Rn
v be such that Mφ(k) = ∥ tAyφ(k)−

xφ(k)∥s. Then by the ultrametric inequality, the assumption of the proposition,
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the fact that ϵ1 q
b+c
v = δ

1
min s ≤ 1 and the definition of Badδ(yφ(i))i≥1

, we have

|( tAyφ(k) − xφ(k)) · x′| ≤ max
1≤i≤n

M si
φ(k)∥x

′ ∥ sis < max
1≤i≤n

(ϵ1Mφ(k)Yφ(k+1))
si

≤ (ϵ1 q
b+c
v )min s = δ ≤ min

ℓ′∈Rv
|yφ(k) · θ − ℓ′ | .(4.21)

Observe that

yφ(k) · θ = yφ(k) · (Ax′) + yφ(k) · y′ − yφ(k) · (Ax′ + y′ − θ)

= ( tAyφ(k)) · x′ − xφ(k) · x′ + ℓ− yφ(k) · (Ax′ + y′ − θ),

where ℓ = xφ(k) · x′ + yφ(k) · y′ ∈ Rv. Thus we have, using the equality case

of the ultrametric inequality for the second equality below with the strict

inequality in Equation (4.21), and again the definition of Badδ(yφ(i))i≥1
for the

last inequality below,

|yφ(k) · (Ax′ + y′ − θ)| = |( tAyφ(k) − xφ(k)) · x′ − yφ(k) · θ + ℓ |
= max

{
|( tAyφ(k) − xφ(k)) · x′|, |yφ(k) · θ − ℓ |

}
= |yφ(k) · θ − ℓ | ≥ |⟨yφ(k) · θ⟩| ≥ δ.

Hence, we have

δ ≤ |yφ(k) · (Ax′ + y′ − θ)| ≤ max
1≤j≤m

Y
rj
φ(k) ∥Ax

′ + y′ − θ∥ rjr ,

which implies, since δ ≤ 1, that

Yφ(k)∥Ax′ + y′ − θ∥r ≥ min
1≤j≤m

δ
1
rj = δ

1
min r .

Finally, for every (y′,x′) in Rm
v ×Rn

v such that ∥x′ ∥s ≥ ϵ1Yφ(1), we have

∥x′ ∥s ∥Ax′ + y′ − θ∥r ≥ ϵ1 Yφ(k) ∥Ax′ + y′ − θ∥r ≥ δ
1

min r
+ 1

min s q−b−cv .

By Equation (1.7), this implies that θ ∈ BadA(ϵ) for ϵ = δ
1

min r
+ 1

min s q−b−cv .

Proposition 4.3.5. For every δ ∈ ]0, 1
q 3m
v

[ , there exist b = b(δ) > 0 and

C = C(δ) > 0 such that for every sequence (yi)i∈Z≥1
in Rm

v − {0} satisfying
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∥yi+1 ∥r ≥ qbv ∥yi ∥r for all i ∈ Z≥1, we have

dimH Badδ(yi)i≥1
≥ m− C lim sup

k→∞

k

logqv ∥yk ∥r
.

Proof. Fix δ ∈ ]0, 1
q 3m
v

[ . Let

(4.22) b = b(δ) =
− logqv δ

min r
,

which is positive since δ < 1. By the mass distribution principle (see for

instance [Fal14, page 60]), it is enough to prove that there exist a (Borel,

positive) measure µ, supported on Badδ(yi)i≥1
, and constants C,C0, r0 > 0,

with C depending only on δ, such that, for every closed ball B of radius

r < r0, we have

µ(B) ≤ C0 r
m−C lim supk→∞

k
logqv ∥yk ∥r .

We adapt by modifying it quite a lot the measure construction in the proof

of [CGGMS20, Theo. 6.1].

By convention, let Y0 = 1 and n0,j = 0 for j = 1, . . . ,m. For every k ∈ Z≥1,

define Yk = ∥yk ∥r, which is at least 1 since yk ∈ Rm
v − {0}, and for every

j = 1, . . . ,m, let nk,j ∈ Z≥0 be such that

(4.23) q
−nk,j
v ≤ Y

−rj
k < q

−nk,j+1
v .

Note that the sequence (nk,j)k∈Z≥0
is nondecreasing, for all j = 1, . . . ,m.

For every k ∈ Z≥0, let us consider the polydisc

Π(Yk) = B(0,
1

qv
Y −r1
k )×· · ·×B(0,

1

qv
Y −rm
k ) = B(0, q

−nk,1−1
v )×· · ·×B(0, q

−nk,m−1
v ) ,

where B(0, r′) is the closed ball of radius r′ > 0 and center 0 in Kv. Note that

Π(Y0) = (πvOv)
m is the open unit ball of Km

v and that Π(Yk) is an additive

subgroup of Km
v . Since the residual field kv = Ov/πvOv lifts as a subfield of

order qv of Kv, for every ℓ ∈ Z≥0, we have a disjoint union

B(0, q−ℓv ) =
⊔
a∈kv

(
a π ℓv +B(0, q−ℓ−1

v )
)
.
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Hence by induction, the polydisc Π(Yk) is the disjoint union of

∆k+1 =
∏

1≤j≤m
q
nk+1,j−nk,j
v

translates of the polydisc Π(Yk+1). Note that

(4.24) ∆k+1 ≥
∏

1≤j≤m
Y
rj
k+1Y

−rj
k q−1

v = q−mv

(
Yk+1Y

−1
k

)|r|
.

For every k ∈ Z≥0, let us fix some elements θ1,k+1, . . . , θ∆k+1,k+1 in (πvOv)
m

(which are not unique in the ultrametric space Km
v ) such that

Π(Yk) =

∆k+1⊔
i=1

(
θi,k+1 +Π(Yk+1)

)
.

By convention, let us define Z0,δ = ∅ and I0 = {Π(Y0)}. For every k ∈ Z≥1,

let us define

Zk,δ = {θ ∈ (πvOv)
m : |⟨yk · θ⟩| < δ}

and

Ik =
{
θi1,1 + · · ·+ θik,k +Π(Yk) : ∀ j ∈ {1, . . . , k}, 1 ≤ ij ≤ ∆j

}
.

Lemma 4.3.6. For every k ∈ Z≥1, we have

(1) for every I ′ ∈ Ik+1, if I
′ ∩ Zk,δ ̸= ∅ then I ′ ⊂ Zk,δ,

(2) for every I ∈ Ik, we have volmv (I ∩ Zk,δ) ≤ δ Y
−|r|
k .

Proof. (1) If I ′ ∈ Ik+1 and I
′∩Zk,δ ̸= ∅, let θ ∈ I ′∩Zk,δ. Then for every θ′ ∈ I ′,

if x, x′ ∈ Rv are such that |⟨yk · θ⟩| = |(yk · θ) − x| and |⟨yk · (θ′ − θ)⟩| =
|(yk · (θ′ − θ)) − x′|, then by the ultrametric inequality, since θ ∈ Zk,δ and

θ′−θ ∈ Π(Yk+1), by the assumption of Proposition 4.3.5, and by the definition

of b, we have

|⟨yk · θ′⟩| ≤ |yk · (θ + (θ′ − θ))− (x+ x′)| ≤ max
{
|⟨yk · θ⟩|, |⟨yk · (θ′ − θ)⟩|

}
≤ max

{
δ, max

1≤j≤m
Y
rj
k

1

qv
Y

−rj
k+1

}
≤ max

{
δ, q−1−bmin r

v

}
= δ .

This inequality |⟨yk · θ′⟩| ≤ δ is actually strict, since |⟨yk · θ⟩| < δ and by
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Equation (4.22), we have q−1−bmin r
v = q−1

v δ < δ. Since I ′ is contained in

Π(Y0) = (πvOv)
m, we thus have that θ′ ∈ Zk,δ and this proves Assertion (1).

(2) Let j0 ∈ {1, . . . ,m} be such that Yk = |yk,j0 |1/rj0 where yk = (yk,1, . . . , yk,m).

In particular, yk,j0 is nonzero. For every z ∈ Rv, let

Lk(z) = {θ ∈ Km
v : yk · θ = z} ,

which is an affine hyperplane of Km
v transverse to the j0-axis, and let

N (k, z) = {θ′ ∈ (πvOv)
m : ∃ u′ ∈ Lk(z), |θ′j0−u

′
j0 | ≤ δY

−rj0
k and ∀j ̸= j0, θ

′
j = u′j},

which is the intersection with the open unit ball in Km
v of the (δ Y

−rj0
k )-

thickening along the j0-axis of the affine hyperplane Lk(z).

Fix I ∈ Ik. Since volv(B)(0, r′)) = q
⌊logqv r

′⌋
v ≤ r′ for all r′ > 0, and by

Fubini’s theorem, we have

(4.25) volmv (I ∩N (k, z)) ≤ δ Y
−rj0
k

∏
j ̸=j0

Y
−rj
k = δ Y

−|r|
k .

Claim 1. Let us prove that the set Zk,δ is contained in the union of the sets

N (k, z) for z ∈ Rv.

Proof. Let θ = (θ1, . . . , θm) ∈ Zk,δ and let z ∈ Rv be such that |⟨yk · θ⟩| =
|yk · θ − z |. Let us define uj = θj if j ̸= j0,

uj0 =
z −

∑
j ̸=j0 yk,jθj

yk,j0

and u = (u1, . . . , um), which is the projection of θ on the affine hyperplane

Lk(z) along the j0-axis. Then, since θ ∈ Zk,δ, we have

|θj0 − uj0 | =
|yk · θ − z |

|yk,j0 |
=

|⟨yk · θ⟩|
|yk,j0 |

≤ δ Y
−rj0
k .

Since Zk,δ is contained in (πvOv)
m, this proves Claim 1.

Claim 2. Let us prove that there exists a unique z ∈ Rv such that I ∩ Zk,δ
is contained in I ∩N (k, z).
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Proof. By Claim 1, the set I ∩Zk,δ is contained in
⋃
z∈Rv I ∩N (k, z). Assume

for a contradiction that there exist two distinct elements z, z′ in Rv such

that there exist θ ∈ I ∩ N (k, z) and θ′ ∈ I ∩ N (k, z′). Let u ∈ Lk(z) and

u′ ∈ Lk(z
′) be the projections of θ and θ′ along the j0-axis on Lk(z) and

Lk(z
′) respectively.

Let j ∈ {1, . . . ,m}. Note that θ − θ′ ∈ Π(Yk) since I ∈ Ik. If j ̸= j0, then

|uj − u′j | = |θj − θ′j | ≤
1

qv
Y

−rj
k .

Furthermore, by the ultrametric inequality, since θ (respectively θ′) is con-

tained in the (δ Y
−rj0
k )-thickening along the j0-axis of Lk(z) (respectively

Lk(z
′)), and since δ ≤ 1

qv
, we have

|uj0 − u′j0 | = |(uj0 − θj0) + (θj0 − θ′j0) + (θ′j0 − u′j0)|
≤ max{|uj0 − θj0 |, |θj0 − θ′j0 |, |θ

′
j0 − u′j0 |}

≤ max{δ Y −rj0
k ,

1

qv
Y

−rj0
k } =

1

qv
Y

−rj0
k .

This implies since u ∈ Lk(z) and u
′ ∈ Lk(z) that

1 ≤ |z − z′| = |yk · u− yk · u′| ≤ max
1≤j≤m

|yk,j | |uj − u′j | ≤ max
1≤j≤m

Y
rj
k

1

qv
Y

−rj
k =

1

qv
,

which is a contradiction since qv > 1. This proves Claim 2.

By Equation (4.25), Claim 2 concludes the proof of Assertion (2) of Lemma

4.3.6.

Since every element I ′ of Ik+1 is a translate of Π(Yk+1), and by Equation

(4.23), we have

volmv (I
′) = volmv (Π(Yk+1)) =

m∏
j=1

q
−nk+1, j−1
v ≥ q−2m

v Y
−|r|
k+1 .

For every I ∈ Ik, there are ∆k+1 elements I ′ ∈ Ik+1 contained in I, they

are pairwise disjoint and they have the same volume volmv (Π(Yk+1)). Among

them, those who meet Zk,δ are actually contained in I ∩Zk,δ by Lemma 4.3.6

(1), thus their number is at most
volmv (I∩Zk,δ)
volmv (Π(Yk+1))

. Therefore, by Equation (4.24)
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and Lemma 4.3.6 (2), we have

card {I ′ ∈ Ik+1 : I
′ ⊂ I, I ′ ∩ Zk,δ = ∅} ≥ ∆k+1 −

volmv (I ∩ Zk,δ)
volmv (Π(Yk+1))

≥ q−mv (Yk+1Y
−1
k )|r| −

δ Y
−|r|
k

q−2m
v Y

−|r|
k+1

= c1 (Yk+1Y
−1
k )|r| ,(4.26)

where c1 = q−mv − q 2mv δ belongs to ]0, 1[ by the assumption on δ.

Now, let us define by induction J0 = I0 and for every k ∈ Z≥0,

Jk+1 =
⋃
J∈Jk

{I ∈ Ik+1 : I ⊂ J, I ∩ Zk,δ = ∅}.

By Equation (4.26) and by induction, we have

(4.27) card Jk+1 ≥
k∏
j=1

c1 (Yj+1Y
−1
j )|r| = c k1 (Yk+1Y

−1
1 )|r| .

By Lemma 4.3.6 (1) and by induction, we have

Jk+1 = {J ∈ Ik+1 : ∀j ∈ {1, . . . , k}, J∩Zj,δ = ∅} = {J ∈ Ik+1 : J ⊂
k⋂
j=1

cZj,δ},

where c denotes the complement in (πvOv)
m. Hence

(⋃
Jk
)
k≥1

is a decreasing

sequence of compact subsets of (πvOv)
m, whose intersection is contained in⋂

k≥1
cZk,δ = Badδ(yi)i≥1

.

For every k ∈ Z≥0, let us define a measure

µk =
(
volmv (Π(Yk)) card Jk

)−1
∑
J∈Jk

volmv |J ,

which is a probability measure with support
⋃
Jk. By the compactness of

(πvOv)
m, any weakstar accumulation point µ of the sequence (µk)k≥1 is a

probability measure with support in Badδ(yi)i≥1
.

For every closed ball B in (πvOv)
m with radius r′ ∈ ]0, r0 = Y −min r

1 ], let
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k ∈ Z≥1 be such that

(4.28) Y −min r
k+1 < r′ ≤ Y −min r

k .

Note that ⌈t⌉ ≤ t+1 ≤ qv t if t ≥ 1, and that r′ q
nk+1,j+1
v ≥ Y −min r

k+1 Y
rj
k+1 qv ≥ 1

for every j = 1, . . . ,m, by Equation (4.23). Then B can be covered by a subset

of Ik+1 with cardinality at most

m∏
j=1

⌈
r′ q

nk+1,j+1
v

⌉
≤ (r′)m q 3mv Y

|r|
k+1 .

Let C =
− logqv c1

min r > 0, which depends (besides on m, qv and r) only on δ.

Defining C0 = q 3mv Y
|r|

1 , by Equations (4.27) and (4.28), we thus have

µk+1(B) ≤ q 3mv (r′)m Y
|r|
k+1 (card Jk+1)

−1 ≤ q 3mv (r′)m c−k1 Y
|r|

1

≤ C0 (r
′)
m−C k

logqv Yk .

Therefore, since the ball B is closed and open and since r′ ≤ r0 ≤ 1, we have

µ(B) ≤ lim sup
k→∞

C0 (r
′)
m−C k

logqv Yk = C0 (r
′)
m−C lim supk→∞

k
logqv Yk ,

which concludes the proof of Proposition 4.3.5.

4.3.3 Proof that Assertion (2) implies Assertion (1) in Theorem

1.3.1

Suppose that A is (r, s)-singular on average. Then by Corollary 4.1.11, the

matrix tA is also (s, r)-singular on average. By Remark 4.1.6 (2), in order to

prove that there exists ϵ > 0 such that BadA(ϵ) has full Hausdorff dimension,

we may assume that the matrix tA is completely irrational.

By Lemma 4.1.7, let (yk)k∈Z≥1
be a best approximation sequence in Km

v

for the matrix tA with weights (s, r), and let c > 0 be such that MiYi+1 ≤
qcv for every i ∈ Z≥1. Fix some δ ∈

]
0, 1

q 3m
v

[
and let b = b(δ) > 0 and

C = C(δ) > 0 as in Proposition 4.3.5. By Proposition 4.3.1, for every a > b,

we have a subsequence (yφ(k))k≥1 such that the properties (4.13) and (4.14)

are satisfied. Proposition 4.3.4, whose assumption is satisfied by the second

inequality in Equation (4.13) and where ϵ = δ
1

min r
+ 1

min s q−b−cv , gives that
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BadA(ϵ) contains Badδ(yφ(i))i≥1
. Therefore, using Proposition 4.3.5 applied to

the sequence (yφ(i))i≥1, whose assumption is satisfied by the first inequality

in Equation (4.13), and using Equation (4.14) for the last inequality, we have

dimH BadA(ϵ) ≥ dimH Badδ(yφ(i))i≥1
≥ m− C lim sup

k→∞

k

logqv Yφ(k)
≥ m− C

a
.

Letting a tend to +∞, this concludes the proof that Assertion (2) implies

Assertion (1) in Theorem 1.3.1. 2

4.4 Background material for the upper bound

4.4.1 Homogeneous dynamics

Let Kv,Ov, πv, Rv, qv be as in Subsection 4.1.1. Let m,n ∈ N − {0} and d =

m + n. We fix some weights r = (r1, . . . , rm) and s = (s1, . . . , sn) as in the

introduction. In this subsection, we introduce the space of unimodular grids

Y in K d
v and the diagonal flow (aℓ)ℓ∈Z acting on this space. Let

G0 = SLd(Kv) and G = ASLd(Kv) = SLd(Kv)⋉K d
v ,

and let

Γ0 = SLd(Rv) and Γ = ASLd(Rv) = SLd(Rv)⋉R d
v .

The product in G is given by

(4.29) (g, u) · (g′, u′) = (gg′, u+ gu′)

for all g, g′ ∈ G0 and u, u′ ∈ K d
v . We also view G as a subgroup of SLd+1(Kv)

by

G =

{(
g u

0 1

)
: g ∈ SLd(Kv), u ∈ K d

v

}
.

We shall identify G0 with the corresponding subgroup of G. We consider

the one-parameter diagonal subgroup (aℓ)ℓ∈Z of G0, where a = diag (() a−, a+)

and

a− = diag
(
π−r1v , . . . , π−rmv

)
∈ GLm(Kv) and a+ = diag (πs1v , . . . , π

sn
v ) ∈ GLn(Kv) .
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Note that for all θ ∈ Km
v , ξ ∈ K n

v and ℓ ∈ Z, we have

(4.30) ∥ a ℓ− θ ∥r = qℓv ∥θ ∥r and ∥ a ℓ+ ξ ∥s = q−ℓv ∥ ξ ∥s .

We denote by G+ the unstable horospherical subgroup for a in G and by

U the unipotent radical of G, that is,

G+ = {g ∈ G : lim
ℓ→−∞

aℓg a−ℓ = Id+1} and U =
{(Id u

0 1

)
: u ∈ K d

v

}
.

Let U+ = G+ ∩ U =
{Im 0 w

0 In 0

0 0 1

 : w ∈ Km
v

}
, which is a closed subgroup

in G+ normalized by a.

Let us define

X = G0/Γ0 and Y = G/Γ .

Even though we have Covol(R d
v ) = q(g−1)d by Equation (4.2), we say that

an Rv-lattice Λ in K d
v is unimodular if Covol(Λ) = Covol(R d

v ). A translate

in the affine space K d
v of an unimodular lattice is called an unimodular grid.

We identify the homogeneous space X = SLd(Kv)/ SLd(Rv) with the space of

unimodular lattices in K d
v by the equivariant homeomorphism

x = g Γ0 7→ Λx = g R d
v ,

and the homogeneous space Y = ASLd(Kv)/ASLd(Rv) with the space of uni-

modular grids by the equivariant homeomorphism

(4.31) y =

(
g u

0 1

)
Γ 7→ Λ̃y = g R d

v + u .

We denote by π : Y → X the natural projection map (forgetting the transla-

tion factor), which is a proper map. Note that the fibers of π are exactly the

orbits of U in Y, and in particular each orbit under U+ in Y is contained in

some fiber of π (see Lemma 4.4.3 for a precise understanding of the U+-orbits).

For every N ∈ N−{0}, we denote by dSLN (Kv) the right-invariant distance

on SLN (Kv) defined by for all g, h ∈ SLN (Kv)

dSLN (Kv)(g, h) = max{ ln(1 + 9 gh−1 − id9 ), ln(1 + 9hg−1 − id9 ) } ,
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where 9 9 is the operator norm on MN (Kv) defined by the sup norm ∥ ∥
on K N

v . We endow every closed subgroup H of G with the right-invariant

distance dH on H, which is the restriction to H of the distance dSLd+1(Kv). For

instance, identifying the additive group Km
v with U+ by the map w 7→ ŵ =Im 0 w

0 In 0

0 0 1

, we have

(4.32) ∀ w,w′ ∈ Km
v , dU+(ŵ, ŵ′) = ln(1 + ∥w − w′∥),

We also consider the distance dU+,m on U+ induced from the norm ∥ · ∥ on

Km
v , that is,

(4.33) ∀ w,w′ ∈ Km
v , dU+,m(ŵ, ŵ

′) = ∥w − w′∥.

Then it is clear that (U+, dU+,m) is isometric to (Km
v , ∥·∥). On the other hand,

observe that (Km
v , ∥ · ∥) or (U+, dU+,m) are locally bi-Lipschitz to (U+, dU+).

So, we fix small 0 < r0 < 1 such that for any w,w′ ∈ Km
v

(4.34) dU+(ŵ, ŵ′) < r0 =⇒ 1

2
∥w − w′∥ ≤ dU+(ŵ, ŵ′) ≤ ∥w − w′∥.

We endow Y = G/Γ with the quotient distance dY of the distance dG on

G, defined by

∀ y, y′ ∈ Y, dY(y, y
′) = min

γ∈Γ
dG( ỹ γ, ỹ

′)

for any representatives ỹ and ỹ ′ of the classes y and y′ in G/Γ respectively.

This is a well defined distance since the canonical projection G → Y is a

covering map and the distance dG on G is right-invariant. Given any closed

subgroup H of G, we denote by BH(x, r) (respectively BY(x, r)) the open ball

of center x and radius r > 0 for the distance dH (respectively dY), and by BH
r

the open ball BH(id, r). Note that for all y ∈ Y and r > 0, we have (for the

left action of subsets of G on Y)

BY(y, r) = BG
r y .

In particular, we denote by BU+,m
r the open ball of center id and radius r > 0

for the distance dU+,m on U+.
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Lemma 4.4.1. For all ϵ > 0 and k ∈ Z≥0, we have

a−kBU+

ϵ ak ⊂ BU+

ln(1+ϵ q−kmin r
v )

and a−kBU+,m
ϵ ak ⊂ BU+,m

ϵ q−kmin r
v

.

Similary, we have

akBU+

ϵ a−k ⊂ BU+

ln(1+ϵ qkmax r
v ) and akBU+,m

ϵ a−k ⊂ BU+,m
ϵ qkmax r
v

.

Proof. The proof of the second claim being similar, we only prove the first

one. For every w = (w1, . . . , wm) ∈ Km
v , we have a−kŵ ak = â−k− w and

∥ a−k− w ∥ = max
1≤i≤m

|πrikv wi | ≤ q−kmin r
v ∥w ∥ .

The result hence follows from Equations (4.32) and (4.33).

Given a point x in Y (and similarly for x in X ), we define the injectivity

radius of Y at x to be

inj(x) = sup
{
r > 0 : ∀ γ ∈ Γ− {id}, BG(x̃, r) ∩BG(x̃ γ, r) = ∅

}
,

which does not depend on the choice of x̃ ∈ G such that x = x̃Γ, and is positive

and finite since the canonical projection G→ Y is a nontrivial covering map.

For every r > 0, we denote the r-thick part of Y by

Y(r) = {x ∈ Y : inj(x) ≥ r} .

It follows from the finiteness of a (quotient) Haar measure of Y that Y(r) is a

compact subset of Y for every r > 0, and that the Haar measure of the r-thin

part Y − Y(r) tends to 0 as r goes to 0. For every compact subset K of Y,

there exists r > 0 such that K ⊂ Y(r).

4.4.2 Dani correspondence

In this subsection, we give an interpretation of the property for a matrix A ∈
Mm,n(Kv) to be (r, s)-singular on average in terms of dynamical properties

of the action of the one-parameter diagonal subgroup (aℓ)ℓ∈Z on the space of

unimodular lattices, as originally developped by Dani (see for instance [Kle99,

§4]). For every A ∈ Mm,n(Kv), let uA =

(
Im A

0 In

)
∈ G0.
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Proposition 4.4.2. A matrix A ∈ Mm,n(Kv) is (r, s)-singular on average if

and only if the forward orbit {aℓuAR d
v : ℓ ∈ Z≥0} in X of the lattice uAR

d
v

under a diverges on average in X , that is, if and only if for any compact subset

Q of X , we have

lim
N→∞

1

N
card{ℓ ∈ {1, · · · , N} : aℓ uA Γ0 ∈ Q} = 0 .

Proof. Let Q be a compact subset of X . By Mahler’s compactness criterion

(see for instance [KST17, Theo. 1.1]), there exists ε ∈ ]0, 1[ such that Q is

contained in

X>ϵ = {g R d
v ∈ X : ∀ (θ, ξ) ∈ g R d

v−{0} ⊂ Km
v ×K n

v , max{∥θ ∥r, ∥ ξ ∥s} > ε} ,

which is the subset of X consisting of the unimodular lattices with systole (for

an appropriate quasinorm) larger than ϵ. Observe that by Equation (4.30),

for all sufficiently large ℓ ∈ Z≥1, there exists an element y ∈ Rn
v − {0}

such that ⟨Ay⟩r ≤ εq−ℓv and ∥y ∥s ≤ εqℓv if and only if we have aℓuAR
d
v =(

a ℓ− 0

0 a ℓ+

)(
Im A

0 In

)
R d
v ∈ X − X>ε.

With ℓϵ = ⌊− logqv ε⌋, it follows that

0 ≤ card{ ℓ ∈ {1, · · · , N} : aℓ uAR
d
v ∈ Q }

≤ card{ ℓ ∈ {1, · · · , N} : aℓ uAR
d
v ∈ X>ε }

= card{ℓ ∈ {1, · · · , N} : ∄ y ∈ Rn
v − {0}, ⟨Ay⟩r ≤ εq−ℓv , ∥y ∥s ≤ εqℓv}

≤ card{ℓ ∈ {1, · · · , N} : ∄ y ∈ Rn
v − {0}, ⟨Ay⟩r ≤

ε2

qv
q−(ℓ−ℓϵ)
v , ∥y ∥s ≤ qℓ−ℓϵv }

≤ ℓϵ + card{ℓ ∈ {1, · · · , N − ℓϵ} : ∄y ∈ Rn
v − {0}, ⟨Ay⟩r ≤

ε2

qv
q−ℓv , ∥y ∥s ≤ qℓv}.

After dividing by N (or equivalently by N − ℓϵ) this last expression, its limit

as N tends to 0 exists and is equal to 0 if A is (r, s)-singular on average (see

Equation (1.8)). Hence we have limN→∞
1
N card{ℓ ∈ {1, · · · , N} : aℓ uA Γ0 ∈

Q} = 0 by the above string of (in)equalities.

The converse implication follows similarly by taking for the compact set Q

the subset X>ε.
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We denote by ∥ ∥s,r the quasi-norm on K d
v = Km

v ×K n
v defined by

∥ (θ, ξ) ∥r,s = max
{
∥θ ∥

d
m
r , ∥ ξ ∥

d
n
s

}
.

Let ε > 0. We define

(4.35) Lε = {y ∈ Y : ∀ u ∈ Λ̃y, ∥u ∥r,s ≥ ε} .

By Mahler’s compactness criterion (see for instance [KST17, Theo. 1.1]) and

since the natural projection π : Y → X is proper, the subset Lε is compact.

For every θ ∈ Km
v , we denote by yA,θ the unimodular grid uAR

d
v −

(
θ
0

)
.

Lemma 4.4.3. For every A ∈ Mm,n(Kv), the map Km
v → Y defined by

θ 7→ yA,θ induces a local bi-Lipschitz map ϕA from Tm = Km
v /R

m
v endowed

with the quotient distance dTm of the distance on Km
v defined by the standard

norm ∥ ∥, and the U+-orbit U+yA,0 endowed with the restriction of the distance

dY of Y. In particular, the map ϕA is isometry onto the U+-orbit U+yA,0
endowed with the distance dU+,m of U+ in Equation (4.33).

Proof. The map Km
v → Y defined by θ 7→ yA,θ is clearly invariant under

translations by Rm
v , and induces a bijection

(4.36) ϕA : θ mod Rm
v 7→ yA,θ

from Tm = Km
v /R

m
v to the orbit U+yA,0. This orbit is contained in the fiber

π−1(xA) of xA = uAR
m
v for the natural projection π : Y → X , as already

seen.

For all A ∈ Mm,n(Kv) and θ ∈ Km
v , let uA,θ =

Im A θ

0 In 0

0 0 1

 ∈ G, so

that we have yA,θ = uA,−θΓ. For all θ,θ′ ∈ Tm, denoting lifts of them to

Km
v by θ̃, θ̃′ respectively, identifying K d

v with Km
v ×K n

v , and using Equation

(4.29) and right-invariance of dG,

dY(ϕA(θ), ϕA(θ
′)) = inf

x∈Rm
v

dU+

(
(id, (x− θ̃, 0)), (id, (−θ̃′, 0))

)
= inf

x∈Rm
v

ln(1 + ∥ θ̃ − θ̃′ − x ∥).
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Thus it follows from Equation (4.34) that if dTm(θ,θ
′) < q−ℓ0v , then

1

2
dTm(θ,θ

′) ≤ dY(ϕA(θ), ϕA(θ
′)) ≤ dTm(θ,θ

′) .

Proposition 4.4.4. Let ε > 0. For every (A,θ) ∈ Mm,n(Kv)×Km
v such that

θ ∈ BadA(ε), one of the following statements holds.

1. There exists y ∈ Rn
v such that ⟨Ay − θ⟩r = 0. Note that given A, there

are only countably many θ satisfying this statement.

2. The forward a-orbit of the point yA,θ is eventually in Lε, that is, there
exists T ≥ 0 such that for every ℓ ≥ T , we have aℓ yA,θ ∈ Lε.

Proof. Assume for a contradiction that both statements do not hold. Then

there exist infinitely many ℓ ∈ Z≥1 such that aℓyA,θ /∈ Lε, hence such that

there exists yℓ ∈ Rn
v with ⟨Ayℓ − θ⟩r < q−ℓv ε

m
d and ∥yℓ ∥s < qℓvε

n
d . Since the

statement (1) does not hold, the inequality

∥y ∥s⟨Ay − θ⟩r < ε

has infinitely many solutions y ∈ Rn
v , which contradicts the assumption θ ∈

BadA(ε).

4.4.3 Entropy, partition construction, and effective variational

principle

In this subsection, after recalling the basic definitions and properties about

entropy (using [ELW] as a general reference, and in particular its Chapter 2),

we give the preliminary constructions of σ-algebras and results on entropy that

will be needed in Section 4.5. In particular, we give an effective and positive

characteristic version of the variational principle for conditional entropy of

[EL10, §7.55], adapting to the function field case the result of [KKL].

Let (X,B, µ) be a standard Borel probability space. For every set E of

subsets of X, we denote by σ(E) the σ-algebra of subsets of X generated by

E. Let P be a (finite or) countable B-measurable partition of X. Let A, C and

C′ be sub-σ-algebras of B. Suppose that C and C′ are countably generated.

For every x ∈ X, we denote by [x]P the atom of x for P, which is the

element of the partition P containing x. We denote by [x]C the atom of x for C,
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which is the intersection of all elements of C containing x. Note that [x]σ(P) =

[x]P . We denote by (µAx )x∈X an A-measurable family of (Borel probability)

conditional measures of µ with respect to A on X, given for instance by [EL10,

Theo. 5.9].

Using the standard convention 0 logqv 0 = 0 and using logqv instead of log

for computational purposes in the field Kv, the entropy of the partition P with

respect to µ is defined by

Hµ(P) = −
∑
P∈P

µ(P ) logqv µ(P ) ∈ [0,∞] .

Recall the (logarithmic) cardinality majoration

(4.37) Hµ(P) ≤ logqv(cardP) .

The information function of C given A with respect to µ is the measurable

map Iµ(C|A) : X → [0,∞] defined by

∀ x ∈ X, Iµ(C|A)(x) = − logqv µ
A
x ([x]C) .

The conditional entropy of C given A with respect to µ is defined by

(4.38) Hµ(C|A) =

∫
X
Iµ(C|A) dµ .

Recall the additivity property Hµ(C ∨C′ | A) = Hµ(C | C′∨A)+Hµ(C′ | A) (see

for instance [ELW, Prop. 2.13]) so that if A ⊂ C′ ⊂ C, we have

(4.39) Hµ(C |A) = Hµ(C | C′) +Hµ(C′ | A) .

Let T : (X,B, µ) → (X,B, µ) be a measure-preserving transformation.

Assume that the σ-algebra A is strictly T -invariant, i.e., T−1A = A. If the

partition P has finite entropy with respect to µ, let

hµ(T,P|A) = lim
n→∞

1

n
Hµ

( n−1∨
i=0

T−iP|A
)
= inf

n≥1

1

n
Hµ

( n−1∨
i=0

T−iP|A
)
.

The conditional (dynamical) entropy of T given A is

hµ(T |A) = sup
P

hµ(T,P|A) ,
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where the upper bound is taken on all countable B-measurable partitions P
of X with finite entropy with respect to µ.

With the above notations, the following result is proven in [KKL, Prop. 2.2

and Appendix A].

Proposition 4.4.5 (Entropy and ergodic decomposition). If T−1A ⊂ A,

then for every countable B-measurable partition P with finite entropy with

respect to µ, we have

hµ(T,P|A) =

∫
X
hµEx (T,P|A) dµ(x) and hµ(T |A) =

∫
X
hµEx (T |A) dµ(x) . 2

We now work in the standard Borel space Y of unimodular grids, endowed

with the distance dY (see Section 4.4.1). Let δ > 0. For every subset B of Y,

we define the δ-boundary ∂δB of B by

∂δB =
{
y ∈ Y : inf

y′ ∈B
dY(y, y

′) + inf
y′′ ∈Y−B

dY(y, y
′′) < δ

}
if B and Y−B are nonempty, and ∂δB = ∅ otherwise. Note that for all subsets

B and B′ of Y, we have

(4.40) ∂δ(B ∪B′) ⊂ ∂δB ∪ ∂δB′ and ∂δ(B −B′ ∩B) ⊂ ∂δB ∪ ∂δB′ .

We also have ∂δB ⊂ ∂δ′B if δ ≤ δ′. Given any set P of subsets of Y, we define

the δ-boundary ∂δP of P by

∂δP =
⋃
B∈P

∂δB .

Lemma 4.4.6. For every r > 0, there exist δr ∈ ]0, r] and a finite measurable

partition P = {P1, . . . , PN , P∞} by closed and open subsets of Y such that

1. the subset P∞ is contained in the r-thin part Y − Y(r),

2. for every i ∈ {1, . . . , N}, there exists yi ∈ Y(r) such that BG
r
2
yi ⊂ Pi ⊂

BG
r yi,

3. the set ∂δrP is empty.

Proof. Choose a finite maximal r-separated subset {y1, . . . , yN} of Y(r) for

the distance dY , which exists by the compactness of Y(r). By induction on
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i = 1, . . . , N , we define a Borel subset Pi of Y by

Pi = BG
r yi −

( i−1⋃
j=1

Pj ∪
N⋃

j=i+1

BG
r
2
yj

)
.

Define P∞ = Y −
⋃N
j=1 Pj , which is also a Borel subset of Y.

By construction, we have Pi ⊂ BG
r yi. Since the set {y1, . . . , yN} is ϵ-

separated, the intersection of open balls BG
r
2
yi ∩BG

r
2
yj = BY(yi,

r
2)∩BY(yj ,

r
2)

is empty if j > i. By construction, the intersection BG
r
2
yi∩Pj is empty if j < i.

Therefore Pi contains B
G
r
2
yi, and Assertion (ii) follows.

By construction, we have
⋃N
j=1 Pj ⊂

⋃N
j=1B

G
r yj =

⋃N
j=1BY(yj , r), and the

later union contains Y(r), since the ϵ-separated set {y1, . . . , yN} is maximal.

Assertion (i) follows.

For every s > 0, let ns =
⌈
ln(es−1)
ln qv

⌉
∈ Z and δ′s = ln

( 1+qnsv
1+qns−1

v

)
> 0.

For all δ > 0 and y ∈ Y, assume that there exists a point z ∈ ∂δBY(y, s).

Let z′ ∈ BY(y, s) and z′′ /∈ BY(y, s) be such that dY(z, z
′) + dY(z, z

′′) <

δ. Since the operator norm on Md+1(Kv) has values in {0} ∪ qZv , the set

{dY(y, y′) : y, y′ ∈ Y} of values of the distance function dY on Y is contained

in {0}∪{ln(1+qnv ) : n ∈ Z}. Since s ∈ ] ln(1+qns−1
v ), ln(1+qnsv )], we hence have

dY(y, z
′) ≤ ln(1 + qns−1

v ) since z′ ∈ BY(y, s) and dY(y, z
′′) ≥ ln(1 + qnsv ) since

z′′ /∈ BY(y, s). Therefore by the triangle inequality and the inverse triangle

inequality, we have

δ > dY(z, z
′) + dY(z, z

′′) ≥ dY(z
′, z′′) ≥ dY(y, z

′′)− dY(y, z
′)

≥ ln(1 + qnsv )− ln(1 + qns−1
v ) = δ′s .

Hence ∂δBY(y, s) is empty for every δ ∈ ]0, δ′s].

By Equation (4.40), for every δ > 0, we have

∂δP ⊂
N⋃
j=1

∂δ(B
G
r yj) ∪

N⋃
j=1

∂δ(B
G
r
2
yj) .

Hence Assertion (iii) follows with δr = min{δ′r
2
, r}.

Note that since the distance dG has values in {0} ∪ {ln(1 + qnv ) : n ∈ Z},
the open balls in G are open and compact, and since the canonical projection

G → Y is open and continuous, the subsets Pi of Y are by construction open
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and compact, and P∞ is closed and open.

Let C be a countably generated σ-algebra of subsets of Y. Note that for

every j ∈ Z, the σ-algebra ajC is also countably generated and

[y]ajC = aj [a−jy]C .

We say that C is a−1-descending if aC is contained in C. In particular, for all

y ∈ Y and j ∈ Z≥0, we have

[y]C ⊂ [y]ajC .

Given a Borel probability measure µ on Y and a closed subgroup H of G, we

say that C is H-subordinated modulo µ if for µ-almost every y ∈ Y, there exists

r = ry ∈ ]0, 1] such that we have

BH
r y ⊂ [y]C ⊂ BH

1/ry .

If C is U+-subordinated modulo µ and if furthermore µ is a-invariant, since a

normalises U+ and by Lemma 4.4.1, for every j ∈ Z, the σ-algebra ajC is also

U+-subordinated modulo µ.

For every σ-algebra A of subsets of Y, for all a, b in Z∪{±∞} with a < b,

we define a σ-algebra Ab
a of subsets of Y by

Ab
a =

b∨
i=a

aiA = σ
( ⋃

a≤i≤b
aiA

)
.

Note that if A is countably generated, then so is Ab
a.

Proposition 4.4.7. For every r ∈ ]0, 1[ , there exists a countably generated

sub-σ-algebra AU+
of the Borel σ-algebra of Y such that

1. the countably generated σ-algebra AU+
is a−1-descending,

2. for every y ∈ Y(r), we have [y]AU+ ⊂ BU+

r y,

3. for every y ∈ Y, we have BU+

δr
y ⊂ [y]AU+ , where δr ∈ ]0, r] is as in

Lemma 4.4.6.

Let µ be a Borel a-invariant ergodic probability measure on Y with µ(Y(r)) > 0.

Then AU+
is U+-subordinated modulo µ.
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Proof. Fix r ∈ ]0, 1[ . Let P = {P1, . . . , PN , P∞} be a partition given by

Lemma 4.4.6 for this r. We prove a preliminary result on the countably gen-

erated sub-σ-algebra σ(P)∞0 .

Lemma 4.4.8. For every y ∈ Y, we have BU+

δr
y ⊂ [y]σ(P)∞0

.

Proof. Let h ∈ BU+

δr
. Assume for a contradiction that hy /∈ [y]σ(P)∞0

. Then

there exists k ∈ Z≥0 such that a−khy and a−ky belong to different atoms of

the partition P. Let α = min r > 0. By Lemma 4.4.1, we have

(4.41)

dY(a
−khy, a−ky) ≤ dG(a

−khak, id) = dU+(a−khak, id) < q−kαv δr ≤ δr ≤ r .

It follows that both a−khy and a−ky belong to the δr-boundary ∂δrP of P. But

the set ∂δrP is empty by Lemma 4.4.6 (3), which gives a contradiction.

By Lemma 4.4.6, for every i ∈ {1, . . . , N}, there exist yi ∈ Y(r) and a Borel

subset Vi of Y contained in BG
r such that Pi = Viyi. Let PU+

be the sub-σ-

algebra of the Borel σ-algebra of Y generated by the subsets P∞ ∩ π−1(W ),

where W is a Borel subset of X , and the subsets ((U+B) ∩ Vi)yi, where i ∈
{1, . . . , N} and B is a Borel subset of G. Then PU+

is countably generated,

since the Borel σ-algebra of X is countably generated and U+ is a closed

subgroup of G. For every y ∈ Y, the atom of y for PU+
is equal to

(4.42) [y]PU+ =

{
Uy if y ∈ P∞
Pi ∩ (BU+

r y) if ∃ i ∈ {1, . . . , N}, y ∈ Pi .

Let us now define AU+
= (PU+

)∞0 , which is a countably generated sub-

σ-algebra of the Borel σ-algebra of Y, since so is PU+
. Note that aAU+

=

(PU+
)∞1 ⊂ AU+

, which proves Assertion (1).

For every y ∈ Y(r), since P∞ ⊂ Y − Y(r) by Lemma 4.4.6 (1) and by

Equation (4.42), we have [y]AU+ ⊂ [y]PU+ ⊂ BU+

r y, which proves Assertion

(2).

In order to prove the last Assertion (3), let us take y ∈ Y and h ∈ BU+

δr
and

let us prove that hy ∈ [y]AU+ . Since we have hy ∈ [y]σ(P)∞0
by Lemma 4.4.8,

for every k ≥ 0, there exists i ∈ {1, . . . , N,∞} such that the points a−ky and

a−khy = a−khak(a−ky) both belong to Pi ∈ P. If i = ∞, then by Equation

(4.42), the points a−ky and a−khy lie in the same atom [a−ky]PU+ = Ua−ky

since a−khak ∈ U+. Assume that 1 ≤ i ≤ N . Since h ∈ BU+

δr
, it follows from
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Equation (4.41) that a−khak ∈ BU+

r . Hence by Equation (4.42), the points

a−ky and a−khy lie in the same atom [a−ky]PU+ = Pi ∩ (BU+

r a−ky) of PU+
.

This proves Assertion (3).

Now let µ be an a-invariant ergodic probability measure on Y with µ(Y(r)) >

0. By ergodicity, for µ-almost every y ∈ Y, there exists k ∈ Z≥1 such that

a−ky ∈ Y(r). Since akAU+ ⊂ AU+
, by Assertion (1) and by Lemma 4.4.1, we

have

[y]AU+ ⊂ [y]
akAU+ = ak[a−ky]AU+ ⊂ akBU+

r a−ky ⊂ BU+

ln(1+qkmax r
v )y .

With Assertion (3), this proves that AU+
is U+-subordinated modulo µ.

Let us introduce some material before stating and proving our next Lemma

4.4.9. The map dKm
v ,r : K

m
v ×Km

v → [0,+∞[ defined by

(4.43) ∀ ξ, ξ′ ∈ Km
v , dKm

v ,r(ξ, ξ
′) = ∥ ξ − ξ′ ∥r

is an ultrametric distance on Km
v , since the r-pseudonorm ∥ ∥r satisfies the

ultrametric inequality : for all ξ, ξ′ ∈ Km
v , we have

(4.44) ∥ ξ + ξ′ ∥r ≤ max{∥ ξ ∥r, ∥ ξ′ ∥r} ,

with equality if ∥ ξ ∥r ̸= ∥ ξ′ ∥r. Note that the map similar to dKm
v ,r in the

real case of [KKL] is not a distance if m ≥ 2 for general r. For every ϵ > 0,

we denote by B
Km
v ,r

ϵ the open ball of center 0 and radius ϵ in Km
v for dKm

v ,r.

Note that the distance dKm
v ,r is bihölder equivalent to the standard one: For

all ξ, ξ′ ∈ Km
v such that ∥ ξ − ξ′ ∥ ≤ 1, we have

(4.45) ∥ ξ − ξ′ ∥
1

min r ≤ dKm
v ,r(ξ, ξ

′) ≤ ∥ ξ − ξ′ ∥
1

max r .

We also endow the quotient space Tm = Km
v /R

m
v with the quotient

distance dTm,r of the distance dKm
v ,r on Km

v defined by Equation (4.43).

For every A ∈ Mm,n(Kv), we denote by dU+yA,0,r the distance on the orbit

U+yA,0 = ϕA(Tm) induced from dTm,r, that is,

dU+yA,0,r(ϕA(θ), ϕA(θ
′)) = dTm,r(θ,θ

′)).

Then the homeomorphism ϕA defined in Lemma 4.4.3 is also isometry for the

distances dTm,r and dU+yA,0,r.
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Using the identification w 7→ ŵ between Km
v and U+ (see Subsection

4.4.1), for every ϵ > 0, we denote by BU+,r
ϵ the open ball of radius ϵ in U+

centered at the identity element for the distance dU+,r on U+ induced from

the distance dKm
v ,r on Km

v . The map u 7→ u yA,0 from U+ onto U+yA,0 is 1-

Lipschitz and locally isometric for the distances dU+,r and dU+yA,0,r. Improving

Lemma 4.4.1, for all ϵ > 0 and k ∈ Z, we have

(4.46) a−kBU+,r
ϵ ak = BU+,r

ϵ q−kv
.

Again using the (locally compact) topological group identification w 7→ ŵ

between (Km
v ,+) and U+, we endow U+ with the Haar measure mU+ which

corresponds to the normalized Haar measure volmv of Km
v (see Section 4.1.1).

For every j ∈ Z, the Jacobian Jacj with respect to the measure mU+ of the

homeomorphism φj : u 7→ aj u a−j from U+ to U+ (which is constant since

φj is a group automorphism and mU+ is bi-invariant) is easy to compute: we

have

(4.47) Jacj = q j |r|v .

We consider the following tail σ-algebra:

(4.48) AU+

∞ =
∞⋂
k=1

∞∨
i=k

aiAU+
= lim

k→∞
(AU+

)∞k = lim
k→∞

(PU+
)∞k .

This σ-algebra may not be countably generated, but it is strictly a-invariant,

i.e., aAU+

∞ = AU+

∞ = a−1AU+

∞ , hence we will use this σ-algebra to observe the

entropy relative to U+.

Lemma 4.4.9. For every r ∈ ]0, 1[ , let AU+
be as in Proposition 4.4.7 and

AU+

∞ be as in Equation (4.48). Let µ be an a-invariant ergodic probability

measure on Y. Then

hµ(a
−1| AU+

∞ ) ≤ |r| .

Furthermore, if µ(Y(r)) > 0, then

hµ(a
−1| AU+

∞ ) = Hµ(AU+ | aAU+
) .

Proof. Let us prove the first assertion. By [EL10, Prop. 7.44], there exists a

countable Borel-measurable partition G with finite entropy which is a generator

for a modulo µ, such that σ(G)∞0 is a−1-descending and G+-subordinated
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modulo µ. Following the proof of [LSS19, Lemma 3.4], it follows from [ELW,

Prop. 2.19 (8) and Theo. 2.20] that

hµ(a
−1|AU+

∞ ) = Hµ(σ(G)|σ(G)∞1 ∨ AU+

∞ ).

Using the continuity and monotonicity of entropy [ELW, Prop. 2.12 and Prop.

2.13], we have

Hµ(σ(G)|σ(G)∞1 ∨ AU+

∞ ) = lim
ℓ→∞

Hµ(σ(G)|σ(G)∞1 ∨ (AU+
)∞ℓ )

≤ lim
ℓ→∞

Hµ(σ(G)∞0 ∨ (AU+
)∞ℓ |a(σ(G)∞0 ∨ (AU+

)∞ℓ )).

Note that for each ℓ ≥ 1 the σ-algebra σ(G)∞0 ∨(AU+
)∞ℓ is countably generated,

a−1-descending, and U+-subordinated since [y]
(AU+ )∞ℓ

⊂ Uy for all y ∈ Y and

since σ(G)∞0 is G+-subordinated. Thus by [EL10, Prop. 7.34] (recalling that

we are using logarithms with base qv), we have

Hµ(σ(G)∞0 ∨ (AU+
)∞ℓ | a (σ(G)∞0 ∨ (AU+

)∞ℓ )) = lim
k→∞

logqv µ
U+

x (akBU+

1 a−k)

k
,

where µU
+

x is the leaf-wise measure of µ at x ∈ Y with respect to U+ as defined

in [EL10, Theo. 6.3]. By [EL10, Theo. 6.30] (which applies since U+ is abelian,

hence unimodular) and by Equation (4.47) (see also [EL10, §7.42]), we have

lim sup
k→∞

µU
+

x (akBU+

1 a−k)

k2 q
k|r|
v

= 0 ,

hence we have

lim
k→∞

logqv µ
U+

x (akBU+

1 a−k)

k
≤ |r| .

This proves the first assertion of the lemma.

To prove the second assertion, let us take a sequence of finite partitions

(PU+

k )k≥1 of Y such that σ(PU+

k ) ↗ PU+
, which is possible since PU+

is

countably generated. Since µ is ergodic and µ(Y(r)) > 0, for µ almost every

y ∈ Y, there exists an increasing sequence of positive integers (ki)i≥1 such

that akiy ∈ Y(r). By Proposition 4.4.7(2), we have [akiy]AU+ ⊂ BU+

r akiy for

all i ≥ 1. Hence it follows from Lemma 4.4.1 that

[y]
(PU+ )∞−ki

= a−ki [akiy]
(PU+ )∞0

⊂ a−kiBU+

r akiy ⊂ BU+

ln(1+rq
−kimin r
v )

y.
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Taking i→ ∞, we have [y]
(PU+ )∞−∞

= {y} for µ almost every y ∈ Y. It means

that (PU+
)∞−∞ = BY modulo µ, where BY is the Borel σ-algebra of Y. It follows

that
∨∞
k=1(PU+

k )∞−∞ = (PU+
)∞−∞ = BY modulo µ, and (PU+

k )∞−∞ ⊆ (PU+

k+1)
∞
−∞

for each k ≥ 1. Again using [ELW, Prop. 2.19 (8) and Theo. 2.20] and the

continuity of entropy, we have

hµ(a
−1|AU+

∞ ) = lim
k→∞

hµ(a
−1,PU+

k |AU+

∞ )

= lim
k→∞

Hµ(PU+

k |(PU+

k )∞1 ∨ AU+

∞ )

= Hµ(PU+ |(PU+
)∞1 ∨ AU+

∞ )

= Hµ(PU+ |(PU+
)∞1 ) = Hµ(AU+ |aAU+

).

This proves the second assertion of the lemma.

Let us introduce some more material before stating and proving our final

Proposition 4.4.10 of Subsection 4.4.3. Let A be a countably generated sub-σ-

algebra of the Borel σ-algebra of Y. For all j ∈ Z≥0 and y ∈ Y, let

(4.49) V ajA
y = {u ∈ U+ : u y ∈ [y]ajA} ,

which is a Borel subset of U+, called the U+-shape of the atom [y]ajA. Note

that for every j ∈ Z≥0, we have

V ajA
y = aj V A

a−jy a
−j .

Let us define a Borel-measurable family
(
τ a

jA
y

)
y∈Y of Borel measures on Y,

that we call the U+-subordinated Haar measure of ajA, as follows:

• if mU+(V ajA
y ) is equal to 0 or ∞, we set τ a

jA
y = 0,

• otherwise, τ a
jA
y is the push-forward of the normalized measure

1

mU+(V ajA
y )

mU+|
V ajA
y

by the map u 7→ u y.

Now let µ be a Borel a-invariant probability measure on Y, such that A
is U+-subordinated modulo µ. In particular, for µ-almost every y ∈ Y, the

atom V ajA
y has positive and finite mU+-measure, hence the measure τ a

jA
y is

a probability measure with support in [y]ajA. Furthermore, if z ∈ [y]ajA then

164



CHAPTER 4. DIOPHANTINE APPROXIMATION OVER GLOBAL
FUNCTION FIELDS

there exists u ∈ U+ such that z = u y, V ajA
z = V ajA

y u−1, and τ a
jA
z = τ a

jA
y , by

the right-invariance of mU+ .

The following proposition is a function field analog of the effective real case

version [KKL, Prop. 2.10, §2.4] of [EL10, §7.55].

Proposition 4.4.10. Let µ be a Borel a-invariant ergodic probability measure

on Y and let A be a countably generated sub-σ-algebra of the Borel σ-algebra

of Y which is a−1-descending and U+-subordinated modulo µ. Fix j ∈ Z≥1 and

a U+-saturated Borel subset K ′ of Y. Suppose that there exists ϵ > 0 such that

[z]A ⊂ BU+,r
ϵ z for every z ∈ K ′. Then we have

Hµ(A|ajA) ≤ j |r|+
∫
Y
log τ a

jA
y ((Y −K ′) ∪BU+,r

ϵ Suppµ) dµ(y).

Proof. We fix µ, A, j, K ′ and ϵ as in the statement. By for instance [EL10,

Theo. 5.9], let
(
µa

jA
y

)
y∈Y be a measurable family of conditional measures of

µ with respect to ajA, so that for µ-almost every y ∈ Y, the measure µa
jA
y

is a probability measure on Y giving full measure to the atom [y]ajA, with

µa
jA
z = µa

jA
y if z ∈ [y]ajA, and such that the following disintegration formula

holds true:

(4.50) µ =

∫
y∈Y

µa
jA
y dµ(y) .

Let pµ : y 7→ µa
jA
y ([y]A) and pτ : y 7→ τ a

jA
y ([y]A), which are nonneg-

ative and measurable functions on Y. Since A is a−1-descending and U+-

subordinated modulo µ, the atom [y]A contains an open neighborhood of y

in the atom [y]ajA for µ-almost every y ∈ Y. In particular, the function pτ is

µ-almost everywhere positive.

Since A is countably generated and a−1-descending, for every y ∈ Y, the

atom of y for ajA is countably partitioned into atoms for A up to measure 0,

that is, there exist a finite or countable subset Iy of [y]ajA and a µa
jA
y -measure

zero subset Ny of [y]ajA such that

(4.51) [y]ajA = Ny ⊔
⊔
x∈Iy

[x]A .

Let I ′y = {x ∈ Iy : [x]A ∩ Suppµ ̸= ∅}.

Lemma 4.4.11. Let x ∈ Iy
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(1) If x /∈ I ′y, then µ
ajA
y ([x]A) = 0.

(2) If x ∈ I ′y, then [x]A is contained in (Y −K ′) ∪BU+,r
ϵ Suppµ.

Proof. (1) This follows since Suppµa
jA
y is contained in Suppµ.

(2) If x ∈ I ′y, there exists z ∈ [x]A ∩ Suppµ. For every z′ ∈ [x]A, we have

either z′ ∈ Y −K ′ or z′ ∈ K ′. In the second case, since A is U+-subordinated

and K ′ is U+-saturated, we have z ∈ [x]A = [z′]A ⊂ U+z′ ⊂ K ′. Hence by

the assumption of Proposition 4.4.10, we have z′ ∈ [x]A = [z]A ⊂ BU+,r
ϵ z ⊂

BU+,r
ϵ Suppµ, which proves the result.

By the definition of the U+-subordinated Haar measure of ajA, for µ-

almost every y ∈ Y, we have

pτ (y) =
mU+(V A

y )

mU+(V ajA
y )

=
mU+(V A

y )

mU+(aj V A
a−jy

a−j)
=

mU+(V A
y )

Jacj mU+(V A
a−jy

)
.

Hence, by the a-invariance of µ and by Equation (4.47), we have∫
z∈Y

logqv pτ (z) dµ(z) = − logqv Jacj = − j |r| .

We have

Hµ(A | ajA) − j |r|

= −
∫
z∈Y

(
logqv pµ(z)− logqv pτ (z)

)
dµ(z)

=

∫
y∈Y

∫
z∈Y

(
logqv pτ (z)− logqv pµ(z)

)
dµa

jA
y (z) dµ(y)

=

∫
y∈Y

∑
x∈I′y

∫
z∈[x]A

(
logqv pτ (z)− logqv pµ(z)

)
dµa

jA
y (z) dµ(y)

=

∫
y∈Y

∑
x∈I′y

logqv
τ a

jA
y ([x]A)

µajAy ([x]A)
µa

jA
y ([x]A) dµ(y)

≤
∫
y∈Y

logqv

(∑
x∈I′y

τ a
jA
y ([x]A)

)
dµ(y)

≤
∫
y∈Y

logqv
(
τ a

jA
y ((Y −K ′) ∪BU+,r

ϵ Suppµ)
)
dµ(y) ,

166



CHAPTER 4. DIOPHANTINE APPROXIMATION OVER GLOBAL
FUNCTION FIELDS

• by the definition of the conditional entropy in Equation (4.38),

• by the disintegration formula (4.50),

• since µa
jA
y gives full measure to [y]ajA which is partitionned as in Equa-

tion (4.51), and by Lemma 4.4.11 (1),

• since when z varies in [x]A ⊂ [y]ajA, the values pµ(z) = µa
jA
z ([z]A) =

µa
jA
y ([x]A) and pτ (z) = τ a

jA
z ([z]A) = τ a

jA
y ([x]A) are constant,

• by the concavity property of the logarithm,

• by Lemma 4.4.11 (2).

This proves the result.

4.5 Upper bound on the Hausdorff dimension of

BadA(ϵ)

4.5.1 Constructing measures with large entropy

In this subsection, we construct, as in [KKL, Prop. 4.1] in the real case, an

a-invariant probability measure on Y giving an appropriate lower bound on

the conditional entropy of a relative to the σ-algebra AU+

∞ defined in Equation

(4.48) with respect to the σ-algebra AU+
constructed in Proposition 4.4.7.

For any point x in a measurable space, we denote by ∆x the unit Dirac

measure at x. We denote by
∗
⇀ the weak-star convergence of Borel measures

on any locally compact space.

Let us denote by X = X ∪ {∞X } and Y = Y ∪ {∞Y} the one-point

compactifications of X and Y, respectively. We denote by π : Y → X the

unique continuous extension of the natural projection π : Y → X , mapping∞Y
to ∞X . The left actions of a on X and Y continuously extend to actions on X
and Y fixing the points at infinity ∞X and ∞Y . For every countably generated

σ-algebra A of subsets of X or Y, we denote by A the countably generated

σ-algebra of subsets of X or Y generated by A and its point at infinity. For a

finite partition Q = {Q1, . . . , QN , Q∞} of Y with only one unbounded atom

Q∞, we denote by Q the finite partition {Q1, . . . , QN , Q∞ = Q∞ ∪ {∞Y}} of

Y. Note that
∨b
i=a a

−iQ =
∨b
i=a a

−iQ for all a, b in Z with a < b.

For every η ∈ [0, 1], we say that an element x ∈ X has η-escape of mass

on average under the action of a if for every compact subset Q of X ,

lim inf
N→∞

1

N
card

{
ℓ ∈ {1, · · · , N} : aℓx /∈ Q

}
≥ η .
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When η = 1, as defined in the Introduction and in Proposition 4.4.2, we

say that x diverges on average in X under the action of a. For every A ∈
Mm,n(Kv), we denote by xA = uAR

m
v ∈ X its associated unimodular lattice

(see Section 4.4.2), and by ηA ∈ [0, 1] the upper bound of the elements η ∈ [0, 1]

such that xA has η-escape of mass on average. Note that this upper bound is

actually a maximum.

Proposition 4.5.1. For every A ∈ Mm,n(Kv), there exists a Borel probability

measure µA on X with µA(X ) = 1 − ηA such that for every ϵ > 0, there

exists an a-invariant Borel probability measure µ on Y satisfying the following

properties.

1. The support of µ is contained in Lϵ ∪ {∞Y}, where Lϵ is defined in

Equation (4.35).

2. We have π∗µ = µA. In particular, there exists an a-invariant Borel prob-

ability measure µ on Y such that

µ = (1− ηA)µ+ ηA∆∞Y .

3. For every r ∈ ]0, 1[ , let AU+
be the σ-algebra of subsets of Y constructed

in Proposition 4.4.7 and let AU+

∞ be as in Equation (4.48). Then

hµ
(
a−1| AU+

∞
)
= hµ

(
a| AU+

∞
)
≥ |r|(1−ηA)−max r (m−dimH BadA(ϵ)) .

Proof. Since xA has ηA-escape of mass on average but does not have (ηA+ δ)-

escape of mass on average for any δ > 0, there exists an increasing sequence

of positive integers (ki)i∈Z≥1
such that, for the weak-star convergence of Borel

probability measures on the compact space X , as i→ +∞, we have

(4.52)
1

ki

ki−1∑
k=0

∆ akxA

∗
⇀ µA ,

and µA is a Borel probability measure on X with µA(X ) = 1 − ηA. This is

equivalent to µA({∞X }) = ηA.

Let ϵ > 0. For every T ∈ Z≥0, with the notation of Subsection 4.4.2 (see

in particular Equations (4.35) and (4.36)), let

RT = {θ ∈ Tm : ∀k ≥ T, akϕA(θ) ∈ Lϵ} ∩BadA(ϵ) .
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By Proposition 4.4.4, since a countable subset of Km
ν has Hausdorff dimension

0, we have dimH

(⋃∞
T=1RT

)
= dimH BadA(ϵ). Thus, for every j ∈ Z≥1, there

exists Tj ∈ Z≥0 satisfying

dimH RTj ≥ dimH BadA(ϵ)−
1

j
.

For all i, j ∈ Z≥1 such that ki ≥ Tj , let Si,j be a maximal q−kiv -separated

subset of RTj for the distance dTm,r defined after Equation (4.45). Then

RTj can be covered by card Si,j open balls of radius q−kiv for dTm,r. Each

open ball of radius q−kiv for dTm,r can be covered by
∏m
j=1 q

−kirj
v /q−kimax r

v =

q
ki(mmax r−|r|)
v open balls of radius q−kimax r

v with respect to the standard dis-

tance dTm (defining the Hausdorff dimension of subsets of Tm). Since the lower
Minskowski dimension is at least equal to the Hausdorff dimension, we have

lim inf
i→∞

logqv
(
q
ki(mmax r−|r|)
v card Si,j

)
− logqv

(
q−kimax r
v

) ≥ dimH RTj ≥ dimH BadA(ϵ)−
1

j
,

which implies that

(4.53) lim inf
i→∞

logqv card Si,j

ki
≥ |r| −max r

(
m+

1

j
− dimH BadA(ϵ)

)
.

Let us define the Borel probability measures

νi,j =
1

card Si,j

∑
θ∈Si,j

∆ϕA(θ) ,

which is the normalized counting measure on the finite subset ϕA(Si,j) of the

U+-orbit ϕA(Tm) = U+yA,0 ⊂ π−1(xA), and

ν̃i,j =
1

ki

∑
0≤k≤ki−1

ak∗νi,j ,

which is the average of the previous one on the first ki points of the a-orbit.

Since Y is compact, extracting diagonally a subsequence if necessary, we may

assume that ν̃i,j weak-star converges as i→ +∞ towards an a-invariant Borel

probability measure µ̃j , and that µ̃j weak-star converges as j → +∞ towards

an a-invariant Borel probability measure µ. Let us prove that µ satisfies the

three assertions of Proposition 4.5.1.
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(1) For all k ≥ Tj and θ ∈ Si,j ⊂ RTj , we have akϕA(θ) ∈ Lϵ by the definition

of RTj . Since ak∗νi,j is a probability measure, we hence have

ν̃i,j(Y − Lϵ) =
1

ki

ki−1∑
k=0

ak∗νi,j(Y − Lϵ) =
1

ki

Tj∑
k=0

ak∗νi,j(Y − Lϵ) ≤
Tj
ki
.

Since Lϵ ∪ {∞Y} is closed in Y and by taking limits first as i → +∞ then as

j → +∞, we therefore have µ(Y − Lϵ) = 0. This proves Assertion (1).

(2) Since ϕA(Si,j) is contained in the fiber above xA of π and since νi,j is a

probability measure, we have π∗νi,j = ∆xA . By the linearity and equivariance

of π∗, we hence have

π∗ν̃i,j =
1

ki

∑
0≤k≤ki−1

ak∗ π∗ νi,j =
1

ki

∑
0≤k≤ki−1

∆akxA
.

By the weak-star continuity of π∗ and Equation (4.52), we thus have

π∗µ = lim
j→+∞

lim
i→+∞

π∗ν̃i,j = lim
j→+∞

µA = µA .

Note that the point at infinity ∞Y is an isolated point in the support of µ by

Assertion (1), since Lϵ is compact. We hence have

(4.54) µ({∞Y}) = µ(π−1({∞X })) = µA({∞X }) = ηA .

(3) Suppose that Q is any finite Borel-measurable partition of Y satisfying

(i) the partition Q contains an atom Q∞ of the form π−1(Q∗
∞), where X −

Q∗
∞ has compact closure,

(ii) there exists ℓ0 ≥ 1 such that for every atom Q ∈ Q different from Q∞
and for any y ∈ Q, diam (U+y ∩Q) < q−ℓ0 max r

v for the distance dU+,m.

(iii) for all Q ∈ Q and j ∈ Z≥1, we have µ̃j(∂Q) = 0 and µ(∂Q) = 0.

We first prove the following entropy bound: For every M ∈ Z≥1,

(4.55)
1

M
Hµ

(
σ(Q(M))| AU+

∞
)
≥ |r|(1− µ(Q∞))−max r (m− dimH BadA(ϵ)) ,

where Q(M) =
∨M−1
k=0 a−kQ. Since Equation (4.55) is clear if µ(Q∞) = 1, we
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may assume that µ(Q∞) < 1, hence that µ̃j(Q∞) < 1 for all large enough

j ≥ 1. Now, we fix such a j ≥ 1.

Take ρ > 0 small enough so that µ̃j(Q∞) + ρ < 1 and let

(4.56) β = µ̃j(Q∞) + ρ .

Then for all large enough i ∈ Z≥1, since ϕA(Si,j) ⊂ π−1(xA) and Q∞ =

π−1(Q∗
∞) by Property (i) of Q, we have

β = µ̃j(Q∞) + ρ > ν̃i,j(Q∞) =
1

ki card Si,j

ki−1∑
k=0

∑
θ∈Si,j

∆akϕA(θ)
(Q∞)

=
1

ki

ki−1∑
k=0

∆akxA
(Q∗

∞) .

Thus, for every θ ∈ Tm, since akϕA(θ) ∈ Q∞ implies that akxA ∈ Q∗
∞ by

Property (i) of Q, we have

(4.57) card{k ∈ {0, . . . , ki − 1} : akϕA(θ) ∈ Q∞} < β ki .

Let us prove the following counting lemma inspired by [ELMV12, Lem. 4.5]

and [LSS19, Lem. 2.4], where ℓ0 is given by Property (ii) of Q.

Lemma 4.5.2. There exists a constant C > 0 depending only on r and ℓ0
such that for all A ∈ Mm,n(Kv), θ ∈ Tm and T ∈ Z≥0, defining y = ϕA(θ),

I = {k ∈ Z≥0 : a
ky ∈ Q∞}, and

Ey,T = {z ∈ U+y : ∀ k ∈ {0, . . . , T} − I, dU+,m(a
ky, akz) < q−ℓ0 max r

v } ,

the set Ey,T can be covered by C q
|r| card(I∩{0,...,T})
v closed balls of radius q

−(ℓ0+T )
v

for the distance dU+y, r.

Proof. As in the proof of [LSS19, Lemma 2.4], we proceed by induction on T .

By the compactness of Tm, there exists a constant C ∈ Z≥1 depending only

on r and ℓ0 such that the metric space (Tm, dTm,r) can be covered by C closed

balls of radius q−ℓ0v . Since ϕA : Tm → U+y is an isometry for the distances

dTm,r and dU+y, r, the orbit U
+y can be covered by C closed balls for dU+y, r of

radius q−ℓ0v . Thus the lemma holds for T = 0. Let NT = C q
|r| card(I∩{0,...,T})
v .

Assume by induction that Ey,T−1 can be covered by NT−1 balls for dU+y, r
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of radius q
−(ℓ0+T−1)
v . Note that for every k ∈ Z, since πkvOv/(π

k+1
v Ov) has

order qv, every closed ball in Kv of radius q
−k
v is the disjoint union of qv closed

ball of radius q−k−1
v . Hence every closed ball for dU+y, r of radius q

−(ℓ0+T−1)
v in

U+y can be covered by q
|r|
v closed balls for dU+y, r of radius q

−(ℓ0+T )
v . Therefore,

if T ∈ I, then Ey,T = Ey,T−1 can be covered by NT = q
|r|
v NT−1 closed balls

for dU+y, r of radius q
−(ℓ0+T )
v .

Suppose conversely that T /∈ I, so that in particular NT = NT−1. Denote

the above covering of Ey,T−1 by {Bi : i = 1, . . . , NT−1}. Since we have Ey,T ⊂
Ey,T−1, the set {Ey,T ∩Bi : i = 1, . . . , NT−1} is a covering of Ey,T .

Claim. For all i = 1, . . . , NT−1 and z1, z2 ∈ Ey,T∩Bi, we have dU+y, r(z1, z2) ≤
q
−(ℓ0+T )
v .

Proof. Since T /∈ I, we have dU+,m(a
T y, aT zj) < q−ℓ0 max r

v for each j = 1, 2.

Thus we have dU+,m(a
T z1, a

T z2) < q−ℓ0 max r
v by the ultrametric inequality

property of ∥ · ∥. Note that since z1, z2 ∈ U+y = U+yA,θ, there exist θ1 =

(θ1,1, . . . , θ1,m) and θ2 = (θ2,1, . . . , θ2,m) in Tm such that (denoting in the

same way lifts of θ1 and θ2 to Km
v ) we have z1 = yA,θ1 and z2 = yA,θ2 . With

|⟨ ⟩| the map defined after Equation (4.1), it follows that we have

max
1≤i≤m

qriTv |⟨θ1,i − θ2,i⟩| = dTm(a
T
−θ1, a

T
−θ2) = dU+,m(a

T yA,θ1 , a
T yA,θ2)

= dU+,m(a
T z1, a

T z2) < q−ℓ0 max r
v .

Hence, we have

dU+y, r(z1, z2) = dTm,r(θ1,θ2) = max
1≤i≤m

|⟨θ1,i − θ2,i⟩|
1
ri < q−(ℓ0+T )

v ,

which concludes the claim.

By the above claim, the intersection Ey,T ∩ Bi is contained in a single

ball for dU+y, r of radius q
−(ℓ0+T )
v for each i = 1, . . . , NT−1. Thus Ey,T can be

covered by NT = NT−1 balls for dU+y, r of radius q
−(ℓ0+T )
v .

Recall that as constructed in the proof of Proposition 4.4.7, there exist

a Borel-measurable partition P = {P1, . . . , PN , P∞} of Y with N + 1 ele-

ments, and a countably generated Borel-measurable σ-algebra PU+
of subsets

of Y, with [y]PU+ = [y]P ∩ BU+

r y for every y ∈ Y(r) by Equation (4.42),
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such that we have AU+
= (PU+

)∞0 . We now consider the sequence of σ-

algebras {(PU+
)∞ℓ }ℓ≥1, which is decreasing sequence conversing to AU+

∞ , i.e.,

(PU+
)∞ℓ ↘ AU+

∞ . Note that for each ℓ ≥ 1, the σ-algebra (PU+
)∞ℓ is countably

generated.

If Q is any atom of the finite partition Q(ki) =
∨ki−1
k=0 a−kQ of Y, then fixing

any y ∈ Q, by Property (ii) of Q, the intersection ϕA(Si,j) ∩ Q is contained

in Ey,ki−1 with the notation of Lemma 4.5.2. It follows from Lemma 4.5.2

and Equation (4.57) that ϕA(Si,j)∩Q can be covered by C q
|r|βki
v closed balls

for dU+yA,0, r of radius q
−(ℓ0+ki−1)
v = q−ℓ0+1

v q−kiv , where C depends only on r

and ℓ0. Since Si,j is q
−ki
v -separated (hence q−ℓ0+1

v q−kiv -separated since ℓ0 ≥ 1)

with respect to dTm,r, and since ϕA : (Tn, dTm,r) → (U+yA,0, dU+yA,0, r) is an

isometry, we have

card(ϕA(Si,j) ∩Q) ≤ C q |r|βkiv .

Since νi,j is the normalised counting measure on ϕA(Si,j), for all large enough

ℓ ∈ Z≥1, we have Hνi,j (σ(Q(ki))|(PU+
)∞ℓ ) = Hνi,j (σ(Q(ki))). Since the map

Ψ = − logqv is nonincreasing, it hence follows that

Hνi,j (σ(Q(ki))|(PU+
)∞ℓ ) = Hνi,j (σ(Q(ki))) =

∑
Q∈Q(ki)

νi,j(Q)Ψ
(
νi,j(Q)

)
=

∑
Q∈Q(ki)

νi,j(Q)Ψ
(card(ϕA(Si,j) ∩Q)

card Si,j

)

≥ Ψ
( C q |r|βkiv

card Si,j

) ∑
Q∈Q(ki)

νi,j(Q)

= logqv(card Si,j)− |r|β ki − logqv C.

By taking ℓ→ ∞ it follows from the continuity of entropy that

(4.58) Hνi,j (σ(Q(ki))|AU+

∞ ) ≥ logqv(card Si,j)− |r|β ki − logqv C.

Since AU+

∞ is strictly a-invariant, by the subadditivity and concavity prop-

erties of the entropy as in the proof of [LSS19, Eq. (2.9)], for every M ∈ Z≥1,

we have

(4.59)
1

M
Hν̃i,j (σ(Q

(M))|AU+

∞ ) ≥ 1

ki
Hνi,j (σ(Q(ki))|AU+

∞ )−
2M logqv(card Q)

ki
.
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Therefore, since νi,j(∞Y) = 0, it follows from Equations (4.59) and (4.58) that

1

M
Hν̃i,j

(
σ(Q(M))|AU+

∞
)
=

1

M
Hν̃i,j

(
σ(Q(M))|AU+

∞
)

≥ 1

ki

(
logqv(card Si,j)− |r|βki − logqv C − 2M logqv(card Q)

)
.

Now we can take i → ∞ since the atoms Q of the partition Q and hence of

the partition Q(M), satisfy µ̃j(∂Q) = 0 by the property (iii) of Q. Also, the

constants C and card Q are independent of ki. Thus it follows from Equation

(4.53) that

1

M
Hµ̃j

(
σ(Q(M))|AU+

∞
)
≥ |r|(1− β)−max r (m+

1

j
− dimH BadA(ϵ)) .

By taking ρ→ 0 in Equation (4.56), we have

1

M
Hµ̃j

(
σ(Q(M))|AU+

∞
)
≥ |r|(1− µ̃j(Q∞))−max r (m+

1

j
−dimH BadA(ϵ)) .

Hence, it follows by taking j → ∞ and by using the property (iii) of Q that

1

M
Hµ

(
σ(Q(M))|AU+

∞
)
≥ |r|(1− µ(Q∞))−max r (m− dimH BadA(ϵ)) ,

which proves Equation (4.55).

Hence, by taking M → ∞, we have

hµ(a
−1| AU+

∞ ) = hµ(a| AU+

∞ ) ≥ |r|(1−µ(Q∞))−max r (m−dimH BadA(ϵ)) ,

provided that we have a partition Q satisfying the above requirements (i), (ii)

and (iii). After taking a sufficiently small neighborhood of infinity Q∗
∞ in X ,

so that if Q∞ = π−1(Q∗
∞), then µ(Q∞) is sufficiently close to µ(∞Y) = ηA,

we can indeed construct a finite Borel-measurable partition Q of Y satisfying

Properties (i), (ii) and (iii), by following the procedure in [LSS19, Proof of

Theorem 4.2, Claim 2]. This proves Assertion (3).
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4.5.2 Effective upper bound on dimH BadA(ϵ)

For every ℓ ∈ Z≤1, with λ1 the shortest length function of a nonzero vector of

an Rv-lattice (see Subsection 4.1.2), we define

X≥qℓv = {x ∈ X : λ1(x) ≥ qℓv} and Y≥qℓv = π−1(X≥qℓv) .

Note that by Corollary 4.1.2, we have λ1(x) ≤ qv for all x ∈ X , thus X =⋃1
ℓ=−∞X≥qℓv . By Mahler’s compactness criterion (see for instance [KST17,

Theo. 1.1]), the subsets X≥qℓv and Y≥qℓv are compact.

Lemma 4.5.3. Let µ′ be an a-invariant Borel probability measure on Y and let

A be a countably generated sub-σ-algebra of the Borel σ-algebra of Y which is

a−1-descending and U+-subordinated modulo µ′. For all r′ ≥ δ′ > 0, ϵ ∈ ]0, 1]

and ℓ ∈ Z≤0, let j1, j2 be integers satisfying

j1 >
d− (d− 1)ℓ

min r
− logqv δ

′ and j2 >
d− (d− 1)ℓ

min s
− n

d
logqv ϵ .

If y ∈ Y≥qℓv satisfies BU+,r
δ′ a−j1y ⊂ [a−j1y]A ⊂ BU+,r

r′ a−j1y, then we have

τ a
j1A
y (a−j2Lϵ) ≤ 1−

(
q−(j1+j2)
v (r′)−1ϵ

m
d

)|r|
.

Proof. Let x = π(y), which belongs to X≥qℓv . Since x is a unimodular Rv-

lattice, by Minkowski’s theorem 4.1.1, we hence have

q(d−1)ℓ
v λd(x) ≤ (λ1(x))

d−1λd(x) ≤ λ1(x)λ2(x) · · ·λd(x) ≤ qdv ,

therefore λd(x) ≤ q
d−(d−1)ℓ
v . There are linearly independent vectors v1, . . . , vd

in the Rv-lattice x such that ∥vi∥ ≤ q
d−(d−1)ℓ
v . Let ∆ be the parallelepiped in

K d
v generated by v1, . . . , vd, that is,

∆ = {t1v1 + · · ·+ tdvd ∈ K d
v : ∀ i = 1, . . . , d, | ti | ≤ 1} .

We identify K d
v with Km

v ×K n
v . Then for every b = (b−,b+) ∈ ∆ with b− ∈

Km
v and b+ ∈ K n

v , we have ∥b ∥ ≤ q
d−(d−1)ℓ
v , hence ∥b− ∥r ≤ q

d−(d−1)ℓ
min r

v and

∥b+ ∥s ≤ q
d−(d−1)ℓ

min s
v since ℓ ≤ 0. Note that the fiber π−1(x) can be parametrized

as follows: Fixing g ∈ G0 with x = gΓ0, since ∆ is a fondamental domain for
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the action of R d
v on K d

v , we have

π−1(x) = {w(b)gΓ : b ∈ ∆}, where w(b) =

(
Id b

0 1

)
.

In particular, there exists b0 = (b−
0 ,b

+
0 ) ∈ ∆ such that y = w(b0)gΓ.

With a slightly simplified notation, let Vy be the U+-shape of the atom

[y]aj1A (see Equation (4.49)), so that we have Vyy = [y]aj1A. Let Ξ = {θ ∈
Km
v : w(θ, 0) ∈ Vy} be the Borel set corresponding to Vy by the canonical

bijection θ 7→ w(θ, 0) (see above Equation (4.33)) between Km
v and U+. Note

that 0 ∈ Ξ as Id+1 ∈ Vy. Since a
j1
− expands the r-quasinorm on Km

v with ratio

exactly qj1v (see Equation (4.30)), and by the assumption on y in the statement

of Lemma 4.5.3, we have BU+,r

q
j1
v δ′

y ⊂ [y]aj1A ⊂ BU+,r

q
j1
v r′

y, hence

(4.60) B
Km
v ,r

q
j1
v δ′

⊂ Ξ ⊂ B
Km
v ,r

q
j1
v r′

.

The atom [y]aj1A can be parametrized by

[y]aj1A =
{
w(b)gΓ : ∃ b− ∈ b−

0 + Ξ, b = (b−,b+
0 )
}
,

and τ a
j1A
y is the pushforward measure of the normalized Haar measure on the

Borel set (with positive measure) b−
0 + Ξ of Km

v .

Let us consider the sets

Θ− = {b− ∈ Km
v : ∥b− ∥r < q−j2v ϵ

m
d } and Θ+ = {b+ ∈ K n

v : ∥b+ ∥s < qj2v ϵ
n
d } .

If b = (b−,b+) ∈ Θ− × Θ+, then ∥aj2−b−∥r < ϵ
m
d and ∥aj2+b+∥s < ϵ

n
d by

Equation (4.30). By the definition of Lϵ in Equation (4.35), and since the grid

aj2gRm
v + (aj2−b−, aj2+b+) contains the vector (aj2−b−, aj2+b+), we have

aj2w(b)gΓ = w(aj2−b−, aj2+b+)aj2gΓ /∈ Lϵ .

Hence we have w(b)gΓ /∈ a−j2Lϵ, so that

(4.61) [y]aj1A − a−j2Lϵ ⊃ w
( (

(b−
0 + Ξ)× {b+

0 }
)
∩ (Θ− ×Θ+)

)
gΓ .

Claim. We have the inclusion Θ−×{b+
0 } ⊂

(
(b−

0 +Ξ)×{b+
0 }
)
∩ (Θ−×Θ+).

Proof. We only have to prove that b+
0 ∈ Θ+ and that Θ− ⊂ b−

0 + Ξ. Since
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(b−
0 ,b

+
0 ) ∈ ∆, we have ∥b+

0 ∥s ≤ q
d−(d−1)ℓ

min s
v , hence the former assertion follows

from the assumption that j2 >
d−(d−1)ℓ

min s − n
d logqv ϵ.

In order to prove the latter assertion, let us fix b− ∈ Θ−. Recall that the

r-quasinorm ∥ · ∥r satisfies the ultrametric inequality property, see Equation

(4.44). Hence, it follows from the assumptions j2 >
d−(d−1)ℓ

min s − n
d logqv ϵ and

j1 >
d−(d−1)ℓ

min r − logqv δ
′, since ϵ ≤ 1, that

∥b− − b−
0 ∥r ≤ max{∥b− ∥r, ∥b−

0 ∥r} ≤ max
{
q−j2v ϵ

m
d , q

d−(d−1)ℓ
min r

v

}
≤ max

{
q
− d−(d−1)ℓ

min s
v ϵ , q

d−(d−1)ℓ
min r

v

}
= q

d−(d−1)ℓ
min r

v < q j1v δ
′ .

Hence by the left inclusion in Equation (4.60), we have b− ∈ b−
0 + B

Km
v ,r

q
j1
v δ′

⊂
b−
0 + Ξ, which concludes the latter assertion.

Now by Equation (4.61), by the above claim and by the right inclusion in

Equation (4.60), we have

1− τ a
j1A

y (a−j2Lϵ) = τ a
j1A

y ([y]aj1A − a−j2Lϵ) ≥
mKm

v
(Θ−)

mKm
v
(b−

0 + Ξ)
≥
mKm

v

(
B
Km
v ,r

q
−j2
v ϵ

m
d

)
mKm

v

(
B
Km
v ,r

q
j1
v r′

)
=
(q−j2v ϵ

m
d

q j1v r′

)|r|
=
(
q−(j1+j2)
v (r′)−1ϵ

m
d
)|r|

.

This proves the lemma.

Proof of Theorem 1.3.2. We fix a matrix A ∈ Mm,n(Kv) which is not (r, s)-

singular on average, or equivalently by Proposition 4.4.2 and the definition of

ηA just before Lemma 4.5.1, we assume that ηA < 1. We also fix ϵ ∈ ]0, 1] and

r0 ∈ ]0, 1[ which is in Equation (4.34).

By Proposition 4.5.1, there exist an a-invariant Borel probability measure

µ on Y (depending on ϵ) and an a-invariant Borel probability measure µ on Y
(unique since ηA < 1) such that

Suppµ ⊂ Lϵ ∪ {∞Y}, π∗µ = µA, and µ = (1− ηA)µ+ ηA∆∞Y .

Take a compact subset K0 of X such that µA(K0) > 0.99µA(X ) = 0.99 (1 −
ηA). Write K = π−1(K0) and choose r ∈ ]0, r0[ such that K ⊂ Y(r). Then
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µ(Y(r)) ≥ µ(K) > 0.99 since ηA < 1. Note that the choices of K and r are

independent of ϵ since the measure µA depends only on A (see Proposition

4.5.1 and Equation (4.52)).

For such an r > 0, let AU+
be the σ-algebra of subsets of Y constructed

in Proposition 4.4.7. Proposition 4.5.1 (3) gives the inequality

hµ(a
−1| AU+

∞ ) ≥ |r|(1− ηA)−max r (m− dimH BadA(ϵ)) .

By the linearity of entropy (and since the entropy of a−1 vanishes on the fixed

set {∞Y}), we have

(4.62)

hµ(a
−1| AU+

∞ ) =
1

1− ηA
hµ(a

−1| AU+

∞ ) ≥ |r| − max r

1− ηA
(m− dimH BadA(ϵ)) .

In order to use Lemma 4.4.9 and Proposition 4.4.10, we need an ergodicity

assumption on the measures that appear in these statements. We will choose an

appropriate ergodic component of µ. Let us denote the ergodic decomposition

of µ by

µ =

∫
y∈Y

µEy dµ(y).

Let E = {y ∈ Y : µEy (K) > 0.9}. It follows from µ(K) > 0.99 that

0.99 <

∫
Y
µEy (K) dµ(y) ≤ µ(E) + 0.9µ(Y − E) = 0.9 + 0.1µ(E) ,

hence µ(E) > 0.9. By Equation (4.62), we have∫
Y
hµEy (a

−1| AU+

∞ ) dµ(y) = hµ(a
−1| AU+

∞ ) ≥ |r|− max r

1− ηA
(m−dimH BadA(ϵ)) .

Since hµEy (a
−1| AU+

∞ ) ≤ |r| for every y ∈ Y by Lemma 4.4.9, we have∫
Y−E

hµEy (a
−1| AU+

∞ ) dµ(y) ≤ |r| µ(Y − E) .

Hence∫
E
hµEy (a

−1| AU+

∞ ) dµ(y) ≥ |r|µ(E)− max r

1− ηA
(m− dimH BadA(ϵ))

≥ µ(E)
(
|r| − max r

0.9 (1− ηA)
(m− dimH BadA(ϵ))

)
.
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Therefore, there exists z ∈ Y such that µEz (K) > 0.9 and

hµEz (a
−1| AU+

∞ ) ≥ |r| − max r

0.9 (1− ηA)
(m− dimH BadA(ϵ)) .

We denote λ = µEz for such a z ∈ Y. Then λ is an a-invariant ergodic Borel

probability measure on Y and Suppλ ⊂ Suppµ ⊂ Lϵ. By Lemma 4.4.9, we

have

(4.63) Hλ(AU+ | aAU+
) ≥ |r| − max r

0.9 (1− ηA)
(m− dimH BadA(ϵ)) .

We will apply Lemma 4.5.3 with µ′ = λ and A = a−kAU+
for some k ≥ 1.

Take an integer ℓ ≤ 0 such that K ⊂ Y≥qℓv , which depends only on A. Set

j1 =
⌈d− (d− 1)ℓ

min r
− logqv δ

′
⌉
+ 1 and j2 =

⌈d− (d− 1)ℓ

min s
− n

d
logqv ϵ

⌉
+ 1 ,

where δ′ will be determined later on.

Let k =
⌈
logqv

(
r

1
max r ϵ−

m
d

)⌉
+ j2 +1 and A = a−kAU+

. By the properties

of AU+
given in Proposition 4.4.7 and since K ⊂ Y(r), for every y ∈ K, we

have

BU+

δr y ⊂ [y]AU+ ⊂ BU+

r y .

It follows from Equations (4.34) and (4.45) that since r ≤ r0, for any y ∈ K,

BU+,r

(δr/2)
1

min r
y ⊂ BU+,m

δr/2
y ⊂ [y]AU+ ⊂ BU+,m

δr
y ⊂ BU+,r

r
1

max r
y .

Hence, by Equation (4.46), we have

BU+,r

q−kv (δr/2)
1

min r
a−ky ⊂ [a−ky]

a−kAU+ = [a−ky]A ⊂ BU+,r

q−kv r
1

max r
a−ky .

Thus for every y ∈ akK, we have

(4.64) BU+,r
δ′ y ⊂ [y]A ⊂ BU+,r

r′ y ,

where, by the definition of k, we take

r′ = q−j2−1
v ϵ

m
d and δ′ = q−1

v r−
1

max r (δr/2)
1

min r r′ .
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Equation (4.64) implies that for every y ∈ aj1+kK, we have

(4.65) BU+,r
δ′ a−j1y ⊂ [a−j1y]A ⊂ BU+,r

r′ a−j1y .

Now, we will use Proposition 4.4.10 with j = j1, K
′ = akK (which is U+-

saturated since so is K and as a normalizes U+), and ϵ = r′ (which satisfies

the assumption of Proposition 4.4.10 by Equation (4.64)). We claim that

(4.66) BU+,r

q−1
v ϵ

m
d
Lϵ ⊂ Lϵ .

Indeed, for all y ∈ Lϵ and θ ∈ Km
v such that ∥θ ∥r ≤ q−1

v ϵ
m
d , for every

vector u = (u−, u+) in the grid w(θ,0)y, we can write u = v+ (θ,0) for some

v = (v−, v+) in the grid Λ̃y associated with y (see Equation (4.31)). Since

y ∈ Lε, we have (see Equation (4.35)) ∥ v ∥r,s = max{∥ v− ∥
d
m
r , ∥ v+ ∥

d
n
s } ≥ ϵ.

Since u+ = v+, if ∥ v+ ∥
d
n
s ≥ ϵ, then w(θ,0)y ∈ Lϵ. Otherwise ∥ v− ∥

d
m
r ≥ ϵ.

We then have ∥θ ∥r ≤ q−1
v ϵ

m
d < ϵ

m
d ≤ ∥ v− ∥r. It follows from the equality case

of the ultrametric inequality property of ∥ ∥r that

∥u− ∥r = ∥θ + v− ∥r = max
{
∥θ ∥r, ∥ v− ∥r

}
= ∥ v− ∥r ≥ ϵ

m
d .

Hence w(θ,0)y ∈ Lϵ, which proves Equation (4.66).

By Proposition 4.4.7, the σ-algebraAU+
is a−1-descending and U+-subordinated

modulo λ, and so is A = a−kAU+
since a normalizes U+. Note that Suppλ ⊂

a−j2Lϵ since λ is a-invariant. By Equations (4.46) and (4.66), we have

BU+,r
r′ a−j2Lϵ = a−j2BU+,r

q
j2
v r′

Lϵ = a−j2BU+,r

q−1
v ϵ

m
d
Lϵ ⊂ a−j2Lϵ .

Note that we have

τ a
j1A
y (Y − akK) = 0

for λ-almost every y ∈ akK, since then (see just above Proposition 4.4.10) the

support Supp τ a
j1A
y is contained in [y]aj1A, which is contained in U+y, hence

in akK since a normalizes U+ and K = π−1(K0) is U
+-saturated. Therefore,

it follows from Proposition 4.4.10 for the first line, from the fact that the

integrated function is nonpositive (hence its integral on a smaller domain is
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larger) for the third line, that

Hλ(A|aj1A) ≤ j1|r|+
∫
Y
logqv τ

aj1A
y ((Y − akK) ∪BU+,r

r′ Suppλ) dλ(y)

≤ j1|r|+
∫
Y
logqv τ

aj1A
y ((Y − akK) ∪ a−j2Lϵ) dλ(y)

≤ j1|r|+
∫
akK∩aj1+kK∩Y≥qℓv

logqv τ
aj1A
y ((Y − akK) ∪ a−j2Lϵ) dλ(y)

= j1|r|+
∫
akK∩aj1+kK∩Y≥qℓv

logqv τ
aj1A
y (a−j2Lϵ) dλ(y) .

We now apply Lemma 4.5.3 with as said above µ′ = λ and A = a−kAU+
,

and with y ∈ aj1+kK ∩ Y≥qℓv which satisfies the assumption of Lemma 4.5.3

by Equation (4.65). Thus

τ a
j1A
y (a−j2Lϵ) ≤ 1−

(
q−(j1+j2)
v r′

−1
ϵ
m
d

)|r|
= 1− q−(j1−1)|r|

v .

Hence

− logqv τ
aj1A
y (a−j2Lϵ) ≥ − logqv

(
1− q−(j1−1)|r|

v

)
≥ q

−(j1−1)|r|
v

ln qv
.

Note that λ(akK ∩ aj1+kK ∩ Y≥qℓv) ≥ 1
2 since λ is a-invariant, K ⊂ Y≥qℓv and

λ(K) > 0.9, so that the three sets akK, aj1+kK and Y≥qℓv have λ-measure

> 0.9, hence their pairwise intersections have λ-measure > 2× 0.9− 1 = 0.8 ,

and their triple intersection has λ-measure > 2 × 0.8 − 1 = 0.6 . It follows

from Equation (4.39) and the invariance under a of λ, hence of the conditional

entropy, that

|r| −Hλ(AU+ | aAU+
) = |r| − 1

j1
Hλ(AU+ | aj1AU+

) = |r| − 1

j1
Hλ(A| aj1A)

≥ − 1

j1

∫
akK∩aj1+kK∩Y≥qℓv

logqv τ
aj1A
y (a−j2Lϵ) dλ(y)

≥ q
|r|
v

2 ln qv

q
−j1|r|
v

j1
.
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Therefore, by Equation (4.63), we have

max r

0.9 (1− ηA)
(m− dimH BadA(ϵ)) ≥ |r| −Hλ(AU+ | aAU+) ≥ q

|r|
v

2 ln qv

q
−j1|r|
v

j1
.

Observe that

j1 =
⌈ d− (d− 1)ℓ

min r
− logqv δ

′
⌉
+ 1

=
⌈ d− (d− 1)ℓ

min r
− logqv

( (δr/2)
1

min r

q2v r
1

max r

q−j2v ϵ
m
d

)⌉
+ 1

=
⌈ d− (d− 1)ℓ

min r
+
⌈ d− (d− 1)ℓ

min s
− n

d
logqv ϵ

⌉
+ 1− m

d
logqv ϵ− logqv

(δr/2)
1

min r

q2v r
1

max r

⌉
+ 1

≤ ( d− (d− 1)ℓ )
( 1

min r
+

1

max s

)
− logqv

(δr/2)
1

min r

q2vr
1

max r

+ 4− logqv ϵ .

The constants ηA, ℓ, δr, and r depend only on the fixed matrix A ∈ Mm,n(Kv).

Hence there exists a constant c(A) > 0 depending only on d, r, s and A such

that

m− dimH BadA(ϵ) ≥ c(A)
ϵ |r|

logqv(1/ϵ)
.

This proves Theorem 1.3.2. 2
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Chapter 5

Weighted singular vectors

5.1 Fractal sutructure and Hausdorff dimension

5.1.1 Fractal structure

A tree T is a connected graph without cycles. If we take a vertex τ0 and fix it

(we call it a root), then T is a rooted tree. In this paper, we identify T with

the set of vertices of T . It can be checked directly from the definition of T
that any τ ∈ T can be joined to τ0 by a unique geodesic edge path. We define

the height of τ as the length of the geodesic edge path joining τ, τ0 and denote

the set of vertices of height n by Tn. For any τ ∈ Tn, there exists a unique

τn−1 ∈ Tn−1 such that τ and τn−1 are adjacent. Then we say τ is a son of

τn−1 and denote the set of all sons of τn−1 by T (τn−1). The boundary of T ,

denoted by ∂T , is the set of all sequences {τn} = {τn}n∈N∪{0} where τn is a

son of τn−1 for all n ∈ N.
A fractal structure on Rd is a pair (T , β) where T is a rooted tree and

β is a map from T to the set of nonempty compact subsets of Rd. A fractal

associated to (T , β) is a set

F(T , β) =
⋃

{τn}∈∂T

∞⋂
n=0

β(τn).

A fractal structure (T , β) is said to be regular if it satisfies the followings:

• each vertex of T has at least one son;

• if τ is a son of τ ′, then β(τ) ⊂ β(τ ′);
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• for any {τn} ∈ ∂T , diamβ(τn) → 0 as n→ ∞.

5.1.2 Self-affine structure and lower bound

A self-affine structure on Rd is a fractal structure (T , β) on Rd such that for

τ ∈ T the compact subset β(τ) of Rd is given by a d-dimensional rectangle

with size L(1)(τ) × · · · × L(d)(τ). A self-affine structure is regular if it is a

regular fractal structure.

The following theorem is a generalization of [LSST20, Theorem 2.1] for

d-dimensional self-affine structures.

Theorem 5.1.1. Let (T , β) be a regular self-affine structure on Rd that asso-

ciates to sequences {ρn}, {Cn}, {L(j)
n } for j = 1, . . . , d of positive real numbers

indexed by N ∪ {0} with the following properties:

1. The sequence {L(j)
n } is decreasing in n ∈ N ∪ {0} for each j = 1, . . . , d.

2. There exists 1 ≤ ℓ < d such that

L(1)
n = · · · = L(ℓ)

n < L(ℓ+1)
n ≤ · · · ≤ L(d)

n and L(j)(τ) = L(j)
n

for all n ∈ N ∪ {0}, j = 1, . . . , d, and τ ∈ Tn;

3. C0 = 1 and #T (τ) ≥ Cn for all n ∈ N and τ ∈ Tn−1;

4. ρn ≤ 1 for all n ∈ N and

dist(β(τ), β(κ)) ≥ ρn+1L
(1)
n

for all τn ∈ Tn and distinct τ, κ ∈ T (τn).

We denote by

Pn =

n∏
i=0

Ci,

Dn = max{i ≥ n : L
(d)
i ≥ L(1)

n },

s = sup

{
t > 0 : lim

n→∞

log(Pn(L
(1)
n )tρtn+1 ·

∏Dn
i=n+1 ρ

ℓ
iCi)

max{Dn − n, 1}
= ∞

}
.

If s > d− ℓ, then dimH F(T , β) ≥ s.
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Using Theorem 5.1.1, we obtain the following corollary which is a gener-

alization of [LSST20, Corollary 2.3 and Corollary 2.4] for d-dimensional self-

affine structures.

Corollary 5.1.2. With the notations in Theorem 5.1.1, suppose that there

exists k, n0 ∈ N such that for all n ≥ n0 the followings hold:

(i)
L
(d)
kn

L
(d)
kn−1

≤ L
(1)
n

L
(1)
n−1

and L
(d)
kn0−1 < L

(1)
n0−1,

(ii) en/k ≤ Cn ≤ ekn,

(iii) e−kn ≤ ρn ≤ e−n/k,

(iv) ρℓnCn
∏d
j=ℓ+1 L

(j)
n /L

(j)
n−1 ≥ n−k.

If the limit

lim
n→∞

log
(
Cn
∏d
j=ℓ+1 L

(j)
n /L

(j)
n−1

)
− log

(
L
(1)
n /L

(1)
n−1

)
exists and is equal to r > 0, then dimH F(T , β) ≥ d− ℓ+ r.

Proof of Corollary 5.1.2. By the assumptions (iii) and (iv), since the sequence

{L(j)
n } is decreasing in n ∈ N ∪ {0} for each j = 1, . . . , d, we have

log

Cn d∏
j=ℓ+1

L(j)
n /L

(j)
n−1

 = O(n),

which implies that − log
(
L
(1)
n /L

(1)
n−1

)
→ ∞ as n→ ∞. Hence, using

log
(
Pn
∏d
j=ℓ+1 L

(j)
n

)
− logL

(1)
n

=
log
(
C0
∏d
j=ℓ+1 L

(j)
0

)
+
∑n

i=1 log
(
Ci
∏d
j=ℓ+1 L

(j)
i /L

(j)
i−1

)
− logL

(1)
0 −

∑n
i=1 log

(
L
(1)
i /L

(1)
i−1

) ,

it follows that

lim
n→∞

log
(
Cn
∏d
j=ℓ+1 L

(j)
n /L

(j)
n−1

)
− log

(
L
(1)
n /L

(1)
n−1

) = lim
n→∞

log
(
Pn
∏d
j=ℓ+1 L

(j)
n

)
− logL

(1)
n

.
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Let us denote by

s = d− ℓ+ r = d− ℓ+ lim
n→∞

log
(
Pn
∏d
j=ℓ+1 L

(j)
n

)
− logL

(1)
n

.

By the regularity of the given self-affine structure (T , β), we have that L(1)
n → 0

as n→ ∞, which implies

(5.1) s = sup

t > 0 : lim
n→∞

Pn(L
(1)
n )t

d∏
j=ℓ+1

L
(j)
n

L
(1)
n

= ∞

 .

We will show that dimH F(T , β) ≥ s using the equality (5.1).

Recall that Dn = max
{
i ≥ n : L

(d)
i ≥ L

(1)
n

}
. Since the sequence {L(j)

n } is

decreasing in n ∈ N ∪ {0} for each j = 1, . . . , d, we have

L
(d)
kn = L

(d)
kn0−1

kn∏
i=kn0

L
(d)
i

L
(d)
i−1

≤ L
(d)
kn0−1

n∏
i=n0

L
(d)
ki

L
(d)
ki−1

≤ L
(d)
kn0−1

n∏
i=n0

L
(1)
i

L
(1)
i−1

by assumption (i)

= L
(d)
kn0−1

L
(1)
n

L
(1)
n0−1

≤ L(1)
n by assumption (i).

Hence we have Dn ≤ kn.

Given t > 0, ϵ > 0, it follows from the assumptions (ii), (iii), and Dn ≤ kn

that ρℓDn+1CDn+1 ≤ ek(Dn+1) ≤ ek(kn+1). Since P ϵn = (
∏n
i=0Ci)

ϵ ≥ e
n(n+1)ϵ

2k ,

we have

(5.2) ρℓDn+1CDn+1 ≤ P ϵn

for all large enough n ≥ 1. Similarly, it follows from the assumptions (iii), (iv),
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and Dn ≤ kn that

ρtn+1

Dn+1∏
i=n+1

ρℓiCi d∏
j=ℓ+1

L
(j)
i

L
(j)
i−1

 ≥ e−tk(n+1)
Dn+1∏
i=n+1

i−k ≥ e−tk(n+1)(kn+ 1)−k(kn−n)

≥ e−tk(n+1)−k(kn−n) log(kn+1).

The inequality P−ϵ
n ≤ e−

n(n+1)ϵ
2k implies that

(5.3) ρtn+1

Dn+1∏
i=n+1

ρℓiCi d∏
j=ℓ+1

L
(j)
i

L
(j)
i−1

 ≥ P−ϵ
n

for all large enough n ≥ 1.

Fix a real number t with d − ℓ < t < s and take sufficiently small ϵ such

that d− ℓ < t/(1− 3ϵ) < s. By the equality (5.1), we have

(5.4) lim
n→∞

Pn(L
(1)
n )t/(1−3ϵ)

d∏
j=ℓ+1

L
(j)
n

L
(1)
n

≥ 1

for all large enough n ≥ 1.

For all large enough n ≥ 1 so that the above inequalities (5.2), (5.3), and

(5.4) hold, it follows from (5.2) that

Pn(L
(1)
n )tρtn+1

Dn∏
i=n+1

ρℓiCi ≥ P 1−ϵ
n (L(1)

n )tρtn+1

Dn+1∏
i=n+1

ρℓiCi

= P 1−ϵ
n (L(1)

n )tρtn+1

 d∏
j=ℓ+1

L
(j)
n

L
(j)
Dn+1

 ·
Dn+1∏
i=n+1

ρℓiCi d∏
j=ℓ+1

L
(j)
i

L
(j)
i−1


≥ P 1−ϵ

n (L(1)
n )tρtn+1

 d∏
j=ℓ+1

L
(j)
n

L
(1)
n

 ·
Dn+1∏
i=n+1

ρℓiCi d∏
j=ℓ+1

L
(j)
i

L
(j)
i−1

 .
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Using (5.3) and (5.4), we have

Pn(L
(1)
n )tρtn+1

Dn∏
i=n+1

ρℓiCi ≥ P 1−ϵ
n (L(1)

n )t

 d∏
j=ℓ+1

L
(j)
n

L
(1)
n

P−ϵ
n

≥ P 1−ϵ
n (L(1)

n )t

 d∏
j=ℓ+1

L
(j)
n

L
(1)
n

1−3ϵ

P−2ϵ
n P ϵn

=

Pn(L(1)
n )t/(1−3ϵ)

d∏
j=ℓ+1

L
(j)
n

L
(1)
n

1−3ϵ

P ϵn

≥ P ϵn.

It follows that for all large enough n ≥ 1,

log

(
Pn(L

(1)
n )tρtn+1

Dn∏
i=n+1

ρℓiCi

)
≥ ϵ logPn ≫ ϵn2 ≥ ϵ

n

k − 1
(Dn − n),

where the implied constant is independent of n. Hence dimH F(T , β) ≥ t by

Theorem 5.1.1. Since we choose arbitrary t with d − ℓ < t < s, it concludes

Corollary 5.1.2.

By elementary squares of β(τ) for τ ∈ T , we mean closed squares contained

in β(τ) whose side length is equal to L(1)(τ).

Lemma 5.1.3. For n ∈ N ∪ {0} with Dn > n, let κ ∈ Tn and τ ∈ Ti−1 where

n+ 1 ≤ i ≤ Dn. Then for any elementary square S of β(κ),

#{τ ′ ∈ T (τ) : β(τ ′) ∩ S ̸= ∅} ≤ (16d)dρ−ℓi .

Proof. Through this proof, we denote the size of a rectange R in Rd by l1(R)×
· · · × ld(R).

For a fixed elementary square S of β(κ), let R0 = β(τ) ∩ S and

S = {β(τ ′) ∩ S : τ ′ ∈ T (τ), β(τ ′) ∩ S ̸= ∅}.

If R0 = ∅, then there is nothing to prove since #{τ ′ ∈ T (τ) : β(τ ′) ∩ S ̸=
∅} = 0.

Let ji ∈ {1, . . . , d − 1} be an integer such that L
(d)
i ≥ · · · ≥ L

(ji+1)
i ≥
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L
(1)
n > L

(ji)
i ≥ · · · ≥ L

(1)
i . Note that ji ≥ ℓ. Let R′

0 be the rectangle with the

same center as R0 such that

lj(R
′
0) =

{
4L

(j)
i−1 for j = 1, . . . , ji

4L
(1)
n for j = ji + 1, . . . , d.

Similarly, for R ∈ S let R′ be the rectange with the same center such that

lj(R
′) =

L
(j)
i + ρi

4
√
d
L
(1)
i−1 for j = 1, . . . , ji

L
(1)
n for j = ji + 1, . . . , d.

We denote by r0 (resp. r) the center of R′
0 (resp. R′). Here, we note that

r0 and r are contained in both β(τ) and S. For x ∈ R′ and j = 1, . . . , d,

|xj − (r0)j | ≤ |xj − rj |+ |rj − (r0)j | ≤
1

2
lj(R

′) + min(L
(j)
i−1, L

(1)
n ) ≤ 1

2
lj(R

′
0).

Thus for all R ∈ S, R′ ⊂ R′
0.

For any distinct R1, R2 ∈ S, let τ ′1, τ ′2 ∈ T (τ) be such that R1 = β(τ ′1) ∩ S
and R2 = β(τ ′2)∩S, and let r1, r2 be the centers of R

′
1, R

′
2, respectively. Suppose

∥r1 − r2∥∞ = |(r1)j − (r2)j | > 0 for some j = 1, . . . , ji. Then for any x ∈ R′
1

and y ∈ R′
2, we have

|xj − yj | ≥ |(r1)j − (r2)j | − |xj − (r1)j | − |yj − (r2)j |

≥ 1√
d
dist(β(τ ′1), β(τ

′
2)) + L

(j)
i − 1

2
lj(R

′
1)−

1

2
lj(R

′
2)

≥
(
ρi√
d
L
(1)
i−1 + L

(j)
i

)
− 1

2
lj(R

′
1)−

1

2
lj(R

′
2)

=
3ρi

4
√
d
L
(1)
i−1 > 0.

Thus R′
1 ∩R′

2 = ∅.

Now we suppose ∥r1−r2∥∞ = |(r1)j− (r2)j | > 0 for some j = ji+1, . . . , d.

Observe that

L(1)
n ≥ lj(R1) + lj(R2) +

1√
d
dist(β(τ ′1), β(τ

′
2)) > lj(R1) + lj(R2),
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which implies that

|(r1)j − (r2)j | = L(1)
n − 1

2
lj(R1)−

1

2
lj(R2) >

1

2
L(1)
n .

Thus, for any fixed R1 ∈ S and j = ji + 1, . . . , d,

#{R2 ∈ S \ {R1} : ∥r1 − r2∥∞ = |(r1)j − (r2)j | and R′
1 ∩R′

2 ̸= ∅} ≤ 1.

Combining above two arguments, we conclude that every points of R′
0 is

covered by at most d− ji + 1 rectangles of {R′ : R ∈ S}. It follows that(
ρi

4
√
d
L
(1)
i−1

)ji (
L(1)
n

)d−ji
#S ≤

(
L
(j)
i +

ρi

4
√
d
L
(1)
i−1

)ji (
L(1)
n

)d−ji
#S

= vol(R′)#S
≤ (d− ji + 1) vol(R′

0)

≤ d4d
(
L
(1)
i−1

)ji (
L(1)
n

)d−ji
,

hence, using ji ≥ ℓ,

#S ≤ d1+ji/24d+jiρ−jii ≤ (16d)dρ−ℓi .

This inequality completes the proof.

Let µ be the unique probability measure on F(T , β) satisfying the following
property: For all y ∈ F(T , β) and n ∈ N,

(5.5)
µ({x ∈ F(T , β) : τn(x) = τn(y)})

µ({x ∈ F(T , β) : τn−1(x) = τn−1(y)})
=

1

#T (τn−1(y))
,

where x =
⋂
n≥0 β(τn(x)). We remark that for any n ∈ N and κ ∈ Tn, it follows

from (5.5) that

(5.6) µ(β(κ)) ≤ µ(F(T , β))
C0 . . . Cn

=
1

Pn

Lemma 5.1.4. Let n ∈ N and κ ∈ Tn. Then for any elementary square S of

β(κ), one has

µ(S) ≤ (16d)d(Dn−n)P−1
n

Dn∏
i=n+1

ρ−ℓi C−1
i .
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Proof. IfDn = n, then it follows from (5.6). AssumeDn > n. Applying Lemma

5.1.3 for i = n+ 1, . . . , Dn, we have

(5.7) #{τ ∈ TDn : β(τ) ∩ S ̸= ∅} ≤ (16d)d(Dn−n)
Dn∏

i=n+1

ρ−ℓi .

Since S∩F(T , β) can be covered by rectangles {β(τ) : τ ∈ TDn , β(τ)∩S ̸= ∅},
we have

µ(S) ≤
∑
τ∈TDn

β(τ)∩S ̸=∅

µ(β(τ))

≤ µ(β(κ))

Dn∏
i=n+1

C−1
i ·#{τ ∈ TDn : β(τ) ∩ S ̸= ∅}

≤ (16d)d(Dn−n)P−1
n

Dn∏
i=n+1

ρ−ℓi C−1
i .

In the last inequality, we use (5.6) and (5.7).

Let U be an open subset of Rd with U ∩ F(T , β) ̸= ∅. If U ∩ F(T , β)
is a single point set, then we denote by n(U) the smallest n ∈ N such that

diam(U) ≥ ρn+1L
(1)
n . In that case, there is a unique κ = κ(U) ∈ Tn(U) such

that U ∩F(T , β) ⊂ β(κ). If U ∩F(T , β) contains more than two points, then

we denote by n(U) the largest n ∈ N such that U ∩ F(T , β) ⊂ β(κ) for some

κ = κ(U) ∈ Tn. We note that diam(U) ≥ ρn(U)+1L
(1)
n(U) by the assumption (4)

of Theorem 5.1.1.

Lemma 5.1.5. Let U be an open subset of Rd with U ∩ F(T , β) ̸= ∅. Let

n = n(U) and κ = κ(U). Then there is a family S of elementary squares of

β(κ) such that

1.
⋃
S∈S S ⊃ U ∩ F(T , β);

2.
(
L
(1)
n

)t
·#S ≤ 2d−ℓρ−tn+1 diam(U)t for all t ≥ d− ℓ.

Proof. If diam(U) ≤ L
(1)
n , then there exists an elementary square S of β(κ)

such that S ⊃ U ∩F(T , β). We set S = {S} so that S satisfies two conditions.

Now we assume diam(U) > L
(1)
n . Then U ∩ F(T , β) can be covered by⌈

diam(U)

L
(1)
n

⌉d−ℓ
elementary sqaures. Let S be the family of these elementary
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squares. Then

(
L(1)
n

)t
·#S =

(
L(1)
n

)t ⌈diam(U)

L
(1)
n

⌉d−ℓ
≤ 2d−ℓ

(
diam(U)

L
(1)
n

)d−ℓ (
L(1)
n

)t
≤ 2d−ℓ

(
diam(U)

L
(1)
n

)t (
L(1)
n

)t
≤ 2d−ℓρ−tn+1 diam(U)t.

Proof of theorem 5.1.1. For a real number t such that d − ℓ ≤ t < s, there

exists n0 = n0(t) such that for all n ≥ n0,

(5.8) Pn

(
L(1)
n

)t
ρtn+1

Dn∏
i=n+1

ρℓiCi ≥ (16d)dmax{Dn−n,1} ≥ (16d)d(Dn−n).

Let U be an open cover of F(T , β). Assume that for all U ∈ U , diam(U)

is small enough so that n(U) ≥ n0. Since F(T , β) is compact, there exists a

finite subcover U0 such that for all U ∈ U0, U ∩ F(T , β) ̸= ∅.

For U ∈ U0, let SU be a family of elementary squares given by Lemma

5.1.5. Let Q =
⋃
U∈U0

SU and n(S) = n(U) for S ∈ SU . We note that S may

belong to different SU . However, n(S) is well-difined since a side length of S

is L
(1)
n(U). Then Q covers F(T , β) and hence

∑
U∈U0

diam(U)t ≥ 1

2d−ℓ

∑
S∈Q

ρtn(S)+1

(
L
(1)
n(S)

)t
by Lemma 5.1.5

≥ 1

2d−ℓ

∑
S∈Q

(16d)d(Dn−n)P−1
n(S)

Dn∏
i=n+1

ρ−ℓi C−1
i by (5.8)

≥ 1

2d−ℓ

∑
S∈Q

µ(S) by Lemma 5.1.4

≥ 1

2d−ℓ
.

Thus we have dimH F(T , β) ≥ t. Since we choose arbitrary t with d−ℓ ≤ t < s,

the proof is completed.
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5.2 Counting lattice points in convex sets

In this section, we will generalize the results in [LSST20, §3.2] for R3 to the

general Rd+1. In §5.2.1, we first recall the notations and lemmas in [LSST20,

§3.1].

5.2.1 Preliminaries for lattice point counting

For a positive integer D ≥ 1, we write the D-dimensional Euclidean space by

ED = RD . For a convex body K ⊂ RD and a lattice Λ ⊂ RD, let λi(K,Λ) (i =
1, . . . , D) be the i-th successive minimum of Λ with respect to K, that is, the

infimum of those numbers λ such that λK ∩Λ contains i linearly independent

vectors. Let vol(·) be the Lebesgue measure on RD and let cov(Λ) be the

covolume of a lattice Λ, which is the Lebesgue measure of a fundamental

domain of Λ. Denote by

θ(K,Λ) :=
vol(K)

cov(Λ)
.

For an affine subspace H of RD, let volH(·) be the Lebesgue measure on

H with respect to the subspace Riemannian structure. We write volH(S) =

volH(S ∩ H) for a Borel measurable subset S of RD by abuse of notation.

We say that a subspace H of RD is Λ-rational if H ∩ Λ is a lattice in H,

and denote by covH(Λ) the covolume of the lattice H ∩ Λ in H. We also use

the same notations for the dual vector space E∗
D with respect to the standard

Euclidean structure.

We use ∥ · ∥ for the Euclidean norms on RD and E∗
D. For a normed vector

space V , denote by Br(V ) (or Br if V = RD) the ball of radius r centered at

0 ∈ V . We use K-norms on RD and E∗
D defined by{

∥v∥K = inf{r > 0 : v ∈ rK}, v ∈ RD,
∥φ∥K = supv∈K |φ(v)|, φ ∈ E∗

D.

Recall that LD is the space of unimodular lattices in RD, which can be

identified with the homogeneous space SLD(R)/SLD(Z). For g ∈ SLD(R) let
g∗ be the adjoint action on E∗

D defined by φ 7→ φ◦g. Then g∗ can be represented

by the transpose of g with respect to the standard basis e1, . . . , eD of RD and

the dual basis e∗1, . . . , e
∗
D of E∗

D.
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The dual lattice of Λ in RD is the lattice in E∗
D defined by

Λ∗ = {φ ∈ E∗
D : φ(v) ∈ Z, ∀v ∈ Λ}.

Let us define the following two sets:

Kϵ = Kϵ(D) = {Λ ∈ LD : ∥v∥ ≥ ϵ, ∀v ∈ Λ∖ {0}} = {Λ ∈ LD : λ1(B1,Λ) ≥ ϵ};
K∗
ϵ = K∗

ϵ (D) = {Λ ∈ LD : ∥φ∥ ≥ ϵ, ∀φ ∈ Λ∗ ∖ {0}}.

Since E∗
D can be naturally identified with

∧D−1
R RD with the standard Eu-

clidean structure, we have Λ∗ =
∧D−1

Z Λ.

A nonzero vector v ∈ Λ is said to be primitive if (1/n)v /∈ Λ for all n ∈ N.
The set of primitive vectors in Λ is denoted by Λ̂.

We summarize the lemmas in [LSST20, §3.1].

Lemma 5.2.1. Let D ≥ 2. For every lattice Λ in RD and every bounded

centrally symmetric convex subset K of RD with λd(K,Λ) ≤ 1 we have

#(K ∩ Λ̂) =
(
ζ(D)−1 + η(K,Λ)

)
· θ(K,Λ)

where ζ is the Riemann ζ-function and

|η(K,Λ)| ≪D λD(K,Λ)− λD(K,Λ) log λ1(K,Λ).

Lemma 5.2.2. Let D ≥ 2. For every lattice Λ in RD and every bounded

centrally symmetric convex subset K of RD with λD(K,Λ) ≤ 1 we have

#(K ∩ (Λ∖ {0})) = (1 + α(K,Λ)) · θ(K,Λ)

where |α(K,Λ)| ≪D λD(K,Λ)

Lemma 5.2.3. Let K and Λ be as in Lemma 5.2.2. Then

#(K ∩ Λ) ≍D θ(K,Λ).

Lemma 5.2.4. Let D ≥ 1. Let Λ be a lattice in RD and K be a bounded

centrally symmetric convex subset of RD with nonempty interior. Then

#(K◦ ∩ Λ) ≍D #(K ∩ Λ) ≍D #(K ∩ Λ).
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Lemma 5.2.5. Let K and Λ be as in Lemma 5.2.2. If λi(K,Λ) ≤ s ≤ s′ ≤
λj+1(K,Λ) where 1 ≤ i ≤ j ≤ D, then(

s′

s

)i
≪D

#(s′K ∩ Λ)

#(sK ∩ Λ)
≪D

(
s′

s

)j
.

Lemma 5.2.6. Let D ≥ 2. Let K be a bounded centrally symmetric convex

subset of RD with nonempty interior and let φ ∈ E∗
D ∖ {0}. Then

volHφ(K) ≍D ∥φ∥vol(K)/∥φ∥K .

We need the following auxiliary lemma.

Lemma 5.2.7. Given D ≥ 2 and r > 0, let Λ ∈ K∗
r(D), and let v,w ∈ Λ be

any nonzero linearly independent vectors. Then there exists a positive constant

c′ = c′(D) > 0 such that ∥v ∧w∥ ≥ c′rD−2.

Proof. Let Λ′ be the 2-dimensional sublattice of Λ generated by v,w. By

Minkowski’s second theorem, we have

(5.9) ∥v ∧w∥ ≥ cov(Λ′) ≫2 λ1(B1,Λ
′)λ2(B1,Λ

′) ≥ λ1(B1,Λ)λ2(B1,Λ).

Agian by Minkowski’s second theorem, we have

(5.10)
1 ≪D λ1(B1,Λ) · · ·λD(B1,Λ) ≤ λ1(B1,Λ)λ2(B1,Λ)λD(B1,Λ)

D−2

≤ λ1(B1,Λ)λ2(B1,Λ)
1

rD−2
.

The last inequality comes from Λ ∈ K∗
r(D). The result is following by combin-

ing (5.9) and (5.10).

5.2.2 Lattice point counting in Rd+1

For d ≥ 2 and a (d + 1)-tuple r = (r1, . . . , rd+1) of positive real numbers, we

estimate the number of lattice points in the set

Mr = {(x1, . . . , xd+1) ∈ Rd+1 : |xi| ≤ ri, ∀i = 1, . . . , d+ 1}.

Let

M∗
r = {φ ∈ E∗

d+1 : |x
φ
i | ≤ ri, ∀i = 1, . . . , d+ 1},

where the element φ ∈ E∗
d+1 is represented by φ =

∑d+1
i=1 x

φ
i e

∗
i .
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Lemma 5.2.8. Let d ≥ 2. For any real number c0 > 1, there exists positive

real number c̃ < 1 such that for every lattice Λ in Rd+1 and every (d+1)-tuple

r of positive real numbers with

λd+1(Mr,Λ) ≤ c̃ and − λd+1(Mr,Λ) log λ1(Mr,Λ) ≤ c̃

one has

1

c0ζ(d+ 1)
θ(Mr,Λ) ≤ #(Mr ∩ Λ̂) ≤ c0

ζ(d+ 1)
θ(Mr,Λ).

Proof. The proof follows directly from Lemma 5.2.1.

Now we fix real numbers s, r1, . . . , rd+1 such that 0 < s < 1/2, ri ≥ 1

for each i = 1, . . . , d, and rd+1 = 1. Denote by r = (r1, . . . , rd+1), rM =

max1≤i≤d ri, and rm = min1≤i≤d ri. Define a norm

∥φ∥r = max {ri|xφi | : i = 1, . . . , d+ 1} .

It follows from the definition that

(5.11) ∥φ∥r ≤ ∥φ∥Mr ≤ (d+ 1)∥φ∥r.

For q > 0 let

Nq(r, s) =
{
φ ∈ E∗

d+1 : |x
φ
i | ≤ s, ∀i = 1, . . . , d, and ∥φ∥r ≤ q

}
.

Note that Nq(r, s) =M∗
r′ where r

′ = (r′1, . . . , r
′
d, q) with r

′
i = min{q/ri, s}. For

a lattice Λ in Rd+1 and i = 1, . . . , d+ 1, let qi(Λ, r, s) be the infimum of those

positive real number q such that Nq(r, s) ∩ Λ contains i linearly independent

vectors. We will give an upper bound of the number of

S(Λ, r, s) :=
{
v ∈Mr ∩ Λ̂ : φ(v) = 0 for some φ ∈ N(d+1)srM (r, s) ∩ Λ̂∗

}
,

where Λ̂∗ is the set of primitive vectors in Λ∗.

Lemma 5.2.9. For d ≥ 2, let Λ be a unimodular lattice in Rd+1 with q1(Λ, r, s) ≥
s−2. Then

1. if rm = rM and qd+1(Λ, r, s) ≤ ds−1/2rM , then

#S(Λ, r, s) ≪ s1/2 · vol(Mr);
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2. if rm < rM and qd+1(Λ, r, s) log qd+1(Λ, r, s) ≤ srM , then

#S(Λ, r, s) ≪ s2 · vol(Mr).

Proof. For simplicity, we denote by Nq = Nq(r, s), qi = qi(Λ, r, s) and S =

S(Λ, r, s). If N(d+1)srM ∩Λ̂∗ is empty then there is nothing to prove. We assume

that N(d+1)srM ∩ Λ̂∗ is nonempty. It follows from the definition that

(5.12) #S ≤
∑

φ∈N(d+1)srM
∩Λ̂∗

#(Hφ ∩Mr ∩ Λ̂)

with the notation Hφ = kerφ.

We first claim that for every φ ∈ N(d+1)srM ∩ Λ̂∗,

(5.13) #(Hφ ∩Mr ∩ Λ̂) ≪ vol(Mr)

∥φ∥Mr

≤ vol(Mr)

∥φ∥r
.

where the second inequality follows from (5.11). If #(Hφ ∩Mr ∩ Λ̂) < d + 1,

then it follows from (5.11) that

vol(Mr)

∥φ∥Mr

≥ 2(d+1)r1 . . . rd+1

(d+ 1)∥φ∥r
≥ 2(d+1)r1 . . . rd+1

(d+ 1)2srM
≫ #(Hφ ∩Mr ∩ Λ̂).

Otherwise, Hφ ∩Mr ∩ Λ has d linearly independent vectors, hence it follows

from Lemma 5.2.3 and Lemma 5.2.6 that

#(Hφ ∩Mr ∩ Λ̂) ≪
volHφ(Mr)

covHφ(Λ)
≪ ∥φ∥ vol(Mr)

covHφ(Λ)∥φ∥Mr

≪ vol(Mr)

∥φ∥Mr

,

which concludes the claim.

By (5.12) and (5.13), it suffices to estimate

(5.14)

η :=
∑

φ∈N(d+1)srM
∩Λ̂∗

∥φ∥−1
r

=
1

(d+ 1)srM
#(N(d+1)srM ∩ Λ̂∗) +

∑
φ∈N(d+1)srM

∩Λ̂∗

∫ (d+1)srM

∥φ∥r

1

q2
dq.

We denote the first and second terms in the last line by η1, η2, respectively.
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Observe that

(5.15)

η2 =
∑

φ∈N(d+1)srM
∩Λ̂∗

∫ (d+1)srM

q1

1q(∥φ∥r)
q2

dq

=

∫ (d+1)srM

q1

∑
φ∈N(d+1)srM

∩Λ̂∗

1q(∥φ∥r)
q2

dq

≤
∫ (d+1)srM

q1

#(Nq ∩ Λ̂∗)

q2
dq.

where 1q denotes the indicator function of the set {x ∈ R : x ≤ q}.
For i = 2, . . . , d, if qi−1 ≤ q < qi then #(Nq ∩ Λ̂∗) = i ≤ d. Thus

(5.16)

∫ qd

q1

#(Nq ∩ Λ̂∗)

q2
dq ≤

∫ qd

q1

d

q2
dq ≤ d

q1
≪ s2 ≤ s1/2,

where the third inequality follows from the assumption q1 ≥ s−2.

Proof of the assertion (1). We claim that η ≪ s−1/2 under the assumption

of (1), which concludes the assertion (1). Assume that rm = rM and qd+1 ≤
ds−1/2rM . Observe that by definition

(5.17) N(d+1)s−1/2rM
=M∗

(s,...,s,(d+1)s−1/2rM )
.

We have an upper bound of η1 as

(5.18) η1 ≤
#(N(d+1)s−1/2rM

∩ Λ∗)

(d+ 1)srM
≪

vol(N(d+1)s−1/2rM
)

(d+ 1)srM
≪ sd−3/2 ≤ s1/2.

The first inequality follows from s < 1/2, the second inequality follows from

Lemma 5.2.3, and the third inequality follows from (5.17).

For an upper bound of η2, we first compute

(5.19)

∫ (d+1)srM

srM

#(Nq ∩ Λ̂∗)

q2
dq ≤

∫ (d+1)srM

srM

#(N(d+1)srM ∩ Λ∗)

q2
dq

≤
#(N(d+1)srM ∩ Λ∗)

srM

≪ s1/2,
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where the last inequality can be shown by the same as (5.18).

If srM ≤ qd, then it follows from (5.16) and (5.19) that η2 ≪ s1/2. Now we

suppose that srM > qd. For all qd < q ≤ srM = srm, observe that

Nq =M∗
(q/r1,...,q/rd+1)

=
q

srM
NsrM .

Since λd(Nq,Λ) = λd(
q

srM
NsrM ,Λ) ≤ 1 ≤ srM/q, it follows from Lemma 5.2.5

that

#(Nq ∩ Λ̂∗) ≤ #

(
q

srM
NsrM ∩ Λ∗

)
≪
(

q

srM

)d
#(NsrM ∩ Λ∗).

By srM ≤ ds−1/2rM and Lemma 5.2.3, we have

#(Nq ∩ Λ̂∗) ≪
(

q

srM

)d
#(Nds−1/2rM

∩ Λ∗)

≪
(

q

srM

)d
vol(Nds−1/2rM

)

≪
(

q

srM

)2

sd−1/2rM ≪ q2s−1/2

rM
.

The last line follows from q
srM

≤ 1 and s ≤ 1. Thus we have

∫ srM

qd

#(Nq ∩ Λ̂∗)

q2
dq ≪

∫ srM

qd

s−1/2

rM
dq ≪ s1/2.

It follows that η2 ≪ s1/2 under the assumption of (1), which concludes the

assertion (1).

Proof of the assertion (2). We will prove that η ≪ s2 under the assumption

of (2). By the assumption, we have qd+1 ≥ q1 ≥ s−2 ≥ 4 so that qd+1 < srM <

(d + 1)srM since qd+1 log qd+1 ≤ srM . Thus N(d+1)srM ∩ Λ∗ contains d + 1

linearly independent vectors. By Lemma 5.2.3, we have

(5.20) η1 ≤
#(N(d+1)srM ∩ Λ∗)

(d+ 1)srM
≪

vol(N(d+1)srM )

(d+ 1)srM
≪ sd ≤ s2.
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By (5.15), it suffices to show that∫ (d+1)srM

q1

#(Nq ∩ Λ̂∗)

q2
dq ≪ s2.

We split the domain of integration as (q1, qd) ∪ (qd, qd+1) ∪ (qd+1, srM ) ∪
(srM , (d+ 1)srM ) and estimate upper bounds of the integrals.

For each q ∈ (srM , (d+ 1)srM ), it follows from Lemma 5.2.3 that #(Nq ∩
Λ̂∗) ≪ vol(Nq) ≪ sdq. Thus we have

(5.21)

∫ (d+1)srM

srM

#(Nq ∩ Λ̂∗)

q2
dq ≪

∫ (d+1)srM

srM

sd

q
dq = sd log(d+ 1) ≪ s2.

For each q ∈ (qd+1, srM ), it follows from Lemma 5.2.3 that #(Nq ∩ Λ̂∗) ≪
vol(Nq) ≪ sd−1q2/rM . Thus we have

(5.22)

∫ srM

qd+1

#(Nq ∩ Λ̂∗)

q2
dq ≪

∫ srM

qd+1

sd−1

rM
dq ≤ sd ≤ s2.

By (5.16), the integral over (q1, qd) is bounded above by s2.

Now it remains to show that the integral over (qd, qd+1) is bounded above

by s2. Let H = SpanR(Nqd ∩ Λ∗). We claim that for every q ∈ (qd, qd+1),

(5.23) volH(Nq) ≤
q

qd+1
volH(Nqd+1

).

If H contains e∗d+1, then the claim is easily checked from the definition of Nq.

Otherwise, we let pr∗ be the orthogonal projection onto SpanR{e∗1, . . . , e∗d}.
Then the volume of pr∗(Nq) is at most q/qd+1 times the volume of pr∗(Nqd+1

)

since q/rM < qd+1/rM < s. Thus we prove the claim.
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For each q ∈ (qd, qd+1), we have

#(Nq ∩ Λ̂∗) ≪ volH(Nq)

covH(Λ∗)
by Lemma 5.2.3

≤ q

qd+1

volH(Nqd+1
)

covH(Λ∗)
by (5.23)

≪ q

qd+1
#(Nqd+1

∩H ∩ Λ∗) by Lemma 5.2.3

≪ q

qd+1
#(N◦

qd+1
∩H ∩ Λ∗) by Lemma 5.2.4

=
q

qd+1
#(N◦

qd+1
∩ Λ∗) ≤ q

qd+1
#(Nqd+1

∩ Λ∗)

≪ q

qd+1
vol(Nqd+1

) by Lemma 5.2.3

≪ sd−1 qd+1q

rM
.

Therefore, we have

(5.24)

∫ qd+1

qd

#(N1 ∩ Λ̂∗)

q2
dq ≪

∫ qd+1

qd

s2
qd+1

srM

1

q
dq ≤ s2

qd+1 log qd+1

srM
≤ s2.

By combining (5.16), (5.21), (5.22), and (5.24), the proof of (2) is completed.

This proves Lemma 5.2.9.

For a weight vector w = (w1, . . . , wd) as in the introduction, let 1 ≤ ℓ ≤
d − 1 be the unique integer such that w1 = · · · = wℓ > wℓ+1 ≥ · · · ≥ wd,

and denote by ξ = max(1, d−ℓℓ ). For a fixed lattice Λ ⊂ Rd+1 and fixed r, s,

we denote qi(Λ, r, s) by qi(Λ) and Nq(r, s) by Nq for simplicity. Let us fix a

constant C ≥ 1 which is an implied constant for the conclusion of Lemma

5.2.9 (1) and (2).

Lemma 5.2.10. Let d ≥ 2, s = ϵ2, r = (r1, . . . , rd+1) = (ϵet, . . . , ϵet, 1),

Λ ∈ K∗
ϵ2 ∩L′

d+1, and at = diag(ew1t, . . . , ewdt, e−t). Then there exists a positive

real number ϵ̃ ≤ 1 and c = c(d) > (d + 1)1/14 such that for all ϵ, t > 0 with

ce−wdt/(2d
3) < ϵ < ϵ̃, one has

#S(atΛ, r, s) ≤ ϵ1/2 · vol(Mr).
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Proof. We will prove the lemma for ϵ̃ < 1/C2 and the constant c will be

determined later. By Lemma 5.2.9 (1), it suffices to show that

(5.25) q1(atΛ) ≥ s−2 and qd+1(atΛ) ≤ ds−1/2rd.

First, note that

Nq ∩ (atΛ)
∗ = Nq ∩ a∗−tΛ∗ = a∗−t(a

∗
tNq ∩ Λ∗),

where a∗t denotes the transpose of at. Hence it is enough to show that a∗tNs−2

has no nonzero lattice point of Λ∗ for the first inequality of (5.25). Since d ≥ 2

and wd ≤ 1/d, we have

e−
t
7 < e−

wdt

2d3 < ce−
wdt

2d3 < ϵ,

that is, s−2 < r1s. Thus we have

Ns−2 =M∗
(s−2/r1,...,s−2/r1,s−2) =M∗

(ϵ−5e−t,...,ϵ−5e−t,ϵ−4),

which implies that

a∗tNs−2 =M∗
(ϵ−5e(w1−1)t,...,ϵ−5e(wd−1)t,ϵ−4e−t)

.

Since for all i = 1, . . . , d

ϵ

(d+ 1)1/14
>

c

(d+ 1)1/14
e−

wdt

2d3 > e−
(d−1)wdt

7 ≥ e
(wi−1)t

7 ,

we have ϵ−5e(wi−1)t < ϵ2√
d+1

for all i = 1, . . . , d. It is clear that ϵ−4e−t <

ϵ−5e(wd−1)t < ϵ2√
d+1

. Thus a∗tNs−2 is contained in the interior of Bϵ2(E∗
d+1).

Since Λ ∈ K∗
ϵ2 , there is no lattice point of Λ in a∗tNs−2 .

To show the second inequality of (5.25), we will construct a basis for Λ∗

of which vectors are contained in Nds−1/2rd
= Ndet . Since de

t > rd > rds, we

have

a∗tNdet = a∗tM
∗
(s,...,s,det) =M∗

(sew1t,...sewdt,d).

Let 1/2 < r ≤ 1 be such that red+1 ∈ Λ̂ from the assumption Λ ∈ L′
d+1.

Let pr : Rd+1 → Rd be the orthogonal projection onto Span (e1, . . . , ed). Note

that pr(Λ) is a lattice with covolume 1/r in Rd. If v ∈ Λ satisfies ∥pr(v)∥ =

202



CHAPTER 5. WEIGHTED SINGULAR VECTORS

λ1(B1,pr(Λ)), then since Λ ∈ K∗
ϵ2 , it follows from Lemma 5.2.7 with D = d+1

that

(5.26) λ1(B1,pr(Λ)) ≥ rλ1(B1,pr(Λ)) = ∥v ∧ red+1∥ ≥ c̄1(ϵ
2)d−1

for some c̄1 = c̄1(d) < 1. Since cov(pr(Λ)) = 1/r, it follows from the Minkowski’s

second theorem and (5.26) that for any 0 < c1 < c̄1

cd−1
1 (ϵ2)(d−1)2λd(B1,pr(Λ)) ≤ λ1(B1,pr(Λ)) · · ·λd(B1,pr(Λ)) ≪ 1,

hence there exists c2 = c2(d) > 1 such that

(5.27) λd(B1,pr(Λ)) ≤ c2(ϵ
−2)(d−1)2 .

Let {v(i) : i = 1, . . . , d} be a Minkowski reduced basis for pr(Λ) such

that ∥v(i)∥ ≤ 2dλi(B1,pr(Λ)). For each i = 1, . . . , d, let vi ∈ Λ be such that

pr(vi) = v(i) and |e∗d+1(vi)| < 1. Then the vectors v1, . . . ,vd,vd+1 = red+1

form a basis for Λ. Recall that E∗
d+1 can be naturally identified with

∧d
RRd+1

with the standard Euclidean structure. Under this identification, we have Λ∗ =∧d
Z Λ, hence the vectors

∧
j ̸=i vj for i = 1, . . . , d + 1 forms a basis for

∧d
Z Λ.

We now claim that the vectors
∧
j ̸=i vj for i = 1, . . . , d + 1 are contained in

a∗tNdet via the above identification, which proves that qd+1(atΛ) ≤ ds−1/2rd.

For each i = 1, . . . , d+ 1, write

∧
j ̸=i

vj =

d+1∑
h=1

x(i)h ∧
k ̸=h

ek

 .

Note that |x(d+1)
d+1 | = 1/r ≤ 2 ≤ d and x

(i)
d+1 = 0 for each i = 1, . . . , d since

vd+1 = red+1. By the definition of vi and (5.27), since ϵ < 1, we can choose

large enough c3 = c3(d) > (d+ 1)d
2/7 for each i = 1, . . . , d,

∥vi∥ ≤
√

1 + ∥v(i)∥2 ≤ 2d
√
2c2(ϵ

−2)(d−1)2 ≤ c3(ϵ
−2)(d−1)2 .

Thus for each i = 1, . . . , d+ 1 and h = 1, . . . , d,

|x(i)h | ≤

∥∥∥∥∥∥
∧
j ̸=i

vj

∥∥∥∥∥∥ ≤
∏
j ̸=i

∥vj∥ ≤ cd3(ϵ
−2)d(d−1)2 .
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From the assumption ce−wdt/(2d
3) < ϵ, it follows that

c2d
3
e−wdt < (ϵ2)d

3
< (ϵ2)d(d−1)2+1.

Choosing c = c
1/2d2

3 > (d+ 1)1/14, we have

|x(i)h | ≤ cd3(ϵ
−2)d(d−1)2 < ϵ2ewdt = sewdt ≤ sewit,

which concludes the claim.

Lemma 5.2.11. Let d ≥ 2, r = (r1, . . . , rd+1), bt = diag
(
bt,1, . . . , bt,d+1

)
, and

Λ ∈ K∗
ϵ2, where

ri =


ϵe(ξ−

1
ℓ
(wℓ+1+···+wd))t if 1 ≤ i ≤ ℓ,

ϵe(ξ+wi)t if ℓ+ 1 ≤ i ≤ d,

1 if i = d+ 1,

and

bt,i =


e(ξwi−

1
ℓ
(wℓ+1+···+wd))t if 1 ≤ i ≤ ℓ,

e(1+ξ)wit if ℓ+ 1 ≤ i ≤ d,

e−ξt if i = d+ 1.

Then there exists a positive real number s̃ ≤ 1 such that for all s, t > 0 with

e−δt < ϵ < s < s̃ where δ = 1
18d2

min
(
ξwd, ξw1 − 1

ℓ (wℓ+1 + · · ·+ wd)
)
, one has

(5.28) #S(btΛ, r, s) ≤ s vol(Mr).

Proof. Note that rm = r1 < rM = rℓ+1. Take t0 = t0(w1, . . . , wd) > 0 such

that for any t > t0 we have

(5.29) e
wd
20
t ≥ (ξ +

wd
2
)t.

Denoting by c4 = e−δt0 , then c4 ∈ (0, 1) depends only on the weights w1, . . . , wd,

and the inequality (5.29) holds whenever e−δt < c4. Let

s̃ = min

(
1

C
, c4,

1√
d+ 1

,

(
vol(B1)

4d+1

)1/d
)

≤ 1.
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By Lemma 5.2.9 (2), it suffices to show that for e−δt < ϵ < s < s̃,

q1(btΛ) ≥ s−2 and qd+1(btΛ) log qd+1(btΛ) ≤ sϵe(ξ+wℓ+1)t.

Since e−δt < ϵ < s, it follows from s−3ϵ−1 < ϵ−4 < e4δt that s−2/ri < s for

all i = 1, . . . , d, hence

b
∗
tNs−2 = b

∗
tM

∗
( s

−2

r1
,..., s

−2

rd
,s−2)

=M∗
(eξ(w1−1)tϵ−1s−2,...,eξ(wd−1)tϵ−1s−2,e−ξts−2).

Since s̃ ≤ 1√
d+1

, we have for all i = 1, . . . , d,

s2ϵ3√
d+ 1

> ϵ6 > e−6δt > e−(ξw1− 1
ℓ
(wℓ+1+···+wd))t ≥ eξ(wi−1)t,

and
s2ϵ2√
d+ 1

> ϵ5 > e−5δt > e−ξwdt > e−ξt,

hence it follows that b
∗
tNs−2 is contained in the interior of Bϵ2(E∗

d+1). Since

Λ ∈ K∗
ϵ2 , there is no lattice point of Λ in b

∗
tNs−2 , which concludes q1(btΛ) ≥ s−2

as in the proof of the first inequality of (5.25).

Since ξ = max(1, d−ℓℓ ) < d, we have

(5.30) sϵ > ϵ2 > e−
1

9d2
ξwdt > e−

1
9d
wdt,

which implies that

e
wd
2
t = e−

wd
2
tewdt < e−

1
9d
wdtewdt < sϵewdt,

hence e(ξ+
wd
2
)t < rds. On the other hand, it is clear that rℓs < e(ξ+

wd
2
)t, hence

b
∗
tNe(ξ+wd/2)t is the set of φ = xφ1 e

∗
1 + · · ·+ xφd+1e

∗
d+1 ∈ E∗

d+1 such that
|xφi | ≤ se(ξwi−

1
ℓ
(wℓ+1+···+wd))t for 1 ≤ i ≤ ℓ,

|xφi | ≤ ϵ−1e(ξwi+
wd
2
)t for ℓ+ 1 ≤ i ≤ d,

|xφi | ≤ e
1
2
wdt for i = d+ 1.

It follows from Λ ∈ K∗
ϵ2 that λ1(B1,Λ

∗) ≥ ϵ2. By Minkowski’s second theorem,
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we have

ϵ2dλd+1(B1,Λ
∗) ≤ λ1(B1,Λ

∗) · · ·λd+1(B1,Λ
∗) ≤ 2d+1

vol(B1)
,

hence λd+1(B1,Λ
∗) ≤ 2d+1

vol(B1)
ϵ−2d. Thus there exists a Minkowski reduced basis

φ1, . . . , φd+1 of Λ∗ such that ∥φi∥ ≤ 4d+1

vol(B1)
ϵ−2d ≤ ϵ−3d for all i = 1, . . . d + 1

since ϵd < s̃d ≤ vol(B1)
4d+1 . Recall that w1 = · · · = wℓ, hence it can be easily

checked that φi’s are contained in b
∗
tNe(ξ+wd/2)t . Thus qd+1(btΛ) ≤ e(ξ+wd/2)t

so that

qd+1(btΛ) log qd+1(btΛ) ≤ e(ξ+
wd
2
)t(ξ +

wd
2
)t

≤ e(ξ+
wd
2
)te

wdt

20 by (5.29)

≤ sϵe(ξ+wd)t by (5.30)

≤ sϵe(ξ+wℓ+1)t.

5.3 Lower bound

5.3.1 Construction of the fractal set

For a given weight vector w = (w1, . . . , wd), recall that 1 ≤ ℓ ≤ d − 1 is

the unique integer such that w1 = · · · = wℓ > wℓ+1 ≥ · · · ≥ wd, and ξ =

max(1, d−ℓℓ ) (see §5.2.2). We choose a real number c0 > 1 such that

(5.31)
1

10
<

(
2

c0
− c0

)
1

ζ(d+ 1)
and

c0
ζ(d+ 1)

< 1,

using 1 < ζ(d+1) < 2. Let c̃ ≤ 1 be a positive real number as in Lemma 5.2.8

with respect to the above c0, and let ϵ̃, s̃ ≤ 1 be positive real numbers as in

Lemmas 5.2.10 and 5.2.11, respectively. We fix the constants ϵ, t, r > 0 with

the following properties:

1. 0 < ϵ < r < 1
1044d

min{ϵ̃, s̃};

2. t ≥ 1 will be chosen large enough so that (5.34), (5.39), (5.41), (5.42),

(5.44), (5.45), (5.46), (5.47) hold.
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Let {ϵn} and {tn} be the sequence defined as follows: for n ∈ N,

1. ϵn = ϵ/n;

2. tn − tn−1 = ξnt and t0 = 1.

We will construct the tree T whose vertices are in the set Qd of ratio-

nal vectors and the map β from V T to the set of compact subsets in Rd+1,

inductively. We first set the root of T to be zero, that is, τ0 = 0 and define

β(τ0) = {x ∈ Rd : |(τ0)i − xi| < e−wit1 , ∀i = 1, . . . , d}.

For each τ ∈ Tn with n ≥ 1, let

β̃(τ) = {x ∈ Rd : |τi − xi| < ϵn+1e
−witn+1−tn , ∀i = 1, . . . , d}.

Recall that at = diag
(
ew1t, . . . , ewdt, e−t

)
and h(x) =

(
Id x

0 1

)
for x ∈ Rd.

Denote by

bn = diag(e−
1
ℓ
(wℓ+1+···+wd)nt, . . . , e−

1
ℓ
(wℓ+1+···+wd)nt, ewℓ+1nt, . . . , ewdnt, 1).

Note that the first ℓ terms of bn are the same.

For each κ ∈ Tn−1, we define T (κ) as the set of all τ ∈ β̃(κ) with the

following properties:

(5.32)

atnh(τ)Zd+1 ∈ L′
d+1,

atnh(τ)Zd+1 ∈ K∗
ϵ2n
,

bnatnh(τ)Zd+1 ∈ K∗
r .

It follows from the definitions of T (κ) and L′
d+1 that τ ∈ Qd and for any

τ ∈ T (κ) there exists the unique vector

(5.33) v(τ) ∈ {red+1 : 1/2 < r ≤ 1} ∩ atnh(τ)Zd+1.

Note that (d+1)-th coordinate of v(τ) is qe−tn for some q ∈ Z such that 1/2 <

qe−tn ≤ 1. Since tn ≥ tn−1 + 1, Tn has empty intersection with
⋃

0≤i≤n−1 Ti,
which implies that T is a rooted tree.
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For each τ ∈ T (κ) with κ ∈ Tn−1, define

β(τ) = {x ∈ Rd : |τi − xi| < ϵne
−witn+1−tn , ∀i = 1, . . . , d}.

Note that for each τ ∈ T (κ), it follows from the definitions of β̃ and β that

β(τ) ⊂ β(κ). If follows from Lemma 5.3.1 below that each vertex of T has

sons by choosing t ≥ 1 large enough so that for any n ∈ N

(5.34)
1

100
ϵdne

ξdnt ≥ 1.

Hence the pair (T , β) is a regular self-affine structure.

Lemma 5.3.1. For every n ∈ N and y ∈ Tn−1 one has

1

100
ϵdne

ξdnt ≤ #T (y) ≤ 2d+1ϵdne
ξdnt.

For fixed n ∈ N and y ∈ Tn−1, we let

Λ = atn−1h(y)Zd+1 ∈ L′
d+1 ∩ K∗

ϵ2n−1
,

Λ1 = atnh(y)Zd+1 = aξntΛ,

Λ2 = bnatnh(y)Zd+1 = bnaξntΛ,

and for x ∈ β̃(y),

Λ1(x) = atnh(x)Zd+1 = atnh(x− y)a−1
tn Λ1,

Λ2(x) = bnatnh(x)Zd+1 = bnatnh(x− y)a−1
tn b

−1
n Λ2.

The lattices Λ1(x) and Λ2(x) satisfy Λ1(x) ∈ L′
d+1 ∩ K∗

ϵ2n
and Λ2(x) ∈ K∗

r

if and only if x ∈ T (y). Hence Lemma 5.3.1 follows from the following lemma.

Lemma 5.3.2. Let n ∈ N and y ∈ Tn−1. Then

1

10
ϵdne

ξdnt ≤ #{x ∈ β̃(y) : Λ1(x) ∈ L′
d+1} ≤ 2d+1ϵdne

ξdnt,(5.35)

#{x ∈ β̃(y) : Λ1(x) ∈ L′
d+1 ∖K∗

ϵ2n
} ≤ 8

100
ϵdne

ξdnt,(5.36)

#{x ∈ β̃(y) : Λ2(x) ∈ L′
d+1 ∖K∗

r} ≤ 1

100
ϵdne

ξdnt.(5.37)

Proof. Let x ∈ β̃(y) with Λ1(x) ∈ L′
d+1. Then there exists sx such that 1/2 <
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sx ≤ 1 and Λ1(x) ∩ Red+1 = {sxed+1}. We denote sxed+1 by v(x).

First, we prove (5.35). It can be checked by a direct calculation that the

map x 7→ atnh(y−x)a−1
tn v(x) is a bijection from {x ∈ β̃(y) : Λ1(x) ∈ L′

d+1} to

M ∩ Λ̂1 where

M = {(z1, . . . , zd+1) : max
1≤i≤d

|zi| ≤ ϵne
ξnt|zd+1|, 1/2 < |zd+1| ≤ 1}.

Thus it suffices to estimate #(M ∩ Λ̂1). Let

M (1) = {(z1, . . . , zd+1) : max
1≤i≤d

|zi| ≤
1

2
ϵne

ξnt, |zd+1| ≤ 1}

M (2) = {(z1, . . . , zd+1) : max
1≤i≤d

|zi| ≤
1

2
ϵne

ξnt, |zd+1| ≤
1

2
}.

Since M (1) ∖M (2) ⊂M ⊂ 2M (2), we have

(5.38) #(M (1) ∩ Λ̂1)−#(M (2) ∩ Λ̂1) ≤ #(M ∩ Λ̂1) ≤ #(2M (2) ∩ Λ̂1).

We will use Lemma 5.2.8 to estimate #(M (i) ∩ Λ̂1) for i = 1, 2. Since

Λ ∈ K∗
ϵ2n−1

⊂ K∗
ϵ2n
, it follows from the natural identification E∗∗

d = Rd and

Minkowski second theorem that there exist contants C1, C2 > 0 depending

only on d such that

λ1(B1,Λ) ≥ C1ϵ
2d
n and λd+1(B1,Λ) ≤ C2ϵ

−2
n .

Since Λ = a−1
ξntΛ1, for i = 1, 2, we have

λ1(M
(i),Λ1) = λ1(a

−1
ξntM

(i),Λ) ≥ λ1(a
−1
ξntM

(1),Λ)

≥ λ1(B(d+1)eξnt ,Λ) ≥
C1

d+ 1
e−ξntϵ2dn

and

λd+1(M
(i),Λ1) = λd+1(a

−1
ξntM

(i),Λ) ≤ λd+1(a
−1
ξntM

(2),Λ)

≤ λd+1(B 1
2
ϵne(1−w1)ξnt ,Λ) ≤ 2C2e

(w1−1)ξntϵ−3
n .

Thus we can choose t ≥ 1 large enough so that for all n ∈ N

(5.39) λd+1(M
(i),Λ1) < c̃ and − λd+1(M

(i),Λ1) log λ1(M
(i),Λ1) < c̃.
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Using Lemma 5.2.8 and (5.38), we have(
2

c0
− c0

)
1

ζ(d+ 1)
ϵdne

ξdnt ≤ #(M ∩ Λ̂1) ≤
c0

ζ(d+ 1)
2d+1ϵdne

ξdnt.

By (5.31), we complete the proof of (5.35).

Next, we prove (5.36) and (5.37). Let s1 = ϵ2n, s2 = r, a(1) = aξnt, a
(2) =

bnaξnt, and

Sj = {x ∈ β̃(y) : Λi(x) ∈ L′
d+1 ∖K∗

sj} for j = 1, 2.

Recall that

S(Λ, r, s) =
{
v ∈Mr ∩ Λ̂ : φ(v) = 0 for some φ ∈ N(d+1)srM (r, s) ∩ Λ̂∗

}
.

We will show that

(5.40) #Sj ≤ #S(Λj , rj , sj) (j = 1, 2)

for some rj and apply Lemma 5.2.10 and 5.2.11.

Let z(1) and z(2) be vectors in Rd such that

z
(1)
i = (yi − xi)e

(wi+1)tn for 1 ≤ i ≤ d;

z
(2)
i =

{
(yi − xi)e

− 1
ℓ
(wℓ+1+···+wd)nt+(wi+1)tn if 1 ≤ i ≤ ℓ,

(yi − xi)e
wint+(wi+1)tn if ℓ+ 1 ≤ i ≤ d.

Then h(z(j)) = a(j)atn−1h(y − x)(a(j)atn−1)
−1 for j = 1, 2 and

|z(1)i | ≤ ϵne
ξnt =: r

(1)
i for 1 ≤ i ≤ d;

|z(2)i | ≤

{
ϵne

(ξ− 1
ℓ
(wℓ+1+···+wd))nt =: r

(2)
i if 1 ≤ i ≤ ℓ,

ϵne
(ξ+wi)nt =: r

(2)
i if ℓ+ 1 ≤ i ≤ d.

Since v(x) ∈ Λ1(x) ∩ Λ2(x), for j = 1, 2,

wj(x) := h(z(j))v(x) ∈ Λj .

For rj = (r
(j)
1 , . . . , r

(j)
d , 1), the map Sj →Mrj∩Λ̂j given by x 7→ wj(x) is injec-

tive. Hence, in order to show (5.40), we should find φj ∈ N
(d+1)sjr

(j)
M

(rj , sj)∩Λ̂∗
i
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such that φj(wj(x)) = 0. It follows from the definition of Sj that for x ∈ Sj ,
a(j)atn−1h(x)Zd+1 /∈ K∗

sj . Then there exists φj ∈ Λ̂∗
j such that ∥h(z(j))∗φj∥ <

sj , where h(z(j))∗ is the adjoint action defined by g∗φ(v) = φ(gv) for all

g ∈ SLd+1(R), φ ∈ E∗
d+1, and v ∈ Rd+1. It follows from direct calculation that

h(z(j))∗φj =

(
φj(e1), . . . , φj(ed),

d∑
i=1

z
(j)
i φj(ei) + φj(ed+1)

)
.

By choosing t ≥ 1 large enough so that for all n ∈ N

(5.41) ϵeξnt ≥ 1,

it follows from ∥h(z(j))∗φj∥ < sj that

|φj(ei)| < sj for 1 ≤ i ≤ d;

|φj(ed+1)| < sj + dsjr
(j)
M < (d+ 1)sjr

(j)
M .

Hence we have φj ∈ N
(d+1)sjr

(j)
M

. It follows that

|φj(wj(x))| = |h(z(j))∗φj(h(−z(j))wj(x))| = |h(z(j))∗φj(v(x))|

≤ |h(z(j))∗φj(ed+1)| ≤ ∥h(z(j))∗φj∥ < sj < 1.

Since φj(wj(x)) ∈ Z, it follows that φj(wj(x)) = 0. This proves (5.40).

We choose t ≥ 1 large enough so that for all n ∈ N

(5.42) ce−wdξnt/(2d
3) < ϵn and e−δnt < ϵn.

Since Λ ∈ K∗
ϵ2n−1

⊂ K∗
ϵ2n

and (5.42), it follows from Lemma 5.2.10 and 5.2.11

that

S1 ≤ #S(Λ1, r1, s1) ≤
√
ϵn vol(Mr1) = 2d+1√ϵnϵdneξdnt,

S2 ≤ #S(Λ2, r2, s2) ≤ r vol(Mr2) = 2d+1rϵdne
ξdnt.

By the assumption (1) for ϵ and r, this complete the proof.

The following lemma is d-dimensional version of [LSST20, Lemma 4.1].

Lemma 5.3.3. F(T , β) ⊂ Sing(w).
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Proof. This lemma directly follows from the same argument in the proof of

[LSST20, Lemma 4.1].

5.3.2 The lower bound calculation

In this subsection we complete the proof of main results.

Proposition 5.3.4. Let w = (w1, . . . , wd) ∈ Rd>0 where w1 = · · · = wℓ >

wℓ+1 ≥ · · · ≥ wd > 0 and
∑d

i=1wi = 1 and let (T , β) be the self-affine

strunction on Rd in the previous section. Then

dimH F(T , β) ≥ d− 1

1 + w1
.

We will prove Proposition 5.3.4 using Corollary 5.1.2. Let Cn, L
(1)
n , . . . , L

(d)
n

be the positive constants defined as follows:

Cn = ϵdne
ξdnt, L(i)

n = 2ϵne
−witn+1−tn , ∀i = 1, . . . , d.

It can be easily checked that a regular self-affine structure (T , β) satisfies

assumptions (1), (2), and (3) of Theorem 5.1.1. For the assumption (4) of

Theorem 5.1.1, we need the following lemma.

Lemma 5.3.5. Let n ∈ N be large and τ ∈ Tn−1. Then

dist(β(x), β(y)) ≥ L
(1)
n−1

c′rd−1

4
√
dϵn−1

e
1
ℓ
(wℓ+1+···+wd−ξℓ)nt,

where x, y ∈ T (τ) are distinct and c′ is the positive constant in Lemma 5.2.7.

Proof. By the construction of T and the definition of bn, there are 1/2 ≤
sx, sy ≤ 1 such that

sxed+1 ∈ bnatnh(x)Zd+1, syed+1 ∈ bnatnh(y)Zd+1.

Let us denote by

v = bnatnh(y − x)(bnatn)
−1sxed+1 ∈ bnatnh(y)Zd+1,

v ∧ syed+1 = sxsy

d∑
i=1

uiei ∧ ed+1.
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Observe that

ui =

{
(yi − xi)e

(wi+1)tn− 1
ℓ
(wℓ+1+···+wd)nt for 1 ≤ i ≤ ℓ,

(yi − xi)e
(wi+1)tn+wint for ℓ+ 1 ≤ i ≤ d.

Since x and y are distinct, the vectors v and eyed+1 are linearly independent,

hence it follows from Lemma 5.2.7 that

(5.43)
√
d∥u∥∞ ≥ sxsy∥u∥ = ∥v ∧ syed+1∥ ≥ c′rd−1,

where u = (u1, . . . , ud) ∈ Rd and ∥ · ∥∞ denotes the max norm.

Let x′ ∈ β(x) and y′ ∈ β(y). Suppose that ∥u∥∞ = |ui| for some 1 ≤ i ≤ ℓ.

Then it follows from (5.43) that

∥y′ − x′∥ ≥ |y′i − x′i| ≥ |yi − xi| − |xi − x′i| − |yi − y′i|

≥ e−(wi+1)tn+
1
ℓ
(wℓ+1+···+wd)nt

(
c′rd−1

√
d

− 2ϵne
−ξwi(n+1)t− 1

ℓ
(wℓ+1+···+wd)nt

)

≥ e−(wi+1)tn+
1
ℓ
(wℓ+1+···+wd)nt c

′rd−1

2
√
d

(5.44)

≥ L
(i)
n−1

c′rd−1

4
√
dϵn−1

e
1
ℓ
(wℓ+1+···+wd−ξℓ)nt

≥ L
(1)
n−1

c′rd−1

4
√
dϵn−1

e
1
ℓ
(wℓ+1+···+wd−ξℓ)nt.

We choose t ≥ 1 large enough so that the third line (5.44) holds for all n ∈ N.
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On the other hand, if ∥u∥∞ = |ui| for some ℓ+ 1 ≤ i ≤ d, then we have

∥y′ − x′∥ ≥ |y′i − x′i| ≥ |yi − xi| − |xi − x′i| − |yi − y′i|

≥ e−(wi+1)tn−wint
(
c′rd−1

√
d

− 2ϵne
wint−ξwi(n+1)t

)
≥ e−(wi+1)tn−wint c

′rd−1

2
√
d

(5.45)

≥ L
(1)
n−1

c′rd−1

4
√
dϵn−1

e(w1−wi)tn−(ξ+wi)nt

≥ L
(1)
n−1

c′rd−1

4
√
dϵn−1

e(w1−wℓ+1)tn−(ξ+wi)nt

≥ L
(1)
n−1

c′rd−1

4
√
dϵn−1

e
1
ℓ
(wℓ+1+···+wd−ξℓ)nt.(5.46)

We choose t ≥ 1 large enough so that the third line (5.45) and last line (5.46)

hold for all n ∈ N.
This concludes the proof of the lemma.

We choose t ≥ 1 large enough so that for all n ∈ N

(5.47) ρn :=
c′rd−1

4
√
dϵn−1

e
1
ℓ
(wℓ+1+···+wd−ξℓ)nt ≤ 1

since wℓ+1 + · · ·+wd < ξℓ. The assumption (4) of Theorem 5.1.1 follows from

Lemma 5.3.5.

Proof of Proposition 5.3.4. We prove the proposition applying Corollary 5.1.2.

It can be easily checked that for k > 4ξdt, the assumptions of Corollary 5.1.2

hold. Then we have

log(CnL
(ℓ+1)
n · · ·L(d)

n /L
(ℓ+1)
n−1 · · ·L(d)

n−1)

− log(L
(1)
n /L

(1)
n−1)

=
ξdnt− ξ(wℓ+1 + · · ·+ wd)(n+ 1)t− ξ(d− ℓ)nt+ o(n)

ξw1(n+ 1)t+ ξnt+ o(n)

→ ℓ− (wℓ+1 + · · ·+ wd)

1 + w1
= ℓ− 1

1 + w1
as n→ ∞
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Hence Corollary 5.1.2 implies

dimH F(T , β) ≥ (d− ℓ) + ℓ− 1

1 + w1
= d− 1

1 + w1
.

Proof of Theorem 1.4.1. If w1 = · · · = wd, then the result follows from [CC16,

Theorem 1.1]. If there exists 1 ≤ ℓ ≤ d− 1 such that w1 = · · · = wℓ > wℓ+1 ≥
· · · ≥ wd, then the result follows from Lemma 5.3.3 and Proposition 5.3.4.

Proof of Theorem 1.4.2. This theorem directly follows from the same argu-

ment in the proof of [LSST20, Theorem 1.5].
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[Rüh16] R. Rühr, Effectivity of uniqueness of the maximal entropy measure

on p-adic homogeneous spaces, Ergodic Theory and Dynamical Systems.

36(6) (2002), 1972-1988.

[Sch64] W. Schmidt,Metrical theorems on fractional parts of sequences, Trans.

Amer. Math. Soc. 10 (1964), 493-–518.

[Sch66] W. Schmdit, Badly Approximable numbers and certain games, Trans.

Amer. Math. Soc. 110 (1964), 493–518.

[Sch69] W. Schmidt, Badly approximable systems of linear forms, J. Number

Theory 1 (1969), 139-–154.

[Sch80] W. M. Schmidt. Diophantine approximation. Lect. Notes Math. 785,

Springer Verlag, 1980.

[Sha11] U. Shapira, A solution to a problem of Cassels and Diophantine prop-

erties of cubic numbers, Ann. Math. 173 (2011), no. 1, 543-557.

223



BIBLIOGRAPHY

[Sim18] D. Simmons, A Hausdorff measure version of the Jarńık—Schmidt
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국문초록

균질공간에서 군 작용의 동역학을 의미하는 균질동역학은 정수론과 많은 연

결관계가 있다. 이러한 연결관계는 지난 수십 년간 광범위하고 집중적으로 연구

되었으며 다양한 정수론 결과를 제공하였다.

본 학위 논문에서는 균질동역학과 디오판틴 근사의 관계에 대해 살펴보고

다음과 같은 디오판틴 근사에서의 세가지 대상에 대해 알아볼 것이다: 디리끌레

향상불가능아핀형식,나쁜근사를가지는아핀형식,가중치를가지는특이벡터.

우선 우리는 약한 L1 측정을 통해 균질동역학에서의 동등분포 결과를 향상

시키고 디오판틴 근사에서의 전이원리를 이용하여 디리끌레 향상 불가능 아핀형

식에 대한 국소 편재 체계를 구축한다. 이러한 연구를 바탕으로 디리끌레 향상

불가능 아핀형식의 하우스도르프 측도에 대한 0−∞ 현상을 규명한다.

다음으로 엔트로피 강직성의 효과적인 표현을 건설하는데 이를 이용하여 잘

행동하는 시그마 대수를 건설하고 큰 엔트로피를 가지는 불변측도를 건설함으로

써나쁜근사를가지는아핀형식의하우스도르프차원의효과적인상계를얻는다.

뿐만 아니라 나쁜 근사를 가지는 아핀형식이 최대차원을 갖기 위한 필요충분조

건으로 평균적 특이성을 보인다. 또한 대역적 함수체 위에서의 디오판틴 근사를

생각하고 비슷한 결과를 얻는다.

마지막으로 가중치를 가지는 특이 벡터의 프랙탈 구조와 관련된 수의 기하학

의격자점셈을발전시키고균질동역학의투영성질을이용하여가중치를가지는

특이 벡터의 하우스도르프 차원의 하계를 얻는다.

주요어휘: 균질동역학, 디오판틴 근사, 엔트로피 강직, 수의 기하학, 편재 체계,

대역적 함수체

학번: 2016-23082
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