

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

이학박사 학위논문

Evenly Angle Dispersing Methods for
Convolutional Kernel Regularization

(합성곱 커널 정규화를 위한 고른 각도분산방법)

2022년 8월

서울대학교 대학원

수 리 과 학 부

배 정 우

Evenly Angle Dispersing Methods for
Convolutional Kernel Regularization

(합성곱 커널 정규화를 위한 고른 각도분산방법)

지도교수 강 명 주

이 논문을 이학박사 학위논문으로 제출함

2022년 4월

서울대학교 대학원

수 리 과 학 부

배 정 우

배 정 우의 이학박사 학위논문을 인준함

2022년 6월

위 원 장 (인)

부 위 원 장 (인)

위 원 (인)

위 원 (인)

위 원 (인)

Evenly Angle Dispersing Methods for
Convolutional Kernel Regularization

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

to the faculty of the Graduate School of
Seoul National University

by

Jeongwoo Bae

Dissertation Director : Professor Myungjoo Kang

Department of Mathematical Sciences
Seoul National University

August 2022

© 2022 Jeongwoo Bae

All rights reserved.

Abstract

In this thesis, we propose new convolutional kernel regularization methods.

Along with the development of deep learning, there have been attempts to ef-

fectively regularize a convolutional layer, which is an important basic module of

deep neural networks. Convolutional neural networks (CNN) are excellent at ab-

stracting input data, but deepening causes gradient vanishing or explosion issues

and produces redundant features. An approach to solve these issues is to directly

regularize convolutional kernel weights of CNN. Its basic idea is to convert a con-

volutional kernel weight into a matrix and make the row or column vectors of

the matrix orthogonal. However, this approach has some shortcomings. Firstly, it

requires appropriate manipulation because overcomlete issue occurs when the num-

ber of vectors is larger than the dimension of vectors. As a method to deal with

this issue, we define the concept of evenly dispersed state and propose PH0 and

MST regularizations using this. Secondly, prior regularizations which enforce the

Gram matrix of a matrix to be an identity matrix might not be an optimal ap-

proach for orthogonality of the matrix. We point out that these rather reduces the

update of angles between some two vectors when two vectors are adjacent. There-

fore, to complement for this issue, we propose EADK and EADC regularizations

which update directly the angle. Through various experiments, we demonstrate

that EADK and EADC regularizations outperform prior methods in some neural

network architectures and, in particular, EADK has fast learning time.

Key words: Deep Learning, Convolution, Kernel, Regularization, Orthogonality,

Evenly Dispersed State

Student Number: 2012-23024

i

Contents

Abstract i

1 Introduction 1

2 Preliminaries 4

2.1 Two Ways of Understanding CNN Layers as Matrix Operations . . . 5

2.1.1 Kernel Matrix . 6

2.1.2 Convolution Matrix . 7

2.2 Soft Orthogonality . 11

2.2.1 SO Regularization . 11

2.2.2 DSO Regularization . 12

2.3 Mutual Coherence . 13

2.3.1 MC Regularization . 13

2.4 Spectral Restricted Isometry Property 13

2.4.1 Restricted Isometry Property 13

2.4.2 SRIP Regularization . 15

2.5 Orthogonal Convolutional Neural Networks 18

2.5.1 OCNN Regularizaiton . 18

ii

3 Topological Dispersing Regularizations 22

3.1 Evenly Dispersed State . 23

3.1.1 Dispersing Vectors on Sphere 23

3.1.2 Evenly Dispersed State in the Real Projective Spaces 25

3.2 Persistent Homology Regularization 33

3.2.1 Čech and Vietoris-Rips Complexes 35

3.2.2 Persistent Homology . 36

3.2.3 PH0 Regularization . 38

3.3 Minimum Spanning Tree Regularization 39

3.3.1 Minimum Spanning Tree . 39

3.3.2 MST Regularization . 41

4 Evenly Angle Dispersing Regularizations 42

4.1 Analysis of Soft Orthogonality . 43

4.1.1 Analysis of Soft Orthogonality 43

4.2 Evenly Angle Dispersing Regularizations 47

4.2.1 Evenly Angle Dispersing Regularization with Kernel Matrix . 47

4.2.2 Evenly Angle Dispersing Regularization with Convolution

Matrix . 52

5 Algorithms & Experiments 54

5.1 Algorithms . 55

5.1.1 PH0 and MST . 55

5.1.2 EADK . 57

5.1.3 EADC . 58

5.2 Experiments . 59

iii

5.2.1 Analysis for Angle Dispersing 59

5.2.2 Experimental Setups . 62

5.2.3 Classification Accuracy . 68

5.2.4 Additional Experiments . 76

6 Conclusion 78

The bibliography 80

Abstract (in Korean) 85

iv

List of Figures

2.1 Convolving a 3 × 3 kernel over a 5 × 5 input using 1 padding and

1 stride [9]. 6

2.2 Illustration of im2col method [29]. 7

2.3 Convolution matrix [27] . 10

2.4 A convolutional layer Y = Conv(K,X) can be formulated as matrix

multiplications in two ways: a) im2col methods (kernel matrix K).

b) convolutional structure based methods (convolution matrix K) [27]. 19

2.5 The spatial region to check for row orthogonality. It is only necessary

to check overlapping filter patches [27]. 20

3.1 Average shape of the simplices. 31

3.2 The lower bound area (A) and the uppder bound area (C) of the

traversed volume (B). 34

3.3 γ is born at i and dies at j. The life time of γ is j − i [10]. 37

4.1 Angle update by soft orthogonality method. 45

4.2 ∆θ with respect to θ ∈ [0, π] obtained by the relation (4.8) for various

λ. 46

4.3 Update by equation (4.10). 48

v

4.4 ∆θ with respect to θ ∈ (0, π] obtained by the relation (4.14) for

various λ. 50

5.1 3D Plotting of resultant 6 and 12 points regularized by various reg-

ularizations. 63

5.2 3D Plotting of resultant 20 and 60 points regularized by various

regularizations.. 64

5.3 2D and 3D plotting of resultant regularized 12 points regularized by

EADK for various target angles. 65

5.4 Diagrams of relationship between relative learning time and accuracy

for various regularizations. 72

5.5 Validation curves during training various ResNet on CIFAR-10 and

CIFAR-100. 73

5.6 Validation curves during trainingWideResnet on CIFAR-10, CIFAR-

100 and SVHN. 75

vi

List of Tables

5.1 The calculation times of regularizing losses using PH0 and MST

according to convolutional kernel weight shapes. We experiment with

various output and input channel numbers and fixed kernel size 3×3

on CPU. 56

5.2 Angle analysis for various numbers of points on S2 and regulariza-

tions. AA denotes Adjacent Angle (Adjacent Distance). 61

5.3 Angle analysis of EADK for various target angles with 12 points. . 62

5.4 Regularization coefficients and weight decays of standard settings,

i.e., for Resnet18 and CIFAR-100 experiments. 68

5.5 Top-1 accuracy rates (%) of ResNet with various depth and regular-

izations on CIFAR-10 and CIFAR100. We evaluate accuracy rates

by averaging the results of the last 5 epochs. 69

5.6 The values in the base row of the table indicate elapsed time (sec-

onds) of training one epoch for each experiment. The values in the

below rows are the ratio of elapsed times of training one epoch for

each experiment with a regularization to that of base. 71

vii

5.7 Top-1/Top-5 accuracy rates (%) of WideResnet with various regular-

izations on CIFAR-10, CIFAR100 and SVHN. We evaluate accuracy

rates by averaging the results of the last 5 epochs. 74

5.8 The values in the base row of the table indicate elapsed time (sec-

onds) of training one epoch for each experiment. The values in the

below rows are the ratio of elapsed times of training one epoch for

each experiment with a regularization to that of base. 74

5.9 Experiment for various target regularized weights. F, C1 and C3 are

the set of fully connected weights, convolutional weights of kernel size

1 and convolutional weights of kernel size greater than 1, respectively.

Values are Top-1 accuracy for various target regularized weights. We

use ResNet18 and CIFAR-100 for this experiment. 76

5.10 λ2/λ1 is the rate of dispersing part coefficient λ2 to normalizing part

coefficient λ1 in our regularizations. Values are Top-1 accuracy for

various λ2/λ1. We use ResNet18 and CIFAR-100 for this experiment. 77

viii

Chapter 1

Introduction

Deep learning is a tool for dealing with problems in various fields such as im-

age classification [26], image inpainting [30] and anomaly detection [23]. CNN

(Convolutional Neural Network) [12] plays one of the important roles in this deep

learning popularity. This network has a structure made with the motif of the eyes

of life. CNN uses a kernel to capture local information of input features and to

create an output features by sliding the kernel on input features. This process ab-

stracts complex spatial information into various features. The deeper convolutional

layers in CNN, the more abstract information cab be extracted. Abstract features

obtained in this way are processed to solve various image related problems because

local and global information of input data are properly combined.

However, learning a deep convolutional neural network could have gradient

vanishing or expolosion issues. As a solution to this, ResNet [13] and Batch Nor-

malization [16] have been studied. It is also known that CNN tends to create many

redundant features, which make the model heavier than necessary and degrade per-

formance. To deal with these issues, convolutional kernel regularizations have been

1

devised. The main approach used in convolutioinal kernel regularizations is to prop-

erly transform kernel weights of a convolutional layer into a matrix and make the

row or column vectors of it orthonormal. This orthogonality method leads CNN

to create various features as possible. To have these matrix orthonormal, prior

regularizations mainly use the definition of orthogonality, i.e., to make the Gram

matrix of it identity. However, if the number of vectors we want to orthonormalize

is greater than the dimension of vectors, the overcomplete issue occurs. Therefore

prior methods regularize its transpose matrix (subsection 2.2.2) or use concepts

generalizing the orthogonality (subsection 2.4.2).

In this thesis, we introduce new approaches to regularize convolutional kernel

weights. We argue the concept of dispersing vectors that generalizes orthogonal-

ity up to overcomplete case, and introduce PH0 and MST in subsection 3.2.3

and 3.3.2 regularizations respectively that use the dispersing concept. Another

problem with prior regularizations using inner product for orthogonality is that

these have phenomena in which an angle-spreading update occurs relatively small

when the angle between two vectors is close to 0. This means that when a model

is finely optimized by lowering the learning rate, angles of two adjacent vectors

are no longer effectively distant. Thus we introduce evenly angle dispersing reg-

ularizations EADK and EADC in subsection 4.2.1 and 4.2.2 respectively that

regularize directly angles of two row vectors rather than inner products. These

methods complement less spreading problem and make target matrices be stably

orthogonal.

Our contributions are summarized as the followings:

• We introduce the concept of evenly dispersed state and show that this extends

2

the concept of orthogonality.

• We show that the concept of evenly dispersed state can be used for kernel

regularization by utilizing topological techniques (PH0, MST) or angle dis-

persing techniques (EADK, EADC).

• We point out a deficiency of some prior convolutional kernel regularizations

and propose our evenly angle dispersing regularizaitons as alternatives.

• We show that our proposed methods disperse vectors on S2 more effectively

and allow us to conversely predict the ideal adjacent angle of evenly dispersed

state of arbitrary points on S2.

• We evaluate prior and our proposed convolutional kernel regularizations on

benchmark image datasets and demonstrate that our method achieves state-

of-the-art (SOTA) performance in our experiments.

3

Chapter 2

Preliminaries

Before arguing our methods, in Chapter 2, we examines the various convolu-

tional kernel regularizations that currently exist. As a preliminary work on that,

we first introduce two matrices, kernel matrix and convolution matrix in subsection

2.1.1 and 2.1.2 respectively, which are made form kernel weights of a convolutional

layer in CNN. Kernel matrix is a matrix that is mainly used in the actual calcu-

lation of CNN operation simply by reshaping kernel weights. Convolution matrix

is the matrix representation of the linear operation corresponding CNN operation,

i.e., convolution operation. This representation retains the shift invariant property,

which is the innate property of convolution.

In section 2.2, we introduce SO and DSO regularizations as the most basic

methods [1, 28]. SO is the regularization that makes the Gram matrix of the

kernel matrix identity matrix. This leads to approximate orthogonality of the kernel

matrix. However, depending on whether the shape of the kernel matrix is fat or

thin, it can be an overcomplete problem. As an alternative way to compensate for

this, there is DSO method of giving SO regularization to the kernel matrix and

4

its transpose matrix simultaneously.

In section 2.3, we introduce the Mutual Coherence regularization [8]. The

method is to find the two vectors with the smallest angle between them and to

make them orthogonal. The effect of this method, however, is insignificant because

the number of regularized weights is just two.

In section 2.4, we deal with Restricted Isometry Property [5] and introduce

SRIP regularization that is based on the property [2]. Restricted Isometry Prop-

erty is a property that appears in the decoding problem of linear programming,

plays a role of a condition for recovering original information from encoded data.

This condition is considered to be a generalized orthogonality that allows us to

talk about orthogonality for overcomplete problems. SRIP uses it to regularize a

kernel matrix.

In section 2.5, we introduce OCNN regularization [27]. Unlike the above reg-

ularization, OCNN is different in that it uses a convolution matrix instead of

a kernel matrix. The authors show that orthogonalizing a convolution matrix is

a stronger condition than orthogonalizing the corresponding kernel matrix. In the

practical calculation, orthogonalizing operation is performed through convolutional

operation. They also show that their method can ignore overcomplete issues.

2.1 Two Ways of Understanding CNN Layers as Ma-

trix Operations

Convolution in Neural Networks is an operation in which, as show in Figure

2.1, a kernel moves by some stride value to produce an output pixel value for

overlapping area. Since this operation is based on the shared-weight, it is also

5

Figure 2.1: Convolving a 3 × 3 kernel over a 5 × 5 input using 1 padding and 1
stride [9].

know as Shift Invariant Operation [32]. In this section, we introduce two methods

to formulate convolutional layer as matrix multiplication.

2.1.1 Kernel Matrix

Im2col [14,29] is a method of transforming the operation into linear transform.

Since it enables efficient GPU computation, Im2col is fast and has been widely used

in deep neural networks.

The specific method of performing im2col in the case of going from one channel

input to multi-channel output is as follows (see Figure 2.2).

1. Remake the input into the matrix Ic with columns corresponding to all re-

ceptive fields that appear while sliding a kernel.

2. Each kernel is reshaped to a row vector of a matrix K so that the inner

product are performed with the the receptive field vectorized into column.

3. The output of the matrix multiplication of two matrices K and Ic is reshaped

into the final output features.

6

Figure 2.2: Illustration of im2col method [29].

The reshaped matrix K of convolutional kernel weight in 2 is called Kernel

Matrix. If an input feature has multiple channels, columnized input matrices are

connected vertically and kernel matrices are horizontally attached. In this case the

kernel matrix K is of the shape M×Ckhkw, where M,C, kh and kw are the number

of output channels, the number of input channels, kernel width and kernel height

respectively.

K ∈ RM×Ckhkw (2.1)

2.1.2 Convolution Matrix

The matrix Ic in the Im2col method have duplicated information of input fea-

tures, but the kernel matrix K retains its original size. Conversely, it is also possible

to retain the size of input features and duplicate the information of the convolu-

tional kernel weights. Since convolution operation is linear, this approach is natu-

rally defined and reasonable in theoretical perspective.

Let y be the output obtained by applying circular convolution with a kernel a

and an input x [24, 25]. Since circular convolution is linear with respect to x, we

7

can find an appropriate matrix Ca that satisfies Equation 2.2, in which x is used

also to denote the flattened vector of the input feature.

y = a ∗ x = Cax (2.2)

Let x ∈ Rn and a = [a0, a1, . . . , an−1] have the same size by doing zero padding

if necessary. Then Ca is of the form in (2.3) and this matrix are called circulant

matrix [7].

Ca =



a0 a1 · · · an−1

an−1 a0 · · · an−2

...
...

. . .
...

a1 a2 · · · a0


(2.3)

In convolutional neural networks, kernels and input features are 2D shaped and

thus we need to reshape these into 1D shape. Suppose, for simplicity, that each

number of input and output channel is one. For the matrix operation in (2.2) fit

our 2D convolutional operation, the convolutional kernel weight should be reformed

to a sparse matrix like in (2.5).

For example, let a in (2.4) be a convolutional kernel weight and x an input

feature with 3× 3 size.

a =

a0 a1

a2 a3

 (2.4)

Then the kernel is reformed into Ca in (2.5).

8

Ca =



a0 a1 0 a2 a3 0 0 0 0

0 a0 a1 0 a2 a3 0 0 0

0 0 0 a0 a1 0 a2 a3 0

0 0 0 0 a0 a1 0 a2 a3


(2.5)

It should be noted that, strictly speaking, the matrix (2.5) is not a circulant

matrix but a doubly block-Toepliz matrix [4]. This is because the convolution

in convolutional neural networks does not work in a way that circulates at the

boundary of the input feature. However, if the kernel size is significantly smaller

than the input feature size, we may think that the convolution of convolutional

neural networks is also a circular convolution and develop a theory.

For the convolutional layer with CI input channels, CO output channels and

x ∈ RH×W×CI , the output y ∈ RH′×W ′×CO is evaluated by matrix multiplication

with the matrix K in (2.6) and x [20,27]. The elements Caij of K in (2.6) are cir-

culant matrix(or precisely doubly block-Toepliz matrix) like in (2.5). This method

is illustrated in Figure 2.3.

K =



Ca00 Ca01 · · · Ca0CI

Ca10 Ca11 · · · Ca1CI

...
...

. . .
...

CaCO0 CaCO1 · · · CaCOCI


(2.6)

The matrix K in (2.6) is called Convolution Matrix.

9

Figure 2.3: Convolution matrix [27]

10

2.2 Soft Orthogonality

2.2.1 SO Regularization

The most basic method to regularize convolutional kernel weights in CNN is to

give kernel matrices an orthogonal condition. Let a kernel matrix W be of the shape

M × Ckhkw, where M is output channel number, C is input channel number and

kh, kw are height, width of the convolutional kernel respectively. The most naive

method to give W orthogonality condition is to enforce the Gram matrix of the

kernel matrix W to be close to identity matrix I under Frobenius norm [28], which

is termed as Soft Orthogonality (SO) regularization:

λ||WW T − I||2F , (2.7)

where λ is a regularization coefficient [2].

The effect of the orthogonality regularization is firstly the diversification of

output features. Orthogonality condition makes the frame composed of row vectors

of W be close to a Stiefel manifold [17], so the dissimilarity of the kernels increases

and the output features are diversified. Another effect of orthogonality is that

since orthogonal matrix is isometry, it makes features preserve energy through

convolutional layers. The other effect is that orthogonality regularization normalize

its kernel weights. j-th channel of an output feature is obtained by convolving C

distinct kernels with corresponding channels of an input features and applying an

activation function to the channel-wise sum of convolving results. If we call the

kernels used here kj1, . . . , kjC , this corresponds to a row of the kernel matrix W ,

the norm of these are normalized to one as in (2.8).

11

1 = ∥(kj1, . . . , kjC)∥2F = ∥kj1∥2F + . . . ∥kjC∥2F (2.8)

Regardless of the number of input channels, the sum of the squares of norm of

kernels which correspond to a channel of output feature is one. The orthogonality

regularization normalize the kernel matrix W in this sense and the problems of

vanishing and exploding gradients are reduced.

2.2.2 DSO Regularization

Soft orthogonality regularization is the simplest orthogonalizing method, but

when kernel matrix is fat, i.e., M < Ckhkw, it is overcomplete and cannot satisfy

orthogonality. Therefore better ways should be suggested to solve this problem.

A method is to use a regularization term as in (2.7) if the matrix is tall, i.e.,

M ≤ Ckhkw, else as in (2.9).

λ∥W TW − I∥2F (2.9)

Another method is to use the sum of terms of (2.7) and (2.9) without considering

the shape of kernel matrix as in (2.10), and is called Double Soft Orthogonal-

ity (DSO) regularization. DSO regularization is similar to the previous selective

method, but the authors of [2] argue that DSO always outperforms that in their

experiments.

λ(∥W TW − I∥2F + ∥WW T − I∥2F) (2.10)

12

2.3 Mutual Coherence

2.3.1 MC Regularization

The mutual coherence [8] is a method of reducing the degree of correlation

between the overall row vectors of kernel matrix W by choosing the two most

correlated vectors and making them decorrelated. The degree of correlation can be

expressed as the absolute value of the cosine between some two vectors as shown

in (2.11), where wi denotes i-th row of kernel matrix W , and the largest absolute

value of cosine for any distinct two vectors is used as a regularization.

µW = max
i ̸=j

|< wi, wj >|
∥wi∥ · ∥wj∥

(2.11)

Authors of [2] suggest an alternative expression of the mutual coherence, also

is called Mutual Coherence (MC), as shown in (2.12).

λ∥WW T − I∥∞ (2.12)

In the MC regularizer (2.12), there is no direct normalization of the row of W by

dividing it by its norm, but it becomes the same expression as (2.11) because the

norm is enforced to be one.

2.4 Spectral Restricted Isometry Property

2.4.1 Restricted Isometry Property

Authors of Decoding by Linear Programming [5] concentrate on the problem

of recovering an input vector f ∈ Rn from corrupted measurements y = Af + e

13

[5]. Here, A is an m by n matrix and e is an arbitrary and unknown vector of

errors. Restricted isometry property is used as a condition to solve the problem.

This condition is related to the degree of orthogonality of the columns of matrix

with any shape. Since convolutional kernel regularization is mainly interested in

orthogonality, we focus, in this section, on dealing with the restricted isometry

property rather than solving the recovering problem mentioned above.

Consider the question of whether f ∈ Rn can be uniquely recovered when a

vector y ∈ Rm and an m× n matrix A are known such that y = Af . For a square

matrix A which is orthogonal, since it has full rank, f is uniquely recovered, i.e.,

f = A−1y. However, for a general matrix, the answer is not obvious. Then, under

what conditions can we recover f when y and A are given?

We denote by (aj)j∈J the columns of the matrix A and by H the Hilbert space

spanned by these vectors. For any T ⊆ J , we let AT be the submatrix with column

indices j ∈ T so that

AT c =
∑
j∈T

cja
j ∈ H, (2.13)

where (cj)j∈T ∈ R|T | [5].

Definition 1. [5] Let A be the matrix with the finite collection of (aj ∈ Rm)j∈J

as columns. For every integer 1 ≤ S ≤ |J |, we define the S-restricted isometry

constants δS to be the smallest quantity such that AT obeys

(1− δS)∥c∥2 ≤ ∥AT c∥2 ≤ (1 + δS)∥c∥2 (2.14)

for all subsets T ⊆ J of cardinality at most S, and all real coefficients (cj)j∈T .

Theorem 1. [5] Given A, suppose that S ≥ 1 such that δ2S < 1, and let T ⊆ J

14

such that |T | ≤ S. Let f := AT c for some arbitrary |T |-dimensional vector c. Then

the set T and the coefficients (cj)j∈T can be reconstructed uniquely from knowledge

of the vector f and the aj’s.

Proof. Suppose for contradiction that f has tow distinct sparse representation f =

AT c = AT ′c′ where |T |, |T ′| ≤ S.Then AT c−AT ′c′ = 0 and this is reformulated as

AT∪T ′ c̃ :=


ci if i ∈ T\T ′

ci − c′i if i ∈ T ∩ T ′

−c′i if i ∈ T ′\T.

Since |T ∪ T ′| ≤ 2S and δ2S ≤ 1,

0 ≤ (1− δ2S)∥c̃∥ ≤ ∥AT∪T ′ c̃∥ = 0,

and thus c̃ = 0 which is contradiction to the hypothesis that two representations

were distinct.

2.4.2 SRIP Regularization

In subsection 2.4.1, the concept of isometry is extended regardless of the shape

of matrices and is used to solve the recovering problem. Since, in the case of square

matrix, isometry and orthogonality are equivalent, this can also be seen as an

extension of orthogonality to general shape of matrices. Hence, this concept can

be used as a regularizer that enforces the convolutional kernel matrix W to be as

orthogonal as possible without worrying about overcomplete problem.

We call z ∈ Rm k-sparse if the number of nonzero elements of z is less than or

15

equal to k. From the restricted isometry property condition in (2.14), we assume

that for all vectors z ∈ Rm that is k-sparse, there exists a small δW ∈ (0, 1) such

that

1− δW ≤
∥W T z∥2

∥z∥2
≤ 1 + δW . (2.15)

The above condition (2.15) essentially requires that every set with cardinality no

larger than k of row vectors of W shall behave like an orthogonal system. Taking

an extreme case with k = m, this condition turns into a criterion that enforces the

W to be close to orthogonal.

We rewrite the condition (2.15) with k = m in the form

∣∣∣∣∥W T z∥2

∥z∥2
− 1

∣∣∣∣ ≤ δW ,∀z ∈ Rm. (2.16)

Since the spectral norm of W T is equivalent to the largest singular value of W T ,

i.e.,

σ(W T) = sup
z∈Rm,z ̸=0

∥W T z∥
∥z∥

, (2.17)

we reach the following proposition.

Proposition 1. σ(WW T − I) = supz∈Rm,z ̸=0

∣∣∣∥WT z∥2
∥z∥2 − 1

∣∣∣.
Proof. By the relation (2.17),

σ(WW T − I) = sup
z∈Rm,z ̸=0

∥WW T z − z∥
∥z∥

.

We may restrict the domain of z to the vectors with unit norm. Hence the equation

16

of the proposition is equivalent to

sup
z∈Rm,∥z∥=1

∥WW T z − z∥ = sup
z∈Rm,∥z∥=1

∣∣∥W T z∥2 − 1
∣∣ .

Therefore it suffices to show that for all z with ∥z∥ = 1,

∥WW T z − z∥ =
∣∣∥W T z∥2 − 1

∣∣ . (2.18)

We complete the proof by the following argument.

∥WW T z − z∥2 = (zTWW T − zT)(WW T z − z)

= zTWW TWW T z − 2zTWW T z + zT z

= zTWW T zzTWW T z − 2zTWW T z + zT z

= ∥W T z∥4 − 2∥W T z∥2 + 1

=
∣∣∥W T z∥2 − 1

∣∣2

Hence enforcing W T to be as orthogonal as possible is equivalent to minimizing

σ(WW T −I). This method is termed as the Spectral Restricted Isometry Property

(SRIP) regularization.

λ · σ(WW T − I) (2.19)

However computing the objective value of (2.19) is costly. To avoid that, we ap-

proximate the computation of spectral norm by using the power iteration method

[21]. Starting with a randomly initialized v ∈ Rm, we iteratively perform the fol-

17

lowing procedure a small number of times (2 times by default).

u← (WW T − I)v

v ← (WW T − I)u

σ(WW T − I)← ∥v∥
∥u∥

2.5 Orthogonal Convolutional Neural Networks

2.5.1 OCNN Regularizaiton

In the paper of Orthogoanl Convolutional Neural Networks [27], convolving

computations in CNN layers are interpreted as a convolutional structure based

manner as described in subsection 2.1.2 and Figure 2.4 (b). Since convolution

is linear, if an input is flattened, the matrix corresponding the convolution exists

naturally and is called convolution matrix K with the form like (2.6). Orthogonal

convolutional neural networks aims to give this convolution matrix orthogonality.

In the case of multi-channels, K is of the form in the Figure 2.3. Each row of

K implies a flattened form of a kernel calculated at a particular spatial location.

Therefore, in order for these rows to be orthogonal, it is sufficient to make sure that

the inner product with itself is one and are zero when calculating with rows which is

overlapping with the row in the 2D sense. This is illustrated in Figure 2.5. When

kernel is square of size k and stride is S, the padding size to check orthogonality is

P = ⌊k−1
S ⌋ · S. The row orthogonality condition can be easily represented by

Conv(K,K, padding = P, stride = S) = Ir0, (2.20)

18

Figure 2.4: A convolutional layer Y = Conv(K,X) can be formulated as matrix
multiplications in two ways: a) im2col methods (kernel matrix K). b) convolutional
structure based methods (convolution matrix K) [27].

19

Figure 2.5: The spatial region to check for row orthogonality. It is only necessary
to check overlapping filter patches [27].

where Ir0 ∈ RM×M×(2P/S+1)×(2P/S+1) and K ∈ RM×C×k×k is the convolutional

kernel weight. Ir0 is a tensor which has zero entries except for the center M ×M

matrix which is equal to an identity matrix.

Similar to the row orthogonality, column orthogonality condition can be formu-

lated as

Conv(KT ,KT , padding = k − 1, stride = 1) = Ic0, (2.21)

where Ir0 ∈ RC×C×(2k−1)×(2k−1) has all zeros except for the center C × C matrix

which has entries like an identity matrix.

The convolutional orthogonality is stronger condition than kernel orthogonality

because kernel row- and column-orthogonality condition ((2.7) and (2.9)) can be

represented by 
Conv(K,K, padding = 0) = Ir0

Conv(KT ,KT , padding = 0) = Ic0,

(2.22)

where Ir0 ∈ RM×M×1×1, Ic0 ∈ RC×C×1×1 are both equivalent to identity matrices.

20

One of the interesting points of orthogonal convolutional neural networks is that

row- and column-orthogonality are actually equivalent in the MSE sense. Therefore,

it is sufficient to consider row orthogonality regardless of whether K is fat or tall.

This method is called OCNN regularization.

Lemma 1. The row orthogonality and column orthogonality are equivalent in the

MSE sense, i.e. ||KKT − I||2F = ||KTK − I ′||2F + U for some constant U .

21

Chapter 3

Topological Dispersing

Regularizations

In this chapter, we introduce the concept of dispersing to generalize orthogo-

nality and to circumvent overcomplete issue and also introduce new regularizations

PH0 and MST based on this concept of dispersing.

In section 3.1.1, we illustrate the fact that our dispersing concept on a sphere

can generalize orthogonality. In subsection 3.1.2, we mention potential energy of

points in a compact metric space using physics. Then we define the concept of

evenly dispersed state of points in real projective space as the state with the lowest

potential energy of given points. With this concept, we prove that orthogonality of

points on a sphere is equivalent to an evenly dispersed state of points mapped in

real projective space if the number of points is less than or equal to the dimension

of the ambient space of the sphere. We also define adjacent distance and find some

lower and upper bounds for their expected values. In section 3.2, we introduce a

method using persistent homology and the concept of dispersing. To this end, we

22

first briefly review Čech and Vietoris-Rips complexes and persistent homology and

we define α-weighted lifetime sum. The lifetime sum obtained on the 0-th persistent

homology is used to construct PH0 regularization, which disperse row vectors of

a kernel matrix.

In section 3.3, we review the minimum spanning tree and introduce MST

regularization using minimum spanning tree. To use MST, we first construct an

edge weighted graph from a kernel matrix, by considering row vectors as points and

distances between any two row vectors as edge weights. Then we disperse the edges

of the minimum spanning tree by making its edge weight sum larger. An interest

thing is that this edge weight sum is just a constant multiple of the 1-weighted life

time in PH0. So PH0 and MST are actually equivalent.

3.1 Evenly Dispersed State

3.1.1 Dispersing Vectors on Sphere

Previous works aim to enforce convolutional kernel matrices as orthogonal as

possible. This condition is closely related to feature diversity and energy conser-

vation. Suppose that a kernel matrix W as in (2.1) is orthogonal matrix. Then

this means that row vectors of W are quite different each others and makes output

features diverse. Also W can be seen as an isometry transform, this implies that

∥Wx∥ = ∥x∥ and thus W converse the energy of the input.

In practice, orthogonality cannot occur in an overcomplete case where there are

more row vectors in an m×n matrix W than the dimension of the ambient space of

row vectors, i.e., m > n. Therefore, with simple methods such as soft orthogonality

in subsection 2.2.1, the matrix cannot converge. To avoid this overcompleteness

23

problem, various methods have been devised. DSO in subsection 2.2.2 detour the

problem by using with the transpose of kernel matrix, SRIP in subsection 2.4.2

uses a generalized isometry concept for applying to general form of kernel matrix

and OCNN in subsection 2.5.1 proves that their regularization does the same

backpropogation process regardless of whether the matrix is transposed or not.

To avoid the overcompleteness problem, we introduce dispsersed state which

is similar to the uniform distribution. The most basic way to perform dispersing

is to widen a distance between two distinct row vectors which have the nearest

distance. This method is used in MC as in subsection 2.3.1. However, if a weight

is regularized one by one in this way, the impact is too weak. So it would be much

more efficient to spread out appropriately many vectors at once.

If we just make the vectors uniformly distributed, there may be antipodal or

almost antipodal row vectors in W . These two antipodal row vectors induces the

same output features with only opposite sign. These results oppose the diversifica-

tion of output features, one of the reasons of convolutional kernel regularization.

To solve this problem, we consider the union of the set of row vectors of W and its

all antipodal vectors and make vectors of this set to be uniformly distributed on

Sn. We call this operation Dispersing on Pn.

Dispersing on Pn can also be seen as a generalization of orthogonality on Sn.

For a brief explanation, making two vectors on S1 orthogonal is equivalent to

adding their two antipodal vectors and dispersing these vectors as far as possible.

A detailed discussion on dispsersed state will be addressed in subsection 3.1.2.

When dispersing is applied to a kernel matrix W , the property of energy con-

serving of orthogonality is lost since the norm of row of W is one but these row

vectors may not be orthogonal. For overcomplete case, output energy is larger than

24

input energy and for undercomplete case vice versa. However, in the case for high

dimensional ambient space and overcomplete matrix, for a fixed row vector wi of

W , dispersing makes other row vectors lie in near a hyperplane orthogonal to wi.

This observation suggests that the extent to increasing energy is not much so this

regularization is almost energy perserving.

3.1.2 Evenly Dispersed State in the Real Projective Spaces

The state in which finite points are uniformly distributed in a compact metric

space can be interpretable in terms of physics. To be specifically, consider two

protons with positive charge q1 and q2 on a compact metric space S with a metric

d. The force F acting between these two protons is of the form

F = k
q1q2
r212

, (3.1)

where k is a constant and r12 is a distance between two protons [15].

If a finite set of protons {pi}mi=1 of S exists, the potential energy of these can be

obtained as follows. For simplicity, suppose k = 1 and all charges of protons are 1.

potential energy of {pi}mi=1 =
∑
j ̸=i

∫ d(pi,pj)

ϵ
F (r)dr

=
∑
j ̸=i

∫ d(pi,pj)

ϵ

−1
r2

dr

=
∑
j ̸=i

(
1

d(pi, pj)
− 1

ϵ

)

Since we only care about the relative variation in potential energy, we may redefine

25

the potential energy as

PE({pi}mi=1) =
∑
j ̸=i

1

d(pi, pj)
.

The state with the lowest potential energy is meaningful because this is an equi-

librium state.

Definition 2. Let S be a compact metric space and d its metric. We call m distinct

points in S are evenly dispersed state if, when we look at the points as protons

with charge 1, these have the lowest potential energy, or equivalently are on the

state of equilibrium.

The space we are interested in in this subsection is the real projective space

Pn. In order to talk about the evenly dispersed state in Pn, a metric must be

defined first. Pn is the topological space of lines passing through the origin in Rn+1.

Equivalently Pn can also be formed by identifying antipodal points of the unit n-

sphere, Sn. We define a metric Θ : Pn×Pn → [0, π2] in Pn. For v,w ∈ Pn, Θ(v,w) is

the angle in [0, π2] between v and w when these are viewed as lines passing through

the origin in Rn+1.

Proposition 2. Θ : Pn × Pn → [0, π2] is indeed a metric in Pn.

Proof. Let π : Sn → Pn be a natural quotient map, θ : Sn × Sn → R the round

metric on Sn and π−1(v) = {v1, v2}, π−1(w) = {w1,w2} for v,w ∈ Pn respectively.

Then Θ can be equivalently redefined as follows.

Θ(v,w) = min{θ(v1,w1), θ(v1,w2)} (3.2)

Axioms of metric are satisfied obviously except triangle inequality. Let’s show

26

that

Θ(v,w) ≤ Θ(v, u) + Θ(u,w). (3.3)

Since the range of Θ is [0, π2] by the definition, if the right hand sum in (3.3) is

greater than or equal to π/2, the inequality holds trivially. Otherwise, there are

v1 ∈ π−1(v), u1 ∈ π−1(u) and w1 ∈ π−1(w) such that θ(v1,u1) <
π
2 , θ(u1,w1) <

π
2

and θ(v1,w1) <
π
2 . By the triangle equality of the round metric d,

θ(v1,w1) ≤ θ(v1,u1) + θ(u1,w1) (3.4)

is hold. From this we can derive the inequality (3.3).

Thus the potential energy of a finite set of points {vi} of Pn is

∑
j ̸=i

1

Θ(vi, vj)
. (3.5)

An interesting fact about evenly dispersed state in Pn is that it is a concept of

extending orthogonality in Sn. A set of points of Sn is called orthogonal if, when

we view these points as vectors in Rn+1, the set of these vectors is orthogonal.

Theorem 2. Let m ≤ n + 1 and {v1, . . . vm} be a set of Sn. Then v1, . . . vm are

orthogonal in Sn if and only if π(v1), . . . , π(vm) are evenly dispersed in Pn.

Proof. The potential energy of π(v1), . . . , π(vm) is

PE({π(Vi)}) =
∑
j ̸=i

1

Θ(π(vi), π(vj))
.

27

Since the value of Θ is less or equal to π/2,

PE ≥
∑
j ̸=i

1

π/2

=

(
m

2

)
2

π

=
m(m− 1)

π
.

The condition m ≤ n + 1 implies that we can find m lines through the origin in

Rn+1 such that all of the distances between distinct two lines are π/2, for example

by choosing lines from axis lines. Thus the lowest potential energy is exactly m(m−

1)/π.

π(v1), . . . , π(vm) are evenly dispersed in Pn

⇐⇒ PE({π(Vi)}) =
m(m− 1)

π

⇐⇒ Θ(π(vi), π(vj)) =
π

2
for all i ̸= j

⇐⇒ θ(vi, vj) =
π

2
for all i ̸= j

⇐⇒ v1, . . . vm are orthogonal in Sn

This completes the proof.

In general, it is not easy to find an evenly dispersed state of points in Pn or

to demonstrate that a set of points is dispersed or not because evenly dispersed

state of points may have an irregular distribution for more than n+1 points in Pn.

Instead, with randomly distributed points in Pn, we can construct an approximately

dispersed set of points with adjacent distances (Definition 3). A method to obtain

28

an approximately evenly dispersed state of points is to increase the minimum of all

adjacent distances of given points.

Definition 3. Let v1, . . . , vm be some points in a metric space S. Then, for any

vi, the adjacent distance of vi means the minimum of a set of distances from vi

to vj, j ̸= i.

For a finite set of points in Pn, we can find upper bounds and lower bounds for

the expected value of adjacent distances of it. An obvious upper bounds is π/2 and

another upper bound is obtained by geometrical analyses.

Theorem 3. Let v1, . . . , vm be a set of points in Pn. If ad(vi) indicates the adjacent

distance of vi, then

E

[
sin

(
ad(vi)

2

)]
≤ n

√
Sn

2mVn
, (3.6)

where Sn is the surface area of n-sphere Sn and Vn is the volume of unit n-ball Bn.

Proof. Define

B(vi, r) := {w ∈ Pn|Θ(vi,w) < r}.

Since Pn is the quotient space of Sn by identifying antipodal points and Θ is induced

by the metric θ of Sn, the area of Pn is half of that of Sn, i.e., Sn/2. The collection

of sets B(vi, ad(vi)/2) are disjoint. Hence the sum of areas Area(B(vi, ad(vi)/2))

of B(vi, ad(vi)/2) is less than Sn/2.

Area(B(vi, ad(vi)/2)) is hard to be explicitly formulated. Thus we use an ex-

plicitly represented lower bound to replace Area(B(vi, ad(vi)/2)). Since ad(vi)/2

is less than or equal to π/4, B(vi, ad(vi)/2) can be embedded in Sn and vi can be

viewed as a vector in Rn+1. Projecting B(vi, ad(vi)/2) onto a hyperplane orthog-

onal to vi, we obtain an n-ball with radius sin (ad(vi)/2). Therefore we get the

29

following inequalities.

Sn/2 ≥
m∑
i=1

Area(B(vi, ad(vi)/2))

≥
m∑
i=1

sinn (ad(vi)/2)Vn

≥ mVnE [sinn (ad(vi)/2)]

Using Jensen’s inequality,

E [sin (ad(vi)/2)]
n ≤ E [sinn (ad(vi)/2)] ≤

Sn

2mVn

Finally, we obtain the inequality (3.6).

If the number m of points of Pn is sufficiently larger than the n, we also have

rough upper and lower bounds in another way.

Theorem 4. Conditions are the same as the previous theorem and additionally we

assume that v1, . . . , vm are evenly dispersed and m is sufficiently large so that, for

a domain of which diameter is as twice much as the mean of adjacent distances in

an evenly dispersed state, the curvature of the domain is almost zero. Then

n

√
(n+ 1)Sn

2mVn
≤ E [ad(vi)] ≤

1

hn

n

√
(n+ 1)Sn

2mVn
, (3.7)

where hn is the height from a vertex of a unit regular n-simplex to the opposite

facet.

Proof. Since the volume of Pn is Sn/2, the volume of the domain occupied by each

30

Figure 3.1: Average shape of the simplices.

31

of m points is Sn/(2m) on average and there is a radius r such that

Sn

2m
= rnVn. (3.8)

On the other hand, fixing the m points as vertices, we perform triangulation to

the Pn with n-simplices as regular as possible. The average shape of the simplices

will approximately be a regular n-simplex as show in Figure 3.1. The edge length

of this average regular n-simplex is the average adjacent distance. To find out this

distance, we draw balls with a radius r around vertices of the average n-simplex.

In Figure 3.1, the shaded domain is the area that a sphere passes through the

simplex and B is its volume. Then we have a relational expression

(n+ 1)B = E [ad(vi)]
nXn (3.9)

, where E [ad(vi)] is the expected adjacent distance, i.e. the edge length of the

average n-simplex, and Xn is the volume of the unit regular n-simplex.

The volume B is hard for us to calculate, so instead of B we consider lower and

upper bounds of B like in Figure 3.2. A is the volume of regular n-simplex with

edge length r and C is the volume of regular n-simplex with height r. Therefore

we have

A = rnXn, C =

(
r

hn

)n

Xn. (3.10)

32

Combining (3.9) with (3.10),

(n+ 1)
A

Xn
≤ E [ad(vi)]

n = (n+ 1)
B

Xn
≤ (n+ 1)

C

Xn

(n+ 1)
rnXn

Xn
≤ E [ad(vi)]

n ≤ (n+ 1)
(r/hn)

nXn

Xn

(n+ 1)rn ≤ E [ad(vi)]
n ≤ (n+ 1)rn

hnn

From the (3.8), we have

rn =
Sn

2mVn
, (3.11)

and we result in the inequality (3.7).

(n+ 1)
Sn

2mVn
≤ E [ad(vi)]

n ≤ (n+ 1)

hnn

Sn

2mVn

n

√
(n+ 1)Sn

2mVn
≤ E [ad(vi)] ≤

1

hn

n

√
(n+ 1)Sn

2mVn

3.2 Persistent Homology Regularization

Persistent homology is a method for extracting meaningful topological features

by analysing various spacial resolutions of a topological space [6]. Specifically, a

filtration that emerges along t (usally t is considered as time while in Čech and

Vietoris-Rips complexes radius r is used) in space is constructed, and uses the

life of homological basis obtained by observing the birth and collapse of the basis

of homology as t goes by as an analysis tool of the space. Typically, persistent

homologies using Čech complex or Vietoris-Rips complex for point cloud is widely

33

Figure 3.2: The lower bound area (A) and the uppder bound area (C) of the
traversed volume (B).

34

used.

3.2.1 Čech and Vietoris-Rips Complexes

Nerve

The nerve of the covering U = {Uα}α∈A is the simplicial complex N(U) which is

constructed as the following.

• the indexing set A which is also called vertex set

• {α0, α1, ..., αk} is a k-simplex in N(U) if and only if

Uα0 ∩ Uα1 ∩ ... ∩ Uαk
̸= ∅

Čech complexes

Let S be a finite set of points in Rd and write Bx(r) = x+ rBd for the closed ball

with center x and radius r. The Čech complex of S and r is the nerve of these balls

replacing balls with the center of each ball, that is,

Čech(r) = {σ ⊆ S|
⋂
x∈σ

Bx(r) ̸= ∅}. (3.12)

As the radius increases, more overlapping relationship are created retaining the

previous ones. Hence Čech(r0) ⊆ Čech(r1) if r0 ≤ r1. As we continuously increase

the radius, from 0 to ∞, we get a discrete family of nested Čech complexes [10].

Vietoris-Rips complexes

Checking that a subcollection of S is in a Čech complex requires a lot of computa-

tion costs if the cardinality of the subcollection is large. To alleviate this shortcom-

ings of Čech complex, Vietoris-Rips complexes appear. In Vietoris-Risp complexe,

35

to judge that a subcollection belongs the complex, we need to only check whether

all pairs of a subcollection have distances less than or equal to 2r. This condition is

equivalent to checking whether the diameter of a subcollection is less than or equal

to 2r.

VR(r) = {σ ⊆ S|diamσ ≤ 2r} (3.13)

3.2.2 Persistent Homology

Enumerating Čech or Vietoris-Rips complexes Kr as radius r increases yields a

continuous sequence of complexes. When r0 < r1, a simplex of r0 complex is also

a simplex of r1 complex because overlapping balls still overlap even if their radius

increases. Thus these sequences are filtrations.

Kr0 ⊆ Kr1 if r0 ≤ r1 (3.14)

In addition, the emergence of a new simplex appears at discrete radius, so contin-

uous filtration can be seen as a finite filtration.

S = K0 ⊂ K1 ⊂ · · · ⊂ Kn (3.15)

For every i ≤ j, we have an inclusion map from Ki to Kj , and therefore an

induced homomorphism between homologies, i.e., f i,j
p : Hp(Ki)→ Hp(Kj), for each

dimension p. The filtration (3.15) therefore corresponds to a sequence of homology

groups connected by homomorphisms for each dimension p [10].

Hp(S) = Hp(K0)→ Hp(K1)→ · · · → Hp(Kn) (3.16)

36

Figure 3.3: γ is born at i and dies at j. The life time of γ is j − i [10].

With this induced homomorphisms, we define persistent homology groups and per-

sistent Betti numbers as follows.

Definition 4. The p-th persistent homology groups are the images of the

homomorphisms induced by inclusion, Hi,j
p = imf i,j

p . The corresponding p-th per-

sistent Betti numbers are the ranks of these groups, βi,j
p = rank Hi,j

p

Let γ be a class in Hp(Ki). We say it is born(birth) at Ki if γ /∈ Hi−1,i
p . If γ is

born at Ki(or briefly i) and f i,j−1
p (γ) /∈ Hi−1,j−1

p but f i,j
p (γ) ∈ Hi−1,j

p , then we say it

is dies(death) at Kj(or briefly j). If γ is born at Ki and dies at Kj , the difference

of indexes j − i is called the persistence or life time of γ. See Figure 3.3. In

sequence (3.16), the birth and death analysis can be restricted to generators. The

set of generators in the sequence (3.16) is call p-th persistent homology of K∗ and

denoted by PHp(K∗). For the next subsection, we define lifetime sum as follows [3].

Definition 5 (α-Weighted Lifetime Sum). For a finite set S, the weighted p-th

homology lifetime sum is defined as follows.

Ep
α(S) =

∑
γ∈PHp(K∗)

I(γ)α, (3.17)

37

where PHp(K∗) is the p-th persistent homology of a filtration K∗ and I(γ) is the

lifetime of γ.

3.2.3 PH0 Regularization

In this subsection, we introduce a method of using persistent homology to dis-

perse the kernel matrix W on a convolutional layer on Pn as mentioned in 3.1. To

consider the dispersed state of points in a projective space, we add their antipodal

points. Let W̃ be the concatenation of W and −W along with rows. Consider the

row vectors of W̃ as a point cloud data in the ambient space Rn+1. With this point

cloud, we have Vietoris-Rips complexes VR(r) and a filtration K∗ with respect to

radius r. Therefore we obtain the 0-th persistent homolgy PH0(K∗) of the set of

row vectors of W̃ .

Generators of 0-th persistent homology PH0(K∗) correspond to row vectors of

W̃ one by one and the lifetime of a generator tells us the information about the

shortest distance to other row vectors. Hence, if we regularize the lifetime sum of

generators of PH0(K∗) to increase, row vectors of W̃ will be dispersed.

− λ2

∑
γ∈PHp(K∗)

I(γ) (3.18)

However, with the regularizer (3.18) alone, row vectors of W̃ may be infinitely

distant. Thus we need a regularizer that binds these vectors on Sn.

λ1

∑
w:row vectors of W̃

∣∣∥w∥2 − 1
∣∣ (3.19)

Finally, combining (3.18) and (3.19), we obtain the following regularization.

38

λ1

∑
w:row vectors of W̃

∣∣∥w∥2 − 1
∣∣− λ2

∑
γ∈PH0(K∗)

I(γ) (3.20)

We call the regularizing method with (3.20) PH0 regularization.

The advantages of PH0 regularization are that first all row vectors are involved

in the dispersing update and second the number of these dispersing updates is

minimal. However, there is a limit to applying in deep structured nets because

calculating PH0(K∗) takes a lot of time.

3.3 Minimum Spanning Tree Regularization

The minimum spanning tree is a spanning tree in which the sum of the edges

weights of it is minimum. Minimum spanning tree is related to the minimum cost

of connecting all points.

3.3.1 Minimum Spanning Tree

An edge weighted graph is a graph in which each edge is given a numerical

weight. A tree is an undirected graph in which any two vertices are connected by

exactly one path. A spanning tree is a tree which connects all the vertices of the

graph. The minimum spanning tree (MST) of an edge weighted graph is a spanning

tree whose sum of the edge weights is minimum [11].

For specific example, we set vertices as all points in a point cloud and edges as

all possible edges connecting two distinct vertices. If we put a weight on each edge as

the shortest distance between the vertices of edge we have an edge weighted graph.

Here, if we think of vertices, edges and weights as cities, roads and the shortest

distances between two corresponding cities respectively, the minimum spanning tree

39

of this edge weighted graph suggests the method of constructing roads by which all

cities are connected. Also the sum of the edge weights of minimum spanning tree

tells us the minimum cost connecting all the vertices.

One of the interesting things about minimum spanning tree is that the sum of

edges of minimum spanning tree and the life time sum of 0-th persistent homology

is closely related.

Theorem 5. Let S be a finite point set contained in a bounded metric space and

PH0(K∗) the 0-th persistent homology of the Čech or Vietoris-Rips complex of S.

Then there is a bijection between the edges of the minimum spanning tree of the

distance edge weighted graph with vertices S and generators with finite life time in

PH0(K∗) [18].

A sketch of the proof. When we increase the radius to obtain 0-th persistent ho-

mology, a generator of PH0 dies when two distinct components meet at some radius

r. At this time, there are two vertices of centers of r-balls that touch. We pick these

edges connecting these two vertices to construct a minimum spanning tree. If the

cardinality of S is N , the number of fusions of components is N − 1. Since the

number of edges of a minimum spanning tree is also N − 1, there is a bijection

between finite life time generators of PH0 and edges of the minimum spanning

tree.

The theorem 5 actually implies more. In other words, the births of all generators

of PH0 are zeros and when a generator dies, the death is r which is the radius of

balls at that instance. At the same time, the weight of the corresponding edge of

minimum spanning tree becomes 2r. Therefore, we have the following corollary.

40

Corollary 1. The sum of weights of minimum spanning tree is twice as much as

1-weighted life time sum of PH0, i.e.,

∑
e∈MST

weight(e) = 2
∑

γ∈PH0

death(γ). (3.21)

3.3.2 MST Regularization

In this subsection, we introduce a method of using minimum spanning tree to

disperse the convolutional kernel matrix W on Pn. As in subsection 3.2.3, we think

the point cloud consisting of row vectors of W̃ . We consider each pair of distinct

row vectors of W̃ as an edge with weight of distance of them. This give us an edge

weighted graph and we can obtain a minimum spanning tree of this graph.

If we regularize W̃ so that the sum of weights of a minimum spanning tree

of W̃ become larger, row vectors of W̃ will be dispersing. Therefore, adding the

regularizer (3.19) that enforcing it on Sn, the final regularizer is as follows.

λ1

∑
w:row vectors of W̃

∣∣∥w∥2 − 1
∣∣− λ2

∑
e∈MST

weight(e) (3.22)

We call this regularizing method MST regularization.

In fact, according to the theorem 5 and corollary 1, the two regularization PH0

and MST are essentially the same. But the MST regularization is much more faster

than PH0 regularization.

41

Chapter 4

Evenly Angle Dispersing

Regularizations

In this chapter, we first demonstrate that prior regularizations based on in-

ner product have some deficiencies, and then introduce our proposed evenly angle

dispersing regularizations. In subsection 4.1.1, we explains that regularizing loss

based on inner product is actually a method of regularizing cosine values of two row

vectors of kernel or convolution matrix. These method, however, might not widen

sufficiently the angles of two vectors if these angles are close to 0. In subsection

4.2.1, as an alternative to prior regularizations with the above mentioned problem,

we introduce EADK regularization, a method that regularize directly the angles

of two vectors of kernel matrix. In subsection 4.2.2, we introduce EADC regu-

larization which deals with convoluton matrix rather than kernel matrix, which is

motivated by OCNN regularization.

42

4.1 Analysis of Soft Orthogonality

4.1.1 Analysis of Soft Orthogonality

Existing regularizations for orthogonality of convolutional kernel matrix W ,

although the specific details are different, make the angle of any two distinct row

or column vectors of W be as close to π/2 as possible. Most of them use methods

enforcing the inner product of two vectors to be 0. Assuming the norms of these

two vectors are one, the inner product of the two vectors is in fact cosine value of

the angle between the two vectors. However, it is necessary to examine whether

this approach is really appropriate as criterion that makes the objective angle to

be orthogonal.

Considering the situation where protons are dispersing, it would be natural for

us that the amount of change in the angle is greater as the angle of two vectors

are close to 0, and smaller as it approaches π/2. Let’s find out through an example

using SO regularization whether the update of angle is going as we wish in the way

reducing cosine value to 0.

If a convolutional kernel matrix W is given by

W =

u
v

 , (4.1)

43

where u, v ∈ R2, then the regularization formula is

λ · ∥WW T − I∥2F = λ ·

∥∥∥∥∥
∥u∥2 − 1 < u, v >

< v, u > ∥v∥2 − 1

∥∥∥∥∥
2

F

= λ · {(∥u∥2 − 1)2 + (∥v∥2 − 1)2 + 2 < u, v >2}.

For simplicity, let u = (0, 1) be constant and only v = (a, b) is variable. Then our

regularizer L is

L(v) := λ · {(a2 + b2 − 1)2 + 2b2}. (4.2)

In the expression (4.2), (a2+ b2− 1)2 is the term causes the norm of v to be 1, and

2b2 is the term that make the cosine value of the angle between u and v smaller. To

find out the effect of the preceding term on the change of the angle, let’s calculate

the gradient of the term.

∇v(a
2 + b2 − 1)2 =

4a(a2 + b2 − 1)

4b(a2 + b2 − 1)


= 4(a2 + b2 − 1)

a

b


The gradient above is a constant multiple of v and so the update of v using this

gradient does not affect the angle between u and v. Therefore, it is sufficient to

only look at the second term b2 to analyze the amount of change in the angle by

gradient update.

Suppose that the current value of v is (a0, b0), a
2
0 + b20 = 1 and b0 = cos θ0 for

44

Figure 4.1: Angle update by soft orthogonality method.

some θ0 ∈ (0, π/2). Since the gradient of b2 is (0, 2b), the update only occur in

the direction of the second coordinate, see Figure 4.1. This update variation in

second coordinate ∆y is 2λb, which is a constant multiple of b.

∥∆y∥ = 2λb0 = 2λ cos θ0 (4.3)

For these gradient updates to be stable, ∥∆y∥ should be less than b0. Thus λ

should be in the open interval (0, 1/2). With these λ, the parameters θ0,∆θ and

∆y have the following relation.

sin θ0 = (cos θ0 − ∥∆y∥) tan(θ0 +∆θ) (4.4)

45

Figure 4.2: ∆θ with respect to θ ∈ [0, π] obtained by the relation (4.8) for various
λ.

Rewriting the equation (4.4) with respect to ∆θ, we have, if θ0 ∈ (0, π/2],

∆θ = arctan

(
sin θ0

cos θ0 − ∥∆y∥

)
− θ0 (4.5)

= arctan

(
sin θ0

cos θ0 − 2λ cos θ0

)
− θ0 (4.6)

= arctan

(
1

1− 2λ
tan θ0

)
− θ0 (4.7)

and if θ0 ∈ (π/2, π)

∆θ = arctan

(
1

1− 2λ
tan θ0

)
− θ0 + π. (4.8)

Figure 4.2 is graphs that represents ∆θ functions of θ for various λ. As seen

in the Figure 4.2, if λ is small, the angular change ∆θ is relatively insignificant

for small θ compared to medium size θ, so two vectors with small intermediate

46

angle might not be far enough. Larger λ shows larger angular changes for small

intermediate angle as we desire. However, the overall scale may increase, which

may interfere with learning models. To solve this problem, it is necessary to first

regularize with large λ and gradually reduce the λ.

Still, it is not satisfactory that the skewness of the graphs changes according

to the λ because it confines the search for the optimal λ. Hence we propose new

regularizers that complement these problems in the next section.

4.2 Evenly Angle Dispersing Regularizations

4.2.1 Evenly Angle Dispersing Regularization with Kernel Matrix

In subsection 4.1.1, we find out that methods based on soft orthogonality tend

to widen the intermediate angle θ of two vectors relatively less when θ is very

small. However, we hope that the closer θ is to 0, the greater the angular update

∆θ because this leads to a faster and more stable orthogonality of vectors. A

regularizer which updates as we wish is in the form of a function with θ itself as a

parameter. We analyze the simplest form of such function,

L(θ) = λ
(
θ − π

2

)2
. (4.9)

To make this analysis easier to deal with, we assume that the circumstance is

like in subsection 4.1.1 and a > 0. First, differentiate L with respect to v.

∇vL = 2λ(θ − π

2
)∇vθ (4.10)

47

Figure 4.3: Update by equation (4.10).

Since cos θ is expressed with u and v, i.e.,

cos θ =
< u, v >

∥u∥∥v∥
, (4.11)

we get the expression of θ via v, i.e.,

θ = arccos

(
b

r

)
, (4.12)

48

where r =
√
a2 + b2. Hence

∇vθ =

(
∂θ

∂a
,
∂θ

∂b

)

=

 −1√
1− b2

r2

−bar
r2

,
−1√
1− b2

r2

r − b br
r2


=

(
ab√
a2r2

,
b2 − r2√
a2r2

)
=

(
b

r2
,
−a
r2

)
= (b,−a) ,

and thus ∇vL is orthogonal to vector v and the scale of it is proportional to π/2−θ,

see Figure 4.3. This observation leads to the relation with respect to ∆θ.

tan∆θ = 2λ
(π
2
− θ

)
∥∇vθ∥ = 2λ

(π
2
− θ

)
(4.13)

Rearranging the equation (4.13), we have

∆θ = arctan (λ (π − 2θ)) . (4.14)

In order for orthogonality by ∇vL to be achieved stably, it is suggested that the

sign of second coordinate value of v + 2λ (π/2− θ)∇vθ is the same as that of v.

This leads to the inequality

∣∣∣tan(π
2
− θ

)∣∣∣ ≥ ∣∣∣2λ(π
2
− θ

)∣∣∣ , (4.15)

49

Figure 4.4: ∆θ with respect to θ ∈ (0, π] obtained by the relation (4.14) for various
λ.

see Figure 4.3. Since for 0 < θ < π

tan
(
π
2 − θ

)
π
2 − θ

≥ 1, (4.16)

λ is in the interval (0, 1/2].

The graphs of equation (4.14) for several λ are shown in the Figure 4.4. We can

see in the figure that the farther the angle θ is from π/2, the greater the change

in the angle. This is consistent with the natural idea that the farther from the

optimal, the larger the update. In addition, the shape of graphs along λ does not

change much unlike the soft orthogonality regularizer in Figure 4.2. This makes

finding the best λ in learning a model stable.

In general, when convolutional kernel matrixW consists of row vectors v1, . . . , vm,

50

our regularizer dispersing the vectors is of the form

λ
∑
i ̸=j

(
arccos

< vi, vj >

∥vi∥∥vj∥
− π

2

)2

. (4.17)

Adding the normalizing terms which make row vectors have norm 1, our regularizer

is as follows.

λ1

∑
i

(
1− ∥vi∥2

)2
+ λ2

∑
i ̸=j

(
arccos

< vi, vj >

∥vi∥∥vj∥
− π

2

)2

(4.18)

The regularization using regularizer (4.18) is named Evenly Angle Dispersing

regularization for Kernel matrix (EADK).

The regularizer (4.18) enforces any two different row vectors to be orthogonal.

However, as discussed in subsection 3.1.2, if the number m of row vectors is greater

than the dimension n of the ambient space, it is impossible that these vectors are

orthogonal. To remedy this, we make all the adjacent distance of row vectors be

the expected adjacent distance E in an evenly dispersed state of those. Therefore

if two vectors is in the antipodal position each other, the redundancy of features

increases, so we disperse these vectors on Pn, not on Sn. If the adjacent distance

ad(vi) of a row vector vi in Sn is less than E or greater than π − E, then we

regularize ad(vi) to be E or π −E, respectively. To sum this up, our regularizer is

λ1

∑
i

(
1− ∥vi∥2

)2
+ λ2

∑
i ̸=j

θij<E

(
arccos

< vi, vj >

∥vi∥∥vj∥
− E

)2

+ λ2

∑
i ̸=j

π−θij<E

(
arccos

< vi, vj >

∥vi∥∥vj∥
− (π − E)

)2

. (4.19)

51

4.2.2 Evenly Angle Dispersing Regularization with Convolution

Matrix

In OCNN regularization, convolution matrices as in (2.6) are enforced to be

orthogonal to regularize convolutional kernel weights. This method can also be

applied to our evenly angle dispersing regularization. As proposed by OCNN, con-

volution matrices are structural and sparse, so there exists a more efficient method

than dealing directly with the entire matrices. Most of the inner products of two

row vectors of convolution matrix is zero because of its sparsity. Thus it is sufficient

to consider pairs of row vectors of convolution matrix K which are overlapping in

the 2D sense.

Given convolution matrix K ∈ RMH′W ′×CHW , as explained in the subsection

2.5.1, we need only to regularize the following convolution.

C := Conv(K,K, padding = P, stride = S) (4.20)

The output C of (4.20) is of sizeM×M×(2P/S+1)×(2P/S+1).K ∈ RM×C×k×k is

the corresponding convolutional kernel weight, k kernel size, S stride and P padding

which is obtained by P = ⌊k−1
S ⌋ · S. To orthonormalize the row vectors of K, the

center M ×M matrix of the output of (4.20) is an identity matrix and all other

entries are zeros. We label the index set corresponding to self inner product as 1,

in which the output should be ones.

To apply the arccosine method in the subsection 4.2.1, we divide C element-

wisely by its corresponding norms like in (4.11) and call this D. For each i, j ∈

52

{0, 1, . . . ,m− 1}, D[i, j] is defined by

D[i, j] :=
C[i, j]

∥K[i]∥ · ∥K[j]∥
. (4.21)

Then the ij-th element of D is the cosine value of angle between corresponding

two tensors K[i] and K[j]. Hence our regularizer for convolution matrix K is of the

form

λ1

∑
p∈1

(Cp − 1)2 + λ2

∑
q /∈1

(
arccosDq −

π

2

)2
. (4.22)

The regularization using regularizer (4.22) is named Evenly Angle Dispersing

regularization for Convolution matrix (EADC)

As in (4.19), we can consider to use the concept of dispsersed state in the

subsection 3.1.2. To make all the adjacent distance of row vectors of K be the

expected adjacent distance E in an evenly dispersed state of those, we could apply

the following regularizer.

λ1

∑
p∈1

(Cp − 1)2 + λ2

∑
q /∈1

arccosDq<E

(arccosDq − E)2

+ λ2

∑
r/∈1

π−arccosDr<E

(arccosDr − (π − E))2 . (4.23)

53

Chapter 5

Algorithms & Experiments

In this chapter, we experiment with our regularization methods. First, in sec-

tion 5.1, we write pseudo codes for MST, EADK and EADC. In subsection

5.2.1, we experiment with how well our MST and EADK methods spread ar-

bitrary points on S2 relative to SO and SRIP regularizations. In addition, we

show that our methods can be used nor only for evenly dispersing points but also

for the inference of ideal adjacent angle of an evenly dispersed state of points on

S2. In subsection 5.2.2, we tell the settings for classification experiments, and in

subsection 5.2.3, with the various depth ResNets and WideResnet, we compares

the speed and performance of our methods with prior regularizations. Finally, in

subsection 5.2.4, we have ablation study for target regularized weights and the

ratio of dispersing coefficient to normalizing coefficient.

54

5.1 Algorithms

5.1.1 PH0 and MST

PH0 andMST regularizations are equivalent as mentioned in section 3.3. How-

ever when it comes to calculation speed, MST is faster than PH0. We compares

the speed of calculating the regularizing losses of PH0 and MST according to

various kernel weight shapes, see Table 5.1. We uses convolutional kernel weights

with various output and input channel numbers and fixed kernel size 3×3. Suppose

that W is a convolutional kernel weight with shape (M,C, 3, 3). To calculate with

W the PH0 or MST regularizing loss, we first transform W into kernel matrix K

with shape (M,C×3×3). Here, C×3×3 represents the dimension of the space to

which row vectors of K belongs, and M corresponds to the number of row vectors.

Table 5.1 is the results of calculation times on CPU of regularizing loss using

PH0 and MST according to convolutional kernel weight shape. PH0 generally

does not have a large change in calculating speed according to weight shapes. On

the other hand, in the case of MST, it can be seen that the speed decreases as

the number of output channels relatively smaller than that of input channels. This

is because the speed calculation of PH0 depends on both the number of vectors

and the dimension of an ambient space, whereas MST depends relatively only on

the number of vectors. Therefore, we do not experiment with PH0, but only with

MST.

55

out chs/in chs 128/2048 256/1024 512/512 1024/256 2048/128

PH0 (seconds) 3.77 3.74 3.44 4.13 6.51

MST (seconds) 0.32 0.59 1.12 2.33 5.26

Table 5.1: The calculation times of regularizing losses using PH0 and MST ac-
cording to convolutional kernel weight shapes. We experiment with various output
and input channel numbers and fixed kernel size 3× 3 on CPU.

Algorithm 1 is for MST regularization. A kernel matrix is transformed from a

convolution kernel weight. Kernel matrix can even be fully connected layer weight.

Algorithm 1 MST Regularization

Require: modelM, regularizer rate λ1, λ2

Require: kernel matrices {K} ofM ▷ ndimension 2

1: for input X and label y do

2: L← 0

3: output ỹ ←M(X)

4: L← CrossEntropyLoss(y, ỹ)

5: for K in {K} do

6: Di,j ← ∥Ki −Kj∥ for all i, j row vectors

7: T ← minimum spanning tree of D

8: L← L+ λ1

(
∥Ki∥2 − 1

)2
for all i ▷ normalizing part

9: L← L− λ2∥Ki −Kj∥ for all (i, j) ∈ T ▷ dispersing part

10: end for

11: backpropagate L

12: end for

56

5.1.2 EADK

Algorithm 2 is for EADK regularization. In dispersing part in Algorithm

2, π/2 could be replaced by the corresponding expected adjacent distance in an

evenly dispersed state. However, because the difference of performance for target

angle is not much, we use mainly π/2 in our experiments.

Algorithm 2 EADK Regularization

Require: modelM, regularizer rate λ1, λ2

Require: kernel matrices {K} ofM ▷ ndimension 2

1: for input X and label y do

2: L← 0

3: output ỹ ←M(X)

4: L← CrossEntropyLoss(y, ỹ)

5: for K in {K} do

6: Θi,j ← arccos

(
< Ki,Kj >

∥Ki∥∥Kj∥

)
for all i, j row vectors

7: L← L+ λ1

(
∥Ki∥2 − 1

)2
for all i ▷ normalizing part

8: L← L+ λ2

(
Θi,j −

π

2

)2
for all i ̸= j ▷ dispersing part

9: end for

10: backpropagate L

11: end for

57

5.1.3 EADC

Algorithm 3 is for EADC regularization. In EADC regularization, as in

OCNN, to obtain regularizing loss, not only convolutional kernel weights but also

strides of corresponding convolutional layers are required.

Algorithm 3 EADC Regularization

Require: modelM, regularizer rate λ1, λ2

Require: convolution kernel weights and strides {(W, s)} ofM ▷ ndimension 4

1: for input X and label y do

2: L← 0

3: output ỹ ←M(X)

4: L← CrossEntropyLoss(y, ỹ)

5: for W, s in {(W, s)} do

6: k ← kernel size of W

7: p← ⌊k−1
s ⌋ · s

8: C ← Conv(W,W, padding = p, stride = s)

9: D[i, j]← C[i, j]

∥W [i]∥ · ∥W [j]∥
▷ cos θij

10: c← ⌊C.shape[−1]/2⌋

11: 1← {(i, i, c, c)}i ▷ self-inner product index set

12: L← L+ λ1 (Cℓ − 1)2 for all ℓ ∈ 1 ▷ normalizing part

13: L← L+ λ2

(
arccosDℓ −

π

2

)2
for all ℓ /∈ 1 ▷ dispersing part

14: end for

15: backpropagate L

16: end for

58

5.2 Experiments

5.2.1 Analysis for Angle Dispersing

In this subsection, we see how well our regularization EADK actually makes

points on 2-dimension sphere S2 evenly dispersed. Before we move on, we define an

adjacent angle. Suppose that there is a set {vi}Ni=1 of points in a Euclidean space.

If we see these points as vectors from the origin, Adjacent Angle of a vector vi

is the angle between vi and the adjacent vector of vi.

Table 5.2 is the result of experiment of how the regularized points are dis-

tributed by regularizing with SO, SRIP, MST and EADK for each 6, 12, 20

and 60 point sets which are initially randomly scattered on S2. We record aver-

age norms, average adjacent angles, minimum adjacent angles, maximum adjacent

angles and differences between maximum and minimum of adjacent angles. In the

regularizations of SO and SRIP, norms and angles of given vectors are regularized

simultaneously in a regularizer term as in (2.7) and (2.19). These make neither norm

nor angle update as we wish. Average norms of SO and SRIP tend to decrease as

the number of points N increases. This is because the number of regularizing terms

for norm increases as O(N), while the number of regularizing terms for angle does

as O(N2) On the other hand, since MST and EADK regularize norms and angles

with different regularizer terms, by setting the learning coefficient for regularizing

norm relatively larger than that for angle, we can make given points well dispersed

as we desire. In particular, in the experiments with EADK, there are no significant

differences between average adjacent angles and ideal adjacent angles, and likewise,

the Max-Min are quite small.

Conversely, an ideal adjacent angle of a set of points could be inferred from an

59

experiment with EADK. For a set of 60 points, it is not easy to obtain the ideal

adjacent angle for an evenly dispersed state. However, in our experiment in Table

5.2, since EADK has a small Max-Min adjacent angle value, it can be estimated

that the ideal adjacent angle exists near 25◦. The visualizations of the results of

our experiments for 6, 12, 20 and 60 points are in the Figure 5.1 and 5.2. To give

the possibility that EADK can be used to infer an ideal adjacent angle of a set

of points, we experiment on various target angles with 12 points in Table 5.3. At

target angle 63◦, which is relatively close to the ideal adjacent angle 63.44◦, the

average norm is 1 and the Max-Min value is 0. Also, it can be observed that the

Max-Min value increases when the target angle is less than the ideal adjacent angle.

Conversely, when the target is greater than the ideal adjacent angle, Max-Min is

still small, but the average norm becomes less than 1. From these observation, we

can estimate that there is the ideal adjacent angle around 63◦. The visualization

of the result of this experiment is in the Figure 5.3.

For the experiment of MST, the performance is slightly worse than that of

EADK, but MST does not require a target norm unlike EADK. Therefore MST

can be used as the first experiment to find ideal adjacent angel of a set of points.

Then for angles in the vicinity of approximated ideal adjacent angle obtained by

MST, we repeat experiments with EADK to estimate ideal adjacent angle.

60

of Points
(Ideal AA) Reg.

Average
Norm

Average
AA MinAA MaxAA Max-Min

Error
(Ideal-AA)

6
(90.00◦)

SO 0.70 67.04◦ 48.13◦ 91.67◦ 43.54◦ 22.96◦

SRIP 0.77 55.00◦ 40.68◦ 68.18◦ 27.50◦ 35.00◦

MST 1.01 89.61◦ 89.32◦ 89.90◦ 0.58◦ 0.39◦

EADK 1.00 90.01◦ 90.01◦ 90.01◦ 0.0◦ 0.01◦

12
(63.44◦)

SO 0.50 30.94◦ 18.33◦ 69.33◦ 51.00◦ 32.50◦

SRIP 0.64 28.65◦ 12.61◦ 70.40◦ 57.79◦ 34.79◦

MST 1.01 62.83◦ 62.83◦ 63.15◦ 0.32◦ 0.61◦

EADK 1.00 63.40◦ 63.39◦ 63.40◦ 0.01◦ 0.04◦

20
(41.81◦)

SO 0.39 19.48◦ 7.45◦ 57.30◦ 49.85◦ 22.33◦

SRIP 0.50 18.33◦ 4.58◦ 56.72◦ 52.14◦ 23.48◦

MST 1.01 46.98◦ 46.98◦ 47.56◦ 0.58◦ 5.17◦

EADK 1.00 41.83◦ 41.83◦ 42.40◦ 0.57◦ 0.02◦

60

SO 0.22 15.47◦ 4.58◦ 30.94◦ 26.36◦ -

SRIP 0.32 15.47◦ 5.16◦ 27.50◦ 22.34◦ -

MST 1.01 26.93◦ 25.21◦ 28.07◦ 2.86◦ -

EADK 1.00 24.64◦ 24.64◦ 26.36◦ 1.72◦ -

Table 5.2: Angle analysis for various numbers of points on S2 and regularizations.
AA denotes Adjacent Angle (Adjacent Distance).

61

Target Angle Average Norm AverageAA MinAA MaxAA Max-Min

43◦ 1.00 44.69◦ 42.97◦ 60.73◦ 17.76◦

53◦ 1.00 53.29◦ 52.71◦ 55.58◦ 2.87◦

63◦ 1.00 63.03◦ 63.03◦ 63.03◦ 0◦

73◦ 0.98 63.60◦ 63.60◦ 63.60◦ 0◦

83◦ 0.95 63.60◦ 63.60◦ 63.60◦ 0◦

Table 5.3: Angle analysis of EADK for various target angles with 12 points.

5.2.2 Experimental Setups

Datasets

To demonstrate the performance of our regularization methods, we experiment

on various image classification datasets, i.e., CIFAR-10 [19], CIFAR-100 [19] and

SVHN [22]. The CIFAR-10 consists of 60000 images in 32× 32 sizes. There are 10

classes (airplane, automobile, bird, cat, etc)and each class consists of 6000 images.

These images are divided into training and test data in 5 to 1 ratio. The CIFAR-

100 is just like the CIFAR-10, except it has 100 classes (bed, chair, bee, bear, etc)

containing 600 images each. Each class is divided in 5 to 1 ratio to make training

and test data. Since the classes in the CIFAR-100 are grouped into 20 superclasses,

there are ambiguous images so the classification tasks using CIFAR-100 are finer

than CIFAR-10. SVHN is a dataset that has images of numbers from 0 to 9 that

can be seen in the real world. SVHN is similar to MNIST, but consists of 600,000

images and it is much more difficult to distinguish numbers.

62

Figure 5.1: 3D Plotting of resultant 6 and 12 points regularized by various regular-
izations.

63

Figure 5.2: 3D Plotting of resultant 20 and 60 points regularized by various regu-
larizations..

64

Figure 5.3: 2D and 3D plotting of resultant regularized 12 points regularized by
EADK for various target angles.

65

Network Architecture

We consider ResNet [13] and WideResnet [31], which are mainly used in clas-

sification tasks. The ResNet Experiments are conducted with CIFAR-10 and CI-

FAR100. We experiment on ResNet18, ResNet34, ResNet50 and ResNet101 to com-

pare the results according to the depth of the ResNet. To conduct on models with

more up-to-date and good performance, we also experiment on WideResnet with

CIFAR-10, CIFAR-100 and SVHN.

Baselines

We compare our methods with a variety of prior regularization methods men-

tioned in chapter 2 except MC regularization because its regularization effect is

weak. Among our methods, we excluded PH0 regularization in our experiments

because it is equivalent to MST regularization but slower than that. We include

base regularization in which we just use l2 regularization. As a result, we conduct

comparative experiments on 8 cases: base, SO, DSO, SRIP, OCNN, MST,

EADK and EADC. In WideResnet experiments, we exclude MST regularization

because of GPU memory problem.

Target Regularized Weights

Among our methods, MST and EADK are applicable for all linear operational

weights, but for comparison with other regularizations, we regularize only convo-

lutional kernel weights of a model. In addition, layers with a kernel size of 1 are

excluded to focus on the convolutonal kernel regularization. The first convolutional

layer to receive input is excluded too because it causes gradient explosion in some

regularization methods. For better performance, l2-regularization is applied to all

weights for all methods.

66

Hyper Parameters

We train all networks in our experiments from scratch and optimize them by

stochastic gradient descent with momentum 0.9. Initial learning rate is 0.1 and

multiplied by 0.2 after epochs 60, 120 and 160, and total epochs are 200. Authors

of prior works usually set batch size as 128, but in consideration of the recent

improved GPU memories, we set batch size as 256 in ResNet experiments but, in

WideResnet, we set 128. In DataLoader setting, the number of workers is set to 4.

We use data augmentation by random-cropping in the state of padding 4 of images,

giving horizontal flip and random-rotation in the range of 15 degrees.

For all networks and regularizations, regularization coefficients are commonly

changed every 20, 50, 70 and 120 epochs. To determine values of regularization

coefficients and weight decays, we find the best coefficient setting in about 10 dif-

ferent setting of experiments with ResNet18 and CIFAR-10 and call theses settings

standard. If gradient explosion do not occur for the remaining experiments, the ex-

periments are conducted with the standard coefficient settings as possible for each

regularization. For example, the standard settings for SO regularization are [1e-1,

2e-2, 4e-3, 8e-4, 2e-4] for regularization coefficients and [1e-8, 1e-4, 1e-4, 1e-4, 1e-4]

for weight decays. These elements correspond to initial value, after epochs 20, 50,

70 and 120 respectively. For other standard setting of regularizations in ResNet

experiments, we put it on the Table 5.4. For MST, EADK and EADC experi-

ments, we need to set another parameters, i.e., ratio of dispersing coefficient λ2 to

normalizing coefficient λ1 and target angle in (3.22), (4.19) and (4.23). We set the

ratio parameter λ2/λ1 as 0.1 and the target angle as π/2.

67

Regularization Coefficients Weight Decays

SO [1e-1, 2e-2, 4e-3, 8e-4, 2e-4] [1e-8, 1e-4, 1e-4, 1e-4, 1e-4]

DSO [1e-1, 1e-3, 1e-4, 1e-6, 0] [1e-8, 5e-4, 5e-4, 5e-4, 5e-4]

SRIP [1e-4, 1e-5, 1e-6, 1e-7, 0] [1e-8, 1e-4, 1e-4, 5e-4, 5e-4]

OCNN [1e-2, 2e-3, 4e-4, 8e-5, 0] [1e-8, 5e-4, 5e-4, 5e-4, 5e-4]

MST [1e-3, 1e-4, 1e-5, 1e-6, 0] [1e-8, 5e-4, 5e-4, 5e-4, 5e-4]

EADK [2e-1, 1e-3, 1e-4, 1e-6, 0] [1e-8, 5e-4, 5e-4, 5e-4, 5e-4]

EADC [1e-2, 2e-3, 4e-4, 8e-5, 0.0] [1e-8, 5e-4, 5e-4, 5e-4, 5e-4]

Table 5.4: Regularization coefficients and weight decays of standard settings, i.e.,
for Resnet18 and CIFAR-100 experiments.

Evaluation Metric

Top-1/5 accuracy rate: The top-k accuracy rate represents the fraction of test

images, in which the correct answer label are included in the top k most probable

by model inference, among all test images. Then the top-1 accuracy rate is the

ratio of correct answers. In our experiments, we use top-1 and top-5 accuracy rates

to evaluate the generalization performances.

5.2.3 Classification Accuracy

Comparison with Various Depth ResNet

We compare Top-1 accuracy with existing and our methods for ResNet of different

depth to show that our proposed methods are valid. Table 5.5 is the result of

our Top-1 accuracy experiment and values in the table are calculated by averaging

Top-1 accuracy of validation in the last 5 epochs. Our experiment is conducted

based on the aforementioned settings. Our results are somewhat different from the

68

results stated in the papers of SRIP [2] and OCNN [27] because only convolutional

weights with kernel size larger than one are regularized. The most superior accuracy

value is written in bold for each experiment. The table shows that our EADK and

EADC regularizations outperform at ResNet101 on CIFAR-10 and all ResNets on

CIFAR-100. Since MST requires twice or more as much GPU memory as others,

MST experiments with ResNet101 are excluded. In our SRIP experiments, it

is necessary to adjust the regularization coefficents frequently to avoid gradient

explosion according to the depth of ResNet. Figure 5.5 shows validation curves

during traing for various ResNet on CIFAR-10 and CIFAR-100.

Dataset CIFAR-10 CIFAR-100

ResNet 18 34 50 101 18 34 50 101

base 94.46 95.06 94.57 95.28 74.84 76.39 75.51 77.25

SO 94.19 94.43 93.93 94.02 74.94 75.48 74.75 75.98

DSO 94.67 94.87 95.43 95.04 75.86 76.72 77.26 78.75

SRIP 92.87 94.68 94.89 94.88 74.69 75.79 75.37 77.06

OCNN 95.00 94.89 94.76 94.96 75.86 77.12 76.91 78.27

MST 93.28 93.71 92.94 - 74.79 74.85 72.51 -

EADK 94.76 94.91 95.20 95.35 76.51 76.99 77.79 78.61

EADC 94.97 94.89 95.06 95.04 76.37 77.54 77.60 78.78

Table 5.5: Top-1 accuracy rates (%) of ResNet with various depth and regulariza-
tions on CIFAR-10 and CIFAR100. We evaluate accuracy rates by averaging the
results of the last 5 epochs.

Table 5.6 shows one epoch learning times for combinations of various ResNets

and regularizations. The base row of the table represents the average training time

69

per epoch when we use only l2 regularization. The rows below are the values ob-

tained by dividing the average training time per epoch for each experiment by that

of base. The last column of the table represents the mean of these values for each

regularization. While SO is the fastest regularization, DSO, a similar regulariza-

tion, takes the most mean time ratio. This is because transposing a kernel matrix

in DSO often increases the size of its Gram matrix significantly. Of our proposed

regularizations, EADK is the fastest one and not much different from the training

speed of SO. Considering the validation accuracy of EADK, we find out that it

has considerable advantages. Figure 5.4 illustrates the relationship between rela-

tive training trime and accuracy based on the results in the Table 5.5 and Table

5.6, indicationg that the more it is in the upper left derectioni, the better meth-

ods. In CIFAR-10, some prior regularizations show better performance than our

methods, but the diagram shows that EADK is most in the upper left corner, so

we can tell that EADK has the best performance. In the case of CIFAR-100, it

is also confirmed that our methods have better performance than other methods

even considering training time.

70

Dataset CIFAR-10 CIFAR-100

ResNet 18 34 50 101 18 34 50 101

base 12.1s 22.7s 40.9s 68.7s 12.1s 22.6s 40.6s 68.7s Mean

SO 1.14 1.13 1.03 1.04 1.14 1.14 1.04 1.03 1.09

DSO 8.43 9.34 3.64 3.85 8.86 9.39 3.67 3.08 6.28

SRIP 4.84 4.72 2.09 2.11 3.93 4.68 2.20 2.11 3.33

OCNN 1.90 1.92 1.23 1.26 1.89 1.95 1.23 1.26 1.58

MST 5.78 5.33 2.24 - 5.73 5.36 2.26 - 4.45

EADK 1.28 1.27 1.07 1.10 1.25 1.28 1.07 1.10 1.18

EADC 3.51 3.74 1.62 1.78 3.53 3.66 1.71 1.82 2.67

Table 5.6: The values in the base row of the table indicate elapsed time (seconds) of
training one epoch for each experiment. The values in the below rows are the ratio
of elapsed times of training one epoch for each experiment with a regularization to
that of base.

Comparison with WideResnet

Table 5.7 shows Top-1 and Top-5 accuracy of experiments with WideResnet ar-

chitecture for various regularizations. We use CIFAR-10, CIFAR-100 and SVHN

as datasets. As in the ResNet experiments, only the set of convolutional kernel

weights with kernel size greater than 1 is regularized by regularization methods.

On CIFAR-10, OCNN and SRIP have high accuracy. On CIFAR-100 and SVHN,

DSO outperform and our EADK and EADC are following. Figure 5.6 shows

validation curves during training WideResnet on the datasets. Table 5.6 shows

elapsed time of training one epoch for our experiments. Although DSO and SRIP

71

Figure 5.4: Diagrams of relationship between relative learning time and accuracy
for various regularizations.

have achieved good results in the experiments, the learning time takes about 5 to

1- times more than base setting. On the other hand, our EADK only takes up

to 13% more time than the base and thus EADK has fast learning speed while

having excellent accuracy.

72

Figure 5.5: Validation curves during training various ResNet on CIFAR-10 and
CIFAR-100.

73

CIFAR-10 CIFAR-100 SVHN

base 95.83/99.85 79.53/94.70 96.86/99.62

SO 95.63/99.88 78.89/94.34 96.88/99.63

DSO 95.87/99.91 79.87/94.83 97.08/99.63

SRIP 95.9195.91/99.90 79.49/94.60 96.98/99.67

OCNN 95.93/99.88 79.65/95.00 96.98/99.62

EADK 95.77/99.88 79.66/94.80 97.0297.02/99.65

EADC 95.73/99.90 79.6779.67/94.91 97.0297.02/99.65

Table 5.7: Top-1/Top-5 accuracy rates (%) of WideResnet with various regulariza-
tions on CIFAR-10, CIFAR100 and SVHN. We evaluate accuracy rates by averaging
the results of the last 5 epochs.

CIFAR-10 CIFAR-100 SVHN

base 78.78s 78.16s 118.84s

SO 1.07 1.08 1.06

DSO 9.48 9.55 4.94

SRIP 4.85 4.89 2.84

OCNN 2.07 2.21 1.65

EADK 1.13 1.13 1.09

EADC 3.89 3.56 2.32

Table 5.8: The values in the base row of the table indicate elapsed time (seconds) of
training one epoch for each experiment. The values in the below rows are the ratio
of elapsed times of training one epoch for each experiment with a regularization to
that of base.

74

Figure 5.6: Validation curves during training WideResnet on CIFAR-10, CIFAR-
100 and SVHN.

75

5.2.4 Additional Experiments

Table 5.9 shows the accuracy for various target regularized weights on our

EADK and EADC regularizations. We experiment this with the model ResNet18

and dataset CIFAR-100. We divide target regularized weights into three categories:

F: fully connected weights, C1: convolutional weights with kernel size 1 and C3:

convolutional weights with kernel size greater than 1. We conduct this experiment

on various combinations of these categories. As a result of the experiment, it could

be confirmed that ResNet18 with EADK of EADC has generally high accuracy

when C3 is regularized. This shows that for sufficiently complicated kernels, the

effect of our regularizations is greater.

weights F C1 C3 F+C1 C1+C3 F+C1+C3

EADK 74.41 74.86 76.51 74.81 76.57 76.19

EADC 75.04 73.02 76.37 74.43 75.79 75.82

Table 5.9: Experiment for various target regularized weights. F, C1 and C3 are the
set of fully connected weights, convolutional weights of kernel size 1 and convolu-
tional weights of kernel size greater than 1, respectively. Values are Top-1 accuracy
for various target regularized weights. We use ResNet18 and CIFAR-100 for this
experiment.

Table 5.10 is the result for accuracy of EADK and EADC when the ratio

λ2/λ1 of dispersing coefficient λ2 to normalizing coefficient λ1 varies in (4.19) and

(4.23). We also do this experiment with ResNet18 and CIFAR-100. Large λ2/λ1

means that the update of changing angles to π/2 is relatively larger than the update

of changing norms to one. In the case of EADC with λ2/λ1 1, gradient explosion

occurs and so excluded from our experiment. The result shows the best performance

76

at λ2/λ1 0.1, and thus we use this value in subsection 5.2.3.

λ2/λ1 0.01 0.02 0.05 0.1 0.2 0.5 1

EADK 75.86 76.03 75.81 76.51 76.25 76.16 76.23

EADC 76.17 76.25 75.90 76.37 75.98 75.70 -

Table 5.10: λ2/λ1 is the rate of dispersing part coefficient λ2 to normalizing part
coefficient λ1 in our regularizations. Values are Top-1 accuracy for various λ2/λ1.
We use ResNet18 and CIFAR-100 for this experiment.

77

Chapter 6

Conclusion

Many approaches have been developed to give orthogonality to the matrix from

convolutional kernel weights to deal with the gradient vanishing or explosion issue

caused by the depth of CNN and to avoid redundant features. However, these ap-

proaches do not regularize convolutional kernel as well as we wish. In this thesis,

we analyze whether these existing methods effectively conserve energy and disperse

angles, and we show that this is not the case through experiments at low dimen-

sional case. To resolve these problems, we introduce the concept of evenly dispersed

state in a compact metric space and show that this can generalize the concept of

orthogonality. And based on this dispersing concept, we propose MST, EADK

and EADC regularizations. Through our experiments, we show that our methods

actually cause a set of points to be evenly dispsersed. In addition, we can infer

the ideal adjacent angle of an evenly dispersed state of points on S2. In particular,

since our EADK is much fast regularization and a matrix from convolutional ker-

nel weight could be of hundreds to thousands of dimensions, our EADK has not

only good performances but also fast learning speed. We expect the ideas presented

78

in this thesis to give a good inspiration for regularization problem of convolutional

kernel weights and even dispersion problem of points in a high dimensional com-

pact metric. For future work, we need to study theorems that can better estimate

the expected adjacent distance and more appropriate ratio of dispersing coefficient

to normalizing coefficient.

79

Bibliography

[1] R. Balestriero and R. Baraniuk, Mad max: Affine spline insights into

deep learning, arXiv preprint arXiv:1805.06576, (2018).

[2] N. Bansal, X. Chen, and Z. Wang, Can we gain more from orthogonality

regularizations in training deep networks?, Advances in Neural Information

Processing Systems, 31 (2018).

[3] T. Birdal, A. Lou, L. J. Guibas, and U. Simsekli, Intrinsic dimension,

persistent homology and generalization in neural networks, Advances in Neural

Information Processing Systems, 34 (2021).

[4] A. Böttcher and S. M. Grudsky, Toeplitz matrices, asymptotic linear

algebra and functional analysis, vol. 67, Springer, 2000.

[5] E. J. Candes and T. Tao, Decoding by linear programming, IEEE transac-

tions on information theory, 51 (2005), pp. 4203–4215.

[6] G. Carlsson, Topology and data, Bulletin of the American Mathematical

Society, 46 (2009), pp. 255–308.

[7] P. J. Davis, Circulant Matrices, Wiley, New York, 1970.

80

[8] D. L. Donoho, Compressed sensing, IEEE Transactions on information the-

ory, 52 (2006), pp. 1289–1306.

[9] V. Dumoulin and F. Visin, A guide to convolution arithmetic for deep

learning, ArXiv e-prints, (2016).

[10] H. Edelsbrunner and J. L. Harer, Computational topology: an introduc-

tion, American Mathematical Society, 2022.

[11] R. L. Graham and P. Hell, On the history of the minimum spanning tree

problem, Annals of the History of Computing, 7 (1985), pp. 43–57.

[12] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,

X. Wang, G. Wang, J. Cai, et al., Recent advances in convolutional neural

networks, Pattern Recognition, 77 (2018), pp. 354–377.

[13] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image

recognition, in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770–778.

[14] F. Heide, W. Heidrich, and G. Wetzstein, Fast and flexible convolutional

sparse coding, in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2015, pp. 5135–5143.

[15] P. G. Huray, Maxwell’s equations, John Wiley & Sons, 2011.

[16] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network

training by reducing internal covariate shift, in International conference on

machine learning, PMLR, 2015, pp. 448–456.

81

[17] I. M. James, The topology of Stiefel manifolds, vol. 24, Cambridge University

Press, 1976.

[18] J. Jaquette and B. Schweinhart, Fractal dimension estimation with per-

sistent homology: a comparative study, Communications in Nonlinear Science

and Numerical Simulation, 84 (2020), p. 105163.

[19] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features

from tiny images, (2009).

[20] S. Liu, X. Li, Y. Zhai, C. You, Z. Zhu, C. Fernandez-Granda, and

Q. Qu, Convolutional normalization: Improving deep convolutional network

robustness and training, Advances in Neural Information Processing Systems,

34 (2021).

[21] R. Mises and H. Pollaczek-Geiringer, Praktische verfahren der gle-

ichungsauflösung., ZAMM-Journal of Applied Mathematics and Mechanic-

s/Zeitschrift für Angewandte Mathematik und Mechanik, 9 (1929), pp. 58–77.

[22] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,

Reading digits in natural images with unsupervised feature learning, (2011).

[23] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, Deep learning for

anomaly detection: A review, ACM Computing Surveys (CSUR), 54 (2021),

pp. 1–38.

[24] R. Priemer, Introductory Signal Processing. Advanced Series in Electrical

and Computer Engineering, vol. 6, World Scientific Pub Co Inc., 1991.

82

[25] V. Udayashankara, Real Time Digital Signal Processing, Prentice-Hall,

2010.

[26] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and

X. Tang, Residual attention network for image classification, in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2017,

pp. 3156–3164.

[27] J. Wang, Y. Chen, R. Chakraborty, and S. X. Yu, Orthogonal con-

volutional neural networks, in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2020, pp. 11505–11515.

[28] D. Xie, J. Xiong, and S. Pu, All you need is beyond a good init: Exploring

better solution for training extremely deep convolutional neural networks with

orthonormality and modulation, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 6176–6185.

[29] K. Yanai, R. Tanno, and K. Okamoto, Efficient mobile implementation

of a cnn-based object recognition system, in Proceedings of the 24th ACM

international conference on Multimedia, 2016, pp. 362–366.

[30] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, Genera-

tive image inpainting with contextual attention, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2018, pp. 5505–5514.

[31] S. Zagoruyko and N. Komodakis, Wide residual networks, arXiv preprint

arXiv:1605.07146, (2016).

[32] W. Zhang, J. Tanida, K. Itoh, and Y. Ichioka, Shift-invariant pattern

recognition neural network and its optical architecture, in Proceedings of an-

83

nual conference of the Japan Society of Applied Physics, Montreal, CA, 1988,

pp. 2147–2151.

84

국문초록

이 논문에서는 합성곱커널에 대한 새로운 정규화 방법들을 제안한다. 딥러닝의

발달과 더불어 신경망의 가장 기본적인 모듈인 합성곱 레이어를 효과적으로 정규화

하려는 시도들이 있어 왔다. 합성곱신경망는 인풋데이터를 추상화하는데 탁월하지만

네트워크의 깊이가 깊어지면 그레디언트 소멸이나 폭발 문제를 일으키고 중복된 피쳐

들을 만든다. 이러한 문제들을 해결하기 위한 접근법 중 하나는 직접 합성곱 신경망의

합성곱커널을 직접 정규화 하는 것이다. 이 방법은 합성곱커널을 어떤 행렬로 변환

하고 행렬의 행 또는 열들의 벡터들을 직교시키는 것이다. 그러나 이러한 접근법은

몇가지 단점이 있다. 첫째로, 벡터의 수가 벡터의 차원보다 많을 때는 모든 벡터를

직교화 시킬 수 없게 되므로 적절한 기법들을 필요로 한다. 이 문제를 다루기 위한

한 가지 방법으로 우리는 분산 상태라는 개념을 정의하고 이 개념을 활용한 PH0와

MST 정규화법을 제안한다. 둘째로, 그람행렬을 항등행렬로 근사시키는 방법을 사용

하는 기존 정규화법이 벡터들을 직교화시키는 최적의 방법이 아닐 수 있다는 점이다.

즉,기존의정규화법이두벡터가가까울때는오히려각도의업데이트를줄이게된다.

따라서 이를 보완하기 위하여 우리는 각도를 직접 업데이트하는 EADK와 EADC

정규화법을제안한다.그리고다양한실험을통해 EADK와 EADC정규화법이다수

의 신경망구조에서는 기존의 방법들보다 우수한 성능을 보이고 특히 EADK는 빠른

학습시간을 가진다는 것을 확인한다.

주요어휘: 딥러닝, 합성곱, 커널, 정규화, 직교화, 고른분산상태

학번: 2012-23024

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Two Ways of Understanding CNN Layers as Matrix Operations
	2.1.1 Kernel Matrix
	2.1.2 Convolution Matrix

	2.2 Soft Orthogonality
	2.2.1 SO Regularization
	2.2.2 DSO Regularization

	2.3 Mutual Coherence
	2.3.1 MC Regularization

	2.4 Spectral Restricted Isometry Property
	2.4.1 Restricted Isometry Property
	2.4.2 SRIP Regularization

	2.5 Orthogonal Convolutional Neural Networks
	2.5.1 OCNN Regularizaiton

	3 Topological Dispersing Regularizations
	3.1 Evenly Dispersed State
	3.1.1 Dispersing Vectors on Sphere
	3.1.2 Evenly Dispersed State in the Real Projective Spaces

	3.2 Persistent Homology Regularization
	3.2.1 Cech and Vietoris-Rips Complexes
	3.2.2 Persistent Homology
	3.2.3 PH0 Regularization

	3.3 Minimum Spanning Tree Regularization
	3.3.1 Minimum Spanning Tree
	3.3.2 MST Regularization

	4 Evenly Angle Dispersing Regularizations
	4.1 Analysis of Soft Orthogonality
	4.1.1 Analysis of Soft Orthogonality

	4.2 Evenly Angle Dispersing Regularizations
	4.2.1 Evenly Angle Dispersing Regularization with Kernel Matrix
	4.2.2 Evenly Angle Dispersing Regularization with Convolution Matrix

	5 Algorithms & Experiments
	5.1 Algorithms
	5.1.1 PH0 and MST
	5.1.2 EADK
	5.1.3 EADC

	5.2 Experiments
	5.2.1 Analysis for Angle Dispersing
	5.2.2 Experimental Setups
	5.2.3 Classification Accuracy
	5.2.4 Additional Experiments

	6 Conclusion
	The bibliography
	Abstract (in Korean)

<startpage>14
Abstract i
1 Introduction 1
2 Preliminaries 4
 2.1 Two Ways of Understanding CNN Layers as Matrix Operations 5
 2.1.1 Kernel Matrix 6
 2.1.2 Convolution Matrix 7
 2.2 Soft Orthogonality 11
 2.2.1 SO Regularization 11
 2.2.2 DSO Regularization 12
 2.3 Mutual Coherence 13
 2.3.1 MC Regularization 13
 2.4 Spectral Restricted Isometry Property 13
 2.4.1 Restricted Isometry Property 13
 2.4.2 SRIP Regularization 15
 2.5 Orthogonal Convolutional Neural Networks 18
 2.5.1 OCNN Regularizaiton 18
3 Topological Dispersing Regularizations 22
 3.1 Evenly Dispersed State 23
 3.1.1 Dispersing Vectors on Sphere 23
 3.1.2 Evenly Dispersed State in the Real Projective Spaces 25
 3.2 Persistent Homology Regularization 33
 3.2.1 Cech and Vietoris-Rips Complexes 35
 3.2.2 Persistent Homology 36
 3.2.3 PH0 Regularization 38
 3.3 Minimum Spanning Tree Regularization 39
 3.3.1 Minimum Spanning Tree 39
 3.3.2 MST Regularization 41
4 Evenly Angle Dispersing Regularizations 42
 4.1 Analysis of Soft Orthogonality 43
 4.1.1 Analysis of Soft Orthogonality 43
 4.2 Evenly Angle Dispersing Regularizations 47
 4.2.1 Evenly Angle Dispersing Regularization with Kernel Matrix 47
 4.2.2 Evenly Angle Dispersing Regularization with Convolution Matrix 52
5 Algorithms & Experiments 54
 5.1 Algorithms 55
 5.1.1 PH0 and MST 55
 5.1.2 EADK 57
 5.1.3 EADC 58
 5.2 Experiments 59
 5.2.1 Analysis for Angle Dispersing 59
 5.2.2 Experimental Setups 62
 5.2.3 Classification Accuracy 68
 5.2.4 Additional Experiments 76
6 Conclusion 78
The bibliography 80
Abstract (in Korean) 85
</body>

