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Abstract

While the Darboux theorem implies there are no local symplectic invariants,
many results in quantization suggest there is a necessity to make local choices
on symplectic manifolds. We study how representations of the canonical com-
mutation relations arise as a description of local symplectic geometry. As a
result, a new family of irreducible representations is obtained. While analytic
problems remain, this family unifies known families, extends the parameters
describing equivalent representations, and exhibits topologically nontrivial
configurations of representations. The unifying framework is provided geo-
metrically, by a partition of the complex Lagrangian Grassmannian induced
by complex conjugation.

Key words: Canonical commutation relations, Heisenberg group, irreducible
representations, symplectic vector spaces, complex Lagrangian subspaces
Student Number: 2015-30967
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Chapter 1

Introduction

Problem description and historical background

In 1930, Dirac [1] laid out the theoretical framework for quantum mechan-
ics using self-adjoint operators on Hilbert spaces, integrating Heisenberg’s
matrix mechanics and Schrodinger’s wave mechanics. Dirac showed how the
noncommutative algebra of operators on a Hilbert space could be interpreted
using physical concepts, establishing the rules which are now sometimes re-
ferred to as the postulates of quantum mechanics [37]. These rules are stated
in the language of abstract Hilbert spaces introduced by Von Neumann [35].

Dirac observed the similarities between the Poisson bracket of smooth
functions in Hamiltonian mechanics and the commutator of self-adjoint op-
erators on a separable Hilbert space. From this an analogy between the math-
ematical structures of classical and quantum theory was built, and from this
analogy, concepts in classical mechanics could be associated with concepts
in quantum mechanics, providing a means to interpret the mathematics of
quantum theory.

Dirac acknowledged that this correspondence could not be applied gener-
ally, but the method of classical analogy, also referred to nowadays as canon-
1cal quantization, is widely used by physicists. For instance, Nobel laureate
Steven Weinberg, in a standard text on quantum field theory states the fol-
lowing: “It seems natural to begin any treatment of the subject today by pos-
tulating a Lagrangian and applying to it the rules of canonical quantization.
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This is the approach used in most books on quantum field theory.” [33]

However, Dirac’s treatment was not entirely rigorous, and a body of math-
ematical work emerged to rigorously implement Dirac’s ideas. Gelfand’s
rigged Hilbert spaces and Schwartz’s distribution theory was developed to
treat Dirac’s delta function. Inconsistencies in operator ordering were pointed
out by Groenwald-van Hove, and different methods were created to bypass
these problems. Among them are Kostant-Souriau’s geometric quantiza-
tion, Berezin-Toeplitz quantization, Kontsevich’s deformation quantization,
Klauder-Daubechies’s stochastic path integrals, and Weinstein’s approach
with groupoids. An account of this history can be found in [32].

Among these approaches, some approaches formulated quantization using
the language of symplectic geometry. One reason the author finds this ap-
proach interesting is because of the following (albeit subjective) possibility:
because symplectic manifolds can 1) describe the laws of classical mechan-
ics in their Hamiltonian formulation 2) can be understood independently of
physics as geometric objects, a sufficiently elementary formulation of quan-
tization in the language of symplectic geometry would not only serve as a
description of quantization, but also a justification of it.

A common feature can be observed from the approaches to quantization
from the perspective of symplectic geometry. While the Darboux theorem
states that there are no local symplectic invariants, quantum structures on
symplectic manifolds require making additional local choices. For instance,
in Klauder-Daubechies construction [41], an additional compatible complex
structure J is necessary, and in Kostant-Souriau geometric quantization, ad-
ditional data such as the prequantum line bundle with connection and a po-
larization are required. It is desired that a quantization does not depend on
these local choices. Finding out when and how different methods of quanti-
zation are equivalent on symplectic manifolds is an important open problem.

This work aims to clarify what are the local choices in symplectic ge-
ometry that are necessary to describe quantum physics, and how they give
rise to quantum structures, and in what sense they do so. Special attention
was given so that these choices are independently motivated by mathemat-
ics, rather than being imposed by the requirements of physics, following the
approach of [7] [40]. We study these questions in the simplified setting of
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finite dimensional symplectic vector spaces, with the aim that the explicit-
ness will make transparent how different approaches (sometimes successfully
formulated in more generality) compare.

Our answer is that a choice of transverse pair of complex Lagrangian
subspaces, introduced by Hess [31] is a viable candidate for local data that
prescribes a quantum description.

The main justification of the claim is the main result of this work. The
result is that transverse pairs of complexr Lagrangian subspaces parametrize
wrreducible representations of the canonical commutation relations. This re-
sult has been published by the author in [38] and we provide more expository
comments here. We warn the reader that there are several different notions of
representations depending on what kind of additional analytic requirements
are imposed. The main result holds when we do not impose any additional
analytic requirements.

Relation to previous works

Firstly, our construction lifts the positivity restriction for polarizations that
appear in Hess’s and other works in geometric quantization. We delay im-
posing the positivity restriction until we have to ask for unitarity. If we
ignore the requirement for unitarity, we can obtain topologically nontrivial
configurations of representations of the canonical commutation relations.

Secondly, our construction behaves differently under symplectic linear
transformations from symplectic spinors of [34]. To explain this we will
describe an unconfirmed speculation that motivates the main result. For a
germ of smooth functions O, at a point pt in a symplectic manifold (M, w),
the canonical inclusion of derivations

TptM = Der Opt — End Opt (11)

is a Lie algebra homomorphism. The speculation is that a Lie algebra ho-
momorphism

T2 heis (Tot M, wpt) — End Oy (1.2)

can be a viable replacement of this object, and it is a speculation because
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the author does not know what are the correct analytic requirements to
investigate the direct limits. While there is a canonical inclusion in the
classical case, one is forced to make a choice of a transverse pair (I'1, I's) from
a homogeneous parameter space. A key difference from symplectic spinors is
that here symplectic transformations are manifested by isomorphisms rather
than projective automorphisms of the representations (cf. Proposition 4.3.2).

Thirdly, our construction unifies several constructions of families of rep-
resentations of the Heisenberg group (and Lie algebra). The way different
families relate to each other can be understood from the partition of the
complex Lagrangian Grassmannians given by complex conjugation.

We can quickly demonstrate the unification in the R? case. Here the
complex Lagrangian Grassmannian is the complex projective line, and com-
plex conjugation partitions it into the upper hemisphere, equator, and lower
hemisphere. Transverse pairs of complex Lagrangian subspaces can be repre-
sented by two distinct ordered points on the projective line. The main result
result states that we can explicitly construct an irreducible representation
of the Heisenberg Lie algebra from any such choice of two distinct ordered
points. The choices reconstructing the previous representations are summa-
rized in the following table.

G
©
©

Schrodinger Lion-Vergne Satake

L
&

Fock-Bargmann Grossmann-Daubechies =~ Mumford

Table 1.1: Pictorial reconstruction dictionary for V = R?
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Additional reasons for transverse pairs

In addition to the main result, transverse pairs of complex Lagrangians are
motivated mathematically for the following reasons:

1. They generalize the notion of compatible complex structures
2. They can be naturally associated with Lagrangian subspaces
3. They are canonically obtained from complex Darboux bases

4. They parametrize Poincaré-Birkhoff-Witt isomorphisms prescribing op-
erator ordering rules (cf. Theorem 3.2.12)

5. They are acted on by the real and complex symplectic groups

6. There is an interesting reassembly phenomenon. The Grassmannian of
complex Lagrangian subspaces “topologically re-assembles” the Grass-
mannian of subspaces of any dimension in the real symplectic vector
space into one homogeneous space. (cf. Theorem 2.7.9)

Summaries of chapters

In Chapter 2, we will review the basic linear algebra of symplectic vector
spaces, their complexification, and subspaces. Using these results, we will
describe the partition of the complex Lagrangian Grassmannian given by
complex conjugation. In fact, we will prove a little bit more, which is the
following.

Theorem (2.7.9). Let (V,w) be a 2n-dimensional symplectic vector space,
and 1 := (ng,n4,n_) be triples of nonnegative integers such that ng + ny +
n_ = n. Then there are partitions of the Grassmannians of k-dimensional
subspaces

Gr(k;V)= J[ Ge(V) k=0,---.,2n (1.3)

nno+2n4 ==k

and a partition of the complex Lagrangian Grassmannian

Lag®(V) = [ [ Lag®(ii; V) (1.4)

5
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such that Gr(i; V') is homotopic to Lag®(; V).

This theorem describes a “reassembly” phenomenon in which the 2n +
1 Grassmannians Gr(0;V),--- ,Gr(2n; V) split into (";2)—different subsets
{Gr(7i; V) }z, and each Gr(7; V') can be replaced by a homotopy equivalent
Lag®(7; V) which assemble into one homogeneous space Lag®(V). So not
only does the complex Lagrangian Grassmannian have an interesting parti-
tion, there is a sense in which this partition tells us how to think how all sub-
spaces (regardless of the dimension) of V' assemble together. For two dimen-
sional symplectic vector spaces, the “assembly” phenomenon was observed
independently by M. Hamilton et al, communicated privately to the author.

In Chapter 3, we will review the representation theory of the Heisenberg
group and Lie algebra (canonical commutation relations). As suggested by
[7], we will view the representations in the context of Equation 1.2. The
symmetries are translational symmetries modified by a phase factor, and
with this viewpoint, the representations can be understood without referring
to their original context in physics by position and momentum operators.

The representation category of the Heisenberg group shares some fea-
tures with the representation category of finite dimensional representations
of finite or compact groups. However, because of the noncompactness of the
group and infinite dimensionality of the representations, there are additional
conditions (unitarity, topology, convergence, etc) to assume and keep track
of, and some subtle differences to keep in mind. We will cite and state rel-
evant results from literature without proof. The results we will review are
about exponentiating representations of the Heisenberg Lie algebra into rep-
resentations of the Heisenberg Lie group, differentiating representations of
the Heisenberg Lie group into representations of the Heisenberg Lie algebra,
direct integral decompositions (of the Heisenberg group) rather than direct
sum decompositions into irreducible representations, and the classification of
irreducible unitary representations of the Heisenberg group.

In Chapter 4, we will state our recipe to construct the representations
of the Heisenberg group and Lie algebra from pairs of transverse complex
Lagrangian subspaces. The key idea comes from the following;:

Theorem (4.2.4). For every transverse pair of complex Lagrangian sub-
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spaces, (I'1,T'y) there is a complex valued bilinear form (-|-)r, r, such that
2(ulv)r, ry, — 2(v|u)r, ry, = w(u,v) w,v V. (1.5)

This generalizes the behavior of antisymmetrization of the hermitian form
associated to a compatible complex structure J

%hj(u,v) - %hJ(v,u) = iw(u,v). (1.6)

When representations are viewed as Lie group and Lie algebra homomor-
phisms on vector spaces, we can construct the representations for arbitrary
transverse pairs. They are realized as subspaces of the vector space of smooth
complex valued functions on V. Real symplectic linear transformations on
V' act on the space of transverse pairs, and the precomposition operator on
functions intertwines the representations whose parameters are in the same
orbit of this action.

When representations are viewed analytically, there is a further require-
ment for them to be realized by unitary or skew-adjoint operators on Hilbert
spaces. The previous constructions of Fock-Bargmann, Schrodinger, Satake,
Mumford, Lion-Vergne, Grossmann-Daubechies satisfy these requirements,
and are all unitarily equivalent if they have the same action of the center.
Our construction does not always meet these requirements due to conver-
gence issues. However, the construction produces new parameters that give
unitarily equivalent representations.

For representations of the Heisenberg Lie algebra on Hilbert spaces, con-
vergence issues can be circumvented by restricting the domain to a bounded
open subset of V. In this case, a polynomial algebra generated by n complex
variables is irreducible (as a simple module over the complexified universal
enveloping algebra), and is contained as dense subspace of the Hilbert space.
In this case, the operators are not always skew-symmetric.

In Chapter 5, we will review the geometry of the parameter spaces, and
the reconstruction dictionary that shows how the known families of repre-
sentations fit together. Then we will proceed to explicitly relate the rep-
resentations we constructed with the representations of Satake[5], Mumford
[12], Lion-Vergne[13], and Grossmann-Daubechies|7][8], as well as the more

7
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traditional Schrodinger and Fock-Bargmann representations used by physi-
cists. We will also show there are new parameters that construct equivalent
unitary representations.



Chapter 2

Symplectic vector spaces and
their complexification

In this chapter we first review the standard notions of symplectic vector
spaces, Darboux bases, subspaces of symplectic vector spaces (isotropic,
coisotropic, Lagrangian), and compatible complex structures. Notational
conventions for block matrix representations of bilinear forms will be set up
in the examples. Then we discuss complex Lagrangian subspaces, and end
with one of the two main results of this work, asserting the homotopy equiv-
alences between some Grassmannians.

2.1 Symplectic vector spaces

In this section we review the definition of symplectic vector spaces and the
fact that finite dimensional symplectic vector spaces are necessarily even
dimensional. We also give basic examples, and set up the notation for vectors
and matrices we will use for the rest of this work.

Definition 2.1.1 (Symplectic form). Let V' be a real vector space. Then a
symplectic form w on V' is a real valued bilinear map satisfying the following
properties:

e (Nondegeneracy) For all nonzero uw € V, there ezists a v € V' such that
w(u,v) is nonzero.
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o (Antisymmetry) For allu eV, w(u,u) = 0.

Definition 2.1.2 (Symplectic vector space). If a vector space V' has a sym-
plectic form w, we will refer to (V,w) as a symplectic vector space. We will
only consider finite dimensional symplectic vector spaces. Two symplectic
vector spaces (V,w) and (V',w') are isomorphic if there exists a linear iso-
morphism LV = V' such that w'(L-, L-) = w(-, -).

Example 2.1.3 (R?" and the standard symplectic form). Suppose u = (q,p)
and v = (¢',p') are elements of R** where q,p,q',p' € R™. Implicitly iden-
tifying n-tuples and 2n-tuples with column vectors, the standard symplectic
form wgyq is defined as

0 -1,

ot
wsta(u,v) == v (1n 0

) u=(p")'q—(d)p (2.1)

Here 1,, is the n x n identity matriz and 0 is the n X n zero matriz. Since

t
0o -1, 0o -1,
= — 2.2
we can easily check the antisymmetry property:

—1 -1
Wsta (U, v) + wea(v,u) = o (0 ”) u—+ul (10 0") v (2.3)

o) ) e

= 0. (2.5)

0 -1
det "l =1 2.
e <1n 0) (2.6)

v e ((fn _3”)_1>tu. (2.7)

Moreover, since

for every nonzero u let
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Then
t
wsta(u,v) = u'u # 0. (2.8)
and wgq 18 nondegenerate.

Example 2.1.4 (Skew-symmetric, invertible 2n x 2n matrices). Suppose M
15 a 2n X 2n skew-symmetric, invertible real matriz. Then

wiy(u,v) == v"Mu u,v € R* (2.9)

is a symplectic form on R®**. The arqguments from Ezample 2.1.3 to check
that the standard symplectic form is a symplectic form apply directly to show
wyr s a symplectic form.

Remark 2.1.5 (Convention for Gram matrix). We will follow the convention
that the first argument of a bilinear form B(u,v), when written out in matriz
form, gets multiplied as a column vector. This implies that the matriz we use
to compute a bilinear form (B)(, ... v,y i a particular basis {vy,- -, vay}
given by

B <Z a;v;, Z bkvk> = Z B(vj,v)a;be = b'(B) vy, wan}@ (2.10)
J k ak

1s such that
((B>{v1,-~~,v2n}>jk = B(vy, Uj). (2.11)

We will refer to this matriz as the Gram matrix.

Remark 2.1.6. FEvery finite dimensional symplectic vector space is neces-
sarily even dimensional. Suppose (V,w) is an odd dimensional symplectic
vector space. Take any basis {vy,--- ,v,}. Then consider the matriz M with

M, = (w(vg,vy)). Ifu="> ajv; and v =">_ bjv; we have
w(u,v) = ZajbkMkj =V'Ma. (2.12)
M is skew-symmetric, and therefore
det M = det M' = det(—M) = (—1)"det M = —det M (2.13)

11
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So det M = 0 and M is not invertible. Take w = ) ajv; in the kernel of
M. Then for all v = 3 bjv;, we have w(u,v) = b'Ma = 0. So w is not
nondegenerate (contradiction).

2.2 Darboux bases

In this section we review the definition of Darboux bases and some basic
examples. The main one that we will use extensively is the Darboux basis
given by the column vectors of a symplectic matrix. We end the section
by reviewing the existence theorem of Darboux bases in finite dimensional
symplectic vector spaces.

Definition 2.2.1 (Darboux basis). A basis {e1,--- ,e,,f,---f,} of a 2n
dimensional symplectic vector space (V,w) is a Darboux basis if it satisfies

w(ej,er) =w(f;, ) =0 j,ke{l,--- n} (2.14)
and
w(ej,fk) = 6j,k (215)

where 0;, 1s the Kronecker delta. When it is clear from context, we will
sometimes denote Darbouz bases as simply {e, f}.

Remark 2.2.2. Every isomorphism of symplectic vector spaces, sends a Dar-
boux basis to a Darbouz basis. Conversely, any two Darbouz bases of the same
cardinality determine an isomorphism of symplectic vector spaces.

Example 2.2.3 (Standard Darboux basis of (R?", wyya)). Let e; be the vector
in R™ such that its jth component is 1 and all other components are zero.
Let €' := (e;,0) and £'Y := (0,¢;). Then {e*?, £} is a Darbous basis of

12
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(R*™, wypq). Indeed,

0
L

std s 0 —1,\ (e
catei et = (6 0) () 77) () =0 (2.16)
o 0 —1,\ [0
wstd(fjtd,fktd) = (O 62) (1 0 >(€):0 (217)
n J
1
0

wstd(ejtd,f,ftd) = (O 62)(

n €;
> (6) =epe; = 0. (2.18)

Example 2.2.4 (The column vectors of a symplectic matrix). A 2n x 2n
real matriz S is symplectic if it preserves the standard symplectic form, i.e.

wsta(S+, S+) = wsta(* +)- (2.19)

Symplectic matrices form a group, which we denote as Sp(2n;R). Suppose

A B
S = ( . D) A, B,C, D € Matxn(R) (2.20)

where Mat,«,(F) denotes the n x n matrices with coefficients in some field
F. Then the condition that S is symplectic is the following

Wsta(Su, Sv) = v* S (10 _(:)[n> Su = ot (0 _1”) u (2.21)

for all u,v € R?™. This is equivalent to

(0 —1L\ ., [0 -1,
s (0 F)s= (P M) o

The left hand side can be expanded as

At Ot 0 —-1,\ (A B\ [(C'A—A'C C'B-A'D (2.23)
Bt D) \1, O C D) \D'A-B'C D'B- B'D '

13
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So S is symplectic if and only if its block components satisfy
A'C=C'A B'D=D'B A'D-C'B=1,,. (2.24)

Let e; be the jth column vector of S and f; be the n + jth column vector
of S for j=1,--- . n. Then

wea(ej, er) = ((Ct At (fn _01"> (g))lf':(AtC—CtA)kj:O

wea(£, £ = ((Dt BY) <10n —Oln) (g)); — (B'D — D'B)y; =0
waa(ej, fr) = ((Dt B <10n _01") (é))k = (D'A — B'O)y; = 0y;.

So the column vectors of any symplectic matriz is a Darbouz basis of R?™,
Conversely, if the components of any Darbouz basis {e;, f;}7_, of (R w1q)
are identified as

A By
ej= (M) £=("") Ay, Byj,Chj, Dij € R". (2.25)
ij ij

Then the matrix defined by

S = (é g) (2.26)

Definition 2.2.5 (Symplectic linear transformation). A symplectic linear

15 symplectic.

transformation of a symplectic vector space (V,w) is a linear map S € GL(V)
such that
w(Su, Sv) = w(u,v) wu,veV. (2.27)

The set of symplectic linear transformations forms the symplectic group
which we will denote by Sp(V,w).

Remark 2.2.6 (Symplectic linear transformations and symplectic matrices).
A symplectic linear transformation S € Sp(V,w) written in matrixz form using

14
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a Darbouz basis {e,f} of V is a symplectic matriz—i.e.
(S)(es) € Sp(20; R). (2.28)

Proposition 2.2.7 (Existence of Darboux basis). Every symplectic vector
space (V,w) has a Darbouz basis.

Proof. The proof is by induction on the dimension of V. If V' is 2 dimensional,
take any basis {u,v} of V. If w(u,v) = 0, w is not nondegenerate. So
w(u,v) # 0 and {u,w(u,v) v} is a Darboux basis of V. Let {v1,--+ ,v,}
be any basis of V. By nondegeneracy of w, there exists v;, vy such that
w(vj,vx) # 0. Without loss of generality, let them be v; and v,, and such
that w(vy,ve) = 1. Let

Wy 1= Vg — w(vk, ’U2)U1 + w(vk,?)l)w k=3,--,2n (2'29>

By construction
w(wy, v1) = w(wg, v9) = 0. (2.30)

Then let W := Spang{ws,- - ,wa,}. Suppose w|y is not nondegenerate.
Then there exists a nonzero vector w = Y apwy in W such that w(w,v) =0
for all v € W. Then

w(w, v + byvy + bavg) = w(w,v) + Z arbiw(wg, v1) + Z agbow(wy, v9) = 0.

Since any vector of V' can be expressed as v+ b;v; +bovo this implies that w is
not nondegenerate (contradiction). Therefore, w|y must be nondegenerate.
It is also antisymmetric, so by inductive hypothesis, there exists a Darboux
basis {e1,-- ,e,_1,f1, -+ ,£,_1} of W. Then

{el7 e Jenflurl)l?fl? Tt 7fnflav2}

is a Darboux basis of V. O]

Corollary 2.2.8. Every 2n-dimensional symplectic vector space (V,w) is
isomorphic to (R*", wyyq).

Proof. Take {e,f} a Darboux basis of V. Then let L : V' — R*" be defined

15
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as
Lej =€ Lfj:=f£" j=1,-- n (2.31)

Then by the definition of Darboux basis we have

wsa(Lej, Leg) = 0 =w(ej, ey) (2.32)
wstd(ij, Lfk) = 0 = w(fj, fk) (233)

wstd(Lej, Lfk> = 5jk = w(ej, fk> (234)
[

2.3 Subspaces of symplectic vector spaces

Unlike the orthogonal complement of an inner product space, a subspace
of a symplectic vector space is not necessarily transverse to its symplectic
complement. In this section we will review the standard notions of subspaces
of symplectic vector spaces (isotropic, coisotropic, Lagrangian), according to
how they interact with the symplectic form and end by reviewing a general
basis extension theorem.

Definition 2.3.1 (Symplectic subspace). A subspace W C V' is a symplectic
subspace if (W,w|w) is a symplectic vector space.

Definition 2.3.2 (Symplectic complement). Let W C V' be a subspace of a
symplectic vector space (V,w). Then the symplectic complement of W (in V)
1s defined as the subspace

We:={veV: :ww)=0 for allw € W}. (2.35)

Proposition 2.3.3. Let W C V be a subspace of a symplectic vector space
(V,w). Then
dimgW + dimgW* = dimgV. (2.36)

Proof. Consider the map v — w(v,-)|w from V to W*. The kernel of this
map is W* and by nondegeneracy of w, it is surjective. The result follows by
the rank-nullity theorem. [

16



CHAPTER 2. SYMPLECTIC VECTOR SPACES AND THEIR COMPLEXIFICATION
Corollary 2.3.4.
(W*)® = W. (2.37)

Proof. If w € W, and v € W*, then w(w,v) = 0 because v € W*. This
holds for every v € W%, so w € (W¥)¥. So W C (W*)“. By the dimension
formula,

dimR(Ww)w == dlmRV — dimRW“ = dlmRW (238)
So W = (W«), u

Example 2.3.5. W N W* may not be 0 and W + W¥ may not be V.
Let (V,w) be a 6 dimensional symplectic vector space with Darbouz basis
{e1, eq,e3, 11,15, 3}, The symplectic complement of

W := Spang{e;, i, e} (2.39)
18

W< = Spang{e,, es, f3} (2.40)
so WNW® = Spang{es}, and £ ¢ W +W¥. This example is representative.
Proposition 2.3.6. The following are equivalent:
(a) W is a symplectic subspace of V.
(b) W¥ is a symplectic subspace of V.
(c) WNW«=0.

Proof. (a) <= (b): Take a Darboux basis {eq, - ,ex, i, -+ £} of W. If
u is a nonzero vector in W, there exists a v € V such that w(u,v) # 0. Let

k
Vimv— > w(v,fe;+ > w(v,e)f (2.41)
j=1

j=1

Since u € WY,
w(u,v") = w(u,v) # 0. (2.42)

17
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Moreover,

wv' e) = wv,e;) +w(v, e)w(fj,e) =0 (2.43)
w' £) = wv,f;) —w(, f;)w(e;,f;) =0. (2.44

So v' € W¥. So w|ww is nondegenerate.
(a) = (c) : Suppose v € W. Then take a Darboux basis

{ela"' 7ek7fla"' 7fk,’}

of W. Then v = q1e; + ---qrex + pify + -+ -ppfi. Then if v € W N W¥
w(v,e;) =w(v,f;) =0forall j=1,--- k. Sog; =p; =0forall j=1,--- k.
(¢c) = (a): If w is a nonzero vector in W, by nondegeneracy of w, there exists
a v €V such that w(w,v) # 0. By the dimension formula, V =W & W so
v = vy + v where vy € W and vy € W, Then w(w,v) = w(w, vy ) # 0.
So w|w is nondegenerate.

[

Definition 2.3.7 (Isotropic, coisotropic, and Lagrangian subspaces). A sub-
space W C V of a symplectic vector space is

e Isotropic if W NW¥ =W, or equivalently, if wlw =0, or W C W¥.
e Coisotropic of W NWY = W%, or equivalently, W C W.

e Lagrangian if WNW¥ =W = W%, or equivalently both isotropic and
coisotropic.

Remark 2.3.8 (Duality between isotropic and coisotropic subspaces). From
the identity (W¥)* = W we can see that the symplectic complement ex-
changes isotropic and coiostropic subspaces. If W C W*¥ (W is isotropic),
then (W¢)¥ C W® (W% is coisotropic). Similarly, if W« C W (W is
coisotropic), then W< C (W*)“ (W< is isotropic).

Remark 2.3.9 (Dimensions of isotropic, coisotropic, and Lagrangian sub-
spaces). Suppose (V,w) is a 2n-dimensional vector space. Then every isotropic
subspace has dimension at most n, every coisotropic subspace has dimension

18
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at least n, and every Lagrangian subspace has dimension n. This can be seen
as follows. Take a basis {vy,- -+ ,ve,} of V such that {vy,--- v} is a basis
of an isotropic subspace W of V. Then if k > n the Gram matriz

Ok xk — X7 o
(w){m,"',mn} = 8 kx(n—k) (2.45)
Xin—t)xk  Y(n—k)x(n—k)

has linearly dependent columns, and fails to be invertible. This contradicts
the nondegeneracy of w. So an isotropic subspace has dimension at most n,
and by the dimension formula, a coisotropic subspace has dimension at least
n. A Lagrangian subspace is both isotropic and coisotropic, so has dimension
n.

Lemma 2.3.10 (Lagrangian Basis extension). Let L be a Lagrangian sub-
space of a symplectic vector space (V,w). Then there exists a Darbouzr basis

{e1, -+ ,en f1,--- £} of V such that {e,--- ,e,} is a basis of L.

Proof. Take a basis {vy,--- ,v,} of L, and a basis extension {vy, -+ ,v9,} to
V. The Gram matrix

0 —X',
V1 o} = nxn 2.46
((A)){ 1, 72n} (ann Yan ) ( )

is skew-symmetric and nondegenerate, so X is invertible and Y is skew-
symmetric. The assertion follows from the matrix identity

v e
where o (10n _%X(—;fl())t(—l)t) (2.48)
O

Proposition 2.3.11. Let W C V be any subspace of a symplectic vector
space (V,w). Then W NW*¥ is isotropic, and its symplectic complement is
equal to W + W<, In particular, W + W% is coisotropic.
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Proof. If u,v € W NWY, then w(u,v) = 0 because u € W and v € W¥. So
W N WY is isotropic. Suppose u € W, v € W% and w € W N W*®. Then

wu+v,w) = w(u,w) +wlv,w) =0+0=0. (2.49)
So W+ W« C(WnWwv)~.

dimg(W + W*) = dimg W + dimg W* — dimg(W N W*)  (2.50)

2n — dimg (W N W*<) (2.51)
= dimp(W N W), (2.52)
So W + W* = (W N W=, 0

Example 2.3.12. Let (V,w) be a 6-dimensional symplectic vector space with
Darboux basis {ey,eq, es, f1,f5,f3}. Then

e Spang{ej, ey} is isotropic.

e Spang{e;, ey, e, f3} is coisotropic.

Spang{ei, ey, e3} is Lagrangian.

Spang{ei, fs, e3} is Lagrangian.

Spang{ei, f1} is symplectic.

Spang{ey, i, ex} is neither Lagrangian, isotropic, coisotropic, nor sym-
plectic.

We will see that these are representative examples.

Lemma 2.3.13. If W is a subspace of (V,w), define an antisymmetric bi-
linear form on the quotient space W/(W NW*) by

W ([u], [v]) = w(u,v) w,veW. (2.53)

Then (W/(W NW<),w') is a symplectic vector space.

Proof. Suppose u is a vector in W such that w'([u], [v]) = 0 for all v € W.
Then u € W¥. So [u] = 0. So w’ is nondegenerate. O
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Theorem 2.3.14 (Linear Relative Darboux theorem). Let W be a subspace
of a symplectic vector space (V,w). Then there is a Darboux basis of V

{ewnw, ew, eww, fweawe, fiy, fiye } (2.54)
such that
o {ewnwew} is a basis of W NWY, and
o {ewnww,ew, fw} is a basis of W, and
o {ewnwew,eww, fiyw} is a basis of W¥.

If W is coisotropic, then {eww, fyyw} is empty. If W is isotropic, {ew, fw}
is empty. If W is symplectic, then {ewnww, fwawe} is empty.

Proof. Since W/(W NW«) is symplectic, there exists a Darboux basis

{eW/(WﬂWw)7 fW/(WmWw)}-

Similarly, W«/(W N W¥) is symplectic, so there exists a Darboux basis
{ewe jwawey, fwe jwowey }. Let {ew, fiw} and {ew«, fiy«} be vectors in V/
that are chosen from the cosets defining Darboux bases of W/(W N W¥)
and W« /(W N W%). Spang{ew, fiy,ew«,fiyw} is a symplectic subspace,
and its symplectic complement is a symplectic subspace with W N W% as
a Lagrangian subspace. By the Lagrangian basis extension, there exists
a Darboux basis {ewnwe, fwrw«} of Spang{ew, fw, eww, fiy«}* such that
{ewrww} is a basis of W N W%, Then {ewnw«, ew, ew«, fwrww, fi, fi} is
the desired basis. O

Definition 2.3.15 (Type of a subspace). Let ii := (ng,ny,n_) be a triple
of nonnegative integers that sum to n = %dimR V. We will say a subspace
W C V s of type 7 if

dimg W =ng + 2n,  dimg(W N W*) = ny. (2.55)
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2.4 Compatible complex structures

In this section, we will review the definitions of complex structures, their
compatibility with the symplectic form, and some basic examples.

Definition 2.4.1 (Complex structure). A complex structure, or linear com-
plex structure on a real vector space V' is a linear automorphism J : V —V
such that J* = —1dy.. Although they can be identified geometrically, we will
reserve the term “complex vector space” for vector spaces over the field of
complex numbers, and refer to (V,J) as a vector space with complex struc-
ture J.

Remark 2.4.2. If a complex structure exists on V', then V is necessarily even
dimensional, because (det J)? = det(—Idy) = (—1)9™=V " and det J must be
real.

The minimal polynomial of a complex structure .J is #° + 1, which factor-
izes over the complex numbers as (z+1)(z—1). The characteristic polynomial
is of the form (z + i)*(z — 4)* where k + ¢ = 2n. Since it should have real
coefficients, k = ¢. So J®, the complex linear extension of J to VC := V®gC,
is diagonalizable, with +i-eigenspaces each with complex dimension n. Let
VJ1  be the +i eigenspace and V}]’l be the —i eigenspace. The projections to
VJLO and V})’l can be written explicitly

1 ? 1
<§(1ch — iJC)> = (Idye - iJC) :VE = V)P (2.56)
1 . C ? 1 . C C 0,1
§(Idvc +1iJ") = §(IdVC +iJ7): Ve =V (2.57)
and it can be checked that
C 1 . C . 1 . (C
J é(Ich —iJY) | = i §(Idvc —iJ") (2.58)
c(1 - C (1 . C
J §(Idvc +iJY) | = —i §(Idvc +iJ") | . (2.59)
It can also be seen that these projections, when restricted to V, give
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isomorphisms of vector spaces with complex structure.

%dec =il (V.T) = (V)0 (2.60)

Sy 4Ty (V,7) = (VIR i) (2:61)

Here W® denotes the underlying real vector space of a complex vector space
W.

Example 2.4.3 (Standard complex structure on R**). Let

Jo = (fn _01”) : (2.62)

We can see that there are two ways to identify R*™ with C*. One of the ways
15 that

(ﬁ) — g+ ip (2.63)

so that

Jo (q) - <_qp> — —p +iq = i(q + ip). (2.64)

p
Another way is that

(Z) o (=) @ = <_¢1."1n 11) @ iy <_¢1."1n> (a+ i),

retaining the information of how (Rzn)},’oo sits inside of R* @g C = C*". The
coordinates differ by a factor of 1/2.

Example 2.4.4 (Complex structures in R?"). Suppose we have a complex
structure J on R?".  Then take a complex basis {vi, - ,v,} of (RQ")},’O.
We can view the vectors as elements of C*" = R?*" @ C, and take complex
conjugation componentwise. Since {vy, -+ , 0y, V1, , Uy} 18 a complex basis
of (R2E,

{Rewy, - -Rev,,Imuvy, -+ Imuw,} (2.65)

is a complex basis of (R*™)C, and a real basis of R*. In this basis, J takes
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the form,
Dewensmn = (10" (260
So there exists an invertible 2n X 2n matriz X such that
J=XJpX ' (2.67)
The condition Jy = X JoX ! is equivalent to

JoX = X Jy, (2.68)

X = (g _AB) (2.69)

in block matrix form. In this case the invertibility of X is equivalent to the

which s equivalent to

wnvertibility of

1(1, i-1,\(A -B 1, —i-1,\ [(A+iB 0
2\i-1, 1, B A —i-1, 1, ) 0 A—iB)"
(2.70)

So the set of complez structures on R*" can be identified with the homogeneous

space GL(2n;R)/GL(n;C).

Definition 2.4.5 (Compatible complex structure). A complex structure on
a symplectic vector space (V,w) is compatible or w-compatible if

o W) = wl-,)
o w(-,J-) is a positive definite bilinear form on V.
Remark 2.4.6. w(-, J-) is symmetric. By compatiblity we have
w(u, Jv) = w(Ju, J*v) = —w(Ju,v) = w(v, Ju). (2.71)

Example 2.4.7 (Compatible complex structures from Darboux bases). Let
{e1, -+ ,en, f1,--- £, } be a Darboux basis of a symplectic vector space (V,w).
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Then define
ij = €y (273)
for3=1,....,n. Then J is an w-compatible complex structure.

Proposition 2.4.8 (Darboux bases from compatible complex structures).
Let J be an w-compatible complex structure. Then there exists a Darboux
basis {e1,--- ,e,, I, -+ £, } such that

Jej:fj ij:—ej ]:17 , 1. (274)

Proof. We can show this by induction on the dimension of V. If V is 2 di-
mensional, {v, Jv} for any (suitably normalized) nonzero v € V' works. Take
a v € V such that w(v, Jv) = 1. Then let W be the symplectic complement
of Spang{v, Ju}. If w € W, by definition

w(w, Jv) = w(w,v) = 0. (2.75)

By compatibility,
w(Jw,v) = w(Jw, Jv) = 0. (2.76)

So Jw € W. {v,Ju} is a symplectic subspace, so W is also a symplectic
subspace. Then it can be checked then that J|y is an w|y-compatible com-
plex structure on W. By inductive hypothesis, there exists a Darboux basis
{e1,"--,en_1,f1, - ,f,_1} such that

Je; =1, Jfj=—-e¢; j=1,---,n—1. (2.77)
Then {ey, - ,e,_1,v,f1, -+, f,_1, Ju} is the desired basis. ]

Example 2.4.9 (Compatible complex structures on (R*", wyyq)). Suppose J
is a w-compatible complex structure on (R* wgq). Then by the proposition,
there exists a Darboux basis {e1, - ,e,, f1,--- £,} such that Je; = £; and
Jf; = —ej forj=1,---,n. Let S be the 2n x 2n real matriz with jth column
vector e; and n + jth column vector ;. Since {e,f} is a Darbouz basis, S is
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symplectic, and
J=S8JyS". (2.78)

The condition Jy = SJyS™! is equivalent to

S = (g _AB) (2.79)

in block matriz form. Since S is symplectic A'B = B'A and A'A+B'B = 1,,.
This can be identified with the condition that A+ iB is unitary, or that S is
an orthogonal 2n x 2n matriz. Thus the set of compatible complex structures
on (R*™ wyq) can be identified with the homogeneous space Sp(2n; R)/U(n) =
Sp(2n;R)/(Sp(2n; R) NSO(2n; R)). We recall that in the following computa-

tion for complex structures

1(1, i-1,\(A -B 1, —i-1,\ [(A+iB 0
2\i-1, 1, B A —i-1, 1, /) 0 A—iB

(2.80)

1 1 7-1 1 1 —i-1
= n n = n n 2_81
\/§<i'1n 1n>7\/§(_i'1n L, ) ( )
are complex symplectic matrices (For a definition of complex symmetric ma-
trices, see Remark 3.35).

we have

Example 2.4.10 (Hermitian inner products from compatible complex struc-
tures). If J is an w-compatible complex structure on (V,w), then

hy(u,v) = w(u, Jv) + iw(u,v) (2.82)

1s a hermaitian inner product on V.

2.5 Complex Lagrangian subspaces

In this section we will review the definition of complex Lagrangian subspaces
on the complexification of a (real) symplectic vector space, and some basic
examples. From the way complex Lagrangian subspaces interact with the
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(complexified) symplectic form and complex conjugation, they can be la-
belled with types. We will review splittings (referred to as “standard decom-
positions” in [10]) of complex Lagrangian subspaces according to their type.

Definition 2.5.1 (Complexification of a symplectic vector space). Suppose
(V,w) is a symplectic vector space. Let VC := V@rC and w® be the C-bilinear
extension of w to V. Then we will say (VC,w®) is the complexification of

(V,w).

Remark 2.5.2. The conditions of nondegeneracy and antisymmetry are also
well-defined over C. So (VC,w®) can be thought of as a a complex symplectic
vector space, i.e. a symplectic vector space over the complexr numbers.

Definition 2.5.3 (Complex conjugation). Let (VC, w®) be the complexifica-
tion of a 2n-dimensional symplectic vector space (V,w). Then let {e,f} be a
Darboux basis of V. If v € VC let

v=aqe; +- -+ qe, +pifi+-opf gp;eC o j=1,--- 0 (2.83)
Then let the complex conjugate of v be
Ti=qer + o+ Gpen + pifi Bt (2.84)

This does not depend on the choice of Darboux basis {e,f} in V. Let Rev :=
(v +7) and Imv := o (v — ).

Remark 2.5.4. A symplectic vector space over the complex numbers does
not come with a notion of complex conjugation.

Definition 2.5.5 (Complex Lagrangian subspace and their splittings). A
complex n-dimensional subspace I' C VC is a Lagrangian subspace of V', or
complex Lagrangian subspace of V if w®|r = 0. This idea has been referred
to as polarization (sometimes as distributions of the complezification of the
tangent bundle of a symplectic manifold) in geometric quantization.

Definition 2.5.6 (Type of a complex Lagrangian subspace). The form
k(u,v) = —iw®(u, D) (2.85)
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is a hermitian form on V© and all its subspaces. A complex Lagrangian
subspace T is of type i := (ng,ny,n_) if the zero (respectively, positive,
negative) index of inertia of K|r is ng (respectively, ny, n_). Denote by I’y
the kernel of k|r, i.e. the subspace of T' consisting of all vectors v such that
klr(v,-) = 0.

Remark 2.5.7. A complex Lagrangian subspace of type (0,n,0) has been re-
ferred to by [30] as a strictly positive polarization and a complex Lagrangian
subspace of type (k,n — k,0) has been referred to as a positive polarization.

Example 2.5.8 (Complexification of a Lagrangian subspace). If L C V
is a Lagrangian subspace, then L® := L ®@g C is a Lagrangian subspace of
(VE,wC). LE is a complex Lagrangian subspace of type (n,0,0).

Example 2.5.9 (+i eigenspaces of a compatible complex structure J). If J
is an w-compatible complex structure, let J be the C-linear extension of J
to V. Then

WE(JIC, TC) = W () (2.86)

and we can see that
W1 F i, (1FiJ%) =0 wu,veVE (2.87)

On the other hand,
F %wc((l F4iJ%u, (1 £iJv) = w(u, J%) Fiw(u,v) u,veVE (2.88)

When restricted to u,v € V', we recover the hermitian inner product associ-
ated to J on the right hand side. VJI’O 1s a complexr Lagrangian subspace of
type (0,n,0) and V})’l is a complex Lagrangian subspace of type (0,0,n).

Example 2.5.10 (General form). Let {€°, e*, e, f° f* £~} be a Darboux
basis of (V,w). Then the complex span of

{e’em —ift e +if "} (2.89)

is a complex Lagrangian subspace of type (ng,ny,n_). We will see in Theo-
rem 2.6.5 every complex Lagrangian subspace can be constructed in this way.
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Example 2.5.11 (Coordinate form). Suppose {wy,--- ,w,} is a C-basis of
a complex Lagrangian subspace I', and {e,f} a Darbouz basis of (V,w). If

n

U)j = Z(ijek + Pk]fk> j = 1, R (290)

k=1
forw =aywy + -+ a,w, €', we have
w=7 q (Z(ijek + ijfk)> : (2.91)
j=1 k=1

and obtain the following basis change formula:

(W){e,}y = <g> (W) {w,} (2.92)

where (W) 1w,y s anx 1 column vector with components a;. Therefore we can
characterize I' as the complex span of the vectors whose coefficients are given
by the column wvectors of (Qt Pt)t. The condition for T' to be a complex
Lagrangian subspace is equivalent to:

(@ P ( 1(1 _g") <%> — P'Q-Q'P=0. (2.93)

Definition 2.5.12 (Splitting of a complex Lagrangian subspace). Suppose
I is a compler Lagrangian subspace of type it in VC. A (kp-orthogonal)
splitting of I' is a choice of complex subspaces 'y C T such that

[ ] F = FO @ F+ @ F_
o As hermitian spaces (I'y, k|r.) = (C™ (-, ) s1a)
L K|F+><F, =0.

We will denote I'so := I'o®I'y and I'<y :=T'y®I'_. We will denote a complex
Lagrangian subspace with a splitting (of type ) as (I, 'y, T'_). We will say
two splittings of a complex Lagrangian subspace (I',T,T'_) and (I', T, T_/)
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are equivalent modulo the kernel if
FiGSF[):Fi/@FO

as subspaces of I'.

Example 2.5.13 (Splittings from eigenspaces). A complex Lagrangian sub-
space T of (R*™, wgq) can be described by the complex span of the column

vectors of

<g> Q, P € Mat,»,(C) : Q'P = P'Q. (2.94)
Ifu,v el let

u= (g) a, v= (g) b, a,beC". (2.95)

We can see that

klr(u,v) =b" (Q* P¥) (—20 L ! 01”) (g) a="b"(iQ*P —iP*Q)a.
(2.96)
The hermitian matriz (k|p) := iQ*P — iP*Q is a self-adjoint operator on
[ with respect to the nondegenerate hermitian form (-,-)gqalr (the restriction
of the standard inner product of (R*")¢ = C*). Let T'y be the direct sum
of the eigenspaces with positive eigenvalue, and I'_ be the direct sum of the
eigenspaces with negative eigenvalue. By the spectral theorem, I'y exist, are

uniquely defined, and
'=Tyel'yal'_. (2.97)

Moreover, I'y and I'_ are orthogonal with respect to (-, )swa|lr- By the prop-
erties of eigenvectors,

Klr,xr_ (v, v-) = (v, (K|r)vy))stalr = 0. (2.98)

Since every symplectic vector space is symplectomorphic to some R?", this
example shows that splittings always exist.

Example 2.5.14 (Other splittings of a complex Lagrangian subspace). Sup-
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pose I' is the complex span of the column vectors of

7 ()

where
V2-1,, 0 0 0 0 0
Q= 0 Ly, 0|, P:=10 —i-1,, 0 . (2.99)
0 0 1,_ 0 0 71,
Then we can compute
0 0 0
(klr) =10 1,, 0 . (2.100)
0 0 -1,
We can partition I' into regions
L=rurtur- (2.101)
where
It = {vel:+x|r(v,v) >0} (2.102)
I’ = {vel:k|r(v,v) =0} (2.103)

'Y 4s the null cone containing the subspace I'y C I'° and '+ need to be chosen
from the various subspaces sitting inside the regions T U {0}.
For instance, if i = (1,1,1), then
00 0
(klr)=10 1 0 (2.104)
00 -1
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and
FO = {(Zl, O, O) AN (C} (2105)
% = {(21,20,%2): 21,2 € C} (2.106)
Fi = {(21,2’2, 23) : :l:(|22|2 — |23‘2> > 0} (2107)

So, for instance,

1 3 0
Spang [ 0 | @ Spang | 2 | @ Spang | 1
0 1 2
1 3 0
0 V2 1/v/2
> Spang 8 @ Spang 1/(;/5 @ Spang \gi (2.108)
0 —V/2i —i/y/2
0 i/V2 V2i

is another splitting of T (or (I', k|r)). We will see at the end of the chapter
that the set of all splittings of a particular type 1 is contractible.

2.6 Real projections

We will review how the images of the splittings of complex Lagrangian sub-
spaces behave under projection to V. A (modulo-the-kernel) equivalence
class of splittings is mapped to a real subspace and its symplectic comple-
ment. We will end with the statement and proof of the existence of a Dar-
boux basis of V' that reconstructs any complex Lagrangian subspace (Theo-
rem 2.6.5). This statement appears as Lemma 5.1 with the proof left as an
exercise in [10].

Definition 2.6.1 (Notation for real projection). For a complex subspace
We C VE, let
ReWe := {Rew : w € W*}. (2.109)
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Lemma 2.6.2.
1. ReWe=We+We)NV
2. Re (We + W() = Re W + Re W¢.

3. Re (WeN'W¢) C ReWe N Re W(
Proof.

1. Rew = %(w—l—w) so Rewe (We +We)NV. Ifwe (We+We)NV,
then there exist v € W¢, v € W¢ such that w = u + v. Since w € V,
w=Rew = 1(u+7u)+ 3(v+7) =Re(u+7). Sow € Re WE.

2. This follows from Re (u 4+ v) = Reu + Rew.

3. If w € Re (We N W{) there exists a @ € We N W{ such that w = Rew.
Rew € ReW¢ and Rew € Re W{..

]

Remark 2.6.3. We can check that the following inclusion is proper

Re(V; 2NV = {0} CReV,; " NRe V) = V. (2.110)
Lemma 2.6.4.

1. Rngzf‘OﬂV:FﬂV

2. Rel'y has dimension ny, Rel'soy has dimension ng + 2n,, and ReI'<
has dimension ng + 2n_.

3. (Re on)w = Re Fgo.
Proof.

1. Suppose w € I', v € I'g. Then since v is a 0-eigenvector
ik(v,w) = w"(Rev +iImwv, Rew — i Imw) = 0 (2.111)

so the real and imaginary parts vanish

w"(Rev,Rew) +w(Imv, Imw) = 0 (2.112)
—wCRev, Imw) + w(Imv, Rew) = 0. (2.113)
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Since I' is Lagrangian,
W (v, w) =0 (2.114)

so the real and imaginary parts vanish

wERev,Rew) — w(Imv,Imw) = 0 (2.115)
wE(Rev,Imw) + w(Imv,Rew) = 0 (2.116)

Therefore
wE(Rev,w) =0 forallweT. (2.117)

Hence Rev € " =T Since k(Rev,w) = 0 for all w € T, Rev € T,
Therefore Rel'y =T'oNV cI'NV. Ifuel’'NV, then u =u = Reu.
Since I' is Lagrangian

wE(v,u) =w (w, @) =0 forallvel. (2.118)
Therefore u € 'y NV, and we have [NV =T'NV.
2. Tp = (ReT)€ so
dimg Rel'y = dimc Ty = ny. (2.119)

The kernel of the surjective map Im : (I'sg)® — ReT'spis VN Tso =
ReTly. So

dimg Re'sg = dimg(I's¢)® — dimg Re Ty = ng + 2n.,.. (2.120)

3. Suppose u € Rel'sp and v € Rel'<y. Then there exist u € I'sy and
0 € I'cg such that u = Reu and v = Re®. By the k|p-orthogonality
property of the splitting, we have

k(u,0) =0 (2.121)
and since I' is Lagrangian, we have

W (@, 7) = 0. (2.122)
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Expanding into real and imaginary parts, we get
w(u,v) = w(Rew,Red) =0. (2.123)

Therefore Re'<y C (Rel's0). The equality is obtained by the dimen-
sion formula.

[]

Proposition 2.6.5. Suppose (I'\T'y,T'_) is a complex Lagrangian subspace
with splitting of type n. Let {vo} be a basis of Ty such that {vo} is a basis
of ReTy, and {vi} be bases of I'y such that (k|r,)fw.} = £1ln,. Then there
exists {wo} such that

1 1 1 1
{UO,ERevJﬂﬁRev_,wg,—EImmﬂElmv_} (2.124)

1s a Darbouz basis of V.

Proof.

1 1 1 1
—Revy,—=Rev_,——=Imv,, —=Imuv_ 2.125
{\/5 V2 V2 TR } (2.125)

is a Darboux basis of its span, which is hence symplectic. The symplectic
complement of the span is symplectic, and Spang{vy} is a Lagrangian sub-
space of this space. {wg} is obtained by applying the Lagrangian basis ex-
tension. O

Remark 2.6.6. This shows that every complex Lagrangian subspace is of the
form
Spanc{e’, e” —ift e” +if "} (2.126)

for some Darboux basis {€°, e, e . fT f~}. By construction, we have
{vo, Revy, —Imw,} is a basis of ReI'so, and {vy,Rev_,Imv_} is a basis of
Re Fgo.
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2.7 The partition of the complex Lagrangian
Grassmannian

In this section, we will review how complex conjugation in V' partitions
the complex Lagrangian Grassmannian into (";’2) subsets. Then we will de-
scribe each subset as a homogeneous space, using the action of the symplectic
group. Moreover, we can partition each Grassmannian of k-dimensional sub-
spaces of V', and show that the of subsets of the partition of the Grassman-
nians have a bijective correspondence with the subsets in the partition of the
complex Lagrangian Grassmannian, in a way that corresponding subsets are
homotopic. This describes a “reassembly” phenomenon, in the sense that we
can disassemble the 2n + 1 different Grassmannians of V', and-after taking
homotopic replacements if each subset—assemble them into one homogeneous

space.

Definition 2.7.1 (Notation for Grassmannians). Let (V,w) be a 2n dimen-
stonal real symplectic vector space. We will denote by

Gr (k; V) (2.127)
the Grassmannian of k-dimensional subspaces of V.. We will denote by
Gr (; V) (2.128)

the Grassmannian of subspaces of W C V' of dimension ng + 2n, such that
dimg(W N W) = ng. We will denote by

Lag®(ii; V) (2.129)

the Grassmannian of complex Lagrangian subspaces of (VC, w®) of type 7,
and by
Lag (7; V) (2.130)

the Grassmannian of equivalence classes (modulo the kernel) of complex La-
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grangian subspaces with splitting (T, T, T_) of type @ in (VE, "), and by
Lag®(V) (2.131)

the Grassmannian of all complex Lagrangian subspaces of (VC,wC).

Remark 2.7.2. Lag®(V) has a partition into Lag®(ii; V) s.

Lag®(V) = [ [ Lag®(ii; V) (2.132)

Gr(k; V') has a partition into Gr(ii; V') ’s.

Gr(k; V)= [ G V). (2.133)

:k=no+2n4

Remark 2.7.3 (Left and right actions of the symplectic group). Suppose
{e,f} and {€,f'} are two Darboux bases which are expressed in terms of
some fized Darbouz basis as the column vectors of symplectic matrices Sye ry
and S{er ¢11. Then the linear map taking {e,f} to {€',f'} can be expressed as
both left and right multiplication by some symplectic matrix:

Stesy - (SepySterr) = Sterrry (2.134)
(Ster iy Siey) - Stery = Stere- (2.135)

The existence theorems of Darbouz bases 2.3.14, 2.6.5 tell us that each
W, (respectively, (I',[(I'+,T'2)]), T') can be viewed as equivalence classes of
Darbouz bases, and if a symplectic linear transformation fizes W, (respec-
twely, (I',[(Ty,T2)]), T'), it must permute the different Darboux bases in the
equivalence class defined by W (respectively, (I',[(T'+,T'-)]), I'). These equiv-
alence classes are defined by a condition of what kind of linear recombinations
we allow for the Darbouz bases within an equivalence class.

A right multiplication by a symplectic matrix, rearranges the column vec-
tors of Sie sy so it respects the operations of linear combinations of Darbouz
bases that we use in the proof of theorems 2.3.14, 2.6.5. The same linear re-
combination rules are applied for two different Darbouz bases {e,f}, {e” "}
when Sie sy and Sger gy are multiplied by a symplectic matriz from the right.
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So right multiplication by a symplectic matriz of the form ng}S{egp} pre-
serves the subsets of Darboux bases defined by a condition of linear recombi-
nation.

To see how a left multiplication by a symplectic matriz preserves subsets of
Darbouzx bases defined by a condition of linear recombination, suppose {e,f}
and {e", "} satisfies some condition defined by some linear recombination.
Then there is a symplectic matriz ST9" such that

Ster gy = Siery ST, (2.136)
So
SleftS{e//fN} — SleftS{ef} Sm’ght — S{e/7f/}Sright (2137>

So left multiplication by a symplectic matrix also preserves the equivalence
class of Darbouz bases defined by linear recombination.
Thus the set of symplectic matrices acting on the right

{S{_el,f}S{e/,f’} D Slefy ~W S{e’,f/}} (2.138)
and the set of symplectic matrices acting on the left
{S{e/,f’}sfel,f} : Stey ~w Ster 1)} (2.139)

define the right and left stabilizer subgroups of W. A similar claim can be
made for (I',[(T'y,T'_)]) and T.

Therefore, both the left and right actions of Sp(V,w) on Gr(7i; V), Lagg(ﬁ; V),
and Lag®(i; V') are well defined, and this action is transitive.

Now suppose there is a Darbouz basis {e,f} in the equivalence class of

W, (respectively, (I',[(T'+,T'2)]), '), such that
S{e,f} = lap. (2140)

Then the left and right stabilizers coincide. When a group acts transitively
on a set, the stabilizers at different points are conjugate, hence isomorphic.
So all left and right stabilizers are isomorphic.

Proposition 2.7.4 (Right stabilizers). Let N(7i) be the nilpotent group of
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matrices in block form

l,, ET E~ Y Fr F-
0 1,, O (FT)t 0 0
N\t
0 0 1. (F7) 0 0 (2.141)
0 0 0 Lng 0 0
0 0 0 —(E*) I, O
0 0 0 —(E) 0 1,
where
E*, F* € Maty, xn, (R) (2.142)
and
Y — E+(F+)t — E_(F_)t (2.143)

is symmetric (this condition is equivalent to N (i) being a subgroup of Sp(2n; R) ).
We can express the stabilizers with respect to the right group action of Sp(V,w)
on Gr(ii; V), Lag®(i1; V) and Lag (ii; V) using N (7).

1. If W C V is a subspace of type 1, its stabilizer GE’”ght(W) of the right
action of Sp(V,w) on Gr(7; V') is isomorphic to the semidirect product

(GL(no;R) x Sp(2n4;R) x Sp(2n_;R)) x N(7n). (2.144)

2. If T C V® is a complex Lagrangian subspace of type 7i, its stabilizer
Gg”ght(F) of the right action of Sp(V,w) on Lag®(ii; V') is isomorphic
to the semidirect product

(GL(ng;R) x U(ny,n_)) x N(i) (2.145)
where U(ny,n_) is the indefinite unitary group.

3. If (T, (T, T2)]) is a complex Lagrangian subspace with (equivalence
class of ) splitting of type 7, its stabilizer nggght(F, (T, T2)]) of the
right action of Sp(V,w) on Lag§ (7i; V) is isomorphic to the semidirect
product

(GL(no; R) x U(ny) x U(n-)) x N(n). (2.146)
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Proof. Denote a fixed Darboux basis of V identifying it with R?" as
fix :={ey, -+ ,en, f1,--- .} (2.147)
Denote the permuted basis
{ej.en, fr e, £, £} e (2.148)

as fixs, and the Darboux basis

{e‘ ek—ifk eg—i—ifg . —iek+fk ieg+fg}
70 \/§ I \/§ P ) \/5 I \/§ jkz

as fixS, where the indices range from

j e {1,--,ng} (2.149)
ke {no+1,--- ,ng+ny} (2.150)
¢ € {no+ny+1,--- n} (2.151)

Then denote the change of basis matrices

l, 0 0 0 0 0
0O 1,, 0 0 0 0
ME o~ |0 0 0 L. o0 0
i 0 0 0 0 0 1,
0O 0 1, 0 0 0
o 0 0 0 1, 0
V21, 0 0 0 0 0
0 1. 0 0 —i-1,, 0
ve .~ L 0 0 1, 0 0 i1,
g V2 0 0 0 V21, 0 0
0 i-l,, 0 0 Lo, 0
0 0 i1, 0 0 1o

ME is not necessarily symplectic, but MY is symplectic. Then a vector in

n
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fix basis is expressed in ﬁxﬂé basis by multiplying its expression in fix basis
by (ME)~! from the left, and a vector in fix basis is expressed in fix5 basis
by multiplying its expression in fix by (MS)™! from the left. A symplectic
linear transformation, expressed by a symplectic matrix (9)gx in the fix basis
is expressed in the fixy basis by (S)ge = (ME)71(S)aME, . This can be
summarized in the following: '

(Sv)ge = (Mz)™'(Sv)as (2.152)
(M7) "M (S)ax M) - (M5) ™" (v)six (2.153)
= (9@ - (V) (2.154)

and similarly for the fixS basis.

1. If W C V is a subspace of type 77, then the stabilizer GE’”ght(W) C
Sp(V,w) consists of symplectic linear transformations S such that, in
the fixs basis, has block form

*k *k k * * k
0 A* BT 0 0 =«
0 Ct DF 0 0 =«
Nee = (MY (S ME = 2.1
0 0 0 C D «x
0 0 0 0 0 =x
where
A%, B* C*, D* € Mat,, xn. (R). (2.156)

This is because right multiplication by (.S)g,= must preserve W, W* and
W N W, In this block form we can see that G&"*9" (1) is isomoprhic
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to a semidirect product of the group of matrices of block form

*x 0 0 0 0 0
0 A* BY 0 0 O
0o Ct Dt 0 0 0

2.157
0 0 0 A B 0] ( )
0o 0 0 C- D0
o 0 0 0 0 =

whose image under MX(-)(ME)~" is symplectic, and the group of ma-

trices of block form

1n, % * * * *
0 1, 0 0 0 *
0 0 1., O 0 *

2.158
0 0 0 1, O x| ( )
0 0 0 0 1, =
0 0 0 0 0 1,

whose image under ME(-)(ME)~! is symplectic. The former can be
identified as GL(ng; R) x Sp(2n,;R) x Sp(2n_;R) and the latter can
be identified as N (7). The condition for the block forms to have image

under ME(-)(ME)~! to be symplectic is equivalent to the block forms

being
X 0 0 0 O 0
0 A" Bt 0 0 0
0O Ct Dt 0 0 0
2.159
0 O 0 A~ B~ 0 ’ ( )
0 O 0 C- D~ 0
0 0 0 0o 0 (XxXH!
and
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l,, E¥ F* E- F~ Y
0 1,, 0 0 0 (FH)
0 0 1,, 0 0 (—EY)

2.160
o 0 0 1, 0 (F) (2.160)
o 0 0 0 1, (-E)
0 0 0 0 0 Iy

2. If I' ¢ V® is a complex Lagrangian subspace of type 7, then the sta-
bilizer G="""(T') € Sp(V,w) consists of symplectic linear transforma-
tions S such that, in the ﬁxg basis, has block form

Shog = SmE = (0 7). o

This condition is equivalent to (S)gy being of block form

* * X * * *
0 Att A+ « B+t Bt
S (A BY_ |0 A A« B B
=~ \c D 0 0 0 % 0 0
0 —B+t Bt x At _A+
0 B+ -B— % —A+ A
(2.162)
If we compute (ME)71(S)a M5, we get
% % * %
0 A+t B+t A+ B 4
0 —B*t A+t Bt A+
2.163
0 A+ B+ A B « (2.163)
0 B+ At B A «
0 0 0 0 0 *

from which we can again see that Gg’”g ht(F) is isomorphic to the semidi-
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rect product of the group of symplectic matrices of the form

X 0 0 0 0 0
At+ At+— 0 Bttt B+

(e (4 BY_|0 AT A- 0 Bt B
==\c p) "o o 0 (X9 0 0

0 —Btf Bt— 0 ATt — At

0 B™* -B~ 0 —A7F A

with N (7). In this group, the condition that A'D — C'B = 1, is
equivalent to

+_igtt At 4 Bt
U:<A iBtTt AT +iB ) (2.164)

AT —iB™" A" +iB™ "

satisfying

* 17’L+ 0 o 1n+ O
(o (s )Y ( )

and the condition that A'C' = C*A, which is equivalent to B'D = D'B,
is equivalent to U satisfying

Im (U* (175 _fn) U> ~0. (2.166)

So G (") is isomorphic to

(GL(ng;R) x U(ny,n_)) x N(7). (2.167)

3. We can repeat the argument above, except now S must preserve the
k|r-orthogonality condition, so

At = At =pt =Bt =) (2.168)

Looking at the formula for U, we can see G%”gght(lﬂ [(Ty,T_)]) is iso-
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morphic to
(GL(ng;R) x U(ny) x U(n_)) x N(7). (2.169)

[]

Remark 2.7.5 (The map to the indefinite unitary group). To see where the
identification with the indefinite unitary group comes from, we can look at
a stabilizer of the left action. Suppose I' be the complex span of the column

vectors of
7 (7)
V2 \ P
where
(1., 0 (=1, 0
Q= ( 0 1n) , P:= ( 0 i'1n> . (2.170)
If

Attt A= Bttt Bt
A B At A~ Bt B
S = (C D) o+t o+ Dt Dt (2.171)

c+ ¢~ D+ D~

Then S fixes I if and only if there exists an n X n invertible matrix U such

that
EHBO-E  em

For the given @), P, we can explicitly compute this is possible if and only if

ATt —iBtt At- +iBt
— 2.1
and
A+ At+- B+t B+
A B AT A Bt B~
TR I S S AR R

B+ —B— —A* A
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Remark 2.7.6. Since the right stabilizers do not depend on the choice of
Darbouz basis, and hence of the point inside Gr(m;V), Lagg(ﬁ; V), and
Lag®(7i; V), we will denote the right stabilizers by G%, GS ., and GS. Then

n n,B’

we obtain the diffeomorphisms with the left coset spaces

LagS (ii; V) = Sp(2m;R)/GS 4 (2.175)
Lag®(7; V) = Sp(2n;R)/GS (2.176)
Gr(; V) = Sp(2m;R)/Gx%. (2.177)

Lemma 2.7.7. G3 /G5 o and G /G5, are contractible.

Proof. We can compute
GE /G, = $p(2n,R)/U(n) x Sp(2n_;R)/U(n_) (2.178)

which is a product of Siegel upper half planes, and hence contractible (cf.
Example 5.2.1). We can also compute

GS/GS . = Ulnain ) /(Uns) x U(n_)) (2.179)

which is a quotient by the maximal compact subgroup, and is hence con-
tractible by the Cartan-Malcev-Iwasawa theorem. O

Remark 2.7.8. GS = G%@ for the coisotropic case n_ = 0 has been obtained
in Proposition 3.3 of [31].

Theorem 2.7.9. For all i, Gr(i1; V), Lag®(7i; V), and Lagg (ii; V) are ho-
motopic.

Proof. The map (I',I';,T'_) = ReT'sq from Lag§ (7; V) to Gr(i7; V) has con-
tractible fibers G5/G% .. The map (I,T4,T_) ~ T from Lag5 (7; V) to
Lag®(i7; V) has contractible fibers G5 /G5 & Therefore Lag®(7i; V), Lag5 (7; V),
and Gr(7; V') are homotopic. O

Example 2.7.10 (The complex Lagrangian Grassmanian of (R? wyy)). We
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can identify the Grassmannians of subspaces of dimensions 1,2,0 in R2.

Gr(1;R?) = Gr((1,0,0);R?) =PY(R) (2.180)
Gr(2;R?) = Gr((0,1,0);R?) = {R?} (2.181)
Gr(0;R?*) = Gr((0,0,1); R?) = {{0}}. (2.182)

The stabilizer groups G% can be computed

GI(RI,O,O) = {upper triangular matrices of Sp(2;R)} (2.183)

Gloroy = Sp(ZR) (2.184)
Gloony = Sp(ZR). (2.185)

On the other hand, since every 1-dimensional subspace of C* is Lagrangian,
the complex Lagrangian Grassmannian of R? can be identified with the Rie-

mann sphere:
Lag®(R?) = P}(C). (2.186)

Identifying T with [q : p|, K|r is

—iw®(-,)[r = —i (7 D) ((1) _01> (Z) = 2Im (¢p)-

The complex Lagrangian Grassmannians are partitioned into different types
as the equator, upper hemisphere, and lower hemisphere:

Lag®((1,0,0);R*) = {[g:p]: Im(gp) = 0} (2.187)
Lag®((0,1,0);R*) = {[g: p] : Im(¢p) > 0} (2.188)
Lag®((0,0,1);R*) = {[g:p]: Im(gp) < 0}. (2.189)
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Figure 1: The partition of the complex Lagrangian Grassmannian of R?

The stabilizer groups GS = GS . can be computed
n n,D

G((C17070) = {upper triangular matrices of Sp(2;R)} (2.190)

Glo1e = Sp(2;R)NSO(2;R) = U(1) (2.191)

Ghon = Sp(ZR)NSO(2;R) = U(1). (2.192)
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Chapter 3

Representation theory of the
Heisenberg group

The canonical commutation relations can be expressed using the symmetries
of the Heisenberg group and Lie algebra.

In this chapter we will review the definitions for the Heisenberg group
and Lie algebra, and cite some relevant, but by no means comprehensive,
results in their representation theory without proof. The Heisenberg group is
isomorphic to a matrix group, but it is nilpotent, so results on semisimple Lie
groups do not apply. Moreover, since the Heisenberg group is not compact,
it can (and does) have irreducible infinite dimensional representations. So
we need to assume the setup of Hilbert spaces and unitarity, and keep track
of topologies of bounded operators and the domains of unbounded operators,
the choice of latter possibly being very sensitive about pointwise boundary
conditions. Moreover, additional conditions need to be checked to ensure
desired properties to hold.

The first property we will review is about the complete reducibility of a
group representation into irreducible representations. For finite or compact
groups, every (unitary) representation is isomorphic to a direct sum of finite
dimensional irreducible representations. The decomposition statement holds
for locally compact groups of type I (such as the Heisenberg group), when
we consider (strongly) continuous unitary representations, and direct integral
decompositions rather than direct sum decompositions. One subtlety about
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direct integral decompositions is that a direct integrand of a direct integral
decomposition does not necessarily have to be a subrepresentation.

The Stone-Von Neumann theorem classifies the irreducible, infinite di-
mensional, (strongly) continuous unitary representations of the Heisenberg
group. Together with the direct integral decomposition, this result helps us
have an idea of the category of (strongly) continuous unitary representations
of the Heisenberg group.

For representations of the Heisenberg Lie algebra, the Dixmier-Rellich
theorem states that direct sum decompositions exist for representations sat-
isfying some additional assumptions. These assumptions include the ones
induced from the (strong) continuity and unitarity for the representations
of the Heisenberg group. At the time of writing, the author is not aware
of a treatment of the decomposition or classification (of irreducible, infinite
dimensional representations) problem using only concepts from Lie algebras.

Thus, the second property we will review is about the correspondence
between representations of the Lie group and Lie algebra. For a (strongly)
continuous unitary representation of a locally compact group, the formula
for differentiation gives a representation of the Lie algebra on some dense
subspaces of the Hilbert space. A representation of a Lie algebra by skew-
symmetric operators on a dense subspace of a Hilbert space, exponentiates
uniquely into a (strongly) continuous unitary representation of the corre-
sponding Lie group, if in addition, it satisfies the Nelson condition, or the
Flato-Simon-Snellman-Sternheimer condition.

In this chapter, endomorphisms will refer to linear operators of vector
spaces, with no additional assumptions about their structure. Likewise, the
general linear group of a vector space will consist of invertible linear opera-
tors of a vector space, with no additional assumptions about preserving any
additional structure.

3.1 Translations in symplectic vector spaces

In this section, we will review the definitions of the Heisenberg group and
Lie algebra, and compare them with the abelian group of translations of a
vector space, and its abelian Lie algebra. This point of view appears in [7],

20



CHAPTER 3. REPRESENTATION THEORY OF THE HEISENBERG GROUP

and allows us to think about position, momentum, creation, and annihilation
operators in quantum mechanics, as instances of infinitesimal translational
symmetries.

Let V' be a real inner product space, with an orthonormal basis that iden-
tifies it with R™ with its smooth structure, Euclidean metric and Lebesgue
measure. If f is a function on V', then we can denote the translate of f by
—a €V as follows:

0f(v) == f(v+a). (3.1)

This can be extended linearly as an endomorphism of CV := {f : V — C}
to itself. Then we can check that the operators {70},cy satisfy

o) =710, a,beV. (3.2)

If f is smooth, then we can differentiate

2 7(w) = T (7 (0) — F(0) = duf () (33

and obtain the directional derivative of f. We can check that the commutator
vanishes in End (C*(V;C)):
(727 =0 a,beV. (3.4)

We observe that for the Lie group (V,+), 7° is a representation on
CV. Moreover, 7. : a +— 70 is a Lie algebra homomorphism from (V,0) —
End(C>(V;C)). The action of the Heisenberg group on some function spaces
will retain many properties analogous to the ones we have just observed.

Now let (V,w) be a symplectic vector space, with a Darboux basis that
identifies it with (R?",wyyy) with its smooth structure. This identification
identifies the volume form with the determinant, and so we can also assume
(V,w) has a well-defined Lebesgue measure pulled back from R?*. If f is a
function on V', we can compose the translation by —a € V with the multi-
plication by e%’\“’(“’“), and consider

M) =2V f(y fa) acV,\ER. (3.5)
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We can consider {7 },c1 as endomorphisms of CV, and check they satisfy
MY = e%’\“(a’b)Tg\er a,beV. (3.6)

When A = 0 we recover the translation operators {70},cv on Euclidean
spaces. If f is smooth, we can differentiate

A1) =l 1A (0) = F0) = (do+ v ) 1(0) a€v. (3)

Then we can check that the commutator satisfies

(72, 7] = idw(a, b) (3.8)

a’

in End (C*>(V;C)):
When X\ = 1, we will drop the superscript on 7 and 7.

Definition 3.1.1 (Heisenberg group). For (V,w) a symplectic vector space,
let H(w) := R x V be the Heisenberg group or Heisenberg-Weyl group with
group multiplication

1
(s,a)-(t,b) := (s+t+§w(a,b),a—|—b) a,beV, s,teR. (3.9)

H(w) has a smooth structure when the smooth structure is pulled back from
(R wyq) to (V,w) by a fized Darbouz basis.

Remark 3.1.2 (The polarized Heisenberg group). If a € V' is identified with
(¢,p) € R*", the map

1 pt s—1plq
2
(s,a)— [0 1, q (3.10)
0 0 1

is a group isomorphism from H(w) to the subgroup of GL(R"*2) consisting

52



CHAPTER 3. REPRESENTATION THEORY OF THE HEISENBERG GROUP

of matrices of the form

1 *x %
0 1, x|. (3.11)
0 0 1

This subgroup is sometimes referred to as the polarized Heisenberg group
(or just the Heisenberg group). It is not compact, so it does not have any
faithful, unitary, finite dimensional representations.

Definition 3.1.3 (Heisenberg Lie algebra). For (V,w) a symplectic vector
space, let heisw = iR &V with Lie bracket

lis + a,it + b = iw(a,b) a,beV. (3.12)

3.2 Universal enveloping algebras

In this section we will review the definition of the universal enveloping algebra
of a Lie algebra and its (formal) completion. In this work, this is viewed as
a setup to see what happens when we do all computations formally, without
taking into consideration analytic issues. We will see at the end of this
section how the set of Poincaré-Birkhoff-Witt isomorphisms given by complex
Darboux bases can be identified with the set of transverse pairs of complex
Lagrangian subspaces.

Definition 3.2.1 (Universal enveloping algebra). Let g be a Lie algebra over
a field F. Take the tensor algebra of g:

Tg:= P ™" (3.13)
k=0

and consider the two sided ideal I in T'g generated by
{r@ry—y®rx—[z,y]: 2,y € g}. (3.14)
Then the universal enveloping algebra (of g) is defined as
g :=Tg/l. (3.15)
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Definition 3.2.2 (Symmetric algebra). If V' is a vector space over a field F,
the symmetric algebra of V- Sym V' is the quotient of the tensor algebra of V/

TV = P et (3.16)
k=0

by the two sided ideal generated by
{rQpy—yQpx:x,y €V} (3.17)

Remark 3.2.3 (Completion of universal enveloping algebras). The universal
enveloping algebra has a Hopf algebra structure, and there is an augmentation
(counit) map n : g — F. Let I, be the augmentation ideal. Then the
completion of the universal enveloping algebra is given by (Example 1.2 in
Appendiz A of [20])

{g = lim Ug/I}. (3.18)
When F is a field of characteristic zero, this allows one to write down the

formal exponential of elements of g

*© Lk

a a

e = E E acyg (319)
k=0

as an element of ﬂg. Because of the noncommutativity of the product, in
general
¥t L el (3.20)

Theorem 3.2.4 (Baker-Campbell-Hausdorff formula). Ifa,b € g, then there
exists a ¢ € g such that

el = e° (3.21)
mn ﬂg. c 15 given by
1
c=a +/ Y ((exp ad a)(exp ad tb))bdt (3.22)
0
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zlog z

around z = 1
z—1

where Y (z) is a formal power series expansion of

u  u?

Gtu)=1+5 -t (3.23)

and

ada: b+ [a,b]. (3.24)

The first few terms of ¢ can be written explicitly as
1 1 1
c=a+b+ 5[@, b] + E([av [av b]] + [b7 [b> a]]) - ﬁ[bv [(I, [(I, bm o (3'25)

Example 3.2.5 (Baker-Campbell-Hausdorff formula for the Heisenberg Lie
algebra). For the Heisenberg Lie algebra, one iteration of the Lie bracket
takes values in the center, so we have

eeh = ealotleath — gaw(@ab)eatd b e C peisw. (3.26)
In particular, we recover the same algebraic relation for the T’s
TaTh = e%w(“’b)Taer (3.27)

Theorem 3.2.6 (Poincaré-Birkhoff-Witt). Let {ai,--- ,aq} be an ordered
basis of g. Then {ai' ---ay’ :r; € Z>o} is a basis of Ug.

Remark 3.2.7 (PBW isomorphisms). Whenever {ay,--- ,aq} be an ordered
basis of g, we have an isomorphism of vector spaces (in fact, coalgebras)
between the symmetric algebra of g, Sym g and $g. given by the map

PBWia,y, s ai' - ag' = ay' - --ag' 1 € Lxo. (3.28)
On the left side the product is commutative, but on the right side, it is not.

Remark 3.2.8 (Complexification of the universal enveloping algebra and
symmetric algebra). If g is a Lie algebra over R, then denote by g the
complex Lie algebra with underlying vector space g @gr C and with Lie bracket
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extended C-bilinearly. Then there are canonical identifications

$l(g") = (g) @= C (3.29)
and
Sym(g®) = (Sym g) ®= C (3.30)
We will denote by
heisw® := (heisw)C. (3.31)

Remark 3.2.9 (Complex Darboux bases and complex symplectic matrices).
The statements from Section 2.2 continue to hold over the complex numbers.
For a symplectic vector space over the complex numbers (Vc,we) (not neces-
sarily a complezification of a real symplectic vector space), let a complex Dar-
boux basis be defined analogously to 2.2.1-i.e. a basis{ei,--- e, f, -, £}
of Ve such that

we(ej, er) =we(ej,ep) =0 j,ke{l,--- ,n} (3.32)

and
we(ej, f) = 6 (3.33)

where 0, is the Kronecker delta.
A complex symplectic matrix is a 2n x 2n complexr matriz

(g g) (3.34)

where A, B, C, D are n X n complex matrices, that satisfy
A'C=C'A, B'D=D'B and A'D-C'B=1. (3.35)

We will denote the set of complex symplectic matrices as Sp(2n;C). As
in FExample 2.2.4 the column vectors of a complex symplectic matrixz give a
complex Darbouz basis of (C*" = R*" @ C,ws,).

A (complex) symplectic linear transformation S € Sp(Vg,wc) is a com-
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plex linear transformation such that
we(S+,S) =wels ). (3.36)

The matriz form of a (complex) symplectic linear transformation in a complex
Darbouz basis is a complexr symplectic matriz—i.e.

(S)te.sy € Sp(2n;C). (3.37)

The proofs of Theorem 2.2.7, Corollary 2.2.8 also hold for symplectic
vector spaces over the complex numbers.

Remark 3.2.10 (Action of symplectic linear transformations induced by
universal property). A symplectic linear transformation S € Sp(VC, w®) in-
duces an automorphism (Id;g, S) of heisw®, and by the universal property,
induces automorphisms of both Sym(heisw®) and U(heisw®). We will view
these automorphisms only as invertible linear transformations, and denote
them again by S.

Example 3.2.11 (PBW isomorphisms from complex Darboux bases). Sup-
pose we have a complex Darbouz basis {e,f} of (V€ w®). Then the PBW
theorem gives an isomorphism as vector spaces

PBWiegs - Sym(heis w®) =5 8l(heis ). (3.38)

Proposition 3.2.12. If S € Sp(VE,w"), then its action commutes with the
PBW isomorphism

PBWieriy(S-) =5 PBWiern(-) (3.39)

iof and only if S has block form
X 0
(0 (Xt)l) € GL(Spanc{e} & Spanc{f}). (3.40)

Proof. For a fixed complex Darboux basis {e, f}, denote PBWe ¢ ;3 by PBW .
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Let
()fesy = (g g) : (3.41)

Then we can compute the following in U (feis w®):

S - PBW(eje;) — PBW(S - (ejer)) = —i(A'C)j (3.42)
S-PBW(ffy) — PBW(S - (fif,)) = —i(B'D)y (3.43)
S - PBW (e;f,) — PBW(S - (e;fy)) = —i(B'C)jp. (3.44)

(=) Since (S){e,s} is symplectic, A’D — C'B = 1,, = A'D. Therefore A and
D are invertible, and B = C' = 0.
(<) This is immediate. O

Remark 3.2.13 (PBW isomorphisms from Darboux bases). Therefore the
set of PBW isomorphisms induced by a choice of complex Darboux bases can
be identified with

Sp(2n; C)/GL(n; C), (3.45)

or as the space of transverse pairs of complexr Lagrangian subspaces. We
will see in Chapter 4 that this space also parametrizes representations of the
Heisenberg Lie algebra.

3.3 Hilbert spaces and unitary operators

In this section we will review Hilbert spaces and the unitary groups of Hilbert
spaces. The unitary group is defined as a subgroup of the algebra of bounded
operators on a Hilbert space, which has many topologies. We will review how
the strong and weak topologies on the algebra of bounded operators coincide
on the unitary group.

Definition 3.3.1 (Hilbert space). A Hilbert space is a vector space F over
the complex numbers, with a nondegenerate Hermitian inner product (-, -,
and complete with respect to it. We will only consider separable Hilbert
spaces.

o8



CHAPTER 3. REPRESENTATION THEORY OF THE HEISENBERG GROUP

Definition 3.3.2 (Bounded, unitary, and unbounded operators). An (un-
bounded) operator A (or (A, Da)) on a Hilbert space F is a linear map
from a linear subspace Da C € to F. Da is called the domain of A. We
will only consider the operators whose domain is a dense subspace of 7. A
bounded operator A is a linear map from € to € for which there is some
constant ¢ > 0 such that

A Sflle < cllflloe forall f € . (3.46)

A unitary operator A is a linear map from € to € such that

(Af,AQ)w = (f,9)r forall f,g € . (3.47)

Denote by B(7) the space of bounded operators on F, and U(F) the group
of unitary operators on .

Remark 3.3.3. A unitary operator is always bounded. A bounded operator is
an (unbounded) operator, so “unbounded” means “not necessarily bounded”
instead of “not bounded.”

Example 3.3.4. The differentiation operator % on the smooth functions on
the interval (0,1) is an unbounded operator on the Hilbert space L*((0,1)).

Remark 3.3.5. Unitarity also allows the orthogonal complement of a closed
mvariant subspace to be closed invariant, so it is a reasonable requirement
to have to consider a decomposition theory into irreducible representations.
The conditions of unitarity also appears naturally from the requirements of
quantum mechanics (Wigner’s theorem,).

Definition 3.3.6 (Weak, strong, and norm topologies). The weak topology
is the topology on B(J) induced by the maps

A= (Af.g)n [.g€I. (3.48)
The strong topology is the topology on B() induced by the maps

A Af fesn (3.49)
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or the seminorms
A= [|Aflle fet. (3.50)

The norm topology is the topology on B(.) given by the operator norm

|A[l:== sup [|Af[|~ (3.51)

£l <1

Remark 3.3.7 (On U(5#) the weak and strong topologies coincide). For
all f,g € A, and A, B € B() we have by the Cauchy-Schwarz inequality,

(AS, 9) e — (Bf,g)oe| = [((A=B)f, g)oe| < [|Af = Bfllrllgllr (3.52)

So if {A;}; is a sequence such that A; — B in the strong topology, it con-
verges in the weak topology. If A;, B € U(J€), then

1A;f = BfI1% = 2lIf11% — 2Re(A; £, Bf).r. (3.53)

So if A; — B in the weak topology, it converges in the strong topology (by
unitarity of B and continuity of Re).

3.4 Unbounded operators and adjoints

In this section we will review unbounded operators on Hilbert spaces and
their adjoints. An unbounded operator is self-adjoint if it and its adjoint
not only agree on the domain where agreement can be defined, but also
when their domains of definition fully coincide. This distinction is important
because self-adjointness is necessary for the spectral theorem of unbounded
operators, and for exponentiation.

Definition 3.4.1 (Adjoint operators). Suppose A is a (possibly unbounded)
operator on a (dense subspace Da of a) Hilbert space €. Let Da~ be the set
of g € H such that there is a h € F such that

(Af,9)r = (f,h)r forall f € Dx. (3.54)

For each such g € Da~ define A*g := h. Then A* (or (A*, Dax)) is called
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the adjoint of A.
Remark 3.4.2. (A*, Da-) is defined such that for all f € Da, g € Da~,

(Af,g)r = ([, A"g) (3.55)

holds, and that D~ is the maximal domain in which this can happen.

Definition 3.4.3 (Symmetric and skew-symmetric operators). A densely
defined operator (A, Da) on a Hilbert space € is symmetric (respectively,
skew-symmetric) if Do C Da~ and

Af=A*f fe Da. (3.56)

(respectively, if Af = —A*f for all f € Da.) Equivalently, A is symmetric
iof and only of

(Af,g)w = (f,Ag)w fordl f,g€ Da (3.57)

(respectively, if (Af,g)w = —(f, Ag)x for all f,g € Da.)

Definition 3.4.4 (Self-adjoint and skew-adjoint operators). A densely de-
fined operator (A, Da) on a Hilbert space F is self-adjoint (respectively,
skew-adjoint ) if and only if A is symmetric (respectively, skew-symmetric)
and Do = Da-~.

Remark 3.4.5. If A is respectively, symmetric, skew-symmetric, self-adjoint,

skew-adjoint, then i A is respectively, skew-symmetric, symmetric, skew-adjoint,

self-adjoint.

Definition 3.4.6 (Closed, closable, closure of an operator). A densely de-
fined operator (A, Da) on a Hilbert space F is closed if its graph {(f, Af) :
f € DA} C I x A is closed with respect to the inner product

<(fa g), (flvgl»%x%” = <f7 f,>f + <gag/><)f (358>

A densely defined operator (A’, Da+) is an extension of (A, Da) if its graph
contains the graph of (A, Da). A densely defined operator (A, D) is clos-
able if it has an extension (A’, Das) that is closed. FEvery closable densely
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defined operator (A, D) has a smallest closed extension, which is the closure
(Kv DK)

Remark 3.4.7 (Symmetric operators are closable). A is closable if and only
if Dax is dense. If A is closable, its closure is A**. (Theorem VIII.1(b) [14])
A symmetric operator defined on a dense domain has Da C Dax so Dax is
dense. Therefore a symmetric operator is always closable.

Definition 3.4.8 (Essentially self-adjoint operator). A symmetric operator
(A, Da) is essentially self-adjoint if its closure is self-adjoint.

Remark 3.4.9. An essentially self-adjoint operator has a unique self-adjoint
extension. In general, a symmetric operator may have many different self-
adjoint extensions or none. ( [14], p256-259)

3.5 Direct integral decompositions of strongly
continuous unitary representations

In this section we review the direct integral decomposition of strongly contin-
uous unitary representations of a group of type I (including the Heisenberg
group). The direct integral decomposition is induced in two stages—first, by
the direct integral decompositions of (representations of) von-Neumann al-
gebras into factorial representations, and second, when the group is of type
I, each factorial representation is a direct sum of irreducible representations.
And for strongly continuous unitary representations of the Heisenberg group,
this is always possible!

Definition 3.5.1 (Representation). A representation of a group G is a group
homomorphism from a group G to the general linear group of a vector space
V. A representation of a Lie algebra g is a Lie algebra homomorphism from
g to the endomorphism algebra of a wvector space V', with Lie bracket the
commutator bracket.

Remark 3.5.2 (Necessity of infinite dimensional representations). Since the
Heisenberg group is noncompact, it cannot have any faithful, continuous,
finite dimensional unitary representations. If so, then the image of H(w)
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inside U () would be a closed subset of a compact set, and would be compact.
The Heisenberg group can be realized as a matriz group, so it can have faithful,
continuous, finite dimensional, nonunitary representations.

Qver a field of characteristic zero, the Heisenberg Lie algebra cannot have
any faithful finite dimensional representations. Suppose V' is such a repre-
sentation. Then consider the trace of the image of the defining relations in
EndV:

[a,b] = iw(a,b). (3.59)

On the left hand side, we get zero, while on the right hand side we get iw(a,b)
times the dimension of the representation (contradiction).

Definition 3.5.3 (Invariant subspaces). Let 7 : G — U(I) be a strongly
continuous unitary representation. A closed subspace V. C ¢ is an invariant
subspace if

w(g)V CV  forallgeG. (3.60)

Definition 3.5.4 (Irreducible representation). A representation is irreducible
if it does not contain any nontrivial closed invariant subspaces.

Example 3.5.5 (Nonexistence of direct sum decomposition into irreducibles).
Let m: R — L*(R) be the reqular representation

m(t)f(x) = f(x —t) fe€L*R). (3.61)

L*(R) has many closed invariant subspaces (Theorem 9.17 of [26]), of the

form
{feL*R):supp f C E} (3.62)

where f is the Fourier transform of f, and E C R is measurable. So
L3(R) is not irreducible. Suppose there erists an irreducible subrepresen-
tation V. C L*(R). R is abelian, so V is one-dimensional, and w(t)|y acts
by multiplication by scalars. So for f € V, n(t)f(z) = f(z —t) = a1 f(2).
Since  is unitary, ¢; has modulus 1 and | f(z)| is constant on the real line.
Then f cannot be square integrable unless it is the zero element. Therefore
L3(R) is not irreducible, but does not contain any irreducible subrepresenta-
tions. The direct integral decomposition in this case is the direct integral of

63



CHAPTER 3. REPRESENTATION THEORY OF THE HEISENBERG GROUP

one dimensional representations

me(t)f(€) = €™ f(§) (3.63)
which is nothing but the Fourier transform.

Definition 3.5.6 (Von Neumann algebras). A Von Neumann algebra (or
ring of operators or weak star algebra) M is a unital, self-adjoint subalgebra
of some B(), closed under the weak operator topology.

Definition 3.5.7 (Commutant). The commutant of a subset S of an as-
sociative algebra A is the set of all bounded operators commuting with all
elements of S.

S :={AeA: AS=SA foralS e S}. (3.64)

Example 3.5.8. If S = §* then S’ is a von Neumann algebra. In particular,
suppose ™ : G — U(I) be a strongly continuous unitary representation.
Since w(g9)* =7w(g7 "), 7(G) and 7(G)" are von Neumann algebras.

Theorem 3.5.9 (Von Neumann’s double commutant theorem). Let M be a
unital self adjoint subalgebra of B(). The following are equivalent

e M=M".
o M s weakly closed.
e M is strongly closed.

Definition 3.5.10 (Factors and factor representations). A von Neumann
algebra is a factor if its center consists of scalar multiples of the identity. A
unitary representation m : G — U(F) of a locally compact group is factorial,
or a factor representation, or a primary representation if the center of 7(G)”
consists of only scalar multiplications of the identity.

Remark 3.5.11 (Factor representations vs. irreducible representations).
According to the Schur lemma, a (strongly continuous) unitary representa-
tion is irreducible if and only if every automorphism (isometric intertwining
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operator) is a scalar multiple of the identity. This is equivalent to the condi-
tion that the centralizer 1(G)' consists of scalar multiples of the identity. The
center of m1(G)" is m(G)' N (G)', and a strongly continuous unitary represen-

" consists of scalar

tation is a factor representation if and only if 7(G)" Nm(G)
multiples of the identity. So every irreducible representation is a factor rep-
resentation, but a factor representation may not be irreducible. This happens
when there are projections to closed invariant subspaces in w(G)' that are not
in m(GQ)" N7(G). A factor representation can be a countable multiple of an
irreducible representation (type I), or it may not even contain any irreducible
subrepresentations at all (types II and III). Every finite dimensional factor

representation is of type I

Theorem 3.5.12 (Direct integral decomposition of Von Neumann algebras
into factors, Theorem VII of [27]). Every von Neumann algebra is unitarily
equivalent to a direct integral of factors.

Remark 3.5.13. Because of the length involved, we refer the interested
reader to the excellent texts [25] [11] for the precise definition of direct inte-
gral decomposition of representations and its uniqueness.

Theorem 3.5.14 (Direct integral decomposition of unitary representations
cf. Theorem 7.29 of [28] ). Suppose w is a strongly continuous unitary repre-
sentation of a separable locally compact group G on a Hilbert space 7. For
every commutative von Neumann subalgebra A in the center of m(G)", there
exists a direct integral decomposition of w. If A is the center, then almost
every direct integrand is an irreducible representation.

Definition 3.5.15 (Type I factors and groups of type I). A factor is type
I if it is unitarily equivalent to a countable direct sum of copies of a single
irreducible representation. A group is type 1 if all its primary representa-
tions are unitarily equivalent to countable direct sums of copies of a single
wrreducible representation.

Theorem 3.5.16 (cf. Theorem 4.1 in [29]). Every nilpotent group is a group
of type L.

Theorem 3.5.17 (Stone-von Neumann). Any irreducible infinite dimen-
sional unitary representation of the Heisenberg group, and any integrable
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infinite dimensional irreducible representation of the Heisenberg Lie algebra
is unitarily equivalent to a Schrodinger representation.

3.6 Differentiation and exponentiation of rep-
resentations on Hilbert spaces

In this section, we will review that we can differentiate a (strongly) continu-
ous, unitary representation of a Lie group on a Hilbert space, and when we
can exponentiate a representation of a Lie algebra defined by skew-adjoint
operators on a dense subspace of a Hilbert space.

Stone’s theorem is the earliest result that tells us when we can differentiate
and exponentiate, for a one parameter unitary group.

Theorem 3.6.1 (Stone [18]). Let m : R — U(S) be a strongly continu-
ous one parameter unitary group. Then there exists a unique (possibly un-
bounded) self-adjoint operator A defined on a dense subspace Dy C F such
that

m(t) = ™ (3.65)

where

Dp = {f S 1%% (w(t)f — f) e:z:ists} . (3.66)

f € Da is equivalent to the condition that t — w(t)f is differentiable.
Conversely, let A : Dy — J be a (possibly unbounded) self-adjoint
itA

operator. Then the one-parameter family a(t) := e is a strongly continuous

one-parameter unitary group.

The following two theorems tell us we can differentiate a (strongly) con-
tinuous unitary representation of a Lie group and obtain a representation of
its Lie algebra on a dense subspace:

Theorem 3.6.2 (Garding [19]). Suppose G is a Lie group and m : G —
U(H) is a strongly continuous unitary representation. Then if dug is the
left Haar measure on G, the Garding domain

Dy~ { [ Moriinto): re A necz@}  3on
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s dense in 7. Moreover,

dr(al(t)) = lim + (r(a(t)) — L) f (3.68)

t—0

exists for all f € Dy and drDy C D.

Theorem 3.6.3 (Segal-Mautner(Lemma 5.1 and 5.2 of [21])). Suppose G is
a connected Lie group and m: G — U(F) is a strongly continuous unitary
representation. Then dm is a Lie algebra homomorphism

dr : g — End(Dy). (3.69)

The following theorems tell us when we can exponentiate a representation
of the Lie algebra by skew-symmetric operators.

Definition 3.6.4 (Smooth and analytic vectors). Let m : G — U(J) be
a strongly continuous unitary representation. Then f is a smooth vector
(respectively, analytic vector) if

g—=m(9)f (3.70)

is smooth (respectively, analytic). The set of smooth (respectively, analytic)
vectors are denoted by H°> (respectively, 7). If p: g — End(D) is a Lie
algebra representation on a dense subspace of a Hilbert space €, a vector
f € D is analytic if there is a positive € such that

Z Hp f||?f€ < 00 (3.71>

Theorem 3.6.5 (Garding, Nelson (Theorem 3 of [22]), Cartier-Dixmier).
H" C Dy C A (3.72)

and F is dense in .

Definition 3.6.6 (Nelson and Flato-Simon-Snellman-Sternheimer conditions).

Suppose D is a dense subspace of a Hilbert space 7 and p : g — End(D) is
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a representation of a real Lie algebra g by skew-symmetric operators on H.
Let {ay,- -+ ,aq} is a basis of a real Lie algebra g.

p satisfies the Nelson condition if A := p(a1)? + -+ p(aq)? is essentially
self adjoint. p satisfies the Flato-Simon-Snellman-Sternheimer condition if
D = N¢_, Dy, where Dy, is the set of analytic vectors of p(ay,).

Theorem 3.6.7 (Theorem 1 of [23], Theorem 5 of [22]). If p satisfies either
of these conditions, then there exists a unique strongly continuous unitary
representation m : G — U(J) such that (on their domains of definition),

: 1 ta
stim 1 (7(e") = ar) = pla). .73
One of the conditions necessary to exponentiate is also necessary to obtain
a direct sum decomposition (via the spectral theorem) of the representation
of the Heisenberg Lie algebra.

Theorem 3.6.8 (Dixmier-Rellich cf. [39]). Suppose D is a dense subspace of
a Hilbert space 7 and p : heisw — End(D) is a Lie algebra homomorphism
by closed skew-symmetric operators satisfying Nelson’s condition. Then
is unitarily equivalent to a direct sum of Schrodinger representations.
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Chapter 4

Construction of representations

In this chapter we will construct representations of the Heisenberg group
and Lie algebra parametrized by transverse pairs of complex Lagrangian sub-
spaces. There are four situations that are considered, depending on whether
we are looking at representations of the Heisenberg group or Lie algebra, and
depending on whether we are looking at representations on vector spaces or
on Hilbert spaces. The words isomorphic, irreducible, new representations
are different according to each situation.

Let mpe, is the pullback of the Lebesgue measure on R?" to (V,w) and A
is a real number. Our claims are the following:

1. Representations of the Heisenberg group on the vector space of (I'y,I's)-
analytic functions: There exists a vector space Or, (V) C C(V;C)
and a group homomorphism

TH A H(w) — GL(Or, 1, (V) (4.1)

for an arbitrary transverse pair of complex Lagrangian subspaces (I'y, I'y).
Precomposition by S € Sp(V,w) intertwines T ;i’lr_z and 757152,

2. Representations of the Heisenberg Lie algebra on the vector space of
polynomial functions: There exists a Lie algebra homomorphism

TF1,F27)\ . beis w — End(C[Zl‘l,MD (42>
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for an arbitrary transverse pair of complex Lagrangian subspaces (I'y, I'y).

C [2r,.r,] is a simple 4(heisw)® module. They are all isomorphic.

. Strongly continuous unitary representations of the Heisenberg group on
Hilbert spaces: Let §p p, (V) be the L* completion of

OFhFZ (V) N L2(V; deLFQ)' (43)

Then
Tt H(w) = UGS, (V) (4.4)

s a strongly continuous group homomorphism. There are (I';, ') such
that §p, r, (V) is the zero vector space, and unitarity holds vacuously.
When (I'y, I'y) satisfy a positivity condition, these representations con-
tain C|zp, r,| as a dense subspace, and are isomorphic to a Schréodinger
representation by the Stone-von Neumann theorem (hence irreducible).
There are new parameters that construct unitarily equivalent represen-
tations.

. Representations of the Heisenberg Lie algebra on Hilbert spaces by un-
bounded operators: Let U C V be an open subset of V. Then we can
restrict the relevant objects to &. Then

T P22 - heis w — End(Cler, 1y lu))- (4.5)

is a Lie algebra homomorphism.

Let §7, ,(U) be the L? completion of

OFl,Fz (Z/[) N L2 (U, dmrl7p2 |u) (46)

If U is bounded, Clzr, r,|u] is a dense subspace of §p, ., (), and TT2
is defined for an arbitrary transverse pair of complex Lagrangian sub-
spaces (I'1,T'9). If (I';,T'y) satisfy the positivity condition, TTil2 g g
representation of the Heisenberg Lie algebra by skew-adjoint operators.
The author does not know whether there is an established notion of ir-
reducibility for these kinds of representations.
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4.1 Transverse pairs of complex Lagrangian
subspaces

In this section we will show that the space of transverse pairs of complex
Lagrangian subspaces of (V,w) can be identified with the homogeneous space
Sp(2n; C)/GL(n; C) using a Darboux basis {e,f}. This identification will be
used in the sequel as a coordinate description of the space of transverse pairs
of complex Lagrangian subspaces.

Proposition 4.1.1. Let (I'y, I's) be a transverse pair of complex Lagrangian
subspaces. Then there exists a Darboux basis {€',f'} of VC such that e €Iy,
and £ € Iy for j=1,---,n.

Proof. Let {e},--- e/} be any basis of I'y, and {f/,--- £/} be any basis of
[y. Then let X be an n x n matrix with components (X)x; := w®(e;, ).

By transversality of the Lagrangian subspaces and nondegeneracy of w®, X
is an invertible matrix. Let

n

f:=) (X Dafl (=1, ,n (4.7)
k=1

Then f; € I'y for £ =1,--- ,n, and
wC(e), £]) = w© <e;., Z(X‘l)gkf,’cj =Y (X Xy, = b, (4.8)
k=1 k=1
so {€’,f'} is the desired Darboux basis. O

Example 4.1.2 (Transverse pairs of complex Lagrangian subspaces associ-
ated to matrices in Sp(2n;C)). Let {e,f} be a fired Darboux basis of (V,w).
Given a complex symplectic matriz

S = (é g) € Sp(2n; C), (4.9)

consider the complex span of n vectors with coefficients given by the n first
column vectors of S and the complex span of the n vectors with coefficients
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given by the n last column vectors of S':

Fl = Span(c {Z(Ajkej + Cjkfj)} (410)

j=1 k=1
FQ = Span(c {Z(Bjkej + Djkf])} . (411)
j=1 k=1

Since

wer(y )@ o () (5) e e

and S is of maximal rank, (I'y,y) is a transverse pair of complex Lagrangian
subspaces. Conversely, given a pair of transverse Lagrangian subspaces (I'1, '),
one can find a complex Darbouz basis {€',f'} of VC such that

[y = Spanc{e;};_; T2 = Spanc{f;}’_;. (4.13)

The matriz form of the complex symplectic linear transformation taking {e, f}
to {e',f'} in {e,f} basis is a complex symplectic matriz.

Remark 4.1.3 (Equivalence classes of complex symplectic matrices). Sup-
pose S, 8" € Sp(2n;C) such that there exists an n X n invertible matriz X

such that
X 0 o
S (0 (Xt)_l) =5 (4.14)

Then the transverse pair defined by S and S’ are equal. Conversely, if the
transverse pair defined by two complex symplectic matrices S and S" are equal,
there exists an n X n invertible matrix X such that Equation 4.14 holds.

Therefore, a fived Darbouz basis of (V,w) gives a diffeomorphism between
the space of transverse pairs of complex Lagrangian subspaces of (V,w) with
the homogeneous space Sp(2n; C)/GL(n;C).
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4.2 Bilinear forms

In this section we will introduce complex bilinear forms (-|-)r, r, on V' asso-
ciated to each transverse pair of complex Lagrangian subspaces (I',I'y). We
will extensively use these forms in the rest of the chapter. We will describe
them in coordinate form and use this form in the sequel, but we will also
review a coordinate invariant description suggested by Y. Karshon.

Definition 4.2.1 (Bilinear forms associated with transverse pairs of La-
grangian subspaces). Suppose {e,f} is a Darbouzx basis of (V,w), and a trans-
verse pair of complex Lagrangian subspaces (I'1,T'3) is given by the column
vectors of a complex symplectic matriz

S = (é g) . (4.15)

Let 2, 1,,(r, 1, € Home(VE; C™) be defined as

zrory(v) = (DY —B!) (V)gery veEVE (4.16)
Crira(v) = (=C' AY) (V)jegy vEVE (4.17)
Home(VE; C") = Homg(V; C") (4.18)

as both real and complex vector spaces, we will denote also by zr, r,,Cr,r,
the corresponding elements of Homg(V;C").
Define a C-bilinear form on V° as

1
(U|U)F1,F2 = _§ZF17F2(U>t€F17F2 (u) u,v € V(C (419>

and define a complex valued, R-bilinear hermitian form on V' as
h(u,v)r, r, := (u|v)r,r, — (v|t)r,r, u,v € V. (4.20)

Denote the Gram matriz of (-|-)r, r, as

Mr, 1, = —é (_12) (—Ct AY (4.21)
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and the Gram matriz of h(-,-)r, r, as
hr,r, = Mr,r, + MY . (4.22)

Remark 4.2.2 (Well-definedness of (-|-)r, r, and h(-,-)r,r,). Suppose the
complex symplectic matrices S and S’ correspond to the same transverse pair
(I'1,Ty). Then there exists an invertible n x n matriz X such that

S ()0( ( X?)_l) _g. (4.23)

Then the Gram matrices are

N =

My, r, = ! (_l)é,) (—(C)t (A (4.24)
_% <_%> (X)X (—Ct AY) (4.25)
= M, (4.26)

and the same argument applies for the conjugate term.

Remark 4.2.3 (Basic properties of (-|-)r,r,). Since

(D' —BY) (g) = (-Ct A (é) =0 (4.27)

ZF17F2|F2 =0 and <F17T2|F1 = 0.

If a € V© is fized, then (alv)r, r, is a complex linear combination of the
components of zr, r,(v), and (v|a)r, r, is a complex linear combination of the
components of Cr, r,(v).

Thus

(u+alv)r,r, = (uv)r,r, a€ly (4.28)

(’LL"U + a)I‘l,I‘g = (U‘U)FIIQ a €. (429)

Finally, if S € Sp(VE,w), and acts on (T'y,Ty) from the left as (ST, STy),
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then

(Silu"sfilU)Fl,Fz = (U’U)SFI,SI‘Q- (4?’0)
Theorem 4.2.4. For all transverse pairs of complex Lagrangian subspaces
(Fh F2)7

1
(u|v)r, r, — (v|w)r, 1, = §wc(u,v) u,v € VE. (4.31)

Proof. Sp(2n;C) is closed under matrix transpose. Equivalently, the block
components of a complex symplectic matrix satisfy

AB' = BA', CD'=DC' and DA'—CB'=1. (4.32)

We can check

Mo _ 1 (4iDC"—iCD"  —iDA'+4iCB" _ i (0 -1,
Iy, Tl = 9 \ —iBC' +iAD! iBA*—iAB' ) 2 \1, '

If (w){eo,t0y = @ and (v){e,,5,} = b, then

(u‘v)FLFZ - (U‘U>F1,F2 = thF1,F2a - atMFLsz (433>
= bt(MI‘l’FQ — M}lb)a (434)

= %w(u, v). (4.35)

O

Remark 4.2.5 (Coordinate invariant form, suggested by Y. Karshon). Since
(I'y,T3) are transverse, VC =T @ 'y. Let prl;l’r2 be the projection from V©
to I'y along I'y and prgl’F2 be the projection from VC to T'y along T';.

Then

-1

()" ey = (é g) (10” 8) (é g) (4.36)

-1

(P ey = @ g) (8 1(1) (é g) . (4.37)
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Since for symplectic matrices

-1

A B Dt —-Bt
(e 5) (% ) (438)
we can compute (w(c(prgl’m-,pr{l’rz-)){e,f} as
D -C\ (1, 0\ (A" C' 0 —-1,\ /(A B\ /0 O Dt —C!
B a)\o o/\B pt)\1, o )\c p)lo 1)\ a
D t At :
= — _B (—C A):—Q’LMFLFQ (439)
So
(ulv)ryr, = %wc(prgl’r2u, pr; ') = —%wc(pr{““v?prg“mw (4.40)

and the proof of Theorem 4.2.4 can be stated as

§WC(U2,’01) — §WC(U2,U1) = iwc(ul -+ U2, U1 —+ U2> (441)

when u = Uy +us, v = v +vy according to the splitting given by VC =Ty ®T,.

4.3 Construction of representations

In this section, we will construct the representations of the Heisenberg group
on the space of (I'1,T's)-analytic functions, and the irreducible representa-
tions of the Heisenberg Lie algebra on the space of polynomials Clzr, ,],
for arbitrary transverse pairs of complex Lagrangian subspaces (I'y,I'y). The
representations in this sections will not assume any structure on the function
spaces other than the vector space structure, and the representations them-
selves are only assumed to preserve the group composition and Lie bracket
structures. We will also state some results about how the representations are
intertwined by real and complex symplectic linear transformations.
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For a € V, let TI'T2A € End C*°(V; C) be defined by
Tyt f(v) i= (da — 2M(a|v)r, r,) £(0). (4.42)
Then we can check that for a,b €V,

[Tg pEA A = 92X (alb)r, r, — 2M(Bla)r, (4.43)
= i\w(a,b). (4.44)

We can extend 770122 from V to heis w by letting
Tiia” F(0) := (da +1iAs = 2M\(alo)r, r,) f(0). (4.45)

So T2 is a Lie algebra homomorphism heis w — End C®(V; C).

Theorem 4.3.1. Let Clzr, r,] denote the polynomial algebra generated by
the components of zr, r,. Clzr, r,] is a simple U(heis w)C-module.

Proof. If o € I'y, then

1,02, ol T2, N .
TRea + 71 — dRea + Zdlma - QA(Q‘U)FIJE

Ima
= dRea + idima-
The multiplication term vanishes because for a € I'y
(el )r,r, = 0. (4.46)
If 8 €1, then

Tﬁég%k + Z.Tll;rng’A = dReﬁ + idlmﬂ - 2/\(5|U>F1,F2
= _2/\<5‘U)F17F2'

The differentiation term vanishes because zp, p, is constant in the “I's-
direction.”

. 1
(dres + idimp)2ry ry (v) = lm > (zry 0y (v 4+ B) = 20r,(0)) = 0. (4.47)
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In fact, if « (respectively, ) is given by the jth (respectively, n + jth)
column vector of the complex symplectic matrix S associated to (I'y, I'y) via
a Darboux basis {e, f}, then

0

Toin "+l = = (4.48)
0zt r,
Trig® ™+l 5" = —2X4 1. (4.49)

Then every cyclic submodule of C|zr, r,] generated by a nonzero element
is Clzr,.r,)- So C[zr,.r,] is a simple $4(heis w)® module. O

Proposition 4.3.2. Suppose S € Sp(VC,w®) and denote the precomposition
operator

p(S)f(ar, 1 (v) = f(ar, 1o (S7'0))  f € Or,ra(V): (4.50)

Then p(S) intertwines the representations T > with T 2 in the follow-

ing sense. For all a € V©

(Trea ™" + T30 ") - p(S) = p(8) - (Tl5%0, + i) (451)

Im o ReS—1la
in End Clzr, r,].

Proof. We use the identity

(S~ u|S™ ), r, = (u|v)sr, st (4.52)

and compute directly:

p(S) - (TENE2) i T fer 1 (0)
= p(9)- (dReS—la + idim 510 — 2)\(5_10{‘/0)1‘1,1‘2) f(ery ry(v))
= p(S) - (dres-1a + idims—1a) f(2r, 1, (V)
—2X(S7'alS™ ), r, f (20,0, (ST0))
= (drea + idima — 2X(a|v)sry,515) f (20,0, (S 10))

= (Tied” " + T35 - p(9) f (or,,1a (0).
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For a € V, let T +'2* € GL(CY) be defined by
Tr 22 f(p) o= f(v + a)e_)‘(”"a””)ﬁf?. (4.53)

Remark 4.3.3 (Conjugation by e IV)rir2) . Recall 7 from Equation 3.5.
We note that TL T2 is nothing but a congugation of T by multiplication

operators:
T£17F27A — Avl)ryry | Tc;\ e AW)rry (454)

We will return to this observation in the next section.

Then we can check that for a,b € V'

Tgl,Fz,Abe‘LFQ,)\f(U) _ T;l’FQ’Af(U + b)e—)\(b|b+2’l})[‘1’r‘2
f(U +a+ b>e—>\(b|b+2v+2a)pl’r2 €—>\((Z|CL+2'U)F1J"2

f(/U _'_ a + b)ef/\(a+b‘a+b+2v)pl’p2 e/\(a|b)pl’r2f/\(b|a)p1’p2

= IR ().
We can extend T''2* from V to H(w) by letting

TP (W) = v+ a)etsMalerrr,, (4.55)

So Tt is a group homomorphism H(w) — GL(CY).

Remark 4.3.4 (Differentiation). If f is a smooth function, pointwise we
have

lim (T5 72 f(u) — f(0)) = T (0) (4.56)

t—0 t ta

We will be refrain from viewing this limit as a limit of operators.

Definition 4.3.5 ((I';, I')-analytic functions). Suppose U C V is an open
subset. Let f:U — C be a (I'1,'y)-analytic function on U if it is a pullback
of an analytic function on zr, r,(U) C C" by zr, 1,. Denote the vector space
of (I'1, I'y)-analytic functions by Or, r,(U).

79

&

| &1



CHAPTER 4. CONSTRUCTION OF REPRESENTATIONS

Remark 4.3.6 (Restriction of 7112 to O, r,(V)). Since (alv)r, r, is a
linear combination of the components of zr, r,,

e AMalet20)riry ¢ Op L (V). (4.57)

So Equation 4.53 is well defined for f € Or, r,(V), and T''22 restricts
to a group homomorphism H(w) — GL(Or, r,(V)).

Example 4.3.7 (J-holomorphic functions on V' ). Suppose J is a compati-
ble complex structure on (V,w) with Darboux basis {e,f}. A J-holomorphic
function f:U — C is a function satisfying the Cauchy-Riemann equation:

dsaf(v) =idof(v) a€V vel. (4.58)

Let O;(U) denote the J-holomorphic functions on U.

A B
Let ( c D> be a real symplectic matrixz such that

(Niesy = (é ZE;) (i j") @ g>_1. (4.59)

The transverse pair of complex Lagrangian subspaces defined by the com-
plex symplectic matriz

g (A BYL( L Sl __i (Bid A+iB) o
-~ \¢ D)2 \~i-1, 1, )/ V2\D+iC C+iD)
is (01, Ty) = (V}°, VY (Ezample 5.2.2).

The fact that Zyro yoa is constant in the V' directions (Remark 4.2.3)
implies that every (I'1,'y)-analytic function f satisfies

(dRe<A+iB)a+idI (A+iB)a> f(ZV}’O,Vj)’l(v)) = 0 (461)

C+iD Mic +iD

(—dlm(AJriB)a + idR (A+iB)a> f(ZVJl,oyJo,l(v)) = 0. (4.62)

C+iD e\c+iD
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This is equivalent to the Cauchy-Riemann equation, since

d(é>a+z:dj(g>a = d<g>a+id(g)a (4.63)
_d<g>a+ZdJ<g>a = —d(f))a‘l—’Ld(g)a. (464)

For J-holomorphic functions, satisfying the Cauchy-Riemann equation is
equivalent to analyticity in the complex variables, so the (VJ1 0 V})’l)—analytz'c
functions are the J-holomorphic functions.

Oy y10(U) = O5(U). (4.65)

Proposition 4.3.8. Suppose S € Sp(V,w). Then the precomposition opera-
tor p(S) intertwines TFLFQ’ with TSTST2A - In other words, for all a €'V,

TSTLST2A . 5(8) = p(S) - Tgyfaﬂ (4.66)

n GL(OFLFQ (V))
Proof. This is again, by direct computation:
p(S) - Tghiy f(zrirs (v)
= p(9)f(zr, (v + S a))e N 'alS™ a+2v)ry 1y
Flar, 1y (S7Hw 4 a)))e A alS T a2 ry

f zFl,Fz( (U + a)))ef)‘(a‘aJFQU)srl,spz

=TT f (e, (571 (0))):

]

4.4 Construction of representations on Hilbert
spaces

In this section we realize, when possible, the representations constructed in
the previous section as representations on Hilbert spaces. For representations
of the Heisenberg group, convergence issues do not arise when the transverse
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pair (I';,I'y) is a positive pair. For representations of the Heisenberg Lie alge-
bra, convergence issues can be avoided for all transverse pairs by restricting
the domain to bounded open subsets. However, we can only guarantee the
representation is by skew-adjoint operators when (I'j,I's) is a positive pair.

Definition 4.4.1 (Positive pairs). We will call a transverse pair of complex
Lagrangian subspaces (I'1,T'9) a positive pair if for all nonzero v € V,

h(U, U)Fl,FQ > 0. (467)

Example 4.4.2 (Positive pairs). For V = R?, the transverse pair (I'y,Ty)
given by the complex symplectic matrix

1+e —1e
= 2: 1 4.
s (_ 1_g)eSp<,<c> ce(0,1) (4.68)

1S @ positive pair.
We can compute the Gram matrices

1 (e(l—e) de®—i
Mryr, = 2 < ie?2  e(1+ 5)) (4.69)
and
(e(l=¢g)  —i/2
hr,r, = < i/2 (1 +€>> : (4.70)
So
h(v,0)r,r, = €2(1 — )’ + (1 +e)*p* v = (Z) € R? (4.71)

is positive for nonzero v.

Take a Darboux basis {e, f} of (V,w) and pull back the Lebesgue measure
on R?". Let

)\h(v,v)pl’

dimr, pyp = |0 Pdimp g, = e C2dm pep- (4.72)
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We will construct Hilbert spaces as follows:

L2

g1):1,1“2 (U) = OFl,F2 (L[) nL? (u’ me1,F2,>\|U) (47?))

1,2

jﬁ“);,l“g (Z/{) = OF1,F2 (U)e”\(”‘”)%rz N LQ(Z/{; dmLeb|u) (474)

Remark 4.4.3 (The zero Hilbert space). These spaces can be degenerate.
For (I'1,T3) given by the identity matriz

((1) (1)> , (4.75)

§r,r, (R?) = A4 1, (R?) = {0} (4.76)

we have

because any analytic function of zr,r, = q with any nonzero value has a
divergent norm. We will consider the unitary group of zero Hilbert spaces as
consisting of a single identity element.

Remark 4.4.4 (Multiplication by eFA*")rir2 are isometries). From the con-
struction, we can immediately see multiplication by e *¥1Irire 45 an isome-
try

eI B 0, U) S A, (U), (4.77)

Moreover, for a unitary operator A € U(J4 1, (U)),
ORI A OIS € U(F, 1)) (4.78)
We can extend the domain of 7 (Equation 3.5) from V to H(w) by

T(A of(v) = e%’\w(“’“)”“f(v +a) aeV,seR. (4.79)

S,

Then Té’a) are compositions of translations and multiplication by a function

with values of modulus 1, so 7'(’\,87(1) are unitary operators on c%”r’\lrg(‘/). Then

TOE = 0T ) e (450

are unitary operators on §p, r, (V).
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Theorem 4.4.5. For any real \ and transverse pair of complex Lagrangian
subspaces (I'1,T'9)

i Hw) — UWGH (V) (4.81)
THA  Hw) — UG, (V). (4.82)

are strongly continuous unitary representations of Heisenberg groups. When
(T'1,T2) are a positive pair, Clzr,r,] € §p,p,(V), Cler, r,)e Al ¢
A2 1, (V) as dense subspaces.

Proof. We will prove the strong continuity of 7. For f € '%0F/\1,F2(V)’ f e
L3(V;dmpe,), so there exists a continuous function of compact support f.
such that

If = fell3 < e (4.83)

where
2= 1] - ||L2(V;dmLeb)- (4.84)

Then Té ) fe = f. uniformly. Therefore for any € > 0 there exists a § > 0
such that [(s,a)| < 0 implies

||Té,a)fc - fCHg <€ (4'85)

Therefore, |(s,a)| < § implies

||7—():9,a)f - f”% = ||7-(>:9,a)f - Té,a)fc + Té,a)fc - fc + fc - f”g
sarf = T fells + Gy fe = fells +11f = fell3
< 3e.

I
=Y

The same proof goes for TT112* because the space of continuous functions
of compact support remains dense in L*(V;dmr, , ). O

Corollary 4.4.6. For bounded domains U C V', and any pair of transverse
Lagrangian subspaces (I'1,Ts), Clzp, 1, u]e 2 rire s a dense subspace of
%ﬂr)l,rg (U) on which 7 is an irreducible representation of heis w.
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Chapter 5

Reconstruction of known
representations

In this chapter, we will explain how our construction of representation in
the previous chapter relates to previously studied families of representations
[7][8][2][12][5]. The partition of the complex Lagrangian Grassmannian aris-
ing from complex conjugation serves as a natural geometric dictionary, which
we will see explicitly for R%2. Because the previous families of representations
have been studied from different contexts, we will first explain how they fit
with the framework provided by the partition of the complex Lagrangian
Grassmannian. Then we will explicitly identify the representations them-
selves.
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Fock-Bargmann

Grossmann-Daubechies

Mumford

Satake

Lion-Vergne

Representation Parameter S € Sp(2n;C)
1, 0
Schrodi "
chrodinger < 0 1n)
0 -1
M t "
omentum ( L0 >

i B+iA A+iB ‘
2\D+iC C+1iD ’

0o -1,

1, Z

1, Z

0o 1,

A B

C D

A B

o D) € Sp(2n; R)

ImZ >0

ImZ >0

€ Sp(2n; R)

Table 5.1: Reconstruction dictionary by complex symplectic matrices

5.1 Maximal compact subgroups

By the Cartan-Iwasawa-Malcev theorem, all the topology of a real Lie group
is contained in its maximal compact subgroup, and we will briefly review
them. Maximal compact subgroups are not unique, and are defined up to
conjugacy. We will be interested in a particular maximal compact subgroup

of Sp(2n; R) that is easily written in matrix form.

Example 5.1.1 (Involution of C*). C* is abelian, and not a semisimple Lie
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group. So the Cartan decomposition does not apply. However, the involution
O:zr (2)! (5.1)

that can be seen visually, does help provide intuition for the Cartan involution
of sp(2n; R), which will help understand the maximal compact subgroup.

View C* as a real Lie group with identity element 1 € C*. Its Lie algebra
1s abelian

LieC*=T1C* =2 {1} x C= ({1} xiR) & ({1} x R). (5.2)
The splitting comes from the £1-eigenspaces of the involution of Lie C*
0:v— -0 (5.3)

whose exponential is O.

Ezponentiating the +1 eigenspace {1} x iR gives the compact group U(1)
which is the fized locus of ©, and exponentiating the —1 eigenspace {1} x R
gives the noncompact group R*.

Example 5.1.2 (Cartan involution of sp(2n;R) and the maximal compact
subgroup of Sp(2n; R)). The Lie algebra of the symplectic group Sp(2n;R) is

0 -1 0 -1
2n;R) = M won(R) : ot " " =
sp(2n; R) {ae atonxon(R) : o (1n 0 >—|—(1n 0 )a 0}

or equivalently,

sp(2n;R) = { (a b > ‘b=blc=clac Matan(R)} . (54)

c —al

The Killing form of sp(2n;R) is

B(o,0') = (2n+ 2) Tr(oo’) (5.5)
and
0:0— —0o' (5.6)
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1s a Cartan tnvolution, since
a b al ¢!
—B(o,0 = (2 2)T
o) = o (2 2 (5

= (2n+2)Tr(aa’ + a’a + bb’ + cc’)
= (2n+2) Z (2&1?,C + b?k + c?k)
jk=1

s positive for nonzero o.
Since

oc=—-0" < 1y,060+0'ly, =0 < o¢€ s0(2n; R)
the +1-eigenspace of the Cartan involution 6 s

sp(2n;R) Nso(2n; R).

(5.10)

(5.11)

This is the Lie algebra corresponding to the mazximal compact subgroup

Sp(2n;R) N SO(2n;R) C Sp(2n; R).

Proposition 5.1.3 (Block Iwasawa decomposition). Let

A B
S = <C D) € Sp(2n;C)

such that A'A + C'C' is invertible. Then S can be decomposed into

S=KaN K,a,N € Sp(2n;C)

where
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X, Y, Z are complex n X n matrices satisfying
X'X4+YY=1 XY=Y'X Z2=27" (5.16)

and R s an invertible n X n matriz.

Proof. Since A*A + C'C' is invertible, there exists an orthonormal basis of
the span of first n column vectors of S. Pick one such orthonormal basis and
write it as n column vectors in the standard basis of R?*" as

(‘;() . (5.17)

Since the column vectors form an orthonormal basis, X*X + Y'Y = 1. Since
t t

the n column vectors of (At Ct) and (X t Yt) span the same subspace

there is an invertible n x n matrix R such that

B)-(r

(é ﬁ) (Ro_ | Jgt) - (ii ﬁgﬁ) (5.19)

is symplectic, we have that X'Y = Y*X. Thus

Xt Y"\ (A B\ (/R' 0\ (1 X'BR'+Y'DR! (5.20)
Yt Xt)J\C D 0 RY) \o 1 '

is symplectic, and Z’ := X!BR! + Y'DR! is symmetric. Therefore we have

(e 0)= G )6 @) "H0T) e

as the desired decomposition. O]

Then since

Remark 5.1.4 (Complexification of maximal compact subgroup). In the
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decomposition,
K € Sp(2n;C) N SO(2n; C) (5.22)

which is not a compact subgroup of Sp(2n;C).

5.2 Siegel upper half planes and compatible
complex structures

By the Cartan-Malcev-Iwasawa theorem,
Sp(2n; R)/(Sp(2n; R) N SO(2n; R)) (5.23)

is homeomorphic to a Euclidean space. In this section we will see two different
descriptions of this space, which appear in the parametrizations of the Satake-
Mumford families and Grossmann-Daubechies families.

Example 5.2.1 (Siegel upper half plane). The Siegel upper half plane of
degree n (denoted H,,) consists of complex symmetric n X n matrices Z with
positive definite imaginary part, and it is contractible.

Sp(2n; R) acts transitively on H,, by Mdébius transformations:

(é g) Zw— (AZ + B)(CZ + D)™ (5.24)

with the stabilizer at Z =1 - 1,, being
Sp(2n; R) N SO(2n; R). (5.25)

So
H,, = Sp(2n;R)/(Sp(2n; R) N SO(2n; R)). (5.26)

One way to describe the complex Lagrangian Grassmannian of type (0,n,0)
of R?" is by equivalence classes of the complex 2n x n matrices

(g) :Q'P=P'Q, iQ*P—iP'Q>0 (5.27)
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under the equivalence relation

(g) N (g) — 3X € GL(n;C) : <g> X = (g) : (5.28)

Then we can identify

H, = Gr((0,n,0):;R*™) (5.29)
—

) oo

and the Mobius action gets mapped to the linear action

(8 2212 B[P )] o

Example 5.2.2 (Equivariant embedding of compatible complex structures
on (R?", wgq)). Let J(R?*) be the set of compatible complex structures on
(RQn, wstd) .

J = (VO vPh (5.32)
is an embedding of J (R?™) into the space of transverse pairs. We will describe

this map in coordinates.
Recalling the projections 2.56, we have

VY = (1—i)T (5.33)
Vit = (i) (5.34)

if T' (respectively, ") is an n-dimensional complex vector spaces transverse to
VJI’O (respectively, Vf’l). We can pick ', T so that the coordinate description
has a nice form.

Recall that every J € J(R*™) can be written as

-1

Cerea (A B A B (A B .
(5.35)
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3.0

span complex Lagrangian subspaces of type (n,0,0), so are transverse to both
1,0 0,1
Vo and Vi,
Thus the column vectors of

The column vectors of

1 , A 1 (B+iA
—(1- =—— :
VoA (c) V2 (D " z'c> (537
span VJLO, and the column vectors of
1 _ B i (A+iB

span VJO’I.
The map that can be read off this construction can be described as

A B\ , i (B4id A+iB\ _ (A B\ 1 (1, —i-l,
C D V2 \D+iC C+iD) \C D) 2\-i-1, 1,
(5.39)

18 nothing but the multiplication by the complex symplectic matrix

1 1, —i-1,
Lk st

from the right. The matrices in Sp(2n;R) N SO(2n;R), satisfy the following
identity

X -Y 1, —1-1, 1, —1-1, X +1Y 0
(Y X) (—z’-ln 1, ) B (—¢-1n 1, ) < 0 X—z’Y)'
(5.41)
Noting that X — iY = (X' +iY")™!, the map 5.39 gives an equivariant

embedding

Sp(2n;R)/(Sp(2n; R) N SO(2n;R)) — Sp(2n; C)/GL(n;C). (5.42)
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By Example 2.4.9 and Remark 4.1.3 this can be seen as an equivariant
embedding of J(R?") into the space of transverse pairs.

5.3 Representations from new parameters

Definition 5.3.1 (Notation for specific complex Lagrangian subspaces). Let
(V,w) have a Darbouz basis {e,f}.

Denote the complex Lagrangian subspaces spanned by vectors with coeffi-
cients the column vectors of, respectively,

() () () (5 () (543

by, respectively, Ly, Lo, V}O’O, Vfo’l, .
Given a real symplectic matrix

@ g) € Sp(2m; R) (5.44)

Let the complex Lagrangian subspaces spanned by vectors with coefficients the
column vectors of, respectively,

() (5)- (i) (e 1) 9

by, respectively, Ly, Lo, V}’O, V})’l.
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Representation

Transverse pair

Schrodinger

Fock-Bargmann

Grossmann-Daubechies

Mumford

Satake

Lion-Vergne

(L1, Ls)
Vi’ Vi)
(Vv
(Lo, JoI'z)

(L1,T'7)

(L1, L)

Table 5.2: Reconstruction dictionary by transverse pairs

For V = R?, its complex Lagrangian Grassmannian can be represented

as a point on CP! by taking a vector spanning it

(Z) = g : ).

Thus, a transverse pair of complex Lagrangian subspaces can be represented

(5.46)

as two distinct ordered points on CP'. The reconstruction dictionary can be

represented pictorially as follows:
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G
&
©

Schrodinger Lion-Vergne Satake

G
&

Fock-Bargmann Grossmann-Daubechies ~ Mumford

Table 5.3: Pictorial reconstruction dictionary for V = R?

Remark 5.3.2 (Noncontractibility). The space of transverse pairs in this
case 1is

(CP* x CP')\ACP! (5.47)
which is homotopic to CP', and hence noncontractible.
Example 5.3.3 (Unitary representations from new parameters). Recall from
Ezample 4.4.2 the positive pair (I'1,T's) given by the complex symplectic ma-
trix

1+e —1e
= 2: 1). 4
s (_ 1_S)esm,@) ce(0,1) (5.48)

', € Lag®((0,1,0); R?) and Ty € Lag®((0,0,1); R?) because

Im((1+¢)(—ic)) = e(l4+¢e) >0 (5.49)
Im((—ie)(1—¢)) = —e(l—¢) <O. (5.50)

When e # \%, Iy # T, because
Ire_ e .1 ey (5.51)

—ie  l-—¢ V2

So TTv'2A%s qre unitary representations from new parameters when € # \/Lﬁ
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In the following, let {e,f} be a fixed Darboux basis of (V,w), and denote

q 2n
V)fefl = eR
( ){ £} (p>

ge = quej pf = ijfj
j=1 j=1

dq :=dg---dg, dp:=dp;---dpn.
5.4 Schrodinger representation

1, 0
0 1,

gives the transverse pair (Lj, Ls), and we can compute:

The matrix

ZL17L2(1)> =q and <Li,Lo (U) =peR".

i [0 -1,
fr. =5 (1n 0 )

e~ ML L, =1 eV.

Then

and

Let {p < 1/2} denote the strip

{veVipw),;<1/2,j=1,--- ,n}.

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

Then §, 1, ({p < 1/2}) is the completion of Oy, 1,({p < 1/2}) by the norm

1V Ber oo = |

{p<1/2}

1 (q)|Pdadp = / (o) dg.

(5.60)

This space is nonzero, because it contains the functions f (q)e*qt‘], where f

is a polynomial in ¢. In particular it contains the Hermite functions which
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describe the energy eigenstates of the quantum harmonic oscillator.
The map f — f|rer, is an isometry

§t 1. ({0 < 1/2}) = L*(ReLy,dg) = L*(R", dmp.). (5.61)

Although T¥+I2! is not well defined, T LiL2l js and we can recover the
position and momentum operators.
For instance, the momentum operators are given by:

—iTEY = —ide, +i(ej|v)L, L, (5.62)
.0 L, , (1l e;
= —i—+= 1) (2 5.63
a3 N(5)0m(G) oo
0
= —i— 5.64
50 (5.64)
= p; j=1,--,n. (5.65)

The position operators are given by:

—iTy st = —idy, +i(f|v)r, L, (5.66)
1 1 0
= (¢ p) (" 1 :
5 (@ P) <0) (0 1,) <ej) (5.67)
= g (5.68)
= ¢ j=1,---,n. (5.69)

It is well known that these operators are self-adjoint, and can be exponenti-
ated.

5.5 Lion-Vergne’s family

Let (L1, Ly) be the transverse pair given by matrices of the form

= (é g) € Sp(2n: R) (5.70)
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We will show §77 ; ({zL,, < 1/2}) reproduces the representations in
pl5 of [13] with underlying Hilbert space L*(Ly,dz1, 1,)-
Let {€,f'} be the Darboux basis given by the column vectors of S. Then

we have forv e V

Dt —Bt q) (ZL L (U))
Diar gy = _ (L)) 5.71
( ){ £} (_Ct At > (p CLl,Lg(U) ( )
Sov = qe —|—pf = ZL1,Ly (U)e/ + CLl,LQ (U>f/'
Let

{Crim, <1/2} i ={v eV :(r1,(v); <1/2,j=1,--- ,n}. (5.72)
Then f — f|rer, is an isometry
2L711-,L2({<L1,L2(’U) < 1/2}) i Lz(Re le dZLl,LQ)' (573>

We can compute

(@€o)pyz, = 1 (_%) (—ct A1) (é{)a ~0 (5.74)

(bf/’U>L1,L2 = —i

(IR
/l_\
n O
~_
N
Q
=
N—
VRS
o
~_
<o
Il
|
N | .
<
I
N
&~
[\V)
=
=
\]
=

So we have

TL17L2,27T — dae/ - 47T(ae/|U)L1,L2 — _dae, (576)

ae’

Tb[f/»/l’LLQﬂ = dbf/ - 47T(bf/|U>L17L2 = 27TZ'thL1’L2 (U) (577)

recovering dW in p15 of [13].

98

&

| &1



CHAPTER 5. RECONSTRUCTION OF KNOWN REPRESENTATIONS

5.6 Fock-Segal-Bargmann space

The transverse pair (VJIO’O, V})O’l) corresponds to the matrix

1 1, —i-1,
L, o

we can compute:
1 . q 1 .
Zyroyen(v) = 7 (Lo i-1n) = E(q +ip)=z  (5.79)

) :%(q—ip):if (5.80)

1 /-
G = 6t 1) (1) =

so h(-, ‘)VJl,OVV‘?,l agrees with the standard inner product on C", when (C", 1)

is identified with (V, Jy) as complex vector spaces.
Therefore

9 —h(v,v )Vlo 0,1 9 3t
[ 1o atonpe " dgdp = [ (5GP dadn. 651)
v
3‘1/1’0 o1 (V) recovers the Hilbert space in Equation (1.2), p 192 of [2] up to
Jo 7 Jg

an overall constant factor of 1/7".
We can recover the creation and annihilation operators. We first compute
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forj=1,---,n:

1,0 1,0,1
A ’VJO 1

Tej — dej — (ej|U)V1,07V0,1 (582)
l 1 —i-1 e
= de. + = (¢* p' " " / 5.83
s+l p)(i-ln 1 )n<0) (5.83)
7
= de, + —=2; (5.84)
J \/5 J
VOVt
Tfj 0 0 = dfj — (fj‘v)vl,07vo,1 (585)
? 1 —i-1 0
= de. + = (¢¢ P " " 5.86
s 0 (T e
1
Since (’)V},o V}),l(V) consists of holomorphic functions, idg, = —de;. Therefore
o’ Jo
we obtain
. . 1,0’ 0,17 'V1,07 0,17
_% (Tejm 10 oL +Z'Tf].JO Jo 1) =z = at (5.88)
N A V1,07VO,171 A VI'O,VO’I,I
_é (TejJO Jo o Z-Tfon Jo ) — % = dj' (589)

5.7 Grossmann-Daubechies’ family

Let J be a compatible complex structure on (V,w) given by

(V) fesy = (é ﬁ) <1On —;n) (é ﬁ) (é g) € Sp(2n; R).

(5.90)
We will show %ﬂvlw

J

-1

(V) agrees with .77 in [7] and [§].

0,1
7VJ

By Example 4.3.7 we have (I'y, I'y)-analytic functions are the J-holomorphic
functions:

Oproyra(V) = O5(V). (5.91)
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The Gram matrix of A(-, )10 01 1S
(7 )VJ V3

1 cct+ DDt —CA'— DB! +1 0 —u-1, (5.92)
2 \—-AC'"— BD' BB'+ AA? 2\it-1, 0 ' '

On the other hand, the Gram matrix of 1/2(w(-, J-) + iw(-,-)) is

1 CA'+ DB' DD'+CC! 0o -1, +_1 0 —i-1,
2 \-BB'— AA"* —AC'-BD') \1, O 2\:-1, 0

which agrees with the Gram matrix of A(:, -)V},o PO

Therefore
Q) = em2w® V) — ¢

and we recover %”VILO yo1(V) as the J#; defined in p1378.
J 7 J

Finally we recover the group action in p1378:

(W(a)f)(v) = ¥ f(v—a) = (1o f) (V). (5.95)

5.8 Satake’s family

We will show 31?127;2 (V) corresponds to the spaces §, that appears in [5]. We
first derive the Hilbert space. For the family of matrices

1, Z
{(; 1):Z:Z"/,ImZ>O} (5.96)
We have zi, r,(v) = ¢ — Zp, and identify
(V, Jo) 5 (Ly,i) s v+ 2z, r,(v)e (5.97)
as complex vector spaces. Here Jy : e — £, f — —e.
Suppose
(5.98)

7z =Rez,r, yz:=Imzy r,.
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Then the coordinate change is

rz\ (1, —ReZ q
yz) \0 —ImZ) \p
so the measures are related as follows:

e~ dezdyz = dqdp.

Moreover,
h(v, )L, 1, = —p'Im Zp = —y4(Im Z) " 'y,.

(5.99)

(5.100)

(5.101)

So SE?}Z(V) is identified with the holomorphic functions on L; such that

1

detIm Z |f(ZL1,Fz)|2€_2ﬁyt2(lmz)flyzdﬁzdyz < 0.
L,

(5.102)

This is the integral that appears in Equation (5), p397. Now we will derive

the automorphic factor 7. Recall that

TET227 f(0) = f(v+ w)e?mite 2,

Let
(u) 7= q (U) 7= o (UZ) f i ZLI’FZ (U)
{e’ } P {ev } O {E, } . 0 .
Then
ot ¢ -1 ¢
—2m(u|u)y, r, = —mi(¢'p —p'Zp) =2mi- Ew (u,uz)
—27(u|20)L, r. = 2miztp = 270 - wC(u, v).

Therefore we have Satake’s automorphic factor

77((8, u, Id), (’U, Z)) = e2m(s+%wc(uﬂz)+wc(u,v))

627ris6—27r(u|”LL—i—2v)Ll Tz

102

(5.103)

(5.104)

(5.105)
(5.106)

(5.107)
(5.108)
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This is a restriction of the expression that appears in Equation (2), p395.

In terms of the automorphic factor, we get

TS o, (0) = (5,0, 10), (0, 2) " (e, (0 ). (5.109)

(s,u)

We recover a restriction of the group action defined in Equation (6), p 398.

5.9 Mumford’s family

We will show S’Ijzfjorz(\/) corresponds to 7 (C", Z) of [12]. Consider the

2
family of matrices

0 -1 0 -1 1, Z
"= " " Z =27 A1
We can compute

o, () = (2 1,) (Z‘i) — Zq+p (5.111)

Ciaor, (0) = (=1, 0) (q> =g (5.112)

b

In particular, zg,r,(v) agrees with the complex coordinate v in p19 of [12].
We can compute

1 /-2ImzZ —i-1,
hio.arz = 5 ( 1 0 ) (5.113)

so that F.2% (V) is the completion of the functions analytic in 2y, j,r, (v)

and such that
/ | f (21500, (0)2e™ 2 ™ 24 dgdp < oo, (5.114)
v

This agrees with the equation on the top of p20 of [12].
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Finally, we can compute the action. If

ierr= (") when = () (5.115)

then

(T(I;?diorz’_Qﬂf ) (2Lyor, (V) = e 2Tise2miuut20)0s 100y f (2 5 (0))
(5.116)

where

Z
2mi(ulu + 20)L, gor, = m((u’i ub) (1 8) (u1> (5.117)

Ug
Z 0 U1
2 (vt vl 11
+ (vl 212) (1n O> <u2>> (5.118)
. 1
= 2m (uizLLJOFZ (U) + §utlZL27JOFZ (u)> ('5'119)

We can see that this agrees with the equation on the bottom of p19 of [12].
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