

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

이학박사 학위논문

A study on the earth science data

generation by the numerical modeling

and machine learning on the cloud

computing

클라우드 컴퓨팅 환경기반에서 수치 모델링과

머신러닝을 통한 지구과학 자료생성에 관한 연구

2022 년 8 월

서울대학교 대학원

지구환경과학부

정 광 욱

A study on the earth science data

generation by the numerical

modeling and machine learning on

the cloud computing

지도 교수 조 양 기

이 논문을 이학박사 학위논문으로 제출함

2022 년 7 월

서울대학교 대학원

지구환경과학부

정 광 욱

정광욱의 이학박사 학위논문을 인준함

2022 년 7 월

위 원 장 남 성 현 (인)

부위원장 조 양 기 (인)

위 원 나 한 나 (인)

위 원 최 병 주 (인)

위 원 김 영 호 (인)

 i

Abstract

To investigate changes and phenomena on Earth, many

scientists use high-resolution-model results based on

numerical models or develop and utilize machine learning-

based prediction models with observed data. As information

technology advances, there is a need for a practical

methodology for generating local and global high-resolution

numerical modeling and machine learning-based earth science

data.

This study recommends data generation and processing using

high-resolution numerical models of earth science and machine

learning-based prediction models in a cloud environment.

To verify the reproducibility and portability of high-

resolution numerical ocean model implementation on cloud

computing, I simulated and analyzed the performance of a

numerical ocean model at various resolutions in the model

domain, including the Northwest Pacific Ocean, the East Sea,

and the Yellow Sea. With the containerization method, it was

possible to respond to changes in various infrastructure

 ii

environments and achieve computational reproducibility

effectively.

The data augmentation of subsurface temperature data was

performed using generative models to prepare large datasets

for model training to predict the vertical temperature

distribution in the ocean. To train the prediction model, data

augmentation was performed using a generative model for

observed data that is relatively insufficient compared to

satellite dataset.

In addition to observation data, HYCOM datasets were used

for performance comparison, and the data distribution of

augmented data was similar to the input data distribution. The

ensemble method, which combines stand-alone predictive

models, improved the performance of the predictive model

compared to that of the model based on the existing observed

data. Large amounts of computational resources were required

for data synthesis, and the synthesis was performed in a cloud-

based graphics processing unit environment.

High-resolution numerical ocean model simulation,

predictive model development, and the data generation method

 iii

can improve predictive capabilities in the field of ocean science.

The numerical modeling and generative models based on cloud

computing used in this study can be broadly applied to various

fields of earth science.

Keywords: Cloud computing, Numerical Ocean model, Machine

learning, Containerization, Generative models, Vertical

temperature distribution

Student Number: 2012-30096

 iv

Table of Contents

Abstract .. i

Table of Contents ... iv

List of Figures ..vii

List of Tables .. x

1. General Introduction ... １

2. Performance of numerical ocean modeling on cloud

computing ... ６

2.1. Introduction... ６

2.2. Cloud Computing ... ９

2.2.1. Cloud computing overview .. ９

2.2.2. Commercial cloud computing services １２

2.3. Numerical model for performance analysis of

commercial clouds ... １５

2.3.1. High Performance Linpack Benchmark １５

2.3.2. Benchmark Sustainable Memory Bandwidth and

Memory Latency ... １６

2.3.3. Numerical Ocean Model .. １６

2.3.4. Deployment of Numerical Ocean Model and

Benchmark Packages on Cloud Clusters.................... １９

2.4. Simulation results .. ２１

2.4.1. Benchmark simulation ... ２１

2.4.2. Ocean model simulation .. ２４

2.5. Analysis of ROMS performance on commercial clouds ... ２６

2.5.1. Performance of ROMS according to H/W resources . ２６

2.5.2. Performance of ROMS according to grid size ３４

2.6. Summary .. ４１

 v

3. Reproducibility of numerical ocean model on the cloud

computing .. ４４

3.1. Introduction.. ４４

3.2. Containerization of numerical ocean model ４７

3.2.1. Container virtualization ... ４７

3.2.2. Container-based architecture for HPC ４９

3.2.3. Container-based architecture for hybrid cloud ５３

3.3. Materials and Methods .. ５５

3.3.1. Comparison of traditional and container based HPC

cluster workflows ... ５５

3.3.2. Model domain and datasets for numerical simulation５７

3.3.3. Building the container image and registration in the

repository .. ５９

3.3.4. Configuring a numeric model execution cluster ６４

3.4. Results and Discussion ... ７４

3.4.1. Reproducibility .. ７４

3.4.2. Portability and Performance ７６

3.5. Conclusions .. ８１

4. Generative models for the prediction of ocean

temperature profile ... ８４

4.1. Introduction.. ８４

4.2. Materials and Methods .. ８７

4.2.1. Model domain and datasets for predicting the

subsurface temperature .. ８７

4.2.2. Model architecture for predicting the subsurface

temperature ... ９０

4.2.3. Neural network generative models ９１

4.2.4. Prediction Models ... ９７

4.2.5. Accuracy .. １０３

4.3. Results and Discussion ... １０４

4.3.1. Data Generation ... １０４

4.3.2. Ensemble Prediction ... １０９

 vi

4.3.3. Limitations of this study and future works １１１

4.4. Conclusion .. １１１

5. Summary and conclusion ... １１４

6. References ... １１８

7. Abstract (in Korean) .. １４０

 vii

List of Figures

Figure 2.1 Conceptual diagram of cloud service types. １０

Figure 2.2 Conceptual diagram of an idealized hypervisor.

Physical resources such as CPU, memory, and disk are

virtualized through virtualization S/W (e.g., hypervisor) and

can be logically allocated as instances. １１

Figure 2.3 The domain of this study. The model domain covers

15-52˚N and 115-162˚E, which includes the East China Sea,

Yellow Sea, East Sea, and the north-western part of the

Pacific. Color signifies water depth.. １８

Figure 2.4. Performance of the cloud clusters according to

number of vCores using the HPL S/W package. ２２

Figure 2.5 Sustainable memory bandwidth of the cloud clusters

according to number of vCores. ... ２４

Figure 2.6 (a) Initial sea surface temperature and (b) simulated

sea surface temperature after 3 days from 1 January 2010. . ２５

Figure 2.7 (a) Initial surface horizontal velocity and (b) simulated

surface horizontal velocity after 3 days from 1 January 2010.

Vector signifies current speed and direction. ２５

Figure 2.8. Conceptual mechanism of vCPU in the virtualization

of physical quad-core. vCPUs of cloud instances are

provided through the hyperthreads-enable mode. The

number of physical CPUs is one-half of the vCPU instances. .. ３

０

Figure 2.9. (Upper) Wall-clock running time for 3 days

simulation and (lower) HPL Flops according to the number of

vCores on cluster-C. .. ３２

Figure 2.10. Memory latency time according to memory

bandwidth in clusters C, D, and E. ... ３３

Figure 2.11 Wall-clock running time for 3 simulation days as a

function of number of vCores for various grid sizes. ３５

Figure 2.12 Efficiency of cluster as a function of number of

vCores for various grid sizes. Thick gray fitting lines

represent mean efficiency of clusters. ３７

Figure 2.13 Mean efficiency of clusters as a function of grid size

in different cores. .. ３８

 viii

Figure 2.14 Wall-clock running time as a function of DOF for 1

day simulation of one DOF according to number of vCores. .. ４０

Figure 3.1 Conceptional architecture of VM and container

virtualization. ... ４８

Figure 3.2 Conceptual diagram of the Kubernetes overlay NW. ... ５１

Figure 3.3 Architecture of Kubernetes clusters. ５２

Figure 3.4 HPC workload distribution above hybrid cloud with

Kubernetes .. ５５

Figure 3.5 Conceptual workflow of VM and container clusters for

numerical modeling. .. ５５

Figure 3.6 Model domain for ROMS simulation. ５７

Figure 3.7 Required SW installation codes for generating ocean-

modeling image in Docker file .. ６３

Figure 3.8 Kubernetes Cluster Configurations of local clusters ... ６５

Figure 3.9 ROMS StatefulSet code. .. ６８

Figure 3.10 Conceptual diagram of the container-based clusters

for public or private clouds. .. ６９

Figure 3.11 a) Network configuration of pods and b) NW diagram

on Kubernetes clusters ... ７２

Figure 3.12 a) Process monitoring inside host and b) process

monitoring inside pod .. ７３

Figure 3.13 a) Surface-velocity vectors and b) sea-surface

temperatures from the control simulation of February 1, 2010.

 ... ７５

Figure 3.14 (a) Wall-clock running time of 3-day simulation of

a medium grid, and (b) wall-clock running time of 3-day

simulation of a fine-grid according to the vcores on the AWS

clusters. ... ７９

Figure 3.15 Comparison of NW latency of container and VM

cluster according to message sizes. ... ８０

Figure 3.16 Memory bandwidth of the container and VM cluster

vs. the number of AWS vcores. .. ８１

Figure 4.1 Schematic currents in the study area and model domain.

The red point (37.06°N, 130.31°E) represents a routine

observation station. Selected station for comparing the model

and observation temperature profiles. TC, EKWC and UWE

 ix

stand for Tsushima current, East Korean warm current and

Ulleung warm eddy, respectively. .. ８８

Figure 4.2 Conceptual architecture for predicting subsurface

temperature ... ９１

Figure 4.3 Conceptional architecture of latent representation ９２

Figure 4.4 Conceptional architecture of generative adversary

network .. ９３

Figure 4.5 Conceptional architecture of a conditional generative

adversary network .. ９５

Figure 4.6 Conceptual diagram of the stacking ensemble ９９

Figure 4.7 Data distributions of observed and synthetic datasets

in FEB from 1993 to 2012 .. １０５

Figure 4.8 Data distributions of observed and synthetic datasets

in AUG from 1993 to 2012 ... １０６

Figure 4.9 Difference matrix of observed and synthetic datasets

in FEB from 1993 to 2012 .. １０６

Figure 4.10 Difference matrix of observed and synthetic datasets

in AUG from 1993 to 2012 ... １０６

Figure 4.11 MAE and RMSE of regression models (KNNR, SVR,

RFR, LR) using FEB and AUG datasets １０８

Figure 4.12 Comparison of the predicted temperature profile

using the stacking ensemble prediction model with

augmented dataset, HYCOM and the observation data in

February and August from 2013 to 2017. １１０

 x

List of Tables

Table 2.1 Overview of purpose, specifications, and price of AWS

instance types (us-west-2, Oregon) １３

Table 2.2 Latency of cloud HPC clusters according to message

size ... １５

Table 2.3 Hardware and software configuration of commercial

clouds ... ２３

Table 2.4 CPU specification of cloud HPC Clusters ２７

Table 2.5 Wall-clock time for ROMS modeling per unit node with

32 vcores ... ２９

Table 2.6 Grid-Size Type of numerical ocean model ３６

Table 3.1 Grid Size and Degree of Freedom in Each Experiment ５９

Table 3.2 SW Configurations for the Numerical Model Images. ... ６０

Table 3.3 HW and SW Configuration of Local Clusters ６５

Table 3.4 HW and SW Configuration of Clusters on Public Cloud ６６

Table 3.5 Runtimes and Performance Penalty According to Grid

Resolution .. ７１

Table 3.6 Homogeneous and Heterogeneous Cluster

Configuration. .. ７７

Table 4.1 Ensemble prediction accuracy metrics of synthetic

dataset (FEB, AUG) .. １１１

 １

1. General Introduction

With the advancement of information technology (IT), numerical

models based on the equation of motion have been used to predict

future phenomena or develop and utilize statistical prediction models

from various observation data (Than, 2017). Machine learning

techniques have also been used to analyze and predict the changes in

various phenomena on Earth (Hu, 2021).

Owing to the rapid development of IT, researchers have gradually

extended the limits of specific-scale numerical model domains and

regional analysis to global or large-scale model domains and

performed improved modeling with high resolutions (Tintó et al.,

2017). In addition, machine learning techniques have been used to

analyze large amounts of data and establish predictive models

(Ahmad et al., 2019). The cloud stores rapidly increasing observation

data (NOAA, 2022).

Along with the expansion of numerical modeling experiments,

results of high-resolution and precise numerical models are

increasingly critical in predicting and analyzing various physical

changes in the ocean (Sommer et al., 2018).

After the initial conditions are set in the main equations of motion

in the ocean numerical model, various physical variables are

 ２

calculated using a divided grid and time intervals. Increasing the

resolution of the numerical model grid for precise numerical

simulations increases the number of grids to be calculated. Sufficient

computational resources are required to perform the increased

computation level within a specific period, and more precise analysis

is possible based on the computational resources. Extensive

computing resources are required to perform such precise numerical

modeling or global ocean model (Hamilton et al., 2008). The

computing resource is a significant limitation in improving the

resolution of numerical models.

High-performance computing (HPC) clusters are widely used to

perform large-scale numerical models of oceans with a large amount

of computation (Yang et al., 2018), and they are processing devices

with expensive equipment (Bozzo-Rey et al., 2006). Recently, with

the development of virtualization-based cloud technology, computing

resources can be easily provided through a network.

Researchers of various numerical models have attempted to

establish earth science numerical models in a cloud environment

(Chen et al., 2017; Zhuang et al., 2020; Jung et al., 2021). Problems

related to performance and the environment in the early days of cloud

computing have been gradually resolved.

Recently, research cases applied to computationally intensive

 ３

modeling that require significant resources have been introduced

(Zhuang et al., 2020). The applicability of the earth science model to

the cloud environment has been verified in many studies. Beyond

verification of applicability, performance analysis to improve the

resolution of the earth science numerical models or advanced

research to improve and develop the earth science numerical models

using cloud-native technology are required.

This study presents performance analysis and the environment

configuration method for performing high-resolution numerical

modeling using a virtual machine provided as a cloud computing

resource and a method for achieving the calculation reproducibility of

the numerical model using container technology. The reproducibility

of research results is the basis for scientific research and sharing of

the research process.

To achieve the computational reproducibility of numerical models,

many researchers have attempted to configure the environment of

the numerical model and the various environmental variables

necessary for model execution (Markus et al., 2019; Grüning et al.,

2019). This work can be regarded as essential but challenging in

numerical modeling. Previous studies have recommended

documenting and sharing various variables and developing a

numerical model based on the shared data (Nüst et al., 2017).

 ４

The aim of this study is to design and apply a container-based

numerical model execution architecture, which is a cloud-based

technology, to resolve such difficulties and realize the computational

reproducibility of numerical ocean models.

 It is common to establish a prediction model based on observed

data or analyze and predict by performing a statistical model to

predict and analyze various phenomena on Earth along with numerical

models. In addition to high-resolution numerical models, machine

learning is an essential method for generating and analyzing data in

earth science. Recently, in the ocean field, many researchers have

analyzed and predicted various ocean phenomena using machine

learning methods (Ahmad et al., 2019). Owing to the nature of ocean

observation data, the location and time of observation are limited, and

the amount of the observed data is also limited (Levin et al., 2019;

Weller et al., 2019). With the development of various observation

techniques, periodically observed and stored data such as satellite

data are abundant, but the observed data is mainly concentrated in

the surface layer. However, measured data are limited because

observation data for areas where remote observation is difficult, such

as the deep ocean, are constrained by location and time (Klemas et

al., 2013; Levin et al., 2019). If observational data is supplemented

in the ocean field, improved prediction and analysis capabilities can

 ５

be achieved (Bolton et al., 2019). This study proposes an

architecture that can generate observable data based on the

observation data by applying the generative model technique of a

neural network to solve the problem of insufficient ocean observation

data. A comparison between the observed and synthetic data was

performed to verify the generated data, and the synthetic dataset was

used to train the prediction model. The performance of the predictive

model can be improved using large synthetic datasets. This study

proposes a valuable method for generating training datasets for

machine learning and resolving missing data problems in earth

science.

 ６

2. Performance of numerical ocean modeling

on cloud computing①

2.1. Introduction

Numerical models are widely used to predict and analyze ocean

circulation and various physical property changes. Large amounts of

computational power are required for numerical experiments to

simulate realistic global ocean circulation. However, preparing

sufficient computer resources is difficult owing to economic and

physical constraints. Even when the Information Technology (IT)

infrastructure is sufficient, installing and preparing the ocean model

setup is time-consuming. If IT infrastructures were free from setup

and maintenance, ocean numerical models could be more easily and

widely used. Efficient configuration and utilization of IT resources is

being increasingly demanded in many fields, including ocean modeling.

In order to satisfy this demand, many companies and organizations

are considering utilizing public cloud computing services such as

Amazon Web Services (AWS) and Google Cloud Computing (GCP).

The number of applications that can be executed on cloud systems

① The results of the presented work have been submitted into『바다』,

(2022).

 ７

has been steadily increasing, and numerous studies are being

conducted to determine whether and how applications and operations

can be ported to cloud computing environments without performance

penalty or technical issues. In the early days of commercial cloud

services, many experiments associated with the operation of climate

models in cloud computing environments were conducted. For

example, Oesterle et al. (2015) compared the performance,

disadvantages, and merits of cloud computing and grids for

meteorological model applications. Montes et al. (2017) ported and

tested AWS as an infrastructure for the Berkeley Open Infrastructure

for Network Computing (BOINC) system. Chen et al. (2017)

simulated the Community Earth System Model (CEMS) on AWS.

Cloud computing is a computing resource utilization method in

which IT infrastructure resources are provided through N/W, with

fees paid according to computing amount and time of usage. It allows

researchers, research institutes, and numerical ocean model

scientists with limited infrastructure resources (i.e., servers, storage,

and electricity) to use numerical ocean models at optimal cost without

physical difficulties. Many three-dimensional numerical ocean

models are executed in High Performance Computing (HPC)

environments using manycore and Software (S/W) systems such as

Message Passing Interface (MPI). In order to execute large-scale

 ８

numerical models in parallel, systems S/W such as MPI should be

implemented properly with the configuration of high-speed Network

(N/W) devices, such as InfiniBand, for communication among servers.

Expensive Hardware (H/W) and N/W are usually managed by IT

professional organizations and engineers. Various studies have been

conducted on parallel processing using cloud computing to overcome

the problem of high-cost IT infrastructure. However, the cloud

environment has still been found to have several limitations for

parallel processing owing to insufficient functionalities (Oesterle et

al., 2015). Recently, AWS, GCP, and Azure, which are public cloud

computing services, have begun to provide various technological

bases such as high-performance instances, ethernet-based high

performance N/W, and remote direct memory access (RDMA) for

effective implementation of HPC. They enable users to easily prepare

numerical model environments and conduct numerical experiments

anytime and anywhere.

This study was conducted to analyze the performance of an ocean

model on commercial clouds and ascertain how to effectively

construct and execute large-scale three-dimensional numerical

ocean models in commercial cloud computing environments using

ethernet-based high-performance N/W, high-performance memory,

and CPU. An additional goal was to also provide a method to improve

 ９

or extend the performance of such systems in cloud computing

environments with real case study data. For this study, the Regional

Ocean Modeling System (ROMS), which is a typical community ocean

model, was executed on commercial clouds. The various performance

results and comparison analysis of performance data according to

computing resource types are presented. Prior to this study, I

investigated the feasibility of ROMS for the cloud computing

environment, and also compared the performance of ROMS in a

virtualization-based commercial cloud with that in a non-

virtualization-based HPC cluster (Jung et al., 2017).

2.2. Cloud Computing

2.2.1. Cloud computing overview

Cloud computing provides virtualized and configurable computer

resources (e.g., networks, servers, storage, applications, and

services) in computing resource pools with functions such as self-

service provision, automatic usage metering, and rapid provisioning.

Users can access these resources through broadband networks (such

as the internet). Various kinds of services are provided and classified

according to the associated resources. They include Infrastructure

 １０

as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS) (Figure 2.1).

Figure 2.1 Conceptual diagram of cloud service types.

Depending on the deployment model, the cloud platform itself can

be may also be categorized as public or private (Mell and Grance,

2011). IT companies such as Amazon, Microsoft, Google, and IBM

provide public cloud commercial services: AWS, Azure, GCP, and

Bluemix, respectively (Gartner, 2018). A private cloud is constructed

by an organization for internal users and purposes. In this study, I

used available public cloud services that can be used with the IaaS

option for running a numerical ocean model. Virtualization is a key

technology required to provide services such as IaaS. Through

virtualization, physical servers, storage, and N/W resources can be

 １１

logically segmented and allocated to users, and logically returned

when jobs are completed.

Figure 2.2 shows a hypervisor, a server virtualization technology that

can logically divide server resources.

Figure 2.2 Conceptual diagram of an idealized hypervisor. Physical

resources such as CPU, memory, and disk are virtualized through

virtualization S/W (e.g., hypervisor) and can be logically allocated as

instances.

A physical x-86 server can be logically separated and assigned as

a virtual machine (VM) through such a hypervisor. The virtual

servers in public cloud computing are examples of the utilization of

these hypervisor technologies. The virtualized servers used in the

commercial cloud are also optimized VMs through virtualization

technology (e.g., KVM) (AWS, 2020). Because VMs can be created

using predefined templates in a repository, it is possible to rapidly

recreate numerous VMs with the same configurations simply by

 １２

copying a VM template (AWS, 2022b). These techniques provide a

useful method for easily preparing multiple nodes for large-scale

numerical model experiments. This is also useful for researchers

who need to setup highly complicated environments for numerical

modeling.

2.2.2. Commercial cloud computing services

The number of users of public cloud services has increased rapidly

for economic or technical reasons. Major commercial public cloud

services in the global market such as Amazon's AWS, Microsoft's

Azure, IBM's Bluemix, and Google's compute cloud service have

numerous datacenters and provide many services in various

countries (Gartner, 2018). Commercial cloud vendors provide PaaS

and SaaS, as well as server resources, according to the user's

purpose. In addition, the number of earth science organizations (such

as NASA) that use commercial cloud to store and process earth-

related information is increasing (Chen et al., 2017). In this study, I

constructed and executed an environment for the ocean numerical

model in commercial clouds using VM servers with high-speed N/W

and memory to analyze the performance of various cluster

configurations, inter-server communication, and I/O.

 １３

Table 2.1 represents an example of the various server resources

provided (as of March 2018) by commercial clouds such as AWS

(AWS, 2022c).

Table 2.1 Overview of purpose, specifications, and price of AWS

instance types (us-west-2, Oregon)

Type Purpose Sub-Type vCPU Memory

(GB)

N/W Price/h

($)

T

General

purpose

t3.large

t3.xlarge

t3.2xlarge

2

4

8

8.0

16.0

32.0

Up to 5G

Up to 5G

Up to 5G

0.0832

0.1664

0.3328

M

General

purpose

m5.4xlarge

m5.12xlarge

m5.24xlarge

16

48

96

64.0

192

384.0

Up to 10G

10G

25G

0.768

2.304

4.608

C

Compute-

optimized

c4.8xlarge

c5.9xlarge

c5.18xlarge

36

36

72

60.0

72.0

144.0

10G

10G

25G

1.591

1.53

3.06

R

Memory-

intensive

application

s

r4.16xlarge

r5.12xlarge

r5.24xlarge

64

48

96

488.0

384.0

768.0

25G

10G

25G

4.256

3.024

6.048

P

GPU

instance

p2.16xlarge

p3.8xlarge

p3.16xlarge

64

64

96

732

488

768

25G

10G

25G

14.40

12.24

24.48

As the performance and features vary according to server instance,

it is possible to combine the required instances according to the

 １４

purpose of the research. GPU-equipped instances, which are widely

used for deep learning and high-speed image processing, are also

available in cloud computing. Expensive IT resources can be used at

a reasonable price according to the usage amount. Public cloud

service’s prices vary according to datacenter and resource type.

The most economic server can be selected regardless of the distance

between the user and the server. It is also possible to use IT

resources at lower cost by using spot-instance type resources

instead of on-demand type. Amazon Elastic Compute Cloud (EC2)

spot-instances are spare compute capacity in the cloud, which can

provide lower cost compared to on-demand instances (AWS, 2022d).

GCP also provides pre-emptible instances at a lower price point

(Google, 2022c). The datacenter and services in region Oregon, USA

were selected for this study.

High-speed processors, high-bandwidth memory, and high N/W

throughput are essential for large-scale modeling. In this study, I

chose recent servers with 64-bit Linux for our numerical modeling

experiment. High performance virtualized servers are appropriate for

numerical models with MPI because commercial clouds provide them

with high bandwidth over 10 Gbps and latency values are between 36

and 42 µs when the message size is less than 32 bytes (Table 2.2).

 １５

Table 2.2 Latency of cloud HPC clusters according to message size

Message size 1 byte 2 bytes 4 bytes 8 bytes 16 bytes 32 bytes

Latency (µs) 36.2 38.8 36.6 35.6 40.7 36

VM template copying for large-scale models in virtualized

computing environments such as public cloud services can minimize

preparation time.

2.3. Numerical model for performance analysis of

commercial clouds

2.3.1. High Performance Linpack Benchmark

HPL, an implementation of Linpack Benchmarking, is a useful tool

for evaluating the performance of High-Performance Computing

Clusters (HPCC) (Rajan et al., 2012). It is a benchmarking software

package that solves a random dense linear system in double precision

(64 bit) arithmetic on distributed-memory computers such as MPI

clusters. The general performance of clusters was tested using HPL

and compared with the performance of ROMS. The cluster

performance was evaluated as floating-point operations per second

(Flops) according to the nodes and memory. The results are

presented in section 2.4.

 １６

2.3.2. Benchmark Sustainable Memory Bandwidth and

Memory Latency

Memory bandwidth is a crucial determinant of computing speed

because numerical ocean modeling requires huge memory I/O in an

MPI environment. In this study, I evaluated the bandwidth of memory

in virtualized computing environments with the STREAM benchmark

S/W for HPC. Memory bandwidth depends on CPU type and instance

type in a virtualization environment. The memory bandwidth was

measured using a single node and multiple nodes respectively in

parallel with MPI.

Memory latency could also be an important factor in memory I/O

performance. I measured the memory latency of the servers with

Intel memory latency check tool for analysis of the memory I/O

performance (Intel, 2021). I analyzed the latency and the cache

hierarchy to evaluate total memory I/O performance.

2.3.3. Numerical Ocean Model

ROMS, the numerical model used in this study, is a free-surface

ocean model with vertical terrain-following and horizontal curvilinear

coordinates. It solves hydrostatic, free-surface primitive equations

(Shchepetkin and McWilliams, 2005). A third-order upstream

 １７

advection scheme and the K-Profile Parameterization scheme

(Large et al., 1994) are used for horizontal advection and vertical

mixing, respectively. Many ocean scientists use ROMS in a variety of

ways to meet their research needs. ROMS comprises very modern

and modular code written in F90/F95 using C-pre-processing to

activate the various physical and numerical options. It has a generic

distributed-memory interface that facilitates the use of several

message passing protocols. Currently, data exchange among nodes is

achieved using MPI. However, other protocols such as MPI2 and

symmetrical hierarchical memory can be used without much effort.

Further, the entire input and output data structure of the model is via

Network Common Data Form (NetCDF) (ROMS, 2015).

The model domain used in this study extends from 115°E to

162°E and from 15°N to 52°N, which includes the Yellow Sea,

East China Sea, and East/Japan Sea (Figure 2.3). It features 1/10°

horizontal grid resolution and 40 vertical layers. The bottom

topography data are based on the Earth Topography five-minute grid

(ETOPO5) dataset of the National Geophysical Data Center (Amante

and Eakins, 2009).

 １８

Figure 2.3 The domain of this study. The model domain covers 15-

52˚N and 115-162˚E, which includes the East China Sea, Yellow

Sea, East Sea, and the north-western part of the Pacific. Color

signifies water depth.

The initial temperature and salinity were obtained from the

National Ocean Data Center (NODC) World Ocean Atlas 2009

(WOA09) (Antonov et al., 2009; Locarnini et al., 2009). For the

lateral open boundary, the monthly mean temperature, salinity, and

velocity from the Simple Ocean Data Assimilation (SODA; Carton and

Giese, 2008) for 2010 were applied. The surface forcing, which

includes daily mean wind, solar radiation, air temperature, sea level

pressure, precipitation, and relative humidity, was derived from the

 １９

ERA-Interim reanalysis data of the European Centre for Medium-

Range Weather Forecasts for 2010 (Dee et al., 2011). These data

were applied to calculate the surface heat flux with the bulk formulas

(Fairall et al., 1996). Tidal forcing of 10 tidal components was

provided by TPXO7 (Egbert and Erofeeva, 2002). Freshwater

discharges from 12 rivers were also applied in the model

(Vörösmarty et al., 1996; Wang et al., 2008). Details on the model

configuration are given in Seo et al. (2014).

2.3.4. Deployment of Numerical Ocean Model and

Benchmark Packages on Cloud Clusters

The numerical ocean model and benchmark S/W packages

(STREAM and HPL) were setup for the performance analysis on

commercial clouds using virtualized server resources. Tables 3 and

4 show details of the resource types and specifications of each

cluster. I constructed five HPCs according to resource type. The

performance of the benchmark S/Ws and ROMS were evaluated in

each cluster with different CPUs and memory. I assigned the vCPUs

up to 512 cores in each cluster, as considering the performance

characteristics of hyper-threads in ROMS modeling and HPL the

high-speed N/W environment configuration for MPI-based parallel

processing is also absolutely necessary. The HPC environment is

 ２０

usually configured as an InfiniBand high-speed network capable of

achieving a maximum bandwidth of 40 Gbps with very low latency. In

commercial clouds, HPC can be configured as an environment

supporting an Ethernet-based high-speed network having a

bandwidth of up to 25 Gbps with low latency (Table 1). In order to

secure a bandwidth of 10 Gbps or more and minimize latency, a

separate N/W group has to be constructed and configured with Virtual

Private Cloud (VPC) in the AWS commercial cloud (AWS, 2022e).

Similar N/W group functions are provided by other commercial clouds.

In this study, VPCs were constructed for the clusters and connected

among nodes with a private Internet Protocol (IP) address. For the

parallel processing of ROMS, PGI compiler (NVIDIA, 2022) and

Open-MPI were configured and NetCDF installed for the input and

output data structure of the model.

Virtualized IT resources are more flexible and configurable to

allocate and manage than physical resources. However, there is a

small decrease in performance because computing resources (e.g.,

CPU, Memory, NW) are provided through the software layer such as

a hypervisor. The virtualized network also causes a little decrease in

performance (Younge et al., 2011, Gupta et al., 2013, Jung et al,

2017). However, virtualization technology has been improved greatly.

One of the technologies that have been applied to improve the speed

 ２１

of virtualized N/W resources is Single Root I/O Virtualization (SR-

IOV). SR-IOV is a technical approach to device virtualization that

provides higher I/O performance and lower CPU utilization than

traditional virtualized network devices. Commercial clouds also adapt

this technology to prevent performance decrease in some high-

performance instances. They provide an additional high-speed N/W

environment called ENA to support up to 25 Gbps bandwidth in the

commercial cloud such as AWS (AWS, 2016). If the amount of

communication between nodes is large or the number of nodes

increases, it is possible to configure the environment using instance

types providing these high-performance features and to achieve

better numerical modeling performance. Using the Ethernet based on

the enhanced N/W and high-performance servers, good performance

can be achieved in numerical ocean modeling.

2.4. Simulation results

2.4.1. Benchmark simulation

Commercial cloud companies and private organizations provide

their own instances or CPU resource types for their customers.

Figure 2.4 shows the HPL performance of the clusters with various

 ２２

CPU types respectively.

Figure 2.4. Performance of the cloud clusters according to number of

vCores using the HPL S/W package.

The performance of all clusters increases linearly with the number

of cores. However, the increase rate is different for each cluster. The

performance of cluster C increases rapidly, whereas that of clusters

A, B, and E increases slowly. It is remarkable that the performance

of cluster-C is better than that of cluster-D despite the relatively

low CPU clock. This result suggests that the performance of the

cluster depends on the resource specification (Table 2.3).

This information helps us to select the best configuration for the

running of our numerical ocean model, because the H/W efficiency

according to resource type of the cluster is different.

 ２３

Table 2.3 Hardware and software configuration of commercial clouds

Type CPU Type VCores

per node

Nodes OS Compiler

Cluster-A

Xeon®

Skylake

(2.0 GHz)

64/72G 16 Linux (64Bit)

(CentOS 6.9)

PGI Compiler 18.4

Open-mpi 2.01

NetCDF4 (4.4)

gcc 4.4

Intel Parallel Studio

XE 2019 Initial

Cluster-B Xeon®

Broadwell

(2.2 GHz)

64/72G 16 Linux (64Bit)

(CentOS 6.9)

PGI Compiler 18.4

Open-mpi 2.01

NetCDF4 (4.4)

gcc 4.4

Intel Parallel Studio

XE 2019 Initial

Cluster-C

Xeon®

Skylake-

SP (2.50

GHz)

96/144G 16 Linux (64Bit)

(Customized)

PGI Compiler 18.4

Open-mpi 2.01

NetCDF4 (4.4)

gcc 4.4

Intel Parallel Studio

XE 2019 Initial

Cluster-D

Xeon®

Skylake-

SP (3.00

GHz)

72/144G 16 Linux (64Bit)

(Customized)

PGI Compiler 18.4

Open-mpi 2.01

NetCDF4 (4.4)

gcc 4.4

Intel Parallel Studio

XE 2019 Initial

Cluster-E Xeon®

Broadwell

E5-2686

v4

(2.3 GHz)

64/488G 16 Linux (64Bit)

(Customized)

PGI Compiler 18.4

Open-mpi 2.01

NetCDF4 (4.4)

gcc 4.4

Intel Parallel Studio

XE 2019 Initial

The STREAM benchmark results of all clusters also increase with

the number of nodes, but the bandwidth per node decreases (Figure

2. 5). This result suggests that the memory performance of the nodes

decreases slightly with the increment of remote node I/O. The

increase ratio of the memory bandwidth according to the core is

 ２４

different in each cluster. It is larger in clusters C and D, which

corresponds to the performance result of the cluster, as shown in

Figure 2.4.

Figure 2.5 Sustainable memory bandwidth of the cloud clusters

according to number of vCores.

This memory bandwidth might determine the performance of MPI-

based numerical models using large memory I/O.

2.4.2. Ocean model simulation

Figures 2.6 and 2.7 show the simulated Sea Surface Temperature

(SST) and surface velocity initially and after 3 days of execution

from 1 January 2010, respectively. The Kuroshio Current,

characterized by warm water and high speed, is well simulated along

the Okinawa trough and the eastern coast of Japan. Cold water

 ２５

appears in the Okhotsk Sea, the northern East/Japan Sea, and the

coast of the Yellow Sea as a result of the atmospheric cooling and

vertical mixing (Seo et al., 2014).

Figure 2.6 (a) Initial sea surface temperature and (b) simulated sea

surface temperature after 3 days from 1 January 2010.

Figure 2.7 (a) Initial surface horizontal velocity and (b) simulated

surface horizontal velocity after 3 days from 1 January 2010. Vector

signifies current speed and direction.

Comparison of the models simulated by the various commercial

servers according to cores shows that the Root-Mean-Square Error

 ２６

(RMSE) of the SST is 0.0057–0.0097 ℃ and the RMSE of the u-

component and v-component of the velocity is about 0.0005 ms-1.

This means that the difference among the simulation results from

commercial cloud systems is small. I found that the RMSE between

the physical servers and virtualized servers is also very small (Jung

et al., 2017)

2.5. Analysis of ROMS performance on commercial

clouds

The CPU and memory might be major factors that determine the

execution performance in numerical modeling. Analysis of the CPU

and the memory performance for ROMS and benchmark S/W were

conducted in virtualized commercial clouds, where users can select

the best resource type to minimize time and cost based on evaluation

of CPU and memory.

2.5.1. Performance of ROMS according to H/W resources

Commercial cloud companies generally use Intel Xeon CPUs (Table

2.4). The recent Intel Xeon Scalable Processor (SP) family has more

features than previous generations (formerly Broadwell

microarchitecture).

 ２７

Table 2.4 CPU specification of cloud HPC Clusters

Type Cluster-A Cluster-B Cluster-C Cluster-D Cluster-E

Architecture x86_64 x86_64 x86_64 x86_64 x86_64

CPU(s) 64 64 94 72 64

On-line

CPU(s)

0–63 0–63 0–93 0-71 0-63

Thread(s)

per core

2 2 2 2 2

Core(s)

per socket

32 32 24 18 16

Socket(s) 1 1 2 2 2

CPU family 6 6 6 6 6

Model name Xeon®

Skylake

(2.0 GHz)

Xeon®

Broadwell

(2.2 GHz)

Xeon®

Skylake-SP

(2.50 GHz)

Xeon®

Skylake-

SP (3.00

GHz)

Xeon®

Broadwell

E5-2686

(2.3 GHz)

Hypervisor

vendor:

KVM KVM KVM KVM Xen

L1d cache 32 K 32 K 32 K 32 K 32 K

L1i cache 32 K 32 K 32 K 32 K 32 K

L2 cache 256 K 256 K 1024 K 1024 K 256 K

L3 cache 56320 K 56320 K 33792 K 25344 K 25 600 K

In particular, the cache structure is significantly different from the

previous generation. In Broadwell and Haswell CPUs, the Mid-

Level-Cache (MLC) was 256 KB per core and the Last-Level-

Cache (LLC) was a shared inclusive cache with up to 2.5 MB per core.

In the Intel Xeon SP family, the cache hierarchy has changed to

provide a larger MLC of 1 MB per core and a smaller shared non-

inclusive of up to 1.375 MB per core. A larger MLC increases the hit

rate in the MLC, which results in shorter effective memory latency

and lower demand on the mesh interconnect and LLC. The shift to a

non-inclusive cache for the LLC allows more effective utilization of

 ２８

the overall cache on the chip versus an inclusive cache (Intel, 2019).

In our study, cluster-C and cluster-D with the new CPU architecture

showed better performance than the clusters with the old cache

architecture. Cluster-C and cluster-D had a larger MLC of 1 MB per

core and a smaller shared-non-inclusive LLC per core.

Table 2.5 shows the running time of ROMS according to the

resource type and grid size of each cluster. The wall-clock time is

greatly different according to resource type and grid size. This result

signifies that resource analysis in evaluation of the execution

performance is highly important.

The running time of ROMS might depend on cache capacity and

hierarchy. Cluster-C and cluster-D show fast running time

regardless of grid size. The larger MLCs of cluster-C and cluster-

D result in high performance by reducing the latency between

memory and CPU.

 ２９

Table 2.5 Wall-clock time for ROMS modeling per unit node with 32

vcores

CPU(s) 32 32 48 36 32

Socket(s) 1 1 2 2 2

Vendor Intel Intel Intel Intel Intel

Model name Skylake

(2.0 GHz)

Broadwell

(2.2 GHz)

Skylake-SP

(2.50 GHz)

Skylake-SP

(3.00 GHz)

Broadwell

E5-2686

(2.30 GHz)

L1d cache 32 K 32 K 32 K 32 K 32 K

L1i cache 32 K 32 K 32 K 32 K 32 K

L2 cache 256 K 256 K 1024 K 1024 K 256 K

L3 cache 56320 K 56320 K 33792 K 25344 K 46080 K

Wall-clock time

(sec) for

 (51ⅹ50ⅹ20)

26 24 14 12 18

Wall-clock time

(sec) for

 (100ⅹ98ⅹ40)

76 74 45 45 62

Wall-clock time

(sec) for

 (210ⅹ206ⅹ40)

266 266 176 184 232

Wall-clock time

(sec) for

 (422ⅹ412ⅹ40)

1011 983 663 698 886

Wall-clock time

(sec) for

 (846ⅹ826ⅹ40)

4211 4294 2872 3032 4011

The execution performance of ROMS shows a similar pattern to

that of HPL. The CPU with the high-performance cache memory

showed better performance for HPL, as shown in Figure 2.4. Even

though the CPU clock is fast, the performance of ROMS is relatively

low on the cluster with long latency between the CPU and memory.

The latency of the memory I/O might be long in large memory loading.

The performance of ROMS in virtualized servers definitely depends

 ３０

on cache hierarchy, which reduces the latency between CPU and

memory.

The virtualized CPU resource type related with the hyperthreads

is also an important factor in parallel systems. Because many nodes

with multiple cores are used to support parallel processing in large-

scale numerical models, it is necessary to consider the number of

servers and the best performance of the servers in parallel

processing. Allocation of the optimal vCPUs for each node and

optimizing the load balance of each node to achieve enhanced

performance are important in HPC computing. Commercial cloud

vendors usually provide virtualized servers with hyperthreads-

enabled CPUs, called as a virtualized CPUs or vCPUs. Fundamentally,

two threads are given based on one physical CPU core (Figure 2.8).

Figure 2.8. Conceptual mechanism of vCPU in the virtualization of

physical quad-core. vCPUs of cloud instances are provided through

the hyperthreads-enable mode. The number of physical CPUs is

one-half of the vCPU instances.

 ３１

A virtualized server uses one thread as a virtual core but appears

to show twice the number of physical cores. Sometimes poor

knowledge of these configurations can lead to misunderstanding of a

vCPU’s performance and consideration of it as being similar to a

physical CPU’s. There is little difference in the performance between

running time of half of a vCPU and a full vCPU in each cluster (Figure

2.9).

 ３２

Figure 2.9. (Upper) Wall-clock running time for 3 days simulation

and (lower) HPL Flops according to the number of vCores on

cluster-C.

If one physical CPU is used fully, the two threads such as MPI job

task eventually have to share one physical CPU core resource. In this

case, there is little gain in the performance of MPI jobs in

hyperthreads mode. Therefore, it is desirable to disable hyper-threading

or allocate vCPU in a commercial cloud considering this characteristic.

 ３３

The memory I/O performance is important in numerical models

using huge memory I/O in the HPC clusters. The sustainable

memory bandwidth and latency time determines the execution

performance of ocean modeling with large memory I/O. Figure 2.10

shows the latency of the memory in three clusters, which provides

latency information.

Figure 2.10. Memory latency time according to memory bandwidth in

clusters C, D, and E.

Cluster-C with a 2.5 GHz CPU and 1 MB MLC type has the low

memory latency. Its running time for ROMS is similar to that of

Cluster-D with a 3.0 GHz CPU and 1 MB MLC cache. The latency

time of the memory affects its I/O performance. In this experiment,

the best execution performance of the ROMS and benchmark S/W

appears in the resource type with large MLC cache and lower

memory latency, as in clusters C and D. This suggests that latency

 ３４

should be also seriously considered in numerical modeling that needs

huge memory I/O.

2.5.2. Performance of ROMS according to grid size

I divided our experimental results into three based on Degree Of

Freedom (DOF) size (Table 2.6), to evaluate the execution time

according to CPU resource type and memory I/O. The execution

times differ according to CPU resource type, but the maximum

performance of each cluster appears with similar number of cores

(Figure 2.11).

 ３５

Figure 2.11 Wall-clock running time for 3 simulation days as a

function of number of vCores for various grid sizes.

The execution time in the coarse grid (small DOF size) decreases

as the number of cores increases. The minimum time appears at

about 128 cores regardless of CPU resource type. The execution

 ３６

times decreases with the number of cores in all sizes. However, the

decrease rate is small after 64 cores in the coarse grid and 256 cores

in the medium and fine grids, respectively.

Table 2.6 Grid-Size Type of numerical ocean model

Resolution of grid Coarse Medium Fine

Dimensions of grid 210ⅹ206ⅹ40 422ⅹ412ⅹ40 846ⅹ826ⅹ40

Degree Of Freedom

(DOF)

1,730,400 6,954,560 27,951,840

I calculated relative efficiency by assuming one as the efficiency of

32 vcores. The efficiency according to the number of cores

decreases rapidly regardless of grid size (Figure 2.12). As the

number of cores increases, the efficiency decreases in all grids. The

efficiency decreases more rapidly in coarse grid than in fine grid.

 ３７

Figure 2.12 Efficiency of cluster as a function of number of vCores

for various grid sizes. Thick gray fitting lines represent mean

efficiency of clusters.

The fitting equations of mean efficiency with number of cores show

quantitatively the decease rate according to the grid sizes. When the

number of cores increases by a factor of four, the efficiency

decreases to about 0.35 in the coarse grid with 1,730,400 of DOF but

0.82–0.95 in the fine grid with 27,951,840 of DOF (Figure 2.13).

 ３８

Figure 2.13 Mean efficiency of clusters as a function of grid size in

different cores.

This result suggests that increasing the number of cores is less

effective in a small DOF than in a large DOF. The fitting equations in

Figure 2.13 provide useful information for selecting the best number

of vcores according to the DOF.

Figure 2.14 shows the running time of one DOF per vcore for 1 day

of simulation with the DOF according to the number of vcores for

each cluster. Increasing the number of vcores is more effective in the

large DOF than the small DOF regardless of clusters. The fitting

equations in Figure 2.14 enable us to estimate the running time of

ROMS according to DOF size and resource types in the virtualization

environments or clouds.

 ３９

 ４０

Figure 2.14 Wall-clock running time as a function of DOF for 1 day

simulation of one DOF according to number of vCores.

 ４１

2.6. Summary

In this study, I investigated how computing resources affect the

performance of an MPI-based ROMS in virtualized cloud

environments. To evaluate the performance more objectively, not

only ROMS but also the benchmark S/Ws such as STREAM and HPL

were executed in the virtualized clouds. Five clusters with different

CPU and memory were tested to evaluate the performance of ROMS

for three different grid sizes in the commercial clouds. I found that

the cache hierarchy and capacity between the CPU and main memory

play important roles in the performance of ROMS using huge memory.

The performance of clusters absolutely depends on the MLC.

Clusters of MLC (256 KB) show lower performance than those of the

MLC (1 M) owing to relatively small cache memory capacity. The

memory latency is also a key factor in the execution performance in

the commercial cloud HPC environment. Clusters comprising many

virtual cores and Ethernet based N/W in the commercial clouds were

found to provide good performance in numerical ocean modeling. This

result shows that increasing the number of cores is more effective in

large DOFs than in small DOFs. The efficiency decreases more

rapidly in a coarse grid than in a fine grid. If the number of cores

increases by a factor of four, the efficiency decreases to about 0.35

 ４２

in a coarse grid with 1,730,400 of DOF but 0.82–0.95 in a fine grid

with 27,951,840 of DOF.

The performance of cloud computing environments is constantly

improving, and various numerical models are being tested in cloud

computing environments. Microsoft's Azure already supports

InfiniBand N/W technology. N/W sensitive models may be tested in

InfiniBand-supported cloud environments easily in the near future.

Some numerical models might depend on the size of the memory

according to the grid size and the communication latency between the

nodes as well as the computation. These constraints can be satisfied

by suitable resource selection and various configurations in cloud

computing environments. The best performance of ROMS in

commercial cloud computing environments can be achieved by

selecting the appropriate CPU and memory and optimizing the

modeling environment. The commercial cloud computing environment

is a cost-effective solution for large-scale modeling. Various

technologies and resource configurations are available for enhancing

the security of cloud computing to the level of that of local HPC.

Moreover, VM image copying techniques can be used to copy and

share the model environment configuration of the ocean numerical

model rapidly in cloud environments. This makes it easier to

collaborate among researchers in a multinational context. Thus, cloud

 ４３

computing can provide an opportunity to focus on research and to

minimize the time and cost of resources needed to construct a

modeling environment.

 ４４

3. Reproducibility of numerical ocean model

on the cloud computing②

3.1. Introduction

Numerical ocean models are used to simulate the interactions

among various elements of ocean systems. These models play very

important roles in helping us understand and predict ocean dynamics.

Many ocean models have been coupled with atmospheric models to

consider the interactions of air and sea (Blackport et al., 2018).

Recent advances in information technologies (IT), such as cloud

computing, have enabled scientists to more easily run scientific

models of this nature (Chen et al., 2017; Zhuang et al., 2020). Hence,

emerging cloud technologies and case studies for ocean observations

and modeling have been performed (Vance et al., 2019; Signell et al.,

2019).

The IT infrastructures required for numerical models vary from

personal computers (PC) to virtualized servers and various cloud

services. Additionally, there are many software (SW) combinations

of operating system (OS), compilers, and libraries used to support

② The results of the presented work have been published in Jung et al.

(2021).

 ４５

and implement the numerical models. The complexity of the IT

environment increases rapidly with more complex SW model

configurations. Fortunately, various cloud IT resources are easily

procured. Nonetheless, complex environments tend to hamper

model-building for computational reproducibility.

Survey results have revealed that some code execution

environments can hinder the reproducibility required by

geoscientists (Konkol et al., 2019). Therefore, several efforts (e.g.,

open reproducibility research) have resulted in improvements to

such environments to support computational reproducibility (Open

Reproducible Research, 2020) and to help researchers share

experimental information and supportive infrastructures, including

SW and data configurations. The Executable Research Compendium

was designed for such reproducibility. It uses Docker containers,

which applies an OS-level virtualization to deliver SW-container

packages (Nüst et al., 2017). Containers are isolated SW bundles

having libraries and configuration files that can communicate with

each other through well-defined channels to provide flexibility and

portability, enabling applications to run at various locations. Virtual

boxes, containers, and Conda distributions have been used to abstract

analytical environments at smaller instances, which has been helpful

for the reproducibility of computational biology works (Grüning et al.,

 ４６

2019). Additionally, studies have tested Kubernetes container-

orchestration systems and the performance of other SW benchmark

for the feasibility of various scientific workloads (Beltre et al., 2019).

Prior studies have shown the advantages and future possibilities of

container environments in benchmark cases. In this study, I apply a

container-based architecture for geoscientific studies, including

numerical ocean modeling. I propose that the Kubernetes-managed

container cluster architecture for numerical ocean modeling be used

to increase computational reproducibility and achieve the needed

portability to support numerical ocean models in various public and

private clouds. This architecture saves time when setting up

numerical ocean models with their pre-built container images, and it

resolves the vendor lock-in problem of cloud computing. These

benefits allow greater flexibility of model transfer among private and

public clouds.

The rest of the paper is organized as follows. Section 3.2

introduces our regional ocean-modeling system (ROMS) and its

container and container-based numerical modeling architecture.

Section 3.3 explains the containerization of ROMS and the

implementation of container orchestration for parallel processing in

various environments. Section 3.4 presents the results of our ROMS

modeling reproducibility tests in various runtime environments,

 ４７

highlighting architectural feasibility. Finally, in Section 3.5, I

summarize the achievements of our containerized ROMS execution

architecture and provide necessary future improvements for

reproducible and portable SW architectures.

3.2. Containerization of numerical ocean model

3.2.1. Container virtualization

Container virtualization is a lighter-weight virtualization

technology than traditional hypervisor-based server virtualizations.

For comparison purposes, server virtualizations use a hypervisor,

which functions to logically divide and allocate physical server

resources (Figure 3.1). Each guest OS is installed on the virtualized

server, and the user’s SW is installed atop it. In contrast, container

virtualization uses a container daemon or a SW engine to create a

logically isolated unit (i.e., container) based on the capabilities of the

control groups (cgroup) and namespaces of Linux OS kernels. The

containers work like independent servers on the host OS. Unlike a

virtual machine (VM), separated cgroups and namespaces within the

same OS allow separate central-processing unit (CPU), input/output

(I/O), internet protocols (IP), and user spaces for each container. A

 ４８

cgroup is a Linux kernel feature that isolates and limits resource

types (e.g., CPU, memory, disk I/O, and network (NW)) (Sultan et

al., 2019).

Figure 3.1 Conceptional architecture of VM and container

virtualization.

Logically separated containers using Linux kernels do not have

independent guest OS layers. They instead share features of the

host-OS kernel. This architecture characteristic renders a lighter

weight environment. Many users use the de facto Docker

environment to deliver SW container packages (Shah et al., 2019).

Various container runtimes are compatible with Kubernetes

(Kubernetes Container Runtime, 2022) and the Singularity

container engine can be used for other high-performance computing

(HPC) to package entire scientific workflows, SW and libraries, and

 ４９

data to leverage the performance of local servers. Furthermore,

InfiniBand, a computer-NW communications standard used in HPC,

features very high throughput with very low latency and is used to

improve security (Veiga et al., 2019). These engines and compatible

environments are enabled by an open-source compatibility standard

specification (i.e., Open Container Initiative (OCI)), which is used to

maintain collaboration capability and compatibility with other tools

(Linux Foundation, 2020). Kubernetes can orchestrate various

containers using OCI standard specification.

3.2.2. Container-based architecture for HPC

Traditionally, for numerical ocean modeling tasks, a large number

of physical servers and high-speed NW switches (e.g., InfiniBand)

is required to create HPC clusters. As virtualization technologies and

cloud environments have become more commonplace, many earth-

science numerical models have been deployed on MPI clusters using

VMs in public clouds (Montes et al., 2017). A container-based

cluster can be configured on multiple nodes using container runtimes

and Kubernetes settings instead of installing individual SW packages

for MPI on physical servers or logically configuring virtual servers.

Container clusters can also be configured on a SW-defined logical

 ５０

NW layer (e.g., overlay NW), such that the containers of each node

are well connected. In a native container-based cloud environment,

the NW-plugin container of each node enables rapid NW

configuration (Luksa, 2018). Figure 3.2 illustrates the configuration

of the overlay NW used by the Kubernetes container cluster

(Kubernetes Cluster Networking, 2022). With this configuration,

it is easy to extend and run numerical models from a single-node

container cluster to a multi-node one. In this study, I construct

clusters of homogeneous and heterogeneous OS environments and

verify their portability, scalability, and computational reproducibility

using overlay NW features. Note that an etcd is a strongly consistent,

distributed key-value store that provides a reliable way to store data

so that it can be accessed by a distributed system or a cluster of

machines. Additionally, communication between nodes is made

possible via the application programming interface (API) server and

NW topology using overlay NW (Luksa, 2018; Kubernetes

Components, 2022). Furthermore, a Kube proxy is a NW

Kubernetes proxy that runs on each node in the cluster, implementing

parts of the Kubernetes service. The kubelet is the primary node

agent that runs on each node, and it manages pods, the smallest

deployable unit of computing that one can create and manage in

 ５１

Kubernetes.

Figure 3.2 Conceptual diagram of the Kubernetes overlay NW.

With the advancement of container virtualization technologies,

many orchestration SWs have been developed to effectively manage

and operate large numbers of containers. Currently, the most

commonly used container orchestration SW is Kubernetes, which was

developed by Google as an opensource project in 2014 (Kubernetes

overview, 2022). Figure 3.3 shows the conceptual architecture.

Kubernetes controls and manages containers as basic units, (i.e.,

pods) (Kubernetes Pods, 2022), making it possible to communicate

among them at every node using NW components based on an overlay

NW. I use StatefulSet, a Kubernetes controller for HPC container

orchestration, to deploy numerical model containers to multiple nodes.

Note that kubectl is a command-line tool that allows operators to run

commands against Kubernetes clusters. The kubectl tool can be used

 ５２

to deploy applications, inspect and manage cluster resources, and

view logs. YAML is a human-readable data-serialization language

commonly used for configuration files and in applications where data

is being stored or transmitted.

Figure 3.3 Architecture of Kubernetes clusters.

The Kubernetes orchestration solution provides scalability and

easy container management for numerical modeling. Various nodes

can easily be merged into a container cluster regardless of the

homogeneous or heterogeneous nature of the OS. StatefulSet codes

can then be executed for deployment, distribution, and parallelism of

containers. When code is executed on the Kubernetes engine, the

executable numerical model image is downloaded and configured on

designated nodes. Users can then easily run numerical models on the

 ５３

container cluster.

Kubernetes supports a variety of platforms (e.g., Linux and

Windows Server). Kubernetes Compatible SWs (e.g., MicroK8s)

(Canonical, 2022) can be used to run MPI jobs on a PC or a single

node. End-users can manage container clusters for numerical

modeling using container deployment techniques and numerical lump

modeling. Users can register various numerical model images in

public repositories for sharing publicly or privately. For detailed

technical specifications, please visit the Kubernetes official

documentation site (Kubernetes Overview, 2022).

3.2.3. Container-based architecture for hybrid cloud

Hybrid clouds combine a private cloud with one or more public

clouds by using proprietary SW and NW environments that enables

communication between distinct infrastructures (Hybrid clouds,

2022). A hybrid cloud provides large flexibility in HPC

infrastructures, because it enables users to easily move HPC

workloads between public and private infrastructures according to

environmental changes. Moreover, researchers can back-up data on

a private cloud or local data center and leverage more economical and

available computational resources in the public cloud. Network

 ５４

infrastructures, such as virtual-private-network (VPN) tunneling

environments or cloud interconnect lines, enable users to connect

each infrastructure organically for HPC jobs (AWS, 2022f).

When researchers want to move workloads for simulation from a

premise cluster to public cloud, it is important to easily deploy HPC

workloads into heterogeneous cloud environments without barriers.

If the suitable architecture for flexibility of infrastructure between

public clouds and private infrastructure is available, users can extend

to the public cloud when computational resources exceed local

availability.

In this research, I suggest that the container-based architecture is

suitable for the flexibility of workloads in the hybrid cloud. There are

several methods of creating secure NW infrastructures between

public clouds and private infrastructure. These methods include

CloudVPN, IPsec, routers, etc. (Google, 2022b). After configuring

the NW infrastructure between two environments, the server nodes

can communicate with each other as if they were on the same local

infrastructure. Figure 3.4 shows the container-based architecture

for HPC workload distribution between public and private clouds.

 ５５

Figure 3.4 HPC workload distribution above hybrid cloud with

Kubernetes

3.3. Materials and Methods

3.3.1. Comparison of traditional and container based HPC

cluster workflows

Figure 3.5 Conceptual workflow of VM and container clusters for

numerical modeling.

Figure 3.5 shows the workflow of the preparation and execution of

 ５６

both the traditional and container numerical-model architectures. In

the container-based architecture, a scientist or a technician builds a

runnable container image and pushes it to a public or private

repository for end users who then download the model image into

public or private container clusters. After constructing the container

cluster, it becomes possible to run the numerical model container.

StatefulSet codes (i.e., workload API objects used to manage

containers) are implemented on cluster nodes so that the end user

can run the numerical-model HPC clusters. In contrast, end users of

the traditional cluster prepare additional jobs, such as preparation of

prerequisite SW for the traditional architecture (not needed for the

container-based cluster). In particular, end users of the traditional

architecture must compile their own model codes and required SWs

(e.g., NetCDF and MPI libraries), depending on the OS version and

compiler type. Moreover, the compiled executable program is not

shareable to other users because of SW and infrastructure

dependencies. Thus, it becomes difficult and time-consuming to

prepare model environments based on VMs or bare-metal clusters

in public or private clouds.

 ５７

3.3.2. Model domain and datasets for numerical simulation

For our study, the model domain includes the northwestern Pacific

region and several marginal areas, such as the East China Sea, the

Yellow Sea, and the East/Japan Sea, ranging meridionally from 15° N

to 52° N and zonally from 115° E to 162° E (Figure 3.6).

Figure 3.6 Model domain for ROMS simulation.

The models have horizontally 1/20°, 1/10°, and 1/5° grid

resolutions and 40 vertical layers. The Earth Topography 1-min grid

(ETOPO1) dataset of the National Geophysical Data Center was used

for the bottom topography (Amante et al., 2009). Initial temperature

and salinity were derived from the World Ocean Atlas 2009 (WOA09)

 ５８

(Antonov et al., 2010; Locarnini et al., 2010). The air-forcing

datasets, including daily mean solar radiation measures, air

temperatures, wind, sea-level pressures, relative humidity, and

precipitation counts, were obtained from the ERA-Interim reanalysis

dataset of the European Center for Medium-Range Weather

Forecasts (Dee et al., 2011). Monthly averaged velocities,

temperatures, and salinities from the Simple Ocean Data Assimilation

were applied for the lateral open-boundary condition (Carton, 2008).

These data were employed for estimating the bulk formulae (Fairall

et al., 1996). Freshwater discharges from 12 rivers were included

(Vörösmarty et al., 1996; Wang et al., 2008). Tidal forces extracted

from TPXO7 were applied at the open boundary (Egbert et al., 2002).

The simulation time was 30 days from 1 to 30 January 2010. The

timestep size for 3D equations was 90 s, and the number of time steps

for 2D equations between each 3D time steps was set to 10. Two

types of output files were created for intervals of 480 time steps;

one was an averaged file for the interval, and the other was a

snapshot file at intervals. The output files included the sea surface

height, 2D and 3D horizontal velocities, and tracers. The Chapman

implicit, Flather, and clamped schemes were applied to lateral

boundary conditions for the sea-surface height, barotropic

component of velocity and 3D velocity, and tracers, respectively

 ５９

(Chapman et al., 1985; Flather et al., 1976). Horizontal harmonic

mixing coefficients for tracers and momenta were set as 20 and 100

m2s−1, respectively. A quadratic bottom stress scheme was employed,

and its coefficient was 0.0026. Surface- and bottom-stretching

parameters for controlling thickness of the vertical layer were set to

5 and 0.4.

I then compared the performance using three types of grids. Table

3. 1 shows the specifications of the three grid-model resolutions.

Table 3.1 Grid Size and Degree of Freedom in Each Experiment

3.3.3. Building the container image and registration in the

repository

I designed and implemented the execution architecture of the

numerical ocean model using Kubernetes and Docker containers. The

Docker-compatible image was a lightweight, standalone, executable

SW package that included dependent SWs with appropriate libraries

needed to run ROMS 3.6. Most geoscientific numerical models are

compiled and executed using FORTRAN or C/C++ typically on a

Linux OS. ROMS can also be compiled to generate executable files.

Type Coarse Medium Fine

Dimension

of grid

210×206×40 422×412×40 846×826×40

Degree of

Freedom

1730400 6954560 27951840

 ６０

They utilize NetCDF libraries for data I/O and MPI libraries and an

execution environment for parallel processing. The Docker file can

be executed to create the base image, including configured

environments and required SW installations. Table 3.2 lists the SW

and libraries in the ROMS containers used for this study. The model

scientists build the specific image includes required SWs using

Docker commands before pushing the image into the public

repository.

Table 3.2 SW Configurations for the Numerical Model Images.

Software Name Version Purpose

Compiler gcc/gfortran 4.3 Compile numerical ocean

model and I/O library

Ocean Model ROMS 3.6 Simulate ocean physical

properties such as Sea

Surface Temperature

and u and v vectors of

ocean current

I/O Library NetCDF 4.1 Read and write model

input/output data

MPI OpenMPI 3.1.4 Parallelize ocean-model

processes

Figure 3.7 shows the Docker file for generating the ocean modeling

image. In the head of the file, base Linux type, such as Ubuntu or

CentOS, were written. Then, required SW and compiler steps for

Linux OS were written. The Fortran compiler, OpenMPI, and NetCDF

are required for generating ROMS executable codes. This Docker

code is the main part of the required SW installation for the ocean

modeling program. Other required SW can be installed using the same

 ６１

syntax styles. Users can also enter deployed pods and check

compiled programs to modify or reconfigure their sources inside the

pods. A full compiled image of this research is downloadable from the

Docker hub (next7885/ubuntu_roms_k8s_hpc) and deployment codes

of the containerized ocean model are available at Zenodo

(https://doi.org/10.5281/zenodo.4015246).

Install ubuntu

FROM ubuntu:18.04

MAINTAINER next7885@snu.ac.kr

RUN apt-get -y update

RUN apt-get install -y openssh-server

Install gcc

RUN apt-get -y install apt-utils

ENV DEBIAN_FRONTEND noninteractive

RUN apt-get -y install gcc

RUN apt-get -y install g++

RUN apt-get -y install gfortran

RUN apt-get -y install wget

RUN apt-get -y install file

Install Open-MPI

RUN wget https://download.open-mpi.org/release/open-

mpi/v3.1/openmpi-3.1.4.tar.gz

RUN tar -xvf ./openmpi-3.1.4.tar.gz

RUN export CC=gcc

RUN export CXX=g++

RUN export FC=gfortran

RUN export PATH=$PATH:/usr/bin:/usr/local/mpi/bin

https://doi.org/10.5281/zenodo.4015246

 ６２

RUN export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib:/usr/lib64:/usr/local/m

pi/lib

WORKDIR /openmpi-3.1.4

RUN apt-get -y install make

RUN ./configure --prefix=/usr/local/mpi

RUN make

RUN make install

RUN apt-get -y install git

RUN apt-get -y install iputils-ping

RUN apt-get -y install net-tools

Install netcdf

RUN wget https://www.unidata.ucar.edu/downloads/netcdf/ftp/netcdf-c-

4.7.1.tar.gz

RUN wget https://www.unidata.ucar.edu/downloads/netcdf/ftp/netcdf-

fortran-4.5.1.tar.gz

RUN wget http://www.zlib.net/zlib-1.2.11.tar.gz

RUN wget https://support.hdfgroup.org/ftp/HDF5/current/src/hdf5-

1.10.5.tar.gz

RUN tar -xvf ./hdf5-1.10.5.tar.gz

RUN tar -xvf ./zlib-1.2.11.tar.gz

WORKDIR /openmpi-3.1.4/zlib-1.2.11

RUN ./configure --prefix=/usr/local/zlib

RUN make clean

RUN make && make install

RUN export PATH=$PATH:/usr/local/mpi/bin

WORKDIR /openmpi-3.1.4/hdf5-1.10.5

RUN export CC=mpicc CPPFLAGS=-I/usr/local/hdf5/include LDFLAGS=-

L/usr/local/hdf5/lib

RUN ./configure --prefix=/usr/local/hdf5 --with-zlib=/usr/local/zlib --

 ６３

enable-hl

RUN make clean

RUN make && make install

WORKDIR /openmpi-3.1.4

RUN tar -xvf ./netcdf-c-4.7.1.tar.gz

RUN tar -xvf ./netcdf-fortran-4.5.1.tar.gz

Figure 3.7 Required SW installation codes for generating ocean-

modeling image in Docker file

It is possible to share the Docker file to create an image or model

provision. If an image is registered in the public repository, any user

can download the container image to run the model. The Docker file

used to create the numerical model setup is a text file, and the images

can be re-created via Docker-file modification and rebuilding.

Several web sites (e.g., Docker-hub) offer a variety of container

images for public users. Every image has a specific uniform resource

locator and is accessible without requiring additional effort. In this

study, I created a ROMS 3.6 image and shared it to the Docker-hub

repository for scientific reproduction. Any end user can download it

using a simple Docker command (i.e., docker pull

next7885/ubuntu_roms_k8s_hpc).

If the size of the input dataset for the model is small, it is possible

to merge the data and the executable file when creating the image.

 ６４

3.3.4. Configuring a numeric model execution cluster

After registering the container images to the repository, the

container cluster was configured for numerical modeling. There are

two ways to do this. The first method requires installation of the

Kubernetes or compatible SW directly to the server or PC. The other

method requires the use of a Kubernetes cluster provided by the

public cloud. Because GCP, AWS, and Azure have recently provided

Kubernetes-based clusters, users can easily use them to reduce

runtime costs (AWS, 2022a; google 2022a; Azure 2022). I manually

placed the Kubernetes clusters on public clouds, a private cloud, and

a PC for various cloud environmental testing. A ROMS image

registered in the public repository was downloaded to all nodes, and

the model running environment was constructed using the developed

StatefulSet codes. Table 3.3 and 3.4 and Figure 3.8 shows various

SW and hardware configuration of local clusters for the numerical

ocean model of this study.

 ６５

Table 3.3 HW and SW Configuration of Local Clusters

 Laptop-PC Local Cluster#1 Local Cluster#2

CPU Type Intel-i7 Intel Xeon Intel Xeon

Hypervisor VirtualBox KVM KVM

Guest OS Windows 10 CentOS 7.5 Ubuntu 18.04

Nodes 1 Node 4 Nodes 3 Nodes

vCores/Memory 8Cores/16G 4Cores/8G

Container

Runtime

Containerd Docker v19.03.12 Docker v19.03.6

N/W Interface LAN LAN LAN

Orchestration

Tool

Microk8s

Kubernetes

v1.18.3

minikube

Kubernetes

v1.18.3

Figure 3.8 Kubernetes Cluster Configurations of local clusters

 ６６

Table 3.4 HW and SW Configuration of Clusters on Public Cloud

 AWS Google Azure

CPU Type Intel Xeon,

AMD

Intel Xeon Intel Xeon,

AMD

OS Ubuntu 18.04,

CentOS 7.5

Ubuntu 18.04 Ubuntu 18.04,

CentOS 7.5

Container

Runtime

Docker v19.03.6 Docker

v19.03.6

Docker v19.03.6

Orchestration

Tool

Kubernetes

v1.18.3

Kubernetes

v1.18.3

Kubernetes

v1.18.3

Notes: Containerd is an industry-standard container runtime that emphasizes simplicity,

robustness, and portability. Ubuntu is an open-source SW OS that runs from a PC to the

cloud. Minikube is tool to run single node Kubernetes cluster in VM on PC or servers

locally.

3.3.4.1. Codes for deploying containers on cluster

The StatefulSet controller sequentially distributes and manages

container distributions to nodes (Kubernetes Controller, 2022).

The internal domain name-service function provided by Kubernetes

was utilized for communication between the pods. Figure 3.9 shows

an example of the StatefulSet code for deploying the numerical

ocean-modeling containers into worker nodes for parallel processing.

It contains various information of the container distribution (i.e.,

replicas standing for the number of containers, image name in the

repository, container ports, etc.) for users intuitively.

Users can allocate modeling containers to nodes by easily checking

and changing configuration, such as replicas according to their

 ６７

environment.

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: roms-ssh-statefulset

 namespace: roms-k8s

 labels:

 app: roms-ssh

spec:

 replicas: 2

 selector:

 matchLabels:

 app: roms-ssh

 serviceName: "roms-ssh"

 template:

 metadata:

 labels:

 app: roms-ssh

 spec:

 serviceAccountName: sa-roms

 containers:

 - name: roms-ssh

 image: next7885/ubuntu_roms_k8s_hpc

 resources:

 limits:

 cpu: "8"

 requests:

 cpu: "3"

 volumeMounts:

 - mountPath: /NWP

 name: pvroms

 command: ["/bin/sh", "-c"]

 args:

 - echo starting;

 /usr/sbin/sshd;

 sleep 360000;

 echo done;

 ports:

 - containerPort: 22

 ６８

 lifecycle:

 postStart:

 exec:

 command: ["/bin/sh", "-c", "cat

/NWP/id_rsa.pub >> /root/.ssh/authorized_keys"]

 volumes:

 - name: pvroms

 persistentVolumeClaim:

 claimName: romsclaim

Figure 3.9 ROMS StatefulSet code.

Users can construct their own environment by deploying container

images to cluster nodes without setting up an additional MPI

environment in the Kubernetes cluster. This method is helpful to the

portability of MPI clusters. Various models and versions can be easily

deployed and tested in the same cluster environment using

separately compiled container images. Figure 3.10 shows the

conceptual diagram that uses Kubernetes for the numerical model of

the container clusters in the private or public clouds. Users can

perform modeling in various public and private environments to meet

their purposes and to share environments with coworkers. Various

computational environments might be simultaneously needed for

ensemble modeling, which requires a vast amount of IT resources.

Thus, this architecture can be a cost-saving and efficient alternative

to specific vendor lock-in scenarios and IT infrastructure

dependencies.

 ６９

Figure 3.10 Conceptual diagram of the container-based clusters for

public or private clouds.

Users can control and manage various infrastructure environments

by using the StatefulSet code. After Kubernetes installation, users

can add a configuration file to support the distribution of the MPI-

contained image parallelized across multiple nodes. In this study, the

StatefulSet code was developed and tested to distribute the image to

worker nodes using yaml, a human-readable data-serialization

language, which is commonly used for configuration files and

applications where data are stored or transmitted (YAML, 2021). I

configured our environment using standard StatefulSet codes, used

to test various execution environments (e.g., macOS, Windows, local

servers, and public clouds). The code included the number of pods,

the container image, the type of Kubernetes controller, and disk

information. I also configured the NW file-system volume type so

 ７０

that the persistent volume could share the volume among containers

(Luksa, 2018; Kubernetes Volumes, 2022).

Kubernetes utilizes a SW-defined overlay NW that resides on the

physical NW (Kubernetes Cluster Networking, 2022), and it

deploys various NW driver plugins (e.g., Calico, Weave-Net, and

Flannel) for various purposes. The Flannel NW driver is used to carry

out inter-pod communications. Traditionally, InfiniBand is used to

reduce the inter-node latency for MPI performance. Additionally,

remote direct-memory access (RDMA) support is available through

a container NW interface (Beltre, 2019). If users already have the

Kubernetes cluster or a Docker-container cluster, they can deploy

the registered container image to the worker node without any

additional work. This setup helps users immediately verify and utilize

the model. I configured the ROMS model environment in 30 min on

the public cloud using developed codes and images.

3.3.4.2. Deployment of a model container on a worker node

The downloaded image can be executed by the container runtime

engine installed at the node. For parallel processing of the numerical

models, the container runtime at each node must be tightly connected

and controlled. In the case of numerical models, I recommend that

 ７１

one container be run on each server to minimize pod communications.

Table 3.5 shows the performance penalty difference between one and

two containers on one node. If two or more containers are deployed

on the same server, communications between containers will cause a

performance penalty in the HPC cluster. This result shows a

performance penalty of 4%–7% according to the number of containers

per worker node.

Table 3.5 Runtimes and Performance Penalty According to Grid

Resolution

3.3.4.3. Deployment of multiple containers and running MPI

jobs on container cluster

There are a few preparation steps for deploying the StatefulSet in

the multiple nodes. The first step is to create a namespace for the

specific logical area in the Kubernetes cluster (Kubernetes

Namespace, 2022). The second step is to declare the storage

volume for multiple pod access, to read and write for modeling, and

to create the service account. The final step is to deploy StatefulSet

into multiple server nodes. All steps are coded, and the code created

Resolution of grid Coarse Medium Fine

Dimension of grid 210 × 206 × 40 422 × 412 × 40 846 × 826 × 40

Wall-clock time (s)

of one container per a VM

288 1178 5825

Wall-clock time (s)

of two containers per a VM

308 1222 6135

Performance Penalty 7% 4% 5%

 ７２

for this study can be downloaded from Zenodo

(https://doi.org/10.5281/zenodo.4015246). After deploying the

pods to multiple nodes, their status in the clusters can be checked

before running the numerical ocean modelling jobs. Each pod of the

node has a private overlay NW IP address above their static IP

address. This overlay IP address is used for executing mpirun

instead of node's static IPs in the Kubernetes cluster. During the

stage of running the MPI jobs in Kubernetes cluster, the pod’s IP

address inside the pod should be selected to execute the mpirun

command. Figure 3.11 shows overlay NW configuration of the pods

and the static IP configuration of the nodes in the cluster.

Figure 3.11 a) Network configuration of pods and b) NW diagram on

Kubernetes clusters

A pod plays the role of an abstraction layer above the node using

an overlay NW and a container runtime. After running the jobs, MPI

job processes are generated from the pod in each node. Compared to

https://doi.org/10.5281/zenodo.4015246

 ７３

the traditional cluster node, each pod has only related processes of

user applications. Conceptually, I can visualize the pod as an

abstraction node for running MPI jobs. That is why I chose the

resource controller type as the StatefulSet for MPI jobs in the

Kubernetes cluster. In Section 3.4.2, I suggested one pod per node

for improved performance. I can also operate each pod as an

abstracted host node. Figure 3.12 shows the processes of MPI jobs

inside the pod compared with the processes of the node. Container

virtualization shares the common OS layer and isolates the user

processes for the user application. The pod shows process

collections of the user application layer. During the process

monitoring of the host OS, users can see real MPI processes that are

generated from ocean-model pods.

Figure 3.12 a) Process monitoring inside host and b) process

monitoring inside pod

 ７４

3.4. Results and Discussion

3.4.1. Reproducibility

3.4.1.1. Plotting

The graphs of the model output are useful for intuitively evaluating

experimental results. Horizontal distributions of temperature and

ocean-surface currents from the container clusters were compared.

For this purpose, a control simulation was performed in the

Kubernetes cluster deployed to local Ubuntu 18.04 servers. Figure

3.13 shows the surface current and sea-surface temperature (SST)

from the control simulation after a month. The simulated Kuroshio

current showed speed and warmth along the eastern coasts of Taiwan

and Japan. Owing to atmospheric cooling and vertical mixing,

relatively cold water appeared along the coast of the Yellow Sea (Seo

et al., 2014). Output plots from simulations of container clusters in

public and private clouds had the same values as those from the

control simulation in every grid.

 ７５

Figure 3.13 a) Surface-velocity vectors and b) sea-surface

temperatures from the control simulation of February 1, 2010.

3.4.1.2. Root mean-squared error (RMSE) of containerization

for reproducibility

The RMSE was calculated to measure the computational

reproducibility of the ROMS modeling. I assumed n observations as

𝑦𝑖 and an associated estimator, �̂�𝑖 . In this study, observations

included the ocean-model outputs from the control simulation, and 𝑦�̂�

captured the outputs of simulations from various container clusters.

The RMSE of the SST, vertical temperatures, and u and v vectors

between the control simulation result and the simulation results

having various cloud clusters were examined. The computational

reproducibility was evaluated based on the RMSE. Containerized-

ROMS models were deployed to various Linux OSs and associated

 ７６

HW configurations, and they provided the same results. Tables 3.3

and 3.4 list the configurations of various container clusters. Results

were evaluated to analyze whether those of each execution were

identical. Comparisons of the control simulation via the simulation of

various container clusters in public and private clouds showed that

all RMSEs were commonly 0.0 °C for both SST and vertical

temperature, and they were 0.0 ms-1 along the surface velocity. This

result suggests that the container-based architecture might be a

suitable computation environment for achieving the needed

computational reproducibility for ROMS modeling.

3.4.2. Portability and Performance

3.4.2.1. Portability

Container images, including the OS library, compiler, MPI, NetCDF,

and the model binary used for parallel numerical modeling, are

downloadable and executable on container clusters. I configured the

worker nodes using Kubernetes syntax commands to construct a

model cluster. A node registered in the Kubernetes master node was

operated as a worker node. Communication between the master and

worker nodes was accomplished via the API server and NW topology

using an overlay NW (Luksa 2018; Kubernetes Components, 2022).

 ７７

Table 3.6 Homogeneous and Heterogeneous Cluster Configuration.

 Homogenous Cluster Heterogeneous Cluster

HW Intel Xeon 8124-M CPU 3.00-

GHz 36 CPU/72 GB

Intel Xeon 8124-M CPU 3.00-

GHz 36 CPU/72 GB,

AMD EPYC 7R32/2.8 GHz

32 CPU/32 GB

OS Ubuntu 18.04 Ubuntu 18.04 + CentOS 7 (7.5)

Container

Runtime

Docker v19.03.6 Docker v19.03.6,

Docker v19.03.12

Orchestration

Tool

Kubernetes v1.18.3 Kubernetes v1.18.3, v1.18.5

HW, SW, and OS configurations of homogenous and heterogeneous

container clusters are shown in Table 3.6. After configuring the

master node, I installed Kubernetes SW on the worker nodes and

joined them to the master node. ROMS was automatically configured

for modeling the environment after downloading it from a repository

where pre-built images are stored. RMSE was analyzed using the

results from the heterogeneous OS worker nodes and those of the

homogenous OS clusters. The calculated RMSEs were close to zero.

Container-based clusters were suitable for the reproducibility of the

model for various OSs. The container cluster enabled us to use

various server resources for modeling with little effort.

3.4.2.2. Performance

Running time is a clear indicator of performance. Thus, for our

 ７８

performance evaluations, I compared the running times of ROMS

models according to grid sizes and cores on the various clusters of

the public and private clouds. I also examined the throughput using

the STREAM benchmark on various clusters. Notably, when multiple

nodes are used, the memory I/O performance among multiple nodes

becomes important (McCalpin, 2017).

To compare the performance of the container-based cluster with

the VM cluster, I compiled and set up ROMS on the VM clusters using

the same HW and SW configurations as the private and public clouds.

Compared with the performance of the ROMS on the VM clusters,

Figure 3.14 shows that the container-based cluster had a

performance penalty between 1 and 9% for four nodes (128 vcores)

in the AWS cluster. However, when I reached eight nodes (256

vcores), the performance penalty changed to 7%–14% because of the

inter-pod NW latency.

 ７９

Figure 3.14 (a) Wall-clock running time of 3-day simulation of a

medium grid, and (b) wall-clock running time of 3-day simulation of

a fine-grid according to the vcores on the AWS clusters.

I then measured the latency of the VM and pod using the Ohio State

University SW micro benchmark (UL HPC Team, 2021). Figure 3.15

shows the NW latency of the pod NW and the VM in ethernet-based

MPI clusters. The NW latency of the pod was slightly larger than that

of the VM. There was a small performance penalty in the HPC

container cluster. However, considering the preparation time and

portability of the cluster, the container-based clusters provided an

important and alternative space in which to run numerical models with

computational reproducibility and portability in private and public

clouds. In virtualization environments that support RDMA, it was

possible to reduce NW latency (Zhuang et al., 2020; Beltre et al.,

 ８０

2019).

Figure 3.15 Comparison of NW latency of container and VM cluster

according to message sizes.

Memory bandwidth can be crucial to speed computations, and

numerical ocean modeling requires a large-memory I/O in the MPI

environment. I evaluated the memory bandwidth in a VM and

container cluster environment using the STREAM benchmark. The

memory bandwidth was measured at multiple nodes in parallel with

the MPI. The memory bandwidth of the container cluster was slightly

less than that of the VM cluster. The performance patterns of the

running time were similar in the container and VM clusters. Figure

3.16 shows the memory bandwidth of the container and VM cluster.

 ８１

Figure 3.16 Memory bandwidth of the container and VM cluster vs.

the number of AWS vcores.

3.5. Conclusions

In this study, an architecture for numerical models was designed

and applied based on light-weight container virtualization and

container orchestration technology to improve the computational

reproducibility and portability of numerical models in various public

and private infrastructure environments. The ROMS model container

image was registered in the standard repository for user convenience

in the container runtime environment. The infrastructure

configuration code was executed using Kubernetes by applying the

parallel processing of numerical containers in various cloud

environments. VMs and the container virtualization environments

 ８２

were managed via codes, owing to the development of cloud-related

virtualization techniques. ROMS models having different grid sizes

were implemented in cloud clusters having 32, 64, 128, and 256 cores.

Model results from various clusters based on containers were the

same as those from the control model, regardless of OS and HW

environments. The container-based simulation results coincided

with those of the control simulation of the SST, vertical temperature

profile, and surface velocity. This suggests that a container-based

cluster is appropriate for use in the computational reproducibility of

the numerical ocean model.

The container-based architecture makes numerical ocean

modeling much easier than does VM-based architecture in a variety

of private and public cloud environments, because the cloud

infrastructure environments are abstracted to make it easier for

researchers to share numerical model environments. After executing

a simple model on a PC using modifying grid sizes and iteration

numbers, large-scaled modeling was carried out in the HPC cluster

of private and public clouds by applying the same setup codes and

modifications. The procedure for preparing the numerical modeling

was coded and shared in the public repository. Additionally, the

proposed container-based numerical model-cluster architecture

made it easy to overcome the heterogeneity of NW drivers and HW

 ８３

limitations, compared with the traditional architecture.

This container-based architecture can help researchers perform

numerical modeling more easily in various public and private cloud

environments and improve model reproducibility and portability in

geoscientific research. This is especially useful for researchers who

lack appropriate IT infrastructures.

 ８４

4. Generative models for the prediction of

ocean temperature profile③

4.1. Introduction

It is estimated that the ocean stores 93% of the world's energy,

and the redistribution and exchange of the subsurface to the deep sea

plays a significant role in global warming (Wang et al., 2021).

Subsurface temperature data in the ocean aids in the interpretation

of physical properties associated with ocean physical motion, which

is also useful for military submarine positioning and obtaining fishery

distribution data (Schmidt et al., 2019).

The development of satellite and sensor technology enables us to

easily obtain sea surface information, but there are limitations to

directly obtaining subsurface information. Subsurface data are sparse,

whereas many satellites routinely collect sea surface temperature

(SST) and sea surface height (SSH). Recently, many researchers

have attempted to estimate the ocean’s vertical temperature profile

using statistical or gen techniques (Jiyang et al., 2017; Wang et al.,

2021). Some studies have been conducted to estimate the subsurface

③ The results of the presented work have been submitted into『Frontiers
in Marine Science』, (2022).

 ８５

temperature distribution of sea water vertically using satellite and

Argo Float data (Han et al., 2019). Argo floats also have limitations

in the precision or measurement of specific areas, such as near

coasts and marginal seas, because the floats are not uniformly

distributed (Roemmich et al., 2019).

Machine learning techniques such as convolutional neural networks

(CNN) and recurrent neural networks (RNN) have recently been

used to predict the vertical temperature profile using surface

information such as SST and SSH (Han et al., 2019). Prior studies

have made significant contributions, but there are some limitations.

The depth of data collection may limit the predicted value at a given

depth. The measured locations in Argo-float were sparse and not

fixed (Roemmich et al., 2019). Stationary data collection has the

advantage of obtaining uniform data from the same location. Creating

a model suitable for predicting ocean physical properties requires the

preparation of sufficient datasets for model training. Although

machine learning-based prediction models perform well in open

oceans such as the Pacific Ocean, they are limitedly used in marginal

seas because of the large spatiotemporal variability in the

temperature and current.

The objective of this study was to improve the prediction model’s

performance using data augmentation for training in a marginal sea

 ８６

with large temperature variations in time and space. I apply

generative models such as the generative adversarial network (GAN)

method and triplet variational auto-encoder (TVAE) to augment the

observational datasets and trained augmented datasets for the

subsurface temperature profile. The TVAE and conditional

generative adversarial network (CGAN) methods, among others,

were used to create artificial datasets that were used to improve the

model’s performance.

The remainder of this paper is organized as follows. Section 4.2

introduces the study area and methods, such as generative models

for the data augmentation and stacking ensemble method for the

prediction model, and explains the model architecture for predicting

the sea subsurface temperature profile and its implementation in deep

neural network environments. Section 4.3 shows that the results of

the ensemble prediction model based on the generated dataset are

meaningful, and the feasibility of data augmentation using generative

models such as TVAE and GAN in ocean science. Finally, in Section

4.4, I summarize the achievements of our ensemble prediction model

architecture and the data augmentation architecture based on

generative models. I also make recommendations for future

improvements to our architecture for geo-scientific applications and

extensions.

 ８７

4.2. Materials and Methods

4.2.1. Model domain and datasets for predicting the

subsurface temperature

The Tsushima current (TC) supplies heat and salt to the

East/Japan sea (EJS) (Preller and Hogan, 1998). The TC is divided

into two branches: one along the Japanese coast and the other along

the Korean coast (Figure 4.1) (Cho and Kim, 2000). This flow along

the Korean coast is called the East Korean warm current (EKWC)

(Cho and Kim, 1996; Kim et al., 2018). The EKWC turns eastward

around Ulleung Island, forming the Ulleung warm Eddy (UWE) (Kang

and Kang, 1990; Kim et al., 1991; Katoh, 1994). The UWE, with a

diameter of approximately 150 km, is located in the Ulleung basin

(Figure 1). The size and location of the UWE varies seasonally and

interannually (Kang and Kang, 1990; Isoda and Saitoh,1993; Choi,

2004). The UWE plays a key ecological role in supporting a

significant phytoplankton biomass (Kim et al., 2012). A station

routinely observed by the National Institute of Fisheries Sciences

(NIFS), which is located in the UWE, was selected for the generation

of the sea subsurface temperature profile at our study point (37.06°N,

130.31°E, red circle in Figure 4.1). The fluctuating characteristics of

the temperature profile in the EJS render it suitable for testing the

 ８８

prediction performance of the proposed temperature profile model.

Compared to the open sea, it is challenging to predict temperature

profiles in marginal seas, such as the EJS, because many complex

dynamic processes cause large variations in temperature and current.

Figure 4.1 Schematic currents in the study area and model domain.

The red point (37.06°N, 130.31°E) represents a routine

observation station. Selected station for comparing the model and

observation temperature profiles. TC, EKWC and UWE stand for

Tsushima current, East Korean warm current and Ulleung warm eddy,

respectively.

The model has 14 vertical layers. The subsurface temperature

 ８９

profile was predicted using the NIFS’s serial oceanographic

observation dataset. The SST dataset for the research domain was

extracted from the advanced very high-resolution radiometer

(AVHRR) instrument. The AVHRR has a spatial grid resolution of

approximately 0.25°, and the temporal resolution is 1day. These

datasets were downloaded from the National Center for

Environmental Information (NOAA, 2022). The sea surface

temperature data among the NIFS observation data sets were also

used as auxiliary data to prepare the SST data. I used the Copernicus

marine environment monitoring service (CMEMS) gridded dataset for

daily sea-level data (Copernicus, 2022). The horizontal resolution

was 0.25°. The datasets are sea-level daily gridded data from

satellite observations for the global ocean from 1993 to 2017. I used

a dataset for the prediction model, which included absolute dynamic

topology (ADT) and sea level anomaly (SLA) from daily sea level

data. I used data from 1993 to 2017 when both SST and SSH satellite

data were available. The dataset was downloaded from the CMEMS

climate data store (Copernicus, 2022). Training data were created

using datasets from 1993 to 2012 as seed data. The model's

performance was measured using test data from 2013 to 2017.

I created a dataset for GAN seed data by combining satellite data

on the date when the measured temperature was present for each

 ９０

reference depth of the observation point. The data were removed

without artificial interpolation when missing temperature values at

the corresponding depths were found. Datasets were generated using

only data when all observation data existed at the reference depth on

the corresponding date.

4.2.2. Model architecture for predicting the subsurface

temperature

In this study, I intend to create a machine learning model that

predicts the subsurface temperature profile by combining satellite

datasets such as SSH and SST with locally measured in situ

temperature profile data. Figure 4.2 shows the conceptual

architecture for predicting the sea subsurface temperature profile.

To augment the sparse temperature profile dataset, I experimented

with some types of generative methods, such as CTGAN, CopulaGAN,

and TVAE (Xu et al., 2019). The observed datasets in Earth science

are mainly tabular-type datasets, and continuous columns can have

multiple modes. Some observed datasets may have non-Gaussian

distributions, which are sometimes multimodal. Owing to these

characteristics, there may be challenges in tabular data augmentation

tasks using GANs (Xu et al., 2019). Much research has been

conducted to overcome these challenges, and I applied generative

 ９１

methods such as CTGAN, TVAE, and copular GAN based on related

research in this study.

Figure 4.2 Conceptual architecture for predicting subsurface

temperature

4.2.3. Neural network generative models

4.2.3.1. TVAE

Triplet-based variational autoencoders (TVAEs) are enhanced

types of variational autoencoders (Ishfaq et al., 2018) that can learn

latent representations with more fine-grained information.

Figure 4.3 shows an example of latent representation, which is a

key feature of the input data. The key features of dogs and cats are

their ears and eyes. The latent representation is the sum of the latent

features. The autoencoder, the middle layer of this network, contains

a simplified representation of the input data and can be used to

reconstruct the output.

 ９２

Figure 4.3 Conceptional architecture of latent representation

TVAEs can learn an interpretable latent representation that

preserves the original dataset’s semantic structure by incorporating

triplet constraints into the learning process. In each iteration of

training, the input triplet is randomly sampled from the training

dataset. Then, the triplet of images or data is flown into the encoder

network simultaneously to obtain their mean latent embedding

(Ishfaq et al., 2018). A loss function over triplets to model the

similarity structure over the image or data can be defined, as in Wang

et al. (2014). Embedding, a method used to represent discrete

variables as continuous vectors, is the process of converting high-

dimensional data into low-dimensional data in the form of a vector

such that the two are semantically similar (Jeevanandam, 2021).

 ９３

4.2.3.2. Generative Adversarial Networks

The generative adversarial network (GAN) is a machine-learning

method proposed by Ian Goodfellow (Goodfellow et al., 2014). The

core idea is that one generator is trained to generate fake data and

the other (discriminator) is trained to distinguish between real and

fake samples. The goal of training a generative network is to improve

the discriminant network’s error rate. The generative network

generates fake or candidate data, whereas the discriminative network

evaluates them. In terms of data distribution, they compete with each

other. A conceptual diagram was shown (Figure 4.4). A GAN consists

of two networks: a generator (G) and discriminator (D).

Figure 4.4 Conceptional architecture of generative adversary

network

Both networks had their own loss functions. The loss function of GAN

is given below, and it is similar to the min-max problem (Goodfellow

et al., 2014).

𝑚𝑖𝑛𝑚𝑎𝑥 𝑉(𝐷, 𝐺) = 𝔼𝓍~𝑃𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝓍)] + 𝔼𝑧~𝑃𝑧(𝑧)[log (1 − 𝐷(𝐺(𝓏)))]

 ９４

The definitions of the terms used are follows.

Term Definition

G Generator model

D Discriminator model

z Random noise

x Real data

G(z) Data generated by Generator (synthetic data)

pdata(x) Probability distribution of real data

pz(z) Probability distribution of synthetic data

D(G(z)) Discriminator’s output when the generated data is an input

D(x) Discriminator’s output when the real data is an input

4.2.3.3. Conditional GAN

If I can determine the type of data to be generated through a GAN,

GANs can be used for many scientific applications. When I suppose

both the generator and discriminator having a condition of some

supplementary or auxiliary information y, GANs can be extended to

a conditional model. Furthermore, y could be various types of

supplementary information, such as class labels or different types

of data. I can perform conditioning by inputting y into both the

generator and discriminator as an additional input layer. The joint

hidden representation in the generator combines the prior input noise

Pz(z) and y, and the adversarial training framework allows

considerable flexibility in how this hidden representation is composed.

In the discriminator, x and y are presented as inputs to a

discriminative function (embodied again by a multilayer perceptron

 ９５

in this case (Mirza and Osindero, 2014). Figure 4.5 shows the

conceptual structure of a basic conditional adversarial network. The

generator synthesizes a fake sample (G (z, y) = x*|y) using a

random noise vector z and label y. Given the label, the fake sample’s

goal is to resemble the real sample as closely as possible. The

discriminator takes a real sample and a label (x, y), as well as a fake

sample and the label used to generate it (x*|y, y) (Langr and Bok,

2019). The discriminator learns to distinguish between real data and

matching pairs from real sample-label pairs, and how to identify fake

data-label pairs from a generator’s sample. The discriminator

outputs a single probability that the input pair is real data, and

computes it using the activation function sigma of the sigmoid.

Figure 4.5 Conceptional architecture of a conditional generative

adversary network

 ９６

The CTGAN is a GAN-based method for generating tabular data

using the data distribution of a tabular sample dataset (Xu et al.,

2019). CopulaGAN is a CTGAN model variant that uses a cumulative

distribution function-based transformation (synthetic data vault

(SVD), 2022). The dataset of the sub-surface temperature profile is

generally tabular data, and the temperature at each depth is not

linearly dependent on the observed depth. TVAE with a variational

autoencoder was used to generate datasets with high performance

and flexibility (Xu et al., 2019). I can prepare training datasets for

the prediction model and apply them to train the prediction models,

which are then used for the ensemble model, using the proposed

augmentation architectures based on generative models. Enhancing

model training is possible after artificially augmenting meaningful

datasets. The models used in this study were developed in Python

using the Tensorflow-based Keras library and pytorch-based SDV

libraries (MIT Data To AI Lab, 2022). Generative model codes (that

is, some types of generative adversarial networks and TVAE used to

generate sample data) were deployed on Python Jupyter notebooks

on AMD 10 cores and Nvidia RTX-3090. Augmented datasets were

used for several base models to construct an ensemble model for the

prediction of sea subsurface temperature profiles. Generally, the

ensemble model is more accurate than the single model at predicting

 ９７

values. I designed and implemented ensemble stacking methods using

several candidates to improve performance.

4.2.4. Prediction Models

In the stacking method for the ensemble, I chose the K-nearest

neighbors regression (KNNR) model, support vector regression

(SVR), and random forest regression (RFR) as base learners and the

multioutput linear regression (LR) model as the meta-learner in our

study. Every base learner generates the predicted values based on

their own algorithm, and they are used as datasets for the meta-

learner.

4.2.4.1. Stacking Ensemble

In statistics and machine learning, ensemble methods use multiple

learning algorithms to obtain better predictive performance than any

of the constituent learning algorithms alone (Zhang and Ma, 2012).

In ensemble learning, three major methods aim to combine base

models or weak learners. Bagging and boosting learn homogeneous

base models and combine them using a deterministic strategy or

process (Rocca, 2019). Stacking learns heterogeneous weak

learners in parallel and combines them by training a metamodel to

 ９８

output a prediction based on different base model predictions.

Ensemble stacking, or stacked generalization, involves training a

learning algorithm to combine the predictions of several other

learning algorithms (Brownlee, 2021; Kadkhodaei, 2020; Rocca,

2019). First, all other algorithms are trained using the available data.

And combiner algorithm is trained to make a final prediction with all

the prediction outputs of the other algorithms as additional inputs.

Stacking typically outperforms any single trained model. Figure 4.6

shows the conceptual architecture of the stacking ensemble. In this

study, I will use the ensemble stacking method to combine weak

learners that stand out in individual models to build a model with

better performance. Regression models, which are traditionally used

to estimate numerical values, are chosen as base models, such as the

KNNR, SVR, and RFR.

Furthermore, I intend to construct a metamodel using a multioutput

linear regression model that performs well in multiple predictions.

Multioutput regression is a regression problem that involves

predicting two or more numerical values given an input example

(Brownlee, 2021). In this study, I use a multioutput regressor to

predict multiple subsurface temperatures by depth using SSH and

surface temperature.

 ９９

Figure 4.6 Conceptual diagram of the stacking ensemble

4.2.4.2. K-Nearest Neighbors Regression

The k-nearest neighbor (k-NN) algorithm is a non-parametric

supervised learning method used for classification and regression

(Atteia et al., 2019). The K-NN regression output is the property

value for the object, and the value is the average of the values of the

k-nearest neighbors. K-NN estimates the association between the

input and response variables using feature similarity (Yao et al.,

2006). In the k-NN regression, the response variables are

approximated by averaging the observations in the nearest

neighborhood of the input instance using similarity measures (Ali et

al., 2019).

Guo et al. (2018) used KNNR to refine the existing datasets for

 １００

thermocline research, and Li et al. (2019) used KNNR to develop a

method for constructing high-resolution ocean models and found that

the proposed KNNR model was used to refine seawater thermocline

data and improve the data resolution on their vertical gradient.

I chose KNNR as the base learner because of its approximation

performance and recent thermocline research cases using KNNR.

4.2.4.3. Support Vector Regression

SVR is an extended algorithm of the support vector machine (SVM),

which is a classic and powerful machine learning algorithm for solving

nonlinear regression problems (Brereton and Lloyd, 2010). SVR

calculates the loss function based on structural risk minimization,

allowing a deviation of ε between the model output and the real value.

This differs from the traditional regression model, which is based on

the error between the model output and the real output. This can

avoid the disadvantages caused by pursuing experiential risk

minimization. SVR is a model that uses high-dimensional feature

spaces but penalizes the resulting complexity using a penalty term

augmented with the error function, making it suitable for fitting high-

dimensional data with comparatively fewer samples (Balogun et al.,

2021). The basic idea of SVM is to map multi-dimensional data onto

https://www.frontiersin.org/articles/10.3389/fmars.2021.671791/full#B1

 １０１

a higher-dimensional feature space. And there is a hyperplane that

linearly separates the original data while maximizing the margin

between different classes (Burges, 1998). Through SVM, the sub-

sea surface temperate anomaly in the Indian Ocean could be

estimated from satellite measurements of sea surface parameters

(SSTA, SSHA, and SSSA as input attributes for SVM) (Hua et al.,

2015). Li et al. (2017) evaluated the performance of a support vector

machine–complementary ensemble empirical mode decomposition

model to estimate SST in the northeast Pacific Ocean. In another

study, Jiang et al. (2018) evaluated LR and SVR prediction

performance of SST in the Canadian Berkley Canyon. Water depth

and coordinate information such as latitude and longitude were used

as input variables. These input variables have seldom been used to

assess SST in previous studies. The results showed that SVR

provided estimates closer to the observed data than LR.

4.2.4.4. Random Forest Regression

In this study, the RFR was chosen as the base learner to create the

ensemble model. RFR creates robust estimates using an ensemble of

decision trees, frequently without requiring data pre-processing,

making it an effective “off the shelf” method (Louppe, 2014).

 １０２

Decision trees are useful for determining nonlinear relationships

between the target variables and input features (Auret et al., 2012).

Gregor et al. (2017) used SVR and RFR to estimate CO2 levels in the

Southern Ocean and achieved good prediction performance. A random

forest is also a meta-estimator that fits several classifying decision

trees on various subsamples of the dataset and uses averaging to

improve the predictive accuracy and control overfitting (scikit-

learn.org, 2022). I chose the RFR for reasons such as nonlinear

relationships and predictive accuracy.

4.2.4.5. Linear Regression

Traditionally, linear regression analysis has been widely used in

various Earth science fields. Linear models have been widely used in

ocean prediction because they require minimal data input and are

relatively simple. Although simple, it is relatively effective in

identifying trends and provides important insights for understanding

and analyzing overall trends. It is widely used in ocean science to

predict water temperature distributions and analyze trends. Many

scientists use linear regression models (Morrill et al., 2005; Krider

et al., 2013) in ocean sciences. Feng et al. (2020) developed a

multiple linear regression algorithm for sea surface temperature

 １０３

retrieval using one-dimensional synthetic-aperture microwave

radiometry. The regression method is a strong candidate for

determining the relationships among a variety of properties, such as

sea surface temperature, sea surface height, and depth. I also need

to analyze the correlation between sea surface temperature and sea

surface height and depth. Leuliette and MWahr studied coupled

pattern analysis of sea surface temperature and TOPEX/Poseidon sea

surface height (Leuliette et al., 1999). They showed that the spatial

correlation is strong in both the Atlantic and Pacific. The good

temporal and spatial agreement between the SSH and SST fields

suggests that a robust regression between fields may have some

physical significance. With reference to the results of previous

studies and the robust of the model, I choose linear regression, one

of most common statistical methods as a member for ensemble in

many oceanic analyses.

4.2.5. Accuracy

For the performance evaluation of the machine learning models, I

applied the commonly used metrics: mean absolute error (MAE) and

root mean square error (RMSE). The RMSE evaluates the residual

between the observed and predicted values and is particularly

 １０４

sensitive to large errors. The MAE is less sensitive to extreme

values than the RMSE (Ait-Amir et al., 2015).

The mathematical formulas are as follows:

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑜,𝑖 − 𝑦𝑝,𝑖)

2

𝑁

𝑖=1

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑜,𝑖 − 𝑦𝑝,𝑖|

𝑁

𝑖=1

where 𝑦𝑝,𝑖 and 𝑦𝑜,𝑖 are the predicted and observed values in the

dataset, respectively, i is the sample number of the dataset, and N is

the length (number of samples in the test set).

4.3. Results and Discussion

4.3.1. Data Generation

High-quality datasets are critical for the prediction model’s

performance in machine-learning approaches. Real and observed

datasets may be costly and challenging to measure and acquire. In

this study, generative models were used to generate subsurface

temperature datasets, which are difficult to obtain, and the similarity

was determined by comparing synthetic and observed data

distributions (Figures 4.7 and 4.8).

 １０５

Figure 4.7 Data distributions of observed and synthetic datasets in

FEB from 1993 to 2012

In this study, I attempted to generate subsurface profile data using

TVAE and GANs and visualized the histogram and difference matrix

of observed and synthetic datasets. Figures 4.7 and 4.8 show the

density histogram of the synthetic data according to depth, and these

histograms provide information on the similarity between synthetic

and observed datasets. The difference matrix of the observed and

synthetic datasets shows the similarities and differences between

them (Figures 4.9 and 4.10).

 １０６

Figure 4.8 Data distributions of observed and synthetic datasets in

AUG from 1993 to 2012

Figure 4.9 Difference matrix of observed and synthetic datasets in

FEB from 1993 to 2012

Figure 4.10 Difference matrix of observed and synthetic datasets in

AUG from 1993 to 2012

 １０７

In this study, I compared whether the data were synthesized by

inputting summer and winter datasets into a generative model,

reflecting the distribution of the changed data. The August data

generation also shows a similar distribution between the observed

and synthetic data, and the difference matrix indicates that the gap

between the observed and synthetic data is small, and they are

similar.

In this study, I compared the accuracy metrics of the candidate

models, such as K-nearest neighborhood, SVR, random forest, and

linear regression for selecting ensemble model members. Several

models were used for the ensemble model, and I chose the base

learners for the stacking ensemble based on previous studies and

accuracy metrics such as the MAE and RMSE values. I chose an

observation point close to the UWE and evaluated the MAE and RMSE

of the base-learner models using the observed and synthetic

datasets.

In Figure 4.11, the MAE and RMSE of regression models such as

KNNR, SVR, RFR, and LR using the observed and augmented datasets

are shown. The MAEs and RMSEs of the models using the observed

dataset were higher than those of the models using the synthetic

dataset. This means that the accuracy of the prediction model using

the synthetic dataset is better than that of the observed dataset in

 １０８

this study. When I compared the MAE and RMSE of the individual

models to those of the stacking ensemble prediction in Table 4.1, the

accuracy metrics of the stacking ensemble prediction were better.

Figure 4.11 MAE and RMSE of regression models (KNNR, SVR, RFR,

LR) using FEB and AUG datasets

 １０９

4.3.2. Ensemble Prediction

Figure 4.12 shows the prediction results of the stacking ensemble

model. In this study, data were synthesized using data from a station

in the UWE from 1993 to 2012 and used as training data for the model.

Then, using the data for five years from 2013 to 2017 as test data, I

measured the stacking ensemble’s model prediction performance.

Data from February for winter and August for summer were used to

compare temperature profiles during seasonal changes.

As shown in the observed temperature profiles, the UWE, which

can be characterized by homogeneous water from the surface to

about 200 m depth, appears in winter. However, the UWE mostly

disappeared, and a strong thermocline appeared in summer. The

model results accurately predicted the seasonal change in the

temperature profile over the entire period, except for August 2015,

when the remnant of the UWE was present in the subsurface.

Table 4.1 shows the accuracy metrics for the ensemble prediction

results. The synthetic dataset model outperforms the observed

dataset model.

 １１０

Figure 4.12 Comparison of the predicted temperature profile using

the stacking ensemble prediction model with augmented dataset,

HYCOM and the observation data in February and August from 2013

to 2017.

 １１１

Table 4.1 Ensemble prediction accuracy metrics of synthetic dataset

(FEB, AUG)

Dataset type Synthetic Dataset (FEB) Synthetic Dataset (AUG)

Metrics MAE RMSE MAE RMSE

Accuracy 0.96 1.20 1.92 2.45

4.3.3. Limitations of this study and future works

This study was conducted focusing on specific observation point to

check the seasonal occurrence of UWE. For the spatial expansion of

this study, it is necessary to extend the three-dimensional

appearance of UWE through data generation and analysis of multiple

observation points where the observation data of NIFS exists. In

addition, data synthesis, model training, and analysis were executed

after 1993, when satellite data existed. In order to generate SLA data

before 1992, it is necessary to consider the development of the

generative model and prediction model and whether it is possible to

synthesize SLA data of the past by using the temperature profile data

as input data and training with SLA data sets as the output.

4.4. Conclusion

In this study, the augmentation architecture was successfully

 １１２

adopted as a generative model for the subsurface temperature profile

data in a marginal sea. The GAN can also be a suitable method for

tabular and non-Gaussian data distribution datasets. To train a model

that predicts the subsurface temperature profile in the marginal sea,

the observed dataset from 1993 to 2012 was used to augment and

train the data. The accuracy metrics of the prediction model, the MAE

was 0.96 and 1.92 and the RMSE was 1.20 and 2.45 in February and

August, respectively. The augmented dataset improved model

prediction performance. The GAN-based architecture improved and

increased the real dataset for the prediction model accuracy, and a

candidate served as a data imputation solution for missing values.

The copular GAN model, which considers the correlation of variables,

and TVAE are suitable for subsurface profile data synthesis.

A stacking ensemble method that combines heterogeneous models

with excellent performance in the respective areas achieve a better

predictive performance than a single model. The MAE and RMSE of

the stacking ensemble had better accuracy metrics than the MAE and

RMSE of the individual regression models. To consider the

characteristics of spatial-temporal distribution, based on the

observation time and station points, datasets were created and

trained according to the data distribution of each observed data point

for better prediction. In contrast to the previous prediction model

 １１３

applied to the open ocean, this study can be useful in accurately

predicting subsurface temperature profiles in a marginal sea with

large spatiotemporal variability in water temperature owing to

complex phenomena. When predicting the vertical temperature

profile during the strong stratification season, it is crucial to create a

predictive model that considers a thin surface mixed layer that is

frequently overlooked.

This study devised a method to synthesize data needed to

effectively make data-based prediction models for regions with

limited observations. A major achievement of this study is the use of

machine learning techniques to predict subsurface data that are

difficult to measure on satellites.

 １１４

5. Summary and conclusion

A numerical regional ocean model was successfully simulated in

the cloud environment and achieved performance similar to that of

the physical server. The numerical ocean model with various grids

yielded the same results as the physical server. The cloud-based

numerical model experiment environment was provided remotely

through the network, and the amount of usage was measured. The

computation environment was created without preparing physical

equipment in the laboratory.

 An MPI-based HPC cluster, which is the execution environment

of the numerical ocean model, was constructed. The same numerical

ocean model was tested in various environments of cloud vendors,

and the performance of the numerical model based on each grid was

measured. The CPU resources, memory performance, and cache

characteristics of the HPC cluster were classified and measured to

estimate the factors influencing the performance of the numerical

model in the cloud-based environment. Moreover, it was confirmed

that the size and structure of the CPU cache memory were among the

various performance factors in improving the computation

performance of the numerical model. By comparing and analyzing the

performance of the numerical model and the memory performance

 １１５

based on the number of nodes, the degree of performance delay

attributed to node expansion was confirmed.

The cloud computing environment also enables researchers to

reduce the time and cost of preparing an infrastructure environment

for numerical ocean models, secure an environment for collaboration

by providing the same environment, and achieve performance using

the latest information devices.

In this study, cloud-native, containerization, and orchestration

technologies were applied to configure the architecture for the

numerical ocean model to achieve the reproducibility of the ocean

numerical model and the advantages of preparing the numerical model

environment. Numerical ocean modeling was conducted in a

container-based environment from a physical server to various

public clouds and personal computers, and the model exhibited exact

computational reproducibility. Container-based HPC numerical

modeling is essential in computational reproducibility and research

sharing, even in a homogeneous or heterogeneous environment. The

results of the base and container-based models were compared with

the RMSE to verify the reproducibility of the numerical ocean model.

In addition to the numerical ocean model, machine learning methods,

widely used for data generation and analysis in earth science, were

tested in cloud computing. Neural network-based generative models

 １１６

have been applied to synthesize training datasets using ocean

observation datasets. Observation datasets in NIFS were applied to

the generative model to establish a model for predicting the ocean

temperature profile. The synthesized datasets were used as training

datasets for the prediction model of the vertical temperature profile

in oceans. Because of the insufficient observation datasets for model

training, the MAE and RMSE of the model using only observational

data are higher than those of the trained model with sufficient data.

Based on the accuracy metrics, the performance was evaluated, and

the model results for synthetic datasets are better than those of the

original datasets.

In this study, the model was focused on the seasonal detection of

UWE. Datasets synthesized based on observation data from 1993 to

2012, when SLA data observed through satellite datasets exist, were

used as training data. Sea surface temperature and SLA data obtained

from the satellite were used to input data (x-values), and the

prediction model was trained by combining the temperature profile

data as output data (y-values) for each depth from the data observed

by NIFS. Data collected from 2013 to 2017 were used as test data

for verification. The final predictive model was implemented by

combining stand-alone models using the stacking ensemble method

to improve the performance of the predictive model.

 １１７

Synthetic datasets used for model training were generated using

GPU in the cloud environment. Predictive results were generated

using a numerical ocean model in various cloud-based environments,

and training datasets for the machine learning model were generated

using generative models. High-resolution numerical and

computational machine-learning prediction models, which were

difficult to perform in the limited physical infrastructure environment

in the past, became possible. In addition, the achievement of

computational reproducibility and rapid preparation of the

computational environment were achieved in cloud computing. This

study demonstrates that the cloud environment can play an essential

role in the generation and prediction model of numerical data in earth

science.

 １１８

6. References

Adams, J. K., and Buchwald, V. T. (1969). The generation of

continental shelf waves. J. Fluid Mech. 35, 815–826.

doi:10.1017/S0022112069001455.

Ahmad, H. (2019). Machine learning applications in oceanography.

Int. Aquat. Res. 2(3), 161-169. doi:10.3153/AR19014.

Ait-Amir, B., Pougnet, and P., Hami, A.E. (2015). 6 - Meta-Model

Development. In A. E., Hami & P., Pougnet (Eds). Embedded

Mechatronic Systems 2 (pp 151-179). Elsevier.

doi:10.1016/B978-1-78548-014-0.50006-2.

Ali, N., Neagu, D., and Trundle, P. (2019). Evaluation of k-nearest

neighbour classifier performance for heterogeneous data sets.

SN Appl. Sci. 1,1559. doi:10.1007/s42452-019-1356-9.

Amante, C., and Eakins, B. W. (2009). ETOP01 1 arc-minute global

relief model: Procedures, data sources and analysis. NOAA

Tech. Memo. NESDIS NGDC-24, 19.

Antonov, J. I., Levitus, S., Boyer, T. P., Conkright, M. E., Brien, T. O.,

and Stephens, C. (1998). World Ocean Atlas 1998 Vol. 2:

Temperature of the Pacific Ocean, NOAA Atlas NESDIS 28,

U.S. Government Printing Office, Washington, D.C.

Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A.

https://doi.org/10.1017/S0022112069001455

 １１９

V., Garcia, H. E., et al. (2010). World Ocean Atlas 2009, Vol.

2: Salinity. S. Levitus, Ed. NOAA Atlas NESDIS 69, U.S.

Government Printing Office, Washington, D.C., p. 184.

Atteia, G. E., Mengash, H. A., and Samee, A. (2021). Evaluation of

using Parametric and Non-parametric Machine Learning

Algorithms for Covid-19 Forecasting. Int. J. Adv. Comput. Sci.

Appl. (IJACSA). 12(10). doi:

10.14569/IJACSA.2021.0121071.

Auret, L., and Aldrich, C. (2012). Interpretation of nonlinear

relationships between process variables by use of random

forests. Miner. Eng. 35, 27-42.

doi:10.1016/j.mineng.2012.05.008.

AWS. (2016). Elastic Network Adaptor.

https://aws.amazon.com/ko/about-aws/whats-

new/2016/06/introducing-elastic-network-adapter-ena-

the-next-generation-network-interface-for-ec2-

instances.

AWS. (2022a). Amazon Elastic Kubernetes Service (EKS).

https://aws.amazon.com/eks/?nc1=h_ls.

AWS. (2022b). Amazon Machine Images.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs

.html.

https://aws.amazon.com/eks/?nc1=h_ls

 １２０

AWS. (2020). KVM. https://aws.amazon.com/ko/about-aws/whats-

new/2020/02/aws-storage-gateway-available-linux-kvm-

hypervisor.

AWS. (2022c). Pricing. https://aws.amazon.com/ec2/pricing/on-

demand/?nc1=h_ls.

AWS. (2022d). Spot-Instance.

https://aws.amazon.com/ec2/spot/?nc1=h_ls/.

AWS. (2022e). Virtual Private Cloud.

https://aws.amazon.com/vpc/?nc1=h_ls/.

AWS. (2022f). VPN Tunneling.

https://docs.aws.amazon.com/vpn/latest/s2svpn/VPNTu

nnels.html.

Azure. (2022). Azure Kubernetes Service (AKS).

https://azure.microsoft.com/en-us/services/kubernetes-

service.

Balogun, A., and Adebisi, N. (2021). Sea level prediction using

ARIMA, SVR and LSTM neural network: assessing the impact

of ensemble Ocean-Atmospheric processes on models ’

accuracy. Geomat. Nat. Hazards Risk. 12:1, 653-674. doi:

10.1080/19475705.2021.1887372.

Balogun, A., Rezaie, F., Pham, Q. B., Gigović, L., Drobnjak, S., Aina,

Y. A., et al. (2021). Spatial prediction of landslide

 １２１

susceptibility in western Serbia using hybrid support vector

regression (SVR) with GWO, BAT and COA algorithms. Geosci.

Front. 12(3). doi:10.1016/j.gsf.2020.10.009.

Beltre, A. M., Saha, P., Govindaraju, M., Younge, A., and Grant, R. E.

(2019). Enabling HPC Workloads on Cloud Infrastructure

Using Kubernetes Container Orchestration Mechanisms. 2019

IEEE/ACM International Workshop on Containers and New

Orchestration Paradigms for Isolated Environments in HPC

(CANOPIE-HPC). 2019, 11-20. doi:10.1109/CANOPIE-

HPC49598.2019.00007.

Blackport, R., and Kushner, P. J. (2018). The Role of Extratropical

Ocean Warming in the Coupled Climate Response to Arctic Sea

Ice Loss. J. Clim. 31 (22), 9193–9206. doi:10.1175/JCLI-D-

18-0192.1.

Bolton, T. and Zanna, L. (2019). Applications of Deep Learning to

Ocean Data Inference and Subgrid Parameterization. J. Adv.

Model. Earth Syst. 11, 376-399. doi:10.1029/2018MS001472.

Bozzo-Rey, M., Jeanson, M., Nguyen, M., Gauthier, C., Barrette, M.,

Vachon, P., et al. (2006). Design, Deployment and Bench of a

Large Infiniband HPC Cluster. 20th International Symposium

on High-Performance Computing in an Advanced

Collaborative Environment (HPCS'06). 8-8. doi:

 １２２

10.1109/HPCS.2006.18.

Brereton, R. G., and Lloyd, G. R. (2010). Support vector machines for

classification and regression. The Analyst. 135(2), 230-267.

doi:10.1039/B918972F.

Brownlee, J. (2022). Ensemble Learning Algorithms with Python.

Machine Learning Mastery.

Burges, C. J. (1998). A tutorial on support vector machines for

pattern recognition. Data Min. Knowl. Discov. 2, 121–167. doi:

10.1023/A:1009715923555.

Canonical. (2022). Microk8s. https://microk8s.io/.

Carton, J. A., and Giese, B. S. (2008). A reanalysis of ocean climate

using Simple Ocean Data Assimilation (SODA). Mon. Weather

Rev. 136(8), 2999–3017. doi: 10.1175/2007MWR1978.1.

Chapman, D. C. (1985). Numerical treatment of cross-shelf open

boundaries in a barotropic coastal ocean model. J. Phys.

Oceanogr. 15(8), 1060–1075. doi:10.1175/1520-

0485(1985)015<1060:NTOCSO>2.0.CO;2.

Chen, X., Huang, X., Jiao, C., Flanner, M., Raeker, T., and Palen, B.

(2017). Running climate model on a commercial cloud

computing environment: A case study using Community Earth

System Model (CESM) on Amazon AWS. Computers & Geo.

98, 21-25. doi:10.1016/j.cageo.2016.09.014.

 １２３

Cho, Y. K., and Kim, K. (1996). Seasonal variation of the East Korea

Warm Current and its relation with the cold. water. La Mer. 34,

172-182.

Choi, B.J., Haidvogel, D.B., and Cho, Y. K. (2004). Nonseasonal sea

level variations in the Japan/East Sea from satellite altimeter

data. J. Geophys. Res. Oceans 109:C12028.

Cho, Y. K., and Kim, K. (2000). Branching mechanism of the

Tsushima Current in the Korea Strait. J. Phys. Oceanogr.

30(11), 2788-2797.

Copernicus. Data from: Sea level daily gridded data from satellite

observations for the global ocean from 1993 to present.

Climate Data Store. (2022)

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-

sea-level-global?tab=overview.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,

Kobayashi, S., et al. (2011). The ERA-Interim reanalysis:

Configuration and performance of the data assimilation system.

Q. J. R. Meteorol. Soc. 137(656), 553–597. doi:10.1002/qj.828.

Egbert, G. D., and Erofeeva, S. Y. (2002). Efficient inverse modeling

of Barotropic Ocean Tides. J. Atmos. Oceanic Technol. 19,

183–204. doi:10.1175/1520-

0426(2002)019<0183:EIMOBO>2.0.CO.

 １２４

Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young,

G. S. (1996). Bulk parameterization of air–sea fluxes for

Tropical Ocean–Global Atmosphere Coupled–Ocean

Atmosphere Response Experiment. J. Geophys. Res. 101(C2),

3747–3764. doi:10.1029/95JC03205.

Feng, M., Ai, W., Chen, G., Lu, W., and Ma, S. (2020). A Multiple

Linear Regression Algorithm for Sea Surface Temperature

Retrieval by One-Dimensional Synthetic Aperture Microwave

Radiometry. J. Atmos. Ocean. Technol. 37(9), 1753-1761. doi:

10.1175/JTECH-D-20-0003.1.

Flather, R. A. (1976). A tidal model of the north-west European

continental shelf. Memoires de la Societe Royale de Sciences

de Liege. (10),141–164.

Gartner: Public Cloud Service. (2018).

https://www.gartner.com/en/newsroom/press-

releases/2018-08-01-gartner-says-worldwide-iaas-

public-cloud-services-market-grew-30-percent-in-

2017.

Google. (2022a). Google Kubernetes Engine (GKE).

https://cloud.google.com/kubernetes-engine.

Google. (2022b). Hybrid Connectivity.

https://cloud.google.com/hybrid-connectivity.

 １２５

Google. (2022c). Pre-emptible VM Instances.

https://cloud.google.com/compute/docs/instances/preemptible.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,

D., Ozair, S., et al. (2014). Generative adversarial nets. Adv.

Neural Inf. Process. Syst. (NIPS). 3(11). doi:

10.1145/3422622.

Gou, Y., Liu, J., and Zhang, T. (2018). KNN regression model-based

refinement of thermohaline data. 2018. Proceedings of the

Thirteenth ACM International Conference on Underwater

Networks & Systems. 1-8. doi:10.1145/3291940.3291967.

Gregor, L., Kok, S., and Monteiro, P. M. S. (2017). Empirical methods

for the estimation of Southern Ocean CO2: support vector and

random forest regression. Biogeosciences. 14, 5551–5569. doi:

10.5194/bg-14-5551-2017.

Grüning, B., Chilton, J., Köster, J., Dale, R., Soranzo, N., Beek, M., et

al. (2019). Practical Computational Reproducibility in the Life

Sciences. Cell Syst. 6 (6), 631–635.

doi:10.1016/j.cels.2018.03.014.

Gupta, A., Kale, L.V, Gioachin, F., March, V., Suen, C. H., Lee, B., et

al. (2013). The who, what, why and how of high performance

computing in the cloud. 2013 IEEE 5th International

Conference on Cloud Computing Technology and Science.

 １２６

2013, 306–314. doi:10.1109/CloudCom.2013.47.

Han, M., Feng, Y., Zhao, X., Sun, C., Hong, F., and Liu, C. (2019). A

convolutional neural network using surface data to predict subsurface

temperatures in the Pacific Ocean. IEEE Access. 7, 172816-

172829. doi: 10.1109/ACCESS.2019.2955957

Hamilton, K., and Ohfuchi, W. (2008). High Resolution Numerical

Modelling of the Atmosphere and Ocean, Springer New York,

NY. USA.

HPL. (2018). HPL(High-performance Linpack Benchmark).

http://www.netlib.org/benchmark/hpl/index.html.

Hu, M. (2021). Integrated Machine Learning and Numerical Modeling

for Multiscale Analyses of Coupled Processes in Geosystems.

IOP Conf. Ser. Earth Environ. Sci. 861:032055.

Intel. (2019). Xeon Processor Scalable Family Technical Overview.

https://software.intel.com/en-us/articles/intel-xeon-

processor-scalable-family-technical-overview.

Intel. (2021). Memory Latency Checker v3.6.

https://software.intel.com/en-us/articles/intelr-memory-

latency-checker.

Ishfaq, H., Hoogi, A. and Rubin, D. (2018). TVAE: Triplet-Based

Variational Autoencoder using Metric

Learning. https://arxiv.org/abs/1802.04403.

 １２７

Isoda, Y., and Saitoh, S.-I. (1993). The northward intruding eddy

along the coast of Korea. J. Oceanogr. 49, 443-458.

Jeevanandam N. (2021). What does machine learning embedding

mean?. Analytics India Magazine.

https://analyticsindiamag.com/machine-learning-embedding.

Jiang, Y., Zhang, T., Gou, Y., He, L., Bai, H., and Hu, C. (2018). High-

resolution temperature and salinity model analysis using

support vector regression. J. Ambient Intell. Humaniz. Comput.

doi: 10.1007/s12652-018-0896-y.

Jiyang, Y., Gou, Y., Zhang, T., Wang, K., and Hu, C. (2017). A Machine

Learning Approach to Argo Data Analysis in a

Thermocline. Sensors. 17(10), 2225. doi:10.3390/s17102225.

Jung, K., Cho, Y.-K., and Tak, Y.-J. (2017). Performance evaluation

of ROMS v3.6 on a commercial cloud system. Geosci. Model

Dev. Discuss., https://doi.org/10.5194/gmd-2017-270, 2017.

Jung, K., Cho, Y.-K., and Tak, Y.-J. (2021). Containers and

orchestration of numerical ocean model for computational

reproducibility and portability in public and private clouds:

Application of ROMS 3.6. Simul. Model. Pract. Theory. 109,

10235. doi:10.1016/j.simpat.2021.102305.

Kadkhodaei, H. R., Moghadam, A. M., and Dehghan, M. (2020).

Hboost:A heterogeneous ensemble classifier based on the

 １２８

Boosting method and entropy measurement. Expert Syst. Appl.

157, 113482. doi:10.1016/j.eswa.2020.113482.

Kang, H. E., and Kang, Y. Q. (1990). Spatio-temporal characteristics

of the Ulleung Warm Lens. Bull. Korean. Fish. Soc. 203, 407-

415.

Katoh, O. (1994). Structure of the Tsushima Current in the

southwestern Japan Sea. J. Oceanogr. 50, 317-338.

Kim, D., Yang, E. J., Kim, K. H., Shin, C.W., Park, J., Yoo, S., et al.

(2012). Impact of an anticyclonic eddy on the summer nutrient

and chlorophyll-a distributions in the Ulleung Basin, East Sea

(Japan Sea). ICES J.Mar. Sci. 69(1), 23-29.

doi:10.1093/icesjms/fsr178.

Kim, K., Kim, K. R., Chung, J., Yoo, H., and Park, S., (1991).

Characteristics of physical properties in the Ulleung Basin. J.

Oceanol. Soc. Kor. 26, 83-100.

Kim, Y.-Y., Cho, Y.-K., and Kim, Y. H. (2018). Role of cold water

and beta-effect in the formation of the East Korean Warm

Current in the East/Japan Sea: a numerical experiment. Ocean

Dyn. 68, 1013-1023. doi:10.1007/s10236-018-1175-3.

Klemas, V. (2014). Subsurface and deeper ocean remote sensing

from satellites: An overview and new results. Prog. Oceanogr.

122, 1-9. doi: 10.1016/j.pocean.2013.11.010.

https://doi.org/10.1007/s10236-018-1175-3

 １２９

Konkol, M., Kray, C., and Pfeiffer, M. (2019). Computational

reproducibility in geoscientific papers: Insights from a

series of studies with geoscientists and a reproduction

study. Int. J. Geogr. Inf. Sci. 33 (2), 408–429.

Krider, L. A., Magner, J. A., Perry, J., Vondracek, B., and Ferrington,

L. C. (2013). Air-water temperature relationships in the trout

streams of southeastern Minnesota's carbonate-sandstone

landscape. J. Am. Water Resour. Assoc. 49, 896–907.

doi:10.1111/jawr.12046.

Kubernetes Components. (2022). Kubernetes.

https://kubernetes.io/docs/concepts/overview/components/.

Kubernetes Container Runtime. (2022). Kubernetes.

https://kubernetes.io/docs/setup/production-

environment/container-runtimes/.

Kubernetes Controller. (2022). Kubernetes.

https://kubernetes.io/docs/concepts/architecture/controller/.

Kubernetes Cluster Networking. (2022). Kubernetes.

https://kubernetes.io/docs/concepts/cluster-

administration/networking/.

Kubernetes Namespace. (2022). Kubernetes.

https://kubernetes.io/docs/concepts/overview/working-

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

 １３０

with-

objects/namespaces/https://kubernetes.io/docs/concepts

/overview/working-with-objects/namespaces/.

Kubernetes Overview. (2022). Kubernetes.

https://kubernetes.io/docs/concepts/overview/.

Kubernetes Pods. (2022). Kubernetes.

https://kubernetes.io/docs/concepts/workloads/pods/.

Kubernetes Volumes. (2022). Kubernetes.

https://kubernetes.io/docs/concepts/storage/volumes.

Langr, J., and Bok, V. (2019). GAN in action. Manning Publications

Co.

Large, W. G., McWilliams, J. C., and Doney, S. C. (1994). Oceanic

vertical mixing: A review and a model with a nonlocal boundary

layer parameterization. Rev. Geophys. 32, 363–403,

doi:10.1029/94RG01872.

Leuliette, E. W., and Wahr, J. M. (1999). Coupled Pattern Analysis of

Sea Surface Temperature and TOPEX/Poseidon Sea Surface

Height. J. Phys. Oceanogr. 29(4), 599-611.

Levin, L. A., Bett, B. J., Gates, A. R., Heimbach, P., Howe, B. M.,

Janssen, F., et al. (2019). Global Observing Needs in the Deep

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/storage/volumes/

 １３１

Ocean. Front. Mar. Sci. 6:241. doi: 10.3389/fmars.2019.00241.

Linux Foundation. (2020). Open Container Initiative.

https://opencontainers.org/.

Li, Q.-J., Zhao, Y., Liao, H.-L., and Li, J.-K. (2017). Effective

forecast of Northeast Pacific sea surface temperature based

on a complementary ensemble empirical mode decomposition–

support vector machine method. Atmos. Ocean. Sci. Lett.

10:3, 261-267. doi:10.1080/16742834.2017.1305867.

Li, Z., Kaufamn, Y. J., Ichoku, C., Fraser, R., Trishchenko, A. Giglio,

L., et al. (2001). A review of AVHRR-based active fire

detection algorithms: Principles, limitations and

recommendations. In F. J., Ahren, J. G., Goldammer, & C. O.,

Justice (Eds). Global and Regional Vegetation Fire Monitoring

from Space: Planning a Coordinated International Effort (pp.

199-225). SPB Academic Publishing.

Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia,

H. E., Baranova, O. K., et al. (2010). World Ocean Atlas 2009,

Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas NESDIS

68, U.S. Government Printing Office, Washington, D.C., p. 184.

Louppe, G. (2014). Understanding Random Forests: From Theory to

Practice. [dissertation/Ph.D’s thesis]. University of Liège.

doi:10.13140/2.1.1570.5928.

https://www.researchgate.net/scientific-contributions/Louis-Giglio-19517831

 １３２

Luksa, M. (2018). Kubernetes in Action. Manning Publications CO,

NY, USA.

McCalpin, J. D. (1995). Memory bandwidth and machine balance in

current high performance computers. IEEE Computer Society

Technical Committee on Computer Architecture (TCCA)

Newsletter.

McCalpin, J. D. (2017). STREAM: Sustainable memory bandwidth in

high performance computers, a continually updated technical

report (1991–2007). http://www.cs.virginia.edu/stream.

Mell, P., and Grance, T. (2011). The NIST definition of cloud

computing recommendations of the National Institute of

Standards and Technology, Special Publication 800–145, NIST,

Gaithersburg.

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublica

tion800-145.pdf.

Microsoft. (2015). Azure support for Linux RDMA.

https://azure.microsoft.com/en-us/updates/azure-support-

for-linux-rdma.

Mirza, M., and Osindero, S. (2014). Conditional Generative

Adversarial Nets. https://arxiv.org/abs/1411.1784.

MIT Data To AI Lab. (2022). Synthetic Data Vault (SDV).

https://sdv.dev/SDV/index.html.

https://sdv.dev/SDV/index.html

 １３３

Montes, D., Añel, J. A., Pena, T. F., Uhe, P., and Wallom, D. C. H.

(2017). Enabling BOINC in infrastructure as a service cloud

system. Geosci. Model Dev. 10, 811-826. doi: 10.5194/gmd-

10-811-2017.

Morrill, J. C., Bales, R. C., and Conklin, M. H. (2005). Estimating

Stream Temperature from Air Temperature: Implications for

Future Water Quality. J. Environ. Eng. ASCE. 131.

doi:10.1061/(ASCE)0733-9372(2005)131:1(139).

NIFS. Data from: NIFS Serial Oceanographic observation. Korea

Oceanonic Data Center (2022)

https://www.nifs.go.kr/kodc/coo_list.kodc.

NIST. (2022). Hybrid clouds.

https://csrc.nist.gov/glossary/term/Hybrid_cloud.

NOAA. Data from: NOAA High-Resolution Sea Surface Temperature

(SST) Analysis Products. National Center for Environmental

information, (2022)

https://www.ncei.noaa.gov/access/metadata/landing-

page/bin/iso?id=gov.noaa.ncdc:C00680.

Nüst, D., Konkol, M., Schutzeichel, M., Pebesma, E. C. Kray, C. ,

Przibytzin, H., et al. (2017). Opening the Publication.

NVIDIA. (2022). PGI: Community Edition.

 １３４

http://www.pgroup.com/products/community.htm.

Oesterle, F., Ostermann, S., Prodan, R., and Mayr, G. J. (2015).

Experiences with distributed computing for meteorological

applications: Grid computing and cloud computing. Geosci.

Model Dev. 8, 2067-2078. doi: 10.5194/gmd-8-2067-2015.

Open Reproducible Research. (2020).

https://www.fosteropenscience.eu/.

Perkins, H., Teague, W. J., Jacobs, G. A., Change, K. I., and Suk, M.-

S. (2000). Currents in KoreaTsushima Strait during summer

1999. Geophys.Res. Lett. 27, 3033-3036.

Preller, R. H., and Hogan, P. J. (1998). Oceanography of the Sea of

Okhotsk and the Japan/East Sea. The Sea: The Global Coastal

Ocean. In A., Robinson & K., Brink (Eds). Regional Studies and

Syntheses, Vol. 11. (pp. 429-481). John Wiley and Sons.

Rajan, A., Joshi, B. K., Rawat, A., Jha, R., and Bhachavat, K. (2012).

Analysis of process distribution in HPC cluster using HPL.

2012 2nd IEEE International Conference on Parallel,

Distributed and Grid Computing. 2012, 85-88.

doi:10.1109/PDGC.2012.6449796.

Rocca J. (2019). Ensemble methods: Bagging, boosting and stacking.

https://towardsdatascience.com/ensemble-methods-

bagging-boosting-and-stacking-c9214a10a205.

 １３５

Roemmich, D., Alford, M. H., Claustre H, Johnson, K., King B, Morum,

J., Oke, P., Owens, W. B., et al. (2019). On the Future of Argo:

A Global, Full-Depth, Multi-Disciplinary Array. Front. Mar.

Sci. 6. doi:10.3389/fmars.2019.00439.

ROMS. (2022). Regional Ocean Modeling System (ROMS).

https://www.myroms.org/.

Schmidt, J. O., Bograd, S. J., Arrizabalaga, H., Azevedo, J. L.,

Barbeaux, S. J., Barth, J. A., et al. (2019). Future Ocean

Observations to Connect Climate, Fisheries and Marine

Ecosystems. Front. Mar. Sci. 6.

doi:10.3389/fmars.2019.00550.

Sci-kit.learn.org. (2022). https://scikit-learn.org/stable.

Seo, G. -H., Cho, Y. –K., Cho, B. –J., Kim, K. –Y., Kim, B. –g., and Tak,

Y. -J. (2014). Climate change projection in the Northwest

Pacific marginal seas through dynamic downscaling, J.

Geophys. Res. 119, 3497–3516. doi:10.1002/2013JC009646.

Shah, J., and Dubaria, D. (2019). Building Modern Clouds: Using

Docker, Kubernetes & Google Cloud Platform. 2019 IEEE 9th

Annual Computing and Communication Workshop and

Conference (CCWC). pp.184-189.

doi:10.1109/CCWC.2019.8666479.

Shchepetkin, A. F., and McWilliams, J. C. (2005). The Regional

 １３６

Oceanic Modeling System (ROMS): A split-explicit, free-

surface, topography-following-coordinate oceanic model.

Ocean Modell. 9, 347–404. doi:

10.1016/j.ocemod.2004.08.002.

Signell, R. P., and Pothina, D. (2019). Analysis and visualization of

coastal ocean model data in the cloud. J. Mar. Sci. Eng. 7(4),

110. doi:10.3390/jmse7040110.

Sommer, J., Chassignet, E., and Wallcraft, A. (2018). Ocean

Circulation Modeling for Operational Oceanography: Current

Status and Future Challenges. doi:10.17125/gov2018.ch12.

Su, H., Wu, X., Yan, X. H., and Kidwell, A. (2015). Estimation of

subsurface temperature anomaly in the Indian Ocean during

recent global surface warming hiatus from satellite

measurements: A support vector machine approach. Remote

Sens. Environ. 160, 63–71. doi: 10.1016/j.rse.2015.01.001.

Sultan, S. Ahmad, I., and Dimitriou, T. (2019). Container Security:

Issues, Challenges, and the Road Ahead. IEEE Access. 7,

52976–52996. doi:10.1109/ACCESS.2019.2911732.

Than, K. (2017). 21st-century Earth science is computer intensive

and data driven. https://earth.stanford.edu/news/21st-

century-earth-science-computer-intensive-and-data-

driven#gs.1gp5iq.

http://dx.doi.org/10.1016/j.ocemod.2004.08.002
https://earth.stanford.edu/news/21st-century-earth-science-computer-intensive-and-data-driven#gs.1gp5iq
https://earth.stanford.edu/news/21st-century-earth-science-computer-intensive-and-data-driven#gs.1gp5iq
https://earth.stanford.edu/news/21st-century-earth-science-computer-intensive-and-data-driven#gs.1gp5iq

 １３７

Tintó, O., Acosta, M., Castrillo, M., Cortés, A., Sanchez, A., Serradell,

K., et al. (2017). Optimizing domain decomposition in an ocean

model: the case of NEMO. Procedia Comput. Sci. 108, 776-

785. doi: 10.1016/j.procs.2017.05.257.

UL HPC Team. (2021). UL HPC MPI Tutorial: Building and Running

OSU Micro-Benchmarks. https://ulhpc-

tutorials.readthedocs.io/en/latest/.

Vance, T. C., Wengren, M., Burger, E., Hernandez, D., Kearns, T.,

Medina-Lopez, E., et al. (2019). From the oceans to the cloud:

opportunities and challenges for data, models, computation,

and workflows. Front. Mar. Sci. 6:211.

doi.org/10.3389/fmars.2019.00211.

Veiga, V. S., Simon, M., Azab, A., Fernandez, C., Muscianisi, G.,

Fiameni, G., et al. (2019). Evaluation and Benchmarking of

Singularity MPI containers on EU Research e-Infrastructure.

2019 IEEE/ACM International Workshop on Containers and

New Orchestration Paradigms for Isolated Environments in

HPC (CANOPIE-HPC). 2019, 1-10. doi: 10.1109/CANOPIE-

HPC49598.2019.00006.

Vörösmarty, C., Fekete, B., and Tucker, B. (1996). River discharge

database version 1.0 (RivDIS v1.0), Vol. 0–6., A contribution

to IHP-V theme 1.

 １３８

Wang, H., Song, T., Zhu, S., Yang, S., and Feng, L. (2021). Subsurface

Temperature Estimation from Sea Surface Data Using Neural

Network Models in the Western Pacific Ocean. Mathematics.

9, 852. doi:10.3390/math9080852.

Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., et

al. (2014). Learning fine-grained image similarity with deep

ranking. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 1386–1393.

Wang, Q., Guo, X., and Takeoka, H. (2008). Seasonal variations of

the Yellow River plume in the Bohai Sea: A model study. J.

Geophys. Res. 113:C08046. doi: 10.1029/2007JC004555.

Weller, R. A., Baker, D. J., Glackin, M. M., Roberts, S. J., Schmitt, R.

W., Twigg, E. S., et al. (2019). The Challenge of Sustaining

Ocean Observations. Front. Mar. Sci. 6:105. doi:

10.3389/fmars.2019.00105.

Xu, L., Skoularidou, M., and Cuesta-Infante, A., Veeramachaneni, K.

(2019). Modeling tabular data using conditional

gan. Adv. Neural Inf. Process. Syst. 32.

Yaml.org. (2021). YAML. https://yaml.org.

Yao, Z., and Ruzzo, W. (2006). A Regression-based K neareast

neighbor algorithm for gene function prediction from

heterogeneous data. BMC Bioinforma. 71(7), 1-11. doi:

 １３９

10.1186/1471-2105-7-S1-S11.

Younge, A. J., Henschel, R., Brown, J. T., Laszwwski, G. V., Qui, J.,

and Fox, G. C. (2011). Analysis of virtualization technologies

for high performance computing environment. 2011 IEEE 4th

International Conference on Cloud Computing. 2011, 9–16.

doi:10.1109/Cloud.2011.29.

Zhang, C., and Ma, Y. (2012). Ensemble Machine Learning: Methods

and Applications 2012th Edition. Springer.

Zhang S. Q., Yang, L., Ma, X. H., Wang, H. N., Zhang, X. F., Xiao-Lin

Yu, X. L., et al. (2018). The ‘Two oceans and one sea’

extended range numerical prediction system with an ultra-

high resolution atmosphere-ocean-land regional coupled

model. Atmos. Ocean. Sci. Lett. 11:4, 364-371.

doi:10.1080/16742834.2018.1494498.

Zhuang, J., Jacob, D. J., Lin, H., Lundgren, E. W., Yantosca, R. M.,

Gaya, J. F., et al. (2020). Enabling high‐performance cloud

computing for Earth science modeling on over a thousand

cores: Application to the GEOS‐Chem atmospheric chemistry

model. J. Adv. Model. Earth Syst. 12(5):e2020MS002064.

doi:10.1029/2020MS002064.

 １４０

7. Abstract (in Korean)

지구의 변화와 현상을 연구하기 위해 많은 과학자들은 수치 모델을

기반으로 한 고해상도 모델 결과를 사용하거나 관측된 데이터로

머신러닝 기반 예측 모델을 개발하고 활용한다. 정보기술이 발전함에

따라 지역 및 전 지구적인 고해상도 수치 모델링과 머신러닝 기반

지구과학 데이터 생성을 위한 실용적인 방법론이 필요하다.

본 연구는 지구과학의 고해상도 수치 모델과 머신러닝 기반 예측 모델을

기반으로 한 데이터 생성 및 처리가 클라우드 환경에서 효과적으로

구현될 수 있음을 제안한다.

클라우드 컴퓨팅에서 고해상도 수치 해양 모델 구현의 재현성과

이식성을 검증하기 위해 북서태평양, 동해, 황해 등 모델 영역의 다양한

해상도에서 수치 해양 모델의 성능을 시뮬레이션하고 분석하였다.

컨테이너화 방식을 통해 다양한 인프라 환경 변화에 대응하고 계산

재현성을 효과적으로 확보할 수 있었다.

머신러닝 기반 데이터 생성의 적용을 검증하기 위해 생성 모델을 이용한

표층 이하 온도 데이터의 데이터 증강을 실행하여 해양의 수직 온도

분포를 예측하는 모델 훈련을 위한 대용량 데이터 세트를 준비했다.

예측모델 훈련을 위해 위성 데이터에 비해 상대적으로 부족한 관측

데이터에 대해서 생성 모델을 사용하여 데이터 증강을 수행하였다.

모델의 예측성능 비교에는 관측 데이터 외에도 HYCOM 데이터 세트를

사용하였으며, 증강 데이터의 데이터 분포는 입력 데이터 분포와

유사함을 확인하였다. 독립형 예측 모델을 결합한 앙상블 방식은 기존

 １４１

관측 데이터를 기반으로 하는 예측 모델의 성능에 비해 향상되었다.

데이터합성을 위해 많은 양의 계산 자원이 필요했으며, 데이터 합성은

클라우드 기반 GPU 환경에서 수행되었다.

고해상도 수치 해양 모델 시뮬레이션, 예측 모델 개발, 데이터 생성

방법은 해양 과학 분야에서 예측 능력을 향상시킬 수 있다. 본 연구에서

사용된 클라우드 컴퓨팅 기반의 수치 모델링 및 생성 모델은 지구

과학의 다양한 분야에 광범위하게 적용될 수 있다.

	1. General Introduction
	2. Performance of numerical ocean modeling on cloud computing
	2.1. Introduction
	2.2. Cloud Computing
	2.2.1. Cloud computing overview
	2.2.2. Commercial cloud computing services

	2.3. Numerical model for performance analysis of commercial clouds
	2.3.1. High Performance Linpack Benchmark
	2.3.2. Benchmark Sustainable Memory Bandwidth and Memory Latency
	2.3.3. Numerical Ocean Model
	2.3.4. Deployment of Numerical Ocean Model and Benchmark Packages on Cloud Clusters

	2.4. Simulation results
	2.4.1. Benchmark simulation
	2.4.2. Ocean model simulation

	2.5. Analysis of ROMS performance on commercial clouds
	2.5.1. Performance of ROMS according to H/W resources
	2.5.2. Performance of ROMS according to grid size

	2.6. Summary

	3. Reproducibility of numerical ocean model on the cloud computing
	3.1. Introduction
	3.2. Containerization of numerical ocean model
	3.2.1. Container virtualization
	3.2.2. Container-based architecture for HPC
	3.2.3. Container-based architecture for hybrid cloud

	3.3. Materials and Methods
	3.3.1. Comparison of traditional and container based HPC cluster workflows
	3.3.2. Model domain and datasets for numerical simulation
	3.3.3. Building the container image and registration in the repository
	3.3.4. Configuring a numeric model execution cluster

	3.4. Results and Discussion
	3.4.1. Reproducibility
	3.4.2. Portability and Performance

	3.5. Conclusions

	4. Generative models for the prediction of ocean temperature profile
	4.1. Introduction
	4.2. Materials and Methods
	4.2.1. Model domain and datasets for predicting the subsurface temperature
	4.2.2. Model architecture for predicting the subsurface temperature
	4.2.3. Neural network generative models
	4.2.4. Prediction Models
	4.2.5. Accuracy

	4.3. Results and Discussion
	4.3.1. Data Generation
	4.3.2. Ensemble Prediction
	4.3.3. Limitations of this study and future works

	4.4. Conclusion

	5. Summary and conclusion
	6. References
	7. Abstract (in Korean)

<startpage>14
1. General Introduction 1
2. Performance of numerical ocean modeling on cloud computing 6
 2.1. Introduction 6
 2.2. Cloud Computing 9
 2.2.1. Cloud computing overview 9
 2.2.2. Commercial cloud computing services 12
 2.3. Numerical model for performance analysis of commercial clouds 15
 2.3.1. High Performance Linpack Benchmark 15
 2.3.2. Benchmark Sustainable Memory Bandwidth and Memory Latency 16
 2.3.3. Numerical Ocean Model 16
 2.3.4. Deployment of Numerical Ocean Model and Benchmark Packages on Cloud Clusters 19
 2.4. Simulation results 21
 2.4.1. Benchmark simulation 21
 2.4.2. Ocean model simulation 24
 2.5. Analysis of ROMS performance on commercial clouds 26
 2.5.1. Performance of ROMS according to H/W resources 26
 2.5.2. Performance of ROMS according to grid size 34
 2.6. Summary 41
3. Reproducibility of numerical ocean model on the cloud computing 44
 3.1. Introduction 44
 3.2. Containerization of numerical ocean model 47
 3.2.1. Container virtualization 47
 3.2.2. Container-based architecture for HPC 49
 3.2.3. Container-based architecture for hybrid cloud 53
 3.3. Materials and Methods 55
 3.3.1. Comparison of traditional and container based HPC cluster workflows 55
 3.3.2. Model domain and datasets for numerical simulation 57
 3.3.3. Building the container image and registration in the repository 59
 3.3.4. Configuring a numeric model execution cluster 64
 3.4. Results and Discussion 74
 3.4.1. Reproducibility 74
 3.4.2. Portability and Performance 76
 3.5. Conclusions 81
4. Generative models for the prediction of ocean temperature profile 84
 4.1. Introduction 84
 4.2. Materials and Methods 87
 4.2.1. Model domain and datasets for predicting the subsurface temperature 87
 4.2.2. Model architecture for predicting the subsurface temperature 90
 4.2.3. Neural network generative models 91
 4.2.4. Prediction Models 97
 4.2.5. Accuracy 103
 4.3. Results and Discussion 104
 4.3.1. Data Generation 104
 4.3.2. Ensemble Prediction 109
 4.3.3. Limitations of this study and future works 111
 4.4. Conclusion 111
5. Summary and conclusion 114
6. References 118
7. Abstract (in Korean) 140
</body>

