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Abstract 
 

To investigate changes and phenomena on Earth, many 

scientists use high-resolution-model results based on 

numerical models or develop and utilize machine learning-

based prediction models with observed data. As information 

technology advances, there is a need for a practical 

methodology for generating local and global high-resolution 

numerical modeling and machine learning-based earth science 

data. 

This study recommends data generation and processing using 

high-resolution numerical models of earth science and machine 

learning-based prediction models in a cloud environment. 

To verify the reproducibility and portability of high-

resolution numerical ocean model implementation on cloud 

computing, I simulated and analyzed the performance of a 

numerical ocean model at various resolutions in the model 

domain, including the Northwest Pacific Ocean, the East Sea, 

and the Yellow Sea. With the containerization method, it was 

possible to respond to changes in various infrastructure 
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environments and achieve computational reproducibility 

effectively. 

The data augmentation of subsurface temperature data was 

performed using generative models to prepare large datasets 

for model training to predict the vertical temperature 

distribution in the ocean. To train the prediction model, data 

augmentation was performed using a generative model for 

observed data that is relatively insufficient compared to 

satellite dataset. 

In addition to observation data, HYCOM datasets were used 

for performance comparison, and the data distribution of 

augmented data was similar to the input data distribution. The 

ensemble method, which combines stand-alone predictive 

models, improved the performance of the predictive model 

compared to that of the model based on the existing observed 

data. Large amounts of computational resources were required 

for data synthesis, and the synthesis was performed in a cloud-

based graphics processing unit environment. 

High-resolution numerical ocean model simulation, 

predictive model development, and the data generation method 
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can improve predictive capabilities in the field of ocean science. 

The numerical modeling and generative models based on cloud 

computing used in this study can be broadly applied to various 

fields of earth science. 

Keywords: Cloud computing, Numerical Ocean model, Machine 

learning, Containerization, Generative models, Vertical 

temperature distribution 

Student Number: 2012-30096  
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1. General Introduction 
 

With the advancement of information technology (IT), numerical 

models based on the equation of motion have been used to predict 

future phenomena or develop and utilize statistical prediction models 

from various observation data (Than, 2017). Machine learning 

techniques have also been used to analyze and predict the changes in 

various phenomena on Earth (Hu, 2021). 

Owing to the rapid development of IT, researchers have gradually 

extended the limits of specific-scale numerical model domains and 

regional analysis to global or large-scale model domains and 

performed improved modeling with high resolutions (Tintó et al., 

2017). In addition, machine learning techniques have been used to 

analyze large amounts of data and establish predictive models 

(Ahmad et al., 2019). The cloud stores rapidly increasing observation 

data (NOAA, 2022). 

Along with the expansion of numerical modeling experiments, 

results of high-resolution and precise numerical models are 

increasingly critical in predicting and analyzing various physical 

changes in the ocean (Sommer et al., 2018). 

After the initial conditions are set in the main equations of motion 

in the ocean numerical model, various physical variables are 
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calculated using a divided grid and time intervals. Increasing the 

resolution of the numerical model grid for precise numerical 

simulations increases the number of grids to be calculated. Sufficient 

computational resources are required to perform the increased 

computation level within a specific period, and more precise analysis 

is possible based on the computational resources. Extensive 

computing resources are required to perform such precise numerical 

modeling or global ocean model (Hamilton et al., 2008). The 

computing resource is a significant limitation in improving the 

resolution of numerical models. 

High-performance computing (HPC) clusters are widely used to 

perform large-scale numerical models of oceans with a large amount 

of computation (Yang et al., 2018), and they are processing devices 

with expensive equipment (Bozzo-Rey et al., 2006). Recently, with 

the development of virtualization-based cloud technology, computing 

resources can be easily provided through a network. 

Researchers of various numerical models have attempted to 

establish earth science numerical models in a cloud environment 

(Chen et al., 2017; Zhuang et al., 2020; Jung et al., 2021). Problems 

related to performance and the environment in the early days of cloud 

computing have been gradually resolved. 

Recently, research cases applied to computationally intensive 
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modeling that require significant resources have been introduced 

(Zhuang et al., 2020). The applicability of the earth science model to 

the cloud environment has been verified in many studies. Beyond 

verification of applicability, performance analysis to improve the 

resolution of the earth science numerical models or advanced 

research to improve and develop the earth science numerical models 

using cloud-native technology are required. 

This study presents performance analysis and the environment 

configuration method for performing high-resolution numerical 

modeling using a virtual machine provided as a cloud computing 

resource and a method for achieving the calculation reproducibility of 

the numerical model using container technology. The reproducibility 

of research results is the basis for scientific research and sharing of 

the research process. 

To achieve the computational reproducibility of numerical models, 

many researchers have attempted to configure the environment of 

the numerical model and the various environmental variables 

necessary for model execution (Markus et al., 2019; Grüning et al., 

2019). This work can be regarded as essential but challenging in 

numerical modeling. Previous studies have recommended 

documenting and sharing various variables and developing a 

numerical model based on the shared data (Nüst et al., 2017). 
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The aim of this study is to design and apply a container-based 

numerical model execution architecture, which is a cloud-based 

technology, to resolve such difficulties and realize the computational 

reproducibility of numerical ocean models. 

 It is common to establish a prediction model based on observed 

data or analyze and predict by performing a statistical model to 

predict and analyze various phenomena on Earth along with numerical 

models. In addition to high-resolution numerical models, machine 

learning is an essential method for generating and analyzing data in 

earth science. Recently, in the ocean field, many researchers have 

analyzed and predicted various ocean phenomena using machine 

learning methods (Ahmad et al., 2019). Owing to the nature of ocean 

observation data, the location and time of observation are limited, and 

the amount of the observed data is also limited (Levin et al., 2019; 

Weller et al., 2019). With the development of various observation 

techniques, periodically observed and stored data such as satellite 

data are abundant, but the observed data is mainly concentrated in 

the surface layer. However, measured data are limited because 

observation data for areas where remote observation is difficult, such 

as the deep ocean, are constrained by location and time (Klemas et 

al., 2013; Levin et al., 2019). If observational data is supplemented 

in the ocean field, improved prediction and analysis capabilities can 
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be achieved (Bolton et al., 2019). This study proposes an 

architecture that can generate observable data based on the 

observation data by applying the generative model technique of a 

neural network to solve the problem of insufficient ocean observation 

data. A comparison between the observed and synthetic data was 

performed to verify the generated data, and the synthetic dataset was 

used to train the prediction model. The performance of the predictive 

model can be improved using large synthetic datasets. This study 

proposes a valuable method for generating training datasets for 

machine learning and resolving missing data problems in earth 

science.  
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2. Performance of numerical ocean modeling 

on cloud computing① 
 

2.1. Introduction 

 

Numerical models are widely used to predict and analyze ocean 

circulation and various physical property changes. Large amounts of 

computational power are required for numerical experiments to 

simulate realistic global ocean circulation. However, preparing 

sufficient computer resources is difficult owing to economic and 

physical constraints. Even when the Information Technology (IT) 

infrastructure is sufficient, installing and preparing the ocean model 

setup is time-consuming. If IT infrastructures were free from setup 

and maintenance, ocean numerical models could be more easily and 

widely used. Efficient configuration and utilization of IT resources is 

being increasingly demanded in many fields, including ocean modeling. 

In order to satisfy this demand, many companies and organizations 

are considering utilizing public cloud computing services such as 

Amazon Web Services (AWS) and Google Cloud Computing (GCP). 

The number of applications that can be executed on cloud systems 

 
① The results of the presented work have been submitted into『바다』, 

(2022). 
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has been steadily increasing, and numerous studies are being 

conducted to determine whether and how applications and operations 

can be ported to cloud computing environments without performance 

penalty or technical issues. In the early days of commercial cloud 

services, many experiments associated with the operation of climate 

models in cloud computing environments were conducted. For 

example, Oesterle et al. (2015) compared the performance, 

disadvantages, and merits of cloud computing and grids for 

meteorological model applications. Montes et al. (2017) ported and 

tested AWS as an infrastructure for the Berkeley Open Infrastructure 

for Network Computing (BOINC) system. Chen et al. (2017) 

simulated the Community Earth System Model (CEMS) on AWS.  

Cloud computing is a computing resource utilization method in 

which IT infrastructure resources are provided through N/W, with 

fees paid according to computing amount and time of usage. It allows 

researchers, research institutes, and numerical ocean model 

scientists with limited infrastructure resources (i.e., servers, storage, 

and electricity) to use numerical ocean models at optimal cost without 

physical difficulties. Many three-dimensional numerical ocean 

models are executed in High Performance Computing (HPC) 

environments using manycore and Software (S/W) systems such as 

Message Passing Interface (MPI). In order to execute large-scale 
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numerical models in parallel, systems S/W such as MPI should be 

implemented properly with the configuration of high-speed Network 

(N/W) devices, such as InfiniBand, for communication among servers. 

Expensive Hardware (H/W) and N/W are usually managed by IT 

professional organizations and engineers. Various studies have been 

conducted on parallel processing using cloud computing to overcome 

the problem of high-cost IT infrastructure. However, the cloud 

environment has still been found to have several limitations for 

parallel processing owing to insufficient functionalities (Oesterle et 

al., 2015). Recently, AWS, GCP, and Azure, which are public cloud 

computing services, have begun to provide various technological 

bases such as high-performance instances, ethernet-based high 

performance N/W, and remote direct memory access (RDMA) for 

effective implementation of HPC. They enable users to easily prepare 

numerical model environments and conduct numerical experiments 

anytime and anywhere. 

This study was conducted to analyze the performance of an ocean 

model on commercial clouds and ascertain how to effectively 

construct and execute large-scale three-dimensional numerical 

ocean models in commercial cloud computing environments using 

ethernet-based high-performance N/W, high-performance memory, 

and CPU. An additional goal was to also provide a method to improve 
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or extend the performance of such systems in cloud computing 

environments with real case study data. For this study, the Regional 

Ocean Modeling System (ROMS), which is a typical community ocean 

model, was executed on commercial clouds. The various performance 

results and comparison analysis of performance data according to 

computing resource types are presented. Prior to this study, I 

investigated the feasibility of ROMS for the cloud computing 

environment, and also compared the performance of ROMS in a 

virtualization-based commercial cloud with that in a non-

virtualization-based HPC cluster (Jung et al., 2017).  

 

2.2. Cloud Computing 

 

2.2.1. Cloud computing overview 

 

Cloud computing provides virtualized and configurable computer 

resources (e.g., networks, servers, storage, applications, and 

services) in computing resource pools with functions such as self-

service provision, automatic usage metering, and rapid provisioning. 

Users can access these resources through broadband networks (such 

as the internet). Various kinds of services are provided and classified 

according to the associated resources. They include Infrastructure 
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as a Service (IaaS), Platform as a Service (PaaS), and Software as a 

Service (SaaS) (Figure 2.1).  

 

 

Figure 2.1 Conceptual diagram of cloud service types. 

Depending on the deployment model, the cloud platform itself can 

be may also be categorized as public or private (Mell and Grance, 

2011). IT companies such as Amazon, Microsoft, Google, and IBM 

provide public cloud commercial services: AWS, Azure, GCP, and 

Bluemix, respectively (Gartner, 2018). A private cloud is constructed 

by an organization for internal users and purposes. In this study, I 

used available public cloud services that can be used with the IaaS 

option for running a numerical ocean model. Virtualization is a key 

technology required to provide services such as IaaS. Through 

virtualization, physical servers, storage, and N/W resources can be 
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logically segmented and allocated to users, and logically returned 

when jobs are completed. 

Figure 2.2 shows a hypervisor, a server virtualization technology that 

can logically divide server resources. 

 

Figure 2.2 Conceptual diagram of an idealized hypervisor. Physical 

resources such as CPU, memory, and disk are virtualized through 

virtualization S/W (e.g., hypervisor) and can be logically allocated as 

instances. 

A physical x-86 server can be logically separated and assigned as 

a virtual machine (VM) through such a hypervisor. The virtual 

servers in public cloud computing are examples of the utilization of 

these hypervisor technologies. The virtualized servers used in the 

commercial cloud are also optimized VMs through virtualization 

technology (e.g., KVM) (AWS, 2020). Because VMs can be created 

using predefined templates in a repository, it is possible to rapidly 

recreate numerous VMs with the same configurations simply by 
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copying a VM template (AWS, 2022b). These techniques provide a 

useful method for easily preparing multiple nodes for large-scale 

numerical model experiments. This is also useful for researchers 

who need to setup highly complicated environments for numerical 

modeling. 

 

2.2.2. Commercial cloud computing services 

 

The number of users of public cloud services has increased rapidly 

for economic or technical reasons. Major commercial public cloud 

services in the global market such as Amazon's AWS, Microsoft's 

Azure, IBM's Bluemix, and Google's compute cloud service have 

numerous datacenters and provide many services in various 

countries (Gartner, 2018). Commercial cloud vendors provide PaaS 

and SaaS, as well as server resources, according to the user's 

purpose. In addition, the number of earth science organizations (such 

as NASA) that use commercial cloud to store and process earth-

related information is increasing (Chen et al., 2017). In this study, I 

constructed and executed an environment for the ocean numerical 

model in commercial clouds using VM servers with high-speed N/W 

and memory to analyze the performance of various cluster 

configurations, inter-server communication, and I/O. 
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Table 2.1 represents an example of the various server resources 

provided (as of March 2018) by commercial clouds such as AWS 

(AWS, 2022c). 

Table 2.1 Overview of purpose, specifications, and price of AWS 

instance types (us-west-2, Oregon) 

Type Purpose Sub-Type vCPU  Memory  

(GB) 

N/W Price/h 

($) 

T 

General 

purpose 

t3.large 

t3.xlarge 

t3.2xlarge 

2 

4 

8 

8.0 

16.0 

32.0 

Up to 5G 

Up to 5G 

Up to 5G 

0.0832 

0.1664 

0.3328  

M 

General  

purpose 

m5.4xlarge 

m5.12xlarge 

m5.24xlarge 

16 

48 

96 

64.0 

192 

384.0 

Up to 10G 

10G 

25G 

0.768 

2.304 

4.608 

C 

Compute-

optimized 

c4.8xlarge 

c5.9xlarge 

c5.18xlarge 

36 

36 

72 

60.0 

72.0 

144.0 

10G 

10G 

25G 

1.591 

1.53 

3.06 

R 

Memory-

intensive 

application

s 

r4.16xlarge 

r5.12xlarge 

r5.24xlarge 

64 

48 

96 

488.0 

384.0 

768.0 

25G 

10G 

25G 

4.256 

3.024 

6.048 

P 

GPU 

instance 

p2.16xlarge 

p3.8xlarge 

p3.16xlarge 

64 

64 

96 

732 

488 

768 

25G 

10G 

25G 

14.40 

12.24  

24.48 

 

As the performance and features vary according to server instance, 

it is possible to combine the required instances according to the 
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purpose of the research. GPU-equipped instances, which are widely 

used for deep learning and high-speed image processing, are also 

available in cloud computing. Expensive IT resources can be used at 

a reasonable price according to the usage amount. Public cloud 

service’s prices vary according to datacenter and resource type. 

The most economic server can be selected regardless of the distance 

between the user and the server. It is also possible to use IT 

resources at lower cost by using spot-instance type resources 

instead of on-demand type. Amazon Elastic Compute Cloud (EC2) 

spot-instances are spare compute capacity in the cloud, which can 

provide lower cost compared to on-demand instances (AWS, 2022d). 

GCP also provides pre-emptible instances at a lower price point 

(Google, 2022c). The datacenter and services in region Oregon, USA 

were selected for this study. 

High-speed processors, high-bandwidth memory, and high N/W 

throughput are essential for large-scale modeling. In this study, I 

chose recent servers with 64-bit Linux for our numerical modeling 

experiment. High performance virtualized servers are appropriate for 

numerical models with MPI because commercial clouds provide them 

with high bandwidth over 10 Gbps and latency values are between 36 

and 42 µs when the message size is less than 32 bytes (Table 2.2).  
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Table 2.2 Latency of cloud HPC clusters according to message size 

Message size 1 byte 2 bytes 4 bytes 8 bytes 16 bytes 32 bytes 

Latency (µs) 36.2 38.8 36.6 35.6 40.7 36 

 

VM template copying for large-scale models in virtualized 

computing environments such as public cloud services can minimize 

preparation time. 

 

2.3. Numerical model for performance analysis of 

commercial clouds 

 

2.3.1. High Performance Linpack Benchmark 

 

HPL, an implementation of Linpack Benchmarking, is a useful tool 

for evaluating the performance of High-Performance Computing 

Clusters (HPCC) (Rajan et al., 2012). It is a benchmarking software 

package that solves a random dense linear system in double precision 

(64 bit) arithmetic on distributed-memory computers such as MPI 

clusters. The general performance of clusters was tested using HPL 

and compared with the performance of ROMS. The cluster 

performance was evaluated as floating-point operations per second 

(Flops) according to the nodes and memory. The results are 

presented in section 2.4. 
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2.3.2. Benchmark Sustainable Memory Bandwidth and 

Memory Latency 

 

Memory bandwidth is a crucial determinant of computing speed 

because numerical ocean modeling requires huge memory I/O in an 

MPI environment. In this study, I evaluated the bandwidth of memory 

in virtualized computing environments with the STREAM benchmark 

S/W for HPC. Memory bandwidth depends on CPU type and instance 

type in a virtualization environment. The memory bandwidth was 

measured using a single node and multiple nodes respectively in 

parallel with MPI. 

Memory latency could also be an important factor in memory I/O 

performance. I measured the memory latency of the servers with 

Intel memory latency check tool for analysis of the memory I/O 

performance (Intel, 2021). I analyzed the latency and the cache 

hierarchy to evaluate total memory I/O performance. 

 

2.3.3. Numerical Ocean Model 

 

ROMS, the numerical model used in this study, is a free-surface 

ocean model with vertical terrain-following and horizontal curvilinear 

coordinates. It solves hydrostatic, free-surface primitive equations 

(Shchepetkin and McWilliams, 2005). A third-order upstream 
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advection scheme and the K-Profile Parameterization scheme 

(Large et al., 1994) are used for horizontal advection and vertical 

mixing, respectively. Many ocean scientists use ROMS in a variety of 

ways to meet their research needs. ROMS comprises very modern 

and modular code written in F90/F95 using C-pre-processing to 

activate the various physical and numerical options. It has a generic 

distributed-memory interface that facilitates the use of several 

message passing protocols. Currently, data exchange among nodes is 

achieved using MPI. However, other protocols such as MPI2 and 

symmetrical hierarchical memory can be used without much effort. 

Further, the entire input and output data structure of the model is via 

Network Common Data Form (NetCDF) (ROMS, 2015).  

The model domain used in this study extends from 115°E to 

162°E and from 15°N to 52°N, which includes the Yellow Sea, 

East China Sea, and East/Japan Sea (Figure 2.3). It features 1/10° 

horizontal grid resolution and 40 vertical layers. The bottom 

topography data are based on the Earth Topography five-minute grid 

(ETOPO5) dataset of the National Geophysical Data Center (Amante 

and Eakins, 2009). 
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Figure 2.3 The domain of this study. The model domain covers 15-

52˚N and 115-162˚E, which includes the East China Sea, Yellow 

Sea, East Sea, and the north-western part of the Pacific. Color 

signifies water depth. 

The initial temperature and salinity were obtained from the 

National Ocean Data Center (NODC) World Ocean Atlas 2009 

(WOA09) (Antonov et al., 2009; Locarnini et al., 2009). For the 

lateral open boundary, the monthly mean temperature, salinity, and 

velocity from the Simple Ocean Data Assimilation (SODA; Carton and 

Giese, 2008) for 2010 were applied. The surface forcing, which 

includes daily mean wind, solar radiation, air temperature, sea level 

pressure, precipitation, and relative humidity, was derived from the 
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ERA-Interim reanalysis data of the European Centre for Medium-

Range Weather Forecasts for 2010 (Dee et al., 2011). These data 

were applied to calculate the surface heat flux with the bulk formulas 

(Fairall et al., 1996). Tidal forcing of 10 tidal components was 

provided by TPXO7 (Egbert and Erofeeva, 2002). Freshwater 

discharges from 12 rivers were also applied in the model 

(Vörösmarty et al., 1996; Wang et al., 2008). Details on the model 

configuration are given in Seo et al. (2014). 

 

2.3.4. Deployment of Numerical Ocean Model and 

Benchmark Packages on Cloud Clusters 

 

The numerical ocean model and benchmark S/W packages 

(STREAM and HPL) were setup for the performance analysis on 

commercial clouds using virtualized server resources. Tables 3 and 

4 show details of the resource types and specifications of each 

cluster. I constructed five HPCs according to resource type. The 

performance of the benchmark S/Ws and ROMS were evaluated in 

each cluster with different CPUs and memory. I assigned the vCPUs 

up to 512 cores in each cluster, as considering the performance 

characteristics of hyper-threads in ROMS modeling and HPL the 

high-speed N/W environment configuration for MPI-based parallel 

processing is also absolutely necessary. The HPC environment is 
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usually configured as an InfiniBand high-speed network capable of 

achieving a maximum bandwidth of 40 Gbps with very low latency. In 

commercial clouds, HPC can be configured as an environment 

supporting an Ethernet-based high-speed network having a 

bandwidth of up to 25 Gbps with low latency (Table 1). In order to 

secure a bandwidth of 10 Gbps or more and minimize latency, a 

separate N/W group has to be constructed and configured with Virtual 

Private Cloud (VPC) in the AWS commercial cloud (AWS, 2022e). 

Similar N/W group functions are provided by other commercial clouds. 

In this study, VPCs were constructed for the clusters and connected 

among nodes with a private Internet Protocol (IP) address. For the 

parallel processing of ROMS, PGI compiler (NVIDIA, 2022) and 

Open-MPI were configured and NetCDF installed for the input and 

output data structure of the model. 

Virtualized IT resources are more flexible and configurable to 

allocate and manage than physical resources. However, there is a 

small decrease in performance because computing resources (e.g., 

CPU, Memory, NW) are provided through the software layer such as 

a hypervisor. The virtualized network also causes a little decrease in 

performance (Younge et al., 2011, Gupta et al., 2013, Jung et al, 

2017). However, virtualization technology has been improved greatly. 

One of the technologies that have been applied to improve the speed 
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of virtualized N/W resources is Single Root I/O Virtualization (SR-

IOV). SR-IOV is a technical approach to device virtualization that 

provides higher I/O performance and lower CPU utilization than 

traditional virtualized network devices. Commercial clouds also adapt 

this technology to prevent performance decrease in some high-

performance instances. They provide an additional high-speed N/W 

environment called ENA to support up to 25 Gbps bandwidth in the 

commercial cloud such as AWS (AWS, 2016). If the amount of 

communication between nodes is large or the number of nodes 

increases, it is possible to configure the environment using instance 

types providing these high-performance features and to achieve 

better numerical modeling performance. Using the Ethernet based on 

the enhanced N/W and high-performance servers, good performance 

can be achieved in numerical ocean modeling. 

 

2.4. Simulation results 

 

2.4.1. Benchmark simulation 

 

Commercial cloud companies and private organizations provide 

their own instances or CPU resource types for their customers. 

Figure 2.4 shows the HPL performance of the clusters with various 
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CPU types respectively.  

 

Figure 2.4. Performance of the cloud clusters according to number of 

vCores using the HPL S/W package. 

The performance of all clusters increases linearly with the number 

of cores. However, the increase rate is different for each cluster. The 

performance of cluster C increases rapidly, whereas that of clusters 

A, B, and E increases slowly. It is remarkable that the performance 

of cluster-C is better than that of cluster-D despite the relatively 

low CPU clock. This result suggests that the performance of the 

cluster depends on the resource specification (Table 2.3).  

This information helps us to select the best configuration for the 

running of our numerical ocean model, because the H/W efficiency 

according to resource type of the cluster is different. 
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Table 2.3 Hardware and software configuration of commercial clouds 

Type CPU Type VCores  

per node 

Nodes OS Compiler 

Cluster-A 

 

Xeon® 

Skylake 

(2.0 GHz) 

64/72G 16 Linux (64Bit) 

(CentOS 6.9) 

 

PGI Compiler 18.4 

Open-mpi 2.01 

NetCDF4 (4.4) 

gcc 4.4 

Intel Parallel Studio 

XE 2019 Initial 

Cluster-B Xeon® 

Broadwell 

(2.2 GHz) 

64/72G 16 Linux (64Bit) 

(CentOS 6.9) 

PGI Compiler 18.4 

Open-mpi 2.01 

NetCDF4 (4.4) 

gcc 4.4 

Intel Parallel Studio 

XE 2019 Initial 

Cluster-C 

 

Xeon® 

Skylake-

SP (2.50 

GHz) 

96/144G 16 Linux (64Bit) 

(Customized) 

PGI Compiler 18.4 

Open-mpi 2.01 

NetCDF4 (4.4) 

gcc 4.4 

Intel Parallel Studio 

XE 2019 Initial 

Cluster-D 

 

Xeon® 

Skylake-

SP (3.00 

GHz) 

72/144G 16 Linux (64Bit) 

(Customized) 

PGI Compiler 18.4 

Open-mpi 2.01 

NetCDF4 (4.4) 

gcc 4.4 

Intel Parallel Studio 

XE 2019 Initial 

Cluster-E Xeon® 

Broadwell 

E5-2686 

v4 

(2.3 GHz) 

64/488G 16 Linux (64Bit) 

(Customized) 

PGI Compiler 18.4 

Open-mpi 2.01 

NetCDF4 (4.4) 

gcc 4.4 

Intel Parallel Studio 

XE 2019 Initial 

 

The STREAM benchmark results of all clusters also increase with 

the number of nodes, but the bandwidth per node decreases (Figure 

2. 5). This result suggests that the memory performance of the nodes 

decreases slightly with the increment of remote node I/O. The 

increase ratio of the memory bandwidth according to the core is 
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different in each cluster. It is larger in clusters C and D, which 

corresponds to the performance result of the cluster, as shown in 

Figure 2.4. 

 

Figure 2.5 Sustainable memory bandwidth of the cloud clusters 

according to number of vCores. 

This memory bandwidth might determine the performance of MPI-

based numerical models using large memory I/O. 

 

2.4.2. Ocean model simulation 

 

Figures 2.6 and 2.7 show the simulated Sea Surface Temperature 

(SST) and surface velocity initially and after 3 days of execution 

from 1 January 2010, respectively. The Kuroshio Current, 

characterized by warm water and high speed, is well simulated along 

the Okinawa trough and the eastern coast of Japan. Cold water 
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appears in the Okhotsk Sea, the northern East/Japan Sea, and the 

coast of the Yellow Sea as a result of the atmospheric cooling and 

vertical mixing (Seo et al., 2014).  

 

Figure 2.6 (a) Initial sea surface temperature and (b) simulated sea 

surface temperature after 3 days from 1 January 2010. 

 

Figure 2.7 (a) Initial surface horizontal velocity and (b) simulated 

surface horizontal velocity after 3 days from 1 January 2010. Vector 

signifies current speed and direction. 

Comparison of the models simulated by the various commercial 

servers according to cores shows that the Root-Mean-Square Error 
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(RMSE) of the SST is 0.0057–0.0097 ℃ and the RMSE of the u-

component and v-component of the velocity is about 0.0005 ms-1. 

This means that the difference among the simulation results from 

commercial cloud systems is small. I found that the RMSE between 

the physical servers and virtualized servers is also very small (Jung 

et al., 2017) 

 

2.5. Analysis of ROMS performance on commercial 

clouds 

 

The CPU and memory might be major factors that determine the 

execution performance in numerical modeling. Analysis of the CPU 

and the memory performance for ROMS and benchmark S/W were 

conducted in virtualized commercial clouds, where users can select 

the best resource type to minimize time and cost based on evaluation 

of CPU and memory. 

2.5.1. Performance of ROMS according to H/W resources 

 

Commercial cloud companies generally use Intel Xeon CPUs (Table 

2.4). The recent Intel Xeon Scalable Processor (SP) family has more 

features than previous generations (formerly Broadwell 

microarchitecture).  
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Table 2.4 CPU specification of cloud HPC Clusters 

Type Cluster-A Cluster-B Cluster-C Cluster-D Cluster-E 

Architecture x86_64 x86_64 x86_64 x86_64 x86_64 

CPU(s) 64 64 94 72 64 

On-line 

CPU(s) 

0–63 0–63 0–93 0-71 0-63 

Thread(s)  

per core 

2 2 2 2 2 

Core(s)  

per socket 

32 32 24 18 16 

Socket(s) 1 1 2 2 2 

CPU family 6 6 6 6 6 

Model name Xeon® 

Skylake 

(2.0 GHz) 

Xeon® 

Broadwell 

(2.2 GHz) 

Xeon® 

Skylake-SP 

(2.50 GHz) 

Xeon® 

Skylake-

SP (3.00 

GHz) 

Xeon® 

Broadwell 

E5-2686  

(2.3 GHz) 

Hypervisor  

vendor: 

KVM KVM KVM KVM Xen 

L1d cache 32 K 32 K 32 K 32 K 32 K 

L1i cache 32 K 32 K 32 K 32 K 32 K 

L2 cache 256 K 256 K 1024 K 1024 K 256 K 

L3 cache 56320 K 56320 K 33792 K 25344 K 25 600 K 

 

In particular, the cache structure is significantly different from the 

previous generation. In Broadwell and Haswell CPUs, the Mid-

Level-Cache (MLC) was 256 KB per core and the Last-Level-

Cache (LLC) was a shared inclusive cache with up to 2.5 MB per core. 

In the Intel Xeon SP family, the cache hierarchy has changed to 

provide a larger MLC of 1 MB per core and a smaller shared non-

inclusive of up to 1.375 MB per core. A larger MLC increases the hit 

rate in the MLC, which results in shorter effective memory latency 

and lower demand on the mesh interconnect and LLC. The shift to a 

non-inclusive cache for the LLC allows more effective utilization of 
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the overall cache on the chip versus an inclusive cache (Intel, 2019). 

In our study, cluster-C and cluster-D with the new CPU architecture 

showed better performance than the clusters with the old cache 

architecture. Cluster-C and cluster-D had a larger MLC of 1 MB per 

core and a smaller shared-non-inclusive LLC per core.  

Table 2.5 shows the running time of ROMS according to the 

resource type and grid size of each cluster. The wall-clock time is 

greatly different according to resource type and grid size. This result 

signifies that resource analysis in evaluation of the execution 

performance is highly important. 

The running time of ROMS might depend on cache capacity and 

hierarchy. Cluster-C and cluster-D show fast running time 

regardless of grid size. The larger MLCs of cluster-C and cluster-

D result in high performance by reducing the latency between 

memory and CPU.  
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Table 2.5 Wall-clock time for ROMS modeling per unit node with 32 

vcores 

CPU(s) 32 32 48 36 32 

Socket(s) 1 1 2 2 2 

Vendor Intel Intel Intel Intel Intel 

Model name Skylake 

(2.0 GHz) 

Broadwell 

(2.2 GHz) 

Skylake-SP 

(2.50 GHz) 

Skylake-SP 

(3.00 GHz) 

Broadwell 

E5-2686 

(2.30 GHz) 

 

L1d cache 32 K 32 K 32 K 32 K 32 K 

L1i cache 32 K 32 K 32 K 32 K 32 K 

L2 cache 256 K 256 K 1024 K 1024 K 256 K 

L3 cache 56320 K 56320 K 33792 K 25344 K 46080 K 

Wall-clock time 

(sec) for 

 (51ⅹ50ⅹ20) 

26 24 14 12 18 

Wall-clock time 

(sec) for 

 (100ⅹ98ⅹ40) 

76 74 45 45 62 

Wall-clock time 

(sec) for 

 (210ⅹ206ⅹ40) 

266 266 176 184 232 

Wall-clock time 

(sec) for 

 (422ⅹ412ⅹ40) 

1011 983 663 698 886 

Wall-clock time 

(sec) for 

 (846ⅹ826ⅹ40) 

4211 4294 2872 3032 4011 

 

The execution performance of ROMS shows a similar pattern to 

that of HPL. The CPU with the high-performance cache memory 

showed better performance for HPL, as shown in Figure 2.4. Even 

though the CPU clock is fast, the performance of ROMS is relatively 

low on the cluster with long latency between the CPU and memory. 

The latency of the memory I/O might be long in large memory loading. 

The performance of ROMS in virtualized servers definitely depends 
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on cache hierarchy, which reduces the latency between CPU and 

memory. 

The virtualized CPU resource type related with the hyperthreads 

is also an important factor in parallel systems. Because many nodes 

with multiple cores are used to support parallel processing in large-

scale numerical models, it is necessary to consider the number of 

servers and the best performance of the servers in parallel 

processing. Allocation of the optimal vCPUs for each node and 

optimizing the load balance of each node to achieve enhanced 

performance are important in HPC computing. Commercial cloud 

vendors usually provide virtualized servers with hyperthreads-

enabled CPUs, called as a virtualized CPUs or vCPUs. Fundamentally, 

two threads are given based on one physical CPU core (Figure 2.8).  

 

Figure 2.8. Conceptual mechanism of vCPU in the virtualization of 

physical quad-core. vCPUs of cloud instances are provided through 

the hyperthreads-enable mode. The number of physical CPUs is 

one-half of the vCPU instances. 
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A virtualized server uses one thread as a virtual core but appears 

to show twice the number of physical cores. Sometimes poor 

knowledge of these configurations can lead to misunderstanding of a 

vCPU’s performance and consideration of it as being similar to a 

physical CPU’s. There is little difference in the performance between 

running time of half of a vCPU and a full vCPU in each cluster (Figure 

2.9). 
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Figure 2.9. (Upper) Wall-clock running time for 3 days simulation 

and (lower) HPL Flops according to the number of vCores on 

cluster-C. 

If one physical CPU is used fully, the two threads such as MPI job 

task eventually have to share one physical CPU core resource. In this 

case, there is little gain in the performance of MPI jobs in 

hyperthreads mode. Therefore, it is desirable to disable hyper-threading 

or allocate vCPU in a commercial cloud considering this characteristic. 
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The memory I/O performance is important in numerical models 

using huge memory I/O in the HPC clusters.  The sustainable 

memory bandwidth and latency time determines the execution 

performance of ocean modeling with large memory I/O. Figure 2.10 

shows the latency of the memory in three clusters, which provides 

latency information.  

 

Figure 2.10. Memory latency time according to memory bandwidth in 

clusters C, D, and E. 

Cluster-C with a 2.5 GHz CPU and 1 MB MLC type has the low 

memory latency. Its running time for ROMS is similar to that of 

Cluster-D with a 3.0 GHz CPU and 1 MB MLC cache. The latency 

time of the memory affects its I/O performance. In this experiment, 

the best execution performance of the ROMS and benchmark S/W 

appears in the resource type with large MLC cache and lower 

memory latency, as in clusters C and D. This suggests that latency 
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should be also seriously considered in numerical modeling that needs 

huge memory I/O. 

 

2.5.2. Performance of ROMS according to grid size 

 

I divided our experimental results into three based on Degree Of 

Freedom (DOF) size (Table 2.6), to evaluate the execution time 

according to CPU resource type and memory I/O. The execution 

times differ according to CPU resource type, but the maximum 

performance of each cluster appears with similar number of cores 

(Figure 2.11).  
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Figure 2.11 Wall-clock running time for 3 simulation days as a 

function of number of vCores for various grid sizes. 

The execution time in the coarse grid (small DOF size) decreases 

as the number of cores increases. The minimum time appears at 

about 128 cores regardless of CPU resource type. The execution 
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times decreases with the number of cores in all sizes. However, the 

decrease rate is small after 64 cores in the coarse grid and 256 cores 

in the medium and fine grids, respectively. 

Table 2.6 Grid-Size Type of numerical ocean model 

Resolution of grid Coarse Medium Fine 

Dimensions of grid 210ⅹ206ⅹ40 422ⅹ412ⅹ40 846ⅹ826ⅹ40 

Degree Of Freedom 

(DOF) 

1,730,400 6,954,560 27,951,840 

 

I calculated relative efficiency by assuming one as the efficiency of 

32 vcores. The efficiency according to the number of cores 

decreases rapidly regardless of grid size (Figure 2.12). As the 

number of cores increases, the efficiency decreases in all grids. The 

efficiency decreases more rapidly in coarse grid than in fine grid.  
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Figure 2.12 Efficiency of cluster as a function of number of vCores 

for various grid sizes. Thick gray fitting lines represent mean 

efficiency of clusters.  

The fitting equations of mean efficiency with number of cores show 

quantitatively the decease rate according to the grid sizes. When the 

number of cores increases by a factor of four, the efficiency 

decreases to about 0.35 in the coarse grid with 1,730,400 of DOF but 

0.82–0.95 in the fine grid with 27,951,840 of DOF (Figure 2.13).  
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Figure 2.13 Mean efficiency of clusters as a function of grid size in 

different cores. 

This result suggests that increasing the number of cores is less 

effective in a small DOF than in a large DOF. The fitting equations in 

Figure 2.13 provide useful information for selecting the best number 

of vcores according to the DOF. 

Figure 2.14 shows the running time of one DOF per vcore for 1 day 

of simulation with the DOF according to the number of vcores for 

each cluster. Increasing the number of vcores is more effective in the 

large DOF than the small DOF regardless of clusters. The fitting 

equations in Figure 2.14 enable us to estimate the running time of 

ROMS according to DOF size and resource types in the virtualization 

environments or clouds. 
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Figure 2.14 Wall-clock running time as a function of DOF for 1 day 

simulation of one DOF according to number of vCores. 
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2.6. Summary 

 

In this study, I investigated how computing resources affect the 

performance of an MPI-based ROMS in virtualized cloud 

environments. To evaluate the performance more objectively, not 

only ROMS but also the benchmark S/Ws such as STREAM and HPL 

were executed in the virtualized clouds. Five clusters with different 

CPU and memory were tested to evaluate the performance of ROMS 

for three different grid sizes in the commercial clouds. I found that 

the cache hierarchy and capacity between the CPU and main memory 

play important roles in the performance of ROMS using huge memory. 

The performance of clusters absolutely depends on the MLC. 

Clusters of MLC (256 KB) show lower performance than those of the 

MLC (1 M) owing to relatively small cache memory capacity. The 

memory latency is also a key factor in the execution performance in 

the commercial cloud HPC environment. Clusters comprising many 

virtual cores and Ethernet based N/W in the commercial clouds were 

found to provide good performance in numerical ocean modeling. This 

result shows that increasing the number of cores is more effective in 

large DOFs than in small DOFs. The efficiency decreases more 

rapidly in a coarse grid than in a fine grid. If the number of cores 

increases by a factor of four, the efficiency decreases to about 0.35 
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in a coarse grid with 1,730,400 of DOF but 0.82–0.95 in a fine grid 

with 27,951,840 of DOF.  

The performance of cloud computing environments is constantly 

improving, and various numerical models are being tested in cloud 

computing environments. Microsoft's Azure already supports 

InfiniBand N/W technology.  N/W sensitive models may be tested in 

InfiniBand-supported cloud environments easily in the near future. 

Some numerical models might depend on the size of the memory 

according to the grid size and the communication latency between the 

nodes as well as the computation. These constraints can be satisfied 

by suitable resource selection and various configurations in cloud 

computing environments. The best performance of ROMS in 

commercial cloud computing environments can be achieved by 

selecting the appropriate CPU and memory and optimizing the 

modeling environment. The commercial cloud computing environment 

is a cost-effective solution for large-scale modeling. Various 

technologies and resource configurations are available for enhancing 

the security of cloud computing to the level of that of local HPC. 

Moreover, VM image copying techniques can be used to copy and 

share the model environment configuration of the ocean numerical 

model rapidly in cloud environments. This makes it easier to 

collaborate among researchers in a multinational context. Thus, cloud 
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computing can provide an opportunity to focus on research and to 

minimize the time and cost of resources needed to construct a 

modeling environment. 
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3. Reproducibility of numerical ocean model 

on the cloud computing② 
 

3.1. Introduction 

 

Numerical ocean models are used to simulate the interactions 

among various elements of ocean systems. These models play very 

important roles in helping us understand and predict ocean dynamics. 

Many ocean models have been coupled with atmospheric models to 

consider the interactions of air and sea (Blackport et al., 2018). 

Recent advances in information technologies (IT), such as cloud 

computing, have enabled scientists to more easily run scientific 

models of this nature (Chen et al., 2017; Zhuang et al., 2020). Hence, 

emerging cloud technologies and case studies for ocean observations 

and modeling have been performed (Vance et al., 2019; Signell et al., 

2019). 

The IT infrastructures required for numerical models vary from 

personal computers (PC) to virtualized servers and various cloud 

services. Additionally, there are many software (SW) combinations 

of operating system (OS), compilers, and libraries used to support 

 
② The results of the presented work have been published in Jung et al. 

(2021). 
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and implement the numerical models. The complexity of the IT 

environment increases rapidly with more complex SW model 

configurations. Fortunately, various cloud IT resources are easily 

procured. Nonetheless, complex environments tend to hamper 

model-building for computational reproducibility. 

Survey results have revealed that some code execution 

environments can hinder the reproducibility required by 

geoscientists (Konkol et al., 2019). Therefore, several efforts (e.g., 

open reproducibility research) have resulted in improvements to 

such environments to support computational reproducibility (Open 

Reproducible Research, 2020) and to help researchers share 

experimental information and supportive infrastructures, including 

SW and data configurations. The Executable Research Compendium 

was designed for such reproducibility. It uses Docker containers, 

which applies an OS-level virtualization to deliver SW-container 

packages (Nüst et al., 2017). Containers are isolated SW bundles 

having libraries and configuration files that can communicate with 

each other through well-defined channels to provide flexibility and 

portability, enabling applications to run at various locations. Virtual 

boxes, containers, and Conda distributions have been used to abstract 

analytical environments at smaller instances, which has been helpful 

for the reproducibility of computational biology works (Grüning et al., 
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2019). Additionally, studies have tested Kubernetes container-

orchestration systems and the performance of other SW benchmark 

for the feasibility of various scientific workloads (Beltre et al., 2019). 

Prior studies have shown the advantages and future possibilities of 

container environments in benchmark cases. In this study, I apply a 

container-based architecture for geoscientific studies, including 

numerical ocean modeling. I propose that the Kubernetes-managed 

container cluster architecture for numerical ocean modeling be used 

to increase computational reproducibility and achieve the needed 

portability to support numerical ocean models in various public and 

private clouds. This architecture saves time when setting up 

numerical ocean models with their pre-built container images, and it 

resolves the vendor lock-in problem of cloud computing. These 

benefits allow greater flexibility of model transfer among private and 

public clouds. 

The rest of the paper is organized as follows. Section 3.2 

introduces our regional ocean-modeling system (ROMS) and its 

container and container-based numerical modeling architecture. 

Section 3.3 explains the containerization of ROMS and the 

implementation of container orchestration for parallel processing in 

various environments. Section 3.4 presents the results of our ROMS 

modeling reproducibility tests in various runtime environments, 
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highlighting architectural feasibility. Finally, in Section 3.5, I 

summarize the achievements of our containerized ROMS execution 

architecture and provide necessary future improvements for 

reproducible and portable SW architectures. 

 

3.2. Containerization of numerical ocean model 

 

3.2.1. Container virtualization 

 

Container virtualization is a lighter-weight virtualization 

technology than traditional hypervisor-based server virtualizations. 

For comparison purposes, server virtualizations use a hypervisor, 

which functions to logically divide and allocate physical server 

resources (Figure 3.1). Each guest OS is installed on the virtualized 

server, and the user’s SW is installed atop it. In contrast, container 

virtualization uses a container daemon or a SW engine to create a 

logically isolated unit (i.e., container) based on the capabilities of the 

control groups (cgroup) and namespaces of Linux OS kernels. The 

containers work like independent servers on the host OS. Unlike a 

virtual machine (VM), separated cgroups and namespaces within the 

same OS allow separate central-processing unit (CPU), input/output 

(I/O), internet protocols (IP), and user spaces for each container. A 
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cgroup is a Linux kernel feature that isolates and limits resource 

types (e.g., CPU, memory, disk I/O, and network (NW)) (Sultan et 

al., 2019). 

 

Figure 3.1 Conceptional architecture of VM and container 

virtualization. 

Logically separated containers using Linux kernels do not have 

independent guest OS layers. They instead share features of the 

host-OS kernel. This architecture characteristic renders a lighter 

weight environment. Many users use the de facto Docker 

environment to deliver SW container packages (Shah et al., 2019). 

Various container runtimes are compatible with Kubernetes 

(Kubernetes Container Runtime, 2022) and the Singularity 

container engine can be used for other high-performance computing 

(HPC) to package entire scientific workflows, SW and libraries, and 
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data to leverage the performance of local servers. Furthermore, 

InfiniBand, a computer-NW communications standard used in HPC, 

features very high throughput with very low latency and is used to 

improve security (Veiga et al., 2019). These engines and compatible 

environments are enabled by an open-source compatibility standard 

specification (i.e., Open Container Initiative (OCI)), which is used to 

maintain collaboration capability and compatibility with other tools 

(Linux Foundation, 2020). Kubernetes can orchestrate various 

containers using OCI standard specification. 

 

3.2.2. Container-based architecture for HPC 

 

Traditionally, for numerical ocean modeling tasks, a large number 

of physical servers and high-speed NW switches (e.g., InfiniBand) 

is required to create HPC clusters. As virtualization technologies and 

cloud environments have become more commonplace, many earth-

science numerical models have been deployed on MPI clusters using 

VMs in public clouds (Montes et al., 2017). A container-based 

cluster can be configured on multiple nodes using container runtimes 

and Kubernetes settings instead of installing individual SW packages 

for MPI on physical servers or logically configuring virtual servers. 

Container clusters can also be configured on a SW-defined logical 
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NW layer (e.g., overlay NW), such that the containers of each node 

are well connected. In a native container-based cloud environment, 

the NW-plugin container of each node enables rapid NW 

configuration (Luksa, 2018). Figure 3.2 illustrates the configuration 

of the overlay NW used by the Kubernetes container cluster 

(Kubernetes Cluster Networking, 2022). With this configuration, 

it is easy to extend and run numerical models from a single-node 

container cluster to a multi-node one. In this study, I construct 

clusters of homogeneous and heterogeneous OS environments and 

verify their portability, scalability, and computational reproducibility 

using overlay NW features. Note that an etcd is a strongly consistent, 

distributed key-value store that provides a reliable way to store data 

so that it can be accessed by a distributed system or a cluster of 

machines. Additionally, communication between nodes is made 

possible via the application programming interface (API) server and 

NW topology using overlay NW (Luksa, 2018; Kubernetes 

Components, 2022). Furthermore, a Kube proxy is a NW 

Kubernetes proxy that runs on each node in the cluster, implementing 

parts of the Kubernetes service. The kubelet is the primary node 

agent that runs on each node, and it manages pods, the smallest 

deployable unit of computing that one can create and manage in 
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Kubernetes.  

 

Figure 3.2 Conceptual diagram of the Kubernetes overlay NW. 

With the advancement of container virtualization technologies, 

many orchestration SWs have been developed to effectively manage 

and operate large numbers of containers. Currently, the most 

commonly used container orchestration SW is Kubernetes, which was 

developed by Google as an opensource project in 2014 (Kubernetes 

overview, 2022). Figure 3.3 shows the conceptual architecture. 

Kubernetes controls and manages containers as basic units, (i.e., 

pods) (Kubernetes Pods, 2022), making it possible to communicate 

among them at every node using NW components based on an overlay 

NW. I use StatefulSet, a Kubernetes controller for HPC container 

orchestration, to deploy numerical model containers to multiple nodes. 

Note that kubectl is a command-line tool that allows operators to run 

commands against Kubernetes clusters. The kubectl tool can be used 
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to deploy applications, inspect and manage cluster resources, and 

view logs. YAML is a human-readable data-serialization language 

commonly used for configuration files and in applications where data 

is being stored or transmitted. 

 

 

Figure 3.3 Architecture of Kubernetes clusters. 

The Kubernetes orchestration solution provides scalability and 

easy container management for numerical modeling. Various nodes 

can easily be merged into a container cluster regardless of the 

homogeneous or heterogeneous nature of the OS. StatefulSet codes 

can then be executed for deployment, distribution, and parallelism of 

containers. When code is executed on the Kubernetes engine, the 

executable numerical model image is downloaded and configured on 

designated nodes. Users can then easily run numerical models on the 
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container cluster.  

Kubernetes supports a variety of platforms (e.g., Linux and 

Windows Server). Kubernetes Compatible SWs (e.g., MicroK8s) 

(Canonical, 2022) can be used to run MPI jobs on a PC or a single 

node. End-users can manage container clusters for numerical 

modeling using container deployment techniques and numerical lump 

modeling. Users can register various numerical model images in 

public repositories for sharing publicly or privately. For detailed 

technical specifications, please visit the Kubernetes official 

documentation site (Kubernetes Overview, 2022). 

 

3.2.3. Container-based architecture for hybrid cloud 

 

Hybrid clouds combine a private cloud with one or more public 

clouds by using proprietary SW and NW environments that enables 

communication between distinct infrastructures (Hybrid clouds, 

2022). A hybrid cloud provides large flexibility in HPC 

infrastructures, because it enables users to easily move HPC 

workloads between public and private infrastructures according to 

environmental changes. Moreover, researchers can back-up data on 

a private cloud or local data center and leverage more economical and 

available computational resources in the public cloud. Network 
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infrastructures, such as virtual-private-network (VPN) tunneling 

environments or cloud interconnect lines, enable users to connect 

each infrastructure organically for HPC jobs (AWS, 2022f). 

When researchers want to move workloads for simulation from a 

premise cluster to public cloud, it is important to easily deploy HPC 

workloads into heterogeneous cloud environments without barriers. 

If the suitable architecture for flexibility of infrastructure between 

public clouds and private infrastructure is available, users can extend 

to the public cloud when computational resources exceed local 

availability. 

In this research, I suggest that the container-based architecture is 

suitable for the flexibility of workloads in the hybrid cloud. There are 

several methods of creating secure NW infrastructures between 

public clouds and private infrastructure. These methods include 

CloudVPN, IPsec, routers, etc. (Google, 2022b). After configuring 

the NW infrastructure between two environments, the server nodes 

can communicate with each other as if they were on the same local 

infrastructure. Figure 3.4 shows the container-based architecture 

for HPC workload distribution between public and private clouds. 
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Figure 3.4 HPC workload distribution above hybrid cloud with 

Kubernetes 

 

3.3. Materials and Methods 

3.3.1. Comparison of traditional and container based HPC 

cluster workflows 

 

Figure 3.5 Conceptual workflow of VM and container clusters for 

numerical modeling. 

Figure 3.5 shows the workflow of the preparation and execution of 
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both the traditional and container numerical-model architectures. In 

the container-based architecture, a scientist or a technician builds a 

runnable container image and pushes it to a public or private 

repository for end users who then download the model image into 

public or private container clusters. After constructing the container 

cluster, it becomes possible to run the numerical model container. 

StatefulSet codes (i.e., workload API objects used to manage 

containers) are implemented on cluster nodes so that the end user 

can run the numerical-model HPC clusters. In contrast, end users of 

the traditional cluster prepare additional jobs, such as preparation of 

prerequisite SW for the traditional architecture (not needed for the 

container-based cluster). In particular, end users of the traditional 

architecture must compile their own model codes and required SWs 

(e.g., NetCDF and MPI libraries), depending on the OS version and 

compiler type. Moreover, the compiled executable program is not 

shareable to other users because of SW and infrastructure 

dependencies. Thus, it becomes difficult and time-consuming to 

prepare model environments based on VMs or bare-metal clusters 

in public or private clouds. 
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3.3.2. Model domain and datasets for numerical simulation 

 

For our study, the model domain includes the northwestern Pacific 

region and several marginal areas, such as the East China Sea, the 

Yellow Sea, and the East/Japan Sea, ranging meridionally from 15° N 

to 52° N and zonally from 115° E to 162° E (Figure 3.6).  

 

Figure 3.6 Model domain for ROMS simulation. 

The models have horizontally 1/20°, 1/10°, and 1/5° grid 

resolutions and 40 vertical layers. The Earth Topography 1-min grid 

(ETOPO1) dataset of the National Geophysical Data Center was used 

for the bottom topography (Amante et al., 2009). Initial temperature 

and salinity were derived from the World Ocean Atlas 2009 (WOA09) 
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(Antonov et al., 2010; Locarnini et al., 2010). The air-forcing 

datasets, including daily mean solar radiation measures, air 

temperatures, wind, sea-level pressures, relative humidity, and 

precipitation counts, were obtained from the ERA-Interim reanalysis 

dataset of the European Center for Medium-Range Weather 

Forecasts (Dee et al., 2011). Monthly averaged velocities, 

temperatures, and salinities from the Simple Ocean Data Assimilation 

were applied for the lateral open-boundary condition (Carton, 2008). 

These data were employed for estimating the bulk formulae (Fairall 

et al., 1996). Freshwater discharges from 12 rivers were included 

(Vörösmarty et al., 1996; Wang et al., 2008). Tidal forces extracted 

from TPXO7 were applied at the open boundary (Egbert et al., 2002). 

The simulation time was 30 days from 1 to 30 January 2010. The 

timestep size for 3D equations was 90 s, and the number of time steps 

for 2D equations between each 3D time steps was set to 10. Two 

types of output files were created for intervals of 480 time steps; 

one was an averaged file for the interval, and the other was a 

snapshot file at intervals. The output files included the sea surface 

height, 2D and 3D horizontal velocities, and tracers. The Chapman 

implicit, Flather, and clamped schemes were applied to lateral 

boundary conditions for the sea-surface height, barotropic 

component of velocity and 3D velocity, and tracers, respectively 
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(Chapman et al., 1985; Flather et al., 1976). Horizontal harmonic 

mixing coefficients for tracers and momenta were set as 20 and 100 

m2s−1, respectively. A quadratic bottom stress scheme was employed, 

and its coefficient was 0.0026. Surface- and bottom-stretching 

parameters for controlling thickness of the vertical layer were set to 

5 and 0.4. 

I then compared the performance using three types of grids. Table 

3. 1 shows the specifications of the three grid-model resolutions. 

Table 3.1 Grid Size and Degree of Freedom in Each Experiment 

 

3.3.3. Building the container image and registration in the 

repository 

 

I designed and implemented the execution architecture of the 

numerical ocean model using Kubernetes and Docker containers. The 

Docker-compatible image was a lightweight, standalone, executable 

SW package that included dependent SWs with appropriate libraries 

needed to run ROMS 3.6. Most geoscientific numerical models are 

compiled and executed using FORTRAN or C/C++ typically on a 

Linux OS. ROMS can also be compiled to generate executable files. 

Type Coarse Medium Fine 

Dimension  

of grid 

210×206×40 422×412×40 846×826×40 

Degree of 

Freedom 

1730400 6954560 27951840 
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They utilize NetCDF libraries for data I/O and MPI libraries and an 

execution environment for parallel processing. The Docker file can 

be executed to create the base image, including configured 

environments and required SW installations. Table 3.2 lists the SW 

and libraries in the ROMS containers used for this study. The model 

scientists build the specific image includes required SWs using 

Docker commands before pushing the image into the public 

repository. 

Table 3.2 SW Configurations for the Numerical Model Images. 

Software Name Version Purpose 

Compiler gcc/gfortran 4.3 Compile numerical ocean 

model and I/O library 

Ocean Model ROMS 3.6 Simulate ocean physical 

properties such as Sea 

Surface Temperature 

and u and v vectors of 

ocean current 

I/O Library NetCDF 4.1 Read and write model 

input/output data 

MPI OpenMPI 3.1.4 Parallelize ocean-model 

processes 

 

Figure 3.7 shows the Docker file for generating the ocean modeling 

image. In the head of the file, base Linux type, such as Ubuntu or 

CentOS, were written. Then, required SW and compiler steps for 

Linux OS were written. The Fortran compiler, OpenMPI, and NetCDF 

are required for generating ROMS executable codes. This Docker 

code is the main part of the required SW installation for the ocean 

modeling program. Other required SW can be installed using the same 
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syntax styles. Users can also enter deployed pods and check 

compiled programs to modify or reconfigure their sources inside the 

pods. A full compiled image of this research is downloadable from the 

Docker hub (next7885/ubuntu_roms_k8s_hpc) and deployment codes 

of the containerized ocean model are available at Zenodo 

(https://doi.org/10.5281/zenodo.4015246). 

# Install ubuntu 

FROM            ubuntu:18.04 

MAINTAINER      next7885@snu.ac.kr 

RUN             apt-get -y update 

RUN             apt-get install -y openssh-server 

 

# Install gcc 

RUN apt-get -y install apt-utils 

ENV DEBIAN_FRONTEND noninteractive 

RUN apt-get -y install gcc 

RUN apt-get -y install g++ 

RUN apt-get -y install gfortran 

RUN apt-get -y install wget 

RUN apt-get -y install file 

 

# Install Open-MPI 

RUN wget https://download.open-mpi.org/release/open-

mpi/v3.1/openmpi-3.1.4.tar.gz 

RUN tar -xvf ./openmpi-3.1.4.tar.gz 

RUN export CC=gcc 

RUN export CXX=g++ 

RUN export FC=gfortran 

RUN export PATH=$PATH:/usr/bin:/usr/local/mpi/bin 

https://doi.org/10.5281/zenodo.4015246
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RUN export 

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib:/usr/lib64:/usr/local/m

pi/lib 

WORKDIR /openmpi-3.1.4 

RUN apt-get -y install make 

RUN ./configure --prefix=/usr/local/mpi 

RUN make 

RUN make install 

RUN apt-get -y install git 

RUN apt-get -y install iputils-ping 

RUN apt-get -y install net-tools 

 

# Install netcdf 

RUN wget https://www.unidata.ucar.edu/downloads/netcdf/ftp/netcdf-c-

4.7.1.tar.gz 

RUN wget https://www.unidata.ucar.edu/downloads/netcdf/ftp/netcdf-

fortran-4.5.1.tar.gz 

RUN wget http://www.zlib.net/zlib-1.2.11.tar.gz 

RUN wget https://support.hdfgroup.org/ftp/HDF5/current/src/hdf5-

1.10.5.tar.gz 

RUN tar -xvf ./hdf5-1.10.5.tar.gz 

RUN tar -xvf ./zlib-1.2.11.tar.gz 

WORKDIR /openmpi-3.1.4/zlib-1.2.11 

RUN ./configure --prefix=/usr/local/zlib 

RUN make clean 

RUN make && make install 

RUN export PATH=$PATH:/usr/local/mpi/bin 

WORKDIR /openmpi-3.1.4/hdf5-1.10.5 

RUN export CC=mpicc CPPFLAGS=-I/usr/local/hdf5/include LDFLAGS=-

L/usr/local/hdf5/lib 

RUN ./configure --prefix=/usr/local/hdf5 --with-zlib=/usr/local/zlib --
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enable-hl 

RUN make clean 

RUN make && make install 

WORKDIR /openmpi-3.1.4 

RUN tar -xvf ./netcdf-c-4.7.1.tar.gz 

RUN tar -xvf ./netcdf-fortran-4.5.1.tar.gz 

Figure 3.7 Required SW installation codes for generating ocean-

modeling image in Docker file 

It is possible to share the Docker file to create an image or model 

provision. If an image is registered in the public repository, any user 

can download the container image to run the model. The Docker file 

used to create the numerical model setup is a text file, and the images 

can be re-created via Docker-file modification and rebuilding. 

Several web sites (e.g., Docker-hub) offer a variety of container 

images for public users. Every image has a specific uniform resource 

locator and is accessible without requiring additional effort. In this 

study, I created a ROMS 3.6 image and shared it to the Docker-hub 

repository for scientific reproduction. Any end user can download it 

using a simple Docker command (i.e., docker pull 

next7885/ubuntu_roms_k8s_hpc). 

If the size of the input dataset for the model is small, it is possible 

to merge the data and the executable file when creating the image. 
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3.3.4. Configuring a numeric model execution cluster 

 

After registering the container images to the repository, the 

container cluster was configured for numerical modeling. There are 

two ways to do this. The first method requires installation of the 

Kubernetes or compatible SW directly to the server or PC. The other 

method requires the use of a Kubernetes cluster provided by the 

public cloud. Because GCP, AWS, and Azure have recently provided 

Kubernetes-based clusters, users can easily use them to reduce 

runtime costs (AWS, 2022a; google 2022a; Azure 2022). I manually 

placed the Kubernetes clusters on public clouds, a private cloud, and 

a PC for various cloud environmental testing. A ROMS image 

registered in the public repository was downloaded to all nodes, and 

the model running environment was constructed using the developed 

StatefulSet codes. Table 3.3 and 3.4 and Figure 3.8 shows various 

SW and hardware configuration of local clusters for the numerical 

ocean model of this study. 
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Table 3.3 HW and SW Configuration of Local Clusters 

 Laptop-PC Local Cluster#1 Local Cluster#2 

CPU Type Intel-i7 Intel Xeon Intel Xeon 

Hypervisor VirtualBox KVM KVM 

Guest OS Windows 10 CentOS 7.5 Ubuntu 18.04 

Nodes 1 Node 4 Nodes 3 Nodes 

vCores/Memory  8Cores/16G 4Cores/8G 

Container 

Runtime 

Containerd Docker v19.03.12 Docker v19.03.6 

N/W Interface LAN LAN LAN 

Orchestration 

Tool 

Microk8s 

 

Kubernetes 

v1.18.3 

minikube 

Kubernetes 

v1.18.3 

 

 

 

 

 

 

Figure 3.8 Kubernetes Cluster Configurations of local clusters 
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Table 3.4 HW and SW Configuration of Clusters on Public Cloud 

 AWS Google Azure 

CPU Type Intel Xeon, 

AMD 

Intel Xeon Intel Xeon, 

AMD 

OS Ubuntu 18.04, 

CentOS 7.5 

Ubuntu 18.04 Ubuntu 18.04, 

CentOS 7.5 

Container 

Runtime 

Docker v19.03.6 Docker 

v19.03.6 

Docker v19.03.6 

Orchestration 

Tool 

Kubernetes 

v1.18.3 

Kubernetes 

v1.18.3 

Kubernetes 

v1.18.3 

Notes: Containerd is an industry-standard container runtime that emphasizes simplicity, 

robustness, and portability. Ubuntu is an open-source SW OS that runs from a PC to the 

cloud. Minikube is tool to run single node Kubernetes cluster in VM on PC or servers 

locally. 

 

3.3.4.1. Codes for deploying containers on cluster 

 

The StatefulSet controller sequentially distributes and manages 

container distributions to nodes (Kubernetes Controller, 2022). 

The internal domain name-service function provided by Kubernetes 

was utilized for communication between the pods. Figure 3.9 shows 

an example of the StatefulSet code for deploying the numerical 

ocean-modeling containers into worker nodes for parallel processing. 

It contains various information of the container distribution (i.e., 

replicas standing for the number of containers, image name in the 

repository, container ports, etc.) for users intuitively. 

Users can allocate modeling containers to nodes by easily checking 

and changing configuration, such as replicas according to their 
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environment. 

apiVersion: apps/v1 

kind: StatefulSet 

metadata: 

  name: roms-ssh-statefulset 

  namespace: roms-k8s 

  labels: 

    app: roms-ssh 

spec: 

  replicas: 2 

  selector: 

    matchLabels: 

      app: roms-ssh 

  serviceName: "roms-ssh" 

  template: 

    metadata: 

      labels: 

        app: roms-ssh 

    spec: 

      serviceAccountName: sa-roms 

      containers: 

      - name: roms-ssh 

        image: next7885/ubuntu_roms_k8s_hpc 

        resources: 

          limits: 

           cpu: "8" 

          requests: 

           cpu: "3" 

        volumeMounts: 

        - mountPath: /NWP 

          name: pvroms 

        command: ["/bin/sh", "-c"] 

        args: 

          - echo starting; 

            /usr/sbin/sshd; 

            sleep 360000; 

            echo done; 

        ports: 

        - containerPort: 22 
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        lifecycle: 

            postStart: 

              exec: 

                command: ["/bin/sh", "-c", "cat 

/NWP/id_rsa.pub >> /root/.ssh/authorized_keys"] 

      volumes: 

      - name: pvroms 

        persistentVolumeClaim: 

          claimName: romsclaim 

Figure 3.9 ROMS StatefulSet code. 

Users can construct their own environment by deploying container 

images to cluster nodes without setting up an additional MPI 

environment in the Kubernetes cluster. This method is helpful to the 

portability of MPI clusters. Various models and versions can be easily 

deployed and tested in the same cluster environment using 

separately compiled container images. Figure 3.10 shows the 

conceptual diagram that uses Kubernetes for the numerical model of 

the container clusters in the private or public clouds. Users can 

perform modeling in various public and private environments to meet 

their purposes and to share environments with coworkers. Various 

computational environments might be simultaneously needed for 

ensemble modeling, which requires a vast amount of IT resources. 

Thus, this architecture can be a cost-saving and efficient alternative 

to specific vendor lock-in scenarios and IT infrastructure 

dependencies. 
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Figure 3.10 Conceptual diagram of the container-based clusters for 

public or private clouds.  

Users can control and manage various infrastructure environments 

by using the StatefulSet code. After Kubernetes installation, users 

can add a configuration file to support the distribution of the MPI-

contained image parallelized across multiple nodes. In this study, the 

StatefulSet code was developed and tested to distribute the image to 

worker nodes using yaml, a human-readable data-serialization 

language, which is commonly used for configuration files and 

applications where data are stored or transmitted (YAML, 2021). I 

configured our environment using standard StatefulSet codes, used 

to test various execution environments (e.g., macOS, Windows, local 

servers, and public clouds). The code included the number of pods, 

the container image, the type of Kubernetes controller, and disk 

information. I also configured the NW file-system volume type so 
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that the persistent volume could share the volume among containers 

(Luksa, 2018; Kubernetes Volumes, 2022).  

Kubernetes utilizes a SW-defined overlay NW that resides on the 

physical NW (Kubernetes Cluster Networking, 2022), and it 

deploys various NW driver plugins (e.g., Calico, Weave-Net, and 

Flannel) for various purposes. The Flannel NW driver is used to carry 

out inter-pod communications. Traditionally, InfiniBand is used to 

reduce the inter-node latency for MPI performance. Additionally, 

remote direct-memory access (RDMA) support is available through 

a container NW interface (Beltre, 2019). If users already have the 

Kubernetes cluster or a Docker-container cluster, they can deploy 

the registered container image to the worker node without any 

additional work. This setup helps users immediately verify and utilize 

the model. I configured the ROMS model environment in 30 min on 

the public cloud using developed codes and images. 

 

3.3.4.2. Deployment of a model container on a worker node 

 

The downloaded image can be executed by the container runtime 

engine installed at the node. For parallel processing of the numerical 

models, the container runtime at each node must be tightly connected 

and controlled. In the case of numerical models, I recommend that 
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one container be run on each server to minimize pod communications. 

Table 3.5 shows the performance penalty difference between one and 

two containers on one node. If two or more containers are deployed 

on the same server, communications between containers will cause a 

performance penalty in the HPC cluster. This result shows a 

performance penalty of 4%–7% according to the number of containers 

per worker node. 

Table 3.5 Runtimes and Performance Penalty According to Grid 

Resolution 

 

3.3.4.3. Deployment of multiple containers and running MPI 

jobs on container cluster 

 

There are a few preparation steps for deploying the StatefulSet in 

the multiple nodes. The first step is to create a namespace for the 

specific logical area in the Kubernetes cluster (Kubernetes 

Namespace, 2022). The second step is to declare the storage 

volume for multiple pod access, to read and write for modeling, and 

to create the service account. The final step is to deploy StatefulSet 

into multiple server nodes. All steps are coded, and the code created 

Resolution of grid Coarse Medium Fine 

Dimension of grid 210 × 206 × 40 422 × 412 × 40 846 × 826 × 40 

Wall-clock time (s) 

of one container per a VM 

288 1178 5825 

Wall-clock time (s) 

of two containers per a VM 

308 1222 6135 

Performance Penalty 7% 4% 5% 
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for this study can be downloaded from Zenodo 

(https://doi.org/10.5281/zenodo.4015246). After deploying the 

pods to multiple nodes, their status in the clusters can be checked 

before running the numerical ocean modelling jobs. Each pod of the 

node has a private overlay NW IP address above their static IP 

address. This overlay IP address is used for executing mpirun 

instead of node's static IPs in the Kubernetes cluster. During the 

stage of running the MPI jobs in Kubernetes cluster, the pod’s IP 

address inside the pod should be selected to execute the mpirun 

command. Figure 3.11 shows overlay NW configuration of the pods 

and the static IP configuration of the nodes in the cluster. 

 

Figure 3.11 a) Network configuration of pods and b) NW diagram on 

Kubernetes clusters 

A pod plays the role of an abstraction layer above the node using 

an overlay NW and a container runtime. After running the jobs, MPI 

job processes are generated from the pod in each node. Compared to 

https://doi.org/10.5281/zenodo.4015246
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the traditional cluster node, each pod has only related processes of 

user applications. Conceptually, I can visualize the pod as an 

abstraction node for running MPI jobs. That is why I chose the 

resource controller type as the StatefulSet for MPI jobs in the 

Kubernetes cluster. In Section 3.4.2, I suggested one pod per node 

for improved performance. I can also operate each pod as an 

abstracted host node. Figure 3.12 shows the processes of MPI jobs 

inside the pod compared with the processes of the node. Container 

virtualization shares the common OS layer and isolates the user 

processes for the user application. The pod shows process 

collections of the user application layer. During the process 

monitoring of the host OS, users can see real MPI processes that are 

generated from ocean-model pods. 

 

Figure 3.12 a) Process monitoring inside host and b) process 

monitoring inside pod 

 



 

 ７４ 

3.4. Results and Discussion 

3.4.1. Reproducibility 

 

3.4.1.1. Plotting 

The graphs of the model output are useful for intuitively evaluating 

experimental results. Horizontal distributions of temperature and 

ocean-surface currents from the container clusters were compared. 

For this purpose, a control simulation was performed in the 

Kubernetes cluster deployed to local Ubuntu 18.04 servers. Figure 

3.13 shows the surface current and sea-surface temperature (SST) 

from the control simulation after a month. The simulated Kuroshio 

current showed speed and warmth along the eastern coasts of Taiwan 

and Japan. Owing to atmospheric cooling and vertical mixing, 

relatively cold water appeared along the coast of the Yellow Sea (Seo 

et al., 2014). Output plots from simulations of container clusters in 

public and private clouds had the same values as those from the 

control simulation in every grid. 
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Figure 3.13 a) Surface-velocity vectors and b) sea-surface 

temperatures from the control simulation of February 1, 2010. 

 

3.4.1.2. Root mean-squared error (RMSE) of containerization 

for reproducibility 

 

The RMSE was calculated to measure the computational 

reproducibility of the ROMS modeling. I assumed n observations as 

𝑦𝑖  and an associated estimator, �̂�𝑖 . In this study, observations 

included the ocean-model outputs from the control simulation, and 𝑦�̂� 

captured the outputs of simulations from various container clusters. 

The RMSE of the SST, vertical temperatures, and u and v vectors 

between the control simulation result and the simulation results 

having various cloud clusters were examined. The computational 

reproducibility was evaluated based on the RMSE. Containerized-

ROMS models were deployed to various Linux OSs and associated 
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HW configurations, and they provided the same results. Tables 3.3 

and 3.4 list the configurations of various container clusters. Results 

were evaluated to analyze whether those of each execution were 

identical. Comparisons of the control simulation via the simulation of 

various container clusters in public and private clouds showed that 

all RMSEs were commonly 0.0 °C for both SST and vertical 

temperature, and they were 0.0 ms-1 along the surface velocity. This 

result suggests that the container-based architecture might be a 

suitable computation environment for achieving the needed 

computational reproducibility for ROMS modeling.  

 

3.4.2. Portability and Performance 

 

3.4.2.1. Portability 

 

Container images, including the OS library, compiler, MPI, NetCDF, 

and the model binary used for parallel numerical modeling, are 

downloadable and executable on container clusters. I configured the 

worker nodes using Kubernetes syntax commands to construct a 

model cluster. A node registered in the Kubernetes master node was 

operated as a worker node. Communication between the master and 

worker nodes was accomplished via the API server and NW topology 

using an overlay NW (Luksa 2018; Kubernetes Components, 2022). 
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Table 3.6 Homogeneous and Heterogeneous Cluster Configuration. 

 Homogenous Cluster Heterogeneous Cluster 

HW Intel Xeon 8124-M CPU 3.00-

GHz 36 CPU/72 GB 

Intel Xeon 8124-M CPU 3.00-

GHz 36 CPU/72 GB,  

AMD EPYC 7R32/2.8 GHz 

32 CPU/32 GB 

OS Ubuntu 18.04 Ubuntu 18.04 + CentOS 7 (7.5) 

Container 

Runtime 

Docker v19.03.6 Docker v19.03.6, 

Docker v19.03.12 

Orchestration 

Tool 

Kubernetes v1.18.3 Kubernetes v1.18.3, v1.18.5 

 

HW, SW, and OS configurations of homogenous and heterogeneous 

container clusters are shown in Table 3.6. After configuring the 

master node, I installed Kubernetes SW on the worker nodes and 

joined them to the master node. ROMS was automatically configured 

for modeling the environment after downloading it from a repository 

where pre-built images are stored. RMSE was analyzed using the 

results from the heterogeneous OS worker nodes and those of the 

homogenous OS clusters. The calculated RMSEs were close to zero. 

Container-based clusters were suitable for the reproducibility of the 

model for various OSs. The container cluster enabled us to use 

various server resources for modeling with little effort. 

 

3.4.2.2. Performance 

 

Running time is a clear indicator of performance. Thus, for our 
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performance evaluations, I compared the running times of ROMS 

models according to grid sizes and cores on the various clusters of 

the public and private clouds. I also examined the throughput using 

the STREAM benchmark on various clusters. Notably, when multiple 

nodes are used, the memory I/O performance among multiple nodes 

becomes important (McCalpin, 2017). 

To compare the performance of the container-based cluster with 

the VM cluster, I compiled and set up ROMS on the VM clusters using 

the same HW and SW configurations as the private and public clouds. 

Compared with the performance of the ROMS on the VM clusters, 

Figure 3.14 shows that the container-based cluster had a 

performance penalty between 1 and 9% for four nodes (128 vcores) 

in the AWS cluster. However, when I reached eight nodes (256 

vcores), the performance penalty changed to 7%–14% because of the 

inter-pod NW latency. 
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Figure 3.14 (a) Wall-clock running time of 3-day simulation of a 

medium grid, and (b) wall-clock running time of 3-day simulation of 

a fine-grid according to the vcores on the AWS clusters. 

I then measured the latency of the VM and pod using the Ohio State 

University SW micro benchmark (UL HPC Team, 2021). Figure 3.15 

shows the NW latency of the pod NW and the VM in ethernet-based 

MPI clusters. The NW latency of the pod was slightly larger than that 

of the VM. There was a small performance penalty in the HPC 

container cluster. However, considering the preparation time and 

portability of the cluster, the container-based clusters provided an 

important and alternative space in which to run numerical models with 

computational reproducibility and portability in private and public 

clouds. In virtualization environments that support RDMA, it was 

possible to reduce NW latency (Zhuang et al., 2020; Beltre et al., 
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2019). 

 

Figure 3.15 Comparison of NW latency of container and VM cluster 

according to message sizes. 

Memory bandwidth can be crucial to speed computations, and 

numerical ocean modeling requires a large-memory I/O in the MPI 

environment. I evaluated the memory bandwidth in a VM and 

container cluster environment using the STREAM benchmark. The 

memory bandwidth was measured at multiple nodes in parallel with 

the MPI. The memory bandwidth of the container cluster was slightly 

less than that of the VM cluster. The performance patterns of the 

running time were similar in the container and VM clusters. Figure 

3.16 shows the memory bandwidth of the container and VM cluster. 
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Figure 3.16 Memory bandwidth of the container and VM cluster vs. 

the number of AWS vcores. 

 

3.5. Conclusions 

 

In this study, an architecture for numerical models was designed 

and applied based on light-weight container virtualization and 

container orchestration technology to improve the computational 

reproducibility and portability of numerical models in various public 

and private infrastructure environments. The ROMS model container 

image was registered in the standard repository for user convenience 

in the container runtime environment. The infrastructure 

configuration code was executed using Kubernetes by applying the 

parallel processing of numerical containers in various cloud 

environments. VMs and the container virtualization environments 



 

 ８２ 

were managed via codes, owing to the development of cloud-related 

virtualization techniques. ROMS models having different grid sizes 

were implemented in cloud clusters having 32, 64, 128, and 256 cores. 

Model results from various clusters based on containers were the 

same as those from the control model, regardless of OS and HW 

environments. The container-based simulation results coincided 

with those of the control simulation of the SST, vertical temperature 

profile, and surface velocity. This suggests that a container-based 

cluster is appropriate for use in the computational reproducibility of 

the numerical ocean model. 

The container-based architecture makes numerical ocean 

modeling much easier than does VM-based architecture in a variety 

of private and public cloud environments, because the cloud 

infrastructure environments are abstracted to make it easier for 

researchers to share numerical model environments. After executing 

a simple model on a PC using modifying grid sizes and iteration 

numbers, large-scaled modeling was carried out in the HPC cluster 

of private and public clouds by applying the same setup codes and 

modifications. The procedure for preparing the numerical modeling 

was coded and shared in the public repository. Additionally, the 

proposed container-based numerical model-cluster architecture 

made it easy to overcome the heterogeneity of NW drivers and HW 



 

 ８３ 

limitations, compared with the traditional architecture. 

This container-based architecture can help researchers perform 

numerical modeling more easily in various public and private cloud 

environments and improve model reproducibility and portability in 

geoscientific research. This is especially useful for researchers who 

lack appropriate IT infrastructures. 
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4. Generative models for the prediction of 

ocean temperature profile③ 
 

4.1. Introduction 

 

It is estimated that the ocean stores 93% of the world's energy, 

and the redistribution and exchange of the subsurface to the deep sea 

plays a significant role in global warming (Wang et al., 2021). 

Subsurface temperature data in the ocean aids in the interpretation 

of physical properties associated with ocean physical motion, which 

is also useful for military submarine positioning and obtaining fishery 

distribution data (Schmidt et al., 2019). 

The development of satellite and sensor technology enables us to 

easily obtain sea surface information, but there are limitations to 

directly obtaining subsurface information. Subsurface data are sparse, 

whereas many satellites routinely collect sea surface temperature 

(SST) and sea surface height (SSH). Recently, many researchers 

have attempted to estimate the ocean’s vertical temperature profile 

using statistical or gen techniques (Jiyang et al., 2017; Wang et al., 

2021). Some studies have been conducted to estimate the subsurface 

 
③ The results of the presented work have been submitted into『Frontiers 
in Marine Science』, (2022). 
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temperature distribution of sea water vertically using satellite and 

Argo Float data (Han et al., 2019). Argo floats also have limitations 

in the precision or measurement of specific areas, such as near 

coasts and marginal seas, because the floats are not uniformly 

distributed (Roemmich et al., 2019). 

Machine learning techniques such as convolutional neural networks 

(CNN) and recurrent neural networks (RNN) have recently been 

used to predict the vertical temperature profile using surface 

information such as SST and SSH (Han et al., 2019). Prior studies 

have made significant contributions, but there are some limitations. 

The depth of data collection may limit the predicted value at a given 

depth. The measured locations in Argo-float were sparse and not 

fixed (Roemmich et al., 2019). Stationary data collection has the 

advantage of obtaining uniform data from the same location. Creating 

a model suitable for predicting ocean physical properties requires the 

preparation of sufficient datasets for model training. Although 

machine learning-based prediction models perform well in open 

oceans such as the Pacific Ocean, they are limitedly used in marginal 

seas because of the large spatiotemporal variability in the 

temperature and current.   

The objective of this study was to improve the prediction model’s 

performance using data augmentation for training in a marginal sea 
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with large temperature variations in time and space. I apply 

generative models such as the generative adversarial network (GAN) 

method and triplet variational auto-encoder (TVAE) to augment the 

observational datasets and trained augmented datasets for the 

subsurface temperature profile. The TVAE and conditional 

generative adversarial network (CGAN) methods, among others, 

were used to create artificial datasets that were used to improve the 

model’s performance. 

The remainder of this paper is organized as follows. Section 4.2 

introduces the study area and methods, such as generative models 

for the data augmentation and stacking ensemble method for the 

prediction model, and explains the model architecture for predicting 

the sea subsurface temperature profile and its implementation in deep 

neural network environments. Section 4.3 shows that the results of 

the ensemble prediction model based on the generated dataset are 

meaningful, and the feasibility of data augmentation using generative 

models such as TVAE and GAN in ocean science. Finally, in Section 

4.4, I summarize the achievements of our ensemble prediction model 

architecture and the data augmentation architecture based on 

generative models. I also make recommendations for future 

improvements to our architecture for geo-scientific applications and 

extensions. 
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4.2. Materials and Methods 

 

4.2.1. Model domain and datasets for predicting the 

subsurface temperature 

 

The Tsushima current (TC) supplies heat and salt to the 

East/Japan sea (EJS) (Preller and Hogan, 1998). The TC is divided 

into two branches: one along the Japanese coast and the other along 

the Korean coast (Figure 4.1) (Cho and Kim, 2000). This flow along 

the Korean coast is called the East Korean warm current (EKWC) 

(Cho and Kim, 1996; Kim et al., 2018). The EKWC turns eastward 

around Ulleung Island, forming the Ulleung warm Eddy (UWE) (Kang 

and Kang, 1990; Kim et al., 1991; Katoh, 1994). The UWE, with a 

diameter of approximately 150 km, is located in the Ulleung basin 

(Figure 1). The size and location of the UWE varies seasonally and 

interannually (Kang and Kang, 1990; Isoda and Saitoh,1993; Choi, 

2004). The UWE plays a key ecological role in supporting a 

significant phytoplankton biomass (Kim et al., 2012). A station 

routinely observed by the National Institute of Fisheries Sciences 

(NIFS), which is located in the UWE, was selected for the generation 

of the sea subsurface temperature profile at our study point (37.06°N, 

130.31°E, red circle in Figure 4.1). The fluctuating characteristics of 

the temperature profile in the EJS render it suitable for testing the 
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prediction performance of the proposed temperature profile model. 

Compared to the open sea, it is challenging to predict temperature 

profiles in marginal seas, such as the EJS, because many complex 

dynamic processes cause large variations in temperature and current. 

 

Figure 4.1 Schematic currents in the study area and model domain. 

The red point (37.06°N, 130.31°E) represents a routine 

observation station. Selected station for comparing the model and 

observation temperature profiles. TC, EKWC and UWE stand for 

Tsushima current, East Korean warm current and Ulleung warm eddy, 

respectively. 

The model has 14 vertical layers. The subsurface temperature 
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profile was predicted using the NIFS’s serial oceanographic 

observation dataset. The SST dataset for the research domain was 

extracted from the advanced very high-resolution radiometer 

(AVHRR) instrument. The AVHRR has a spatial grid resolution of 

approximately 0.25°, and the temporal resolution is 1day. These 

datasets were downloaded from the National Center for 

Environmental Information (NOAA, 2022). The sea surface 

temperature data among the NIFS observation data sets were also 

used as auxiliary data to prepare the SST data. I used the Copernicus 

marine environment monitoring service (CMEMS) gridded dataset for 

daily sea-level data (Copernicus, 2022). The horizontal resolution 

was 0.25°.  The datasets are sea-level daily gridded data from 

satellite observations for the global ocean from 1993 to 2017. I used 

a dataset for the prediction model, which included absolute dynamic 

topology (ADT) and sea level anomaly (SLA) from daily sea level 

data. I used data from 1993 to 2017 when both SST and SSH satellite 

data were available. The dataset was downloaded from the CMEMS 

climate data store (Copernicus, 2022). Training data were created 

using datasets from 1993 to 2012 as seed data. The model's 

performance was measured using test data from 2013 to 2017. 

I created a dataset for GAN seed data by combining satellite data 

on the date when the measured temperature was present for each 
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reference depth of the observation point. The data were removed 

without artificial interpolation when missing temperature values at 

the corresponding depths were found. Datasets were generated using 

only data when all observation data existed at the reference depth on 

the corresponding date. 

 

4.2.2. Model architecture for predicting the subsurface 

temperature 

 

In this study, I intend to create a machine learning model that 

predicts the subsurface temperature profile by combining satellite 

datasets such as SSH and SST with locally measured in situ 

temperature profile data. Figure 4.2 shows the conceptual 

architecture for predicting the sea subsurface temperature profile. 

To augment the sparse temperature profile dataset, I experimented 

with some types of generative methods, such as CTGAN, CopulaGAN, 

and TVAE (Xu et al., 2019). The observed datasets in Earth science 

are mainly tabular-type datasets, and continuous columns can have 

multiple modes. Some observed datasets may have non-Gaussian 

distributions, which are sometimes multimodal. Owing to these 

characteristics, there may be challenges in tabular data augmentation 

tasks using GANs (Xu et al., 2019). Much research has been 

conducted to overcome these challenges, and I applied generative 
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methods such as CTGAN, TVAE, and copular GAN based on related 

research in this study. 

  

Figure 4.2 Conceptual architecture for predicting subsurface 

temperature 

 

4.2.3. Neural network generative models 

 

4.2.3.1. TVAE 

 

Triplet-based variational autoencoders (TVAEs) are enhanced 

types of variational autoencoders (Ishfaq et al., 2018) that can learn 

latent representations with more fine-grained information. 

Figure 4.3 shows an example of latent representation, which is a 

key feature of the input data. The key features of dogs and cats are 

their ears and eyes. The latent representation is the sum of the latent 

features. The autoencoder, the middle layer of this network, contains 

a simplified representation of the input data and can be used to 

reconstruct the output.  
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Figure 4.3 Conceptional architecture of latent representation 

TVAEs can learn an interpretable latent representation that 

preserves the original dataset’s semantic structure by incorporating 

triplet constraints into the learning process. In each iteration of 

training, the input triplet is randomly sampled from the training 

dataset. Then, the triplet of images or data is flown into the encoder 

network simultaneously to obtain their mean latent embedding 

(Ishfaq et al., 2018). A loss function over triplets to model the 

similarity structure over the image or data can be defined, as in Wang 

et al. (2014). Embedding, a method used to represent discrete 

variables as continuous vectors, is the process of converting high-

dimensional data into low-dimensional data in the form of a vector 

such that the two are semantically similar (Jeevanandam, 2021). 
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4.2.3.2. Generative Adversarial Networks 

 

The generative adversarial network (GAN) is a machine-learning 

method proposed by Ian Goodfellow (Goodfellow et al., 2014). The 

core idea is that one generator is trained to generate fake data and 

the other (discriminator) is trained to distinguish between real and 

fake samples. The goal of training a generative network is to improve 

the discriminant network’s error rate. The generative network 

generates fake or candidate data, whereas the discriminative network 

evaluates them. In terms of data distribution, they compete with each 

other. A conceptual diagram was shown (Figure 4.4). A GAN consists 

of two networks: a generator (G) and discriminator (D).  

 

Figure 4.4 Conceptional architecture of generative adversary 

network 

Both networks had their own loss functions. The loss function of GAN 

is given below, and it is similar to the min-max problem (Goodfellow 

et al., 2014). 

𝑚𝑖𝑛𝑚𝑎𝑥 𝑉(𝐷, 𝐺) = 𝔼𝓍~𝑃𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝓍)] + 𝔼𝑧~𝑃𝑧(𝑧)[log (1 − 𝐷(𝐺(𝓏)))] 
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The definitions of the terms used are follows. 

Term Definition 

G Generator model 

D Discriminator model 

z Random noise 

x Real data 

G(z) Data generated by Generator (synthetic data) 

pdata(x) Probability distribution of real data 

pz(z) Probability distribution of synthetic data 

D(G(z)) Discriminator’s output when the generated data is an input 

D(x) Discriminator’s output when the real data is an input 

 

4.2.3.3. Conditional GAN 

 

If I can determine the type of data to be generated through a GAN, 

GANs can be used for many scientific applications. When I suppose 

both the generator and discriminator having a condition of some 

supplementary or auxiliary information y, GANs can be extended to 

a conditional model. Furthermore, y could be various types of 

supplementary information, such as class labels or different types 

of data. I can perform conditioning by inputting y into both the 

generator and discriminator as an additional input layer. The joint 

hidden representation in the generator combines the prior input noise 

Pz(z) and y, and the adversarial training framework allows 

considerable flexibility in how this hidden representation is composed. 

In the discriminator, x and y are presented as inputs to a 

discriminative function (embodied again by a multilayer perceptron 
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in this case (Mirza and Osindero, 2014). Figure 4.5 shows the 

conceptual structure of a basic conditional adversarial network. The 

generator synthesizes a fake sample (G (z, y) = x*|y) using a 

random noise vector z and label y. Given the label, the fake sample’s 

goal is to resemble the real sample as closely as possible. The 

discriminator takes a real sample and a label (x, y), as well as a fake 

sample and the label used to generate it (x*|y, y) (Langr and Bok, 

2019). The discriminator learns to distinguish between real data and 

matching pairs from real sample-label pairs, and how to identify fake 

data-label pairs from a generator’s sample. The discriminator 

outputs a single probability that the input pair is real data, and 

computes it using the activation function sigma of the sigmoid. 

 

 

Figure 4.5 Conceptional architecture of a conditional generative 

adversary network 
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The CTGAN is a GAN-based method for generating tabular data 

using the data distribution of a tabular sample dataset (Xu et al., 

2019). CopulaGAN is a CTGAN model variant that uses a cumulative 

distribution function-based transformation (synthetic data vault 

(SVD), 2022). The dataset of the sub-surface temperature profile is 

generally tabular data, and the temperature at each depth is not 

linearly dependent on the observed depth. TVAE with a variational 

autoencoder was used to generate datasets with high performance 

and flexibility (Xu et al., 2019). I can prepare training datasets for 

the prediction model and apply them to train the prediction models, 

which are then used for the ensemble model, using the proposed 

augmentation architectures based on generative models. Enhancing 

model training is possible after artificially augmenting meaningful 

datasets. The models used in this study were developed in Python 

using the Tensorflow-based Keras library and pytorch-based SDV 

libraries (MIT Data To AI Lab, 2022). Generative model codes (that 

is, some types of generative adversarial networks and TVAE used to 

generate sample data) were deployed on Python Jupyter notebooks 

on AMD 10 cores and Nvidia RTX-3090. Augmented datasets were 

used for several base models to construct an ensemble model for the 

prediction of sea subsurface temperature profiles. Generally, the 

ensemble model is more accurate than the single model at predicting 
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values. I designed and implemented ensemble stacking methods using 

several candidates to improve performance. 

 

4.2.4. Prediction Models 

 

In the stacking method for the ensemble, I chose the K-nearest 

neighbors regression (KNNR) model, support vector regression 

(SVR), and random forest regression (RFR) as base learners and the 

multioutput linear regression (LR) model as the meta-learner in our 

study. Every base learner generates the predicted values based on 

their own algorithm, and they are used as datasets for the meta-

learner. 

 

4.2.4.1. Stacking Ensemble 

 

In statistics and machine learning, ensemble methods use multiple 

learning algorithms to obtain better predictive performance than any 

of the constituent learning algorithms alone (Zhang and Ma, 2012). 

In ensemble learning, three major methods aim to combine base 

models or weak learners. Bagging and boosting learn homogeneous 

base models and combine them using a deterministic strategy or 

process (Rocca, 2019). Stacking learns heterogeneous weak 

learners in parallel and combines them by training a metamodel to 
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output a prediction based on different base model predictions. 

Ensemble stacking, or stacked generalization, involves training a 

learning algorithm to combine the predictions of several other 

learning algorithms (Brownlee, 2021; Kadkhodaei, 2020; Rocca, 

2019). First, all other algorithms are trained using the available data. 

And combiner algorithm is trained to make a final prediction with all 

the prediction outputs of the other algorithms as additional inputs. 

Stacking typically outperforms any single trained model. Figure 4.6 

shows the conceptual architecture of the stacking ensemble. In this 

study, I will use the ensemble stacking method to combine weak 

learners that stand out in individual models to build a model with 

better performance. Regression models, which are traditionally used 

to estimate numerical values, are chosen as base models, such as the 

KNNR, SVR, and RFR. 

Furthermore, I intend to construct a metamodel using a multioutput 

linear regression model that performs well in multiple predictions. 

Multioutput regression is a regression problem that involves 

predicting two or more numerical values given an input example 

(Brownlee, 2021). In this study, I use a multioutput regressor to 

predict multiple subsurface temperatures by depth using SSH and 

surface temperature. 
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Figure 4.6 Conceptual diagram of the stacking ensemble 

 

4.2.4.2. K-Nearest Neighbors Regression 

 

The k-nearest neighbor (k-NN) algorithm is a non-parametric 

supervised learning method used for classification and regression 

(Atteia et al., 2019). The K-NN regression output is the property 

value for the object, and the value is the average of the values of the 

k-nearest neighbors. K-NN estimates the association between the 

input and response variables using feature similarity (Yao et al., 

2006). In the k-NN regression, the response variables are 

approximated by averaging the observations in the nearest 

neighborhood of the input instance using similarity measures (Ali et 

al., 2019).  

Guo et al. (2018) used KNNR to refine the existing datasets for 
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thermocline research, and Li et al. (2019) used KNNR to develop a 

method for constructing high-resolution ocean models and found that 

the proposed KNNR model was used to refine seawater thermocline 

data and improve the data resolution on their vertical gradient. 

I chose KNNR as the base learner because of its approximation 

performance and recent thermocline research cases using KNNR. 

 

4.2.4.3. Support Vector Regression 

 

SVR is an extended algorithm of the support vector machine (SVM), 

which is a classic and powerful machine learning algorithm for solving 

nonlinear regression problems (Brereton and Lloyd, 2010). SVR 

calculates the loss function based on structural risk minimization, 

allowing a deviation of ε between the model output and the real value. 

This differs from the traditional regression model, which is based on 

the error between the model output and the real output. This can 

avoid the disadvantages caused by pursuing experiential risk 

minimization. SVR is a model that uses high-dimensional feature 

spaces but penalizes the resulting complexity using a penalty term 

augmented with the error function, making it suitable for fitting high-

dimensional data with comparatively fewer samples (Balogun et al., 

2021). The basic idea of SVM is to map multi-dimensional data onto 

https://www.frontiersin.org/articles/10.3389/fmars.2021.671791/full#B1
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a higher-dimensional feature space. And there is a hyperplane that 

linearly separates the original data while maximizing the margin 

between different classes (Burges, 1998). Through SVM, the sub-

sea surface temperate anomaly in the Indian Ocean could be 

estimated from satellite measurements of sea surface parameters 

(SSTA, SSHA, and SSSA as input attributes for SVM) (Hua et al., 

2015). Li et al. (2017) evaluated the performance of a support vector 

machine–complementary ensemble empirical mode decomposition 

model to estimate SST in the northeast Pacific Ocean. In another 

study, Jiang et al. (2018) evaluated LR and SVR prediction 

performance of SST in the Canadian Berkley Canyon. Water depth 

and coordinate information such as latitude and longitude were used 

as input variables. These input variables have seldom been used to 

assess SST in previous studies. The results showed that SVR 

provided estimates closer to the observed data than LR. 

 

4.2.4.4. Random Forest Regression 

 

In this study, the RFR was chosen as the base learner to create the 

ensemble model. RFR creates robust estimates using an ensemble of 

decision trees, frequently without requiring data pre-processing, 

making it an effective “off the shelf” method (Louppe, 2014). 
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Decision trees are useful for determining nonlinear relationships 

between the target variables and input features (Auret et al., 2012). 

Gregor et al. (2017) used SVR and RFR to estimate CO2 levels in the 

Southern Ocean and achieved good prediction performance. A random 

forest is also a meta-estimator that fits several classifying decision 

trees on various subsamples of the dataset and uses averaging to 

improve the predictive accuracy and control overfitting (scikit-

learn.org, 2022). I chose the RFR for reasons such as nonlinear 

relationships and predictive accuracy. 

 

4.2.4.5. Linear Regression 

 

Traditionally, linear regression analysis has been widely used in 

various Earth science fields. Linear models have been widely used in 

ocean prediction because they require minimal data input and are 

relatively simple. Although simple, it is relatively effective in 

identifying trends and provides important insights for understanding 

and analyzing overall trends. It is widely used in ocean science to 

predict water temperature distributions and analyze trends. Many 

scientists use linear regression models (Morrill et al., 2005; Krider 

et al., 2013) in ocean sciences. Feng et al. (2020) developed a 

multiple linear regression algorithm for sea surface temperature 
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retrieval using one-dimensional synthetic-aperture microwave 

radiometry. The regression method is a strong candidate for 

determining the relationships among a variety of properties, such as 

sea surface temperature, sea surface height, and depth. I also need 

to analyze the correlation between sea surface temperature and sea 

surface height and depth. Leuliette and MWahr studied coupled 

pattern analysis of sea surface temperature and TOPEX/Poseidon sea 

surface height (Leuliette et al., 1999). They showed that the spatial 

correlation is strong in both the Atlantic and Pacific. The good 

temporal and spatial agreement between the SSH and SST fields 

suggests that a robust regression between fields may have some 

physical significance. With reference to the results of previous 

studies and the robust of the model, I choose linear regression, one 

of most common statistical methods as a member for ensemble in 

many oceanic analyses. 

 

4.2.5. Accuracy 

 

For the performance evaluation of the machine learning models, I 

applied the commonly used metrics: mean absolute error (MAE) and 

root mean square error (RMSE). The RMSE evaluates the residual 

between the observed and predicted values and is particularly 
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sensitive to large errors. The MAE is less sensitive to extreme 

values than the RMSE (Ait-Amir et al., 2015).  

The mathematical formulas are as follows: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦𝑜,𝑖 − 𝑦𝑝,𝑖)

2

𝑁

𝑖=1

  

 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑜,𝑖 − 𝑦𝑝,𝑖|

𝑁

𝑖=1

 

where 𝑦𝑝,𝑖 and 𝑦𝑜,𝑖 are the predicted and observed values in the 

dataset, respectively, i is the sample number of the dataset, and N is 

the length (number of samples in the test set). 

 

4.3. Results and Discussion 

 

4.3.1. Data Generation 

 

High-quality datasets are critical for the prediction model’s 

performance in machine-learning approaches. Real and observed 

datasets may be costly and challenging to measure and acquire. In 

this study, generative models were used to generate subsurface 

temperature datasets, which are difficult to obtain, and the similarity 

was determined by comparing synthetic and observed data 

distributions (Figures 4.7 and 4.8). 
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Figure 4.7 Data distributions of observed and synthetic datasets in 

FEB from 1993 to 2012 

In this study, I attempted to generate subsurface profile data using 

TVAE and GANs and visualized the histogram and difference matrix 

of observed and synthetic datasets. Figures 4.7 and 4.8 show the 

density histogram of the synthetic data according to depth, and these 

histograms provide information on the similarity between synthetic 

and observed datasets. The difference matrix of the observed and 

synthetic datasets shows the similarities and differences between 

them (Figures 4.9 and 4.10). 
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Figure 4.8 Data distributions of observed and synthetic datasets in 

AUG from 1993 to 2012 

 

Figure 4.9 Difference matrix of observed and synthetic datasets in 

FEB from 1993 to 2012 

 
Figure 4.10 Difference matrix of observed and synthetic datasets in 

AUG from 1993 to 2012 
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In this study, I compared whether the data were synthesized by 

inputting summer and winter datasets into a generative model, 

reflecting the distribution of the changed data. The August data 

generation also shows a similar distribution between the observed 

and synthetic data, and the difference matrix indicates that the gap 

between the observed and synthetic data is small, and they are 

similar. 

In this study, I compared the accuracy metrics of the candidate 

models, such as K-nearest neighborhood, SVR, random forest, and 

linear regression for selecting ensemble model members. Several 

models were used for the ensemble model, and I chose the base 

learners for the stacking ensemble based on previous studies and 

accuracy metrics such as the MAE and RMSE values. I chose an 

observation point close to the UWE and evaluated the MAE and RMSE 

of the base-learner models using the observed and synthetic 

datasets. 

In Figure 4.11, the MAE and RMSE of regression models such as 

KNNR, SVR, RFR, and LR using the observed and augmented datasets 

are shown. The MAEs and RMSEs of the models using the observed 

dataset were higher than those of the models using the synthetic 

dataset. This means that the accuracy of the prediction model using 

the synthetic dataset is better than that of the observed dataset in 
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this study. When I compared the MAE and RMSE of the individual 

models to those of the stacking ensemble prediction in Table 4.1, the 

accuracy metrics of the stacking ensemble prediction were better. 

 
Figure 4.11 MAE and RMSE of regression models (KNNR, SVR, RFR, 

LR) using FEB and AUG datasets 
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4.3.2. Ensemble Prediction 

 

Figure 4.12 shows the prediction results of the stacking ensemble 

model. In this study, data were synthesized using data from a station 

in the UWE from 1993 to 2012 and used as training data for the model. 

Then, using the data for five years from 2013 to 2017 as test data, I 

measured the stacking ensemble’s model prediction performance. 

Data from February for winter and August for summer were used to 

compare temperature profiles during seasonal changes. 

As shown in the observed temperature profiles, the UWE, which 

can be characterized by homogeneous water from the surface to 

about 200 m depth, appears in winter. However, the UWE mostly 

disappeared, and a strong thermocline appeared in summer. The 

model results accurately predicted the seasonal change in the 

temperature profile over the entire period, except for August 2015, 

when the remnant of the UWE was present in the subsurface. 

Table 4.1 shows the accuracy metrics for the ensemble prediction 

results. The synthetic dataset model outperforms the observed 

dataset model. 
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Figure 4.12 Comparison of the predicted temperature profile using 

the stacking ensemble prediction model with augmented dataset, 

HYCOM and the observation data in February and August from 2013 

to 2017. 
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Table 4.1 Ensemble prediction accuracy metrics of synthetic dataset 

(FEB, AUG) 

Dataset type Synthetic Dataset (FEB) Synthetic Dataset (AUG) 

Metrics MAE RMSE MAE RMSE 

Accuracy 0.96 1.20 1.92 2.45 

 

4.3.3. Limitations of this study and future works 

 

This study was conducted focusing on specific observation point to 

check the seasonal occurrence of UWE. For the spatial expansion of 

this study, it is necessary to extend the three-dimensional 

appearance of UWE through data generation and analysis of multiple 

observation points where the observation data of NIFS exists. In 

addition, data synthesis, model training, and analysis were executed 

after 1993, when satellite data existed. In order to generate SLA data 

before 1992, it is necessary to consider the development of the 

generative model and prediction model and whether it is possible to 

synthesize SLA data of the past by using the temperature profile data 

as input data and training with SLA data sets as the output. 

 

4.4. Conclusion 

 

In this study, the augmentation architecture was successfully 
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adopted as a generative model for the subsurface temperature profile 

data in a marginal sea. The GAN can also be a suitable method for 

tabular and non-Gaussian data distribution datasets. To train a model 

that predicts the subsurface temperature profile in the marginal sea, 

the observed dataset from 1993 to 2012 was used to augment and 

train the data. The accuracy metrics of the prediction model, the MAE 

was 0.96 and 1.92 and the RMSE was 1.20 and 2.45 in February and 

August, respectively. The augmented dataset improved model 

prediction performance. The GAN-based architecture improved and 

increased the real dataset for the prediction model accuracy, and a 

candidate served as a data imputation solution for missing values. 

The copular GAN model, which considers the correlation of variables, 

and TVAE are suitable for subsurface profile data synthesis. 

A stacking ensemble method that combines heterogeneous models 

with excellent performance in the respective areas achieve a better 

predictive performance than a single model. The MAE and RMSE of 

the stacking ensemble had better accuracy metrics than the MAE and 

RMSE of the individual regression models. To consider the 

characteristics of spatial-temporal distribution, based on the 

observation time and station points, datasets were created and 

trained according to the data distribution of each observed data point 

for better prediction. In contrast to the previous prediction model 
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applied to the open ocean, this study can be useful in accurately 

predicting subsurface temperature profiles in a marginal sea with 

large spatiotemporal variability in water temperature owing to 

complex phenomena. When predicting the vertical temperature 

profile during the strong stratification season, it is crucial to create a 

predictive model that considers a thin surface mixed layer that is 

frequently overlooked. 

This study devised a method to synthesize data needed to 

effectively make data-based prediction models for regions with 

limited observations. A major achievement of this study is the use of 

machine learning techniques to predict subsurface data that are 

difficult to measure on satellites. 
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5. Summary and conclusion 
 

A numerical regional ocean model was successfully simulated in 

the cloud environment and achieved performance similar to that of 

the physical server. The numerical ocean model with various grids 

yielded the same results as the physical server. The cloud-based 

numerical model experiment environment was provided remotely 

through the network, and the amount of usage was measured. The 

computation environment was created without preparing physical 

equipment in the laboratory. 

 An MPI-based HPC cluster, which is the execution environment 

of the numerical ocean model, was constructed. The same numerical 

ocean model was tested in various environments of cloud vendors, 

and the performance of the numerical model based on each grid was 

measured. The CPU resources, memory performance, and cache 

characteristics of the HPC cluster were classified and measured to 

estimate the factors influencing the performance of the numerical 

model in the cloud-based environment. Moreover, it was confirmed 

that the size and structure of the CPU cache memory were among the 

various performance factors in improving the computation 

performance of the numerical model. By comparing and analyzing the 

performance of the numerical model and the memory performance 
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based on the number of nodes, the degree of performance delay 

attributed to node expansion was confirmed. 

The cloud computing environment also enables researchers to 

reduce the time and cost of preparing an infrastructure environment 

for numerical ocean models, secure an environment for collaboration 

by providing the same environment, and achieve performance using 

the latest information devices. 

In this study, cloud-native, containerization, and orchestration 

technologies were applied to configure the architecture for the 

numerical ocean model to achieve the reproducibility of the ocean 

numerical model and the advantages of preparing the numerical model 

environment. Numerical ocean modeling was conducted in a 

container-based environment from a physical server to various 

public clouds and personal computers, and the model exhibited exact 

computational reproducibility. Container-based HPC numerical 

modeling is essential in computational reproducibility and research 

sharing, even in a homogeneous or heterogeneous environment. The 

results of the base and container-based models were compared with 

the RMSE to verify the reproducibility of the numerical ocean model.  

In addition to the numerical ocean model, machine learning methods, 

widely used for data generation and analysis in earth science, were 

tested in cloud computing. Neural network-based generative models 
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have been applied to synthesize training datasets using ocean 

observation datasets. Observation datasets in NIFS were applied to 

the generative model to establish a model for predicting the ocean 

temperature profile. The synthesized datasets were used as training 

datasets for the prediction model of the vertical temperature profile 

in oceans. Because of the insufficient observation datasets for model 

training, the MAE and RMSE of the model using only observational 

data are higher than those of the trained model with sufficient data. 

Based on the accuracy metrics, the performance was evaluated, and 

the model results for synthetic datasets are better than those of the 

original datasets. 

In this study, the model was focused on the seasonal detection of 

UWE. Datasets synthesized based on observation data from 1993 to 

2012, when SLA data observed through satellite datasets exist, were 

used as training data. Sea surface temperature and SLA data obtained 

from the satellite were used to input data (x-values), and the 

prediction model was trained by combining the temperature profile 

data as output data (y-values) for each depth from the data observed 

by NIFS. Data collected from 2013 to 2017 were used as test data 

for verification. The final predictive model was implemented by 

combining stand-alone models using the stacking ensemble method 

to improve the performance of the predictive model. 
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Synthetic datasets used for model training were generated using 

GPU in the cloud environment. Predictive results were generated 

using a numerical ocean model in various cloud-based environments, 

and training datasets for the machine learning model were generated 

using generative models. High-resolution numerical and 

computational machine-learning prediction models, which were 

difficult to perform in the limited physical infrastructure environment 

in the past, became possible. In addition, the achievement of 

computational reproducibility and rapid preparation of the 

computational environment were achieved in cloud computing. This 

study demonstrates that the cloud environment can play an essential 

role in the generation and prediction model of numerical data in earth 

science. 
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7. Abstract (in Korean) 
 

지구의 변화와 현상을 연구하기 위해 많은 과학자들은 수치 모델을 

기반으로 한 고해상도 모델 결과를 사용하거나 관측된 데이터로 

머신러닝 기반 예측 모델을 개발하고 활용한다. 정보기술이 발전함에 

따라 지역 및 전 지구적인 고해상도 수치 모델링과 머신러닝 기반 

지구과학 데이터 생성을 위한 실용적인 방법론이 필요하다. 

본 연구는 지구과학의 고해상도 수치 모델과 머신러닝 기반 예측 모델을 

기반으로 한 데이터 생성 및 처리가 클라우드 환경에서 효과적으로 

구현될 수 있음을 제안한다. 

클라우드 컴퓨팅에서 고해상도 수치 해양 모델 구현의 재현성과 

이식성을 검증하기 위해 북서태평양, 동해, 황해 등 모델 영역의 다양한 

해상도에서 수치 해양 모델의 성능을 시뮬레이션하고 분석하였다. 

컨테이너화 방식을 통해 다양한 인프라 환경 변화에 대응하고 계산 

재현성을 효과적으로 확보할 수 있었다. 

머신러닝 기반 데이터 생성의 적용을 검증하기 위해 생성 모델을 이용한 

표층 이하 온도 데이터의 데이터 증강을 실행하여 해양의 수직 온도 

분포를 예측하는 모델 훈련을 위한 대용량 데이터 세트를 준비했다. 

예측모델 훈련을 위해 위성 데이터에 비해 상대적으로 부족한 관측 

데이터에 대해서 생성 모델을 사용하여 데이터 증강을 수행하였다. 

모델의 예측성능 비교에는 관측 데이터 외에도 HYCOM 데이터 세트를 

사용하였으며, 증강 데이터의 데이터 분포는 입력 데이터 분포와 

유사함을 확인하였다. 독립형 예측 모델을 결합한 앙상블 방식은 기존 
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관측 데이터를 기반으로 하는 예측 모델의 성능에 비해 향상되었다. 

데이터합성을 위해 많은 양의 계산 자원이 필요했으며, 데이터 합성은 

클라우드 기반 GPU 환경에서 수행되었다. 

고해상도 수치 해양 모델 시뮬레이션, 예측 모델 개발, 데이터 생성 

방법은 해양 과학 분야에서 예측 능력을 향상시킬 수 있다. 본 연구에서 

사용된 클라우드 컴퓨팅 기반의 수치 모델링 및 생성 모델은 지구 

과학의 다양한 분야에 광범위하게 적용될 수 있다. 
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