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Abstract

In this paper, we compare the performance of the support vector regression-
(SVR) and asymmetric Huber SVR (AHSVR) based-monitoring methods us-
ing the monitoring scheme regarding the change of conditional volatilities of
the generalized autoregressive conditional heteroskedastic (GARCH) model.
Specifically, we obtain the residuals via respectively fitting SVR- and AHSVR-
GARCH models to a given time series, and seek for the optimal set of tuning
parameters through a grid search. We confirm that AHSVR-GARCH has a
better performance than SVR-GARCH by conducting simulation experiments,
and conclude that utilizing robust methods when computing residuals indeed
strengthen the detection ability in general. Moreover, the data analysis of log

returns of S&P500 and KOSPI is conducted to further showcase its applicabil-

ity.

Keywords: Monitoring, SVR-GARCH, Robust SVR, Volatility, CUSUM, fi-
nancial market

Student Number: 2020-20706
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Chapter 1

Introduction

The primary interest regarding the participants of the financial market is the
volatility, a measure that accounts for uncertainty, rather than changes in the
average of financial returns.(Z414d, 2016) As the market volatility is generally
regarded to be time-dependent, the generalized autoregressive conditional het-
eroskedastic model (GARCH) proposed by Engle (1982) and Bollerslev (1986)
has gained enormous popularity among researchers and practitioners in the field
of finance. Henceforth, the GARCH model is still one of the most widely used
model that measures the volatility of financial returns data, and exploring the
properties of the GARCH model and its variants, as well as their applications,
continuously remains to be an enticing research topic. In general, the maxi-
mum likelihood method has been mainly used when estimating the parameters
of the model, but recent studies attempt to estimate conditional variance with
machine learning (ML) and deep learning (DL) techniques such as the support
vector regression (SVR) and neural network.

In particular, SVR is a nonparametric method that is primarily used in



cases where the underlying structure of the dataset is considered to be nonlin-
ear. As such, it liberates from the necessity of assuming the innovation distribu-
tion of the time series a priori when estimating the conditional variance of the
GARCH model. This hybrid model of SVR and GARCH is generally referred
as the SVR-GARCH model, and has been applied in several studies, includ-
ing Lee et al. (2020), Perez-Cruz et al. (2003), Sun and Yu (2020), Chen et
al. (2010), Santamaria-Bonfil et al. (2015) . However, traditional SVR-GARCH
models is prone to overfitting issues, and thus can be susceptible to outliers. To
mitigate this issue, Lee et al. (2022) proposed a hybrid model that is based on
the asymmetric Huber loss SVR (AHSVR) model (Balasundaram and Meena,
2019), which significantly reduced the effects of the outliers while successfully
captured the underlying structure of the time-heteroskedastic volatility. . There-
fore, in this paper, the primary focus is set towards investigating the necessity
of using AHSVR compared to the traditional SVR models when estimating and
monitoring a structural change of the conditional volatility.

Another interest of the financial market is to prospectively monitor the
structural change regarding the volatility, because a larger volatility signifies
a greater financial risk. Among the typical monitoring schemes, the methods
based on CUSUM statistics, initially proposed by Page (1954), is being used in
various fields. In addition, many studies on modified CUSUM-based monitoring
methods based on model residuals have been conducted since then. e.g. Faisal et
al. (2018), Oh and Lee (2017). Especially, Lee et al. (2020) devised a statistical
monitoring method that both well detects the increase and decrease of the
volatility. In this paper, the hybrid monitoring method of Lee et al. (2020) was
adopted as a monitoring method of choice, and we here compare the SVR-
GARCH and AHSVR-GARCH models when they are respectively utilized in

obtaining the residuals required to formulate the monitoring scheme.



The remainder of this paper is structured as follows. Section 2 describes
SVR and AHSVR models in general, and explain how they are incorporated
when estimating the conditional volatility. Also, we briefly introduce the pro-
cedure of monitoring. Section 3 provides the simulation results, comparing the
performance of the monitoring method via SVR-GARCH and AHSVR-GARCH
models, respectively. Section 4 compares both models in monitoring real-world
financial time series, namely, the S&P500 index and KOSPI. Section 5 describes

the conclusions.



Chapter 2

Model Description

2.1 Support Vector Regression(SVR)

2.1.1 eSVR

Support vector regression, specifically the e-SVR, is a nonlinear function esti-
mation method that incorporates the e-insensitive loss function, which neglects
the error up to at most e from y;, where {(xj,yi) : i = 1,2,--- ,n} denotes a
training data. In addition, SVR is known to be highly flexible, as we can freely
map the input data to a high-dimensional feature space by using the kernel
trick.

In SVR, the function f to be estimated has the following form:

fx) =(w,o(x)) +0, (2.1)

where x denotes a input vector and w,b are the regression coefficient of the
model to be estimated. ¢(-) is a Mercer kernel that satisfies K (x,z) = (¢(x), ¢(z)),

where ¢ is an implicit kernel operator.



To obtain the estimates w and b, we construct a constrained convex opti-
mization problem, which is formulated as follows:
minimize = [[w|?2 + Ci(& + e (2.2)
2 i=1 '
Yi — (W, Xi) <et+§
subject to (w,xi) +b—y; <e+&

& > 0,& >0,

where the constant C' is a penalty term that regulates between the flatness of
function f and the training error, &;, & are slack variables with nonnegative
values, and C' and € are tuning parameters, the optimal values of which are
obtained through a grid search method.

To solve the above constrained optimization problem, we transform the
problem into the unconstrained one by exploiting the KKT conditions, and
the formulate the Lagrangian dual problem. Then, we can utilize quadratic
programming (QP) to find the lagrangian multiplier solution, and finally, obtain

the estimates of the SVR parameters, see Smola (2004) for more details.

2.1.2 eAHSVR

When applying machine learning techniques, the overfitting issue is unavoid-
able. To deal with this phenomenon, we can employ a more robust loss function,
which make function to be flat, and Balasundaram and Meena (2019) proposes

a generalized SVR model by replacing the loss function in (2.2) with the e-



insensitive asymmetric Huber loss, which is given as follows:

—1.(2(x+€)+71) ,—o0o<x<—(1+€)

(z + €)? ,—(to+e) <z < —¢
Herprp(2) =40 ,—e<x<e€ (2.3)
(r —¢)? e<x < (e+7TR)

(TrR(2(z —€) —7R)  ,(e+7R) S ¥ <o,

where € and 77, Tg are all nonnegative user-set parameters. The function H, 7, -,
returns zero if the difference between the estimated value and the actual ob-
served value is less than e. Also, H, ;, ;, converts the quadratic function into a
linear function starting at points (e +7r) and (e + 71). As shown in Figure 2.1,

the smaller 77, or 7p of function H, the smaller the loss. This behavior result

the model to be less sensitive to noise present in the training data.

8-

loss

valug

4 - huber

— swvm

=lim

Figure 2.1 The loss functions of SVR with ¢ = 2 (blue) and AHSVR with

(6,70, TrR) = (2,0.4,0.2) (red), respectively.

Next, we introduce the function H 7, 7, to the penalty term of the equation

; &) 8



(2.2) to obtain the parameter of (2.1) (Balasundaram and Meena, 2019):

1 O
ar(grrzl)n §(WTW +b%) + nge,TL,TR (yi — f(x1)). (2.4)
w, i=1

For convenience, we can rewrite (2.1) using matrix notations. Specifically,
we write the matrix of explanatory variables as X = [xq,--- ,xn]T and the

vector of response variables as y; = f(x;). Then, we write

y =Qz, (2.5)

w
where z = and QQ = [A(X7 XT) 1| with the kernel matrix A, x, such
b

that [A(X, XT)L,]' = K(xj,x;) and 1 is ones vector of length n.
Using the notations presented in (2.5), we formulate the unconstrained vari-

ant of the problem in (2.4):

min §(z) = Jz'z + - [ly - Qzl* = |y - Qz — 7r1)+|” ~ [1(Qz — y — 7.1)+ %],

2 2
(2.6)
where ay is the operator where its i-th element is defined as max(a;,0) (a =
(a1,...,ap)). Balasundaram and Meena (2019) verified that S(z) has a unique
solution because of its strong convexity. Therefore, we can find an approxi-
mation of the optimal solution using some iterative solvers, and the desired

solution is given by

-1
z" = <é + QTQ) Q" [y +(Qz —y —7L1) 4 — (y — Q2 — 7r1) )| .

(2.7)



2.2 Monitoring via Robust SVR based GARCH
GARCH(1,1) model is defined as follows:

Yt = Ot (2.8)

2 2
o =w+ay;_1 + Boi_q,

where o, is the time-varying conditional volatility, and n; is an iid process with
mean zero and unit variance. The parameter w, o, 8 satisfy the condition w > 0,
a, B > 0. In particular, o + 8 < 1 is necessary for y; to be stationary.

Lee et al. (2022) used the AHSVR-GARCH to estimate the conditional
variance of various linear and nonlinear GARCH models. Specifically, AHSVR-
GARCH model is expressed by the following formula:

Ut2 = h(th—h atZ—l) (2.9)

= logatz = log h(th—lv 0152—1) =: f(yt2—1» 0152—1)7

where f takes the form of (2.1). By taking the logarithm on both sides of
Equation (2.9), it is ensured that the o7 estimated via AHSVR is all positive.
Since the conditional variance is not observable in real-world circumstances, for
practicality, we use the proxy &7 of o7 by taking the moving average of squared

observations using the prescribed window size s, namely,

t

- 1 _
52 = ; Z (ye — Ts.0)?, (2.10)
l=t—s+1

t
where ¥, = % S>> . 62 replaces the unknown quantity o? in (2.9) when

{=t—s+1
estimating f, and it is adopted in many studies in the literature, including Lee

et al. (2022).
The training sample is divided into two subsets, one for model fitting and the

other utilized as a validation set to select the optimal set of tuning parameters



through a grid search. For the validation process, we additionally assume that
the error process {7} is a standard normal distribution, and employ a different
loss function that resembles the negative quasi log-likelihood function (Hwang
and Shin, 2010) [Estimating GARCH models using kernel machine learning]:

n

Liw.t) = Y [se ) 4 f(x)] + Sl (211)
t=1

where w is the parameter in (2.1), and A > 0 is the regularization parameter.

Subsequently after obtaining the estimate f of f, we obtain the residual

.

. 2.12
n &4 ( )

This residual will be used when formulating the hybrid CUSUM test proposed
by Lee et al. (2020) purposed for monitoring. The proposed CUSUM Test has
the test statistic of

M, = max {M“), M}L?)} (2.13)
with

MY = max maxin(Wm — Wh)

2)  _ n-L (W — T
M = g s (=

where Wk is defined as

k

Wy = Z(ﬁ? —1)/9,

t=1

and 42 is a sample variance of 7?’s. Oh and Lee (2019) and Lee and Kim (2022)

established that the limiting distribution of M,, under the null hypothesis of no



structural change is given as

M, %5 M v M,

My = sup | sup W(s) — W(t)|,
0<t<1 [0<s<t
Mi, = inf —W(t
2 = Sup OgggtW(S) W(t)|,

where W denotes the one-dimensional standard Brownian motion.

Notice that M, is a combination of M,(Ll) and MQ(Q), and has the advantage of
being able to detect not only increasing processes but also decreasing processes.
However, in this paper, as promptly detecting an increase in volatility may be
prioritized by market participants, we focus on such cases in empirical studies
of the subsequent sections. Moreover, using the limiting null distribution, Lee
et al. (2020) confirmed that the critical value ¢ = 2.465 at the significance level

of 0.05 via Monte Carlo simulation.

10 J’—'! k= ‘_]l



Chapter 3

Simulation Study

This section presents a comparison study of monitoring schemes respectively
based on AHSVR-GARCH and SVR-GARCH models via simulation experi-
ments. Specifically, the simulation is performed by using GARCH(1,1) as the
base model, and assessing the average stopping time, namely, the average run
length (ARL), to check whether the performance of AHSVR-GARCH model is
relatively superior compared to the existing SVR-GARCH model.

We adopt the Gaussian kernel as a kernel function of choice to fit both

models above:
K (x,z) = exp(—7|jx — z[*), (3.1)

where v > 0 is a user-defined parameter, and an optimal value is obtained
by performing a grid search, similar to the searching method of SVR tuning

parameters.

1 [ -1 =
11 -"‘-u_g'l'll { o



3.1 Finding optimal tuning parameters

We first find the optimal set of tuning parameters (v, C, €, 71, Tr) of AHSVR
that can be well describe the conditional volatility of the given dataset without
overfitting. For the procedure, we generate 1,000 instances of training time series
of length 1,000 from GARCH(1,1) model. In addition, we divide each generated
time series into two chunks, the first 400 observations are reserved for training
the model, and the remaining 600 observations are utilized when selecting the
optimal tuning parameters.

Next, the optimal tuning parameter is selected as the pair of elements that
minimizes the negative log-likelihood of (2.11) using the grid search method
among the values presented in Table 3.1. As fitting SVR models are computa-
tionally less demanding than fitting AHSVR models, we consider a larger space
of tuning parameters for SVR-GARCH models. The results of the grid search

are shown in Table 3.2.

Tuning Parameter AHSVR SVR
0% (1, 0.5, 0.05) (1, 0.5, 0.1, 0.05, 0.01)
(100, 1, 0.01) (1000, 100, 10, 1, 0.1, 0.01, 0.001)
€ (1, 0.5) (2, 1, 0.5, 0.1, 0.05)
TL, TR (0.5, 0.2, 0.1, 0.05, 0.01) -

Table 3.1 Set of tuning parameter for grid search

3.2 Simulation Results

In this section, we use the tuning parameters obtained from the preceding sec-

tion, and obtain ARL; for each cases, and performs monitoring simulations on

12 AL




Model (v, C, €, 11, TR)

AHSVR | (0.05, 1, 0.5, 0.01, 0.5)
SVR (0.1, 0.01, 0.05, -, -)

Table 3.2 The optimal tuning parameter

the changed model based on the estimated regression. Here, we fix the ARLg via
Monte Carlo simulations based on the limiting distribution, and use ¢ = 1.016
as our control limit.And then, for practical task, we independently generate
1,200 additional observations for evaluating ARLq, specifically 400, 800 allo-
cated as the training set and the changed set, respectively. The samples gener-
ated according to the prescribed parameters are plotted in Figures 3.1 to 3.4.

In addition, we consider the following three cases of change:

e Case 1: (w,a,3) :(0.3,0.3,0.3) — (1,0.3,0.3)
e Case 2: (w,a,3) :(0.3,0.3,0.3) — (0.3,0.6,0.3)
e Case 3: (w,a, ) :(0.3,0.3,0.3) — (0.3,0.3,0.6)

We input the test data into the fitted model to obtain residual (2.12), and
perform the proposed CUSUM monitoring procedure in Section 2.2 to output
the point at which the change is occurred. Note that due to the definition of
ARL1, we report the ARL of both methods after adjusting the starting point
of the run lengths to precisely be located at the start of the structural change.
This process was repeated 1,000 times, and it is summarized in Table 3.3.

As a result, monitoring process using AHSVR generally yield better results.
In both models, performance of AHSVR-based monitoring scheme is observed

to be superior in all cases. For AHSVR, when « increases, the performance is

]
13 =4



(w, a, B) AHSVR SVR

(1.0,0.3,0.3) | 46.076 | 189.5221
(0.3,0.6,0.3) | 86.385 | 99.328

(0.3,0.3,0.6) | 52.436 | 129.176

Table 3.3 Results of Simulation

significantly affected by outliers that occasionally occur than in other cases.
We plot the estimated values as examples in Figures 3.5-3.13, to illustrate the
estimated o2 and their residuals based on AHSVR. In Figures 3.5, 3.7, 3.9, 3.11,
and 3.13 for conditional variances, the red line represents the 63, and the black
line represents the true o?. Also, in Figures 3.6, 3.8, 3.10 and 3.12 regarding
the residuals, the yellow section means training set, and the red line indicates

the point where the change was detected.
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Chapter 4

Real Data Analysis

In this section, we use AHSVR-GARCH to monitor the volatility of returns
of real-world financial time series, specifically, the daily log-returns of S&P
500 index and Korea Stock Price Composite Index (KOSPI). Throughout the

section, we denote p; to be the daily closing price, and y; the log-returns, namely,
yr = 100 x (logps —logpi—1) (t>1). (4.1)

This is the most widely used transformation in the method for catching vari-
ability changes in real stock price data, and is known to be structurally similar
to that of the GARCH model.

We use S&P 500 stock prices from January 1, 2012 to June 28, 2022, and
KOSPI stock prices from April 1, 2020 to June 28, 2022, which can be obtained
from the website “Investing.com”. For KOSPI, as the volatility of financial re-
turns before April 2020 was large and appeared to be nonstationary, we there-
fore set the starting date of the training set on April 1, 2020. This process is

critical as nonstationarity of the training time series violates the assumption

22 -i.



of the CUSUM monitoring scheme, see Lee et al. (2020). Moreover, we use
¢ = 2.465 in this analysis.

For S&P500 index, we set the training time series from January 1, 2012
to December 31, 2015, and then sequentially monitor the remaining dataset
daily until a change is present. Moreover, Figures 4.1 and 4.2 are visualizations
of S&P500’s raw price and log returns, the yellow shaded area of which is the
training set, and the red line depicts the date on which the change was detected.
The monitoring scheme using AHSVR-GARCH model detected a change in
volatility on March 13, 2020. The outcome of the monitoring may be primarily
due to the stock market’s sharp drop resulting from the WHO’s declaration of
the COVID-19 pandemic on March 12, 2020.

When analyzing KOSPI index, we assigned the dataset from April 1, 2020,
to December 31, 2020 as the training data and performed the aforementioned
procedure of monitoring a volatility change. Then, the nominated date of a
change appeared to be on September 24, 2021. On such date, there was a
widespread opinion that the inflation may occur throughout the global economy;,
and the U.S. Consumer Price Index (CPI) for November was scheduled to be
announced. In the end, the CPI rose 6.8% to its highest level in 39 years, and
referring to Figure 4.3, it can be seen that the stock market has since shifted

towards a downwards trend.

-1
23 -i == T



row_price

log_return

4000 -

3000~
2000~
2012 2014 STt 2020 2022
Figure 4.1 Raw Price of S&P500
o
N
10-

5]
o
R
15

2012 2014 2016 2018 2020
Date

Figure 4.2 Log Return of S&P500

24



3000~

00 -

™
o

row_price

2000 -

log_return
[=]
=
;

&)
o
|

o
o
|

2020-07

2020-07

Ak

2021-01 2021-07
Date

Figure 4.3 Raw Price of Kospi

2021-01 2021-07
Date

Figure 4.4 Log Return of Kospi

25

2022-01




Chapter 5

Conclusion and Discussion

In this paper, we compared the results of monitoring scheme of Lee et al. (2020)
based on the estimated volatility using AHSVR-GARCH and SVR-GARCH,
respectively. The tuning parameters required for both models are respectively
obtained by performing a grid search, and the monitoring procedure was con-
ducted by using residual-based CUSUM method. Our simulation study revealed
that the GARCH model with AHSVR proved to have a superior results in terms
of the early-detection ability.

However, considering that ML techniques are heavily influenced by tuning
parameters, the search space of the tuning parameters being relatively small
may somewhat have affected the overall quality of the residuals, thus affecting
the whole monitoring procedure in general. In addition, it is unclear whether
the estimation of AHSVR is well applied not only to linear GARCH but also
to non linear GARCH models. As the scope of this study was limited to the

standard GARCH model, we leave these tasks as our future research topic.
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