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Abstract

In this paper, we compare the performance of the support vector regression-

(SVR) and asymmetric Huber SVR (AHSVR) based-monitoring methods us-

ing the monitoring scheme regarding the change of conditional volatilities of

the generalized autoregressive conditional heteroskedastic (GARCH) model.

Specifically, we obtain the residuals via respectively fitting SVR- and AHSVR-

GARCH models to a given time series, and seek for the optimal set of tuning

parameters through a grid search. We confirm that AHSVR-GARCH has a

better performance than SVR-GARCH by conducting simulation experiments,

and conclude that utilizing robust methods when computing residuals indeed

strengthen the detection ability in general. Moreover, the data analysis of log

returns of S&P500 and KOSPI is conducted to further showcase its applicabil-

ity.

Keywords: Monitoring, SVR-GARCH, Robust SVR, Volatility, CUSUM, fi-

nancial market

Student Number: 2020-20706
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Chapter 1

Introduction

The primary interest regarding the participants of the financial market is the

volatility, a measure that accounts for uncertainty, rather than changes in the

average of financial returns.(조신섭, 2016) As the market volatility is generally

regarded to be time-dependent, the generalized autoregressive conditional het-

eroskedastic model (GARCH) proposed by Engle (1982) and Bollerslev (1986)

has gained enormous popularity among researchers and practitioners in the field

of finance. Henceforth, the GARCH model is still one of the most widely used

model that measures the volatility of financial returns data, and exploring the

properties of the GARCH model and its variants, as well as their applications,

continuously remains to be an enticing research topic. In general, the maxi-

mum likelihood method has been mainly used when estimating the parameters

of the model, but recent studies attempt to estimate conditional variance with

machine learning (ML) and deep learning (DL) techniques such as the support

vector regression (SVR) and neural network.

In particular, SVR is a nonparametric method that is primarily used in
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cases where the underlying structure of the dataset is considered to be nonlin-

ear. As such, it liberates from the necessity of assuming the innovation distribu-

tion of the time series a priori when estimating the conditional variance of the

GARCH model. This hybrid model of SVR and GARCH is generally referred

as the SVR-GARCH model, and has been applied in several studies, includ-

ing Lee et al. (2020), Pèrez-Cruz et al. (2003), Sun and Yu (2020), Chen et

al. (2010), Santamar̀ıa-Bonfil et al. (2015) . However, traditional SVR-GARCH

models is prone to overfitting issues, and thus can be susceptible to outliers. To

mitigate this issue, Lee et al. (2022) proposed a hybrid model that is based on

the asymmetric Huber loss SVR (AHSVR) model (Balasundaram and Meena,

2019), which significantly reduced the effects of the outliers while successfully

captured the underlying structure of the time-heteroskedastic volatility. . There-

fore, in this paper, the primary focus is set towards investigating the necessity

of using AHSVR compared to the traditional SVR models when estimating and

monitoring a structural change of the conditional volatility.

Another interest of the financial market is to prospectively monitor the

structural change regarding the volatility, because a larger volatility signifies

a greater financial risk. Among the typical monitoring schemes, the methods

based on CUSUM statistics, initially proposed by Page (1954), is being used in

various fields. In addition, many studies on modified CUSUM-based monitoring

methods based on model residuals have been conducted since then. e.g. Faisal et

al. (2018), Oh and Lee (2017). Especially, Lee et al. (2020) devised a statistical

monitoring method that both well detects the increase and decrease of the

volatility. In this paper, the hybrid monitoring method of Lee et al. (2020) was

adopted as a monitoring method of choice, and we here compare the SVR-

GARCH and AHSVR-GARCH models when they are respectively utilized in

obtaining the residuals required to formulate the monitoring scheme.
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The remainder of this paper is structured as follows. Section 2 describes

SVR and AHSVR models in general, and explain how they are incorporated

when estimating the conditional volatility. Also, we briefly introduce the pro-

cedure of monitoring. Section 3 provides the simulation results, comparing the

performance of the monitoring method via SVR-GARCH and AHSVR-GARCH

models, respectively. Section 4 compares both models in monitoring real-world

financial time series, namely, the S&P500 index and KOSPI. Section 5 describes

the conclusions.
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Chapter 2

Model Description

2.1 Support Vector Regression(SVR)

2.1.1 ϵ-SVR

Support vector regression, specifically the ϵ-SVR, is a nonlinear function esti-

mation method that incorporates the ϵ-insensitive loss function, which neglects

the error up to at most ϵ from yi, where {(xi,yi) : i = 1, 2, · · · , n} denotes a

training data. In addition, SVR is known to be highly flexible, as we can freely

map the input data to a high-dimensional feature space by using the kernel

trick.

In SVR, the function f to be estimated has the following form:

f(x) = ⟨w, ϕ(x)⟩+ b, (2.1)

where x denotes a input vector and w, b are the regression coefficient of the

model to be estimated. ϕ(·) is a Mercer kernel that satisfiesK(x, z) = ⟨ϕ(x), ϕ(z)⟩,

where ϕ is an implicit kernel operator.
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To obtain the estimates ŵ and b̂, we construct a constrained convex opti-

mization problem, which is formulated as follows:

minimize
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i ) (2.2)

subject to


yi − ⟨w,xi⟩ ≤ ϵ+ ξi

⟨w,xi⟩+ b− yi ≤ ϵ+ ξ∗i

ξi ≥ 0, ξ∗i ≥ 0,

where the constant C is a penalty term that regulates between the flatness of

function f and the training error, ξi, ξ
∗
i are slack variables with nonnegative

values, and C and ϵ are tuning parameters, the optimal values of which are

obtained through a grid search method.

To solve the above constrained optimization problem, we transform the

problem into the unconstrained one by exploiting the KKT conditions, and

the formulate the Lagrangian dual problem. Then, we can utilize quadratic

programming (QP) to find the lagrangian multiplier solution, and finally, obtain

the estimates of the SVR parameters, see Smola (2004) for more details.

2.1.2 ϵ-AHSVR

When applying machine learning techniques, the overfitting issue is unavoid-

able. To deal with this phenomenon, we can employ a more robust loss function,

which make function to be flat, and Balasundaram and Meena (2019) proposes

a generalized SVR model by replacing the loss function in (2.2) with the ϵ-
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insensitive asymmetric Huber loss, which is given as follows:

Hϵ,τL,τR(x) =



−τL(2(x+ ϵ) + τL) ,−∞ < x < −(τL + ϵ)

(x+ ϵ)2 ,−(τL + ϵ) ≤ x < −ϵ

0 ,−ϵ ≤ x < ϵ

(x− ϵ)2 , ϵ ≤ x < (ϵ+ τR)

τR(2(x− ϵ)− τR) , (ϵ+ τR) ≤ x < ∞,

(2.3)

where ϵ and τL, τR are all nonnegative user-set parameters. The functionHϵ,τL,τR

returns zero if the difference between the estimated value and the actual ob-

served value is less than ϵ. Also, Hϵ,τL,τR converts the quadratic function into a

linear function starting at points (ϵ+ τR) and (ϵ+ τL). As shown in Figure 2.1,

the smaller τL or τR of function H, the smaller the loss. This behavior result

the model to be less sensitive to noise present in the training data.

Figure 2.1 The loss functions of SVR with ϵ = 2 (blue) and AHSVR with

(ϵ, τL, τR) = (2, 0.4, 0.2) (red), respectively.

Next, we introduce the function Hϵ,τL,τR to the penalty term of the equation
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(2.2) to obtain the parameter of (2.1) (Balasundaram and Meena, 2019):

argmin
(w,b)

1

2
(wTw + b2) +

C

2

n∑
i=1

Hϵ,τL,τR(yi − f(xi)). (2.4)

For convenience, we can rewrite (2.1) using matrix notations. Specifically,

we write the matrix of explanatory variables as X = [x1, · · · ,xn]
T and the

vector of response variables as yi = f(xi). Then, we write

y = Qz, (2.5)

where z =

w
b

 and Q =
[
A(X,XT ) 1

]
with the kernel matrix An×n such

that
[
A(X,XT )

]
i,j

= K(xi,xj) and 1 is ones vector of length n.

Using the notations presented in (2.5), we formulate the unconstrained vari-

ant of the problem in (2.4):

min
z

S(z) =
1

2
zT z+

C

2

[
∥y −Qz∥2 − ∥(y −Qz− τR1)+∥2 − ∥(Qz− y − τL1)+∥2

]
,

(2.6)

where a+ is the operator where its i-th element is defined as max(ai, 0) (a =

(a1, . . . , ap)). Balasundaram and Meena (2019) verified that S(z) has a unique

solution because of its strong convexity. Therefore, we can find an approxi-

mation of the optimal solution using some iterative solvers, and the desired

solution is given by

znew =

(
I

C
+QTQ

)−1

QT
[
y + (Qzold − y − τL1)+ − (y −Qzold − τR1)+)

]
.

(2.7)
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2.2 Monitoring via Robust SVR based GARCH

GARCH(1,1) model is defined as follows:

yt = σtηt (2.8)

σt = ω + αy2t−1 + βσ2
t−1,

where σt is the time-varying conditional volatility, and ηt is an iid process with

mean zero and unit variance. The parameter ω, α, β satisfy the condition ω > 0,

α, β ≥ 0. In particular, α+ β < 1 is necessary for yt to be stationary.

Lee et al. (2022) used the AHSVR-GARCH to estimate the conditional

variance of various linear and nonlinear GARCH models. Specifically, AHSVR-

GARCH model is expressed by the following formula:

σ2
t = h(y2t−1, σ

2
t−1) (2.9)

⇒ log σ2
t = log h(y2t−1, σ

2
t−1) =: f(y2t−1, σ

2
t−1),

where f takes the form of (2.1). By taking the logarithm on both sides of

Equation (2.9), it is ensured that the σ2
t estimated via AHSVR is all positive.

Since the conditional variance is not observable in real-world circumstances, for

practicality, we use the proxy σ̃2
t of σ2

t by taking the moving average of squared

observations using the prescribed window size s, namely,

σ̃2
t =

1

s

t∑
ℓ=t−s+1

(yℓ − ȳs,ℓ)
2, (2.10)

where ȳs,ℓ = 1
s

t∑
ℓ=t−s+1

yt. σ̃
2
t replaces the unknown quantity σ2

t in (2.9) when

estimating f , and it is adopted in many studies in the literature, including Lee

et al. (2022).

The training sample is divided into two subsets, one for model fitting and the

other utilized as a validation set to select the optimal set of tuning parameters
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through a grid search. For the validation process, we additionally assume that

the error process {ηt} is a standard normal distribution, and employ a different

loss function that resembles the negative quasi log-likelihood function (Hwang

and Shin, 2010) [Estimating GARCH models using kernel machine learning]:

L(ω, b) =
n∑

t=1

[
y2t e

−f(xt) + f(xt)
]
+

λ

2
∥w∥2, (2.11)

where w is the parameter in (2.1), and λ ≥ 0 is the regularization parameter.

Subsequently after obtaining the estimate f̂ of f , we obtain the residual

η̂t =
yt
σ̂t

. (2.12)

This residual will be used when formulating the hybrid CUSUM test proposed

by Lee et al. (2020) purposed for monitoring. The proposed CUSUM Test has

the test statistic of

M̂n = max
{
M̂ (1)

n , M̂ (2)
n

}
(2.13)

with 
M̂

(1)
n = max

1≤k≤n
max
m≤k

1√
n
(Ŵm − Ŵk)

M̂
(2)
n = max

1≤k≤n
|min
m≤k

1√
n
(Ŵm − Ŵk)|,

(2.14)

where Ŵk is defined as

Ŵk =
k∑

t=1

(η̂2t − 1)/δ̂,

and δ̂2 is a sample variance of η̂2t ’s. Oh and Lee (2019) and Lee and Kim (2022)

established that the limiting distribution of M̂n under the null hypothesis of no

9



structural change is given as

M̂n
d−→ M∗

11 ∨M∗
12,

M∗
11 = sup

0≤t≤1

∣∣∣∣ sup
0≤s≤t

W(s)−W(t)

∣∣∣∣ ,
M∗

12 = sup
0≤t≤1

∣∣∣∣ inf
0≤s≤t

W(s)−W(t)

∣∣∣∣ ,
where W denotes the one-dimensional standard Brownian motion.

Notice that M̂n is a combination of M̂
(1)
n and M̂

(2)
2 , and has the advantage of

being able to detect not only increasing processes but also decreasing processes.

However, in this paper, as promptly detecting an increase in volatility may be

prioritized by market participants, we focus on such cases in empirical studies

of the subsequent sections. Moreover, using the limiting null distribution, Lee

et al. (2020) confirmed that the critical value c = 2.465 at the significance level

of 0.05 via Monte Carlo simulation.
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Chapter 3

Simulation Study

This section presents a comparison study of monitoring schemes respectively

based on AHSVR-GARCH and SVR-GARCH models via simulation experi-

ments. Specifically, the simulation is performed by using GARCH(1,1) as the

base model, and assessing the average stopping time, namely, the average run

length (ARL), to check whether the performance of AHSVR-GARCH model is

relatively superior compared to the existing SVR-GARCH model.

We adopt the Gaussian kernel as a kernel function of choice to fit both

models above:

K(x, z) = exp(−γ∥x− z∥2), (3.1)

where γ > 0 is a user-defined parameter, and an optimal value is obtained

by performing a grid search, similar to the searching method of SVR tuning

parameters.
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3.1 Finding optimal tuning parameters

We first find the optimal set of tuning parameters (γ, C, ϵ, τL, τR) of AHSVR

that can be well describe the conditional volatility of the given dataset without

overfitting. For the procedure, we generate 1,000 instances of training time series

of length 1,000 from GARCH(1,1) model. In addition, we divide each generated

time series into two chunks, the first 400 observations are reserved for training

the model, and the remaining 600 observations are utilized when selecting the

optimal tuning parameters.

Next, the optimal tuning parameter is selected as the pair of elements that

minimizes the negative log-likelihood of (2.11) using the grid search method

among the values presented in Table 3.1. As fitting SVR models are computa-

tionally less demanding than fitting AHSVR models, we consider a larger space

of tuning parameters for SVR-GARCH models. The results of the grid search

are shown in Table 3.2.

Tuning Parameter AHSVR SVR

γ (1, 0.5, 0.05) (1, 0.5, 0.1, 0.05, 0.01)

C (100, 1, 0.01) (1000, 100, 10, 1, 0.1, 0.01, 0.001)

ϵ (1, 0.5) (2, 1, 0.5, 0.1, 0.05)

τL, τR (0.5, 0.2, 0.1, 0.05, 0.01) -

Table 3.1 Set of tuning parameter for grid search

3.2 Simulation Results

In this section, we use the tuning parameters obtained from the preceding sec-

tion, and obtain ARL1 for each cases, and performs monitoring simulations on

12



Model (γ, C, ϵ, τL, τR)

AHSVR (0.05, 1, 0.5, 0.01, 0.5)

SVR (0.1, 0.01, 0.05, ·, ·)

Table 3.2 The optimal tuning parameter

the changed model based on the estimated regression. Here, we fix the ARL0 via

Monte Carlo simulations based on the limiting distribution, and use c = 1.016

as our control limit.And then, for practical task, we independently generate

1,200 additional observations for evaluating ARL1, specifically 400, 800 allo-

cated as the training set and the changed set, respectively. The samples gener-

ated according to the prescribed parameters are plotted in Figures 3.1 to 3.4.

In addition, we consider the following three cases of change:

• Case 1 : (ω, α, β) : (0.3, 0.3, 0.3) → (1, 0.3, 0.3)

• Case 2 : (ω, α, β) : (0.3, 0.3, 0.3) → (0.3, 0.6, 0.3)

• Case 3 : (ω, α, β) : (0.3, 0.3, 0.3) → (0.3, 0.3, 0.6)

We input the test data into the fitted model to obtain residual (2.12), and

perform the proposed CUSUM monitoring procedure in Section 2.2 to output

the point at which the change is occurred. Note that due to the definition of

ARL1, we report the ARL of both methods after adjusting the starting point

of the run lengths to precisely be located at the start of the structural change.

This process was repeated 1,000 times, and it is summarized in Table 3.3.

As a result, monitoring process using AHSVR generally yield better results.

In both models, performance of AHSVR-based monitoring scheme is observed

to be superior in all cases. For AHSVR, when α increases, the performance is

13



(ω, α, β) AHSVR SVR

(1.0, 0.3, 0.3) 46.076 189.5221

(0.3, 0.6, 0.3) 86.385 99.328

(0.3, 0.3, 0.6) 52.436 129.176

Table 3.3 Results of Simulation

significantly affected by outliers that occasionally occur than in other cases.

We plot the estimated values as examples in Figures 3.5-3.13, to illustrate the

estimated σ2
t and their residuals based on AHSVR. In Figures 3.5, 3.7, 3.9, 3.11,

and 3.13 for conditional variances, the red line represents the σ̂2
t , and the black

line represents the true σ2
t . Also, in Figures 3.6, 3.8, 3.10 and 3.12 regarding

the residuals, the yellow section means training set, and the red line indicates

the point where the change was detected.

14



Figure 3.1 Sample : σ2
t = 0.3 + 0.3y2t + 0.3η2t

Figure 3.2 Sample : σ2
t = 1 + 0.3y2t + 0.3η2t
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Figure 3.3 Sample : σ2
t = 0.3 + 0.6y2t + 0.3η2t

Figure 3.4 Sample : σ2
t = 0.3 + 0.3y2t + 0.6η2t
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Figure 3.5 Plot σ̂2
t : (ω, α, β) = (0.3, 0.3, 0.3)

Figure 3.6 Plot η̂t : (ω, α, β) = (0.3, 0.3, 0.3)
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Figure 3.7 Plot σ̂2
t : (ω, α, β) = (1, 0.3, 0.3)

Figure 3.8 Plot η̂t : (ω, α, β) = (1, 0.3, 0.3)
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Figure 3.9 Plot σ̂2
t : (ω, α, β) = (0.3, 0.6, 0.3)

Figure 3.10 Plot η̂t : (ω, α, β) = (0.3, 0.6, 0.3)
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Figure 3.11 Plot σ̂2
t : (ω, α, β) = (0.3, 0.3, 0.6)

Figure 3.12 Plot η̂t : (ω, α, β) = (0.3, 0.3, 0.6)
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Figure 3.13 Plot of estimated AHSVR from training sample. (ω, α, β) =

(0.3, 0.3, 0.3)
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Chapter 4

Real Data Analysis

In this section, we use AHSVR-GARCH to monitor the volatility of returns

of real-world financial time series, specifically, the daily log-returns of S&P

500 index and Korea Stock Price Composite Index (KOSPI). Throughout the

section, we denote pt to be the daily closing price, and yt the log-returns, namely,

yt = 100× (log pt − log pt−1) (t ≥ 1). (4.1)

This is the most widely used transformation in the method for catching vari-

ability changes in real stock price data, and is known to be structurally similar

to that of the GARCH model.

We use S&P 500 stock prices from January 1, 2012 to June 28, 2022, and

KOSPI stock prices from April 1, 2020 to June 28, 2022, which can be obtained

from the website “Investing.com”. For KOSPI, as the volatility of financial re-

turns before April 2020 was large and appeared to be nonstationary, we there-

fore set the starting date of the training set on April 1, 2020. This process is

critical as nonstationarity of the training time series violates the assumption
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of the CUSUM monitoring scheme, see Lee et al. (2020). Moreover, we use

c = 2.465 in this analysis.

For S&P500 index, we set the training time series from January 1, 2012

to December 31, 2015, and then sequentially monitor the remaining dataset

daily until a change is present. Moreover, Figures 4.1 and 4.2 are visualizations

of S&P500’s raw price and log returns, the yellow shaded area of which is the

training set, and the red line depicts the date on which the change was detected.

The monitoring scheme using AHSVR-GARCH model detected a change in

volatility on March 13, 2020. The outcome of the monitoring may be primarily

due to the stock market’s sharp drop resulting from the WHO’s declaration of

the COVID-19 pandemic on March 12, 2020.

When analyzing KOSPI index, we assigned the dataset from April 1, 2020,

to December 31, 2020 as the training data and performed the aforementioned

procedure of monitoring a volatility change. Then, the nominated date of a

change appeared to be on September 24, 2021. On such date, there was a

widespread opinion that the inflation may occur throughout the global economy,

and the U.S. Consumer Price Index (CPI) for November was scheduled to be

announced. In the end, the CPI rose 6.8% to its highest level in 39 years, and

referring to Figure 4.3, it can be seen that the stock market has since shifted

towards a downwards trend.
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Figure 4.1 Raw Price of S&P500

Figure 4.2 Log Return of S&P500
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Figure 4.3 Raw Price of Kospi

Figure 4.4 Log Return of Kospi
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Chapter 5

Conclusion and Discussion

In this paper, we compared the results of monitoring scheme of Lee et al. (2020)

based on the estimated volatility using AHSVR-GARCH and SVR-GARCH,

respectively. The tuning parameters required for both models are respectively

obtained by performing a grid search, and the monitoring procedure was con-

ducted by using residual-based CUSUM method. Our simulation study revealed

that the GARCH model with AHSVR proved to have a superior results in terms

of the early-detection ability.

However, considering that ML techniques are heavily influenced by tuning

parameters, the search space of the tuning parameters being relatively small

may somewhat have affected the overall quality of the residuals, thus affecting

the whole monitoring procedure in general. In addition, it is unclear whether

the estimation of AHSVR is well applied not only to linear GARCH but also

to non linear GARCH models. As the scope of this study was limited to the

standard GARCH model, we leave these tasks as our future research topic.
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국문초록

본 연구에서는 일반화 자기회귀이분산성(GARCH) 시계열 모형의 조건부 분산

변화에 관하여 모니터링 체계를 사용하여 SVR(support vector regression)과 비

대칭 Huber SVR(AHSVR) 기반 모니터링 방법의 성능을 비교한다. 구체적으로,

우리는 각각 SVR-GARCH와 AHSVR-GARCH로 적합시켜 잔차를 얻고, 그리드

서치를 통해서 튜닝 파라미터의 최적의 조합을 찾는다. 그 다음 시뮬레이션 실

험을 수행하여 AHSVR-GARCH가 SVR-GARCH의 성능이 우수함을 보여주고,

일반적으로 잔차를 계산할 때 로버스트 방법을 사용하는 것이 실제로 탐지 성능을

강화한다는 결론을 내린다. 또한, 실제 적용 가능성을 보여주기 위해 S&P 500과

KOSPI의 로그 수익률에 대한 데이터 분석을 수행한다.

주요어: 모니터링, 서포트 벡터 회귀, 이분산성시계열모형, 로버스트, 변동성, 누

적합관리도, 금융시장

학번: 2020-20706
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