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초록

단백질 구조 데이터는 다차원 토러스 상의 각도들로 구성되어 있다. 이러한

특성을 가진 데이터에 대한 연구는 단백질의 기능적 특성을 파악하는 데에 중요한

열쇠가 되어왔다. 그러나 대부분의 통계적 방법론들은 유클리드 공간을 가정하기

때문에 다차원 각도 데이터에 부적합하다. 본 논문에서는 타원형 k-평균 알고리즘

을 활용하여 다차원 각도 데이터를 분석하는 법을 소개한다. 특히 본 논문에서는

적합예측집합을 구성하고 혼합 모형 추정을 통한 예측 클러스터링 방법론을 소개

한다. 또한 안정성과 계산 효율성을 확보한 새로운 초모수 선택 전략을 제시한다.

마지막으로, 본 논문의 방법론을 구현한 R 패키지 ClusTorus를 활용하여 실제

데이터셋에 적용한 예시를 소개한다.

주요어: 토러스 공간, 적합예측, 귀납적 적합예측, 클러스터링, 타원형 k-평균 알

고리즘, 초모수 선택.

학번: 2020-25859
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제 1 장 Introduction

Multivariate angular or circular data have found applications in some re-

search domains including geology (e.g., paleomagnetic directions) and bioinfor-

matics (e.g., protein dihedral angles). Due to the cyclic nature of angles, usual

vector-based statistical methods are not directly applicable to such data. A p-

variate angle θ = (θ1, · · · , θp)T lies on the p-dimensional torus Tp = [0, 2π)p in

which the angles 0 and 2π are identified as the same point. Likewise, angles θ

and θ ± 2π are the same data point on the torus. Thus, statistical models and

predictions on the torus should reflect this geometric constraint.

A prominent example in which multivariate angular data appear is the anal-

ysis of protein structures. As described in Branden and Tooze (1999), the func-

tional properties of proteins are determined by the ordered sequences of amino

acids and their spatial structures. These structures are determined by several

dihedral angles, and thus, protein structures are commonly described on mul-

tidimensional tori. The p-dimensional torus Tp is the sample space we consider

in this paper. Especially, for the 2-dimensional case, the backbone chain angles

ϕ, ψ of a protein are commonly visualized by the Ramachandran plot, a scatter

plot of dihedral angles in a 2-dimensional flattened torus T2 (Lovell et al., 2003;

Oberholser, 2010). In Figure 1.1, several clustering results are visualized on the

Ramachandran plot for the protein angles of SARS-CoV-2 virus, which caused

the 2020-2021 pandemic (Coronaviridae Study Group of the International Com-

mittee on Taxonomy of Viruses. et al., 2020). Since the structures in protein
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그림 1.1 Several clustering results on Ramachandran plot for SARS-CoV-2 by using

clus.torus (top left) and kmeans.torus (top right), both implemented inClusTorus,

mixtools::mvnormalmixEM (bottom left), in which the number of components 3 is pre-

specified, and mclust::Mclust (bottom right), in which the number of components is

chosen by BIC. Gray points in the top-left panel are “outliers”, automatically assigned

by clus.torus.

angles are related to functions of the protein, it is of interest to analyze the

scatter of the angles through, for example, density estimation and clustering.

Note that the protein structure data are routinely collected and publicly avail-

able at Protein Data Bank (Berman et al., 2003) and importing such data into

R is made easy by the package bio3d (Grant et al., 2006, 2021).

For data on the torus, there are a few previous works for mixture model-

ing and clustering. Mardia et al. (2007) proposed a mixture of bivariate von

Mises distributions for data on T2, with an application to modeling protein
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backbone chain angles. Mardia et al. (2012) proposed a density estimation on

the torus, based on a mixture of approximated von Mises sine distributions, for

higher dimensional cases, but the proposed EM algorithm tends to be unsta-

ble when sample sizes are limited. The R package BAMBI (Chakraborty and

Wong, 2019, 2020) provides routines to fit such von Mises mixture models using

MCMC, but is only applicable to bivariate (and univariate) angles in T2.

Algorithmic clustering for data on the torus has also been proposed. For

example, Gao et al. (2018) used an extrinsic k-means algorithm for clustering

protein angles. The top right panel of Figure 1.1 depicts the result of apply-

ing this algorithm with k = 3. Note that the popular R packages mixtools

(Benaglia et al., 2009) and mclust (Scrucca et al., 2016) provide misleading

clustering results, when applied to data on the torus. As we illustrate in Figure

1.1, these tools do not take into account the cyclic nature of the angular data.

In this paper, we introduce a novel approach for prediction and clustering

multivariate angular data on the torus. The main contribution is extension-and-

combination of the predictive clustering approaches of Jung et al. (2021) and

Shin et al. (2019). For this, the conformal prediction framework of Vovk et al.

(2005) is extended for multivariate angular data. The conformal prediction is

a distribution-free method of constructing prediction sets, and we uses mixture

models based on the multivariate von Mises distribution (Mardia et al., 2012).

Furthermore, by using Gaussian-like approximations of the von Mises distribu-

tions and a graph-theoretic approach, flexible clusters, composed of unions of

ellipsoids on Tp, can be identified. We will introduce an elliptical k-means algo-

rithm for fitting mixture models and a novel hyperparameter selection strategy

which shows dramatically faster and relatively satisfactory clustering results
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ompared to existing methods.

The result of the predictive clustering using our method is visualized in the

top left panel of Figure 1.1. The dataset SARS CoV 2, included inClusTorus, an

R package which is an implementation of our approaches, collects the dihedral

angles ϕ, ψ in the backbone chain B of SARS-CoV-2 spike glycoprotein. The

raw coronavirus protein data are available at Protein Data Back with id 6VXX

(Walls et al., 2020), and can be retrieved by using R package bio3d.

The rest of this article focuses on introducing the four core procedures: (i)

the conformal prediction framework, including our choices of the conformity

scores, (ii) parameter estimation for mixture models using elliptical k-means

algorithm, (iii) cluster assignment and (iv) hyperparameter selection.
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제 2 장 Conformal prediction

2.1 Conformal prediction framework

The conformal prediction framework (Vovk et al., 2005) is one of the main

ingredients of our development. Based on the work of Vovk et al. (2005) and

Lei et al. (2013, 2015), we briefly introduce the basic concepts and properties of

conformal prediction. Suppose that we observe a sample of size n,Xi ∼ F where

Xi ∈ Tp for each i and that the sequence Xn = {X1, · · · , Xn} is exchangeable.

Then, for a new Xn+1 ∼ F , the prediction set Cn = Cn (Xn) is said to be valid

at level 1− α if:

P (Xn+1 ∈ Cn) ≥ 1− α, α ∈ (0, 1) , (2.1)

where P is the corresponding probability measure for Xn+1 = Xn ∪ {Xn+1}.

For a given x ∈ Tp, write Xn(x) = Xn ∪ {x}. Consider the null hypothe-

sis H0 : Xn+1 = x, where Xn+1 ∼ F . To test the hypothesis, the conformal

prediction framework uses conformity scores σi defined as follows:

σi (x) := g (Xi,Xn (x)) , ∀i = 1, · · · , n+ 1,

σ (x) := g (x,Xn (x)) = σn+1 (x) ,

for some real valued function g, which measures the conformity or similarity

of a point to the given set. If X(1), · · · , X(n+1) are ordered to satisfy σ(1) ≤

· · · ≤ σ(n+1) for σ(i) = g
(
X(i),Xn+1

)
, then we may say that X(n+1) is the most

similar point to Xn+1.
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Consider the following quantity:

π (x) =
1

n+ 1

n+1∑
i=1

I (σi (x) ≤ σn+1 (x)) , I(A) =


1, A is true,

0, otherwise,

which can be understood as a p-value for the null hypothesis H0. The conformal

prediction set of level 1− α is constructed as

Cα
n = {x : π (x) > α} . (2.2)

Because the sequence Xn(x) is exchangeable under H0, π (x) is uniformly dis-

tributed on
{

1
n+1 , · · · , 1

}
. With this property, it can be shown that the confor-

mal prediction set is valid for finite samples, i.e., (2.1) holds with Cn replaced

by Cα
n for any F , that is, the prediction set is distribution-free (Lei et al., 2013).

The performance of the conformal prediction highly depends on the choice of

conformity score σ. In some previous works on conformal prediction (Lei et al.,

2013, 2015; Shin et al., 2019; Jung et al., 2021), the quality of prediction sets

using density based conformity scores has been satisfactory.

2.2 Inductive conformal prediction

If the sample size n and the number N of grid points over Tp are large, eval-

uating n+N conformity scores may take a long time. That is, constructing the

conformal prediction set suffers from high computational costs. A workaround

for this inefficiency is inductive conformal prediction, which enjoys significantly

lower computational cost. The inductive conformal prediction framework is

based on spliting the data into two sets. The algorithm for inductive conformal

prediction is given in Algorithm 1.
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Algorithm 1 Inductive Conformal Prediction

1: procedure inductive conformal prediction({X1, · · · , Xn} , α, n1 < n)

2: Split the data randomly into X1 = {X1, · · · , Xn1}, X2 = {Xn1+1, · · · , Xn}.

3: Construct σ with σ (x) = g (x,X1) for some function g.

4: Put σi = g (Xn1+i,X1) and order as σ(1) ≤ · · · ≤ σ(n2), where n2 = n− n1.

5: Construct Ĉα
n =

{
x : σ(x) ≥ σ(in2,α)

}
where in,α = ⌊(n+ 1)α⌋.

6: end procedure

While the sizes n1 and n2 of two splitted data sets can be of any size, they are

typically set as equal sizes. It is well-known that the output Ĉα
n of the algorithm

also satisfies the distribution-free finite-sample validity (Vovk et al., 2005; Lei et

al., 2015). For fast computation, the inductive conformal prediction is primarily

used in constructing prediction sets and clustering, in our implementation of

ClusTorus. As already mentioned, we need to choose the conformity score σ

carefully for better clustering performances.

2.3 Conformity scores from mixtures of multivariate

von Mises

Our suggestions of conformity scores are based on mixture models. Since

the multivariate normal distributions are not defined on Tp, we instead use the

multivariate von Mises distribution (Mardia et al., 2008), whose density on Tp

is

f (y;µ, κ,Λ) = C (κ,Λ) exp

{
−1

2

[
κT (2− 2c (y, µ)) + s (y, µ)T Λs (y, µ)

]}
(2.3)
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where y = (y1, · · · , yp)T ∈ Tp, µ = (µ1, · · · , µp)T ∈ Tp, κ = (κ1, . . . , κp)
T ∈

(0,∞)p, Λ = (λj,l) for 1 ≤ j, l ≤ p, −∞ < λjl <∞,

c (y, µ) = (cos (y1 − µ1) , · · · , cos (yp − µp))
T ,

s (y, µ) = (sin (y1 − µ1) , · · · , sin (yp − µp))
T ,

(Λ)jl = λjl = λlj , j ̸= l, (Λ)jj = λjj = 0,

and for some normalizing constant C (κ,Λ) > 0. We write f (y; θ) = f (y;µ, κ,Λ)

for θ = (µ, κ,Λ).

For any positive integer J and a mixing probability π = (π1, · · · , πJ), con-

sider a J-mixture model:

p (u;π,θ) =

J∑
j=1

πjf (u; θj) (2.4)

where θ = (θ1, · · · , θJ), θj = (µj , κj ,Λj) for j = 1, · · · , J . Let
(
π̂, θ̂

)
be appro-

priate estimators of (π,θ) based on X1. The plug-in density estimate based on

(2.4) is then

p
(
·; π̂, θ̂

)
=

J∑
j=1

π̂jf
(
·; θ̂j

)
, (2.5)

which can be used as a conformity score by setting g (·,X1) = p̂ (·). Assuming

high concentrations, an alternative conformity score can be set as g (·,X1) =

pmax
(
·, π̂, θ̂

)
where

pmax
(
u; π̂, θ̂

)
:= max

j=1,··· ,J

(
π̂jf

(
u; θ̂j

))
≈ p

(
u; π̂, θ̂

)
. (2.6)

On the other hand, Mardia et al. (2012) introduced an approximated density

function f∗ for the p-variate von Mises sine distribution (2.3) for sufficiently high

concentrations and when Σ ≻ 0:

f∗ (y; , µ,Σ) = (2π)−p/2 |Σ|−1/2 exp

{
−1

2

[
κT (2− 2c (y, µ)) + s (y, µ)T Λs (y, µ)

]}

8



where
(
Σ−1

)
jl

= λjl,
(
Σ−1

)
jj

= κj , j ̸= l. By further approximating via θ ≈

sin θ, 1− θ2

2 ≈ cos θ, we write

f∗ (y; , µ,Σ) ≈ (2π)−p/2 |Σ|−1/2 exp

{
−1

2

[
(y ⊖ µ)T Σ−1 (y ⊖ µ)

]}
, (2.7)

where the angular subtraction ⊖ stands for

X ⊖ Y :=
(
arg

(
ei(ϕx1−ϕy1)

)
, · · · , arg

(
ei(ϕxp−ϕyp)

))T
,

for X = (ϕx1, · · · , ϕxp)T ∈ Tp and Y = (ϕy1, · · · , ϕyp)T ∈ Tp as defined in Jung

et al. (2021) for p = 2. By replacing the von Mises density f in (2.6) with the

approximate normal density (2.7), log (pmax (·;π,θ)) is approximated by

log (pmax (u;π,θ)) ≈ 1

2
max

j
e (u;πj , θj) + c,

e (u;πj , θj) = − (u⊖ µj)
T Σ−1

j (u⊖ µj) + 2 log πj − log |Σj | (2.8)

where θj = (µj ,Σj), µj = (µ1j , · · · , µpj)T ∈ Tp, Σj ∈ Rp×p and a constant

c ∈ R. Our last choice of the conformity score is

g (·,X1) = max
j
e
(
·, π̂j , θ̂j

)
. (2.9)

Note that with this choice of conformity score, the conformal prediction set

can be expressed as the union of ellipsoids on the torus. That is, the following

equalities are satisfied (Shin et al., 2019; Jung et al., 2021): Let Ce
n be the level

1− α prediction set using (2.9). Then

Ce
n :=

{
x ∈ Tp : g (x,X1) ≥ g

(
X(in2,α)

,X1

)}
=

J⋃
j=1

Êj

(
σ(in2,α)

)
(2.10)

9



그림 2.1 The Ramachandran plot for SARS-CoV-2, with conformal prediction set

whose conformity score is (2.9) with J = 12 for level α = 0.1111. The plot demonstrates

the union of ellipses as (2.10).

where Êj (t) =
{
x ∈ Tp : (x⊖ µ̂j)

T Σ̂−1
j (x⊖ µ̂j) ≤ 2 log π̂j − log

∣∣∣Σ̂j

∣∣∣− t
}

for

t ∈ R. Note that Êj (t) is automatically vanished if t ≥ 2 log π̂j − log
∣∣∣Σ̂j

∣∣∣.
Figure 2.1 demonstrates that the shape of conformal prediction set is actually

a union of ellipsoids as (2.10), when using (2.9) as the conformity score.

Conformity scores based on mixture model and its variants need appropriate

estimators of the parameters, π and θ. If the parameters are poorly estimated,

the conformal prediction sets will be constructed trivially and thus become use-

less. There can be two methods of estimation: EM algorithms and the elliptical

k-means algorithm, also known as the generalized Lloyd’s algorithm (Sung and

Poggio, 1998; Bishop, 2006; Shin et al., 2019). EM algorithms for the mixture

model (2.5) are described in Jung et al. (2021), for the 2-dimensional case. Since

10



the EM estimates require long computation time and large sample sizes, exten-

sions to higher-dimensional tori do not seem to apt. The EM estimates of the

mixture model parameters can be naturally used for the case of max-mixture

(2.6) and ellipsoids (2.9) as well. On the other hand, the elliptical k-means al-

gorithm converges much faster even for moderately high-dimensional tori. The

elliptical k-means algorithm is used for estimating parameters in the approx-

imated normal density (2.7), and for computation of the conformity score of

ellipsoids (2.9). The elliptical k-means algorithms for data on the torus are

further discussed in the next section.
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제 3 장 Parameter estimation for multivariate
von Mises

3.1 Elliptical k-means algorithm

In this section, we outline the elliptical k-means algorithm for the data on

the torus. The algorithm is used to estimate the parameters of the mixture

model (2.4), approximated as in (2.7). Note that the EM algorithm can be used

for parameter estimation for mixture models in low dimensions. For p > 3, EM

algorithms suffer from high computational costs (Mardia et al., 2012). To cir-

cumvent this problem, we estimate the parameters by modifying the generalized

Lloyd’s algorithm (Shin et al., 2019), also known as the elliptical k-means algo-

rithm (Sung and Poggio, 1998; Bishop, 2006). For vector-valued data, Shin et al.

(2019) showed that the elliptical k-means algorithm estimates the parameters

sufficiently well for the max-mixture density case as (2.6).

Suppose y1, · · · , yn ∈ Tp are an independent and identically distributed

sample. Using the approximated density (2.7), the approximated likelihood, L′,

is

L′ (µ,Σ) = (2π)−np/2 |Σ|−n/2 exp
[
−n
2
tr

(
SΣ−1

)]
(3.1)

where S = 1
n

∑n
i=1 (yi ⊖ µ) (yi ⊖ µ)T . Thus, if µ is known, Σ̂ = S maximizes

L′. Following Mardia et al. (2012), the mean µ is estimated as follows. Let

Ūj =
∑n

i=1 cos (yij) /n and V̄j =
∑n

i=1 sin (yij) /n for j = 1, · · · , p. Then, µ̂ =

12



(µ̂1, · · · , µ̂p)T ,

µ̂j = arctan
V̄j
Ūj
, j = 1, · · · , p (3.2)

which is the maximum likelihood estimator of mean direction of von Mises-

Fisher distribution (Mardia and Jupp, 1999).

With these approximated maximum likelihood estimators, the elliptical k-

means algorithm, described in Algorithm 2, maximizes the likelihood corre-

sponding to the max-mixture model (2.6).

Algorithm 2 Elliptical k-means algorithm for the torus

1: procedure Elliptical k-means({X1, · · · , Xn}, J)

2: Initialize πj , θj = (µj ,Σj), j = 1, · · · , J

3: set

wi,j =


1, if j = argmaxl

[
− (Xi ⊖ µl)

T
Σ−1

l (Xi ⊖ µl)− log |Σl|+ 2 log πl

]
0, otherwise

Ij = {i ∈ {1, · · · , n} |wi,j = 1}

4: Update µj as (3.2) with {Xi}i∈Ij
for j = 1, · · · , J

5: Update Σj =
1∑n

i=1 wi,j

∑n
i=1 wi,j (Xi ⊖ µj) (Xi ⊖ µj)

T
for j = 1, · · · , J

6: Update πj =
1
n

∑n
i=1 wi,j for j = 1, · · · , J

7: Repeat step 3-6 until converge

8: end procedure

Note that the initial values require an initial clustering. For this, one may

use other clustering algorithms such as the extrinsic k-means or the hierarchical

clustering algorithms.
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3.2 Constraints for mixture models

The protein structure data we aim to analyze typically consist of hundreds

of angles (observations). Fitting the mixture with a large number of components

may give inefficient estimators. Thus, one can consider following three options

for reducing the number of model parameters, by constraining the shape of

the ellipsoids, or the covariance matrices. Applying the constraints lead much

faster convergence for estimating parameters (Grim, 2017). We list three types

of constraints for covariance matrices Σj .

• Σj = σ2j Ip for some σ2j > 0 for all j, and the prediction set will be the

union of spheres. Furthermore, if σ21 = · · · = σ2J and πj = 1/J for all j,

then all the spheres have the same radii.

• Σj = diag
(
σ2jk

)
k=1,··· ,p

for σ2jk > 0, and the fitted ellipsoids Êj (j =

1, · · · , J) are the axis-aligned ellipsoids.

• No constraint for Σj , and Êj (j = 1, · · · , J) are any ellipsoids.
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제 4 장 Clustering by conformal prediction

We now describe our clustering strategies using the conformal prediction

sets. Suppose for now that the level α and the hyperparameter J of the pre-

diction set are given. The basic idea of clustering is to take each connected

component of the prediction set as a cluster. For this, we need an algorithm

identifying connected components from any prediction set. Since the prediction

sets are in general of irregular shapes, such an identification is a quite difficult

task. However, as shown in Jung et al. (2021), if the conformal prediction set is

of the form (2.10), clusters are identified by testing the intersection of ellipsoids.

Suppose Ce
n = ∪J

j=1Êj where each Êj is an ellipsoid. Let the (i, j)th entry of a

square matrix A be 0 if Êi ∩ Êj = ∅, 1 otherwise. Then, A is the adjacent ma-

trix of a graph whose nodes and edges represent the ellipsoids and intersections,

respectively. The adjacent matrix A gives a partition I1, · · · , IK ⊆ {1, · · · , J}

satisfying

Êik ∩ Êik′ = ∅, k ̸= k′

where 1 ≤ k, k′ ≤ K, ik ∈ Ik, ik′ ∈ Ik′ . This implies that the union of ellipsoids,

Uk = ∪i∈IkÊi, whose indices are in a connected component Ik for some k, can

be regarded as a cluster. That is, U1, · · · , UK are the disjoint clusters. With

this, the conformal prediction set naturally generates K clusters. Note that

testing the intersection of ellipsoids can be done efficiently (which is a univariate

root finding problem (Gilitschenski and Hanebeck, 2012)), while testing the

intersection of arbitrarily shaped sets is not feasible in general. This is the
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reason why we only use the conformity score of the form (2.9), the prediction

set from which is exactly the union of ellipsoids.

We now describe how the cluster labels are assigned to data points. Each

data point included in the prediction set is automatically assigned to the clus-

ter which contains the point. For the data points which are not included in the

conformal prediction set, we have implemented two different types for cluster

assignment, as defined in Jung et al. (2021). The first is to assign the closest

cluster label. The notion of closest cluster can be defined either by the Maha-

lanobis distance (x ⊖ µ̂j)
T Σ̂−1

j (x ⊖ µ̂j), the approximate log-density (2.8), or

the largest posterior probability P̂ (Y = k|X = x). For example, for x ̸∈ Ce
n,

let Ei be the set with the largest approximate log-density êi(x). If i ∈ Ik, then

x is assigned to the cluster k. These provide three choices of cluster assign-

ment, depending on the definition of “closeness.” The last choice is to regard

the excluded points as outliers. That is, if x ̸∈ Ce
n, then the point x is labeled

as “outlier.” This outlier-disposing clustering may be more appropriate for the

cases where some of data points are truely outliers. Figure 4.1 compares the

two different types of clustering assignment.
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그림 4.1 The Ramachandran plot for SARS-CoV-2, with clustering generated

by conformal prediction set whose conformity score is (2.9) with J = 12 for

α = 0.1111. Left panel shows the cluster assignment based on approximate log-

density, and the right panel shows the outlier disposing clustering assignment.
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제 5 장 Hyperparameter selection

Poor choices of conformity score result in too wide prediction sets. Thus,

we need to choose the hyperparameters elaborately for a better conformal pre-

diction set and for a better clustering performance. The hyperparameters are

the number of mixture components J and the level α. There have been some

efforts to select the optimal hyperparameters by introducing adequate criteria.

Lei et al. (2013) and Jung et al. (2021) each proposed criteria based on the min-

imum volume of the conformal prediction set. However, as we shall see, these

approaches become computationally infeasible for higher dimensions.

We briefly review the criterion used in Jung et al. (2021). Assume for now

that mixture models are used; that is, (J, α) are the hyperparameters of interest.

For a set C ⊆ Tp, let µ(C) be the volume of C. Without loss of generality,

we can assume that µ (Tp) = 1. For a given level α, the optimal choice of

hyperparameter J minimizes µ (Cn(α, J)) of conformal prediction set Cn (α, J).

To choose α and J altogether, Jung et al. (2021) proposed to use the following

criterion: (
α̂, Ĵ

)
= argmin

α,J
α+ µ (Cn (α, J)) . (5.1)

In computing the criterion (5.1), the volume µ (Cn (α, J)) is numerically ap-

proximated. This is feasible for data on T2 = [0, 2π)2 by inspecting the inclusion

of each point of a fine grid. However, for high dimensional cases, for example

T4, evaluating the volume becomes computationally infeasible. In fact, as the

dimension increases, the number of required inspections grows exponentially.
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Furthermore, the function (α, J) → α + µ (Cn(α, J)) is typically not a con-

vex function and has multiple local minima. Thus, the choice of
(
α̂, Ĵ

)
by

(5.1) tends to be unstable, resulting in high variability of the clustering results.

Therefore, evaluating (5.1) is not practical for high-dimensional data.

To this end, we have developed a computationally more efficient procedure

for hyperparameter selection, which also provides more stable clustering results.

This procedure is a two-step procedure, first choosing the model parameter J ,

then choosing the level α. Our approach is in contrast to the approaches in

Lei et al. (2013) and Shin et al. (2019) in which they only choose the model

parameter for a prespecified level α.

The first step of the procedure is to choose J , without making any reference

to the level α. Choosing J can be regarded as selecting an appropriate mixture

model. The model selection is based on either the (prediction) risk, Akaike in-

formation criterion (Akaike, 1974), or Bayesian information criterion (Schwarz,

1978). Since the mixture model-based conformity scores (2.5), (2.6) and (2.9)

are actually the density or the approximated log-density of the mixture model,

we use the conformity scores in place of the likelihood. For example, the sum

of the conformity scores (2.9) over the given data is exactly the fitted log-

likelihood. Specifically, let X1,X2 be the splitted datasets given by Algorithm

1 and X = X1 ∪ X2. Let σ(·) = log g (·;X1) if g is given by (2.5) and (2.6) or

σ(·) = g (·;X1) if g is given by (2.9). Recall that g is the conformity score, and

it depends on the estimated model p̂. Then, the function σ we defined above
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also depends on the model p̂, and the criterion R can be defined as follows:

R (X, p̂) =


−2

∑
x∈X2

σ(x) if the criterion is the risk,

−2
∑

x∈X1
σ(x) + 2k if the criterion is AIC,

−2
∑

x∈X1
σ(x) + k log n1 if the criterion is BIC,

where k is the number of model parameters and n1 is the cardinality of X1.

This procedure is summarized in Algorithm 3.

Algorithm 3 hyperparam.J

1: procedure hyperparam.J(X ⊂ Tp, fitted models p̂j1 , · · · , p̂jn , criterion R)

2: Evaluate Rj = R (X, p̂j) for j = j1, · · · , jn.

3: Evaluate Ĵ = argminj∈{j1,··· ,jn}Rj .

4: Output Ĵ , p̂Ĵ .

5: end procedure

The second step is to choose the level α ∈ (0, 1) for the chosen Ĵ and p̂Ĵ ,

so that the clustering result is stable over perturbations of α. If the number

of clusters does not change by varying the level α ∈ I for some interval I,

we regard that the clustering result is stable on I. If I is sufficiently wide,

it is reasonable to choose an α ∈ I. Thus, our strategy is to find the most

wide interval I = [a, b] ⊆ (0, 1) whose elements construct the same number

of clusters, and to set α̂ as the midpoint of the interval, i.e. α̂ = (a + b)/2.

However, choosing α large, e.g. α > 0.5, results in a too small coverage 1−α of

the prediction set. Thus, we restrict the searching area as [0,M ] for M ∈ (0, 1)

which is close to 0, and find the desirable I in the restricted area [0,M ] rather

than the whole interval [0, 1]. This strategy is described in Algorithm 4.

Note that we could alternatively input an array of levels, if there is a pre-

specified searching area. In our experience, setting M = 0.15 gives generally
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Algorithm 4 hyperparam.alpha

1: procedure hyperparam.alpha(fitted model p̂, n2 := |X2|, M ∈ [0, 1])

2: Evaluate the number of clusters cαj for αj = j/n2, j = 1, · · · , ⌊n2M⌋.

3: Set A = {j : cαj−1 ̸= cαj , j = 2, · · · , ⌊n2M⌋}.

4: For A = {αj1 , · · · , αjN } find i = argmaxk∈{1,··· ,N−1} αjk+1
− αjk .

5: Output α̂ =
(
αji+1 + αji

)
/2

6: end procedure

satisfying results. By setting M = 0.15, at most 15% of the data points are not

included in the prediction set, and at most 15% of the data can be regarded

as the outliers. We may interpret this level selecting procedure as finding the

representative modes for the given mixture model; the chosen level is the cutoff

value for which the most stable modes are not vanished.

In summary, we first choose the number of model components J in view of

model selection, and then find the most stable level α̂ in the sense of invariability

of the number of clusters. In the next section, the two-step procedures for

hyperparameter selection are used in a cluster analysis of data on T4.
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제 6 장 Clustering data on T4

In this section, we give an example of clustering ILE data in T4. ILE is a

dataset included inClusTorus, which represents the structure of the isoleucine.

This dataset is obtained by collecting several different ’.pdb‘ files in the Protein

Data Bank (Berman et al., 2003). We used PISCES (Wang and Dunbrack, 2003)

to select high-quality protein data, by using several benchmarks—resolution is

1.6Å or better, R-factor is 0.22 or better, sequence percentage identity is equal

to or less than 25—as described in Harder et al. (2010) and Mardia et al. (2012).

The ILE data consist of n = 8080 instances of four angles (ϕ, ψ, χ1, χ2) ∈ T4,

and is displayed in Figure 6.1.

For predictive clustering of ILE data, the conformal prediction sets and

scores are built from mixture models, fitted with the elliptical k-means algo-

rithm. The number J of components in the mixture model needs to be tuned,

and we set the candidates for J as {10, . . . , 40}.

Next step is to select the hyperparameter J , and the level α of the prediction

set. We use the two-step procedure, discussed in the previous section, but apply

all three available criteria (”risk“, ”AIC“, and ”BIC“) in choosing Ĵ .

The details of hyperparameter selection can be visualized, and are shown in

Figure 6.2. The first row of the figure shows that the evaluated prediction risk

is the smallest at Ĵ = 29. On the right panel, it can be seen that the longest

streak of the number of clusters over varying level α occurs at 16, which is given

by a range of levels around α̂ = 0.1093. The second and third rows are similarly
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그림 6.1 The pairwise scatter plots of ILE data.
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generated, and they show the results of AIC- and BIC-based hyperparameter

selection. While the results of hyperparameter selection from the three criteria

do not always agree with each other, we observe that using BIC tends to choose

parsimonious models than others, for this and many other data sets we tested.

The number of clusters, given by the conformal prediction set Cn(α̂, Ĵ), can

be seen in the right panels of Figure 6.2. For example, in the top right panel,

with Ĵ = 29 and α̂ = 0.1093, the number of clusters is 16 (the vertical position

of the blue-colored longest streak). For the subsequent analysis, we use the risk

criterion, thus choosing (Ĵ , α̂) = (29, 0.1093).

Finally, using the cluster assignment method described in previous section,

the assigned cluster memberships can be displayed on the pairwise scatter plots

of the four angles. We demonstrate the outlier-disposing membership assign-

ment, as well as the membership assignment based on the maximum of log-

densities. Figure 6.3 displays the clustering result with scatter plots.

Since the conformal prediction set is a union of 4-dimensional toroidal ellip-

soids, projections of such ellipsoids onto coordinate planes are shown in Figure

6.4.
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그림 6.2 Hyperparameter selection for ILE data. Rows correspond to different

choices of criteria ”risk”, ”AIC” and ”BIC”. In each row, the left panel shows

the values of criterion over J , with the optimal Ĵ indicated by a thicker dot; the

right panel shows the number of clusters over varying α, in which the longest

streak is highlighted. The optimal α̂ is the midpoint of the longest streak.
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그림 6.3 The pairwise scatter plots of ILE data with cluster assignments. (Top)

“outlier”. (Bottom) “log.density”.
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그림 6.4 The pairwise scatter plots of ILE data, overlaid with the (projected)

ellipsoids that constitute the conformal prediction set Cn(α̂, Ĵ).
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제 7 장 Summary and discussion

In this paper, we introduced an approach for prediction and clustering on

the torus by conformal prediction framework. We used multivariate von Mises

mixture models as a choice of conformity scores, and suggested elliptical k-

means algorithm for the mixture models which is feasible for high dimensional

cases. We also introduced the two-step hyperparameter selection strategy, which

is computationally efficient compared to extisting methods, and demonstrated

our implementation with data on T4. The clustering method based on graph-

theoretical approach can result in cluster assignment either with or without

an outlier class. The package MoEClust (Murphy and Murphy, 2020, 2021)

can also dispose some points as outliers. However, MoEClust only works on

Euclidean space, not on Tp.

There are some possible future developments. First, EM algorithms for von

Mises mixture models on high dimensional tori (e.g., T4) can be implemented

assuming independence of angles in each component. Using closed-form approx-

imations of maximum likelihood estimators for univariate von Mises-Fisher dis-

tributions (Banerjee et al., 2005; Hornik and Bettina, 2014), fitting mixtures of

product components can be done efficiently (Grim, 2017). Another direction is

obtained by viewing clustering based on (2.10) by varying α as surveying birth

and death of connected components. This can be dealt with a persistence dia-

gram, a concept of topological data analysis. Hence, instead of using Algorithm

4, one may choose desirable α using persistence diagram.
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Abstract

Protein structure data consist of several dihedral angles, lying on a multi-

dimensional torus. Analyzing such data has been and continues to be key in

understanding functional properties of proteins. However, most of the existing

statistical methods assume that data are on Euclidean spaces, and thus they

are improper to deal with angular data. In this paper, we introduce a novel

approach specialized to analyzing multivariate angular data, based on elliptical

k-means algorithm. Our approach enables the construction of conformal predic-

tion sets and predictive clustering based on mixture model estimates. Moreover,

we also introduce a novel hyperparameter selection strategy for predictive clus-

tering, with improved stability and computational efficiency. We demonstrate

our achievements with the package ClusTorus, one of our implementations, in

clustering protein dihedral angles from two real data sets.

Keywords: Toroidal space, conformal prediction, inductive conformal predic-

tion, clustering, elliptical k-means algorithm, hyperparameter selection.
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