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Al 1 # Introduction

Multivariate angular or circular data have found applications in some re-
search domains including geology (e.g., paleomagnetic directions) and bioinfor-
matics (e.g., protein dihedral angles). Due to the cyclic nature of angles, usual
vector-based statistical methods are not directly applicable to such data. A p-
variate angle 6 = (61, -+ ,0,)T lies on the p-dimensional torus T? = [0, 27)? in
which the angles 0 and 27 are identified as the same point. Likewise, angles 6
and 6 4 27 are the same data point on the torus. Thus, statistical models and
predictions on the torus should reflect this geometric constraint.

A prominent example in which multivariate angular data appear is the anal-
ysis of protein structures. As described in Branden and Tooze (1999), the func-
tional properties of proteins are determined by the ordered sequences of amino
acids and their spatial structures. These structures are determined by several
dihedral angles, and thus, protein structures are commonly described on mul-
tidimensional tori. The p-dimensional torus T? is the sample space we consider
in this paper. Especially, for the 2-dimensional case, the backbone chain angles
¢, of a protein are commonly visualized by the Ramachandran plot, a scatter
plot of dihedral angles in a 2-dimensional flattened torus T? (Lovell et al., 2003;
Oberholser, 2010). In Figure 1.1, several clustering results are visualized on the
Ramachandran plot for the protein angles of SARS-CoV-2 virus, which caused
the 2020-2021 pandemic (Coronaviridae Study Group of the International Com-

mittee on Taxonomy of Viruses. et al., 2020). Since the structures in protein
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Z13] 1.1 Several clustering results on Ramachandran plot for SARS-CoV-2 by using
clus.torus (top left) and kmeans. torus (top right), both implemented in ClusTorus,
mixtools: :mvnormalmixEM (bottom left), in which the number of components 3 is pre-
specified, and mclust: :Mclust (bottom right), in which the number of components is
chosen by BIC. Gray points in the top-left panel are “outliers”, automatically assigned

by clus.torus.

angles are related to functions of the protein, it is of interest to analyze the
scatter of the angles through, for example, density estimation and clustering.
Note that the protein structure data are routinely collected and publicly avail-
able at Protein Data Bank (Berman et al., 2003) and importing such data into
R is made easy by the package bio3d (Grant et al., 2006, 2021).

For data on the torus, there are a few previous works for mixture model-
ing and clustering. Mardia et al. (2007) proposed a mixture of bivariate von

Mises distributions for data on T?, with an application to modeling protein
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backbone chain angles. Mardia et al. (2012) proposed a density estimation on
the torus, based on a mixture of approximated von Mises sine distributions, for
higher dimensional cases, but the proposed EM algorithm tends to be unsta-
ble when sample sizes are limited. The R package BAMBI (Chakraborty and
Wong, 2019, 2020) provides routines to fit such von Mises mixture models using
MCMC, but is only applicable to bivariate (and univariate) angles in T2.
Algorithmic clustering for data on the torus has also been proposed. For
example, Gao et al. (2018) used an extrinsic k-means algorithm for clustering
protein angles. The top right panel of Figure 1.1 depicts the result of apply-
ing this algorithm with & = 3. Note that the popular R packages mixtools
(Benaglia et al., 2009) and mclust (Scrucca et al., 2016) provide misleading
clustering results, when applied to data on the torus. As we illustrate in Figure
1.1, these tools do not take into account the cyclic nature of the angular data.
In this paper, we introduce a novel approach for prediction and clustering
multivariate angular data on the torus. The main contribution is extension-and-
combination of the predictive clustering approaches of Jung et al. (2021) and
Shin et al. (2019). For this, the conformal prediction framework of Vovk et al.
(2005) is extended for multivariate angular data. The conformal prediction is
a distribution-free method of constructing prediction sets, and we uses mixture
models based on the multivariate von Mises distribution (Mardia et al., 2012).
Furthermore, by using Gaussian-like approximations of the von Mises distribu-
tions and a graph-theoretic approach, flexible clusters, composed of unions of
ellipsoids on TP, can be identified. We will introduce an elliptical k-means algo-
rithm for fitting mixture models and a novel hyperparameter selection strategy

which shows dramatically faster and relatively satisfactory clustering results



ompared to existing methods.

The result of the predictive clustering using our method is visualized in the
top left panel of Figure 1.1. The dataset SARS_CoV_2, included in ClusTorus, an
R package which is an implementation of our approaches, collects the dihedral
angles ¢, in the backbone chain B of SARS-CoV-2 spike glycoprotein. The
raw coronavirus protein data are available at Protein Data Back with id 6VXX
(Walls et al., 2020), and can be retrieved by using R package bio3d.

The rest of this article focuses on introducing the four core procedures: (i)
the conformal prediction framework, including our choices of the conformity
scores, (ii) parameter estimation for mixture models using elliptical k-means

algorithm, (iii) cluster assignment and (iv) hyperparameter selection.



Al 2 A Conformal prediction

2.1 Conformal prediction framework

The conformal prediction framework (Vovk et al., 2005) is one of the main
ingredients of our development. Based on the work of Vovk et al. (2005) and
Lei et al. (2013, 2015), we briefly introduce the basic concepts and properties of
conformal prediction. Suppose that we observe a sample of size n, X; ~ F where
X; € TP for each i and that the sequence X,, = {X1,---, X, } is exchangeable.
Then, for a new X,,11 ~ F, the prediction set C,, = C), (X,,) is said to be valid

at level 1 — o if:
P(Xpt1€Cy)>1—a, a€(0,1), (2.1)

where P is the corresponding probability measure for X, 11 = X, U {X,+1}.
For a given x € TP, write X, (z) = X,, U {z}. Consider the null hypothe-
sis Hy : Xp41 = z, where X,,11 ~ F. To test the hypothesis, the conformal

prediction framework uses conformity scores o; defined as follows:

oi(x) =9(X;, X, (x), Vi=1,--- ,n+1,

o (z):=g(2,Xn (2)) = ont1(2),
for some real valued function g, which measures the conformity or similarity
of a point to the given set. If X(y), -, X(,41) are ordered to satisfy o(;) <

< S O(pqg) for oy =g (X(i)7Xn+l)a then we may say that X, 1) is the most

similar point to X, 41.



Consider the following quantity:

1 1, A is true,

™ (x) = D I(oi(z) <onga(x)), I(A)=
=1

n4 14
0, otherwise,

which can be understood as a p-value for the null hypothesis Hy. The conformal

prediction set of level 1 — « is constructed as
Co={x:7m(z) > a}. (2.2)

Because the sequence X,,(z) is exchangeable under Hy, 7 (z) is uniformly dis-

tributed on { , 1}. With this property, it can be shown that the confor-

n+1’

mal prediction set is valid for finite samples, i.e., (2.1) holds with C,, replaced
by C% for any F, that is, the prediction set is distribution-free (Lei et al., 2013).
The performance of the conformal prediction highly depends on the choice of
conformity score o. In some previous works on conformal prediction (Lei et al.,

2013, 2015; Shin et al., 2019; Jung et al., 2021), the quality of prediction sets

using density based conformity scores has been satisfactory.

2.2 Inductive conformal prediction

If the sample size n and the number N of grid points over TP are large, eval-
uating n+ N conformity scores may take a long time. That is, constructing the
conformal prediction set suffers from high computational costs. A workaround
for this inefficiency is inductive conformal prediction, which enjoys significantly
lower computational cost. The inductive conformal prediction framework is
based on spliting the data into two sets. The algorithm for inductive conformal

prediction is given in Algorithm 1.



Algorithm 1 Inductive Conformal Prediction
1: procedure INDUCTIVE CONFORMAL PREDICTION({X1, -, X,,} ,a,n1 < n)

2: Split the data randomly into X; = {X1, -+, Xpn, }, Xo ={ X, 41, -, Xn}
3: Construct o with o () = g (x,X;) for some function g.

4: Put o; = g (X, 44, X1) and order as o(1) < -+ < 0(y,), where ng =n —n;.
5: Construct C& = {x co(x) > O—(inz,a)} where i, o = [(n+ 1) a].

6: end procedure

While the sizes ny and ns of two splitted data sets can be of any size, they are
typically set as equal sizes. It is well-known that the output C’ff of the algorithm
also satisfies the distribution-free finite-sample validity (Vovk et al., 2005; Lei et
al., 2015). For fast computation, the inductive conformal prediction is primarily
used in constructing prediction sets and clustering, in our implementation of
ClusTorus. As already mentioned, we need to choose the conformity score o

carefully for better clustering performances.

2.3 Conformity scores from mixtures of multivariate

von Mises

Our suggestions of conformity scores are based on mixture models. Since
the multivariate normal distributions are not defined on TP, we instead use the
multivariate von Mises distribution (Mardia et al., 2008), whose density on TP

is

f(ysp ks, A) = C (K, A) exp {—; [KT (2—2c(y.p)+s(y,m) As (y,u)} }

(2.3)



where y = (y1,- - ,yp)T € TP, = (ug,--- ,,up)T e TP, k = (ﬁl,...,&p)T €
(0,00)P, A= (Aj) for 1 < 4,1 <p, —00 < Ajy < 00,

c(y, i) = (cos (y1 — p1) -+ ,cos (yp — 1)) ",

s (y, 1) = (sin (g1 — ) - ssin (yp — )"
(Nj=Xi=Nj, §#1L (A);; =N =0,
and for some normalizing constant C (k, A) > 0. We write f (y;0) = f (y; u, &, A)
for 0 = (pu, K, A).
For any positive integer J and a mixing probability = = (my,--- ,my), con-

sider a J-mixture model:
J
p(u;m,0) = m;f (u;05) (2.4)
j=1

where 8 = (61,--- ,01), 0; = (uj,K5,A;) for j=1,---,J. Let (ﬁ',@) be appro-
priate estimators of (7, @) based on X;. The plug-in density estimate based on
(2.4) is then

p(57.0) = X107 (405 25)

Jj=1

which can be used as a conformity score by setting g (-,X;) = p (). Assuming

high concentrations, an alternative conformity score can be set as g (-,X;) =

pmer (-, T, 9) where

pmeE (u;fr,é) = max (fr]f (u; é])> ~p (u;fr,é) . (2.6)
-]: [ AR

On the other hand, Mardia et al. (2012) introduced an approximated density

function f* for the p-variate von Mises sine distribution (2.3) for sufficiently high

concentrations and when > = O:

£ (g1, 8) = (2m) P2 872 exp {—; [FcT (2—2c(y.p) +s(y,m)" As (yw)} }



- = Kj, j # l. By further approximating via 6 ~

where (E_l)ﬂ = \jI, (E_l)j]

. 2 .
sinf, 1 — % ~ cos 6, we write

* - - 1 _
P ) ~ o e {3 [wow™ s wow] b e
where the angular subtraction & stands for

XoY:= (arg (ei(%l‘%l)) - arg (ei(%p—%)))T,

for X = (¢p1,-- ,bup)’ €TP and Y = (¢y1,--- ,byp)’ € TP as defined in Jung
et al. (2021) for p = 2. By replacing the von Mises density f in (2.6) with the
approximate normal density (2.7), log (p™** (-; 7, 6)) is approximated by

1
log (p"** (u;m,8)) ~ 5 maxe (u; 75, 6;) +c,
J

e(u;mj,0;) = — (o u)" ;" (ue py) + 2logm; —log |3 (2.8)

where 0; = (1,%5), pj = (g, fip;)T € TP, X; € RP*P and a constant

¢ € R. Our last choice of the conformity score is

g (- X1) = maxe (7,605 (2.9)
J

Note that with this choice of conformity score, the conformal prediction set
can be expressed as the union of ellipsoids on the torus. That is, the following
equalities are satisfied (Shin et al., 2019; Jung et al., 2021): Let C£ be the level

1 — a prediction set using (2.9). Then
CZ = {JI e TP . g (:L’,Xl) >g (X(in%a),xl)}

- LJJ E; (a(inw)) (2.10)
j=1
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1% 2.1 The Ramachandran plot for SARS-CoV-2, with conformal prediction set
whose conformity score is (2.9) with J = 12 for level & = 0.1111. The plot demonstrates

the union of ellipses as (2.10).

A

where Ej(t) = {1: eTP: (xS fiy)" flj’l (z © fij) < 2log7j — log ’ﬁj‘ - t} for

il.

t € R. Note that Ej (t) is automatically vanished if ¢ > 2log@; — log

Figure 2.1 demonstrates that the shape of conformal prediction set is actually
a union of ellipsoids as (2.10), when using (2.9) as the conformity score.
Conformity scores based on mixture model and its variants need appropriate
estimators of the parameters, 7w and 0. If the parameters are poorly estimated,
the conformal prediction sets will be constructed trivially and thus become use-
less. There can be two methods of estimation: EM algorithms and the elliptical
k-means algorithm, also known as the generalized Lloyd’s algorithm (Sung and
Poggio, 1998; Bishop, 2006; Shin et al., 2019). EM algorithms for the mixture

model (2.5) are described in Jung et al. (2021), for the 2-dimensional case. Since



the EM estimates require long computation time and large sample sizes, exten-
sions to higher-dimensional tori do not seem to apt. The EM estimates of the
mixture model parameters can be naturally used for the case of max-mixture
(2.6) and ellipsoids (2.9) as well. On the other hand, the elliptical k-means al-
gorithm converges much faster even for moderately high-dimensional tori. The
elliptical k-means algorithm is used for estimating parameters in the approx-
imated normal density (2.7), and for computation of the conformity score of
ellipsoids (2.9). The elliptical k-means algorithms for data on the torus are

further discussed in the next section.

11 A & ‘_'.]' [



Al 3 A Parameter estimation for multivariate
von Mises

3.1 Elliptical k-means algorithm

In this section, we outline the elliptical k-means algorithm for the data on
the torus. The algorithm is used to estimate the parameters of the mixture
model (2.4), approximated as in (2.7). Note that the EM algorithm can be used
for parameter estimation for mixture models in low dimensions. For p > 3, EM
algorithms suffer from high computational costs (Mardia et al., 2012). To cir-
cumvent this problem, we estimate the parameters by modifying the generalized
Lloyd’s algorithm (Shin et al., 2019), also known as the elliptical k-means algo-
rithm (Sung and Poggio, 1998; Bishop, 2006). For vector-valued data, Shin et al.
(2019) showed that the elliptical k-means algorithm estimates the parameters
sufficiently well for the max-mixture density case as (2.6).

Suppose y1,- - ,yn € TP are an independent and identically distributed
sample. Using the approximated density (2.7), the approximated likelihood, L/,

L (1) = (21) /2|27 exp [—gtr (52—1)] (3.1)

where S = 13" (y;op) (v © p)’. Thus, if 4 is known, 3 = S maximizes

L’. Following Mardia et al. (2012), the mean p is estimated as follows. Let

Uj = Yoy cos (yig) /n and Vy = 0 sin (yi5) /n for j = 1,--- ,p. Then, i =

12 AL



ﬂj:arctan%, j=1,---p (3.2)
J
which is the maximum likelihood estimator of mean direction of von Mises-
Fisher distribution (Mardia and Jupp, 1999).
With these approximated maximum likelihood estimators, the elliptical k-

means algorithm, described in Algorithm 2, maximizes the likelihood corre-

sponding to the max-mixture model (2.6).

Algorithm 2 Elliptical k-means algorithm for the torus

1: procedure ELLIPTICAL K-MEANS({X1, -+, X, },J)
2: Initialize wj,ej:(uj,Ej)7j:1,--~ ,J
3: set

1, if j = argmax; [f (X; 6 ul)T Zl_l (X; 0 w) —log |2 + 210g7rl}
’LUZ‘,]‘ =

0, otherwise

Ij :{i€{1,~-~ 7n}|wi,j:1}

4: Update p; as (3.2) with {Xi}ielj forj=1,---,J
n T .
5: Update 5 = sw o 300 wiy (Xi © 15) (Xi © py)” for j=1,-+J
6: Update 7; = %Z?Zl wyjforj=1,---,J
7 Repeat step 3-6 until converge

8: end procedure

Note that the initial values require an initial clustering. For this, one may
use other clustering algorithms such as the extrinsic k-means or the hierarchical

clustering algorithms.

13 -":er -I_I' 1_-“



3.2 Constraints for mixture models

The protein structure data we aim to analyze typically consist of hundreds
of angles (observations). Fitting the mixture with a large number of components
may give inefficient estimators. Thus, one can consider following three options
for reducing the number of model parameters, by constraining the shape of
the ellipsoids, or the covariance matrices. Applying the constraints lead much
faster convergence for estimating parameters (Grim, 2017). We list three types

of constraints for covariance matrices ¥;.

° X = 0]2-11, for some aj2- > 0 for all j, and the prediction set will be the
union of spheres. Furthermore, if 0? = --. = 03 and m; = 1/J for all j,

then all the spheres have the same radii.

o %, = diag (0?k>k71 - for 0% > 0, and the fitted cllipsoids £; (j =

—,

1,---,J) are the axis-aligned ellipsoids.

e No constraint for ¥;, and Ej (j=1,---,J) are any ellipsoids.

14 Sk



Al 4 & Clustering by conformal prediction

We now describe our clustering strategies using the conformal prediction
sets. Suppose for now that the level a and the hyperparameter J of the pre-
diction set are given. The basic idea of clustering is to take each connected
component of the prediction set as a cluster. For this, we need an algorithm
identifying connected components from any prediction set. Since the prediction
sets are in general of irregular shapes, such an identification is a quite difficult
task. However, as shown in Jung et al. (2021), if the conformal prediction set is
of the form (2.10), clusters are identified by testing the intersection of ellipsoids.
Suppose C¢ = szlEA'j where each Ej is an ellipsoid. Let the (i, j)th entry of a
square matrix A4 be 0 if E; N Ej = @, 1 otherwise. Then, A is the adjacent ma-
trix of a graph whose nodes and edges represent the ellipsoids and intersections,
respectively. The adjacent matrix A gives a partition Iy,--- , Ix C {1,---,J}
satisfying

EikmEik/ =, k’#k/

where 1 < k, k' < K, i, € I}, i) € I;,. This implies that the union of ellipsoids,
Ui = Uier, Ei, whose indices are in a connected component I for some k, can
be regarded as a cluster. That is, Uy, - ,Uk are the disjoint clusters. With
this, the conformal prediction set naturally generates K clusters. Note that
testing the intersection of ellipsoids can be done efficiently (which is a univariate
root finding problem (Gilitschenski and Hanebeck, 2012)), while testing the

intersection of arbitrarily shaped sets is not feasible in general. This is the

15 -’x_i'l'll.-i L



reason why we only use the conformity score of the form (2.9), the prediction
set from which is exactly the union of ellipsoids.

We now describe how the cluster labels are assigned to data points. Each
data point included in the prediction set is automatically assigned to the clus-
ter which contains the point. For the data points which are not included in the
conformal prediction set, we have implemented two different types for cluster
assignment, as defined in Jung et al. (2021). The first is to assign the closest
cluster label. The notion of closest cluster can be defined either by the Maha-
lanobis distance (z © /lj)Tij_l(x © f1;), the approximate log-density (2.8), or
the largest posterior probability p(Y = k|X = z). For example, for = ¢ C¢,
let E; be the set with the largest approximate log-density é;(z). If i € Ij, then
x is assigned to the cluster k. These provide three choices of cluster assign-
ment, depending on the definition of “closeness.” The last choice is to regard
the excluded points as outliers. That is, if z ¢ C¢, then the point x is labeled
as “outlier.” This outlier-disposing clustering may be more appropriate for the
cases where some of data points are truely outliers. Figure 4.1 compares the

two different types of clustering assignment.

16 -":er -I_I' 1_-“



~ Clusters based on log.density ~ Clusters and outliers
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713 4.1 The Ramachandran plot for SARS-CoV-2, with clustering generated

by conformal prediction set whose conformity score is (2.9) with J = 12 for

a = 0.1111. Left panel shows the cluster assignment based on approximate log-

density, and the right panel shows the outlier disposing clustering assignment.
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Al 5 A Hyperparameter selection

Poor choices of conformity score result in too wide prediction sets. Thus,
we need to choose the hyperparameters elaborately for a better conformal pre-
diction set and for a better clustering performance. The hyperparameters are
the number of mixture components J and the level a. There have been some
efforts to select the optimal hyperparameters by introducing adequate criteria.
Lei et al. (2013) and Jung et al. (2021) each proposed criteria based on the min-
imum volume of the conformal prediction set. However, as we shall see, these
approaches become computationally infeasible for higher dimensions.

We briefly review the criterion used in Jung et al. (2021). Assume for now
that mixture models are used; that is, (J, @) are the hyperparameters of interest.
For a set C C TP, let u(C) be the volume of C. Without loss of generality,
we can assume that u(TP) = 1. For a given level «, the optimal choice of
hyperparameter J minimizes p (Cy,(«, J)) of conformal prediction set Cy, (v, J).
To choose a and J altogether, Jung et al. (2021) proposed to use the following
criterion:

(d, j) :argmi}la+u(C’n (o, J)) . (5.1)

In computing the criterion (5.1), the volume p (Cy, (o, J)) is numerically ap-
proximated. This is feasible for data on T? = [0, 27)? by inspecting the inclusion
of each point of a fine grid. However, for high dimensional cases, for example
T4, evaluating the volume becomes computationally infeasible. In fact, as the

dimension increases, the number of required inspections grows exponentially.

]
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Furthermore, the function (a,J) — a + p(Cp(a,J)) is typically not a con-
vex function and has multiple local minima. Thus, the choice of (&,j) by
(5.1) tends to be unstable, resulting in high variability of the clustering results.
Therefore, evaluating (5.1) is not practical for high-dimensional data.

To this end, we have developed a computationally more efficient procedure
for hyperparameter selection, which also provides more stable clustering results.
This procedure is a two-step procedure, first choosing the model parameter J,
then choosing the level a. Our approach is in contrast to the approaches in
Lei et al. (2013) and Shin et al. (2019) in which they only choose the model
parameter for a prespecified level .

The first step of the procedure is to choose J, without making any reference
to the level a. Choosing J can be regarded as selecting an appropriate mixture
model. The model selection is based on either the (prediction) risk, Akaike in-
formation criterion (Akaike, 1974), or Bayesian information criterion (Schwarz,
1978). Since the mixture model-based conformity scores (2.5), (2.6) and (2.9)
are actually the density or the approximated log-density of the mixture model,
we use the conformity scores in place of the likelihood. For example, the sum
of the conformity scores (2.9) over the given data is exactly the fitted log-
likelihood. Specifically, let X1, Xs be the splitted datasets given by Algorithm
1 and X = X; UXy. Let 0(-) = logg (-;X;) if g is given by (2.5) and (2.6) or
o(-) =g (;X) if g is given by (2.9). Recall that g is the conformity score, and

it depends on the estimated model p. Then, the function o we defined above

19 -":er -I_I' 1_-“



also depends on the model p, and the criterion R can be defined as follows:
=23 ex, 0() if the criterion is the risk,

R(X,p) =14 -2 > oeex, () + 2k if the criterion is AIC,

—2) .ex, 0(7) + klogny if the criterion is BIC,
\
where k is the number of model parameters and n; is the cardinality of Xj.

This procedure is summarized in Algorithm 3.

Algorithm 3 hyperparam.J

1: procedure HYPERPARAM.J(X C TP, fitted models p;,,--- ,Pj, , criterion R)
2: Evaluate R; = R (X, p;) for j = j1, -+ , jn-

3: Evaluate J = arg minje(j, ... .} Fj-

4: Output j,;ﬁj.

5. end procedure

The second step is to choose the level o € (0,1) for the chosen J and Djs
so that the clustering result is stable over perturbations of «. If the number
of clusters does not change by varying the level o € I for some interval I,
we regard that the clustering result is stable on I. If I is sufficiently wide,
it is reasonable to choose an a € I. Thus, our strategy is to find the most
wide interval I = [a,b] C (0,1) whose elements construct the same number
of clusters, and to set & as the midpoint of the interval, i.e. & = (a + b)/2.
However, choosing « large, e.g. @ > 0.5, results in a too small coverage 1 — « of
the prediction set. Thus, we restrict the searching area as [0, M] for M € (0,1)
which is close to 0, and find the desirable I in the restricted area [0, M] rather
than the whole interval [0, 1]. This strategy is described in Algorithm 4.

Note that we could alternatively input an array of levels, if there is a pre-

specified searching area. In our experience, setting M = 0.15 gives generally

-1
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Algorithm 4 hyperparam.alpha
1: procedure HYPERPARAM.ALPHA (fitted model p, ny := [Xg|, M € [0, 1])

2: Evaluate the number of clusters ¢, for o = j/ng, j=1,---, [n2M].
3: Set A={j:ca;, #Cajs J=2,-+,[n2M]}.
4: For A = {aj,, -+ ,ajy} find i = argmaxye(i .. No1} Qjppy — Q-

5: Output & = (ay,,, + ;) /2

6: end procedure

satisfying results. By setting M = 0.15, at most 15% of the data points are not
included in the prediction set, and at most 15% of the data can be regarded
as the outliers. We may interpret this level selecting procedure as finding the
representative modes for the given mixture model; the chosen level is the cutoff
value for which the most stable modes are not vanished.

In summary, we first choose the number of model components J in view of
model selection, and then find the most stable level & in the sense of invariability
of the number of clusters. In the next section, the two-step procedures for

hyperparameter selection are used in a cluster analysis of data on T4.

]
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A 6 & Clustering data on T*

In this section, we give an example of clustering ILE data in T*. ILE is a
dataset included in ClusTorus, which represents the structure of the isoleucine.
This dataset is obtained by collecting several different ’ . pdb¢ files in the Protein
Data Bank (Berman et al., 2003). We used PISCES (Wang and Dunbrack, 2003)
to select high-quality protein data, by using several benchmarks—resolution is
1.6A or better, R-factor is 0.22 or better, sequence percentage identity is equal
to or less than 25—as described in Harder et al. (2010) and Mardia et al. (2012).
The ILE data consist of n = 8080 instances of four angles (¢,, x1, x2) € T4,
and is displayed in Figure 6.1.

For predictive clustering of ILE data, the conformal prediction sets and
scores are built from mixture models, fitted with the elliptical k-means algo-
rithm. The number J of components in the mixture model needs to be tuned,
and we set the candidates for J as {10,...,40}.

Next step is to select the hyperparameter J, and the level « of the prediction
set. We use the two-step procedure, discussed in the previous section, but apply
all three available criteria ("risk“ ” AIC¥, and "BIC*) in choosing .J.

The details of hyperparameter selection can be visualized, and are shown in
Figure 6.2. The first row of the figure shows that the evaluated prediction risk
is the smallest at J = 29. On the right panel, it can be seen that the longest
streak of the number of clusters over varying level « occurs at 16, which is given

by a range of levels around & = 0.1093. The second and third rows are similarly
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generated, and they show the results of AIC- and BIC-based hyperparameter
selection. While the results of hyperparameter selection from the three criteria
do not always agree with each other, we observe that using BIC tends to choose
parsimonious models than others, for this and many other data sets we tested.

The number of clusters, given by the conformal prediction set Cy, (&, J ), can
be seen in the right panels of Figure 6.2. For example, in the top right panel,
with J = 29 and & = 0.1093, the number of clusters is 16 (the vertical position
of the blue-colored longest streak). For the subsequent analysis, we use the risk
criterion, thus choosing (J, &) = (29, 0.1093).

Finally, using the cluster assignment method described in previous section,
the assigned cluster memberships can be displayed on the pairwise scatter plots
of the four angles. We demonstrate the outlier-disposing membership assign-
ment, as well as the membership assignment based on the maximum of log-
densities. Figure 6.3 displays the clustering result with scatter plots.

Since the conformal prediction set is a union of 4-dimensional toroidal ellip-
soids, projections of such ellipsoids onto coordinate planes are shown in Figure

6.4.
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criterion: risk, chosen J=29 number of clusters, chosen alpha=0.1093
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Z1¥ 6.2 Hyperparameter selection for ILE data. Rows correspond to different
choices of criteria ”risk”, ” AIC” and ”BIC”. In each row, the left panel shows
the values of criterion over J, with the optimal J indicated by a thicker dot; the
right panel shows the number of clusters over varying «, in which the longest

streak is highlighted. The optimal & is the midpoint of the longest streak.
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Al 7 A Summary and discussion

In this paper, we introduced an approach for prediction and clustering on
the torus by conformal prediction framework. We used multivariate von Mises
mixture models as a choice of conformity scores, and suggested elliptical k-
means algorithm for the mixture models which is feasible for high dimensional
cases. We also introduced the two-step hyperparameter selection strategy, which
is computationally efficient compared to extisting methods, and demonstrated
our implementation with data on T*. The clustering method based on graph-
theoretical approach can result in cluster assignment either with or without
an outlier class. The package MoEClust (Murphy and Murphy, 2020, 2021)
can also dispose some points as outliers. However, MoEClust only works on
Euclidean space, not on TP.

There are some possible future developments. First, EM algorithms for von
Mises mixture models on high dimensional tori (e.g., T*) can be implemented
assuming independence of angles in each component. Using closed-form approx-
imations of maximum likelihood estimators for univariate von Mises-Fisher dis-
tributions (Banerjee et al., 2005; Hornik and Bettina, 2014), fitting mixtures of
product components can be done efficiently (Grim, 2017). Another direction is
obtained by viewing clustering based on (2.10) by varying « as surveying birth
and death of connected components. This can be dealt with a persistence dia-
gram, a concept of topological data analysis. Hence, instead of using Algorithm

4, one may choose desirable « using persistence diagram.
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Abstract

Protein structure data consist of several dihedral angles, lying on a multi-
dimensional torus. Analyzing such data has been and continues to be key in
understanding functional properties of proteins. However, most of the existing
statistical methods assume that data are on Euclidean spaces, and thus they
are improper to deal with angular data. In this paper, we introduce a novel
approach specialized to analyzing multivariate angular data, based on elliptical
k-means algorithm. Our approach enables the construction of conformal predic-
tion sets and predictive clustering based on mixture model estimates. Moreover,
we also introduce a novel hyperparameter selection strategy for predictive clus-
tering, with improved stability and computational efficiency. We demonstrate
our achievements with the package ClusTorus, one of our implementations, in

clustering protein dihedral angles from two real data sets.

Keywords: Toroidal space, conformal prediction, inductive conformal predic-
tion, clustering, elliptical k-means algorithm, hyperparameter selection.
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