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ABSTRACT

H-likelihood Approach for Incomplete Data

Jeongseop Han

The Department of Statistics

The Graduate School

Seoul National University

The h-likelihood has been proposed as an extension of Fisher’s

likelihood to allow the maximum likelihood estimation for statis-

tical models including unobserved latent variables of recent in-

terest. However, the current h-likelihood approach does not allow

maximum likelihood estimators (MLEs) of variance components

as Henderson’s joint likelihood (1959) does not in linear mixed

models. In this thesis, we discuss how to form the canonical scale

for the h-likelihood in order to facilitate joint maximization for

MLEs of whole parameters.

To show the usefulness of the h-likelihood for analyzing incom-

plete data, various types of unobserved latent variables are exam-

ined; missing data, random effect and censored data. As we shall

see, a statistical model for unobserved latent variables may not be
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identifiable based on the observed data. Thus, we also present how

to make robust inferences against various assumptions on statisti-

cal models.

Keywords: Canonical scale, Censored data, Imputation, Laplace

approximation, Maximum likelihood estimation, Missing data, Ran-

dom effect, Robust inference.

Student Number: 2014− 21213
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Chapter 1

Introduction

In this thesis, the use of the h-likelihood for incomplete data is dis-

cussed. First, maximum likelihood (ML) estimation and maximum

likelihood imputation based on the h-likelihood are examined. In

missing data problem, model assumptions on the missing mecha-

nism are not identifiable from the observed data. Thus, robust in-

ference against model misspecification and outliers are presented

by using the h-likelihood. However, finding canonical scale may

not be available in complex models such as crossed and correlated

random effect models. To obtain MLEs for fixed parameters in

general statistical models, the enhanced Laplace approximation

(ELA) method is proposed. After obtaining the MLEs of fixed pa-

rameters, the ML imputation can also be obtained by using the

weak canonical scale. Finally, the use of the generalized extreme

value distribution in analyzing extremely high censored data is

investigated.
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1.1 Maximum Likelihood Imputation

Missing data are prevalent in statistical problems, but ignoring

them can lead to erroneous results (Little and Rubin, 2019; Kim

and Shao, 2021). Imputation is a popular technique for dealing

with missing data. However, if imputed data are treated as ob-

served, the use of the standard statistical procedure could result

in erroneous inference, giving a biased estimator with an underes-

timated standard error estimator. Multiple imputation has been

proposed by Rubin (1987) to address the uncertainty associated

with imputation. However, it requires the self-consistency condi-

tions (Wang and Robins, 1998; Meng, 1994; Yang and Kim, 2016),

which may not necessarily hold. An alternative method by Kim

(2011) is fractional imputation.

ML estimation of Fisher (1922) is widely accepted in estimat-

ing fixed parameters. Missing data can be viewed as unobserved

random parameters (Lee et al., 2017) so that imputation can be

viewed as a prediction of random parameters, namely missing

data. It necessitates an extension of the Fisher likelihood to sta-

tistical models that include unobserved random variables (Berger

and Wolpert, 1984; Butler, 1986). Lee and Nelder (1996) intended

an extension of ML estimation to models with unobserved random

parameters via h-likelihood, defined on a particular scale of ran-

dom parameters in the linear predictor. However, they confronted

severe objections due to difficulties as Bayarri et al. (1988) showed

that ML estimation of extended likelihood often provides nonsen-

sical estimation for both fixed and random parameters. Further-

more, Firth (2006) noted that the linear predictor to form the
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h-likelihood might not be necessarily well defined. All the coun-

terexamples against the h-likelihood, for examples in Little and

Rubin (2002), are associated with a wrong choice of scale to form

h-likelihood. Little and Rubin (2019) described the current status

of h-likelihood “Unlike maximization of the marginal likelihood

of Fisher (1922), maximization of an extended likelihood does not

generally give consistent estimates of the parameters (Breslow and

Lin, 1995) ... Lee and Nelder (2001) and Lee et al. (2006) propose

maximizing a “modification” ... which is the correct ML approach.

For more details, see Lee and Nelder (2009) and the discussion,

particularly Meng (2009).” The success of h-likelihood approach

looks coincidental, so that Meng (2009) tried a rigorous theoreti-

cal justification for the use of h-likelihood by showing its Bartlett

identities. But he ended up highlighting the difficulty caused by the

difference between fixed and random parameter estimations. Thus,

the benefit of using h-likelihood has not been well accepted yet.

This chapter establishes the original aim of the h-likelihood whose

maximization without any modification provides correct ML esti-

mation and ML imputation by giving rigorous justifications.

Lee et al. (2006) defined h-likelihood precisely, but they have

not fully exploited its usefulness. For example, an immediate draw-

back of the current h-likelihood is that it does not allow MLEs of

variance components as Henderson’s Henderson (1959) joint like-

lihood does not. So Lee et al. (2017) use a modification to obtain

MLEs of variance components, etc. We need to reformulate the

h-likelihood in a thoroughly consistent way to avoid modification.

Jacobian terms do not play any role in Fisher’s (1922) ML es-
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timation of fixed parameters. However, in models with random

parameters, as we shall show, Jacobian terms play a key role in

ML estimation. This property has not been well known yet in

literature. We clarify the role of the Jacobian term in defining h-

likelihood. Currently, the h-likelihood has been defined mainly for

random effect models, where linear predictors are defined (Lee and

Nelder, 1996). To illustrate our proposal for a much wider class

of models, we consider the imputation problem, which does not

require a linear predictor, as noted by Firth (2006), and encoun-

ters difficulties in ML estimation of random parameters, as noted

by Meng (2009). We clarify that the definitions of canonical scale

and canonical function are keys to leading valid ML estimation on

both fixed and random parameters without any modification in

h-likelihood.

In Section 2.1, we describe the basic setup for missing data

problem. In Section 2.2, we define the h-likelihood by using canon-

ical scale and canonical function in terms of Jacobian term. More-

over, properties of MLEs for fixed and random parameters by us-

ing the h-likelihood are examined. In Section 2.3, we propose the

weak canonical scale based on the Laplace approximation. The

weak canonical scale can give proper ML imputation when the

canonical scale is unknown. In Section 2.4, we propose the ML

imputation by using the MLE for random parameters. Illustrative

examples in Section 2.5 show the usefulness of the h-likelihood in

the missing data problem.
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1.2 Robust Imputation under Missing at Ran-

dom

Missing data is a fundamental problem in statistics. Ignoring miss-

ing data may lead to biased estimates of parameters, loss of in-

formation, decreased statistical power, increased standard errors,

and weakened generalizability of findings (Dong and Peng, 2013).

However, missing mechanism may not be fully identified based on

the observation (Molenberghs et al., 2008). Therefore, several as-

sumptions are proposed for the generating process of missing data.

The following three assumptions are widely accepted in analyzing

missing data: missing-completely-at-random (MCAR), missing-at-

random (MAR), and missing-not-at-random (MNAR). Under the

MCAR assumption, missing mechanism does not depend on any

observation. Therefore, statistical inference is available based on

observation only but the MCAR assumption is often unrealistic.

On the other hand, even though parameter estimation can be made

easily by h-likelihood approach (Lee et al., 2017), the MNAR as-

sumption is not necessarily useful as the model assumption since

the missing mechanism is not identifiable by observation (Molen-

berghs et al., 2008; van Buuren, 2018). Among assumptions on the

missing mechanism, the MAR assumption is widely used.

In the presence of missing data, the imputation method and

the weighting method are frequently employed to estimate the

parameters (Kim and Shao, 2021). Imputation is widely used to

handle item nonresponse because it ensures that analysis results

from different users are consistent. By appropriately incorporating

observed auxiliary variables into the imputation model, imputa-

5



tion can reduce nonresponse bias and achieve efficient estimation.

Popular methods of imputation include multiple imputation (Ru-

bin, 1978) and fractional imputation (Kim, 2009).

Recently, Han et al. (2022a) proposed the ML imputation based

on the h-likelihood. By using the h-likelihood, simple joint maxi-

mization directly gives estimation of fixed parameters and impu-

tation of missing data. However, the correct specification of model

may be difficult in the presence of missing data while any im-

putation method uses an imputation model, either implicitly or

explicitly. How to make the imputation method less dependent on

the imputation model is an important practical problem.

There are two main approaches in implementing a robust im-

putation method. One approach is to use a flexible model, non-

parametric or semiparametric, to develop a robust imputation

method. Nonparametric kernel regression imputation of Cheng

(1994), semiparametric Gaussian mixture model imputation of

Sang (2020), and the random forest imputation of Dagdoug et

al. (2021) are examples of the robust imputation method using

flexible models. The other approach is to use the propensity score

(PS) model explicitly into the parameter estimation step for impu-

tation to get doubly robust estimation. Doubly robust estimation

has been investigated widely in the literature. For examples, see

Bang and Robins (2005), Cao et al. (2009), Kim and Haziza (2014),

Han and Wang (2013), and Chen and Haziza (2017).

In this chapter, we consider the second approach further and

consider an extension of doubly robust estimation by establishing

sufficient conditions for the asymptotic equivalence between the

6



imputation method and the weighting method based on the PS

model. The imputation method gives a consistent estimator if the

outcome regression (OR) model is correctly specified, whereas the

weighting method gives a consistent estimator if the PS model

is correctly specified. Under this equivalence, we can obtain dou-

ble robustness as both the imputed estimator and the weighted

estimator are consistent under the OR model and the PS model,

respectively. Consequently, the internal bias calibration (IBC) con-

dition proposed by Firth and Bennett (1998) can be applied to the

imputation problem in the context of missing data. Based on the

IBC condition, the estimating equation for regression coefficients

takes the form of weighted least squares. We will demonstrate that

the IBC condition can be achieved by introducing statistical mod-

els on mean and dispersion in view of the double hierarchical gener-

alized linear model (DHGLM) proposed by Lee and Nelder (2006)

in modeling approach. Given DHGLM, the h-likelihood permits

MLEs of fixed parameters as well as ML imputation of random

parameters, namely random effects and missing data.

Compared to the likelihood-based approach, Wang and Kim

(2021) recently proposed obtaining the PS weight using the pro-

jection method relative to the Kullback-Leibler (KL) divergence in

the information projection theory. The KL-divergence-based pro-

jection method is well-defined because it permits the moment-type

constraint. To generalize the KL-divergence while maintaining the

moment-type constraint, Eguchi (2021) proposed the γ-power di-

vergence. The information projection approach based on the γ-

power divergence gives a more general form of the optimal solu-

7



tion which contains additional scale parameter γ. Furthermore,

the statistical model derived from γ-power divergence produces

robust inferences against outliers. This robustness is also available

within the framework of the DHGLM, as we shall see.

The structure of the chapter is as follows: In Section 3.1, ideas

of the double robustness and the IBC condition with the basic

setup are introduced. In Section 3.2, we examine how to obtain

the imputation estimator based on the IBC condition. In Section

3.3, we present the use of the γ-power divergence to enlarge the

class of propensity score models. In Section 3.4, we examine the

IBC condition in modeling approach, especially DHGLM. Robust

inference against outliers is also discussed. Simulation study in

Section 3.5 shows the usefulness of the proposed method. All re-

quired evidences are presented in the Appendix.

1.3 Enhanced Laplace Approximation

Lee and Nelder (1996) proposed the use of the h-likelihood for

making inferences about statistical models with latent variables

which are widely used in various fields. Consider a hierarchical

generalized linear model (HGLM) with E(y|z) = µ, var(y|z) =

ϕV (µ), and the linear predictor

η = g(µ) = Xβ + L(Σ)z,

where V (µ) is the variance function, β indicates fixed effects, z in-

dicates latent variables, namely random effects, and τ = (ϕ,Σ) are

dispersion parameters. The h-likelihood of the HGLM is written

8



as

H(θ, z) = fθ(y, z) = fθ(y | z)f(z).

The h-likelihood consists of three objects: the observed data y,

fixed unknown parameters θ = (β, τ), and unobserved latent vari-

ables z. The marginal likelihood can be used to estimate the fixed

parameters θ by integrating out the latent variables from the h-

likelihood:

Lm(θ) = fθ(y) =

∫
H(θ, z)dz. (1.1)

To make inferences about the random effects z, Lee et al. (2017)

proposed the use of the predictive likelihood:

Lp(z|y; θ) = fθ(z | y) = fθ(y, z)/fθ(y) = H(θ, z)/Lm(θ),

which is analogous to the use of a Bayesian posterior under a flat

prior on θ.

In random effects models, the h-likelihood can be explicitly

written, whereas the marginal and predictive likelihoods often in-

volve intractable integration. The Gauss-Hermite quadrature can

be used for the integral shown in (1.1). However, this formulation

becomes numerically difficult as the dimension of integration in-

creases (Hedeker and Gibbons, 2006). Instead, in random effects

models, Lee and Nelder (2001) proposed the use of the Laplace

approximation (LA) (Tierney and Kadane, 1986), which is widely

used and has been implemented by various packages (Rue et al.,

2009; Kristensen et al., 2016; Lee and Noh, 2018). Recently, Perry

(2017) proposed a fast moment-based method for random effects

models, which does not allow correlated random effects and is re-

stricted to nested random effects models. Thus, this method can-

not be used for crossed random effects models. In this chapter, for

9



the maximum likelihood (ML) estimation, we exploit an alterna-

tive expression of the marginal likelihood:

Lm(θ) = H(θ, z)/Lp(z | y; θ). (1.2)

For the log-likelihoods we use h(θ, z) = logH(θ, z), ℓm(θ) = logLm(θ),

and ℓp(z|y; θ) = logLp(z|y; θ).

Lee and Nelder (2001) extended the restricted likelihood (Pat-

terson and Thompson, 1971) for normal linear mixed models to

HGLMs, which is important for estimating the dispersion parame-

ter τ . However, there is no theoretical justification that the current

approximate maximum likelihood estimator (MLE) and restricted

maximum likelihood estimator (REMLE), which are based on the

LA, are asymptotically equivalent to the true MLE and REMLE.

Furthermore, how their consistent variance estimators could be

obtained remains ambiguous. In this chapter, we propose the use

of an integrated likelihood as a new restricted likelihood and intro-

duce the enhanced LA (ELA), which provides the MLE, REMLE,

and their consistent variance estimators.

1.4 Accelerated Failure Time Random Ef-

fect Model with GEV Distribution

In survival analysis, accelerated failure time (AFT) model has been

widely used as an alternative to Cox’s proportional hazard (PH)

model. The main advantage of the AFT model is its direct inter-

pretation between survival time and covariates (Ha et al., 2002,

2017). To enjoy this property, robustness against the misspecifica-

tion of the distributional assumption should be guaranteed. The

10



robustness against the misspecification of the distributional as-

sumption in the AFT model was presented in Ha et al. (Ha et al.,

2002). However, investigating the robustness about more general

cases including highly censored survival data has not been studied

yet. The generalized extreme value (GEV) distribution with three

parameters (location, scale and shape) allows a flexible modeling

for skewed, heavy-tailed, and heavily censored data (Roy and Dey,

2014; Bladt and Albrecher, 2021). Clustered survival data allow

correlation among individual survival times within the same clus-

ter and they are often encountered in various clustered clinical

studies such as a multi-center clinical trial, a dental study of teeth

or implants, a pair or family study, and study of recurrent or mul-

tiple events (Hougaard, 2000; Ha et al., 2017). Random effects are

useful to model such dependence. In this chapter, we are interested

in the analysis of heavily censored clustered survival data. Thus,

we propose an AFT random effect model with GEV distribution

to allow a robust inference against heavily censored clustered data.

The model inference is based on the h-likelihood (Lee and Nelder,

1996). Unlike the classical likelihood which only contains fixed

parameters, the h-likelihood is constructed to have both fixed pa-

rameters and random parameters (Lee and Nelder, 1996). This

chapter is organized as follows. In Section 5.1, we describe the

AFT random effect model with GEV distribution. In Section 5.2,

we derive the estimation procedure based on h-likelihood. The pro-

posed method is demonstrated using simulation study in Section

5.3 and is illustrated with a practical example data set in Section

5.4. Technical details are given in Appendix.
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Chapter 2

Maximum Likelihood

Imputation
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Chapter Summary

Maximum likelihood (ML) estimation is widely used in statistics.

The h-likelihood has been proposed as an extension of Fisher’s like-

lihood to statistical models including unobserved latent variables

of recent interest. Its advantage is that the joint maximization

gives ML estimators (MLEs) of both fixed and random parame-

ters with their standard error estimates. However, the current h-

likelihood approach does not allow MLEs of variance components

as Henderson’s joint likelihood does not in linear mixed models.

In this chapter, we show how to form the h-likelihood in order to

facilitate joint maximization for MLEs of whole parameters. We

also show the role of the Jacobian term which allows MLEs in

the presence of unobserved latent variables. To obtain MLEs for

fixed parameters, intractable integration is not necessary. As an

illustration, we show one-shot ML imputation for missing data by

treating them as realized but unobserved random parameters. We

show that the h-likelihood bypasses the expectation step in the

expectation-maximization (EM) algorithm and allows single ML

imputation instead of multiple imputations. We also discuss the

difference in predictions in random effects and missing data.

13



2.1 Basic Setup

Assume that we have a study variable Y with dominating mea-

sure µ and a covariate vector X. The study variable Y is subject

to missingness and the covariates are always observed. Assume

further that there are n independent and identically distributed

realizations of (X, Y, δ), denoted by {(xi, yi, δi) : i = 1, . . . , n},

where δi is the missingness indicator defined by δi = 1 if yi is

observed and δi = 0 otherwise. We are interested in estimating

η = E(Y ) from the observed data.

Under existence of missing data, an imputation estimator of η

can be written as

η̂I =
1

n

n∑
i=1

{δiyi + (1− δi)ŷi}

where ŷi is the imputed value of yi. To predict realized values yi of

unobserved missing data, we consider a frequentist approach using

the ML imputation. The current procedure for ML imputation can

be described as follows:

Step 1: Estimate ψ by maximizing the observed likelihood

Lm(ψ) = fψ (yobs, δ | x)

=

∫
fψ(yobs, ymis, δ | x)dymis, (2.1)

where fψ(yobs, ymis, δ|x) is the joint density function of (yobs, ymis, δ)

given x with fixed unknown parameter ψ and (yobs, ymis) is

the observed and missing part of the complete data ycom =

(y1, . . . , yn), respectively.
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Step 2: For each i with δi = 0, obtain a predictor of yi

ŷi =

∫
yf(y | xi, δi = 0; ψ̂)dµ(y)

= Eψ̂ (Yi | xi, δi = 0) , (2.2)

where ψ̂ is the MLE of ψ obtained from Step 1.

We use subscriptm in the observed likelihood in (2.1) to emphasize

that the likelihood is developed from the marginal density of the

observed data. Robins and Wang (2000) and Kim and Shao (2021)

present some asymptotic properties of the imputation estimator

under ML imputation. The above two-step imputation procedure,

however, is computationally involved as the ML estimation of the

fixed parameter ψ is often based on the iterative procedure such

as EM algorithm (Dempster et al., 1977). However, such a condi-

tional mean imputation in (2.2) does not necessarily give the best

prediction in terms of maximizing the predictive distribution. For

example, if y is categorical, the conditional mean is not necessarily

categorical.

In this chapter, instead of using the conditional mean imputa-

tion in (2.2), we propose using conditional mode of the h-likelihood

given by

ŷmis = argmax
ymis

H(ψ̂, ymis)

in the next section. In many practical situations, the conditional

mode imputation is attractive as it respects the “maximum like-

lihood” principle by treating the unobserved y values as realized

random parameters. By treating ymis as the random parameters

and applying the usual ML procedure, we can obtain imputed val-

ues, namely ML imputation, that adhere to the frequentist princi-
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ple to the greatest extent possible. An immediate practical advan-

tage is that one-shot imputation directly allows the ML estimation

of fixed parameters. For one-shot imputation to be meaningful, as

we shall show, it estimates the canonical function to predict fu-

ture (or missing) variable, which resolves summarizability problem

raised by Meng (2009).

Naively treating the missing observations as unknown param-

eters will be subject to biased estimation, which is well known

as pointed out by Neyman and Scott (1948). Thus, we employ a

technique known as h-likelihood (Lee and Nelder, 1996), to cir-

cumvent this issue and obtain valid inferences. Yun et al. (2007)

studied the h-likelihood approach to estimate fixed parameters in

missing data problems. We introduce the ML imputation of miss-

ing data and conduct a more systematic investigation, elucidating

the mysteries of h-likelihood in general.

2.2 H-likelihood

In this chapter, we rearrange the indices as δi = 1 for i = 1, . . . , nobs

and = 0 for i = nobs + 1, . . . , n where nobs =
∑n

i=1 δi, i.e., the

first nobs responses are observed and remaining nmis = n − nobs
responses are not observed. Missing data can be viewed as pre-

diction of future data which are not observed yet. By treating

ymis as random parameters, the complete-data log-likelihood is an

16



extended log-likelihood

ℓe(ψ, ymis) = logLe(ψ, ymis)

= log fψ(yobs, ymis, δ | x)

=

nobs∑
i=1

log fψ(yi, δi = 1 | xi)

+
n∑

i=nobs+1

log fψ(ymis,i, δi = 0 | xi).

Extended likelihood principle (Bjørnstad, 1996) states that Le(ψ, ymis)

carries all the information in the data about unknown parameters

ψ and ymis.

Lee and Nelder (1996) proposed the h-likelihood for ML esti-

mation on both fixed and random parameters. Due to a Jacobian

term, unlike a transformation of fixed parameter ψ, a nonlinear

transformation of random parameter v = g(ymis) changes the ex-

tended likelihood

Le (ψ, v) = Le (ψ, ymis)

∣∣∣∣∂ymis

∂v

∣∣∣∣ .
Here if the joint maximization of Le (ψ, v) gives the MLE of ψ, that

of Le (ψ, ymis) cannot give the MLE of ψ. It means that specifying

the scale of a random parameter in defining the h-likelihood is

important to obtain MLEs via its maximization. In this chapter,

we elaborate on how to use the Jacobian term to form such an

h-likelihood.

Following Lee et al. (2017), the predictive likelihood of random

parameter v can be defined as

Lp (v | D;ψ) ≡ fψ (v | D,x) = fψ (v,D | x) /fψ (D | x) ,
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where D = {yobs, δ} and subscript p is used to emphasize the pre-

dictive likelihood for v. Thus, the marginal likelihood is expressed

as

Lm(ψ) =
Le(ψ, v)

Lp (v | D;ψ)
. (2.3)

Given ψ, let

ṽ = ṽ(ψ,D,x) = argmaxv Le(ψ, v) = argmaxv Lp (v | D;ψ)

(2.4)

be the common mode of the extended likelihood and the predictive

likelihood. Note that the common mode ṽ(ψ,D,x) is a function of

both parameter and data. However, we denote it as ṽ for notational

convenience. Evaluating the marginal likelihood in (2.3) at v = ṽ

leads to

Lm(ψ) =
Le(ψ, ṽ)

Lp(ṽ | D;ψ)
. (2.5)

If both Le(ψ, v) and Lp(v|D;ψ) are explicitly available, at least at

the mode ṽ, the MLE for ψ is immediately obtained from (2.5).

However, both are not often available.

Definition 2.2.1. If a scale v = g(ymis) satisfies

Le(ψ, ṽ) ∝ Lm(ψ), (2.6)

the v-scale is called the canonical scale and the mode ṽ is called

the canonical function. The extended likelihood defined on the

canonical scale v is called the h-likelihood,

H(ψ, v) = Le(ψ, v).

By combining (2.5) and (2.6), Lp(ṽ|D;ψ) does not depend on ψ if

v-scale is canonical, i.e. information neutral with respect to ψ at

the mode ṽ.
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Here, we emphasize defining the h-likelihood with different

parametrization of a random parameter. Let ζ̂ be the MLE of ζ =

k(ψ) under the transformation k(·). Then, the MLE ψ̂ = k−1(ζ̂) is

invariant with respect to the transformation. Similarly, the MLE

of a parameter from the h-likelihood is transformation invariant.

That is, we can treat v as if it is a fixed parameter after defining

the h-likelihood in the sense that

H(ψ, ymis) = H{ψ, g−1(ymis)} = H(ψ, v) (2.7)

(Lee and Nelder, 2005). Here, we denoteH(ψ, ymis) the h-likelihood

in terms of ymis as (2.7), whereas Le(ψ, ymis) indicates the extended

likelihood in which the canonical scale is yet unknown. From (2.7),

the conditional mode of ymis is defined by

ỹmis = argmax
ymis

H(ψ, ymis) = g−1(ṽ). (2.8)

If the transformation g(·) is not linear, we get

ỹmis ̸= argmax
ymis

Le(ψ, ymis).

Thus, under the canonical condition (2.6), MLEs of both fixed

and random parameters can be obtained by maximizing H(ψ, v) =

Le(ψ, v).

Lee et al. (2017) gave a correct definition of canonical scale

above, but have not exploited it to form the h-likelihood. We now

state a sufficient condition for the canonical property in (2.6) as

follows.

Proposition 2.2.1. If a transformation v = g(ymis) with bijec-

tive, differentiable function g(·) satisfies∣∣∣∣ ∂v

∂ymis

∣∣∣∣
v=ṽ

∝ Lp(ỹmis | D;ψ),
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where ỹmis = g−1(ṽ) and ṽ is defined in (2.4), the canonical prop-

erty in (2.6) is satisfied.

Proposition 2.2.1 gives further interpretation about Definition

2.2.1.

Lm(ψ) =
Le(ψ, ỹmis)

Lp(ỹmis | D;ψ)
∝ Le(ψ, ỹmis)

∣∣∣∣∂ymis

∂v

∣∣∣∣
v=ṽ

= Le (ψ, ṽ) = H(ψ, ṽ).

(2.9)

Moreover, it shows how the canonical scale allows ML estimation.

Now, we first study the ML estimation of the fixed parameter using

h-likelihood.

2.2.1 MLE of Fixed Parameter

Equation (2.9) characterizes the canonical scale which allows the

ML estimation.

Theorem 2.2.1. Suppose that the predictive likelihood Lp(ymis|D;ψ)

is unimodal with respect to ymis. Then, there exists the canonical

scale to form the h-likelihood.

Theorem 2.2.1 states a sufficient condition for the existence of

a canonical scale. When an explicit form of the canonical scale is

not available, we present a way of defining a weak canonical scale

based on the Laplace approximation in Section 2.3. For now, we

assume that an explicit form of the canonical scale v = g(ymis) is

known. The following theorem shows how to obtain the MLE of

fixed parameter and also its variance estimator.

Theorem 2.2.2. (i) The MLE of ψ can be obtained by solving

the score equation

∂ℓm
∂ψ

=
∂

∂ψ
h (ψ, ṽ) =

∂h

∂ψ

∣∣∣
v=ṽ

= 0,
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where h = logH(ψ, v) and ℓm = ℓm(ψ) = logLm(ψ).

(ii) The variance estimator of the MLE can be obtained from

the Hessian matrix of the h-likelihood as

Îψψ = Iψψ
∣∣
ψ=ψ̂

, Iψψ =

(
− ∂2ℓm
∂ψ∂ψT

)−1

,

where the definition of Iψψ is in Appendix.

To compare the h-likelihood approach with the EM algorithm,

note that
∂ℓm(ψ)

∂ψ
= Eψ

{
∂

∂ψ
ℓe(ψ, ymis)

∣∣∣D,x} .
This equality is called the mean score theorem (Louis, 1982). The

EM algorithm (Dempster et al., 1977) obtains the solution to

∂ℓm(ψ)/∂ψ = 0 by

ψ(t+1) ← solve Eψ(t)

{
∂

∂ψ
ℓe(ψ, ymis)

∣∣∣D,x} = 0. (2.10)

The h-likelihood approach gives the MLE of the fixed parameter

without requiring the E-step in (2.10) which is often computation-

ally intensive.

2.2.2 MLE of Random Parameter

If we let ymis be the unobserved part of the data, the missing data

problem becomes a prediction problem. To understand Meng’s

point in Meng (2009), assume that yobs and ymis are independent

and the scale v = g(ymis) is the canonical scale. Prediction of future

data can be viewed as missing data problem where yt+1, . . . , yt+nmis

are future data at the present time t = nobs. Meng (2009) showed

that

v̂ − v = g (ŷmis)− g (ymis) = g′ (ỹmis) (ŷmis − ymis) +Rnobs
,
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where

Rnobs
= Op(1) and g

′(ỹmis)(ŷmis − ymis) = Op(1).

Meng (2009) claimed that v̂ − v is not summarizable because of

the nonnegligiblity of the remainder term Rnobs
, i.e., consistency

and asymptotic normality for the MLE v̂ from the h-likelihood are

not guaranteed.

Now we investigate the summarizability properties of the MLE

v̂. In missing data problem, the ML estimation of random param-

eter can be called the ML imputation. Let ψ0 be the true value of

ψ. As MLE ψ̂ is estimating ψ0 and similarly the MLE ŷmis pre-

dicts a realized value of ymis by estimating the conditional mode

ymis,0 = ỹmis(ψ0,D,x) in (2.8), which is a function of data and

unknown parameter ψ0. This clarifies the summarizability prob-

lem raised by Meng (2009); while ŷmis− ymis is not summarizable,

ŷmis−ymis,0 is summarizable as in Theorem 2.2.3 below. Note that

ymis − ŷmis = ymis,0 − ŷmis + ε,

where ε = ymis−ymis,0. In missing data problem, ε = Op(1). In view

of predicting unobservable future (or missing) random variable, we

estimate ε as null. Then, ŷmis is estimating ymis,0 to predict ymis.

Thus, we obtain

varψ (ŷmis − ymis) = varψ(ŷmis − ymis,0) + varψ(ε|D,x).

The first term is the variance due to estimating ymis,0 by ŷmis and

the second term is the variance due to the unidentifiable error term

ε. The second term may decrease with a better imputation model,

but it does not decrease with larger sample size. Moreover, to
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obtain a standard error for prediction of ymis, we need to estimate

the conditional variance of ε by using

varψ(ε | D,x) = varψ(ymis − ymis,0 | D,x) = varψ(ymis | D,x).

Here, we are interested in estimating var(ŷmis − ymis). Thus, we

write the h-likelihood with respect to ymis as h = h(ψ, ymis) =

h{ψ, g−1(v)}. Note that

∂ỹTmis

∂ψ
= −Iψymis

I−1
ymisymis

and the variance estimator of ψ̂ is Îψψ by Theorem 2.2.2, where

Iψymis
= −∂2h/∂ψ∂yTmis|ymis=ỹmis and Iymisymis = −∂2h/∂ymis∂y

T
mis|ymis=ỹmis .

Then, by using the delta method, we have the asymptotic normal-

ity of ŷmis as follows.

Theorem 2.2.3. Under regularity conditions in Appendix, we

have
√
nobs (ŷmis − ymis,0)

d→ N(0, V ) ,

where V = limnobs→∞ nobsÎ
−1
ymisymis

Îymisψ Î
ψψ Îψymis

Î−1
ymisymis

and Îψymis
,

Îymisymis are evaluated at ψ = ψ̂. The variance of ŷmis − ymis,0 can

be estimated as

v̂ar (ŷmis − ymis,0) = varψ̂ (ŷmis − ymis,0)

= Î−1
ymisymis

Îymisψ Î
ψψ Îψymis

Î−1
ymisymis

.(2.11)

If Eψ(ε) = 0, ŷmis is an asymptotically unbiased estimator of

ymis. However, the assumption Eψ(ε) = 0 is coming from model

assumption which may not be identifiable by observed data. Now,

to discuss the estimation of the variance due to the model error
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ε, suppose that there exists a normalizing transformation z =

k(v) = k{g(ymis)} = k ◦ g(ymis) = r(ymis) with r(·) = k ◦ g(·)

such that Lp(z|D;ψ) is from the normal density with mean z̃ =

argmaxz Lp(z|D;ψ) and covariance matrix I−1
zz , where

Izz = −∂2h(ψ, z)/∂z∂zT|z=z̃. Then, it gives the h-likelihood

h (ψ, z) = ℓm(ψ) +
1

2
log

∣∣∣∣ 12πIzz
∣∣∣∣− 1

2
(z − z̃)T Izz (z − z̃) .

Here, z̃ = Eψ(z|D,x) = r(ỹmis) provided by the normality of the

predictive likelihood Lp(z|D;ψ). This leads to Eψ(ε) = Eψ(z −

z0) = 0,

varψ (ẑ − z) = varψ (ẑ − z0) + Eψ {varψ (z0 − z | D,x)}

and v̂ar(z0−z|D,x) = Î−1
zz , where ẑ = r(ŷmis) and z0 = r(ymis,0) =

Eψ0(z|D,x). This gives

v̂ar (ẑ − z) = v̂ar (ẑ − z0) + v̂ar (z0 − z | D,x)

= Î−1
zz Îzψ Î

ψψ Îψz Î
−1
zz + Î−1

zz

= Îzz.

Therefore, if a normalizing transformation exists, the h-likelihood

gives not only MLEs of both fixed and random parameters, but

also their corresponding variance estimators. Moreover, if ymis it-

self satisfies normal approximation well, then, we can have a rea-

sonable variance estimator from the Hessian matrix of h-likelihood

v̂ar (ŷmis − ymis) = v̂ar (ŷmis − ymis,0) + v̂ar (ymis,0 − ymis | D,x)

= Î−1
ymisymis

Îymisψ Î
ψψ Îψymis

Î−1
ymisymis

+ Î−1
ymisymis

= Îymisymis .
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Thus, ŷmis,i ± 1.96
√
Îymisymis
ii is 95% predictive interval of ymis,i,

where Îymisymis
ii is the ith diagonal element of Îymisymis . The length

of predictive interval is Op(1) and coverage probability becomes

exact as n → ∞ (Lee and Kim, 2016). However, in practice, the

normalizing transformation is not known. Thus, in general, for the

prediction of ymis, Lee and Kim (2016, 2020) proposed to use the

predictive distribution after eliminating ψ defined as

f(ymis | D,x) =
∫
fψ(ymis | D,x)c(ψ)dψ, (2.12)

where c(ψ) is the confidence density (Schweder and Hjort, 2016).

By using the predictive likelihood (2.12), we can account for the

uncertainty caused by estimating ψ. Via simulation studies, Lee

and Kim (2016) showed that resulting predictive interval main-

tains the stated coverage probability well as n grows.

From Theorem 2.2.2, MLE ψ̂ from the marginal likelihood can

be obtained by
∂ℓm(ψ)

∂ψ
=
∂h(ψ, ṽ)

∂ψ
= 0

and ML imputation ŷmis = g−1(v̂) of ymis = g−1(v) from the

predictive likelihood can be obtained by

∂ℓp(v | D; ψ̃)
∂v

=
∂h(ψ̃, v)

∂v
= 0,

where ψ̃ is solution to ∂h(ψ, v)/∂ψ = 0. In contrast to the EM al-

gorithm, the h-likelihood provides not only the ML estimation for

fixed parameters fromH(ψ, ṽ), but also ML imputation on random

parameters from H(ψ̃, v) as in Figure 2.1. Moreover, the necessary

standard error estimates are also given straightforwardly.
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Figure 2.1: Estimation procedure of the h-likelihood.

Example 2.2.1. Suppose that n variables are generated from the

exponential distribution with mean θ0 but only the first n − 1

variables are observed, i.e., nobs = n − 1 and ymis = yn is not

observed. In this example, the extended likelihood defined on ymis-

scale is

ℓe(θ, ymis) = −n log θ −
(n− 1)ȳobs + ymis

θ
.

Note that ymis-scale is not canonical but v = log ymis is a canonical

scale which gives

h(θ, v) = ℓe(θ, ymis)+log

∣∣∣∣∂ymis

∂v

∣∣∣∣ = −n log θ− (n− 1)ȳobs + ev

θ
+v

and

h(θ, ymis) = −n log θ −
(n− 1)ȳobs + ymis

θ
+ log ymis.

Here, the canonical function of ymis is ỹmis = θ which gives the

MLE θ̂ = ȳobs and ML imputation ŷmis = θ̂ = ȳobs. In this exam-

ple, the MLE of θ, θ̂, satisfies the asymptotic normality

√
nobs

(
θ̂ − θ0

)
d→ N

(
0, θ20

)
.

By Theorem 2.2.3, the ML imputation for ymis, ŷmis, satisfies the

asymptotic normality

√
nobs (ŷmis − ymis,0)

d→ N
(
0, θ20

)
,
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where ymis,0 = θ0 and v̂ar(ŷmis − ymis,0) = n−1
obsθ̂

2, i.e., (2.11) gives

valid variance estimator of ŷmis − ymis,0. Moreover,

Îymisymis = θ̂2
(
1 +

1

nobs

)
= v̂ar(ŷmis − ymis).

Here v̂ar(ŷmis−ymis) = v̂ar (ŷmis − ymis,0)+v̂ar(ymis|yobs) = θ̂2/nobs+

θ̂2. Thus, the h-likelihood gives a correct ML imputation. In this

example, ỹmis,0 = θ is a function of parameter only so that ŷmis −

ymis,0 is summarizable. But ymis is not identifiable since ε = Op(1)

with Eθ(ε) = 0. Asymptotically correct probability statement on

ymis can be made based on predictive interval whose length is

Op(1).

Example 2.2.2. Consider a one-way mixed model

yij = µ+ ui + ϵij , i = 1, . . . , q, j = 1, . . . , n,

where random effects ui are iid N(0, λ2), ϵij are iid N(0, σ2) and

ui and ϵij are independent. Henderson’s (1959) joint likelihood is

the current h-likelihood of Lee and Nelder (1996)

ℓe (θ, u) =
∑
i,j

{
−1

2
log 2πσ2 − 1

2σ2
(yij − µ− ui)2

}

+
∑
i

(
−1

2
log 2πλ2 − 1

2λ2
u2i

)
, (2.13)

where θ = (µ, σ2, λ2). However, joint maximization of (2.13) can-

not give the MLEs of variance components σ2 and λ2. Consider a

v-scale

vi =

{
−∂

2ℓe(θ, u)

∂u2i

}0.5

ui =

(
σ2 + nλ2

σ2λ2

)0.5

ui,
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which leads to the extended likelihood

ℓe(θ, v) = ℓe(θ, u) + log

∣∣∣∣∂u∂v
∣∣∣∣

= −N − q
2

log 2πσ2 − q

2
log 2π

(
σ2 + nλ2

)
− 1

2σ2

∑
i,j

{
yij − µ−

(
σ2λ2

σ2 + nλ2

)0.5

vi

}2

− σ2

2(σ2 + nλ2)

∑
i

v2i −
q

2
log 2π,

where N = qn. Since ℓe(θ, ṽ) = ℓm(θ), where

ṽi = ṽi(θ, yi) =
nλ2(ȳi· − µ)

{σ2λ2(σ2 + nλ2)}0.5
,

yi = (yi1, . . . , yin) and ȳi· = n−1
∑n

j=1 yij , we have h-likelihood

h = ℓe(θ, v), whose simple maximization gives MLEs of the whole

parameters θ. Also, it gives the best linear unbiased predictors for

realized but unobserved random parameters

ûi = ũi

(
θ̂, yi

)
= ̂E (ui | yi), i = 1, . . . , q,

where

ũi (θ, yi) =

{
σ2λ2

σ2 + nλ2

} 1
2

ṽi (θ, yi) =
nλ2

σ2 + nλ2
(ȳi·−µ) = Eθ(ui | yi).

In this example, the target of ûi is

ui0 = ũi(θ0, yi) = Eθ0(ui | yi),

where θ0 = (µ0, σ
2
0, λ

2
0) is the true value of θ. If the MLE θ̂ con-

verges to θ0,

v̂ar (ûi − ui) = v̂ar (ûi − ui0) + v̂ar (ui − ui0 | yi)
P→ 0
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as (q, n) → ∞. Thus, in this example, we have a consistent esti-

mator of unobserved random parameter ui, i.e., ui is identifiable

with ε = ui − ui0 = op(1). This can also be shown that

lim
(q,n)→∞

ûi = lim
(q,n)→∞

ui0

= lim
(q,n)→∞

nλ20
σ20 + nλ20

(ȳi· − µ0)

= lim
(q,n)→∞

nλ20
σ20 + nλ20

(ui + ϵ̄i·) = ui,

where ϵ̄i· = n−1
∑n

j=1 ϵij . Model assumptions on ui can also be

checkable: for various model checking plots, see Lee et al. (2017).

Furthermore, if different model assumptions on fψ(u) lead to an

identical h-likelihood, then it leads to equivalent inferences for

identifiable random effects (Lee and Nelder, 2006). In missing

data problem with ε = ymis − ymis,0 = Op(1), model assump-

tions fψ(ymis|D,x) cannot be checkable from the observed data

(Molenberghs et al., 2008).

Since ui itself is the normalizing transformation in this exam-

ple, variances can be estimated as

Î−1
uiui =

(
−∂

2h

∂u2i

)−1 ∣∣∣
θ=θ̂

=
σ̂2λ̂2

σ̂2 + nλ̂2
= v̂ar (ui | yi) = v̂ar (ui − ui0 | yi) ,

Îuiui = Î−1
uiui +

∂ũi
∂θT

v̂ar
(
θ̂
) ∂ũi
∂θ

∣∣∣
θ=θ̂

= v̂ar (ûi − ui) ,

Îθθ = v̂ar
(
θ̂
)
.

Thus, proper MLEs of both fixed and random parameters and their

variance estimators can be obtained by the maximization of the

newly defined h-likelihood, which differs from the joint likelihood

of Henderson (1959). Asymptotically correct probability statement
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on ui can be made from the predictive interval whose length is

op(1). For more details about general random effect models, see

Paik et al. (2015), Lee et al. (2017), and Lee and Kim (2020).

2.3 Scale for Joint Maximization

When the canonical scale is unknown, Lee et al. (2017) proposed

the use of the Laplace approximation to give an approximate MLE

(Tierney and Kadane, 1986), which has been implemented by var-

ious packages (Kristensen et al., 2016; Ha et al., 2019). In this

section, we study how to form an h-likelihood with a weak canon-

ical scale whose joint maximization provides approximate MLEs

obtained by the Laplace approximation. Given ymis-scale, consider

a b-scale with b = g1(ymis). Let Ωb be the support of b taking a rect-

angle form Ωb =
∏n
i=nobs+1[li, ui], where li and ui are permitted

to take the value of −∞ and∞ with boundary set ∂Ωb, ξ = (ψ, b)

and fψ(b) be the density function of b. Meng (2009) studied the

regularity conditions for the first and second Bartlett identities of

an extended likelihood ℓe(ψ, b).

Theorem 2.3.1 (Meng, 2009). (i) If fψ(b) = 0 for any b ∈ ∂Ωb,

the first Bartlett identity holds.

Eψ

[
∂

∂ξ
ℓe(ψ, b)

]
= 0. (2.14)

(ii) Furthermore, if ∂fψ(b)/∂b = 0 for any b ∈ ∂Ωb, the second

Bartlett identity holds.

Eψ

[(
∂

∂ξ
ℓe(ψ, b)

)(
∂

∂ξ
ℓe(ψ, b)

)T
]
+ Eψ

[
∂2

∂ξ∂ξT
ℓe(ψ, b)

]
= O.

(2.15)
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Corollary below gives an easy way of having a b-scale to satisfy

Bartlett identities.

Corollary 2.3.1. Let Ωb = Rnmis . If Eψ (bi) < ∞ for all i, the

b-scale satisfies Bartlett identities.

The second Bartlett identity (2.15) guarantees that the pre-

dictive likelihood Lp(b|D;ψ) is unimodal with respect to b even

though Lp(ymis|D;ψ) may not be unimodal. From Theorem 2.2.1,

if we have such an extended likelihood Le(ψ, b) there exists the

canonical scale v = g(b) to form the h-likelihood. But, the explicit

form of g(·) for the canonical scale may not be known. In this

case, we may consider an approximation of canonical scale based

on the Laplace approximation, which is widely used to obtain an

approximate MLE of fixed parameter, ψ̂Lap (Raudenbush et al.,

2000; Lee et al., 2017).

Definition 2.3.1. Suppose that b-scale satisfies the Bartlett iden-

tities and ℓe(ψ, b) is the corresponding extended log-likelihood.

Now, consider a w-scale defined as

w = g2(b) = Ω̃
1
2
bbb, (2.16)

where b̃ = b̃(ψ,D,x) = argmaxb ℓe(ψ, b) and Ω̃bb = −∂2ℓe(ψ, b)/∂b∂bT|b=b̃.

Here, we call w-scale weak canonical and

H = Le(ψ,w) = Le(ψ, b)

∣∣∣∣ ∂b∂w
∣∣∣∣

the h-likelihood with weak canonical scale w.

By the above definition, weak canonical scale also satisfies

Bartlett identities in (2.14) and (2.15) since the transformation
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(2.16) is linear. Furthermore, we have

w̃ = w̃(ψ,D, x) = argmax
w

Le(ψ,w) = g2{b̃(ψ,D, x)}

since b̃ is the mode of Le(ψ, b) and the transformation g2(·) is

linear. Note that the joint maximization of the h-likelihood with

weak canonical scale gives the approximate MLE for ψ based on

the Laplace approximation as follows.

L̂m(ψ) = Le

(
ψ, b̃
) ∣∣∣∣ 12π Ω̃bb

∣∣∣∣− 1
2

∝ Le
(
ψ, b̃
) ∣∣∣∣ ∂b∂w

∣∣∣∣
w=w̃

= Le (ψ, w̃) .

This weak canonical scale does not require the existence of linear

predictor. In HGLMs, a scale satisfying additivity in the linear

predictor is called a weak canonical scale (Lee et al., 2017), which

satisfies Corollary 2.3.1. In Appendix, we show how to compute the

standard error estimate of the approximate MLE obtained from

ℓe(ψ, w̃) = logLe(ψ, w̃).

2.4 ML Imputation

In this section, we propose the ML imputation via h-likelihood.

Definition 2.4.1. With the canonical scale vi = g(ymis,i) and the

canonical function ṽi(ψ,D,x), the ML imputation gives imputed

values

ŷmis,i = g−1(v̂i), v̂i = ṽi

(
ψ̂,D,x

)
. (2.17)

Theorem 2.2.3 implies that the MLE of a random parameter is a

consistent estimator of the canonical function. Based on the ML

imputation (2.17), we propose to use the estimator

ȳML =
1

n

nobs∑
i=1

yi +

n∑
i=nobs+1

ŷmis,i
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as an estimator of η = E(Y ). If the canonical scale is unknown,

the ML imputation based on the weak canonical scale can be used.

Weak canonical scale always exists and is known. This scale gives

the estimator of η as

ȳLapML =
1

n

nobs∑
i=1

yi +
n∑

i=nobs+1

ŷLapmis,i

 ,

where ŷLapmis = g−1(ŵ), ŵ = w̃(ψ̂Lap,D, x) and g = g2 ◦ g1. From

Theorem 2.2.1 and the definition of the weak canonical scale (2.16),

we see that the canonical scale is a linear transformation of the

weak canonical scale w. Given ψ, MLEs of random parameters are

invariant with respect a linear transformation (Lee and Nelder,

2005) and

ℓ̂m(ψ)− ℓm(ψ) = ℓp(ymis | D;ψ)− ℓ̂p(ymis | D;ψ)

= {ℓp(v | D;ψ) + log |∂v/∂ymis|}

−
{
ℓ̂p(v | D;ψ) + log |∂v/∂ymis|

}
= ℓp(v | D;ψ)− ℓ̂p(v | D;ψ).

Thus, the ML imputation under weak canonical scale is valid in

the sense that

ŷLapmis − ŷmis = Op

(∣∣∣ψ̂Lap − ψ̂
∣∣∣) ,

where ℓ̂p(ymis|D;ψ) = log L̂p(ymis|D;ψ) and L̂e(ymis|D;ψ) = Le(ψ, ymis)/L̂m(ψ).

Recently, Han and Lee (2022) developed the enhanced Laplace ap-

proximation (ELA) to obtain the MLE ψ̂ generally. Thus, the ML

imputation can be always implemented even when the canonical

scale is not known by using a weak canonical scale from the ELA.
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Given the MLE ψ̂, all the results on the ML imputation in Section

2.2.2 hold.

Under missing at random (MAR) of Rubin (1976), the h-

likelihood becomes

h = log fθ(yobs | x) + log fθ(ymis | x) + log fρ(δ | x) + log

∣∣∣∣∂ymis

∂v

∣∣∣∣ ,
where θ is the parameter for the response model and ρ is the

parameter associate with the missing mechanism. Under MAR

assumption, the canonical function of v depends only on θ and

x to give ML imputed values ŷmis,i = ỹmis,i(θ̂,xi), ỹmis,i(θ,xi) =

g−1{ṽi(θ,xi)}.

Example 2.4.1. Little and Rubin (2019) considered censored ex-

ponential model, where ycom = (yobs, ymis) are independent expo-

nential random variables with mean θ and the missing mechanism

is set to δ = I(Y ≤ c) with known c. Here the missing mechanism

is not ignorable and the complete-data likelihood is

ℓe (θ, ymis) = −n log θ −
1

θ

nobs∑
i=1

yi −
1

θ

n∑
i=nobs+1

ymis,i.

They noted that joint maximization of the complete-data likeli-

hood provides nonsensical modes (nobsȳobs + nmisc)/n for θ and c

for ymis,i, where ȳobs =
∑nobs

i=1 yi/nobs is the sample mean based on

the observed responses. Now we know that MLEs (modes) should

be obtained from the h-likelihood. Yun et al. (2007) found the

canonical scale vi = log (ymis,i − c) to form the h-likelihood

h = ℓe (θ, ymis) + log

∣∣∣∣∂ymis

∂v

∣∣∣∣
= −n log θ − 1

θ

nobs∑
i=1

yi +
n∑

i=nobs+1

{
−1

θ
(c+ evi) + vi

}
.
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The canonical function of v is ṽi(θ) = log θ which gives

h {θ, ṽ(θ)} = −nobs log θ−
1

θ

nobs∑
i=1

yi−
nmisc

θ
−nmis = ℓm(θ)−nmis ∝ ℓm(θ).

This gives the true MLE θ̂ = ȳobs+nmisc/nobs and the ML imputed

values ŷmis,i = θ̂ + c > c to lead that

ȳML =
1

n

nobs∑
i=1

yi +
n∑

i=nobs+1

ŷmis,i

 = θ̂

and v̂ar(ȳML) = v̂ar(θ̂) = Îθθ = θ̂2/nobs. Little and Rubin (2019)

used the EM algorithm. With the E-step

Eθ(ymis,i|ymis,i > c) = θ + c,

the M-step gives

θ(t+1) =
1

n

[
nobs∑
i=1

yi + nmis

{
θ(t) + c

}]
.

Thus, the EM algorithm gives the identical MLE θ̂. But, the EM

algorithm does not provide the variance estimator directly.

To examine the performance of the ML imputation, we set

about 22% of responses as unobserved and compare three esti-

mators ȳcom =
∑n

i=1 yi/n, ȳobs =
∑n

i=1 δiyi/nobs, and ȳML using

random samples from exp(2) distribution. The estimator ȳcom is

considered as a benchmark since it cannot be used in practice. In

Figure 2.2, it is shown that the proposed method works well. More-

over, ȳobs shows a non-negligible bias in amount nmisc/nobs ≈ 0.86

since the missing mechanism is not ignorable.

35



1

2

3

ycom yobs yML

n=100

1

2

3

ycom yobs yML

n=500

Figure 2.2: Boxplots of estimators in exponential mean model with

c = 3. Dotted line indicates the true value of η.

2.5 Illustrative Examples

2.5.1 Normal Regression Model

Consider a normal regression model Y |x ∼ N(β0+β1x, σ
2) with re-

sponse probability model logit{Pρ(δ = 1|x)} = ρ0+ρ1x+ρ2x
2 un-

der a MAR assumption. Here, ymis-scale itself satisfies the Bartlett

identities but it is canonical scale only for (β0, β1). Thus, the joint

maximization of ℓe(θ, ymis) cannot give the MLE of σ2, where

θ = (β0, β1, σ
2). However, v-scale defined by vi = ymis,i/σ is the

canonical scale with canonical function ṽi(θ, xi) = (β0 + β1xi)/σ

for i = nobs + 1, . . . , n. Then, the canonical function of ymis is

ỹmis,i(θ, xi) = β0 + β1xi = Eθ(ymis,i|xi) and the ML imputed val-

ues are ŷmis,i = β̂0 + β̂1xi. Moreover,

Î−1
ymis,iymis,i

=

(
− ∂2h

∂y2mis,i

)−1 ∣∣∣
θ=θ̂

= σ̂2 = v̂ar (ymis,i | D,x) .

Since

ỹmis,i(θ, xi) = Eθ(ymis,i|xi),
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the MLEs can also be obtained by the EM algorithm.

For a simulation study, we generate n = 100 and n = 500

samples with θ = (1, 2, 1), ρ = (1, 2, 0.3) and x ∼ U(−1, 1). From

Figure 2.3, we can see that ȳobs is positively biased because the

covariate x increases both Eθ(Y |x) and Pρ(δ = 1|x). Also, the

performance of ȳML is almost same as ȳcom.

0.5

1.0

1.5

2.0

ycom yobs yML

n=100

0.5
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1.5

2.0

ycom yobs yML

n=500

Figure 2.3: Boxplots of estimators in normal regression model.

Dotted line indicates the true value of η.

2.5.2 Exponential Regression Model

Consider an exponential regression model with mean Eβ (Y |x) =

exp(β0+β1x), β = (β0, β1) and the MAR mechanism as the Exam-

ple 2.5.1. In this example, v = log ymis scale is the canonical scale

which also satisfies Bartlett identities by Corollary 2.3.1. Here the

canonical function of ymis,i is ỹmis,i = exp(β0+β1xi) = Eβ(ymis,i|xi)

and the ML imputed values are ŷmis,i = exp(β̂0+ β̂1xi). Moreover,

Î−1
ymis,iymis,i

=

(
− ∂2h

∂y2mis,i

)−1 ∣∣∣
θ=θ̂

= ŷ2mis,i = v̂ar (ymis,i | D,x) .
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Figure 2.4 shows simulation results with β and ρ being the same

as in Example 2.5.1. Compared to ȳcom, ȳML gives almost the same

performances, whereas ȳobs is biased.
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Figure 2.4: Boxplots of estimators in exponential regression model.

Dotted line indicates the true value of η.

2.5.3 Tobit Regression Model

Suppose that responses are generated from the normal regression

model in Example 2.5.1. In addition, missing data are created by

ymis > c at a known censoring point c. The extended likelihood

ℓe (θ, ymis) = −n
2
log 2πσ2 − 1

2σ2

nobs∑
i=1

(
yi − x̃Ti β

)2
− 1

2σ2

n∑
i=nobs+1

(
ymis,i − x̃Ti β

)2
,

where θ = (β, σ2), β = (β0, β1) and x̃ = (1, x). Here a b-scale

bi = g1 (ymis,i) = log (ymis,i − c) ,

satisfies Bartlett identities by Corollary 2.3.1 but it is not canon-

ical. Now, consider a w-scale with wi = g2(bi) = Ω̃0.5
bibi
bi by (2.16).
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Then, we have the approximate MLE θ̂Lap and approximate ML

imputed values ŷLapmis by jointly maximizing ℓe(θ, w). However, the

exact marginal log-likelihood is available in Tobit regression model.

ℓm(θ) = −nobs
2

log σ2 − 1

2σ2

nobs∑
i=1

(
yi − x̃Ti β

)2
+

n∑
i=nobs+1

log

{
Φ

(
x̃Ti β − c

σ

)}
.

This means that explicit form of the predictive likelihood Le(bi|yobs; θ)

is available to give the canonical scale

vi = Le

(
b̃i | yobs; θ

)
bi, (2.18)

where

b̃i = log

{
x̃Ti β − c+

√(
x̃Ti β − c

)2
+ 4σ2

}
− log 2.

Thus, all MLEs are computed directly by simple maximization of

the h-likelihood.

In the simulation study, we examine the performance of ML

imputations by using two estimators ȳML using the MLE and ȳLapMI

using the approximate MLE. From (2.18), we see that both b and

w are linear transformations of v. Thus, approximate ML imputa-

tion works well as approximate MLE does. Given MLE for fixed

parameters, weak canonical scale gives an exact ML imputation.

For simulation, we set θ = (1, 3, 1), c = 3 and xi = −1+2i/n for

i = 1, . . . , n. In Figure 2.5, we see that the difference between ȳML

and ȳLapML is negligible because θ̂ and θ̂Lap are very close. Therefore,

we can use the weak canonical scale and approximate MLE when

canonical scale is unknown.
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Figure 2.5: Boxplots of estimators in Tobit regression model. Dot-

ted line indicates the true value of η.

2.6 Conclusion

Firth (2006) and Meng (2009) raised two important reservations

about the use of the h-likelihood. Firth (2006) noted that the

linear predictor in HGLM may not be well-defined to form the h-

likelihood. Lee et al. (2006) resolved his question by defining the

canonical scale. Meng (2009) claimed the asymptotic theory for

the prediction of the future data would be impossible because the

consistency cannot be achieved for the predicted values from the

h-likelihood. In this chapter, we have answered their queries on the

h-likelihood in the context of imputation for missing data. Specif-

ically, we have shown that prediction becomes an estimation of

canonical function of the h-likelihood whose consistent estimation

and asymptotic normality can be justifiable. We further showed

that standard errors of prediction can be directly obtained from

the h-likelihood.

Little and Rubin (2019) pointed out that the current h-likelihood

procedure achieves the correct ML estimation by modifying h-

likelihood. In this chapter, we achieve the true ML approach via h-
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likelihood without any modification by reformulating the h-likelihood.

We present the meaning of the canonical scale and canonical func-

tion in detail, which allow ML estimation of fixed parameters and

ML imputation of random parameters, namely missing data. The

Jacobian term is a key to finding the canonical scale.

The ML imputation using the h-likelihood estimates the condi-

tional mode, rather than the conditional mean of the missing value.

We call this conditional mode imputation the ML imputation for

the random parameters. The h-likelihood used for ML imputation

provides an efficient algorithm because resampling procedure for

multiple imputations or expectation steps in EM algorithm is not

compulsory.

Appendix: Supplementary Materials for “Max-

imum Likelihood Imputation”

A1 Regularity Conditions

In this chapter, we assume the following regularity conditions in

developing the proposed method.

(R1) Let ψ0 = argmaxψ Eψ{ℓm(ψ)} be the true value of ψ. Here,

the number of fixed parameters does not depend on nobs.

Then, the MLE ψ̂ = argmaxψ ℓm(ψ) satisfies the asymptotic

normality with mean ψ0 and variance I−1
0 = I−1 (ψ0), where

I (ψ) = lim
nobs→∞

1

nobs

(
−∂

2ℓm(ψ)

∂ψ∂ψT

) ∣∣∣
ψ=ψ0

is the expected Fisher information.
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(R2) The support of missing values

Ωymis =

ymis ∈ Rnmis :
n∏

i=nobs+1

fψ (ymis,i, δi = 0 | xi) > 0

 ⊂ Rnmis

does not depend on fixed parameter ψ.

A2 Proofs

A2.1 Proof of Theorem 3.1

Proof. By assumption, there exists ỹmis = argmaxymis ℓe(ψ, ymis).

Now, consider a v-scale defined by

vi = g(ymis,i) = {Lp (ỹmis | D;ψ)}1/nmis ymis,i, i = nobs + 1, . . . , n,

with the predictive likelihood Lp(ymis | D;ψ) = fψ(ymis | D,x).

Here, the transformation g(·) is bijective and differentiable since

it is linear. The predictive likelihood on v-scale is also well-defined

with the Jacobian term

Lp(v | D;ψ) = Lp(ymis | D;ψ)
∣∣∣∣∂ymis

∂v

∣∣∣∣ , ∣∣∣∣ ∂v

∂ymis

∣∣∣∣
v=ṽ

= Lp(ỹmis | D;ψ),

where ṽi = g(ỹmis,i). Note that ṽ is also the mode of Lp(v|D;ψ)

since ỹmis is the mode of Lp(ymis|D;ψ) and the transformation g(·)

is linear. Therefore, there exists a canonical scale which satisfies

(12).

A2.2 Proof of Theorem 3.2

Proof. Let v-scale be the canonical scale and ṽ = ṽ(ψ,D,x). Then,

the h log-likelihood can be written as

h (ψ, ṽ) = ℓm (ψ) + c,
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where c is a constant which is free of ψ. Then, we can prove the

first equality

∂

∂ψ
h (ψ, ṽ) =

∂h

∂ψ

∣∣∣
v=ṽ

+
∂ṽT

∂ψ

∂h

∂v

∣∣∣
v=ṽ

=
∂h

∂ψ

∣∣∣
v=ṽ

=
∂ℓm
∂ψ

,

where h = h(ψ, v) and ℓm = ℓm(ψ). To show the second equality,

recall that
∂h

∂v

∣∣∣
v=ṽ

= 0. (2.19)

By differenciating (2.19) with respect to ψ,

∂2h

∂ψ∂vT

∣∣∣
v=ṽ

+
∂ṽT

∂ψ

{
∂2h

∂v∂vT

}
v=ṽ

= O. ⇒ ∂ṽT

∂ψ
= −IψvI−1

vv |v=ṽ.

(2.20)

Therefore, from (2.20), we can prove the required result.

∂ℓm
∂ψ

=
∂

∂ψ
h (ψ, ṽ) .

⇒ − ∂2ℓm
∂ψ∂ψT

= − ∂2h

∂ψ∂ψT

∣∣∣
v=ṽ
− ∂ṽT

∂ψ

∂2h

∂v∂ψT

∣∣∣
v=ṽ

= Iψψ − IψvI−1
vv Ivψ

=
(
Iψψ

)−1
.

Here,Iψψ Iψv

Ivψ Ivv

 =

Iψψ Iψv

Ivψ Ivv

−1

,

Iψψ Iψv

Ivψ Ivv

 =

−∂2h/∂ψ∂ψT −∂2h/∂ψ∂vT

−∂2h/∂v∂ψT −∂2h/∂v∂vT


v=ṽ

.
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A2.3 Proof of Corollary 4.1

Proof. It suffices to show that the case nmis = 1. If Eψ(b) < ∞,

then

lim
|b|→∞

bfψ(b, δ = 0 | x) = 0 ⇒ lim
|b|→∞

fψ(b, δ = 0 | x) = 0.

Since fψ is continuous, fψ(b, δ = 0 | x) = 0 for b ∈ ∂Ωb =

{−∞,∞}. Moreover, fψ is bounded since fψ is a density func-

tion of a continuous random variable whose support is the whole

real line with finite mean. This guarantees that fψ is uniformly

continuous which implies

lim
|b|→∞

f ′ψ(b, δ = 0 | x)

= lim
|b|→∞

lim
t→0

fψ(b+ t, δ = 0 | x)− fψ(b, δ = 0 | x)
t

= lim
t→0

lim
|b|→∞

fψ(b+ t, δ = 0 | x)− fψ(b, δ = 0 | x)
t

= 0,

i.e., f ′ψ(b, δ = 0 | x) = 0 for b ∈ ∂Ωb = {−∞,∞}. Then, the

first and second Bartlett identities hold by the result of Theorem

4.1.

44



A2.4 Score and Hessian of ℓ̂m(ψ) and ℓe(ψ, w̃)

Proof. By the definition of ℓ̂m(ψ), the score and Hessian can be

expressed as

∂

∂ψj
ℓ̂m(ψ) =

∂

∂ψj
ℓe(ψ, b)

∣∣∣
b=b̃
− 1

2
tr

{(
Ibbb

)−1
(

∂

∂ψj
Ibbb

)}
,

− ∂2

∂ψj∂ψk
ℓ̂m(ψ) = Ibψjψk

− Ibψjb

(
Ibbb

)−1
Ibbψk

+
1

2
tr

{(
Ibbb

)−1
(

∂2

∂ψj∂ψk
Ibbb

)
−
(
Ibbb

)−1
(

∂

∂ψj
Ibbb

)(
Ibbb

)−1
(

∂

∂ψk
Ibbb

)}
,

for 1 ≤ j, k ≤ p, where Ibxy = − ∂2

∂x∂yT
ℓe(ψ, b)

∣∣
b=b̃

. On the other

hand, with ℓe = ℓe(ψ,w),

∂

∂ψ
ℓe(ψ, w̃) =

∂ℓe
∂ψ

∣∣∣
w=w̃

,{
− ∂2

∂ψ∂ψT
ℓe(ψ, w̃)

}−1

= Iψψe ,

where Iψψe Iψwe

Iwψe Iwwe

 =

Ie,ψψ Ie,ψw

Ie,wψ Ie,ww

−1

with Ie,ψψ Ie,ψw

Ie,wψ Ie,ww

 =

− ∂2ℓe
∂ψ∂ψT − ∂2ℓe

∂ψ∂wT

− ∂2ℓe
∂w∂ψT − ∂2ℓe

∂w∂wT


w=w̃

.
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Chapter 3

Robust Imputation under

Missing at Random
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Chapter Summary

Imputation is a popular technique for handling item nonre-

sponse. By properly incorporating the observed auxiliary vari-

ables, imputation can reduce the nonresponse bias and obtain ef-

ficient estimation. Among various imputation methods, an advan-

tage of the maximum likelihood (ML) imputation is that one-shot

imputation allows the maximum likelihood estimator (MLE) of

fixed parameter. However, correct specification of statistical model

may be difficult in the presence of missing data. How to find a ro-

bust imputation method that is less sensitive to the failure of the

assumed model is an important practical problem in the missing

data literature. If the missing mechanism is missing-at-random,

doubly robust estimator gives useful estimator since the consis-

tency of the estimator is guaranteed either the outcome regression

(OR) model or the propensity score (PS) model is correctly speci-

fied. To obtain the doubly robust estimator, the internal bias cal-

ibration (IBC) condition is presented. Moreover, we examine the

IBC condition in modeling approach. Correct specification of the

outcome model or propensity score model is equivalent to that of

mean or dispersion in double hierarchical generalized linear model.

In addition, we discuss how to allow robust inference against out-

liers. Simulation study shows that the proposed method allows

robust inference against not only the violation of various model

assumptions, but also outliers.
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3.1 Basic Setup

Suppose that we are interested in estimating the parameter of

interest η∗ defined though

E {U (η∗;Y )} = 0,

where U(η; y) is the given estimating function. Suppose further

that there are n independently and identically distributed realiza-

tions of (X, Y, δ), denoted by {(xi, yi, δi) : i = 1, . . . , n}, where

xi is an vector of observed covariates and δi is the missingness

indicator defined by

δi =

1, if yi is observed,

0, otherwise.

Without nonresponse, a consistent estimator of η∗ is obtained by

solving

Ûn(η) ≡
1

n

n∑
i=1

U(η; yi) = 0.

Under nonresponse, one way to estimate η∗ is to use the expected

estimating equation

1

n

n∑
i=1

[δiU(η; yi) + (1− δi) E {U(η;Yi) | xi, δi = 0}] = 0. (3.1)

To compute the conditional expectation in (3.1), we often employ

the MAR assumption of Rubin (1976). That is,

f(y | x, δ = 0) = f(y | x) = f(y | x, δ = 1).

Under the MAR assumption, we can have the conditional expec-

tation in (3.1) as

E {U(η;Y ) | x, δ = 0} = E {U(η;Y ) | x} = E {U(η;Y ) | x, δ = 1} .
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Thus, it suffices to estimate Ū(η;x) = E{U(η;Y )|x, δ = 1} from

the set of respondents under the MAR assumption. The condi-

tional expectation in (3.1) is based on the model for [y|x], which

is often called the outcome regression (OR) model. On the other

hand, another approach uses a model for [δ|x], which is often called

the propensity score (PS) model.

To compute the conditional expectation Ū(η;x), we employ

the OR model f(y|x;θ) with parameter θ. Under the MAR as-

sumption, we can estimate θ by maximizing

ℓ(θ) =
n∑
i=1

δi log f(yi | xi;θ)

with respect to θ and then η∗ can be estimated by the imputed

estimating equation

ÛI(η) ≡
1

n

n∑
i=1

[
δiU(η; yi) + (1− δi) E

{
U(η;Yi) | xi; θ̂

}]
= 0.

(3.2)

To compute the conditional expectation in (3.2), Kim (2011) pro-

posed the fractional imputation method. Consistency of the so-

lution η̂I to (3.2) is based on the assumption that the regression

outcome model f(y|x;θ) is correctly specified.

To protect against model misspecification, one can utilize a

propensity score model for P(δ = 1|x) = π(x;ϕ) and apply

ÛDR(η) ≡
1

n

n∑
i=1

[
δi

π(xi; ϕ̂)
U(η; yi) +

(
1− δi

π(xi; ϕ̂)

)
E
{
U(η;Yi) | xi; θ̂

}]
= 0

(3.3)

as an estimating equation for η, where ϕ̂ is the maximizer of

ℓ(ϕ) =
n∑
i=1

[δi log π(xi;ϕ) + (1− δi) log{1− π(xi;ϕ)}] .
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Now, let π̂i = π(xi; ϕ̂). Since

ÛDR(η)−Ûn(η) =
1

n

n∑
i=1

(
1− δi

π̂i

)[
U(η; yi)− E

{
U(η;Yi) | xi; θ̂

}]
,

(3.4)

the right side of (3.4) is approximately unbiased to zero if either

the OR model f(y|x;θ) or the PS model P(δ = 1|x) = π(x;ϕ) is

correctly specified. Thus, the estimating equation ÛDR(η) in (3.3)

gives a doubly robust (DR) estimator. From (3.4), we can achieve

ÛDR(η) = ÛI(η) if

n∑
i=1

δi

(
1

π̂i
− 1

)[
U(η; yi)− E

{
U(η;Yi) | xi; θ̂

}]
= 0. (3.5)

We can view (3.5) as a key condition to get a doubly robust impu-

tation in the sense of Kim and Haziza (2014). Condition (3.5) is

called the internal bias calibration (IBC), which was originally

termed by Firth and Bennett (1998) in the context of design-

consistent estimation of the model parameters under complex sam-

pling. The imputation estimating equation in (3.2) satisfying the

IBC condition (3.5) is called internally bias calibrated. The IBC

condition is a sufficient condition for double robustness. How to

find the imputed estimator satisftying the IBC condition under

a more general class of OR models and PS models is our main

research problem. We will address this issue in the next section.

3.2 Semiparametric Outcome Regression Model

The model assumption based on the estimating equation such as

E{U(η;Y )} = 0 is regarded as a semiparametric model. Thus, in-

stead of making parametric model assumption for [y | x], it makes
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sense to relax the parametric model assumptions for developing

DR imputation. For the OR model, we now assume that there

exists b1(x), . . . , bL(x) such that

E{U(η;Y ) | x} ∈ span{b0(x), b1(x), · · · , bL(x)} := H (3.6)

for all η, where b0(x) ≡ 1. Assumption (3.6) can be called the

semiparametric OR model. If U(η; y) = η−y, model (3.6) reduces

to the usual regression model

E{U(η;Y ) | x} =
L∑
k=0

βkbk(x).

However, finding an imputation estimating equation using (3.6) is

tricky as the vector of regression coefficients β = (β0, β1, . . . , βL)
T

since β = β(η) is a function of η. Thus, even if we can obtain β̂(η)

from the normal equation, finding the solution to the imputed

estimating equation

ÛI(η) ≡
1

n

n∑
i=1

[
δiU(η; yi) + (1− δi)Ê{U(η;Yi) | xi}

]
= 0 (3.7)

is not feasible in general, where

Ê{U(η;Y ) | x} =
L∑
k=0

β̂k(η)bk(x)

and β̂k(η) satisfies

n∑
i=1

δi

{
U(η; yi)−

L∑
k=0

β̂k(η)bk(xi)

}
h(xi) = 0

for any h(x) ∈ H and for all η.

To avoid the difficulty of finding β̂(η) and solving the imputed

estimating equation in (3.7), Wang and Kim (2021) proposed the
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use of the information projection technique for self-efficient PS

estimation. The basic idea is to find the PS weights ω(x;ϕ) =

1/π(x;ϕ) which satisfies the self-efficiency property

1

n

n∑
i=1

δiω(xi; ϕ̂)U(η; yi) =
1

n

n∑
i=1

[
δiU(η; yi) + (1− δi)Ê{U(η;Yi) | xi}

]
(3.8)

holds for all η, where the parameters ϕ̂ are estimated by the cali-

bration equation

n∑
i=1

δiω(xi;ϕ)bi =

n∑
i=1

bi, (3.9)

where bi = (b0(xi), b1(xi), . . . , bL(xi))
T. Wang and Kim (2021)

proved that the PS weights in (3.13) satisfying the calibration

condition in (3.9) satisfies the self-efficiency property in (3.8). Once

ω(x; ϕ̂) satisfying (3.8) is obtained, we can use

n∑
i=1

δiω̂iU(η; yi) = 0 (3.10)

to obtain the solution to the imputed estimating equation in (3.7),

where ω̂i = ω(xi; ϕ̂). If U(η; y) = η − y, the estimating equation

(3.10) gives an estimator

1

n

n∑
i=1

δiω̂iyi =
1

n

n∑
i=1

bTi β +
1

n

n∑
i=1

δiω̂i
(
yi − bTi β

)
=

1

n

n∑
i=1

{
δiyi + (1− δi)bTi β

}
+

1

n

n∑
i=1

δi(ω̂i − 1)
(
yi − bTi β

)
for any β. Thus, the imputed estimating equation satisfying the

self-efficiency property (3.8) can be derived as

Ê{U(η;Yi) | xi} = η − bTi β̂IBC,
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where β̂IBC is the solution which satisfies the IBC condition

n∑
i=1

δi(ω̂i − 1)
(
yi − bTi β

)
= 0. (3.11)

Then, we can have a DR imputed estimator

η̂IBC =
1

n

n∑
i=1

{
δiyi + (1− δi)bTi β̂IBC

}
. (3.12)

By using the information projection approach, Wang and Kim

(2021) presented the PS weight model

ω(x;ϕ) = 1 +
nmis

nobs
exp

{
b(x)Tϕ

}
(3.13)

where nobs =
∑n

i=1 δi is the number of observed outcomes, nmis =

n−nobs is the number of nonresponses, and ϕ = (ϕ0, ϕ1, . . . , ϕL)
T

is the vector of parameters in the PS weight model. Note that

the PS weight model (3.13) can be equivalently represented as the

logistic (log-odds) PS model

log

{
π(x;ϕ)

1− π(x;ϕ)

}
= log

(
nobs
nmis

)
− b(x)Tϕ. (3.14)

In the next sections, we address how to obtain the robust im-

puted estimator against model misspecification of the PS model

and outliers in the OR model.

3.3 Misspecification of Propensity Score Model

Wang and Kim (2021) proposed the PS weight model (3.13) based

on the information projection approach. Indeed, the authors’ ap-

proach is based on the Kullback-Leibler (KL) divergence. In this

section, we examine how to enlarge the class of PS weight models

by using the γ-power divergence.
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Eguchi (2021) presented the γ-power divergence as a general-

ization of KL-divergence to enlarge the class of statistical models

by introducing an additional scale parameter γ.

Definition 3.3.1 (Eguchi, 2021). Let q and s be two probability

density functions. Given γ > 0, the divergence

Dγ(q∥s) =
1

γ(γ + 1)
log

∫
q(x)γ+1dx

−1

γ
log

∫
q(x)s(x)γdx

+
1

γ + 1
log

∫
s(x)γ+1dx. (3.15)

is called the γ-power divergence.

Similar to the KL-divergence, Dγ(q∥s) ≥ 0 for all q, s and

equality holds if and only if q = s. At γ = 0, γ-power divergence

is defined as the KL-divergence

D0(q∥s) = lim
γ→0

Dγ(q∥s) = DKL(q∥s).

Following theorem gives the PS weight model with respect to the

γ-power divergence.

Lemma 3.3.1. Based on the γ-power divergence, the information

projection approach gives the PS weight model

ω(x;ϕ, γ) = 1 +
nmis

nobs

(
1 + γb(x)Tϕ

)1/γ
. (3.16)

Similar to the case of the KL-divergence, the parameter ϕ in

(3.16) is estimated by solving the calibration equation (3.9).

Recall that the PS weight model (3.13) induces the logistic PS

model. On the other hand, the PS weight model (3.16) induces the
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power-odds model{
π(x;ϕ)

1− π(x;ϕ)

}γ
=

(
nobs
nmis

)γ 1

{1 + γb(x)Tϕ}
. (3.17)

Guerrero and Johnson (1982) proposed the power-odds model (3.17)

to generalize the logistic regression model.

Remark 3.3.1. Eguchi (2021) independently derived the power-

odds model (3.17) based on the γ-power divergence for robust

inference against mislabeled binary outcome. Suppose that we ob-

serve the mislabeled data δ(m) = 1− δ instead of δ. Let

τ0 = P(δ(m) = 1 | δ = 0,x),

τ1 = P(δ(m) = 0 | δ = 1,x)

be mislabel probabilities (Hung et al., 2018). Then,

P(δ(m) = 1 | x) = τ0 P(δ = 0 | x) + (1− τ1) P(δ = 1 | x). (3.18)

Thus, the robust inference against the mislabeled binary outcome

is equivalent to the robust inference against the model misspecifi-

cation when the true model is (3.18).

To examine the robustness of the power-odds model (3.17), let

πlog(x) =
exp{b(x)Tϕ}

1 + exp{b(x)Tϕ}
,

πpow(x) =
{1 + γb(x)Tϕ}1/γ

1 + {1 + γb(x)Tϕ}1/γ
.

Then, for δ(m) = 1 and all γ > 0,∣∣∣δ(m) − πlog(x)
∣∣∣ ≥ ∣∣∣δ(m) − πpow(x)

∣∣∣ .
This shows how the power-odds model (3.17) allows the robust

inference against mislabeled binary outcome.
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Wang and Kim (2021) showed the asymptotic normality of the

estimator obtained by the PS weighted estimating equation (3.10).

In the following corollary, we generalize their result to the imputed

estimator based on the γ-power divergence.

Corollary 3.3.1. Let

η̂γ =
1

n

n∑
i=1

{
δiyi + (1− δi)bTi β̂γ

}
, (3.19)

where β̂γ is the solution to

n∑
i=1

δibi {ω̂i(γ)− 1} (yi − bTi β) = 0

and ω̂i(γ) = ω(xi; ϕ̂γ , γ). Under the MAR assumption, let β∗ be

the probability limit of β̂γ . If the condition E(Y |x) = b(x)Tβ∗ is

satisfied, then
√
n (η̂γ − η∗)

d→ N(0, Vγ) ,

where

Vγ = var{b(X)Tβ∗}+ E[δ{ω(X;ϕ∗, γ)}2 var(Y |X)] (3.20)

and ϕ∗ is the probability limit of ϕ̂γ .

In estimating γ, we propose to choose γ which minimizes the

variance of η̂γ , Vγ . Note that the first term in Vγ does not depend

on γ. Therefore, it suffices to find γ which minimizes the second

term in Vγ .

Theorem 3.3.1. Let

di(γ) = δi {ω̂i(γ)}2
(
yi − bTi ζ̂γ

)2
,
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where

ζ̂γ =

{
n∑
i=1

δi
∂ω(bi;ϕ, γ)

∂ϕ
bTi

∣∣∣
ϕ=ϕ̂γ

}−1{ n∑
i=1

δi
∂ω(bi;ϕ, γ)

∂ϕ
yi

∣∣∣
ϕ=ϕ̂γ

}
.

If the OR model is correctly specified, as n→∞,

d̄γ =
1

n

n∑
i=1

dγ,i
P→ E[δ{ω(X;ϕ∗, γ)}2 var(Y |X)].

Note that both ζ̂γ and ϕ̂γ depend on γ. To reduce the effect of

estimation error in determining the tuning parameter γ, we pro-

pose to find γ̂ by minimizing d̄γ with the K-fold cross-validation.

3.4 Outliers in Outcome Regression Model

So far, we examine the IBC condition which leads to robust infer-

ence against misspecification of the OR model or PS model. We

also derive the PS weight model based on the γ-power divergence.

In this section, we discuss how to allows robust inference against

outliers in outcome, Y .

In the presence of outliers, one may use the t-distribution

(Lange et al., 1989) to allow the robust inference against outliers.

Eguchi (2021) independently derived the t-distribution based on

the γ-power divergence. However, it is not straightforward how

to extend the IBC condition to the t-distribution. Instead, con-

sider the following random effect model, namely DHGLM (Lee

and Nelder, 2006)

Y | x, u ∼ N
{
µ(x), σ2(x)u

}
, u ∼ Inv-gamma(α+ 1, α), (3.21)

where

µ(x) = b(x)Tβ∗ and σ2(x) =
σ20

ω(x)− 1
.
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We can see that correct specification of models E(Y |x) and P(δ =

1|x) is equivalent to that of mean µ(x) and dispersion σ2(x) in

DHGLM, respectively. For missing mechanism, we extend the def-

inition of the MAR assumption as

(Y, u) ⊥ δ | x

to maintain the property that δ only depends on x (Ibrahim and

Molenberghs, 2009). Then, the random effect model (3.21) induces

the marginal distribution of Y |x as t-distribution. Here, the con-

straint E(u) = 1 guarantees that var(Y |x) = σ2(x) does not de-

pend on the degrees of freedom of resulting t-distribution (Lee and

Nelder, 2006).

Under the model (3.21), the ML imputation method of Han et

al. (2022a) gives an imputed estimator

η̂D =
1

n

n∑
i=1

{
δiyi + (1− δi)bTi β̂D

}
, (3.22)

where β̂D is the maximum h-likelihood estimator (Lee et al., 2017)

obtained by solving

n∑
i=1

δibi
ω̂i − 1

ũi
(yi − bTi β) = 0. (3.23)

Here, ω̂i is an estimator of the PS weight and

ũi =
(ω̂i − 1)(yi − bTi β)2/σ20 + 2α

3 + 2α
.

In (3.23), if the ith observation (δiyi, δixi) has large residual,∣∣yi − bTi β∣∣ /ũi → 0 as
∣∣yi − bTi β∣∣→∞.

This shows how the robustness against outliers in Y can be achieved.

Moreover, ũi → 1 as α → ∞, i.e., the model (3.21) satisfies the

58



IBC condition if there is no outlier in Y . In Appendix, we present

how to construct the h-likelihood of the model (3.21).

In summary, we can allow various types of robustness by us-

ing the DHGLM in modeling approach. For η̂D, robust inference

against outliers in OR model is allowed by introducing a random

effect u in dispersion. The estimator η̂D comes the estimator η̂IBC

when there is no outlier. Moreover, let

η̂ML =
1

n

n∑
i=1

{
δiyi + (1− δi)bTi β̂ML

}
, (3.24)

be the regression imputed estimator, where β̂ML is the solution to∑n
i=1 δibi(yi − b

T
i β) = 0 (Han et al., 2022a). The consistency of

estimator η̂ML holds only when the OR model is correctly speci-

fied, i.e., double robustness is no longer guaranteed. The presented

estimators have the following relationship:

η̂D →
ũi=1

η̂IBC →
ω̂i=2

η̂ML.

Here, ω̂i = 2 indicates that

P̂(δi = 1 | xi) = P̂(δi = 0 | xi) = 0.5,

i.e., the missing mechanism is the MCAR which does not account

the PS model in estimating β. In η̂IBC, the use of power-odds

model allows robust inference against the misspecification of the

PS model compared to the log-odds PS model by enlarging the

class of PS models.

3.5 Simulation Study

In this section, we conduct simulation studies to compare various

methods. ȳcom is also considered as a benchmark. If a model de-
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rived from the γ-power divergence is used, γ is chosen to maximize

the likelihood in modeling approach or minimize the variance of

corresponding estimator in estimating equation approach with 10-

fold cross validation to avoid the overfitting. In all cases, covariates

b(x) = (1, x1, x2) are generated as x1 ∼ U(0, 1), x2 ∼ exp(1), and

parameters in propensity score models are set to satisfy around

70% of responses which are observed. The performance of vari-

ous estimators is examined in terms of the following quantities:

(i) bias= η − η̄, η̄ =
∑T

t=1 η̂
(t)/T , (ii) SD= {

∑T
t=1(η̂

(t) − η̄)2/(T −

1)}0.5, (iii) bias/SD, and (iv) RMSE= {
∑T

t=1(η̂
(t) − η)2/T}0.5,

where T = 500 is the number of iterations.

3.5.1 Robustness against Model Misspecification

In this section, we examine the performance of proposed methods.

For η̂D, we consider the power-odds PS model. For η̂IBC, we con-

sider two PS models: power-odds PS model (η̂pow) and log-odds

PS model (η̂log). Given covariates b(x), Y and δ are generated as

follows.

OM1 (Outcome regression Model 1): Y |x follows normal dis-

tribution with mean E(Y |x) = 1+0.2x1+0.2x2 and variance

1. Under OM1, η∗ = 1.4.

OM2: Y |x follows exponential distribution with mean E(Y |x) =

1 + 0.2x1 + 0.2x2 + ex1 + x22. Under OM2, η∗ = 2.9 + 0.5e2.

PM1 (Propensity score Model 1): δ|x follow Bernoulli dis-

tribution with

P(δ = 1 | x)
P(δ = 0 | x)

= exp(−0.1 + 0.5x1 + 0.5x2),
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i.e., log-odds model (logistic model) is considered.

PM2: δ|x follow Bernoulli distribution with the power-odds

P(δ = 1 | x)
P(δ = 0 | x)

=
6

1 + x1 + x2
.

Compared to the OM1, E(Y |x) is not correctly specified in OM2.

Moreover, var(Y |x) is proportional to E(Y |x).

OM1PM1
n = 500 n = 1000

ȳcom η̂D η̂pow η̂log η̂ML ȳcom η̂D η̂pow η̂log η̂ML

bias -0.0057 -0.0038 -0.0038 -0.0038 -0.0039 0.0015 0.0012 0.0012 0.0012 0.0012

SD 0.0450 0.0545 0.0545 0.0546 0.0544 0.0324 0.0391 0.0391 0.0391 0.0390

bias/SD -0.1267 -0.0698 -0.0697 -0.0696 -0.0710 0.0471 0.0297 0.0299 0.0302 0.0307

RMSE 0.0453 0.0546 0.0546 0.0547 0.0545 0.0324 0.0391 0.0391 0.0391 0.0390

Table 3.1: Simulation results under the OM1PM1 case.

OM2PM2
n = 500 n = 1000

ȳcom η̂D η̂pow η̂log η̂ML ȳcom η̂D η̂pow η̂log η̂ML

bias 0.0140 -0.0054 0.0031 0.0469 0.0003 0.0139 -0.0028 0.0088 0.0567 0.0050

SD 0.4448 0.5524 0.5560 0.5964 0.5586 0.3028 0.4173 0.4240 0.4759 0.4288

bias/SD 0.0314 -0.0097 0.0056 0.0787 0.0005 0.0459 -0.0068 0.0208 0.1191 0.0117

RMSE 0.4446 0.5519 0.5555 0.5977 0.5580 0.3029 0.4169 0.4237 0.4788 0.4284

Table 3.2: Simulation results under the OM2PM2 case.

Based on simulation results in Table 3.1 and 3.2, we can check

that proposed estimators η̂D and η̂pow are consistent even though

E(Y |x) is not correctly specified in OM2.

Recall that the pow-odds model covers the log-odds model.

Thus, we also consider the following PS model to examine the per-

formance of estimators when both outcome model and PS model

are incorrectly specified.
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PM3: δ|x follow Bernoulli distribution with

P(δ = 1 | x)
P(δ = 0 | x)

= exp(−0.1 + 0.5x21 + 0.5x22).

Note that the functional form of PM3 is the log-odds model but

covariates are (x21, x
2
2), not (x1, x2). Therefore, the consistency is

no longer guaranteed for all estimators under OM2PM3.

OM2PM3
n = 500 n = 1000

ȳcom η̂D η̂pow η̂log η̂ML ȳcom η̂D η̂pow η̂log η̂ML

bias 0.0171 0.0296 0.0419 0.0503 -0.1326 -0.0043 0.0163 0.0287 0.0366 -0.1291

SD 0.4312 0.4508 0.4512 0.4521 0.4095 0.3059 0.3249 0.3250 0.3258 0.2893

bias/SD 0.0397 0.0656 0.0928 0.1114 -0.3237 -0.0140 0.0502 0.0882 0.1123 -0.4461

RMSE 0.4311 0.4513 0.4527 0.4544 0.4300 0.3056 0.3250 0.3260 0.3275 0.3165

Table 3.3: Simulation results under the OM2PM3 case.
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Figure 3.1: Boxplots of estimators in OM2PM3: (a) for n = 500

and (b) for n = 1000.

Table 3.3 shows the simulation result of various estimators. We

can see that proposed method η̂D and η̂pow give smaller bias than

existing methods η̂log and η̂ML. Moreover, even though there is no

outlier, η̂D gives smaller bias and variance compared to η̂pow.
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3.5.2 Robustness against Outliers

In this section, we consider OM3PM2 model with

OM3: Y | x ∼ Exp (1 + 0.2x1 + 0.2x2)

to check the performance of various estimators. Note that all esti-

mators are consistent under OM3 if there is no outlier. After data

are generated, additional noise generated from U(0, 100) is added

to 20% of observed outcomes.

Table 3.4 and Figure 3.2 shows performances of various esti-

mators. Compared to η̂pow, η̂log, and η̂ML, only η̂D reduces the bias

due to the outliers. Moreover, η̂D gives comparable results to the

benchmark ȳcom.

OM3PM2
n = 500 n = 1000

ȳcom η̂D η̂pow η̂log η̂ML ȳcom η̂D η̂pow η̂log η̂ML

bias 6.7189 6.8475 9.9148 9.9179 9.9154 6.7791 6.9004 10.0342 10.0352 10.0335

SD 0.8931 0.9847 1.3061 1.3077 1.3052 0.6850 0.7549 0.9917 0.9940 0.9918

bias/SD 7.5229 6.9542 7.5909 7.5842 7.5969 9.8960 9.1404 10.1187 10.0957 10.1166

RMSE 6.7779 6.9178 10.0003 10.0035 10.0008 6.8136 6.9415 10.0830 10.0842 10.0823

Table 3.4: Simulation results under the OM3PM2 case with out-

liers.

3.6 Conclusion

In this chapter, we investigate the conditions under which the

consistency of estimators is guaranteed when the study variable

is only partially observed. To obtain the doubly robust imputed

estimator, we propose the IBC condition that ensures the equiva-

lence between the imputation method and the weighting method
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Figure 3.2: Boxplots of estimator in the presence of outliers in Y

and δ under OM3PM2 when n = 1000. Red dotted line indicates

η∗ and orange dotted line indicates the average of ȳcom.

by means of the PS weight. An interesting point of the IBC con-

dition is that estimating equation for regression coefficient in OR

model is estimated by using the PS as weights. In estimating the

PS weight, the log-odds model can be used, which can also be de-

rived by using the information projection approach with the KL

divergence.

Eguchi presented the γ-power divergence to generalize the KL

divergence. We show how the IBC condition can be achieved in

terms of the γ-power divergence. The PS model induced by the

γ-power divergence is equivalent to the power-odds model. The

power-odds PS model allows more general class of PS models com-

pared to the log-odds PS model.

One aspect of Eguchi’s γ-power divergence is that the γ-power

divergence allows robust inferences against outliers and γ-power

divergence for the outcome regression model induces the t-distribution.
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To extend the IBC condition while allowing the robustness against

outliers, we introduce the DHGLM of Lee and Nelder (2006) in

the modeling approach by incorporating a random effect into the

dispersion model since achieving the IBC condition with the t-

distribution is not straightforward. In the DHGLM, double robust-

ness can be understood as a correct specification of the mean and

variance of the DHGLM. Based on the DHGLM framework, we

can have ML estimation for fixed parameters as well as ML impu-

tation for random parameters, namely random effect and missing

data. Advantage of modeling approach is efficient algorithm for

estimation of fixed parameters and imputation of random param-

eters.

Appendix

Proof of Lemma 3.3.1

Proof. Let

L =

{
f0 :

∫
b(x)f0(x)dx =

1

1− p

[
E {b(X)} − p

∫
b(x)f1(x)dx

]}
(3.25)

be the linear family, where fk(x) = f(x|δ = k), k = 0, 1 and

p = P(δ = 1). By using the information projection method, we

want to find f̃0 which minimizes Dγ(f0∥f1) given f1, i.e.,

f̃0 = arg min
f0∈L

Dγ(f0∥f1). (3.26)

If f0 ∈ L and g0 ∈ L

h0 = tf0 + (1− t)g0 ∈ L (3.27)

65



for all t ∈ [0, 1]. In information projection theory, the line of the

form (3.27) is called m-geodesic line. Moreover, the γ-power diver-

gence has the dually flat structure with m-geodesic line. Thus, the

information projection (3.26) is not only well-defined, but it tells

us how to estimate f1.

Given the empirical distribution P̂1(x) = n−1
obsδiI(x = xi), f̂1

which minimizes the γ-power divergence Dγ(P̂1∥f1) under con-

straint L1 = {f1 :
∑n

i=1 δif1(xi) = 1} is given by f̂1(xi) = n−1
obs for

{xi : δi = 1}. Moreover, f̃0(xi;ϕ, γ) which minimizes the γ-power

divergence Dγ(f0∥f̂1) under constraint f̃0 ∈ L is given as

f̃0(xi;ϕ, γ) =
(
1 + γbTi ϕ

)1/γ
f̂1(xi), (3.28)

for δi = 1. Note that

1

P(δ = 1 | x)
= 1 +

1− p
p

f0(x)

f1(x)
.

By combining p̂ = nobs/n and (3.28), we have the PS model

ω(xi;ϕ, γ) = 1 +
nmis

nobs

(
1 + γbTi ϕ

)1/γ
for δi = 1.

Proof of Theorem 3.3.1

Proof. Given γ, let

η̃γ(ϕ) =
1

n

n∑
i=1

δiω(xi;ϕ, γ)yi,

Uγ(ϕ) =
1

n

n∑
i=1

δiω(xi;ϕ, γ)bi −
1

n

n∑
i=1

bi.

Then, η̂γ = η̃γ(ϕ̂γ) and Uγ(ϕ̂γ) = 0. Since we use the estimate ϕ̂γ

instead of fixed, true value ϕ∗, summands {δiω(xi; ϕ̂γ , γ)yi} are no
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longer independent. Note that Talyor expansions of η̂γ = η̃γ(ϕ̂γ)

and 0 = Uγ(ϕ̂γ) at ϕ
∗ are

η̂γ = η̃γ(ϕ̂γ)

= η̃γ(ϕ
∗) +

{
∂η̃γ(ϕ)

∂ϕ

∣∣∣
ϕ=ϕ∗

}T

(ϕ̂γ − ϕ∗)

+op(n
−1/2), (3.29)

0 = Uγ(ϕ̂γ)

= Uγ(ϕ
∗) +

{
∂Uγ(ϕ)

∂ϕ

∣∣∣
ϕ=ϕ∗

}T

(ϕ̂γ − ϕ∗)

+op(n
−1/2). (3.30)

By combining (3.29) and (3.30) we can express η̂γ as

η̂γ = η̃γ(ϕ
∗) +

{
∂η̃γ(ϕ)

∂ϕ

∣∣∣
ϕ=ϕ∗

}T

(ϕ̂γ − ϕ∗) + op(n
−1/2),

=
1

n

n∑
i=1

δiω(xi;ϕ
∗, γ)yi −

1

n
ζ̂
T

γ

{
n∑
i=1

δiω(xi;ϕ
∗, γ)bi −

n∑
i=1

bi

}
+op(n

−1/2)

=
1

n

n∑
i=1

{
bTi ζ̂γ + δiω(xi;ϕ

∗, γ)(yi − bTi ζ̂γ)
}
+ op(n

−1/2).

Under the assumption E(Y |x) = b(x)Tβ∗, E(ζ̂γ) = E{E(ζ̂γ |x)} =

β∗ and

var{Y − b(x)Tβ∗ | x} = E[{Y − b(x)Tβ∗}2 | x]

which gives

E[δ{ω(x;ϕ∗, γ)}2 var{Y − b(x)Tβ∗} | x]

= E[δ{ω(x;ϕ∗, γ)}2 E[{Y − b(x)Tβ∗}2|x]].
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Linearization technique makes summands be asymptotically in-

dependent which gives simple variance estimator, especially the

second term in Vγ .

Construction of the h-likelihood

Let θ = (βT, σ20, α)
T be vector of fixed parameters, u be vector of

random effects and ymis be the vector of nonresponses. In model

(3.21), ξ = log(u) scale is canonical for β and σ20, but not for α.

Also, ymis-scale is not canonical for σ
2
0. Instead, consider a w-scale

defined as

wi =

{
ωi − 1

σ20
e−ξi

}0.5

ymis,i.

On the ξ-scale and w-scale, the extended likelihood is

ℓe(θ, ξ,w) = ℓe(θ,u,ymis) + log

∣∣∣∣∂u∂ξ
∣∣∣∣+ log

∣∣∣∣∂ymis

∂w

∣∣∣∣ (3.31)

=

n∑
i=1

δi

[
−1

2
log

{
2πσ2

0

ωi − 1

}
− 1

2
log ui −

1

2σ2
0

ωi − 1

ui

(
yi − bTi β

)2]

+

n∑
i=1

(1− δi)
[
−1

2
log 2π − 1

2σ2
0

ωi − 1

ui

(
ymis,i − bTi β

)2]

+

n∑
i=1

{
(α+ 1) log(α)− log Γ(α+ 1)− (α+ 1) log ui −

α

ui

}
,

where Γ(·) is the gamma function. Furthermore, consider v-scale

given as

vi = (1.5 + α)0.5ξi.

Then, all random parameters v and ymis are canonical to fixed

parameters θ, i.e., joint maximization of the h-likelihood gives
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MLEs of (θ,v,ymis). In this case, the h-likelihood becomes

h(θ,v,ymis) =

n∑
i=1

δi

[
−1

2
log

{
2πσ2

0

ωi − 1

}
− vi

2
− ωi − 1

2σ2
0

e−vi
(
yi − bTi β

)2]

+

n∑
i=1

(1− δi)
[
−1

2
log 2π − ωi − 1

2σ2
0

e−vi

(
ymis,i − bTi β

)2]

+

n∑
i=1

{
−(α+ 1)vi − αe−vi − 1

2
log(1.5 + α)

}
,

+n(α+ 1) log(α)− n log Γ(α+ 1). (3.32)

For δi = 1, canonical function of vi (or, the mode of the h-

likelihood with respect to vi given θ) is

e−ṽi =
3 + 2α

(ωi − 1)(yi − bTi β)2/σ20 + 2α
.

Moreover, canonical function of ymis,i is

ỹmis,i = b
T
i β.

By the property of the h-likelihood, joint maximization of (θ,v,ymis)

gives the MLE β̂D and σ̂20 by solving

n∑
i=1

δibi
ωi − 1

ũi

(
yi − bTi β

)
= 0, (3.33)

n∑
i=1

δi

{
− 1

2σ20
+

1

2(σ20)
2

ωi − 1

ũi

(
yi − bTi β

)2}
= 0, (3.34)

where ũi = exp(ṽi). In the model (3.21), α̂, MLE of α, can be

obtained by the joint maximization of the h-likelihood (3.32) even

though there is no explicit form of α̂. Alternatively, the moment-

based estimator for α can be used. Note that

E (ũi) = E {E (ũi | xi)} =
1 + 2α

3 + 2α
.
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Then, α can be estimated by solving

¯̃u =
1

nobs

n∑
i=1

δiũi =
1 + 2α

3 + 2α
.
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Chapter 4

Enhanced Laplace

Approximation
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Chapter Summary

The Laplace approximation (LA) has been proposed as a method

for approximating the marginal likelihood of statistical models

with latent variables. However, the approximate maximum like-

lihood estimators (MLEs) based on the LA are often biased for

binary or spatial data, and the corresponding Hessian matrix un-

derestimates the standard errors of these approximate MLEs. A

higher-order approximation has been proposed; however, it cannot

be applied to complicated models such as correlated random ef-

fects models and does not provide consistent variance estimators.

In this chapter, we propose an enhanced LA (ELA) that provides

the true MLE and its consistent variance estimator. We study its

relationship to the variational Bayes method. We also introduce

a new restricted maximum likelihood estimator (REMLE) for es-

timating dispersion parameters. The results of numerical studies

show that the ELA provides a satisfactory MLE and REMLE, as

well as their variance estimators for fixed parameters. The MLE

and REMLE can be viewed as posterior mode and marginal pos-

terior mode under flat priors, respectively. Some comparisons are

also made with Bayesian procedures under different priors.
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4.1 Review of the LA

Throughout the chapter, we impose the following regularity con-

ditions:

R1. The parameter space Θ is convex.

R2. All likelihoods are smooth and unimodal with respect to θ.

The LA to the marginal likelihood Lm(θ) is

L̂m(θ) = H(θ, z̃)

∣∣∣∣ 12π Ω̃zz
∣∣∣∣− 1

2

,

where z̃ = argmaxz h(θ, z) = argmaxz ℓp(z|y; θ) and

Ω̃zz = −
∂2

∂z∂zT
h(θ, z)

∣∣∣
z=z̃

= − ∂2

∂z∂zT
ℓp(z|y; θ)

∣∣∣
z=z̃

.

According to (1.2), the LA to Lm(θ) can be defined as

L̂m(θ) = H(θ, z̃)/L̂p(z̃|y; θ),

This formulation can be viewed as the use of an approximate pre-

dictive likelihood L̂p(z|y; θ) in (1.2), based on the normal distri-

bution

z | y ∼ N
(
z̃, Ω̃−1

zz

)
. (4.1)

This gives

ℓ̂m(θ) = log L̂m(θ) = h(θ, z̃)− ℓ̂p(z̃|y; θ) = h(θ, z̃)− 1

2
log

∣∣∣∣ 12π Ω̃zz
∣∣∣∣ .

Thus, the LA is exact when the predictive likelihood is normal. Let

θ̂ be the MLE and θ̂L be the approximate MLE, which are modes

of ℓm(θ) and ℓ̂m(θ), respectively. As the sample size n → ∞, if

θ̂
P→ θ0 and

ℓm(θ)− ℓ̂m(θ)
P→ 0, uniformly in θ, (4.2)
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then θ̂L
P→ θ0. However, in general, it is difficult to justify that the

LA ℓ̂m(θ) satisfies the uniform convergence condition (4.2). Let θL0

be the probability limit of θ̂L. If
√
n(θ̂L − θL0 ) = Op(1), then

√
n
(
θ̂L − θL0

)
d→ N

{
0,G−1

(
θL0
)}
, (4.3)

where G̃(θ) = H̃(θ)K̃−1(θ)H̃(θ), H̃(θ) = E{−∂2ℓ̂m(θ)/∂θ∂θT},

K̃(θ) = var{∂ℓ̂m(θ)/∂θ} and G(θL0 ) = limn→∞ n−1G̃(θL0 ). Kris-

tensen et al. (2016) and Lee et al. (2017) proposed the use of

the inverse Hessian matrix of ℓ̂m(θ) as a variance estimator of

θ̂L. Ogden (2017) provided regularity conditions that guarantee

asymptotic equivalence between the Hessian matrix of ℓ̂m(θ) and

that of ℓm(θ). However, these conditions are hardly satisfied. As

mentioned in Bologa et al. (2021), the Bayesian approach views

the approximate MLE θ̂L as an approximate mode of the poste-

rior distribution under a flat prior on θ. Pauli et al. (2011) further

showed that

√
n
(
θ − θ̂L

)
| y d→ N

{
0,H−1

(
θL0
)}
,

where

H
(
θL0
)
= lim

n→∞

1

n

{
− ∂2

∂θ∂θT
ℓ̂m(θ)

∣∣∣
θ=θL0

}
.

Thus, the variance estimators presented by Kristensen et al. (2016)

and Lee et al. (2017) can be viewed as estimating the variance of

the approximate Bayesian posterior mode θ̂L; see the numerical

study of Bologa et al. (2021). In addition, Jin and Lee (2022)

investigated the frequentist sandwich variance estimator (4.3) of

the approximate MLE θ̂L.

Assume that d is the dimension of the integral in (1.1). The LA

is valid in the sense that ℓm(θ)− ℓ̂m(θ) = op(1) when d = o(n1/3)
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(Shun and McCullagh, 1995; Ogden, 2021); thus, the LA may not

be suitable for crossed random effects models with d = O(n1/2)

and correlated random effects models with d = O(n). Further-

more, the performance of the LA is often unsatisfactory for binary

outcomes (Shun, 1997). Thus, Shun and McCullagh (1995) pro-

posed the use of the second-order LA in the exchangeable binary

array model for salamander mating data. Shun (1997) investigated

parameter estimation based on the second-order LA. However, due

to the complexity of the approximation, the author could compute

only some selected terms. Noh and Lee (2007) showed how to com-

pute all the terms in the second-order LA and developed a REML

estimation procedure for salamander mating data. However, the

second-order LA can be applied to a limited class of models due

to the complexity of the approximation. Furthermore, even if the

second-order LA is applicable, the approximation is often slow

because a considerable number of terms must be computed.

In summary, (i) ℓm(θ)− ℓ̂m(θ) ̸= op(1) as d increases, and (ii)

even if ℓm(θ)− ℓ̂m(θ) = op(1), the approximate MLE θ̂L may not

be the MLE θ̂. Furthermore, (iii) it is not known how to obtain

a consistent variance estimator for θ̂. (iv) It is also of interest to

have REMLEs for dispersion parameters. A general higher-order

LA may not be sufficient for resolving these problems.

4.2 ELA

Assume that q(z) is an arbitrary density function with
∫
q(z)dz =

1 that has the same support as the predictive likelihood Lp(z|y; θ).
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Next, from (1.1) the marginal likelihood is defined as

Lm(θ) =

∫
H(θ, z)dz =

∫
H(θ, z)

q(z)
q(z)dz.

Thus, we can approximate the marginal likelihood as

L̃B(θ) =
1

B

B∑
b=1

H(θ, Zb)

q(Zb)
,

where Zb are iid samples from q(z). Since H(θ, Zb)/q(Zb) can be

viewed as iid samples with the mean Lm(θ), L̃B(θ) is a consistent

estimator of Lm(θ), i.e., as B →∞,

L̃B(θ)
P→ Lm(θ).

The variational Bayes method has been proposed for approxi-

mating ℓm(θ) (Kingma and Welling, 2013). For any q(z),

ℓm(θ) =

∫
log

{
H(θ, z)

q(z)

}
q(z)dz +R

≥
∫

log

{
H(θ, z)

q(z)

}
q(z)dz = ℓv(θ; q),

where

R =

∫
log

{
q(z)

Lp(z | y; θ)

}
q(z)dz ≥ 0,

and ℓv(θ; q) is referred to as the evidence lower bound (ELBO).

The marginal log-likelihood in (1.1) can be approximated by max-

imizing the ELBO

ℓ̂v(θ) = max
q
ℓv(θ; q).

In the variational Bayes methods, q(z) is often assumed to have

a normal density N(µ,Γ) with an arbitrary mean µ and arbitrary

covariance matrix Γ. In general, the ELBO is not a tight lower
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bound, i.e., ℓm(θ) − ℓ̂v(θ) > 0 since R > 0. To address this issue,

Burda et al. (2016) modified the ELBO as follows:

ℓ̃v,B(θ;µ,Γ) = Eµ,Γ

{
log L̃B(θ)

}
,

where Zb are iid samples from N(µ,Γ). The authors used the see-

saw algorithm: (i) given θ, update (µ,Γ) by maximizing ℓ̃v,B(θ;µ,Γ)

and (ii) given (µ,Γ), update θ by maximizing ℓ̃v,B(θ;µ,Γ). In cor-

related random effects models with d = n, estimating µ and Γ

is not straightforward. The ELBO has been studied to approxi-

mate the marginal log-likelihood. However, the main interest of

this chapter is how to obtain the true MLE θ̂ and its consistent

variance estimator in general cases.

According to the expression (1.2), if the value of Lp(z
∗|y; θ) is

known at any point z∗, it is immediate that Lm(θ) = H(θ, z∗)/Lp(z
∗|y; θ).

However, in general, Lp(z|y; θ) is not known for all z. Recall that

the LA approximates the predictive likelihood Lp(z|y; θ) at z̃ by

L̂p(z̃|y; θ) as

L̂m(θ) = H(θ, z̃)/L̂p(z̃|y; θ).

Since ℓm(θ) − ℓ̂m(θ) = ℓ̂p(z̃|y; θ) − ℓp(z̃|y; θ), the accuracy of the

LA is the same as that of the predictive likelihood L̂p(z|y; θ). Let

L̂B(θ) =
1

B

B∑
b=1

L̂m(θ;Zb),

where {Zb : b = 1, . . . , B} are iid samples from N(z̃, Ω̃−1
zz ) and

L̂m(θ;Z) = H(θ, Z)/L̂p(Z|y; θ).

The LA is L̂B(θ) with B = 1 at Zb = z̃. We call L̂B(θ) the ELA

when q(z) is the density function of N(z̃, Ω̃−1
zz ). In the Appendix,
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we show that if the true predictive likelihood Lp(z|y; θ) is normal,

then, for all B ≥ 1

L̂B(θ) = Lm(θ). (4.4)

If L̂p(z|y; θ) is close to the true Lp(z|y; θ), we expect that L̂B(θ)

provides an accurate estimate of Lm(θ) for small values of B. As

the LA provides an accurate approximation of Lm(θ), the use

of N(z̃, Ω̃−1
zz ) as q(z) is preferred. Burda et al. (2016) improved

the variational method by exploiting the expression (1.1) of the

marginal likelihood. The ELA further improves the variational

method by using the alternative expression (1.2).

Theorem 4.2.1. Let ℓ̂B(θ) = log L̂B(θ) and θ̂
ELA
B = argmaxθ ℓ̂B(θ).

Under regularity conditions R1 and R2, as B →∞,

θ̂ELAB
P→ θ̂.

Now, we study how to obtain a consistent estimator for the

information matrix

I(θ) = −∂
2ℓm(θ)

∂θ∂θT
.

Let ÎB = IB(θ̂
ELA
B ), where

IB(θ) =

[
B∑
b=1

{
w(θ, Zb)

∂h(θ, Zb)

∂θ

}][ B∑
b=1

{
w(θ, Zb)

(
∂h(θ, Zb)

∂θ

)T
}]

−
B∑
b=1

[
w(θ, Zb)

{
∂h(θ, Zb)

∂θ

(
∂h(θ, Zb)

∂θ

)T

+
∂2h(θ, Zb)

∂θ∂θT

}]

and w(θ, Zb) = L̂m(θ, Zb)/
∑B

t=1 L̂m(θ, Zt). Then, we have the fol-

lowing theorem.

Theorem 4.2.2. As B →∞, ÎB
P→ I(θ̂).
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According to Theorem 4.2.2, the variance of the MLE θ̂ can

be consistently estimated by

v̂ar
(
θ̂
)
= Î−1

B .

4.3 Restricted Likelihood

For cases in which τ and β are orthogonal, Cox and Reid (1987)

proposed the use of an adjusted profile likelihood for the dispersion

parameters τ based on the marginal likelihood Lm(θ):

R̂(τ) = Lm

(
τ, β̃
) ∣∣∣∣ 12π Ω̃ββ

∣∣∣∣− 1
2

,

where β̃ = β̃(τ) = argmaxβ Lm(β, τ) and Ω̃ββ = {−∂2ℓm(β, τ)/∂β∂βT}|β=β̃.

Barndorff-Nielsen (1987) noted that the Cox-Reid adjusted profile

likelihood is the LA to the integrated likelihood

R(τ) =

∫
Lm(τ, β)dβ = R̂(τ)(1 +Op(n

−1)).

Under the flat conditional prior π(β|τ) = 1, Sweeting (1987) noted

that the integrated likelihood becomes the marginal posterior den-

sity of τ :

R(τ) =

∫
Lm(τ, β)π(β|τ)dβ = R̂(τ)(1 +Op(n

−1)).

Barndorff-Nielsen (1983) derived the magic formula to determine

fτ (τ̂ |β̂) for the MLEs θ̂ = (β̂, τ̂). Under the parameter orthogo-

nality of τ and β, Cox and Reid (1987) showed that

fτ (τ̂ |β̂) = R̂(τ)(1 +Op(n
−1)).
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Thus, we can view the Cox-Reid result as a case in which the

conditional likelihood can be applied to eliminate nuisance fixed

parameters. Note that

R(τ) = fτ (τ̂ |β̂)(1 +Op(n
−1)).

Thus, we propose to call, in this chapter, the integrated likelihood,

namely the marginal posterior under π(β|τ) = 1,

R(τ) =

∫
Lm(τ, β)dβ =

∫ ∫
H(τ, β, z)dzdβ

the restricted likelihood. With the ELA, R(τ) can always be com-

puted, as shown below, whereas fτ (τ̂ |β̂) is hardly available. The

use of R(τ) does not require parameter orthogonality of Cox and

Reid (1987), which would be hard to verify in general random

effects models. From a frequentist perspective, the use of the in-

tegrated likelihood to eliminate the nuisance parameters has been

examined for predicting unobserved latent variables z by Lee and

Kim (2016).

When the marginal likelihood ℓm(θ) is not available, Lee and

Nelder (2001) proposed the use of the extended restricted likeli-

hood

r̂(τ) = log R̂(τ) = h(τ, β̃, z̃)− 1

2
log

∣∣∣∣ 12π Ω̃ψψ
∣∣∣∣ ,

where ψ = (β, z), ψ̃ = argmaxψ h(β, τ, z) and

Ω̃ψψ = {−∂2h(β, τ, z)/∂ψ∂ψT}|ψ=ψ̃. In this chapter, we refer to

r̂(τ) = log R̂(τ) as the approximate restricted log-likelihood. Simi-

lar to (4.1), the restricted likelihood R(τ) can be approximated by

using the approximate predictive likelihood L̂p(ψ|y; τ) based on a

normal distribution

ψ | y ∼ N
(
ψ̃, Ω̃−1

ψψ

)
.
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Thus, Lee and Nelder’s (2001) extended restricted likelihood R̂(τ ;ψ) =

H(τ, ψ)/L̂p(ψ|y; τ) is the LA to R(τ). In normal linear mixed mod-

els, R(τ) = R̂(τ) = fτ (τ̂ |β̂) becomes the restricted (or residual)

likelihood of Patterson and Thompson (1971): see Chapter 5 of

Lee et al. (2017).

We explore how to use the ELA to obtain the REMLE. Let

R̂B(τ) =
1

B

B∑
b=1

R̂(τ ;ψb),

where {ψb : b = 1, . . . , B} are iid samples from N(ψ̃, Ω̃−1
ψψ). Then,

it is immediate that

r̂B(τ) = log R̂B(τ)
P→ r(τ) = logR(τ)

as B → ∞. Moreover, let J(τ) = −∂2r(τ)/∂τ∂τT and ĴB =

JB(τ̂
ELA
B ), where

τ̂ELAB = argmax
τ

R̂B(τ),

JB(τ) =

[
B∑
b=1

{
ζ(τ, ψb)

∂h(τ, ψb)

∂τ

}][ B∑
b=1

{
ζ(τ, ψb)

(
∂h(τ, ψb)

∂τ

)T
}]

−
B∑
b=1

[
ζ(τ, ψb)

{
∂h(τ, ψb)

∂τ

(
∂h(τ, ψb)

∂τ

)T

+
∂2h(τ, ψb)

∂τ∂τT

}]
,

and ζ(τ, ψb) = R̂m(τ, ψb)/
∑B

t=1 R̂m(τ, ψt). Then, we have the fol-

lowing theorem.

Theorem 4.3.1. Let τ̂ = argmaxτ r(τ) be the REMLE of τ . As

B →∞,

(i) τ̂ELAB
P→ τ̂ ,

(ii) ĴB
P→ J(τ̂).
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Thus, the variance estimator of the REMLE τ̂ can be consis-

tently estimated by v̂ar(τ̂) = Ĵ−1
B . The second-order LA is ap-

plicable to only a limited class of models; for example, it cannot

be applied to models with correlated random effects. The current

version of the second-order LA in the dhglm in R (Lee and Noh,

2018) allows only crossed models with two independent random

effects. However, the ELA is applicable to any statistical models

with latent variables, as illustrated below.

4.4 Salamander Mating Data

In this chapter, we investigate how to obtain the frequentist MLE

and REMLE, as well as their variance estimators. From a Bayesian

perspective, the MLE and its variance estimator for θ = (β, τ) are

the posterior mode and its variance under a flat prior on θ, whereas

the REMLE and its variance estimator for τ are the marginal pos-

terior mode and its variance under a flat conditional prior on β|τ .

Here, we investigate the performance of the MLE, REMLE, and

their variance estimators, based on the ELA, through numerical

studies.

McCullagh and Nelder (1989) presented the salamander mat-

ing data. Three experiments were conducted to collect these data:

two experiments were performed with the same salamanders in the

summer and fall of 1986, and the third experiment was conducted

in the fall of the same year using different salamanders. The sala-

mander data are difficult to analyse as crossed models are required

for binary data with correlated random effects. The Gauss-Hermite

quadrature cannot be used due to the large value of d. Here, we
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use the ELA for the analysis. We use simulation studies with

T = 200 replications to evaluate the performance of various meth-

ods based on the following quantities: (i) Est: θ̄ =
∑T

t=1 θ̂
(t)/T , (ii)

SE:
∑T

t=1 ŝ. e.(θ̂
(t))/T and (iii) SD: {

∑T
t=1(θ̂

(t) − θ̄)2/(T − 1)}1/2,

where θ̂(t) is an estimate at the tth replication. To evaluate the

performance of the point estimation, we compare the Est and true

value of the fixed parameters. The similarity between the SE and

the SD indicates the performance of the variance estimation.

4.4.1 Summer Data

Shun (1997) and Noh and Lee (2007) investigated the data that

were collected during the summer to show how the second-order

LA can be applied. The authors fitted a crossed model with d =

O(n1/2). For i = 1, . . . , I = 20 and j = 1, . . . , J = 20, let yij ∈

{0, 1} be the binary outcome that indicates whether mating was

successful for the ith female and the jth male. Each female was

paired with six males for mating, generating in 120 observations.

The authors considered the following random effects model:

logit P
(
yij = 1 | zfi , z

m
j

)
= xTijβ + σfz

f
i + σmz

m
j ,

where zfi ∼ N(0, 1) and zmj ∼ N(0, 1) are female random effects

and male random effects, respectively, which are assumed to be in-

dependent of each other. The covariates xij include an intercept,

the main effects Trtf and Trtm, and their interaction Trtf·Trtm,

where Trtf (Trtm) = 0, 1 for Rough Butt salamanders and White-

side salamanders, respectively.

The simulation results are presented in Table 4.1. Here ℓ̂m (ℓ̂sm)

represents the approximate MLE and r̂ (r̂s) represents the approx-
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Table 4.1: Simulation results for the summer data.

Method Intercept Trtf Trtm Trtf×Trtm σf σm

True value 1.06 -3.05 -0.72 3.77 1.22 1.22

MQL 0.78 -2.36 -0.51 2.87 0.86 0.88

PQL 0.85 -2.51 -0.57 3.05 0.94 0.96

CPQL 1.25 -3.48 -0.90 4.33 1.09 1.04

D&M 1.09 -3.15 -0.83 4.04 1.29 1.32

ℓ̂m 0.93 -2.82 -0.60 3.21 1.04 1.00

ℓ̂sm 0.98 -2.94 -0.63 3.64 1.19 1.20

r̂ 1.15 -3.21 -0.79 3.82 1.26 1.27

SE (r̂) 0.83 1.08 0.96 1.12 0.34 0.35

SD (r̂) 0.97 1.54 0.92 1.54 0.61 0.69

r̂s 1.05 -3.02 -0.69 3.72 1.23 1.24

SE (r̂s) 0.70 0.90 0.83 0.97 0.30 0.29

SD (r̂s) 0.62 0.87 0.66 0.92 0.48 0.49

r̂2 1.11 -3.11 -0.84 3.85 1.11 1.18

r̂10 0.99 -3.09 -0.73 3.78 1.25 1.25

r̂50 1.07 -3.02 -0.72 3.77 1.21 1.23

SE (r̂50) 0.48 0.75 0.65 0.96 0.27 0.28

SD (r̂50) 0.51 0.80 0.57 0.89 0.38 0.42
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imate REMLE calculated using the first-order (second-order) LA.

r̂ and r̂s are the HL(1,1) and HL(2,2), respectively, of Noh and

Lee (2007) with the approximate MLE of β and the approximate

REMLE of τ maximizing ℓ̂m (ℓ̂sm) and r̂ (r̂s), respectively. The

authors also examined the performance of the penalized quasi-

likelihood (PQL) and marginal quasi-likelihood (MQL) methods

of Breslow and Clayton (1993) and Drum and McCullagh’s (1993)

method (D&M). Note that the PQL method has large biases in

estimating the dispersion parameters (Lee and Nelder, 1996; Noh

and Lee, 2007). Breslow and Lin (1995) derived a correction fac-

tor for the PQL (CPQL) to remove the asymptotic bias. Noh and

Lee (2007) noted that the approximate REMLE r̂s, based on the

second-order LA, produced the least bias in estimating θ among

the existing methods at the time. Table 4.1 shows that the REM-

LEs r̂ and r̂s perform better than the MLEs ℓ̂m and ℓ̂sm. r̂B is the

ELA estimation based on B random samples, where the MLE of

β and the REMLE of τ maximize ℓ̂B and r̂B, respectively. r̂B with

B ≥ 10 improves the approximate REMLE r̂ based on the first-

order LA and r̂50 improves the approximate REMLE r̂s based on

the second-order LA. The ELA is considerably easier to implement

than r̂s. To evaluate the performance of variance estimators, we

compare r̂, r̂s, and r̂B. We observe that r̂ underestimates the SD.

The SE of r̂s and r̂50 well estimate the SDs of the mean parame-

ters; however, for σf and σm, both r̂
s and r̂50 underestimate the

SD. This underestimation of the ELA vanishes as n increases, as

discussed below.

85



4.4.2 Pooled Data

For the pooled data from the three experiments, for which k =

1, 2, 3, Karim and Zeger (1992) considered the following model:

logit
{
P
(
yijk = 1 | zfi , z

m
j

)}
= xTijkβ +Σ

1/2
f,k z

f
i +Σ

1/2
m,kz

m
j ,

where zfi = (zfi1, z
f
i2, z

f
i3)

T ∼ N(0, I) and zmj = (zmj1, z
m
j2, z

m
j3)

T ∼
N(0, I) are independent,

Σf =


σ2
f1

ρfσf1σf2 0

ρfσf1σf2 σ2
f2

0

0 0 σ2
f2

 , Σm =


σ2
m1

ρmσm1
σm2

0

ρmσm1
σm2

σ2
m2

0

0 0 σ2
m2

 ,

and Σ
1/2
f,k and Σ

1/2
m,k are the kth rows of Σ

1/2
f and Σ

1/2
m , respectively.

Here, Σ
1/2
f,k z

f
i and Σ

1/2
m,kz

m
j with k = 1, 2 represent correlated ran-

dom effects. For the pooled data, an additional covariate indicating

the season (0=summer and 1=fall) is included. In terms of the dis-

persion parameters, σ2f1 (σ2m1
) is the variance in the summer and

σ2f2 (σ2m2
) is the variance in the fall for female (male) salaman-

ders. Moreover, ρf (ρm) describes the correlation resulting from

the same salamander being selected in the first two experiments.

The second-order LA cannot be applied since the random effects

are correlated. Among frequentist methods, for correlated random

effects models, the PQL of Breslow and Clayton (1993) and r̂

of Lee and Nelder (2001) can be applied. Breslow and Clayton

(1993) applied the PQL method under the constraints σm1 = σm2

and ρm = 1. Karim and Zeger (1992) used the Gibbs sampler to

analyse the results from a Bayesian perspective.

Table 4.2 shows the estimation results for the pooled data ob-

tained by various methods. It is well known that the PQL has
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large bias in binary data. For the ELA, we set B = 50 for the

point estimation and B = 1000 for the standard error estimation.

The approximate REMLE calculated using r̂ differs from the true

REMLE calculated using the ELA r̂50 when estimating ρm. The

Gibbs sampler uses a flat prior for the mean parameters β and

noninformative priors π(Σf ) ∝ |Σf |−2 and π(Σm) ∝ |Σm|−2 for

the dispersion parameters. This approach gives results similar to

r̂50, which are marginal posterior modes under flat priors. For the

hypotheses

H0 : ρm = 1, H1 : ρm ̸= 1,

the ELA gives the likelihood ratio test 2{ℓ̂50(θ̂)−ℓ̂50(θ̂0)} = 0.1022,

where θ̂0 is the REMLE under the null hypothesis. Thus, we can-

not reject H0. This result indicates why the estimates of ρm are

often close to 1 in Table 4.2. Thus, we consider a submodel with

a shared random effects model in which zmj2 = γmz
m
j1 for some γm.

Table 4.3 shows that the estimation performance of the ELA is

better than that of r̂ for all θ. In particular, r̂ severely underesti-

mates the standard errors. The ELA improves the point estimation

and the standard error estimation. As shown in Tables 4.1 and 4.3,

the SE obtains better estimates of the SD for the pooled data with

n = 360 than for the summer data with n = 120. This result im-

plies that the ELA provides consistent standard error estimators

for the REMLEs.

4.5 Rongelap Spatial Data

Diggle et al. (1998) presented the Rongelap data, available at the

geoRglm in R (Christensen and Ribeiro Jr, 2017), which were
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obtained by the Marshall Islands National Radiological Survey,

to determine whether Rongelap Island is safe with respect to ra-

dionuclide contamination. The data include gamma-ray counts yi

of radionuclide concentrations over time ti at the spatial location

si for i = 1, . . . , n = 157 different locations on Rongelap Island.

Diggle et al. (1998) considered the following Poisson random ef-

fects model:

yi | z ∼ Poi (tiλi) , log λi = β0 +Σ
1/2
i z, (4.5)

where z = (z1, . . . , zn)
T ∼ N(0, I), Σ

1/2
i is the ith row of Σ1/2 and

the (i, j)th element of Σ is

Σij = exp {ϕ− exp(α)∥si − sj∥2} , (4.6)

where ∥si − sj∥2 is the distance between the ith location and the

jth location.

The integrated nested Laplace approximation (INLA) in R

(Rue et al., 2009) is a widely used Bayesian procedure for fitting

spatial data. Given the prior π(θ), the INLA approximates the

posterior π(θ|y) ∝ Lm(θ)π(θ) as π̂(θ|y) ∝ L̂m(θ)π(θ) based on the

LA. Then, the INLA uses the approximate elementwise marginal

posteriors

π̂(θk | y) =
∫
π̂(θ | y)dθ−k, (4.7)

where θ−k = (θ1, . . . , θk−1, θk+1, . . .). Instead of (4.6), the INLA

uses the following parametrization:

Σij = exp {− log 2π − α− 2ξ − exp(α)∥si − sj∥2} , (4.8)

where ϕ = − log 2π−α−2ξ. The covariance model (4.6) is referred

to as an exponential covariance function, whereas model (4.8) is
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the Matérn covariance function, which is adopted by the INLA

(Moraga, 2019). Under Gaussian priors for β0, ξ, and α, the INLA

provides the mean, mode, and standard deviations using random

samples from the marginal posterior (4.7).

Although the responses are counts and thus not binary, since

d = n, the LA may not be suitable. In addition, the second-order

LA cannot be used due to the correlated random effects. We fitted

the original Poisson random effects model (4.5), but it showed a

severe lack-of-fit, with a scaled deviance of 6.466 for 0.717 degrees

of freedom. If there is no lack-of-fit, the scaled deviance follows

the chi-squared distribution with computed degrees of freedom.

Bivand et al. (2015) proposed the overdispersed Poisson model for

yi|z:

ci | z ∼ Poi(λi), log λi = β0 +Σ
1/2
i z, (4.9)

where ci = yi/ti. The authors fitted the model (4.9) by using

the INLA. Note that under the model (4.9), we have an overdis-

persed Poisson random effects model with E(yi|z) = tiλi = µi,

var(yi|z) = t2iλi = tiµi > µi and overdispersion parameters ti > 1.

Lee et al. (2017) showed that the use of the model (4.9) is equiv-

alent to the use of the extended quasi-likelihood (Lee and Nelder,

2000) for fitting an overdispersed Poisson model with yi|z. The

overdispersed Poisson model (4.9) has a scaled deviance of 120.1

with 146.9 degrees of freedom, confirming no lack-of-fit. Thus, the

overdispersed Poisson model (4.9) achieves a better fit than the

original Poisson model (4.5).

For the ELA, B = 200 is selected to fit β0, B = 1000 is selected

to fit τ and B = 2000 is selected to estimate the standard error.
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Table 4.4: Estimates of the parameters according to the Ronge-

lap data under the model (11). The values in parentheses are the

estimated standard errors.

Method β0 ϕ α ξ

r̂ 1.966 (0.129) -3.051 (0.355) -2.708 (0.827) 1.961 (0.203)

r̂B 1.983 (0.102) -3.325 (0.932) -2.489 (1.424) 1.988 (0.724)

INLA 2.005 (0.116) · -1.822 (0.722) 1.886 (0.524)

INLA∗ 1.990 (0.436) · -1.674 (0.722) 1.770 (0.524)

The estimation results of the Rongelap data with model (4.9) are

presented in Table 4.4. For the point estimates, we consider both

the posterior mean (INLA) and posterior mode (INLA∗) of the

INLA output. The INLA provides a posterior standard deviation

(PSD) for samples from the marginal posterior distribution as a

standard error estimation. Since the Bayesian approach is not in-

variant with respect to the transformation of parameters, we do

not report on ϕ for the INLA. However, ML estimation is invariant

with respect to transformation; thus, we present the ELA result

of ξ obtained by using the delta method. The REMLEs calculated

by the ELA are marginal posterior modes under flat priors; thus,

the difference between the ELA and the INLA would be caused

by the use of different priors, although these differences are not

significant.

We perform a simulation study with model (4.9). To reduce

the complexity of using the extended quasi-likelihood method, we

use a Poisson random effects model by setting ti = 1. According

to Table 4.5, the point estimates of β0 are similar for all the eval-
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Table 4.5: Simulation results for the Rongelap data.

β0 ϕ α ξ

True value 1.980 -3.000 0.100 0.531

r̂ Est 1.976 -3.023 0.178 0.504

SE 0.050 0.341 0.534 0.318

SD 0.048 0.416 0.688 0.430

r̂B Est 1.977 -3.014 0.119 0.528

SE 0.051 0.476 0.740 0.442

SD 0.049 0.437 0.728 0.444

INLA Est 1.986 · 0.051 0.673

PSD 0.087 · 0.681 0.602

SD 0.051 · 0.675 0.598

INLA∗ Est 1.988 · 0.037 0.632

PSD 0.087 · 0.681 0.602

SD 0.051 · 0.627 0.595
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uated methods. In terms of the standard error estimates, the LA

r̂ underestimates the SD of the estimators. The ELA provides ac-

curate REMLEs. We report the INLA results to highlight the dif-

ferences caused by the use of different priors. The INLA computes

the PSDs using samples from the marginal posteriors, whereas the

standard error estimates of the REMLEs are computed using the

Hessian matrix without resampling. In summary, different priors

could yield different dispersion parameter estimates.

4.6 Conclusion

The LA and the variational Bayes method have been proposed as

methods for approximating the marginal likelihood. However, re-

sulting approximate MLEs and REMLEs could be often biased for

binary or spatial data. Furthermore, a consistent variance estima-

tion method is not available. With the ELA, the MLE, REMLE,

and their consistent variance estimators can be obtained in general

for statistical models with unobserved latent variables. The results

of numerical studies confirm that the ELA provides satisfactory

MLE and REMLE for a wide variety of models. Furthermore, the

MLE and REMLE are Bayesian posterior modes and marginal

posterior modes, respectively, under flat priors. Thus, we can have

both frequentist and Bayesian interpretations from ML and REML

analyses.
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Appendix: Proofs

Proof of (4.4)

Proof. Suppose that the true predictive likelihood Lp(z|y; θ) is

from a normal distribution. Let m and S be mean and covariance

matrix of normal distribution of which predictive log-likelihood is

ℓp (z | y; θ) = −
1

2
log |2πS| − 1

2
(z −m)TS−1(z −m).

Then, z̃ = m and Ω̃zz = S−1 since

∂

∂z
ℓp (z | y; θ) = −S−1(z −m),

∂

∂z∂zT
ℓp (z | y; θ) = −S−1.

Thus, we have L̂p(z|y; θ) = Lp(z|y; θ) for all z which gives L̂m(θ) =

Lm(θ). Moreover,

L̂B(θ) =
1

B

B∑
b=1

H(θ, Zb)

L̂p(Zb | y; θ)
=

1

B

B∑
b=1

H(θ, Zb)

Lp(Zb | y; θ)
= Lm(θ),

for all B ≥ 1.

Proof of Theorem 4.2.1

Proof. Note that there exists a constant M > 0 such that

L̂m(θ;Z) =
H(θ, Z)

L̂p(Z | y; θ)
≤ H(θ, z̃)

L̂p(Z | y; θ)
≤M (4.10)

with probability one, i.e., L̂m(θ;Z) is bounded with probability

one. By the law of large numbers, we have

L̂B(θ) =
1

B

B∑
b=1

H(θ, Zb)

L̂p(Zb | y; θ)
P→
∫

H(θ, z)

L̂p(z | y; θ)
L̂p(z | y; θ)dz = Lm(θ)

as B → ∞ for all θ. Then, from the Theorem 2.7 of Newey and

McFadden (1994), we can conclude that θ̂ELAB
P→ θ.

95



Proof of Theorem 4.2.2

Proof. Note that the Hessian matrix of the marginal log-likelihood

can be expressed as

∂2ℓm(θ)

∂θ∂θT
= −

{
1

Lm(θ)

∂Lm(θ)

∂θ

}{
1

Lm(θ)

(
∂Lm(θ)

∂θ

)T
}
+

1

Lm(θ)

∂2Lm(θ)

∂θ∂θT
.

(4.11)

By introducing an arbitrary density function q(z), we have

∂Lm(θ)

∂θ
=

∫
∂h(θ, z)

∂θ

H(θ, z)

q(z)
q(z)dz,

∂2Lm(θ)

∂θ∂θT
=

∫ {
∂h(θ, z)

∂θ

(
∂h(θ, z)

∂θ

)T

+
∂2h(θ, z)

∂θ∂θT

}
H(θ, z)

q(z)
q(z)dz.

Recall that

∂ℓm(θ)

∂θ
=

1

Lm(θ)

∂Lm(θ)

∂θ
=

1

Lm(θ)

∫
∂h(θ, z)

∂θ
L̂m(θ, z)L̂p(z | y; θ)dz

(4.12)

and L̂B(θ)
P→ Lm(θ) as B → ∞. By assumption of unimodality,

there exists {θ̂ELAB , θ̂} ∈ Θ1 ⊂ Θ such that

sup
θ∈Θ1

∣∣∣∣∂h(θ, z)∂θ

∣∣∣∣ ≤M1, sup
θ∈Θ1

∣∣∣∣∂2h(θ, z)∂θ∂θT

∣∣∣∣ ≤M2

givenM1,M2 > 0 for all z. Moreover, w(θ, Z) is bounded provided

by (4.10). Then,

1

B

B∑
b=1

∂h(θ, Zb)

∂θ
L̂m(θ, Zb)

P→ ∂Lm(θ)

∂θ
. (4.13)

By using the Slutsky’s theorem, we have

1
B

∑B
b=1

∂h(θ,Zb)
∂θ L̂m(θ, Zb)

1
B

∑B
t=1 L̂m(θ, Zt)

=
B∑
b=1

∂h(θ, Zb)

∂θ
w(θ, Zb)

P→ ∂ℓm(θ)

∂θ
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as B →∞. Similar to (4.13), we also have

1

B

B∑
b=1

{
∂h(θ, Zb)

∂θ

(
∂h(θ, Zb)

∂θ

)T

+
∂2h(θ, Zb)

∂θ∂θT

}
L̂m(θ, Zb)

P→ ∂2Lm(θ)

∂θ∂θT

which implies

B∑
b=1

{
∂h(θ, Zb)

∂θ

(
∂h(θ, Zb)

∂θ

)T

+
∂2h(θ, Zb)

∂θ∂θT

}
w(θ, Zb)

P→ 1

Lm(θ)

∂2Lm(θ)

∂θ∂θT
.

(4.14)

By combining (4.13) and (4.14), we have

IB(θ)
P→ I(θ) = −∂

2ℓm(θ)

∂θ∂θT

as B →∞ for θ ∈ Θ1. By definition, Θ1 contains θ̂
ELA
B and θ̂. Also,

θ̂ELAB converges to θ̂ as shown in Theorem 4.2.1. In conclusion, ÎB

converges to Î as B →∞ which proves the Theorem 4.2.2.
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Chapter 5

AFT Random Effect

Model with GEV

Distribution
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Chapter Summary

Generalized extreme value (GEV) distribution is widely used

for analyzing extreme events. For analyzing heavily censored data

we suggest the use of GEV distribution by treating uncensored ob-

servations as extreme events. We are interested in the analysis of

heavily censored clustered survival data. The correlation among

clustered survival times can be modeled via random effects. In

this chapter, we propose the use of an accelerated failure time

(AFT) random effect model with GEV distribution to directly de-

scribe the relationship between survival time and covariates. The

performance of the proposed method is evaluated via simulation

study, which shows that the estimated regression parameters are

robust even when not only data are heavily censored but also dis-

tributional assumption on the error distribution is violated. The

proposed method is illustrated with a real data example.
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5.1 Model

5.1.1 GEV Distribution

A random variable Y is said to be distributed as GEV(µ, σ, ζ)

distribution if

P (Y ≤ y) = exp {−M(y)} ,

where

M(y) =

{
1 + ζ

(
y − µ
σ

)}− 1
ζ

+

.

Here, µ ∈ R, σ ∈ (0,∞), and ζ ∈ R are location, scale, and

shape parameters, respectively, and a+ = max(0, a). By permit-

ting three parameters, the GEV distribution is useful to model

skewed, heavy-tailed, and heavily censored data Bladt and Al-

brecher (2021). In particular, the shape parameter ζ controls the

tail behavior of the GEV distribution Roy and Dey (2014). Special

cases of the GEV are the Gumbel, Fréchet, and reversed Weibull

distribution by taking ζ = 0, ζ > 0, and ζ < 0, respectively.

Here, the case ζ = 0 is interpreted as ζ → 0. Note that the GEV

distribution belongs to the location family, i.e.,

Y ∼ GEV(0, σ, ζ) ⇔ Y + µ ∼ GEV(µ, σ, ζ), for all µ ∈ R.

5.1.2 AFT Random Effect Model with GEV Distri-

bution

Consider the clustered survival data, where the size of each cluster

or subject can be different. Let Tij be survival time (i.e., time-

to-event) for the jth observation of the ith subject (or cluster)

and let Cij be the corresponding censoring time (i = 1, . . . , q;
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j = 1, . . . , ni). Here, q is the number of clusters, ni is the number

of individuals in the ith cluster (i.e. cluster size), and n =
∑q

i=1 ni

is the total sample size. In multi-center clinical trials, ni is the

number of patients in the ith center and n is the total number of

patients coming from all q centers. Similarly, in the dental study

ni is the number of existing teeth in a mouth of the ith subject

and n is the total number of teeth of all q subjects. Typically, a

correlation among Tij ’s can be induced by the clustering. In the

bivariate data, ni = 2 for all i. Note that random effects are useful

for modelling such dependence among Tij ’s.

The proposed AFT random effect model with GEV distribu-

tion can be written as

log(Tij) = x
T
ijβ + vi + εij , (5.1)

where xij = (xij1, . . . , xijp)
T is a p×1 vector of covariates, β ∈ Rp

is a vector of regression coefficients corresponding to xij , vi ∼

N(0, α) is a common random effect representing the unobserved

subject effect of the ith subject, εij ∼ GEV(0, σ, ζ) and all these

random quantities are independent. The model 5.1 is an extension

of GEV-AFT model Roy and Dey (2014) to the random effects

model which can be viewed as a linear mixed model under the log-

transformation of survival time Tij . Here, we make the following

two assumptions (Ha et al., 2002):

Assumption 1: Given vi, the pairs (Tij , Cij) are condition-

ally independent for j = 1, . . . , ni and Tij and Cij are also

conditionally independent in each pair.

Assumption 2: Given vi, {Cij , j = 1, . . . , ni} are condition-
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ally noninformative for Tij .

The observed random variables for the AFT model are given by

Yij = min {log Tij , log Cij} and δij = I(Tij ≤ Cij),

where δij is censoring indicator and I(·) denotes the indicator func-

tion. The h-likelihood (Ha et al., 2002) for the AFT model 5.1

under Assumptions 1 and 2 is defined as

h (θ,v) =

q∑
i=1

hi (θ, vi) with hi (θ, vi) =

ni∑
j=1

ℓ1ij + ℓ2i, (5.2)

where

ℓ1ij = δij {− log σ + (1 + ζ) logMij −Mij}

+(1− δij) log {1− exp (−Mij)} ,

ℓ2i = −1

2
log(2πα)− 1

2α
v2i .

Here, ℓ1ij is the logarithm of the conditional density function for

(Yij , δij) given vi and ℓ2i is the logarithm of the density function for

vi. Moreover, θ = (βT, σ, ζ, α)T is fixed parameters, µij = x
T
ijβ+vi

is the linear predictor, and

Mij =M(yij) =

{
1 + ζ

(
yij − µij

σ

)}−1/ζ

+

.

5.2 Estimation Procedure

To obtain the maximum likelihood estimator of θ, we need to

obtain the marginal likelihood ℓ(θ), by integrating out the random

effect v,

ℓ (θ) = log

∫
Ωv

exp {h (θ,v)} dv,
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where Ωv =
∏q
i=1Ωvi with Ωvi = {vi : σ + ζ(yij − µij) > 0} is

the support of the random effect v. However, obtaining the ex-

plicit form of the marginal likelihood ℓ(θ) is generally intractable.

Moreover, in AFT random effect model with GEV distribution,

the support of the random effect depends on the fixed parameters

θ. Instead, an adjusted profile h-likelihood (Ha et al., 2017) pv(h)

based on the Laplace approximation can be used to approximate

ℓ(θ) as follows:

ℓ (θ) ≈ pv (h) = h (θ, ṽ)− 1

2
log det

(
1

2π
Hvv

)
v=ṽ

,

where Hvv = −∂2h(θ,v)/∂v∂vT, and logdet is the logarithm of

the determinant. Here,

ṽ = ṽ(θ) = argmax
v
h(θ,v)

is the mode of the h-likelihood given θ. Compared to other random

effect models, it is unusual that the support of the random effect

Ωv depends on the fixed parameters θ. However, the Laplace ap-

proximation evaluates the integral at the near of the mode. There-

fore, we can still make inference about θ by using pv(h). Moreover,

to obtain accurate estimates of the fixed parameters, we decom-

pose the whole fixed parameters θ into two parts: regression co-

efficients β and dispersion parameters ϕ = (σ, ζ, α)T. Then, β is

estimated (Ha et al., 2017) from pv(h) and ϕ from pψ(h) given by

pβ(ℓ) ≈ pψ(h) = h(ϕ, ψ̃)− 1

2
log det

(
1

2π
Hψψ

)
ψ=ψ̃

,

where ψ = (βT,vT)T, ψ̃ = argmaxψ h(ϕ,ψ), and

Hψψ = −∂2h(ϕ,ψ)/∂ψ∂ψT. Here, ϕ̂ obtained from pψ(h) is

103



called the restricted maximum likelihood (REML) estimator (Lee

et al., 2017).

In summary, the fitting algorithm is given as follows:

Step 0: Set initial values θ̂
(0)

. Then, for t = 1, 2, . . ., repeat

Steps 1-3 until the maximum absolute difference between

θ̂
(t)

and θ̂
(t−1)

is less than 10−4.

Step 1: Compute v̂(t) = argmaxv h(θ,v) given θ̂
(t−1)

.

Step 2: Compute β̂
(t)

= argmaxβ pv(h) given v̂
(t) and ϕ̂

(t−1)
.

Step 3: Compute ϕ̂
(t)

= argmaxϕ pψ(h) given ψ̂
(t)
.

After the convergence has occurred, the variance of β̂ can be esti-

mated as

v̂ar
(
β̂
)
=

(
− ∂2

∂β∂βT
pv(h)

)−1

θ=θ̂,v=v̂

,

∂2

∂β∂βT
pv(h) ≈

[
∂2h

∂β∂βT
− ∂2h

∂β∂vT

(
∂2h

∂v∂vT

)−1
∂2h

∂v∂βT

]
v=v̂

,

where v̂ = ṽ(θ̂). For more details about the computation of h,

pv(h), and pψ(h), see Appendix A.

5.3 Simulation Study

The simulation study is conducted to evaluate the performance

of the proposed method, based on 500 replications of simulated

data. In particular, the robustness of the AFT random effect model

with GEV distribution against the distributional assumption is
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also studied by comparing the AFT random effect model with

normal distribution. For i = 1, . . . , q and j = 1, . . . , ni, we generate

log(Tij) = µij + vi + εij with µij = β0 + β1xij1 + β2xij2, (5.3)

where (β0, β1, β2) = (0.5, 1.5,−1.5), xij1,∼ N(0, 1), xij2 ∼ Bernoulli(0.5),

and vi ∼ N(0, 2). We consider sample sizes (q, ni) = (100, 15) and

(200, 15) for all i. The true errors εij are generated from four dis-

tributions

(C1) GEV: εij ∼ GEV (0, σ = 1.2, ζ = −0.7).

(C2) N: εij ∼ N(0, λ = 1.22).

(C3) T: εij ∼ t-distribution where degrees of freedom is 5.

(C4) LG: εij ∼ log {Gamma (1.5, 5)}.

In case C1, we investigate the performance of the proposed method

when the distribution assumption is correct. C2 investigates the

robustness of the proposed method by comparing with the normal

error distribution. For robustness against the misspecification of

distributional assumption, we consider a t-distribution (C3) as a

heavy-tailed distribution and a LG distribution (C4) as a skewed

distribution. Censoring times Cij are generated from an uniform

distribution with a parameter empirically determined to achieve

the stated censoring rate, about 50% and 90%. We fit the following

two models under (5.3),

GEV-AFTmodel (MGEV) : εij
i.i.d.∼ GEV (0, σ, ζ) ,

Normal-AFTmodel (MN) : εij
i.i.d.∼ N(0, λ) .
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From B = 500 replications of simulated data, the performance

of the estimates of the regression coefficients β̂j , j = 1, 2 is eval-

uated by (i) closeness between the mean β̄j =
∑B

b=1 β̂
(b)
j /B and

βtruej , (ii) closeness between the mean of estimates of standard

error (SE) of β̂j , ŜE(β̂j), and the standard deviation (SD) of β̂j

defined by
∑B

b=1(β̂
(b)
j − β̄j)2/(B− 1), and (iii) maintenance of the

empirical coverage probability (CP) for a nominal 95% confidence

interval for βj ; this observation stems from the fact that the esti-

mated standard error is close enough to the standard deviation of

the estimates. For dispersion parameters, the mean and standard

deviations of estimates are also presented.

The simulation results are summarized in Table 5.1 and 5.2.

When the true error distribution is GEV, the proposed GEV-AFT

model overall works well in terms of biases of θ̂. In addition, the

estimated SE of β̂j (j = 1, 2) is close to the empirical SD, which

is the estimate of {var(β̂j)}1/2. When the censoring rate is high

(90%), the proposed GEV-AFT model gives better agreement with

the nominal value of 0.95 for CPs of β in all cases, compared to

the Normal-AFT model.

We observe that the estimates (σ̂, ζ̂, α̂) of all dispersion pa-

rameters are close to their true values even if the censoring rate

is extremely high. As expected, we see that the biases and varia-

tions (SEs and SDs) tend to decrease as the sample size increases.

On the other hand, the Normal-AFT model shows some underes-

timation for the absolute magnitude of βj (j = 1, 2) and variance

estimation, leading to substantially lower CPs.

When the error distribution is normal, the proposed method
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gives robust estimation results comparable to the normal AFT

model. We see that the normal AFT model by Ha et al. (Ha et

al., 2002) provides reasonable results under 50% censoring. This

indicates that the Normal-AFT model leads to biased results when

the censoring rate is high. Moreover, the estimation performance of

the proposed method still shows robust results for the estimated

regression parameters when the true error distribution is T or

LG. As expected, the Normal-AFT model gives severely biased

results, particularly for the variance of the random effect α under

the skewed LG distribution.

In summary, the simulation results suggest that the proposed

method is indeed reasonable and gives robust estimation results

for the regression parameters in all cases compared to the results

of normal AFT model.

5.4 Real Data Analysis: COHRI Data

In this section, we analyze the consortium for oral health-related

informatics (COHRI) data which is highly censored, correlated

survival data. The COHRI data consist of de-identified electronic

dental records of q = 5, 336 subjects (baseline patient age between

16-90) with about 6 years of follow-up, derived from the AxiUm

database at Creighton University School of Dentistry Stark et al.

(2010). This AxiUM consortium allowed for information exchange

of medical and dental electronic records, primarily for research.

Here, the survival time is the time until tooth-loss. The number of

teeth per subject ni varied from 1 to 30, with mean 12.35 and me-

dian 12. In particular, only about 7% (4,593 observations) among

107



n =
∑5,336

i=1 ni = 65, 890 observations were lost during the follow-

up, clearly indicating that observations are heavily censored with

about 93%.

We consider the 14 covariates of interest as follows:

• Mobility (0-5 scale),

• BOP; proportion of tooth-sites that bled when probed (%),

• Plaque; proportion of tooth-sites stained with bacterial plaque

(%),

• PDmean; mean pocket depth for that tooth,

• CALmean; mean clinical attachment level for that tooth,

• Crown; tooth has crown (0 = yes, 1 = no),

• Filled; tooth has filled (0=yes, 1=no),

• Decayed; tooth has decayed (0=yes, 1=no),

• D.F.sites; the number of decayed and filled sites,

• Age (in years),

• Gender (0=female, 1=male),

• Diabetes (0=yes, 1=no),

• Tobacco; use of tobacco (0=yes, 1=no),

• Molar; inspected tooth is molar (0=no, 1=yes).
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The mean (standard deviation) of age is 58.4 (18.1) years, with

49.5% males, 9.3% with diabetes, and 22.2% are smokers. Sum-

mary statistics of these covariates are presented in Table 5.3. For

molars, 7.3% were lost during the follow-up, while for the non-

molars, it is 6.8%, again implying that observations are heavily

censored.

The results of fitting GEV and Normal AFT models using the

h-likelihood are presented in Table 5.4. First, the GEV-AFT model

shows that all covariates are significant at level 5%. For example,

the tooth-loss time in the non-smoker group (Tobacco=no) is sig-

nificantly increased by a factor of exp(1.148) = 3.15, as compared

to the smoker group (Tobacco=yes), while the loss time in the

Molar group (Molar=yes) is significantly decreased by a factor of

exp(−0.262) = 0.77, as compared to the non-Molar group (Mo-

lar=no). The variance of random effect α̂ = 2.399 is somewhat

large, which account for a correlation among survival times. Next,

we find that the Normal-AFT model also gives significant results

except for four covariates (Plaque, Age, Gender, and Diabetes).

The Normal-AFT model shows that most of the estimates of the

regression coefficient are smaller, which confirms the underestima-

tion from simulation results of Table 5.2. Moreover, the simulation

results also indicate that the true distribution of the survival time

until tooth-loss seems to be skewed. In Table 5.4, the Normal-AFT

model has wider confidence intervals than the GEV-AFT model.

For the selection between the GEV-AFT and Normal-AFT

models, two Akaike information criteria (AIC (Lee et al., 2017;

Ha et al., 2017)) are considered, the marginal AIC (mAIC (Ha
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et al., 2012)) and conditional AIC (cAIC (Vaida and Blanchard,

2005)). The mAIC and cAIC are, respectively, defined by

mAIC = −2pv(h) + 2 dfm,

cAIC = −2ℓ1 + 2dfc .

Here, ℓ1 =
∑

i,j ℓ1ij is given in (5.2), dfm is the number of fixed

parameters, and dfc = trace(H−1
ψψH

∗
ψψ)|ψ=ψ̂,ϕ=ϕ̂ with H∗

ψψ =

−∂2ℓ1/∂ψ∂ψT. The mAIC selects a better marginal model be-

tween the two AFT models, whereas the cAIC selects a better

subject-specific model. The value of smaller AIC indicates a bet-

ter model. With the COHRI dataset, in the GEV-AFT model

mAIC=47839.13 and cAIC=31861.8, and in the Normal-AFTmodel

mAIC=48037.67 and cAIC=35138.24. Thus, both mAIC and cAIC

indicate that the proposed gives better marginal and subject-

specific models compared to the Normal-AFT model.

5.5 Conclusion

In this chapter, we propose the use of the AFT random effect

model with GEV distribution to analyze heavily censored clustered

data. Usually, it is assumed that the distribution of error term in

the AFT model is normal distribution. However, in simulation

study, we have shown that the assumption of normal distribution

for error term does not give valid estimates when censoring rate is

extremely high. We have also demonstrated via simulation and real

data example that the proposed method gives robust estimation

results for the model parameters even when the censoring rate

is extremely high and distributional assumption of error term is
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violated.

Appendix A: Computations for Estimation

Procedures

Let X ∈ Rn×p be a model matrix for the fixed effect β ∈ Rp,

Z = diag
(
1n1 , · · · ,1nq

)
∈ Rn×q be a model matrix for the random

effect v ∈ Rq, δ =
(
δ11, · · · , δqnq

)T ∈ Rn be a vector of censoring

indicators, and M =
(
M11, · · · ,Mqnq

)T ∈ Rn. Here, 1 is a vector

of ones with corresponding length. Then, the h-likelihood (5.2) can

be written in matrix form as follows:

h(θ,v) = δT (− log σ1n + (1 + ζ) logM −M)

+ (1n − δ)T log
(
1n − e−M

)
− q

2
log(2πα)− 1

2α
vTv.

Here, logM = (logM11, . . . , logMqnq)
T and e−M = (e−M11 , . . . , e−Mqnq )T.

Appendix A.1: Computation of pv(h)

For estimating β, we propose to use the adjusted profile likelihood

pv(h). Based on the h-likelihood (5.4), we can compute the pv(h)

as follows.

pv(h) = h(β, ṽ)− 1

2
log det

(
1

2π
Hvv

) ∣∣∣
v=ṽ

,

where ṽ = argmaxv h(θ,v),

Hvv = −∂
2h(θ,v)

∂v∂vT
=

1

σ2
ZT diag(W )Z +

1

α
Iq,
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and

W = K ◦M1+ζ ,

K = M1+ζ ◦B − (1 + ζ)A ◦M ζ ,

A = δ ◦
(
1 + ζ

M
− 1n

)
+ (1n − δ) ◦

1

eM − 1n
,

B = δ ◦ 1 + ζ

M2 + (1n − δ) ◦
eM

(eM − 1n)2
.

Together withHvv, following quantities provide the estimation of

the variance of β̂,

Hββ = −∂
2h(θ,v)

∂β∂βT
=

1

σ2
XT diag(W )X,

Hβv = −∂
2h(θ,v)

∂β∂vT
=

1

σ2
XT diag(W )Z,

where diag(W ) is the diagonal matrix of which diagonal elements

are W .

Appendix A.2: Computation of pψ(h)

For estimating ϕ, we propose to use the adjusted profile likelihood

pψ(h). Based on the h-likelihood (5.4), we can compute the pψ(h)

as follows.

pψ(h) = h(ϕ, ψ̃)− 1

2
log det

(
1

2π
Hψψ

) ∣∣∣
ψ=ψ̃

,

where ψ̃ = argmaxψ h(ϕ,ψ) and

Hψψ =

Hββ Hβv

HT
βv Hvv.


Appendix B: Tables
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국문초록

계층적 가능도는 고정된 모수만을 취급하던 기존의 가능도를 확장

하여 관측되지 않은 잠재 변수를 포함하는 통계 모형에 대해 최대

가능도 추정을 허락하기 위해 제안되었다. 하지만, 기존의 계층적

가능도는 분산 성분을 포함한 모든 추정의 대상에 대해 최대 가능도

추정을허락하지못한다는한계가있었다.본학위논문에서는계층적

가능도의 정준 척도의 성질을 살펴본 뒤, 이를 바탕으로 모든 모수들

의 최대 가능도 추정량을 얻는 방법에 대하여 논의하였다.

불완전자료의예로는결측자료,변량효과,중도절단자료등이

있다. 이러한 불완전 자료에 대하여, 계층적 가능도를 이용한 통계적

추론의 유용성을 살펴보았다. 하지만, 관측되지 않은 잠재 변수에 대

한 통계 모형의 경우, 관측된 자료로부터 항상 식별 가능하지 않을

수 있다. 따라서, 본 학위논문에서는 통계 모형에 사용되는 다양한

가정들에대해로버스트한추론을허락하는방법도함께제시하였다.

주요어 : 정준 척도, 중도 절단 자료, 대치법, 라플라스 근사, 최대

가능도 추정, 결측 자료, 변량 효과, 로버스트 추론.

학 번 : 2014− 21213
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