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ABSTRACT

H-likelihood Approach for Incomplete Data

Jeongseop Han
The Department of Statistics
The Graduate School

Seoul National University

The h-likelihood has been proposed as an extension of Fisher’s
likelihood to allow the maximum likelihood estimation for statis-
tical models including unobserved latent variables of recent in-
terest. However, the current h-likelihood approach does not allow
maximum likelihood estimators (MLEs) of variance components
as Henderson’s joint likelihood (1959) does not in linear mixed
models. In this thesis, we discuss how to form the canonical scale
for the h-likelihood in order to facilitate joint maximization for
MLEs of whole parameters.

To show the usefulness of the h-likelihood for analyzing incom-
plete data, various types of unobserved latent variables are exam-
ined; missing data, random effect and censored data. As we shall

see, a statistical model for unobserved latent variables may not be



identifiable based on the observed data. Thus, we also present how
to make robust inferences against various assumptions on statisti-
cal models.

Keywords: Canonical scale, Censored data, Imputation, Laplace
approximation, Maximum likelihood estimation, Missing data, Ran-
dom effect, Robust inference.
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Chapter 1

Introduction

In this thesis, the use of the h-likelihood for incomplete data is dis-
cussed. First, maximum likelihood (ML) estimation and maximum
likelihood imputation based on the h-likelihood are examined. In
missing data problem, model assumptions on the missing mecha-
nism are not identifiable from the observed data. Thus, robust in-
ference against model misspecification and outliers are presented
by using the h-likelihood. However, finding canonical scale may
not be available in complex models such as crossed and correlated
random effect models. To obtain MLEs for fixed parameters in
general statistical models, the enhanced Laplace approximation
(ELA) method is proposed. After obtaining the MLEs of fixed pa-
rameters, the ML imputation can also be obtained by using the
weak canonical scale. Finally, the use of the generalized extreme
value distribution in analyzing extremely high censored data is

investigated.



1.1 Maximum Likelihood Imputation

Missing data are prevalent in statistical problems, but ignoring

them can lead to erroneous results (Little and Rubin, [2019; Kim|

land Shaol |2021). Imputation is a popular technique for dealing

with missing data. However, if imputed data are treated as ob-
served, the use of the standard statistical procedure could result
in erroneous inference, giving a biased estimator with an underes-
timated standard error estimator. Multiple imputation has been
proposed by to address the uncertainty associated
with imputation. However, it requires the self-consistency condi-
tions (Wang and Robins, |1998; Meng|, [1994; Yang and Kim, |2016),
which may not necessarily hold. An alternative method by

(2011) is fractional imputation.
ML estimation of (1922) is widely accepted in estimat-

ing fixed parameters. Missing data can be viewed as unobserved

random parameters (Lee et al., 2017)) so that imputation can be

viewed as a prediction of random parameters, namely missing
data. It necessitates an extension of the Fisher likelihood to sta-
tistical models that include unobserved random variables
land Wolpert,, 1984} Butler} [1986). Lee and Nelder| (1996)) intended

an extension of ML estimation to models with unobserved random
parameters via h-likelihood, defined on a particular scale of ran-

dom parameters in the linear predictor. However, they confronted

severe objections due to difficulties as|Bayarri et al.| (1988]) showed

that ML estimation of extended likelihood often provides nonsen-

sical estimation for both fixed and random parameters. Further-

more, (2006) noted that the linear predictor to form the

S e ki



h-likelihood might not be necessarily well defined. All the coun-
terexamples against the h-likelihood, for examples in |Little and

(2002)), are associated with a wrong choice of scale to form
h-likelihood. [Little and Rubin| (2019) described the current status

of h-likelihood “Unlike maximization of the marginal likelihood

of (1922)), maximization of an extended likelihood does not

generally give consistent estimates of the parameters (Breslow and!
11995)) ... Lee and Nelder| (2001) and |Lee et al.| (2006) propose

maximizing a “modification” ... which is the correct ML approach.

For more details, see [Lee and Nelder| (2009) and the discussion,

particularly (2009).” The success of h-likelihood approach

looks coincidental, so that (2009) tried a rigorous theoreti-
cal justification for the use of h-likelihood by showing its Bartlett

identities. But he ended up highlighting the difficulty caused by the
difference between fixed and random parameter estimations. Thus,
the benefit of using h-likelihood has not been well accepted yet.
This chapter establishes the original aim of the h-likelihood whose
maximization without any modification provides correct ML esti-
mation and ML imputation by giving rigorous justifications.

LLee et al.| (2006) defined h-likelihood precisely, but they have

not fully exploited its usefulness. For example, an immediate draw-

back of the current h-likelihood is that it does not allow MLEs of

variance components as Henderson’s Henderson| (1959) joint like-

lihood does not. So |Lee et al|(2017) use a modification to obtain

MLEs of variance components, etc. We need to reformulate the
h-likelihood in a thoroughly consistent way to avoid modification.

Jacobian terms do not play any role in Fisher’s (1922) ML es-

S e ki



timation of fixed parameters. However, in models with random
parameters, as we shall show, Jacobian terms play a key role in
ML estimation. This property has not been well known yet in
literature. We clarify the role of the Jacobian term in defining h-
likelihood. Currently, the h-likelihood has been defined mainly for
random effect models, where linear predictors are defined (Lee and
Nelder, [1996)). To illustrate our proposal for a much wider class
of models, we consider the imputation problem, which does not
require a linear predictor, as noted by [Firth (2006)), and encoun-
ters difficulties in ML estimation of random parameters, as noted
by [Meng (2009). We clarify that the definitions of canonical scale
and canonical function are keys to leading valid ML estimation on
both fixed and random parameters without any modification in
h-likelihood.

In Section [2.1] we describe the basic setup for missing data
problem. In Section we define the h-likelihood by using canon-
ical scale and canonical function in terms of Jacobian term. More-
over, properties of MLEs for fixed and random parameters by us-
ing the h-likelihood are examined. In Section we propose the
weak canonical scale based on the Laplace approximation. The
weak canonical scale can give proper ML imputation when the
canonical scale is unknown. In Section [2.4] we propose the ML
imputation by using the MLE for random parameters. Illustrative
examples in Section [2.5] show the usefulness of the h-likelihood in

the missing data problem.



1.2 Robust Imputation under Missing at Ran-

dom

Missing data is a fundamental problem in statistics. Ignoring miss-
ing data may lead to biased estimates of parameters, loss of in-
formation, decreased statistical power, increased standard errors,
and weakened generalizability of findings (Dong and Peng} |2013).
However, missing mechanism may not be fully identified based on
the observation (Molenberghs et al.l 2008). Therefore, several as-
sumptions are proposed for the generating process of missing data.
The following three assumptions are widely accepted in analyzing
missing data: missing-completely-at-random (MCAR), missing-at-
random (MAR), and missing-not-at-random (MNAR). Under the
MCAR assumption, missing mechanism does not depend on any
observation. Therefore, statistical inference is available based on
observation only but the MCAR assumption is often unrealistic.
On the other hand, even though parameter estimation can be made
easily by h-likelihood approach (Lee et al., |2017), the MNAR as-
sumption is not necessarily useful as the model assumption since
the missing mechanism is not identifiable by observation (Molen-
berghs et al., 2008} van Buuren} |2018). Among assumptions on the
missing mechanism, the MAR assumption is widely used.

In the presence of missing data, the imputation method and
the weighting method are frequently employed to estimate the
parameters (Kim and Shao, 2021). Imputation is widely used to
handle item nonresponse because it ensures that analysis results
from different users are consistent. By appropriately incorporating

observed auxiliary variables into the imputation model, imputa-



tion can reduce nonresponse bias and achieve efficient estimation.
Popular methods of imputation include multiple imputation (Ru-
bin, |1978) and fractional imputation (Kim, 2009).

Recently, Han et al.[(2022a) proposed the ML imputation based
on the h-likelihood. By using the h-likelihood, simple joint maxi-
mization directly gives estimation of fixed parameters and impu-
tation of missing data. However, the correct specification of model
may be difficult in the presence of missing data while any im-
putation method uses an imputation model, either implicitly or
explicitly. How to make the imputation method less dependent on
the imputation model is an important practical problem.

There are two main approaches in implementing a robust im-
putation method. One approach is to use a flexible model, non-
parametric or semiparametric, to develop a robust imputation
method. Nonparametric kernel regression imputation of |Cheng
(1994), semiparametric Gaussian mixture model imputation of
Sang| (2020), and the random forest imputation of Dagdoug et
al.| (2021) are examples of the robust imputation method using
flexible models. The other approach is to use the propensity score
(PS) model explicitly into the parameter estimation step for impu-
tation to get doubly robust estimation. Doubly robust estimation
has been investigated widely in the literature. For examples, see
Bang and Robins (2005)), Cao et al.| (2009), [Kim and Hazizal (2014),
Han and Wang| (2013), and |Chen and Haziza, (2017).

In this chapter, we consider the second approach further and
consider an extension of doubly robust estimation by establishing

sufficient conditions for the asymptotic equivalence between the



imputation method and the weighting method based on the PS
model. The imputation method gives a consistent estimator if the
outcome regression (OR) model is correctly specified, whereas the
weighting method gives a consistent estimator if the PS model
is correctly specified. Under this equivalence, we can obtain dou-
ble robustness as both the imputed estimator and the weighted
estimator are consistent under the OR model and the PS model,
respectively. Consequently, the internal bias calibration (IBC) con-
dition proposed by Firth and Bennett (1998) can be applied to the
imputation problem in the context of missing data. Based on the
IBC condition, the estimating equation for regression coefficients
takes the form of weighted least squares. We will demonstrate that
the IBC condition can be achieved by introducing statistical mod-
els on mean and dispersion in view of the double hierarchical gener-
alized linear model (DHGLM) proposed by Lee and Nelder| (2006])
in modeling approach. Given DHGLM, the h-likelihood permits
MLEs of fixed parameters as well as ML imputation of random
parameters, namely random effects and missing data.

Compared to the likelihood-based approach, [Wang and Kim
(2021)) recently proposed obtaining the PS weight using the pro-
jection method relative to the Kullback-Leibler (KL) divergence in
the information projection theory. The KL-divergence-based pro-
jection method is well-defined because it permits the moment-type
constraint. To generalize the KL-divergence while maintaining the
moment-type constraint, Eguchi (2021) proposed the y-power di-
vergence. The information projection approach based on the ~-

power divergence gives a more general form of the optimal solu-



tion which contains additional scale parameter . Furthermore,
the statistical model derived from ~y-power divergence produces
robust inferences against outliers. This robustness is also available
within the framework of the DHGLM, as we shall see.

The structure of the chapter is as follows: In Section 3.1} ideas
of the double robustness and the IBC condition with the basic
setup are introduced. In Section [3.2] we examine how to obtain
the imputation estimator based on the IBC condition. In Section
[3:3] we present the use of the y-power divergence to enlarge the
class of propensity score models. In Section [3.4, we examine the
IBC condition in modeling approach, especially DHGLM. Robust
inference against outliers is also discussed. Simulation study in
Section shows the usefulness of the proposed method. All re-

quired evidences are presented in the Appendix.

1.3 Enhanced Laplace Approximation

Lee and Nelder| (1996)) proposed the use of the h-likelihood for
making inferences about statistical models with latent variables
which are widely used in various fields. Consider a hierarchical
generalized linear model (HGLM) with E(y|z) = p, var(y|z) =
¢V (1), and the linear predictor

n=g(p)=XB+ LX)z,

where V' (p) is the variance function, 5 indicates fixed effects, z in-
dicates latent variables, namely random effects, and 7 = (¢, X)) are

dispersion parameters. The h-likelihood of the HGLM is written

;ﬁ'! 2 1_..” .__;J!_ W



as

H(0,2) = foly,2) = foly | 2)f(2)-
The h-likelihood consists of three objects: the observed data y,
fixed unknown parameters § = (3, 7), and unobserved latent vari-
ables z. The marginal likelihood can be used to estimate the fixed

parameters 6 by integrating out the latent variables from the h-

likelihood:
Ln(6) = olt) = [ H(6.2)d. (1.1)

To make inferences about the random effects z, |Lee et al. (2017)

proposed the use of the predictive likelihood:

Lp(zly; 0) = fo(z | y) = fo(y, 2)/ foly) = H(0,2)/ L (0),
which is analogous to the use of a Bayesian posterior under a flat
prior on 6.

In random effects models, the h-likelihood can be explicitly
written, whereas the marginal and predictive likelihoods often in-
volve intractable integration. The Gauss-Hermite quadrature can
be used for the integral shown in . However, this formulation

becomes numerically difficult as the dimension of integration in-

creases (Hedeker and Gibbons, 2006). Instead, in random effects

models, |[Lee and Nelder (2001)) proposed the use of the Laplace

approximation (LA) (Tierney and Kadane, 1986)), which is widely

used and has been implemented by various packages (Rue et al.

2009; Kristensen et al., 2016} Lee and Noh, 2018). Recently,
(2017) proposed a fast moment-based method for random effects

models, which does not allow correlated random effects and is re-
stricted to nested random effects models. Thus, this method can-

not be used for crossed random effects models. In this chapter, for

A & Tl 8} 3



the maximum likelihood (ML) estimation, we exploit an alterna-

tive expression of the marginal likelihood:

Lm<6) = H(07 Z)/Lp(z ’ Y3 6) (1'2)

For the log-likelihoods we use h(6, z) = log H (6, z), £, (0) = log L, (6),

and £y, (z|y; 0) = log Ly (z|y; ).

Lee and Nelder| (2001) extended the restricted likelihood (Pat-
terson and Thompson, (1971) for normal linear mixed models to
HGLMSs, which is important for estimating the dispersion parame-
ter 7. However, there is no theoretical justification that the current
approximate maximum likelihood estimator (MLE) and restricted
maximum likelihood estimator (REMLE), which are based on the
LA, are asymptotically equivalent to the true MLE and REMLE.
Furthermore, how their consistent variance estimators could be
obtained remains ambiguous. In this chapter, we propose the use
of an integrated likelihood as a new restricted likelihood and intro-
duce the enhanced LA (ELA), which provides the MLE, REMLE,

and their consistent variance estimators.

1.4 Accelerated Failure Time Random Ef-
fect Model with GEV Distribution

In survival analysis, accelerated failure time (AFT) model has been
widely used as an alternative to Cox’s proportional hazard (PH)
model. The main advantage of the AFT model is its direct inter-
pretation between survival time and covariates (Ha et al., 2002,
2017)). To enjoy this property, robustness against the misspecifica-

tion of the distributional assumption should be guaranteed. The

10



robustness against the misspecification of the distributional as-
sumption in the AFT model was presented in Ha et al. (Ha et al.,
2002). However, investigating the robustness about more general
cases including highly censored survival data has not been studied
yet. The generalized extreme value (GEV) distribution with three
parameters (location, scale and shape) allows a flexible modeling
for skewed, heavy-tailed, and heavily censored data (Roy and Dey,
2014; Bladt and Albrecher} 2021). Clustered survival data allow
correlation among individual survival times within the same clus-
ter and they are often encountered in various clustered clinical
studies such as a multi-center clinical trial, a dental study of teeth
or implants, a pair or family study, and study of recurrent or mul-
tiple events (Hougaard}, |2000; Ha et al., 2017). Random effects are
useful to model such dependence. In this chapter, we are interested
in the analysis of heavily censored clustered survival data. Thus,
we propose an AFT random effect model with GEV distribution
to allow a robust inference against heavily censored clustered data.
The model inference is based on the h-likelihood (Lee and Nelder,
1996)). Unlike the classical likelihood which only contains fixed
parameters, the h-likelihood is constructed to have both fixed pa-
rameters and random parameters (Lee and Nelder, [1996]). This
chapter is organized as follows. In Section we describe the
AFT random effect model with GEV distribution. In Section [5.2
we derive the estimation procedure based on h-likelihood. The pro-
posed method is demonstrated using simulation study in Section
and is illustrated with a practical example data set in Section
[5.4] Technical details are given in Appendix.

11
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Chapter Summary

Maximum likelihood (ML) estimation is widely used in statistics.
The h-likelihood has been proposed as an extension of Fisher’s like-
lihood to statistical models including unobserved latent variables
of recent interest. Its advantage is that the joint maximization
gives ML estimators (MLEs) of both fixed and random parame-
ters with their standard error estimates. However, the current h-
likelihood approach does not allow MLEs of variance components
as Henderson’s joint likelihood does not in linear mixed models.
In this chapter, we show how to form the h-likelihood in order to
facilitate joint maximization for MLEs of whole parameters. We
also show the role of the Jacobian term which allows MLEs in
the presence of unobserved latent variables. To obtain MLEs for
fixed parameters, intractable integration is not necessary. As an
illustration, we show one-shot ML imputation for missing data by
treating them as realized but unobserved random parameters. We
show that the h-likelihood bypasses the expectation step in the
expectation-maximization (EM) algorithm and allows single ML
imputation instead of multiple imputations. We also discuss the

difference in predictions in random effects and missing data.

13



2.1 Basic Setup

Assume that we have a study variable Y with dominating mea-
sure 1 and a covariate vector X . The study variable Y is subject
to missingness and the covariates are always observed. Assume
further that there are n independent and identically distributed
realizations of (X,Y,J), denoted by {(x;,yi,0;) : i = 1,...,n},
where ¢; is the missingness indicator defined by §; = 1 if y; is
observed and ¢; = 0 otherwise. We are interested in estimating
n = E(Y') from the observed data.

Under existence of missing data, an imputation estimator of n

can be written as
1 n
= - Z; {0syi + (1 — 04) 3}
1=

where ; is the imputed value of y;. To predict realized values y; of
unobserved missing data, we consider a frequentist approach using
the ML imputation. The current procedure for ML imputation can

be described as follows:

Step 1: Estimate 1 by maximizing the observed likelihood

Lm(w) = fl/) (yobsad | :U)
= /fw(yobsaymis’é | ) dYmis, (2.1)

where fy(Yobs, Ymis, 9] is the joint density function of (Yobs, Ymis, 0)

given x with fixed unknown parameter ¢ and (Yobs, Ymis) 1S
the observed and missing part of the complete data yeom =

(y1,--.,Yn), respectively.

14



Step 2: For each ¢ with §; = 0, obtain a predictor of y;

= / yF(y | @i, 55 = 0:9)duly)
— By (Y| @6 —0), (2.2)

where 1& is the MLE of 1 obtained from Step 1.

We use subscript m in the observed likelihood in to emphasize
that the likelihood is developed from the marginal density of the
observed data. Robins and Wang| (2000) and Kim and Shao, (2021))
present some asymptotic properties of the imputation estimator
under ML imputation. The above two-step imputation procedure,
however, is computationally involved as the ML estimation of the
fixed parameter 1 is often based on the iterative procedure such
as EM algorithm (Dempster et al., [1977). However, such a condi-
tional mean imputation in does not necessarily give the best
prediction in terms of maximizing the predictive distribution. For
example, if y is categorical, the conditional mean is not necessarily
categorical.

In this chapter, instead of using the conditional mean imputa-
tion in , we propose using conditional mode of the h-likelihood
given by

Umis = arg max H(zﬂ, ymiS)

Ymis
in the next section. In many practical situations, the conditional
mode imputation is attractive as it respects the “maximum like-
lihood” principle by treating the unobserved y values as realized
random parameters. By treating yuis as the random parameters
and applying the usual ML procedure, we can obtain imputed val-

ues, namely ML imputation, that adhere to the frequentist princi-

15
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ple to the greatest extent possible. An immediate practical advan-
tage is that one-shot imputation directly allows the ML estimation
of fixed parameters. For one-shot imputation to be meaningful, as
we shall show, it estimates the canonical function to predict fu-
ture (or missing) variable, which resolves summarizability problem
raised by Meng (2009).

Naively treating the missing observations as unknown param-
eters will be subject to biased estimation, which is well known
as pointed out by Neyman and Scott| (1948). Thus, we employ a
technique known as h-likelihood (Lee and Nelder, 1996), to cir-
cumvent this issue and obtain valid inferences. Yun et al.| (2007)
studied the h-likelihood approach to estimate fixed parameters in
missing data problems. We introduce the ML imputation of miss-
ing data and conduct a more systematic investigation, elucidating

the mysteries of h-likelihood in general.

2.2 H-likelihood

In this chapter, we rearrange the indices as §; = 1 fori = 1,..., ngps
and = 0 for i = neps + 1,...,n where nghs = Y iy d;, ie., the
first nops responses are observed and remaining nmis = 1 — Nobs
responses are not observed. Missing data can be viewed as pre-
diction of future data which are not observed yet. By treating

Ymis as random parameters, the complete-data log-likelihood is an

16



extended log-likelihood

ge(¢>ymis) = logLe(waymis)

= log fq/,(yobs, Ymis, d | (IZ)

Nobs
= ) log fu(yi, 6 = 1| @)
i=1
n
+ > 108 fu(Ymisi: 0 =0 | x;).
1=MNobs+1

Extended likelihood principle (Bjgrnstad, |1996) states that Le (v, Ymis)

carries all the information in the data about unknown parameters
Y and Ymis-

Lee and Nelder| (1996)) proposed the h-likelihood for ML esti-
mation on both fixed and random parameters. Due to a Jacobian
term, unlike a transformation of fixed parameter v, a nonlinear

transformation of random parameter v = g(ymis) changes the ex-

tended likelihood

aymis

L, (’¢, U) =L, (¢7 ymis) v

Here if the joint maximization of L. (¢, v) gives the MLE of 1, that
of Le (¢, Ymis) cannot give the MLE of v. It means that specifying
the scale of a random parameter in defining the h-likelihood is
important to obtain MLEs via its maximization. In this chapter,
we elaborate on how to use the Jacobian term to form such an
h-likelihood.

Following |Lee et al.| (2017)), the predictive likelihood of random

parameter v can be defined as
Ly(v[ DY) = fy (v | D,x) = fy (v,D | @) [ fy (D | @),

17
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where D = {yobs, 0} and subscript p is used to emphasize the pre-
dictive likelihood for v. Thus, the marginal likelihood is expressed

as

Le(t,v)

R ACET)

(2.3)

Given 9, let

0 =0(y, D, x) = arg max, L¢(¢,v) = arg max, Ly, (v | D; )
(2.4)
be the common mode of the extended likelihood and the predictive
likelihood. Note that the common mode v(¢), D, ) is a function of
both parameter and data. However, we denote it as ¥ for notational
convenience. Evaluating the marginal likelihood in at v =10

leads to

o Le(wa ﬁ)
Lnt) = 1 G 1D 0y

If both L.(v, v) and L,(v|D; ) are explicitly available, at least at
the mode o, the MLE for 1 is immediately obtained from ({2.5)).

(2.5)

However, both are not often available.

Definition 2.2.1. If a scale v = g(ym;s) satisfies

Le(t,9) % Lin(49), (2.6)

the v-scale is called the canonical scale and the mode v is called
the canonical function. The extended likelihood defined on the

canonical scale v is called the h-likelihood,

H(¢,v) = Le(¢h,v).

By combining (2.5) and ({2.6)), L,(?|D; ) does not depend on 9 if
v-scale is canonical, i.e. information neutral with respect to ¢ at

the mode 2.

18
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Here, we emphasize defining the h-likelihood with different
parametrization of a random parameter. Let ﬁ be the MLE of ¢ =
k(v)) under the transformation k(-). Then, the MLE ) = k~1(() is
invariant with respect to the transformation. Similarly, the MLE
of a parameter from the h-likelihood is transformation invariant.
That is, we can treat v as if it is a fixed parameter after defining

the h-likelihood in the sense that

H(y, ymis) = H{w, g_l(ymis)} = H<wa U) (2'7)

(Lee and Nelder}, 2005)). Here, we denote H (1), ymis) the h-likelihood
in terms of ymis as (2.7)), whereas L¢(¢, Ymis) indicates the extended
likelihood in which the canonical scale is yet unknown. From ,
the conditional mode of y,;s is defined by

Ymis = arg HlaXH(’gD, ymis) = 9_1(5)' (2'8)

Ymis

If the transformation g(-) is not linear, we get

mis 7 argmax Le (1, Ymis)-

Ymis

Thus, under the canonical condition , MLEs of both fixed
and random parameters can be obtained by maximizing H (¢, v) =
Le(9,v).

Lee et al. (2017) gave a correct definition of canonical scale
above, but have not exploited it to form the h-likelihood. We now
state a sufficient condition for the canonical property in as

follows.

Proposition 2.2.1. If a transformation v = g(ymis) with bijec-
tive, differentiable function g(-) satisfies

v

)aymis

X Lp(gmis | D; ¢),

V=0
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where §mis = ¢~ 1(0) and ¥ is defined in (2.4)), the canonical prop-
erty in (2.6]) is satisfied.

Proposition gives further interpretation about Definition
221

Lm(w) _ Le(¢7gmis)

Lp(gmis ‘ D§ w)

8ymis
ov

X Le (¢7 gmis)

V=V

(2.9)
Moreover, it shows how the canonical scale allows ML estimation.
Now, we first study the ML estimation of the fixed parameter using

h-likelihood.

2.2.1 MLE of Fixed Parameter

Equation (2.9) characterizes the canonical scale which allows the

ML estimation.

Theorem 2.2.1. Suppose that the predictive likelihood Ly, (ymis|D; ¢)
is unimodal with respect to ymis. Then, there exists the canonical

scale to form the h-likelihood.

Theorem 2.2.7] states a sufficient condition for the existence of
a canonical scale. When an explicit form of the canonical scale is
not available, we present a way of defining a weak canonical scale
based on the Laplace approximation in Section For now, we
assume that an explicit form of the canonical scale v = g(ymis) is
known. The following theorem shows how to obtain the MLE of

fixed parameter and also its variance estimator.

Theorem 2.2.2. (i) The MLE of ¢ can be obtained by solving
the score equation
ol 0 oh
™= _—h

w: 61/] (?/)777):%1}:6:0,
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where h = log H(¢,v) and €y, = €, (¢)) = log Ly, ().
(ii) The variance estimator of the MLE can be obtained from

the Hessian matrix of the h-likelihood as

. 20, \
TV — Idﬂl/‘ LT = = m
v 000uT)

where the definition of I¥¥ is in Appendix.

note that

To compare the h-likelihood approach with the EM algorithm,
i (¥) 9
=E 766 » Ymis
9 Y (%, Ymis)

50 D, w} .
This equality is called the mean score theorem (Louis| [1982). The
EM algorithm (Dempster et al., |1977) obtains the solution to
Olm(¥)/0¢ = 0 by

YU« solve By {%eew,ym)
The h-likelihood approach gives the MLE of the fixed parameter

D,m} = 0. (2.10)

without requiring the E-step in (2.10)) which is often computation-

ally intensive.

2.2.2 MLE of Random Parameter

If we let ymis be the unobserved part of the data, the missing data
problem becomes a prediction problem. To understand Meng’s
point in Meng (2009), assume that yops and ymis are independent
and the scale v = g(ymis) is the canonical scale. Prediction of future
data can be viewed as missing data problem where ¥ 11, .. ., Yi4n,
are future data at the present time ¢t = ngps. Meng (2009) showed
that

V—v=g (gmis) ) (ymis) = gl (gmis) (Qmis - ymis) + Rnobs’
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where
Rnobs = Op(l) and g,(gmis)(gmis - ymis) — Op(l)

Meng (2009)) claimed that © — v is not summarizable because of
the nonnegligiblity of the remainder term R, , _, i.e., consistency
and asymptotic normality for the MLE ¢ from the h-likelihood are
not guaranteed.

Now we investigate the summarizability properties of the MLE
0. In missing data problem, the ML estimation of random param-
eter can be called the ML imputation. Let 1y be the true value of
. As MLE 1/; is estimating g and similarly the MLE ¢;s pre-
dicts a realized value of y;s by estimating the conditional mode
Ymis,0 = Ymis(%0, D, x) in , which is a function of data and
unknown parameter 9. This clarifies the summarizability prob-
lem raised by Meng| (2009); while Jmis — Ymis 1S not summarizable,

Umis — Ymis,0 1S summarizable as in Theorem below. Note that
Ymis — Ymis = Ymis,0 — Ymis + €,

where € = Ymis—Ymis,0- In missing data problem, ¢ = O, (1). In view
of predicting unobservable future (or missing) random variable, we
estimate € as null. Then, §mis is estimating ymis,0 to predict Ymis.

Thus, we obtain
vary (Jmis — Ymis) = Vary (Jmis — Ymis,0) + vary(e|D, x).

The first term is the variance due to estimating Ymis,0 by Umis and
the second term is the variance due to the unidentifiable error term
€. The second term may decrease with a better imputation model,

but it does not decrease with larger sample size. Moreover, to
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obtain a standard error for prediction of ymis, we need to estimate

the conditional variance of € by using
vary (e | D, x) = vary(Ymis — Ymis,0 | D; &) = vary(Ymis | D, ).

Here, we are interested in estimating var(gmis — Ymis)- Lhus, we
write the h-likelihood with respect to ymis as b = h(¢), Ymis) =
h{y, g~ (v)}. Note that

O 1
awb = _Iwymislymisymis

and the variance estimator of 1& is I*% by Theorem where
Lyyss = —0%h/ awaygﬁs and [

Then, by using the delta method, we have the asymptotic normal-

|ymis =Ymis

ity of §mis as follows.

Theorem 2.2.3. Under regularity conditions in Appendix, we
have

~ d
V TMobs (ymis - ymis,O) — N (0, V) 5

A N

e B Sy - N
where V' = lim,, | 0 nObSIymisymistmis¢'I I¢ymislymisymis and Iy, .,

N

are evaluated at ¢ = 1& The variance of §mis — Ymis,0 can

YmisYmis

be estimated as

var (Qmis - ymis,O) = Var,[, (Qmis - ymis,O)

-1 N ~ R A
= Iymisymis Iymislplwzp Iwymis Iymisymis (2 1 1)

If Ey(e) = 0, 9mis is an asymptotically unbiased estimator of
Ymis- However, the assumption Ey(e) = 0 is coming from model
assumption which may not be identifiable by observed data. Now,

to discuss the estimation of the variance due to the model error
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€, suppose that there exists a normalizing transformation z =
k() = k{g(ymis)} = k © g(Ymis) = 7(ymis) with r(-) = ko g(")
such that L,(z|D;) is from the normal density with mean Z =
arg max, L,(z|D;1)) and covariance matrix I}, where

I, = —0°h(3,2)/0202T|,—5. Then, it gives the h-likelihood

B (1, 2) = b () + — log ol — 5 (= 8 La (2 - 2).

1 1
2

Here, Z = Ey(2|D,x) = r(Jmis) provided by the normality of the
predictive likelihood L, (z|D;). This leads to Ey(e) = Ey(z —
Zo) = 0,

vary (2 — z) = vary (2 — 20) + Ey {vary (20 — 2 | D, x)}

and var(zo—z|D, x) = I}, where 2 = 7 (fjmis) and zg = 7(Ymis.0) =

Ey, (2|D, ). This gives

var (2 —z) = var(Z—z) +var(zo—z | D,x)
= LIy I+ 1)
_ g

Therefore, if a normalizing transformation exists, the h-likelihood
gives not only MLEs of both fixed and random parameters, but
also their corresponding variance estimators. Moreover, if ymy;s it-
self satisfies normal approximation well, then, we can have a rea-

sonable variance estimator from the Hessian matrix of h-likelihood

var (Qmis - ymis) = var (gmis - ymis,()) + var (ymis,O — Ymis | D7 il})
e N P-1
- I misymislymiswl Iwymisjymisymis + Iymisymis

— jymisymis .
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Thus, Gmis; + 1.96\/fl.'yl."“sy‘“is is 95% predictive interval of Ymis.i,
where I%ms¥mis is the ith diagonal element of [¥mis¥mis. The length
of predictive interval is Op(1) and coverage probability becomes
exact as n — oo (Lee and Kim| 2016). However, in practice, the
normalizing transformation is not known. Thus, in general, for the
prediction of ynis, Lee and Kim/ (2016, 2020) proposed to use the

predictive distribution after eliminating v defined as

F (s | D, ) = / Folgmis | Do@)c()d,  (2.12)

where ¢(1)) is the confidence density (Schweder and Hjort, 2016).
By using the predictive likelihood , we can account for the
uncertainty caused by estimating . Via simulation studies, [Lee
and Kim| (2016)) showed that resulting predictive interval main-
tains the stated coverage probability well as n grows.

From Theorem MLE 1]) from the marginal likelihood can
be obtained by

Ou(V) _ Oh(w,) _

oY oY
and ML imputation §mis = ¢~ 1(9) of ymis = g~ '(v) from the

predictive likelihood can be obtained by

Oy(v | Di9) _ Oh(,v) _ o
ov v

where 1) is solution to dh (1), v)/d1 = 0. In contrast to the EM al-
gorithm, the h-likelihood provides not only the ML estimation for
fixed parameters from H (v, 0), but also ML imputation on random
parameters from H (1;, v) as in Figure Moreover, the necessary

standard error estimates are also given straightforwardly.
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HO,9) = L | D)lm(®)y
Find ¥ by solving < Lm(v) Find % by solving

Oh(p) _ Oh(Yw) _
ongy) g oy g

H($,v) = Lp(v |
v|

Figure 2.1: Estimation procedure of the h-likelihood.

Example 2.2.1. Suppose that n variables are generated from the
exponential distribution with mean 6y but only the first n — 1
variables are observed, i.e., ngps = n — 1 and ymis = Yn is not
observed. In this example, the extended likelihood defined on 7js-

scale is

— 1)y )
Ee(ea ymis) =N 10g 0 — (n )y;bs + Ymis '
Note that yyis-scale is not canonical but v = log ym;s is a canonical
scale which gives

— 1) v
:—nlog&—(n )y90b5+e +v

8 mis
h(0,v) = £o(6, yumis) +log ‘ gv

and

1)gobs + Ymis
0

h(6, Ymis) = —nlogl — (n = + 10g Ymmis-

Here, the canonical function of yuis 1S gmis = 6 which gives the
MLE 6 = Yobs and ML imputation §umis = 6 = Yobs- In this exam-
ple, the MLE of 9, 0, satisfies the asymptotic normality

Vions (8= 00) 5N (0,63).

By Theorem the ML imputation for %mis, Umis, satisfies the

asymptotic normality
~ d
v/ Tobs (ymis - ymis,O) — N (0, ‘98) )
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where Ymis,0 = 0o and var (Jmis — Ymis,0) = anISéQ, ie., 1D gives

valid variance estimator of §mis — Ymis,0. Moreover,

fymisymis — é2 (1 -+ > = @'(gmis - ymis)'

TNobs

Here @(Qmis_ymis) = var (Qmis - ymis,0)+@(ymis|yobs) = éQ/”obs'*’

62. Thus, the h-likelihood gives a correct ML imputation. In this
example, Ymis o = 0 is a function of parameter only so that gmis —
Ymis,0 1S summarizable. But ym;s is not identifiable since ¢ = O (1)
with Eg(e) = 0. Asymptotically correct probability statement on

Ymis can be made based on predictive interval whose length is

Op(1).
Example 2.2.2. Consider a one-way mixed model
yl] :M+uz+6’b]7 izlv"‘aqa jzla"‘7n7

where random effects u; are iid N(0,A?), ¢;; are iid N(0,0?) and
u; and ¢;; are independent. Henderson’s (1959) joint likelihood is

the current h-likelihood of |Lee and Nelder| (1996)

1 1
le (0,u) = Z {—210g271'02 — — (yij —p— Uz)z}

— 202
Z’J
1 2 1 2
+Z =5 log2mA? — s ) (2.13)
K]

where 6 = (u, 02, A\?). However, joint maximization of (2.13) can-
not give the MLEs of variance components o2 and 2. Consider a

v-scale

{ a2£e(a,u)}°'5 <02+m2>°'5
Vi=4—— (5 Ui =\ ——5y Ui,

ou? o2)\2
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which leads to the extended likelihood

(B.0) = (0, + log| 0"

/l} ‘

N —
= - qlog2ﬂ02—%10g27r (o +nA?)

2
1 0_2)\2 0.5
T3 2\ Y )

2%]
2
o 2 4
_2(02 e Z Vi T g log 2,

where N = gn. Since (.(6,0) = ,,(0), where

- n\(gi. — p)
i — Ug 97 i) — ;
i = 0i(0, i) {0222(02 1 nA2)}05

vi = (Wi, -+, Yin) and g = n1 > j=1Yij» we have h-likelihood
h = £.(0,v), whose simple maximization gives MLEs of the whole
parameters 6. Also, it gives the best linear unbiased predictors for

realized but unobserved random parameters

—

where

1
o2 )\2 2 ni2 B
} (7i-—1) = Eg(u; | i)

5 (0.1 —
02 + nA2 0 (0, 9:) 02+ nA2

In this example, the target of u; is
ujo = Ui (0o, yi) = Egq (wi | ¥i),

where 6y = (o, 02, \2) is the true value of 6. If the MLE 6 con-

verges to 6,
. . _ P
var (t; — u;) = var (; — uip) + var (u; — uip | y;) = 0
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as (g,n) — oo. Thus, in this example, we have a consistent esti-
mator of unobserved random parameter u;, i.e., u; is identifiable
with € = u; — uj0 = 0p(1). This can also be shown that
(gn)—o0 (g:n)—o00
) nA2
= lim ——— 0 5
(gn)—o0 0G5 + Tl)\o
nAZ
(g,n)—o0 OF + TLAO

(Ui — o)
(ui + Ei.) = U;,

where €. = n~! 2?21 €;j- Model assumptions on u; can also be
checkable: for various model checking plots, see Lee et al. (2017)).
Furthermore, if different model assumptions on fy(u) lead to an
identical h-likelihood, then it leads to equivalent inferences for
identifiable random effects (Lee and Nelder, 2006]). In missing
data problem with € = Ymis — Ymis,0 = Op(1), model assump-
tions fy (ymis| D, x) cannot be checkable from the observed data
(Molenberghs et al., 2008]).

Since wu; itself is the normalizing transformation in this exam-

ple, variances can be estimated as

. 92h\ 522

-1 _ [ _ (s L) — 8 (1 — e |
B = (5) o= e = O 0 = i L)
— A Oty [\ OUy .

R T GHTZVM (0> 801 ,_ = Var (4; — wi),

" = (i),

Thus, proper MLESs of both fixed and random parameters and their
variance estimators can be obtained by the maximization of the
newly defined h-likelihood, which differs from the joint likelihood
of Henderson (1959). Asymptotically correct probability statement
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on u; can be made from the predictive interval whose length is
0p(1). For more details about general random effect models, see

Paik et al.| (2015)), Lee et al.| (2017)), and |Lee and Kim/ (2020)).

2.3 Scale for Joint Maximization

When the canonical scale is unknown, [Lee et al. (2017) proposed
the use of the Laplace approximation to give an approximate MLE
(Tierney and Kadane, 1986)), which has been implemented by var-
ious packages (Kristensen et al.l 2016; Ha et al.. 2019). In this
section, we study how to form an h-likelihood with a weak canon-
ical scale whose joint maximization provides approximate MLEs
obtained by the Laplace approximation. Given ymis-scale, consider

a b-scale with b = g1 (ymis)- Let 2 be the support of b taking a rect-

n

L 41li, ui], where [; and wu; are permitted

angle form Q, = []
to take the value of —oco and oo with boundary set 0, & = (1, b)
and fy(b) be the density function of b. Meng| (2009) studied the
regularity conditions for the first and second Bartlett identities of

an extended likelihood £, (1,b).

Theorem 2.3.1 (Meng, 2009). (i) If f;(b) = 0 for any b € O,
the first Bartlett identity holds.

E, [aaézew,b)] = 0. (2.14)

(ii) Furthermore, if 0fy(b)/0b = 0 for any b € 0, the second
Bartlett identity holds.

Es [(iﬁew,b)) (aageew,b))T
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Corollary below gives an easy way of having a b-scale to satisfy

Bartlett identities.

Corollary 2.3.1. Let , = R™is. If Ey, (b;) < oo for all 4, the

b-scale satisfies Bartlett identities.

The second Bartlett identity guarantees that the pre-
dictive likelihood L, (b|D;) is unimodal with respect to b even
though Ly (ymis|D; ¢) may not be unimodal. From Theorem [2.2.1]
if we have such an extended likelihood L.(v,b) there exists the
canonical scale v = g(b) to form the h-likelihood. But, the explicit
form of g(-) for the canonical scale may not be known. In this
case, we may consider an approximation of canonical scale based
on the Laplace approximation, which is widely used to obtain an
approximate MLE of fixed parameter, 1[1Lap (Raudenbush et al.)
20005 Lee et al., 2017)).

Definition 2.3.1. Suppose that b-scale satisfies the Bartlett iden-
tities and £.(1,b) is the corresponding extended log-likelihood.

Now, consider a w-scale defined as
w = go(b) = QZb, (2.16)

where b = b(y, D, &) = arg max;, Le(1, b) and Qpp = —92€. (1), b) /ObObT |, _;.

Here, we call w-scale weak canonical and
ob
H = Le(¢7w) = Le(wab) ‘8’[1)
the h-likelihood with weak canonical scale w.

By the above definition, weak canonical scale also satisfies

Bartlett identities in (2.14)) and (2.15)) since the transformation
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(2.16) is linear. Furthermore, we have
@ = B¢, D, z) = argmax Le(4), w) = g2{b(v), D, )}

since b is the mode of L.(1),b) and the transformation gy(-) is
linear. Note that the joint maximization of the h-likelihood with
weak canonical scale gives the approximate MLE for ¢ based on
the Laplace approximation as follows.

1
2

L (1) = Le (w,é) ‘;ﬂﬁbb

x L, (v,b) 'SZ = L),
This weak canonical scale does not require the existence of linear
predictor. In HGLMSs, a scale satisfying additivity in the linear
predictor is called a weak canonical scale (Lee et al.l [2017), which
satisfies Corollary 2.3.1] In Appendix, we show how to compute the

standard error estimate of the approximate MLE obtained from

Ee(wv ’LD) = IOg Le(wv fd))

2.4 ML Imputation

In this section, we propose the ML imputation via h-likelihood.

Definition 2.4.1. With the canonical scale v; = g(Ymis,;) and the
canonical function ¥;(¢, D, ), the ML imputation gives imputed
values

Gisi = 97 (83), 3 = 5, (., D). (2.17)
Theorem [2.2.3] implies that the MLE of a random parameter is a
consistent estimator of the canonical function. Based on the ML

imputation (2.17)), we propose to use the estimator

1 Nobs n
ymL = Zyz + Z Ynmis,i
=1 1=Nopbs+1
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as an estimator of n = E(Y). If the canonical scale is unknown,
the ML imputation based on the weak canonical scale can be used.
Weak canonical scale always exists and is known. This scale gives

the estimator of n as

Nobs
L = Zyz > g,
1=Nobs+1
where QII;?S = g 1(0), & = ®(, D, x) and g = g2 0 g1. From
Theoremand the definition of the weak canonical scale ,
we see that the canonical scale is a linear transformation of the
weak canonical scale w. Given 1, MLEs of random parameters are
invariant with respect a linear transformation (Lee and Nelder,

2005) and

bn() = () = Ep(yumis | D) = Lp(ymis | Ds )
= {6(v | D;¢) + log |0v/Oymis|}
{0 | D50) + 10g |00/ Oymis]}
= Gp(v | Ds9) = by(v | D3 o),

Thus, the ML imputation under weak canonical scale is valid in

the sense that
AL N - -
i = s = Op (|91 =43

where £ (Ymis|D; 1) = 10g Ly (Ymis|D; ¥) and Le(Ymis|D; ¥) = Le (¥, Ymis) /L (1)
Recently, Han and Lee (2022)) developed the enhanced Laplace ap-
proximation (ELA) to obtain the MLE v generally. Thus, the ML
imputation can be always implemented even when the canonical

scale is not known by using a weak canonical scale from the ELA.
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Given the MLE 1/3, all the results on the ML imputation in Section
2221 hold.
Under missing at random (MAR) of Rubin (1976), the h-

likelihood becomes

a mi
h =108 f5(Yobs | &) +10g fo(ymis | @) + log f,(5 | @) + log \y :

ov

where 6 is the parameter for the response model and p is the

parameter associate with the missing mechanism. Under MAR
assumption, the canonical function of v depends only on 6 and
x to give ML imputed values §mis; = g]mis’i(é, xi), Umis,i(0, i) =
g Ho:(0, )}

Example 2.4.1. |Little and Rubin| (2019) considered censored ex-
ponential model, where ycom = (Yobs, Ymis) are independent expo-
nential random variables with mean 6 and the missing mechanism
is set to d = I(Y < ¢) with known ¢. Here the missing mechanism

is not ignorable and the complete-data likelihood is

1 Nobs 1 n
le (0, Ymis) = —nlogh — - Zyz- —9 > Ymisi-
=1 1=Nohs+1

They noted that joint maximization of the complete-data likeli-
hood provides nonsensical modes (nobsPobs + Mmisc)/n for 6 and ¢
for Ymis,i, where Jobs = D 1% yi /nobs is the sample mean based on
the observed responses. Now we know that MLEs (modes) should
be obtained from the h-likelihood. Yun et al.| (2007) found the

canonical scale v; = log (Ymis; — ¢) to form the h-likelihood

8ymis
h = Ee 97 mis 1

(0, ymis) + og’ 5

g0 23wt 3 {pierens

= —nlo — = i —=(c+ e Vi -
sV T LY 0
i=1 1=Nops+1
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The canonical function of v is v;(6) = log § which gives

1S NmisC
v - 1 7 1 mis — *m mis m .
h{6,0(0)} = —neops log 6 7 ;:1 y ) Tmis = L (0)—nimis X £ (0)

This gives the true MLE 6= Tobs T MmisC/Mobs and the ML imputed

values fmis;; = 0 + ¢ > ¢ to lead that

1 Nobs n
ymL = Zyﬂr > G | =0
=1 1=Nophs+1

and var(jur) = var(d) = 1% = 62 /ngps. [Little and Rubin| (2019)
used the EM algorithm. With the E-step

Eo (Ymis,i|Ymis,i > ¢) =0 +¢,

the M-step gives

Nobs

o+ — % [; Yi + Nis {0“) + c}

Thus, the EM algorithm gives the identical MLE 0. But, the EM

algorithm does not provide the variance estimator directly.

To examine the performance of the ML imputation, we set
about 22% of responses as unobserved and compare three esti-
MAators Yeom = D i1 Yi/M Yobs = i1 0i¥i/Nobs, and Fy, using
random samples from exp(2) distribution. The estimator Yeom is
considered as a benchmark since it cannot be used in practice. In
Figure[2.2] it is shown that the proposed method works well. More-
over, Yobs Shows a non-negligible bias in amount nyis¢/nobs ~ 0.86

since the missing mechanism is not ignorable.
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n=100 n=500

ycom yobs yM L ycom yobs yM L

Figure 2.2: Boxplots of estimators in exponential mean model with

¢ = 3. Dotted line indicates the true value of 7.

2.5 Illustrative Examples

2.5.1 Normal Regression Model

Consider a normal regression model Y|z ~ N(By+ 17, 02) with re-
sponse probability model logit{P,(§ = 1|z)} = po+ p12+ p22? un-
der a MAR assumption. Here, ym;s-scale itself satisfies the Bartlett
identities but it is canonical scale only for (Sy, 51). Thus, the joint
maximization of £.(f,ymis) cannot give the MLE of o2, where
0 = (Bo, B1,02). However, v-scale defined by v; = Ymis,i/0 is the
canonical scale with canonical function v;(0,z;) = (8o + fixi)/o
for ¢ = neps + 1,...,n. Then, the canonical function of yuy;s is
Umis,i (0, i) = Bo + B1xi = Eg(Ymis,i|zi) and the ML imputed val-

ues are Ymis; = Bo + B1x;. Moreover,

o2h \

21 _ | A2~ o

Iymis,iymis,i - o 2 ’07A =0 =var (ymlsvl ’ D’ .’13) :
ymis,i -

Since

gmis,i(ea :L"L) = Ee(ymis,i|$i)a
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the MLEs can also be obtained by the EM algorithm.

For a simulation study, we generate n = 100 and n = 500
samples with § = (1,2,1), p = (1,2,0.3) and = ~ U(—1,1). From
Figure [2.3] we can see that ., is positively biased because the
covariate x increases both Eg(Y|z) and P,(d = 1|z). Also, the

performance of g, is almost same as Ycom-

7 n;lOO 7 7 n:500
2.0 I 2.0
15 ; 1.5 %
Lop=—--1-- - 1.0——% ----- %
051 } ' 0.5
Yeom  Yobs  YmL Yeom  Yobs  YmL

Figure 2.3: Boxplots of estimators in normal regression model.

Dotted line indicates the true value of 7.

2.5.2 Exponential Regression Model

Consider an exponential regression model with mean Eg (Y|z) =
exp(Bo+512), B = (Bo, f1) and the MAR mechanism as the Exam-
ple In this example, v = log ymis scale is the canonical scale
which also satisfies Bartlett identities by Corollary Here the
canonical function of ymig ; is Tmis,; = exp(Bo+F12:) = Eg(Ymis,i| i)

and the ML imputed values are gmis; = exp(Bo + lez) Moreover,

en
Il =|- ’ = 2 = var (Ymisi | D, )
Ymis,iYmis,i 2 A mis,? mis,? 9 .
8ymis,i =0
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Figure shows simulation results with 5 and p being the same
as in Example Compared t0 Feom, YmL gives almost the same

performances, whereas fons is biased.

n=100 n=500
10 H 10-
8 . ! 8 !
o | o L, —
4_ 1 _ 4_ N ___$_
Yeom  Yobs  YmL Yeom  Yobs  YmL

Figure 2.4: Boxplots of estimators in exponential regression model.

Dotted line indicates the true value of 7.

2.5.3 Tobit Regression Model

Suppose that responses are generated from the normal regression
model in Example In addition, missing data are created by

Ymis > € at a known censoring point c. The extended likelihood

Nobs

1 _
le (0, ymis) = —g log 2mo? — 53 Z (yi — iTﬂ)Q
i—1

n

1 ~
_Tﬂ Z (ymis,i - x;fﬁ)z )

i=Nohs+1

where § = (8,02), 8= (Bo,$1) and & = (1, ). Here a b-scale

bi =01 (ymis,i) = log (ymis,i - C) )

satisfies Bartlett identities by Corollary but it is not canon-
ical. Now, consider a w-scale with w; = g2(b;) = lefgibi by li
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Then, we have the approximate MLE gL and approximate ML

imputed values yf;f.“’

. by jointly maximizing £.(0,w). However, the

exact marginal log-likelihood is available in Tobit regression model.

1 Nobs ~
fm(e) = _n;bs 10g02 — ﬁ Z (yz - ?ﬁ)2
=1
n ~T o
- 1og{q> (f”i C)}

1=nops+1

This means that explicit form of the predictive likelihood Le (b;|yobs; )

is available to give the canonical scale
v; = L6 (i)z | Yobs; 9) bi, (2.18)

where

b; = log {:E;Fﬂ —c+ \/(:ﬁ?ﬁ - 0)2 + 402} —log 2.
Thus, all MLEs are computed directly by simple maximization of
the h-likelihood.

In the simulation study, we examine the performance of ML
imputations by using two estimators g, using the MLE and gj{{ﬁp
using the approximate MLE. From , we see that both b and
w are linear transformations of v. Thus, approximate ML imputa-
tion works well as approximate MLE does. Given MLE for fixed
parameters, weak canonical scale gives an exact ML imputation.

For simulation, we set # = (1,3,1), ¢ = 3 and z; = —1+42i/n for
1 =1,...,n. In Figure 2.5 we see that the difference between g1,
and gjl%/ﬁf) is negligible because 6 and 6P are very close. Therefore,
we can use the weak canonical scale and approximate MLE when

canonical scale is unknown.
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n=100 n=500

Vc‘om yo‘bs VML Vk‘/ﬁ_p yc;)m yo‘bs VML ybip
Figure 2.5: Boxplots of estimators in Tobit regression model. Dot-

ted line indicates the true value of 7.

2.6 Conclusion

Firth (2006) and Meng| (2009) raised two important reservations
about the use of the h-likelihood. [Firth (2006) noted that the
linear predictor in HGLM may not be well-defined to form the h-
likelihood. Lee et al.| (2006) resolved his question by defining the
canonical scale. Meng| (2009)) claimed the asymptotic theory for
the prediction of the future data would be impossible because the
consistency cannot be achieved for the predicted values from the
h-likelihood. In this chapter, we have answered their queries on the
h-likelihood in the context of imputation for missing data. Specif-
ically, we have shown that prediction becomes an estimation of
canonical function of the h-likelihood whose consistent estimation
and asymptotic normality can be justifiable. We further showed
that standard errors of prediction can be directly obtained from
the h-likelihood.
Little and Rubin/(2019) pointed out that the current h-likelihood

procedure achieves the correct ML estimation by modifying h-

likelihood. In this chapter, we achieve the true ML approach via h-
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likelihood without any modification by reformulating the h-likelihood.
We present the meaning of the canonical scale and canonical func-
tion in detail, which allow ML estimation of fixed parameters and
ML imputation of random parameters, namely missing data. The
Jacobian term is a key to finding the canonical scale.

The ML imputation using the h-likelihood estimates the condi-
tional mode, rather than the conditional mean of the missing value.
We call this conditional mode imputation the ML imputation for
the random parameters. The h-likelihood used for ML imputation
provides an efficient algorithm because resampling procedure for
multiple imputations or expectation steps in EM algorithm is not

compulsory.

Appendix: Supplementary Materials for “Max-

imum Likelihood Imputation”

A1 Regularity Conditions

In this chapter, we assume the following regularity conditions in

developing the proposed method.

(R1) Let 19 = argmaxy, Ey{/, (1))} be the true value of ¢. Here,
the number of fixed parameters does not depend on ngps.
Then, the MLE ¢ = arg maxy, m (1)) satisfies the asymptotic

normality with mean 1)y and variance Z; = 7-1(¢), where

L 1 O (V)
I(w) B nOEfEOO TNobs (_ 3¢5¢T ) ‘7/’:77[10

is the expected Fisher information.
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(R2) The support of missing values

Q

1=Nops+1

does not depend on fixed parameter .

A2 Proofs
A2.1 Proof of Theorem 3.1

Proof. By assumption, there exists §mis = argmaxy, . £c(¢), Ymis)-

Now, consider a v-scale defined by

V; = g(ymis,i) = {Lp (Qmis ’ D; ¢)}1/nmis Ymis,iy 1 ="MNohs +1,...,n,

with the predictive likelihood Ly(ymis | P; %) = fu(Ymis | D, x).
Here, the transformation g(-) is bijective and differentiable since
it is linear. The predictive likelihood on v-scale is also well-defined
with the Jacobian term

8ymis
ov

Lp(v | D;v) = Lp(ymis | D;p) ‘

‘ ov
’ 8ymis

V=0

where U; = ¢(Jmis,i). Note that ¥ is also the mode of Ly(v|D; )
since Jmis is the mode of Ly (ymis|D; 1) and the transformation g(-)
is linear. Therefore, there exists a canonical scale which satisfies

(12). O

A2.2 Proof of Theorem 3.2

Proof. Let v-scale be the canonical scale and o = (¢, D, x). Then,

the h log-likelihood can be written as
h(¥,0) =l (¥) + ¢,
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where ¢ is a constant which is free of ¢. Then, we can prove the

first equality

8h

oY Ov

V=0

_oh
_on

Ot
o,

V=0

where h = h(¢,v) and ¢, = ¢,,,(¢)). To show the second equality,

recall that

oh

V=0

By differenciating (2.19) with respect to 1,

9%h oot

90007 oz T D)

02%h
ovovT |

=0. = — =

(2.19)
ovT
Lol o=s
8¢ Yvtoyy | =
(2.20)

Therefore, from (2.20)), we can prove the required result.

0t

o
0?0y,

C 9poayYT

Here,

- w (Tﬂ, )

__oh_
IT

V=0

0T 92h

9y 0waYT lv=s

= Tyy — Tyl Loy

- (IW>_1.

1
Lyy Iy
Ivzb Ly

—2h /0T
—92h/0vdp"
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A2.3 Proof of Corollary 4.1

Proof. Tt suffices to show that the case nmis = 1. If Ey(b) < oo,
then

lim bfy(b,0 =0]x)=0 = lim fu(b,6 =0]x)=0.

[b]—o00 |b]—o00
Since fy is continuous, fy(b,6 = 0 | &) = 0 for b € Y =
{—00,00}. Moreover, fy is bounded since fy is a density func-
tion of a continuous random variable whose support is the whole
real line with finite mean. This guarantees that f, is uniformly

continuous which implies

lim fy(b,6 =0|x)

|b]—o00
— lim i Je0+80=0]®) — fy(b,0=0] z)
~ i fig Jeett0=0]2)~ fy(bd=0]x)
t—0 |b|—o0 t
pu— ()7

ie., f{p(b,é =0]x) =0 for b € 0 = {—o0,00}. Then, the
first and second Bartlett identities hold by the result of Theorem
4.1. O
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A2.4 Score and Hessian of /,,(1)) and £ (¢, @)

Proof. By the definition of Zm(w), the score and Hessian can be

expressed as

o . 0 1 (/N1 D
S tm(¥) = %ge(wab)‘bg_Qtr{(Ibb) (8¢]Ibb>}

S, . oo ()
8w]a¢k m(¢) - '(/J]’Ll)k - dljb ( bb) bipg
1 -1 0?
1 10 I
*3 tr{ () (awjawk bb)
—1 -1/ 9
- (Izl;b) <5¢ Ibb) <I£b> <8¢ Ibb) },
for 1 < j, k < p, where Igy = amay le(, b)‘ . On the other
hand, with ¢, = £.(¢, w),
0 ol,
766 ) 0 -
5 Le6,0)
o2 !
_ . 7 — I
{ 8w8¢T€ (¢7w)} € Y
where .
s i Iy 1eypw
I;MZ} I;uw Ie,un/} Ie,ww

with

I T o 924, o 924,
e, e, pw _ opoYT 0powT

I I 9%, 9%, '
e,w e,ww dwoyT BwowT B—
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Chapter 3

Robust Imputation under

Missing at Random
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Chapter Summary

Imputation is a popular technique for handling item nonre-
sponse. By properly incorporating the observed auxiliary vari-
ables, imputation can reduce the nonresponse bias and obtain ef-
ficient estimation. Among various imputation methods, an advan-
tage of the maximum likelihood (ML) imputation is that one-shot
imputation allows the maximum likelihood estimator (MLE) of
fixed parameter. However, correct specification of statistical model
may be difficult in the presence of missing data. How to find a ro-
bust imputation method that is less sensitive to the failure of the
assumed model is an important practical problem in the missing
data literature. If the missing mechanism is missing-at-random,
doubly robust estimator gives useful estimator since the consis-
tency of the estimator is guaranteed either the outcome regression
(OR) model or the propensity score (PS) model is correctly speci-
fied. To obtain the doubly robust estimator, the internal bias cal-
ibration (IBC) condition is presented. Moreover, we examine the
IBC condition in modeling approach. Correct specification of the
outcome model or propensity score model is equivalent to that of
mean or dispersion in double hierarchical generalized linear model.
In addition, we discuss how to allow robust inference against out-
liers. Simulation study shows that the proposed method allows
robust inference against not only the violation of various model

assumptions, but also outliers.
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3.1 Basic Setup

Suppose that we are interested in estimating the parameter of

interest n* defined though
E{U@%Y)} =0,

where U(n;y) is the given estimating function. Suppose further
that there are n independently and identically distributed realiza-
tions of (X,Y,J), denoted by {(xi,yi,d;) : ¢ = 1,...,n}, where
x; is an vector of observed covariates and d; is the missingness

indicator defined by

5 1, if y; is observed,
P =

0, otherwise.

Without nonresponse, a consistent estimator of n* is obtained by

solving
R 1 &
Un(n) =~ > Uniy) = 0.
i=1

Under nonresponse, one way to estimate n* is to use the expected

estimating equation
1 n
=~ U0y + (1= 6) B{U @ Yi) [ @:,0, =0} =0. (3.1)
i=1

To compute the conditional expectation in (3.1)), we often employ
the MAR assumption of [Rubin| (1976). That is,

flylz,6=0)=f(y|lz)=f(y|=z,d=1).

Under the MAR assumption, we can have the conditional expec-

tation in (3.1]) as

E{UmY)|z,0=0} =E{U(n;Y) |z} =E{Un;Y) |z,0=1}.
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Thus, it suffices to estimate U(n;x) = E{U(n;Y)|z,6 = 1} from
the set of respondents under the MAR assumption. The condi-
tional expectation in is based on the model for [y|x], which
is often called the outcome regression (OR) model. On the other
hand, another approach uses a model for [§|x], which is often called
the propensity score (PS) model.

To compute the conditional expectation U(n;x), we employ
the OR model f(y|x;60) with parameter 6. Under the MAR as-

sumption, we can estimate 8 by maximizing

(8) = dilog f(y; | x:; 6)

i=1
with respect to 8 and then n* can be estimated by the imputed

estimating equation

Ur(n) = :LG: [51'U(77; yi) + (1 - 51')E{U(77§Yi) | wi;éH =0.

i=1
(3.2)
To compute the conditional expectation in (3.2)), [Kim| (2011) pro-
posed the fractional imputation method. Consistency of the so-
lution 77 to is based on the assumption that the regression
outcome model f(y|x;0) is correctly specified.
To protect against model misspecification, one can utilize a
propensity score model for P(6 = 1|x) = 7(x; ¢) and apply

Upr(n) = %Z [%U(n;yﬁ + (1 — ﬂ;;qb)) E{U(n;Yi) | il?z‘;é}] =0
(3.3)

i=1
as an estimating equation for 7, where ¢ is the maximizer of

n

(@) = Z [6i log (i3 @) + (1 — 6i) log{1 — 7 (xi; P)}] .

i=1
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~

Now, let &; = 7(x;; @). Since
Gon(n)~C(n) =+ 3 (1 - 5) Uy) —B{Um: YY) | 2:56}] .
i T

(3.4)
the right side of is approximately unbiased to zero if either
the OR model f(y|z;0) or the PS model P(6 = 1|x) = 7(x; @) is
correctly specified. Thus, the estimating equation UDR(n) in (3.3
gives a doubly robust (DR) estimator. From , we can achieve
Ubr(n) = Ur(n) if

n

;& (; - 1) [U(n; Yi) = E{U(n;Yi) | a:i;éH =0. (35)

We can view as a key condition to get a doubly robust impu-
tation in the sense of Kim and Haziza| (2014). Condition is
called the internal bias calibration (IBC), which was originally
termed by [Firth and Bennett| (1998)) in the context of design-
consistent estimation of the model parameters under complex sam-
pling. The imputation estimating equation in (3.2) satisfying the
IBC condition is called internally bias calibrated. The IBC
condition is a sufficient condition for double robustness. How to
find the imputed estimator satisftying the IBC condition under
a more general class of OR models and PS models is our main

research problem. We will address this issue in the next section.

3.2 Semiparametric Outcome Regression Model

The model assumption based on the estimating equation such as
E{U(n;Y)} = 0 is regarded as a semiparametric model. Thus, in-

stead of making parametric model assumption for [y | ], it makes
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sense to relax the parametric model assumptions for developing
DR imputation. For the OR model, we now assume that there

exists bi(x),...,br(x) such that
E{U(n;Y) |z} € span{bo(), b1 (), - ,br(x)} :=H  (3.6)

for all n, where bo(x) = 1. Assumption (3.6) can be called the
semiparametric OR model. If U(n;y) = n —y, model (3.6)) reduces

to the usual regression model

E{U(m;Y) |z} = Zﬁkbk

However, finding an imputation estimating equation using is
tricky as the vector of regression coefficients 8 = (8o, 1, ..., 8.)"
since B8 = B(n) is a function of 7. Thus, even if we can obtain 3(n)
from the normal equation, finding the solution to the imputed

estimating equation

n

Or() = 37 [0 + (L= 8)E{UG Y [} =0 (3.7)

=1

is not feasible in general, where

B{U(:Y) | 2} = Zﬁk

and f,(n) satisfies

n L
Z(Sz { 77 y’L Z bk mz }h(wz) =0
=1

k=0
for any h(x) € H and for all .

To avoid the difficulty of finding ,B(n) and solving the imputed
estimating equation in ({3.7]), Wang and Kim| (2021)) proposed the

o1



use of the information projection technique for self-efficient PS
estimation. The basic idea is to find the PS weights w(x; @) =
1/m(x; ¢) which satisfies the self-efficiency property

n

3 b U ) = = D [0 + (1= B0 (Y0 | )]
i=1

i=1
(3.8)

holds for all 7, where the parameters & are estimated by the cali-

bration equation

where b; = (bo(x;),b1(x;), ..., br(x;))T. Wang and Kim| (2021)
proved that the PS weights in (3.13|) satisfying the calibration
condition in ((3.9)) satisfies the self-efficiency property in (3.8)). Once

~

w(x; @) satisfying 1} is obtained, we can use
Z 6w U(n; i) =0 (3.10)
i=1

to obtain the solution to the imputed estimating equation in (3.7)),

where w; = w(x;; ). If U(n;y) = n — y, the estimating equation

(13-10) gives an estimator

IS son — AN 50 LN sa (b7
n;(szwzyz = n;bi/g'i‘n;ézwz(yz b'LIB)
1 « 1 o
= gZ{(Siyi‘F(l_éi)biTﬁ}"’Ez(sz’(@i_l) (vi
i=1 i=1

for any 8. Thus, the imputed estimating equation satisfying the
self-efficiency property (3.8]) can be derived as

E{UnY;) | 2} =1 — b Bisc,
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where BIBC is the solution which satisfies the IBC condition
n
> 6@ — 1) (i — b/ B) = 0. (3.11)
i=1

Then, we can have a DR imputed estimator

n

MBC = %Z {5iyz' + (1= 5i)b;FBIBC} : (3.12)

i=1
By using the information projection approach, Wang and Kim
(2021) presented the PS weight model

w(x; ) =1+ ZH:S exp {b(z)T ¢} (3.13)

where ngps = Z?:l d; is the number of observed outcomes, nmis =
N — Nebs 1S the number of nonresponses, and ¢ = (¢g, ¢1,...,¢r)"
is the vector of parameters in the PS weight model. Note that
the PS weight model can be equivalently represented as the
logistic (log-odds) PS model

log {%} = log (nfnblz> —b(x) . (3.14)

In the next sections, we address how to obtain the robust im-

puted estimator against model misspecification of the PS model

and outliers in the OR model.

3.3 Misspecification of Propensity Score Model

Wang and Kim| (2021 proposed the PS weight model based
on the information projection approach. Indeed, the authors’ ap-
proach is based on the Kullback-Leibler (KL) divergence. In this
section, we examine how to enlarge the class of PS weight models

by using the y-power divergence.
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Eguchi| (2021) presented the y-power divergence as a general-
ization of KL-divergence to enlarge the class of statistical models

by introducing an additional scale parameter .

Definition 3.3.1 (Eguchi, [2021). Let ¢ and s be two probability

density functions. Given v > 0, the divergence

D,(glls) = Wlﬂ)log [ atay s
—ilog/q(:c)s(mﬂda:

+ log/s(ac)"’“da:. (3.15)

v+1

is called the «y-power divergence.

Similar to the KL-divergence, D(g|/s) > 0 for all ¢, s and
equality holds if and only if ¢ = s. At v = 0, y-power divergence
is defined as the KL-divergence

Do(glls) = lim Dy (qlls) = Dxv(qls)-

Following theorem gives the PS weight model with respect to the

~y-power divergence.

Lemma 3.3.1. Based on the y-power divergence, the information

projection approach gives the PS weight model

W@ ,7) =1+ 25 (14 yb(x)Tp) " (3.16)

Nobs

Similar to the case of the KL-divergence, the parameter ¢ in

(3.16)) is estimated by solving the calibration equation (3.9).
Recall that the PS weight model (3.13)) induces the logistic PS
model. On the other hand, the PS weight model (3.16) induces the

o4
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power-odds model

. v Y 1
1- 7T(:E; ¢) Nmis {1 + ’Yb(w) ¢}
Guerrero and Johnson (1982) proposed the power-odds model ({3.17))

to generalize the logistic regression model.

Remark 3.3.1. |[Eguchi (2021) independently derived the power-
odds model (3.17) based on the ~-power divergence for robust

inference against mislabeled binary outcome. Suppose that we ob-

serve the mislabeled data §(™ =1 — § instead of §. Let
n = P@E™=1]|§=0,z),
n = PO™=0|6=1,2)
be mislabel probabilities (Hung et al., [2018). Then,
P =1|a)=mP0@0=0|a)+(1—7)P(6=1]xz). (3.18)

Thus, the robust inference against the mislabeled binary outcome
is equivalent to the robust inference against the model misspecifi-
cation when the true model is .

To examine the robustness of the power-odds model , let

Toe (@) exp{b(x)" ¢}
log 1+ exp{b(z)Top}’
(@) = L@

1+ {1+ yb(z) ¢}/

Then, for 6™ =1 and all v > 0,
00 — Mg ()] 2 [60 = T (@)

This shows how the power-odds model (3.17)) allows the robust

inference against mislabeled binary outcome.
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Wang and Kim| (2021)) showed the asymptotic normality of the
estimator obtained by the PS weighted estimating equation (3.10)).
In the following corollary, we generalize their result to the imputed

estimator based on the y-power divergence.

Corollary 3.3.1. Let

= > {dw+ (1= 60678, } (3.19)

=1

where 37 is the solution to
> oibi{di(y) =1} (i — b B) =0
i=1

and ;(y) = w(x; &7,7). Under the MAR assumption, let 3* be
the probability limit of Bv. If the condition E(Y |x) = b(x)B* is
satisfied, then

Vi (i =) SN (0,V5)

where
V, = var(b(X) 78"} + E[{w(X; 67,7} var(Y | X)]  (3.20)
and ¢ is the probability limit of QA&W.

In estimating -, we propose to choose v which minimizes the
variance of 7}, V,. Note that the first term in V, does not depend
on 7. Therefore, it suffices to find v which minimizes the second

term in V.

Theorem 3.3.1. Let
N2
di(7) = i {a(Y (v - b1¢,)
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where

{Zéaw 0uo(bis ¢:.7) pr

If the OR model is correctly specified, as n — oo,

—1
— _ dw(bi; ¢,7)

=1

_ % S dys B B w(X; 9%, 9) P var(Y | X)),
=1

Note that both &'7 and (2’)7 depend on ~. To reduce the effect of
estimation error in determining the tuning parameter =y, we pro-

pose to find 4 by minimizing Jv with the K-fold cross-validation.

3.4 Outliers in Outcome Regression Model

So far, we examine the IBC condition which leads to robust infer-
ence against misspecification of the OR model or PS model. We
also derive the PS weight model based on the y-power divergence.
In this section, we discuss how to allows robust inference against
outliers in outcome, Y.

In the presence of outliers, one may use the t-distribution
(Lange et al.l |1989) to allow the robust inference against outliers.
Eguchi| (2021)) independently derived the t-distribution based on
the y-power divergence. However, it is not straightforward how
to extend the IBC condition to the t-distribution. Instead, con-
sider the following random effect model, namely DHGLM (Lee
and Nelder, 2006])

Y |z,u~N{uz),o’(x)u}, u~Inv-gamma(a +1,a), (3.21)

where

1 “ .
=0, }



We can see that correct specification of models E(Y|x) and P(é =
1|x) is equivalent to that of mean u(zx) and dispersion o?(x) in
DHGLM, respectively. For missing mechanism, we extend the def-

inition of the MAR assumption as
(Yyu) L6 |x

to maintain the property that ¢ only depends on @ (Ibrahim and
Molenberghs, |2009). Then, the random effect model induces
the marginal distribution of Y'|x as t-distribution. Here, the con-
straint E(u) = 1 guarantees that var(Y|x) = o?(x) does not de-
pend on the degrees of freedom of resulting t-distribution (Lee and
Nelder, [2006]).

Under the model , the ML imputation method of Han et

al.| (2022a) gives an imputed estimator

n

D = %Z {5iyz‘ + (1 — 5z’)biTBD} ) (3.22)

i=1
where Bp is the maximum h-likelihood estimator (Lee et al., 2017)

obtained by solving
n Ai o 1
ZM%L —Wwi- b/ B) = 0. (3.23)
i=1 t

Here, @; is an estimator of the PS weight and
(@i = D(ys — b B)*/og + 2
! 3+ 2« )
In (3.23)), if the ith observation (d;y;, d;x;) has large residual,

|y — b;P,B‘ Ju; =0 as |y — b;F,B‘ — 00.

This shows how the robustness against outliers in Y can be achieved.

Moreover, @; — 1 as a — o0, i.e., the model (3.21)) satisfies the
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IBC condition if there is no outlier in Y. In Appendix, we present
how to construct the h-likelihood of the model .

In summary, we can allow various types of robustness by us-
ing the DHGLM in modeling approach. For 7p, robust inference
against outliers in OR model is allowed by introducing a random
effect u in dispersion. The estimator 7p comes the estimator 7gc
when there is no outlier. Moreover, let

X RS 7

L = ; {51'%' + (1 —6:)b; /BML} ; (3.24)
be the regression imputed estimator, where BML is the solution to
S 6ibi(y; — b B) = 0 (Han et al., [2022a). The consistency of
estimator 7y, holds only when the OR model is correctly speci-
fied, i.e., double robustness is no longer guaranteed. The presented
estimators have the following relationship:

D ) MBC 2 TIML-

U= wi=

Here, @w; = 2 indicates that

P0;=1|z;) =P =0]x) =0.5,
i.e., the missing mechanism is the MCAR which does not account
the PS model in estimating 8. In 7pc, the use of power-odds
model allows robust inference against the misspecification of the

PS model compared to the log-odds PS model by enlarging the

class of PS models.

3.5 Simulation Study

In this section, we conduct simulation studies to compare various

methods. Yeom is also considered as a benchmark. If a model de-
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rived from the vy-power divergence is used, v is chosen to maximize
the likelihood in modeling approach or minimize the variance of
corresponding estimator in estimating equation approach with 10-
fold cross validation to avoid the overfitting. In all cases, covariates
b(x) = (1,21, x2) are generated as x; ~ U(0, 1), z2 ~ exp(1), and
parameters in propensity score models are set to satisfy around
70% of responses which are observed. The performance of vari-
ous estimators is examined in terms of the following quantities:
(i) blas=n—n, 7= S, 49/T, (ii) SD= {3, (i —7)?/(T —
1)}95, (iii) bias/SD, and (iv) RMSE= {31, (7® — n)?/T}°5,

where T' = 500 is the number of iterations.

3.5.1 Robustness against Model Misspecification

In this section, we examine the performance of proposed methods.
For 7jp, we consider the power-odds PS model. For 7pc, we con-
sider two PS models: power-odds PS model (7jpow) and log-odds
PS model (7)10g). Given covariates b(x), Y and 0 are generated as

follows.

OM1 (Outcome regression Model 1): Y|z follows normal dis-
tribution with mean E(Y'|x) = 140.221+0.2z9 and variance

1. Under OM1, n* = 1.4.

OM2: Y|z follows exponential distribution with mean E(Y|x)
1+ 0.2z1 + 0.2z9 + € + 3. Under OM2, n* = 2.9 + 0.5¢2.

PM1 (Propensity score Model 1): §|x follow Bernoulli dis-
tribution with

Po=1|=x)

— exp(—0.1+ 0.5z1 + 0.5
PG=0]z) P01+ 052+ 05m),
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i.e., log-odds model (logistic model) is considered.

PM2: §|x follow Bernoulli distribution with the power-odds

PO=1|z) 6
P6=0|x) 1+a1+a2

Compared to the OM1, E(Y |x) is not correctly specified in OM2.

Moreover, var(Y |x) is proportional to E(Y|x).

| n =500 | n = 1000
OM1PM1
Yeom ﬁl’) ﬁpr)w f]log; ﬁML ‘ Yeom f]l’) ﬁpnw 7710g ﬁML
bias | -0.0057 -0.0038 -0.0038 -0.0038 -0.0039 | 0.0015 0.0012 0.0012 0.0012 0.0012
SD 0.0450 0.0545 0.0545 0.0546 0.0544 | 0.0324 0.0391 0.0391 0.0391 0.0390
bias/SD | -0.1267 -0.0698 -0.0697 -0.0696 -0.0710 | 0.0471 0.0297 0.0299 0.0302 0.0307
RMSE | 0.0453 0.0546 0.0546 0.0547 0.0545 | 0.0324 0.0391 0.0391 0.0391 0.0390
Table 3.1: Simulation results under the OM1PM]1 case.
‘ n = 500 n = 1000
OM2PM?2
Yeom f]D 'f]pow 7710g f]ML ‘ Yeom f]D f]pow ﬁ]:)g ﬁML
bias | 0.0140 -0.0054 0.0031 0.0469 0.0003 | 0.0139 -0.0028 0.0088 0.0567 0.0050
SD 0.4448  0.5524 0.5560 0.5964 0.5586 | 0.3028 0.4173 04240 0.4759 0.4288
bias/SD | 0.0314 -0.0097 0.0056 0.0787 0.0005 | 0.0459 -0.0068 0.0208 0.1191 0.0117
RMSE | 0.4446 0.5519 0.5555 0.5977 0.5580 | 0.3029 0.4169 0.4237 0.4788 0.4284
Table 3.2: Simulation results under the OM2PM?2 case.

Based on simulation results in Table 3.1 and .2 we can check

that proposed estimators 7)p and 70w are consistent even though

E(Y|x) is not correctly specified in OM2.

Recall that the pow-odds model covers the log-odds model.

Thus, we also consider the following PS model to examine the per-

formance of estimators when both outcome model and PS model

are incorrectly specified.
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PM3: §|z follow Bernoulli distribution with

Po=1|=)

S S B —0.1 4+ 0.522 + 0.522).
PG =0 exp( + 0.527 + 0.523)

Note that the functional form of PM3 is the log-odds model but
covariates are (z3,73), not (z1,x2). Therefore, the consistency is

no longer guaranteed for all estimators under OM2PM3.

n = 1000

‘ n = 500
OM2PM3

‘ Yeom D 'f]pow f]log ML ‘ Yeom D 77p0w 77log ML

bias 0.0171  0.0296 0.0419 0.0503 -0.1326 | -0.0043 0.0163 0.0287 0.0366 -0.1291
SD 0.4312 0.4508 0.4512 0.4521 0.4095 | 0.3059 0.3249 0.3250 0.3258 0.2893
bias/SD | 0.0397 0.0656 0.0928 0.1114 -0.3237 | -0.0140 0.0502 0.0882 0.1123 -0.4461
RMSE 0.4311 0.4513 0.4527 0.4544 0.4300 | 0.3056 0.3250 0.3260 0.3275 0.3165

Table 3.3: Simulation results under the OM2PM3 case.
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Figure 3.1: Boxplots of estimators in OM2PM3: (a) for n = 500
and (b) for n = 1000.

Table [3.3]shows the simulation result of various estimators. We
can see that proposed method 7)p and 7pow give smaller bias than
existing methods 7)o and 71, Moreover, even though there is no

outlier, 7p gives smaller bias and variance compared to 7pow-
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3.5.2 Robustness against Outliers
In this section, we consider OM3PM?2 model with
OM3: Y | ~ Exp (1 + 0.2z1 + 0.2z9)

to check the performance of various estimators. Note that all esti-
mators are consistent under OM3 if there is no outlier. After data
are generated, additional noise generated from U(0, 100) is added
to 20% of observed outcomes.

Table [3.4] and Figure [3.2] shows performances of various esti-
mators. Compared to fpow, Mog, and 7, only 7p reduces the bias
due to the outliers. Moreover, 7jp gives comparable results to the

benchmark %com.

OM3SPM2 ‘ n = 500 ‘ n = 1000

‘ Yeom D fh)ow ﬁlog ML ‘ Yeom D ﬁpo»\' ﬁlog ML

bias 6.7189 6.8475 9.9148  9.9179  9.9154 | 6.7791 6.9004 10.0342 10.0352 10.0335
SD 0.8931 0.9847 1.3061  1.3077  1.3052 | 0.6850 0.7549 0.9917  0.9940  0.9918
bias/SD | 7.5229 6.9542 7.5909  7.5842  7.5969 | 9.8960 9.1404 10.1187 10.0957 10.1166
RMSE 6.7779 6.9178 10.0003 10.0035 10.0008 | 6.8136 6.9415 10.0830 10.0842 10.0823

Table 3.4: Simulation results under the OM3PM2 case with out-

liers.

3.6 Conclusion

In this chapter, we investigate the conditions under which the
consistency of estimators is guaranteed when the study variable
is only partially observed. To obtain the doubly robust imputed
estimator, we propose the IBC condition that ensures the equiva-

lence between the imputation method and the weighting method
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Figure 3.2: Boxplots of estimator in the presence of outliers in Y
and § under OM3PM2 when n = 1000. Red dotted line indicates

n* and orange dotted line indicates the average of Jcom.

by means of the PS weight. An interesting point of the IBC con-
dition is that estimating equation for regression coefficient in OR
model is estimated by using the PS as weights. In estimating the
PS weight, the log-odds model can be used, which can also be de-
rived by using the information projection approach with the KL
divergence.

Eguchi presented the y-power divergence to generalize the KL
divergence. We show how the IBC condition can be achieved in
terms of the y-power divergence. The PS model induced by the
~v-power divergence is equivalent to the power-odds model. The
power-odds PS model allows more general class of PS models com-
pared to the log-odds PS model.

One aspect of Eguchi’s y-power divergence is that the y-power
divergence allows robust inferences against outliers and ~y-power

divergence for the outcome regression model induces the t-distribution.
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To extend the IBC condition while allowing the robustness against
outliers, we introduce the DHGLM of Lee and Nelder| (2006) in
the modeling approach by incorporating a random effect into the
dispersion model since achieving the IBC condition with the t-
distribution is not straightforward. In the DHGLM, double robust-
ness can be understood as a correct specification of the mean and
variance of the DHGLM. Based on the DHGLM framework, we
can have ML estimation for fixed parameters as well as ML impu-
tation for random parameters, namely random effect and missing
data. Advantage of modeling approach is efficient algorithm for
estimation of fixed parameters and imputation of random param-

eters.

Appendix

Proof of Lemma [3.3.1]

Proof. Let

1

L= {fo [ b)) = [E w0} -p [ b(w)fl(w)dw”

(3.25)
be the linear family, where fi(x) = f(x|d = k), k = 0,1 and
p = P(0 = 1). By using the information projection method, we

want to find fy which minimizes D, (foll f1) given fi, ie.,
Jo = arg min D, (foll f1). (3.26)
If foe Land gy € L

ho=tfo+ (1 —t)go € L (3.27)
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for all t € [0,1]. In information projection theory, the line of the
form is called m-geodesic line. Moreover, the y-power diver-
gence has the dually flat structure with m-geodesic line. Thus, the
information projection is not only well-defined, but it tells
us how to estimate f7.

Given the empirical distribution P;(z) = n;blséil (x = x;), f1

which minimizes the y-power divergence DV(P1|| f1) under con-
straint £1 = {f1 : Y5, 8 fi(z;) = 1} is given by fi(z;) = n_,L for
{x; : 6; = 1}. Moreover, o (x5 ¢,~) which minimizes the ~y-power

divergence D.,( fo| fl) under constraint fy € £ is given as

Fol@i;d,7) = (1+ 67 8) " fi(:), (3.28)
for ; = 1. Note that

1 1-ph
PG=1l2) T p h@

By combining p = neps/n and (3.28)), we have the PS model

Nmis 1
Wiz b7) = 14+ 72 (1 4b]9)”

for §; = 1. O

Proof of Theorem [3.3.1]

Proof. Given v, let

1 n
h(¢) = EZ@'W(%;Q’LV)%
i=1

Uy(¢) = %Z&w(mi;qﬁ,v)bi—%zm.
i=1

i=1
Then, 7y = 177((;57) and Uv((}v) = 0. Since we use the estimate (257

instead of fixed, true value ¢*, summands {d;w(x;; (257, v)y;} are no
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longer independent. Note that Talyor expansions of 7, = ﬁA,(qAbv)
and 0 = Uﬂ,((;bw) at ¢@" are

7A7'y = 777(&«,)

By combining (3.29) and (3.30) we can express 7, as

777 = ﬁv(ﬁb*) + {('ngb)

T
o] @B @) o),

1 n . 1 ,\T n . n
= ;&'W(mi; & V)i — ECV {; diw(xi; @, 7)bi — ;bz}
+op(n~1/?)

= %Z {bz‘Tév + 5iw(wi; ¢*,7)(yi _ sz&'y)} + op(n_1/2).
i=1

Under the assumption E(Y|z) = b(x)T 8%, E(é’v) = E{E(&v\w)} =
B* and
var{Y — b(z)' 8" | x} = E[{Y — b(x)"p"}” | «]

which gives

E[0{w(z; ¢*,7)} var{Y — b(x)" 8"} | ]
= Ep{w(z; ¢" 1)} ELY — b(x)"8"}?|z]).

67
A &) 8t



Linearization technique makes summands be asymptotically in-
dependent which gives simple variance estimator, especially the

second term in V. O

Construction of the h-likelihood

Let 8 = (87, 02, a)T be vector of fixed parameters, u be vector of
random effects and y,,,;; be the vector of nonresponses. In model
- ), & = log(u) scale is canonical for 3 and 08, but not for a.
Also, y,,;s-scale is not canonical for o2. Instead, consider a w-scale

defined as

0(0,&,w) = Le(0,u,Y) +1og |~

- 1 2103 1 1 w—1
= So|-c1 ol 2 i——;@—bT
; [QOg{wi—l} g OB T 52y Y

n

1 1 wlfl 2

where I'(+) is the gamma function. Furthermore, consider v-scale
given as

v; = (1.5 + )25,

Then, all random parameters v and vy, are canonical to fixed

parameters @, i.e., joint maximization of the h-likelihood gives
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MLEs of (0,v,y,,;). In this case, the h-likelihood becomes

- 1 2ol vp o owi—1 2
HOv ) = Do | gloa{ 2L G- St () |
i=1

n

1 w; — 1 —v; o 2
+ZZ=;(1 - 51) |:_2 IOg 2m — 20_3 € (ymls,z b?ﬂ) :|

= 1
+Z {—(a + v, —ae™ " — 3 log(1.5 + a)} ,
i=1

+n(a+1)log(a) —nlogl(a+1). (3.32)

For ¢; = 1, canonical function of v; (or, the mode of the h-

likelihood with respect to v; given 6) is

s 3+ 2x
(wi — 1) (y; — by B)2/0? + 2

e =

Moreover, canonical function of ypm;s; is
~ T
Ymis,i = bz /3

By the property of the h-likelihood, joint maximization of (6, v, Y,,;s)
gives the MLE BD and &(2) by solving

U

> 5ibi L (yi — bfB) =0, (3.33)
i=1 v

n

1 1 wi — 1 )
"\ 202 Z i—biB) ¢ =0,(3.34
; { 202 22 i (v Zﬂ)} 0, (3.34)

)

where @; = exp(7;). In the model (3.21)), &, MLE of «, can be
obtained by the joint maximization of the h-likelihood ([3.32)) even
though there is no explicit form of &. Alternatively, the moment-

based estimator for @ can be used. Note that

B (1) = E{E (s | #)) = 5o

69



Then, o can be estimated by solving
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Chapter 4

Enhanced Laplace

Approximation
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Chapter Summary

The Laplace approximation (LA) has been proposed as a method

for approximating the marginal likelihood of statistical models
with latent variables. However, the approximate maximum like-
lihood estimators (MLEs) based on the LA are often biased for
binary or spatial data, and the corresponding Hessian matrix un-
derestimates the standard errors of these approximate MLEs. A
higher-order approximation has been proposed; however, it cannot
be applied to complicated models such as correlated random ef-
fects models and does not provide consistent variance estimators.
In this chapter, we propose an enhanced LA (ELA) that provides
the true MLE and its consistent variance estimator. We study its
relationship to the variational Bayes method. We also introduce
a new restricted maximum likelihood estimator (REMLE) for es-
timating dispersion parameters. The results of numerical studies
show that the ELA provides a satisfactory MLE and REMLE, as
well as their variance estimators for fixed parameters. The MLE
and REMLE can be viewed as posterior mode and marginal pos-
terior mode under flat priors, respectively. Some comparisons are

also made with Bayesian procedures under different priors.
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4.1 Review of the LA

Throughout the chapter, we impose the following regularity con-

ditions:
R1. The parameter space © is convex.
R2. All likelihoods are smooth and unimodal with respect to 6.

The LA to the marginal likelihood L,,(#) is

N

La.

L (0) = H(0,%) o

i

where Z = arg max, h(6, z) = arg max, ¢, (z|y; ) and
~ 0? 0?
sz = 5. a.7T 5 = ~a.a.T ;
8z8zTh(9 2 z=% 02027 blzly 9)‘

According to (1.2)), the LA to L,,(#) can be defined as

Lin(0) = H(0,2)/Ly(2]y; 0),
This formulation can be viewed as the use of an approximate pre-
dictive likelihood L,(z|y;0) in (1.2), based on the normal distri-
bution

2|y ~N (2 ng) . (4.1)
This gives

N . A 1 1 -

Thus, the LA is exact when the predictive likelihood is normal. Let
6 be the MLE and 0" be the approximate MLE, which are modes
of £,,(0) and £,,(6), respectively. As the sample size n — oo, if

0 B> 0y and
U (0) — £, (0) LN 0, uniformly in 6, (4.2)
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then & 5 fp. However, in general, it is difficult to justify that the
LA ,,(0) satisfies the uniform convergence condition (4.2)). Let o5
be the probability limit of &, If \/n(8“ — 65) = O,(1), then

Vi (8% =0k ) SN {0,671 (6F)}, (4.3)

where G(0) = H(OK 1 (O)H(0), H(0) = E{—8%(,,(0)/0000T},

K(0) = var{00,,()/86} and G(6%) = lim, o n 'G(6).
tensen et al. (2016) and Lee et al.| (2017) proposed the use of

the inverse Hessian matrix of £,,(0) as a variance estimator of

ov. (2017) provided regularity conditions that guarantee

asymptotic equivalence between the Hessian matrix of ém(e) and

that of /,,(0). However, these conditions are hardly satisfied. As

mentioned in Bologa et al. (2021)), the Bayesian approach views

the approximate MLE 0L as an approximate mode of the poste-

rior distribution under a flat prior on . Pauli et al. (2011)) further

showed that
Vi (6-0%) 1y SN {0,171 (6F)},

where

2 (05) = lim LA O (6
(65) = Jim =\ ~ 5aggT )‘0:03 '

Thus, the variance estimators presented by Kristensen et al.| (2016])

and Lee et al| (2017) can be viewed as estimating the variance of

the approximate Bayesian posterior mode éL; see the numerical
study of Bologa et al.| (2021). In addition, |Jin and Lee| (2022
investigated the frequentist sandwich variance estimator (4.3]) of

the approximate MLE o~ .
Assume that d is the dimension of the integral in ((1.1)). The LA
is valid in the sense that £,(8) — £, (8) = 0,(1) when d = o(n'/3)
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(Shun and McCullaghl [1995; Ogden, 2021)); thus, the LA may not
be suitable for crossed random effects models with d = O(n'/?)
and correlated random effects models with d = O(n). Further-
more, the performance of the LA is often unsatisfactory for binary
outcomes (Shun, 1997). Thus, Shun and McCullagh| (1995)) pro-
posed the use of the second-order LA in the exchangeable binary
array model for salamander mating data. Shun| (1997) investigated
parameter estimation based on the second-order LA. However, due
to the complexity of the approximation, the author could compute
only some selected terms. Noh and Lee| (2007) showed how to com-
pute all the terms in the second-order LA and developed a REML
estimation procedure for salamander mating data. However, the
second-order LA can be applied to a limited class of models due
to the complexity of the approximation. Furthermore, even if the
second-order LA is applicable, the approximation is often slow
because a considerable number of terms must be computed.

In summary, (i) £y (6) — £,(0) # 0,(1) as d increases, and (ii)
even if £,,(8) — £,n(8) = 0,(1), the approximate MLE 6 may not
be the MLE 6. Furthermore, (iii) it is not known how to obtain
a consistent variance estimator for 6. (iv) Tt is also of interest to
have REMLEs for dispersion parameters. A general higher-order

LA may not be sufficient for resolving these problems.

4.2 ELA

Assume that ¢(z) is an arbitrary density function with [ ¢(z)dz =
1 that has the same support as the predictive likelihood L,(z|y; 0).
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Next, from (1.1)) the marginal likelihood is defined as

Lo () = / H(O, 2)dz = / H;(i’)z)q(z)dz.

Thus, we can approximate the marginal likelihood as

where Z;, are iid samples from ¢(z). Since H (0, Zy)/q(Zp) can be
viewed as iid samples with the mean L,, (), Lp(0) is a consistent

estimator of L,,(0), i.e., as B — oo,
P
Lp(0) = L,(0).

The variational Bayes method has been proposed for approxi-
mating ¢, (0) (Kingma and Welling, 2013). For any ¢(z),

In(0) = /log { H,z) } q(z)dz + R

q(z)

/log { Hq((ij)z) } q(z)dz = £,(8; ),

q(2)
R:/log{}q z)dz > 0,
Ly(z | y;0) )
and ¢,(0;q) is referred to as the evidence lower bound (ELBO).

The marginal log-likelihood in (|1.1]) can be approximated by max-
imizing the ELBO

\Y]

where

0,(0) = max £, (6;q).
q

In the variational Bayes methods, ¢(z) is often assumed to have
a normal density N(u,I') with an arbitrary mean p and arbitrary

covariance matrix I'. In general, the ELBO is not a tight lower
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bound, i.e., £,,,(0) — £,(8) > 0 since R > 0. To address this issue,
Burda et al.| (2016) modified the ELBO as follows:

ly,5(0;11,T) = Epp {1Og EB(Q)} 7

where Z, are iid samples from N(u,I"). The authors used the see-
saw algorithm: (i) given 6, update (i, I') by maximizing lZMB(H; wu,T)
and (ii) given (i, I"), update 6 by maximizing ZU,B(H; w, I'). In cor-
related random effects models with d = n, estimating p and I’
is not straightforward. The ELBO has been studied to approxi-
mate the marginal log-likelihood. However, the main interest of
this chapter is how to obtain the true MLE 6 and its consistent
variance estimator in general cases.

According to the expression ([L.2), if the value of Ly (z*|y;0) is
known at any point z*, it is immediate that L,,(0) = H (0, 2*)/Ly(z*|y; ).
However, in general, L,(z|y; ) is not known for all z. Recall that
the LA approximates the predictive likelihood L,(z|y;8) at Z by
IA/JD("2 y;0) as

Ln(6) = H(0,2)/Ly(Iy;0).
Since £, (0) — ((0) = fp(2|y; 0) — £y(Z|y; 0), the accuracy of the

LA is the same as that of the predictive likelihood L, (z|y;6). Let

Lp(0) = 5> Lu(6: ).
1

1 B

b=

where {Z, : b=1,..., B} are iid samples from N(2, Q) and
Li(0; 2) = H(0, )/ Ly(Z]y; 0).-

The LA is Lp(0) with B =1 at Z, = 2. We call Lg() the ELA
when ¢(z) is the density function of N(2,Q_!). In the Appendix,
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we show that if the true predictive likelihood Ly (z|y; 6) is normal,
then, for all B > 1
L5(6) = L (6). (1.4)

If L,(z|y; ) is close to the true Ly(z|y;0), we expect that Lp(6)
provides an accurate estimate of L,,(6) for small values of B. As
the LA provides an accurate approximation of L,,(6), the use
of N(2,Q.}) as q(2) is preferred. Burda et al| (2016) improved
the variational method by exploiting the expression of the
marginal likelihood. The ELA further improves the variational

method by using the alternative expression (|1.2]).

Theorem 4.2.1. Let /5(0) = log L(0) and 95 = arg max, /().

Under regularity conditions R1 and R2, as B — oo,
GELA B, .

Now, we study how to obtain a consistent estimator for the

information matrix
920, (9)

90007
Let Ip = IB(QELA), where

B B -
o0 = [ {222 8 o (52 )]
b=1

On(0,Zy) (Oh(0, Z)\"  9%h(6, Zy)
w(e,z,,){ 06 ( 06 )* aeaeT}

and w(0, Zy) = Lin(0, Z4)) S22, Lin(0, Z;). Then, we have the fol-

lowing theorem.

1(6) =

Theorem 4.2.2. As B — oo, Ip 5 1(0).
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According to Theorem the variance of the MLE 6 can

be consistently estimated by

4.3 Restricted Likelihood

For cases in which 7 and § are orthogonal, Cox and Reid (1987)
proposed the use of an adjusted profile likelihood for the dispersion

parameters 7 based on the marginal likelihood L, (0):

#r) = L (7.5) | 30|

N |=

where = (1) = argmaxg Ly, (8, 7) and Qg5 = {—82€m(6,7)/8585T}\ﬁ: .

Barndorff-Nielsen (1987)) noted that the Cox-Reid adjusted profile
likelihood is the LA to the integrated likelihood

Mﬂz/ianmwzému+%m*»

Under the flat conditional prior = (3|7) = 1, Sweeting| (1987)) noted
that the integrated likelihood becomes the marginal posterior den-

sity of 7:

R(r) = /Lm(r,ﬁ)w(ﬁh)dﬁ — R(r)(1+0,(n YY)

Barndorft-Nielsen, (1983) derived the magic formula to determine
f+(7|3) for the MLEs 6 = (3,7). Under the parameter orthogo-
nality of 7 and (3, |Cox and Reid| (1987) showed that

Fr(#18) = R(7)(1 + Op(n~")).
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Thus, we can view the Cox-Reid result as a case in which the
conditional likelihood can be applied to eliminate nuisance fixed

parameters. Note that

R(7) = fr(F|B)(1 + Op(n™")).
Thus, we propose to call, in this chapter, the integrated likelihood,

namely the marginal posterior under 7(3|7) = 1,

R(r) = /Lm(ﬂ B)dB = //H(T,B,z)dzdﬁ

the restricted likelihood. With the ELA, R(7) can always be com-
puted, as shown below, whereas fT(%lﬁ) is hardly available. The
use of R(7) does not require parameter orthogonality of |Cox and
Reid| (1987), which would be hard to verify in general random
effects models. From a frequentist perspective, the use of the in-
tegrated likelihood to eliminate the nuisance parameters has been
examined for predicting unobserved latent variables z by [Lee and
Kim| (2016]).

When the marginal likelihood ¢,,(6) is not available, Lee and
Nelder| (2001) proposed the use of the extended restricted likeli-
hood

)

#(7) = log R(r) = h(r, B, 5) — %log

1 -
—0
o vy

where ¢ = (5, 2), ¥ = argmaxy, h(3, T, z) and

Quy = {—0%h(B, T, z)/(?wﬁwT}\w:J). In this chapter, we refer to
7(1) = log R(7) as the approximate restricted log-likelihood. Simi-
lar to , the restricted likelihood R(7) can be approximated by
using the approximate predictive likelihood ﬁp(zﬂy; 7) based on a

normal distribution
T A—1
v ly~N(4,95).
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Thus, Lee and Nelder’s (2001) extended restricted likelihood R(7; 1)) =
H(7,9)/Ly(¢|y; 7) is the LA to R(7). In normal linear mixed mod-
els, R(r) = R(r) = f,(#]B3) becomes the restricted (or residual)
likelihood of [Patterson and Thompson (1971): see Chapter 5 of
Lee et al.| (2017).

We explore how to use the ELA to obtain the REMLE. Let

1
:EZR(Tv¢b)7
b=1

where {¢p : b =1,..., B} are iid samples from N(@B Q

it is immediate that

() =log Rp(r) & r(r) = log R()

as B — oo. Moreover, let J(1) = —8%r(7)/8707" and Jp =

Jp(#EMA), where

%ELA = argmax RB(T),
T

s =[5z [§ (z00) )

Oh(r,y) (Oh(r, )\ " | 9*h(r, )
_b - [C(T’ wb){ or < or > + ororT }] ’
and C(7,vp) = R (7, 03)/ Zt | R (7,). Then, we have the fol-

lowing theorem.

s}

Theorem 4.3.1. Let 7 = arg max, r(7) be the REMLE of 7. As

B — o,
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Thus, the variance estimator of the REMLE 7 can be consis-
tently estimated by var(7) = jgl. The second-order LA is ap-
plicable to only a limited class of models; for example, it cannot
be applied to models with correlated random effects. The current
version of the second-order LA in the dhglm in R (Lee and Noh,
2018) allows only crossed models with two independent random
effects. However, the ELA is applicable to any statistical models

with latent variables, as illustrated below.

4.4 Salamander Mating Data

In this chapter, we investigate how to obtain the frequentist MLE
and REMLE, as well as their variance estimators. From a Bayesian
perspective, the MLE and its variance estimator for 8 = (3, 7) are
the posterior mode and its variance under a flat prior on 8, whereas
the REMLE and its variance estimator for 7 are the marginal pos-
terior mode and its variance under a flat conditional prior on j|r.
Here, we investigate the performance of the MLE, REMLE, and
their variance estimators, based on the ELA, through numerical
studies.

McCullagh and Nelder (1989) presented the salamander mat-
ing data. Three experiments were conducted to collect these data:
two experiments were performed with the same salamanders in the
summer and fall of 1986, and the third experiment was conducted
in the fall of the same year using different salamanders. The sala-
mander data are difficult to analyse as crossed models are required
for binary data with correlated random effects. The Gauss-Hermite

quadrature cannot be used due to the large value of d. Here, we

82



use the ELA for the analysis. We use simulation studies with
T = 200 replications to evaluate the performance of various meth-
ods based on the following quantities: (i) Est: 6 = Y7, 6®) /T, (ii)
SE: Y/, 5.6.(0")/T and (iii) SD: {372, (8" — 0)2/(T — 1)}V/2,
where 0() is an estimate at the tth replication. To evaluate the
performance of the point estimation, we compare the Est and true
value of the fixed parameters. The similarity between the SE and

the SD indicates the performance of the variance estimation.

4.4.1 Summer Data

Shun| (1997) and Noh and Lee| (2007) investigated the data that
were collected during the summer to show how the second-order
LA can be applied. The authors fitted a crossed model with d =
O(n*?). Fori =1,....,1 =20 and j = 1,...,J = 20, let y;; €
{0,1} be the binary outcome that indicates whether mating was
successful for the ith female and the jth male. Each female was
paired with six males for mating, generating in 120 observations.

The authors considered the following random effects model:
logit P (yij =1]z ,z?”) = xiTjB + afzf + omzy",

where zzf ~ N(0,1) and 27" ~ N(0,1) are female random effects
and male random effects, respectively, which are assumed to be in-
dependent of each other. The covariates x;; include an intercept,
the main effects Trtf and Trtm, and their interaction Trtf-Trtm,
where Trtf (Trtm) = 0, 1 for Rough Butt salamanders and White-
side salamanders, respectively.

The simulation results are presented in Table Here /,, (ffn)

represents the approximate MLE and 7 (7#°) represents the approx-
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Table 4.1: Simulation results for the summer data.

Method  Intercept Trtf Trtm TrtfxTrtm oy o
True value 1.06 -3.05 -0.72 3.77 1.22 1.22
MQL 0.78  -2.36 -0.51 2.87 0.86 0.88
PQL 0.85  -2.51 -0.57 3.05 0.94 0.96
CPQL 125  -3.48 -0.90 4.33 1.09 1.04
D&M 1.09  -3.15 -0.83 4.04 1.29 1.32
- 093  -2.82 -0.60 3.21 1.04 1.00
/5. 098  -2.94 -0.63 3.64 119 1.20
P 115 -3.21 -0.79 3.82 1.26  1.27
SE (7) 0.83 1.08  0.96 1.12 0.34 0.35
SD (#) 0.97 1.54  0.92 1.54 0.61 0.69
P 1.05  -3.02 -0.69 3.72 1.23 1.24
SE (#%) 0.70 0.90 0.83 0.97 0.30 0.29
SD (7) 0.62 0.87 0.66 0.92 0.48 0.49
Po .11 -3.11 -0.84 3.85 111 1.18
10 099  -3.09 -0.73 3.78 1.25 1.25
Ps0 1.07  -3.02 -0.72 3.77 1.21 1.23
SE (750) 0.48 0.75 0.65 0.96 0.27 0.28
SD (#50) 0.51 0.80 0.57 0.89 0.38 0.42
84



imate REMLE calculated using the first-order (second-order) LA.
7 and 7° are the HL(1,1) and HL(2,2), respectively, of Noh and
Lee (2007)) with the approximate MLE of 8 and the approximate
REMLE of 7 maximizing /,, (£5,) and # (7*), respectively. The
authors also examined the performance of the penalized quasi-
likelihood (PQL) and marginal quasi-likelihood (MQL) methods
of Breslow and Clayton| (1993) and Drum and McCullagh’s (1993)
method (D&M). Note that the PQL method has large biases in
estimating the dispersion parameters (Lee and Nelder, |1996; Noh
and Lee, |2007). Breslow and Lin (1995) derived a correction fac-
tor for the PQL (CPQL) to remove the asymptotic bias. Noh and
Lee| (2007) noted that the approximate REMLE 7¢, based on the
second-order LA, produced the least bias in estimating 8 among
the existing methods at the time. Table [4.1] shows that the REM-
LEs 7 and 7° perform better than the MLEs ém and ffn 7p is the
ELA estimation based on B random samples, where the MLE of
8 and the REMLE of 7 maximize /g and 7 B, respectively. 75 with
B > 10 improves the approximate REMLE 7 based on the first-
order LA and 759 improves the approximate REMLE 7® based on
the second-order LA. The ELA is considerably easier to implement
than 7°. To evaluate the performance of variance estimators, we
compare 7, 7%, and 7g. We observe that 7 underestimates the SD.
The SE of 7% and 759 well estimate the SDs of the mean parame-
ters; however, for oy and o0, both #* and 75y underestimate the
SD. This underestimation of the ELA vanishes as n increases, as

discussed below.
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4.4.2 Pooled Data

For the pooled data from the three experiments, for which k =

1,2, 3, [Karim and Zeger| (1992) considered the following model:
. 1/2 1/2
logit {P (yz]k =1 %y % )} :wngJrEf/k zf_'_zrr{k ;ﬂ’

where zlf = (zfl,zg;,zlg)T ~ N(0,I) and 2t = (zﬂ,zj’g,zﬁ)T ~
N(0, I) are independent,

of,  propog 0 Ty PmOmiOmy O
Y= Prof10f, 012?2 0 y Yom = PmOm,Omy U'r2n2 0 ’
0 0 J]2c2 0 0 0-72?7,2

and Z / 2 and 2V/2 m.k AT€ the kth rows of E /2 and EW{ , respectively.
Here, X f/ a zlf and Zn{ kzj with &k = 1,2 represent correlated ran-
dom effects. For the pooled data, an additional covariate indicating

the season (0=summer and 1=fall) is included. In terms of the dis-

2

persion parameters, 2 (02, ) is the variance in the summer and
7 f mi

0]2@2 (02,,) is the variance in the fall for female (male) salaman-
ders. Moreover, ps (pm) describes the correlation resulting from
the same salamander being selected in the first two experiments.
The second-order LA cannot be applied since the random effects
are correlated. Among frequentist methods, for correlated random
effects models, the PQL of Breslow and Clayton (1993) and #
of Lee and Nelder (2001) can be applied. Breslow and Clayton
(1993)) applied the PQL method under the constraints o, = om,
and p,, = 1. Karim and Zeger| (1992) used the Gibbs sampler to
analyse the results from a Bayesian perspective.

Table shows the estimation results for the pooled data ob-
tained by various methods. It is well known that the PQL has
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large bias in binary data. For the ELA, we set B = 50 for the
point estimation and B = 1000 for the standard error estimation.
The approximate REMLE calculated using 7 differs from the true
REMLE calculated using the ELA 759 when estimating p,,. The
Gibbs sampler uses a flat prior for the mean parameters § and
noninformative priors 7(Xy) o< [Sf|72 and 7(%,,) o [Sp,|72 for
the dispersion parameters. This approach gives results similar to
750, which are marginal posterior modes under flat priors. For the
hypotheses
Hy: pm=1, H: pm #1,

the ELA gives the likelihood ratio test 2{50(6)—50(6°)} = 0.1022,
where 6° is the REMLE under the null hypothesis. Thus, we can-
not reject Hg. This result indicates why the estimates of p,, are
often close to 1 in Table Thus, we consider a submodel with
a shared random effects model in which Z]T-% = vmz;?} for some .

Table shows that the estimation performance of the ELA is
better than that of 7 for all 4. In particular, 7 severely underesti-
mates the standard errors. The ELA improves the point estimation
and the standard error estimation. As shown in Tables and
the SE obtains better estimates of the SD for the pooled data with
n = 360 than for the summer data with n = 120. This result im-
plies that the ELA provides consistent standard error estimators

for the REMLEsS.

4.5 Rongelap Spatial Data

Diggle et al.| (1998]) presented the Rongelap data, available at the
geoRglm in R (Christensen and Ribeiro Jr, 2017), which were
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obtained by the Marshall Islands National Radiological Survey,
to determine whether Rongelap Island is safe with respect to ra-
dionuclide contamination. The data include gamma-ray counts y;
of radionuclide concentrations over time t; at the spatial location
s; for i = 1,...,n = 157 different locations on Rongelap Island.
Diggle et al. (1998) considered the following Poisson random ef-

fects model:

yi | z ~ Poi(t;\;), log\; = B + Eg/Qz, (4.5)

where z = (z1,...,2,)" ~ N(0,1), $1/2 is the ith row of 2/2 and

7

the (7, j)th element of ¥ is

ij = exp {¢ — exp(a)||si — sjll2}, (4.6)

where ||s; — s;||2 is the distance between the ith location and the
jth location.

The integrated nested Laplace approximation (INLA) in R
(Rue et al., 2009) is a widely used Bayesian procedure for fitting
spatial data. Given the prior m(f), the INLA approximates the
posterior 7(A]y) o< Ly, (0)7 () as 7 (0|y) o Ly, (6)7(0) based on the
LA. Then, the INLA uses the approximate elementwise marginal

posteriors
7001 9) = [ #0 | y)ds-r, (4.7)
where 0_p = (01,...,60k_1,0k11,...). Instead of (4.6, the INLA

uses the following parametrization:
Sy = exp{—log2m — a — 2 —exp(@)llsi — s}, (48)

where ¢ = —log 2 —a—2¢. The covariance model (4.06) is referred

to as an exponential covariance function, whereas model (4.8) is
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the Matérn covariance function, which is adopted by the INLA
(Moraga, 2019). Under Gaussian priors for fy, £, and «, the INLA
provides the mean, mode, and standard deviations using random
samples from the marginal posterior .

Although the responses are counts and thus not binary, since
d = n, the LA may not be suitable. In addition, the second-order
LA cannot be used due to the correlated random effects. We fitted
the original Poisson random effects model , but it showed a
severe lack-of-fit, with a scaled deviance of 6.466 for 0.717 degrees
of freedom. If there is no lack-of-fit, the scaled deviance follows
the chi-squared distribution with computed degrees of freedom.
Bivand et al.| (2015)) proposed the overdispersed Poisson model for
yilz:

¢i | 2 ~Poi(\;), log A = B + =122, (4.9)

where ¢; = y;/t;. The authors fitted the model by using
the INLA. Note that under the model , we have an overdis-
persed Poisson random effects model with E(y;|z) = t;\i = p,
var(y;|z) = tf)\i = t;u; > p; and overdispersion parameters t; > 1.
Lee et al. (2017) showed that the use of the model is equiv-
alent to the use of the extended quasi-likelihood (Lee and Nelder,
2000) for fitting an overdispersed Poisson model with y;|z. The
overdispersed Poisson model has a scaled deviance of 120.1
with 146.9 degrees of freedom, confirming no lack-of-fit. Thus, the
overdispersed Poisson model achieves a better fit than the
original Poisson model .

For the ELA, B = 200 is selected to fit 5y, B = 1000 is selected
to fit 7 and B = 2000 is selected to estimate the standard error.
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Table 4.4: Estimates of the parameters according to the Ronge-
lap data under the model (11). The values in parentheses are the

estimated standard errors.

Method 5o 10) o 13
7 1.966 (0.129) -3.051 (0.355) -2.708 (0.827) 1.961 (0.203)
7B 1.983 (0.102) -3.325 (0.932) -2.489 (1.424) 1.988 (0.724)
INLA  2.005 (0.116) -1.822 (0.722)  1.886 (0.524)
INLA* 1.990 (0.436) -1.674 (0.722) 1.770 (0.524)

The estimation results of the Rongelap data with model are
presented in Table [£.4] For the point estimates, we consider both
the posterior mean (INLA) and posterior mode (INLA*) of the
INLA output. The INLA provides a posterior standard deviation
(PSD) for samples from the marginal posterior distribution as a
standard error estimation. Since the Bayesian approach is not in-
variant with respect to the transformation of parameters, we do
not report on ¢ for the INLA. However, ML estimation is invariant
with respect to transformation; thus, we present the ELA result
of £ obtained by using the delta method. The REMLESs calculated
by the ELA are marginal posterior modes under flat priors; thus,
the difference between the ELA and the INLA would be caused
by the use of different priors, although these differences are not
significant.

We perform a simulation study with model . To reduce
the complexity of using the extended quasi-likelihood method, we
use a Poisson random effects model by setting ¢; = 1. According

to Table the point estimates of By are similar for all the eval-
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Table 4.5: Simulation results for the Rongelap data.

Bo ¢ o §
True value  1.980 -3.000 0.100 0.531
7 Est 1976 -3.023 0.178 0.504
SE  0.050 0.341 0.534 0.318
SD  0.048 0.416 0.688 0.430
B Est 1977 -3.014 0.119 0.528
SE  0.051 0.476 0.740 0.442
SD  0.049 0437 0.728 0.444
INLA Est 1.986 0.0561 0.673
PSD 0.087 0.681 0.602
SD  0.051 0.675 0.598
INLA* Est 1.988 0.037 0.632
PSD 0.087 0.681 0.602
SD  0.051 0.627 0.595
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uated methods. In terms of the standard error estimates, the LA
7 underestimates the SD of the estimators. The ELA provides ac-
curate REMLEs. We report the INLA results to highlight the dif-
ferences caused by the use of different priors. The INLA computes
the PSDs using samples from the marginal posteriors, whereas the
standard error estimates of the REMLEs are computed using the
Hessian matrix without resampling. In summary, different priors

could yield different dispersion parameter estimates.

4.6 Conclusion

The LA and the variational Bayes method have been proposed as
methods for approximating the marginal likelihood. However, re-
sulting approximate MLEs and REMLESs could be often biased for
binary or spatial data. Furthermore, a consistent variance estima-
tion method is not available. With the ELA, the MLE, REMLE,
and their consistent variance estimators can be obtained in general
for statistical models with unobserved latent variables. The results
of numerical studies confirm that the ELA provides satisfactory
MLE and REMLE for a wide variety of models. Furthermore, the
MLE and REMLE are Bayesian posterior modes and marginal
posterior modes, respectively, under flat priors. Thus, we can have
both frequentist and Bayesian interpretations from ML and REML

analyses.
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Appendix: Proofs
Proof of

Proof. Suppose that the true predictive likelihood L,(z|y;6) is
from a normal distribution. Let m and S be mean and covariance

matrix of normal distribution of which predictive log-likelihood is
1 1
(2] y;0) = —5 log |27S| — 5(2 —m)TS™(z —m).

Then, 2 = m and Q,, = S~ since
2( (z|y;0) = —S7YHz—m)
92 P Y; = )

0 _
aza T (Z ’ yﬂ ) = _S 1‘

Thus, we have L, (z|y; 0) = L,(z|y; 0) for all z which gives L,,(0) =
L., (0). Moreover,

B B
. 1 H(8, Zy) 1 H(8, Zy)
Lp0)=—% ) = L (0),
B (Zb | y7 Z; LP(Zb | Y3 )
for all B > 1. O
Proof of Theorem [4.2.1]

Proof. Note that there exists a constant M > 0 such that
A H,Z H(,z
Lm(G,Z) = — ( U ) S _ ( 72)

Lp(Z [ y;:0) — Lp(Z | y;0)

with probability one, i.e., im(e; Z) is bounded with probability

<M (4.10)

one. By the law of large numbers, we have
B

A 1 H(9,Z HO,z) -
Lo®)= 5> - 6.2,) » [ _H@z) Lp(z | y:0)dz = L (0)
b=1 Ly(Zy | y;0) Ly(z | y;0)
as B — oo for all 8. Then, from the Theorem 2.7 of Newey and
McFadden| (1994), we can conclude that égLA B O
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Proof of Theorem [4.2.2]

Proof. Note that the Hessian matrix of the marginal log-likelihood

can be expressed as

820 (0) 1 9Ly (0) 1 (0Ln(0)\7* 1 9%L,,(0)
8006T __{Lm(e) 0 }{Lm(0)< 0 > }+Lm(9) 90007

(4.11)
By introducing an arbitrary density function ¢(z), we have

0Ly, (0) Oh(0,z) H(0,z2)
a0 - / a0 q(z) a(z)dz,

) T 2

Dhall) [ L0020 (010.20)7 OO VIO g
90007 90 o0 00001 q(2)
Recall that

Ow(0) 1 OLu(0) 1 [Oh(0,2); —
20 L) 90 L6 / g Lm(0,2)Lp(z L y,ﬁ))dz
4.12

and Lg(6) 5 L,,(0) as B — oo. By assumption of unimodality,
there exists {#55, 4} € ©; C © such that

On(0, 2)
0

82h(0, 2)
90007

< M, su
SIS

< My

[ASCH

given My, My > 0 for all z. Moreover, w(6, Z) is bounded provided

by (£I0). Then,

1 - 0h(0, Zy) p Ly (0)
Y T L0, Z) T (4.13)

By using the Slutsky’s theorem, we have

B flah(”*’) (0, %) _ ZB:ah 0. 20) 5. 7) B O (6)
B Zt l ( ) b=1 00



as B — oo. Similar to (4.13)), we also have

B T
Z {6h 0, Z) <8h(9,Zb)> | 0°h(0.2))

B £~ 90 90007 }L’”(Q’Zb)_> 90007

which implies

90 9006T Lin(0) 0006T

(4.14)

B
Z{ah 6, Zy) <8h(0,Zb)>T+ 82h(6, Z”)}w(e,Zb) v 1 0La(6)
1

By combining (4.13]) and ( -, we have

920,,(0
0) =~ aeae(T)

as B — oo for 6 € ©;. By definition, ©; contains éJEi,LA and 6. Also,
é]EgLA converges to 6 as shown in Theorem In conclusion, Ip
converges to I as B — oo which proves the Theorem O
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Chapter 5

AFT Random Effect
Model with GEV

Distribution
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Chapter Summary

Generalized extreme value (GEV) distribution is widely used
for analyzing extreme events. For analyzing heavily censored data
we suggest the use of GEV distribution by treating uncensored ob-
servations as extreme events. We are interested in the analysis of
heavily censored clustered survival data. The correlation among
clustered survival times can be modeled via random effects. In
this chapter, we propose the use of an accelerated failure time
(AFT) random effect model with GEV distribution to directly de-
scribe the relationship between survival time and covariates. The
performance of the proposed method is evaluated via simulation
study, which shows that the estimated regression parameters are
robust even when not only data are heavily censored but also dis-
tributional assumption on the error distribution is violated. The

proposed method is illustrated with a real data example.
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5.1 Model

5.1.1 GEV Distribution

A random variable Y is said to be distributed as GEV(u, o, ()
distribution if

P(Y <y)=exp{-M(y)},

= (755},

Here, p € R, 0 € (0,00), and ¢ € R are location, scale, and

where

e

shape parameters, respectively, and a4 = max(0,a). By permit-
ting three parameters, the GEV distribution is useful to model
skewed, heavy-tailed, and heavily censored data Bladt and Al-
brecher| (2021). In particular, the shape parameter ¢ controls the
tail behavior of the GEV distribution Roy and Dey| (2014). Special
cases of the GEV are the Gumbel, Fréchet, and reversed Weibull
distribution by taking ¢ = 0, ¢ > 0, and { < 0, respectively.
Here, the case ¢ = 0 is interpreted as ( — 0. Note that the GEV

distribution belongs to the location family, i.e.,

Y ~GEV(0,0,() & Y +u~GEV(u,0,¢), forall ueR.

5.1.2 AFT Random Effect Model with GEV Distri-

bution

Consider the clustered survival data, where the size of each cluster
or subject can be different. Let T;; be survival time (i.e., time-
to-event) for the jth observation of the ith subject (or cluster)

and let Cj; be the corresponding censoring time (i = 1,...,¢;
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j=1,...,n;). Here, q is the number of clusters, n; is the number
of individuals in the ith cluster (i.e. cluster size), and n = > 7_; n;
is the total sample size. In multi-center clinical trials, n; is the
number of patients in the ith center and n is the total number of
patients coming from all ¢ centers. Similarly, in the dental study
n; is the number of existing teeth in a mouth of the ith subject
and n is the total number of teeth of all ¢ subjects. Typically, a
correlation among 7;;’s can be induced by the clustering. In the
bivariate data, n; = 2 for all 7. Note that random effects are useful
for modelling such dependence among T;;’s.

The proposed AFT random effect model with GEV distribu-

tion can be written as
log(T3;) = ;8 + v; + &4, (5.1)

where x;; = (241, . . - ,xijp)T is a p x 1 vector of covariates, 3 € RP
is a vector of regression coefficients corresponding to x;;, v; ~
N(0, ) is a common random effect representing the unobserved
subject effect of the ith subject, £;; ~ GEV(0, 0,() and all these
random quantities are independent. The model is an extension
of GEV-AFT model Roy and Dey| (2014) to the random effects
model which can be viewed as a linear mixed model under the log-
transformation of survival time 7;;. Here, we make the following

two assumptions (Ha et al., |2002):

Assumption 1: Given v;, the pairs (75, Cj;) are condition-
ally independent for j = 1,...,n; and Tj; and Cj; are also

conditionally independent in each pair.
Assumption 2: Given v;, {Cj;,7 = 1,...,n;} are condition-
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ally noninformative for T;;.

The observed random variables for the AFT model are given by
}/ij = min {log Tij,log CU} and (51']' = I(CTU S Cij)a

where 0;; is censoring indicator and I(-) denotes the indicator func-
tion. The h-likelihood (Ha et al., 2002) for the AFT model
under Assumptions 1 and 2 is defined as

q ng
h(0,v)=> hi(0,v;) with h; (0,v;) =l + Lo, (5.2)
i=1 j=1

where

Eh‘j = 5ij {— loga + (1 + C) log Mij — Mij}
+(1 = 6ij) log {1 — exp (— M)},
1 1
by = —3 log(2mar) — %v?.
Here, #1;; is the logarithm of the conditional density function for
(Yij, 6:5) given v; and £a; is the logarithm of the density function for

v;. Moreover, 8 = (8%, 0, ¢, a)7T is fixed parameters, ij = a:iTjﬁ+vi

is the linear predictor, and
N ¢
M;j; = M (yi5) = {1 +C <Z/’JU“U>}

+
5.2 Estimation Procedure

To obtain the maximum likelihood estimator of 6, we need to
obtain the marginal likelihood ¢(8), by integrating out the random

effect v,

0(0) = log/Q exp {h (0,v)} dv,
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where Q, = [[; Q,, with Q,, = {v; : o + {(yij — pi;) > 0} is
the support of the random effect v. However, obtaining the ex-
plicit form of the marginal likelihood ¢(€) is generally intractable.
Moreover, in AFT random effect model with GEV distribution,
the support of the random effect depends on the fixed parameters
0. Instead, an adjusted profile h-likelihood (Ha et al., 2017)) p,(h)
based on the Laplace approximation can be used to approximate

£(0) as follows:

2

1 1
0(0) =~ py(h) =h(0,0) — = logdet <2Hm,> ,
T V=
where H,, = —0?h(0,v)/0vovT, and logdet is the logarithm of

the determinant. Here,
v =1v(0) = argmax h(6,v)
v

is the mode of the h-likelihood given 8. Compared to other random
effect models, it is unusual that the support of the random effect
Q, depends on the fixed parameters @. However, the Laplace ap-
proximation evaluates the integral at the near of the mode. There-
fore, we can still make inference about 6 by using p, (h). Moreover,
to obtain accurate estimates of the fixed parameters, we decom-
pose the whole fixed parameters 8 into two parts: regression co-
efficients 3 and dispersion parameters ¢ = (o,(,a)T. Then, 3 is

estimated (Ha et al., 2017) from p,(h) and ¢ from py,(h) given by

pa(6) = py(1) = 6. 9) ~ ylowcet (5 H)

where ¢ = (8T, vT)T, P = arg maxy, h(¢, 1), and
Hyy = —0%h(¢, ) /090 . Here, ¢ obtained from py(h) is
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called the restricted maximum likelihood (REML) estimator (Lee
et al., [2017).

In summary, the fitting algorithm is given as follows:

Step 0: Set initial values 9(0). Then, for t = 1,2, ..., repeat

Steps 1-3 until the maximum absolute difference between

(0 5(—1)
and 6

0 is less than 10~4.

Step 1: Compute o™ = arg max, h(6,v) given 9(t71).

Step 2: Compute B(t) = arg maxg py(h) given o® and ¢
) A (1) . ~ (t)
Step 3: Compute ¢ = = argmaxy py(h) given ¥ .

After the convergence has occurred, the variance of B can be esti-

mated as

-1

s () - (—ijﬁwv(m) ,

0=0,v=>
82

o~ | 2D O (O L%
opop™ """ = |opopT ~ 9w \ovdwT)  9e0pT|

where © = ©(0). For more details about the computation of h,

Pu(h), and py,(h), see Appendix A.

5.3 Simulation Study

The simulation study is conducted to evaluate the performance
of the proposed method, based on 500 replications of simulated
data. In particular, the robustness of the AFT random effect model

with GEV distribution against the distributional assumption is
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also studied by comparing the AFT random effect model with

normal distribution. Fori=1,...,gqand j = 1,...,n;, we generate
log(T35) = pij + vi + €ij with pi; = Bo + Brxijn + Bewize, (5.3)

where (507 51, /82) = (05, 1.5, *1.5), Lij1, ™~ N(O, 1), Tij2 ~ Bernoulli(O.B),
and v; ~ N(0,2). We consider sample sizes (g, n;) = (100, 15) and
(200,15) for all i. The true errors &;; are generated from four dis-

tributions

(C1) GEV: & ~ GEV (0,0 = 1.2,¢ = —0.7).

(C2) N:eyj ~N(0,\=122).

(C3) T: g ~ t-distribution where degrees of freedom is 5.
(C4) LG: €45 ~ log{Gamma (1.5,5)}.

In case C1, we investigate the performance of the proposed method
when the distribution assumption is correct. C2 investigates the
robustness of the proposed method by comparing with the normal
error distribution. For robustness against the misspecification of
distributional assumption, we consider a t-distribution (C3) as a
heavy-tailed distribution and a LG distribution (C4) as a skewed
distribution. Censoring times Cj; are generated from an uniform
distribution with a parameter empirically determined to achieve
the stated censoring rate, about 50% and 90%. We fit the following
two models under ,

GEV-AFT model (Mggy) : & =" GEV(0,0,¢),

Normal-AFT model (My) : €;; SN (0, ).
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From B = 500 replications of simulated data, the performance
of the estimates of the regression coefficients ﬁj, j =1,21is eval-
uated by (i) closeness between the mean §; = S0 ﬁ§b) /B and
B]t-me, (ii) closeness between the mean of estimates of standard
error (SE) of /3’]‘7 S/E(B]), and the standard deviation (SD) of ﬁj
defined by Zle(ﬁj(b) — B;)?/(B —1), and (iii) maintenance of the
empirical coverage probability (CP) for a nominal 95% confidence
interval for 3;; this observation stems from the fact that the esti-
mated standard error is close enough to the standard deviation of
the estimates. For dispersion parameters, the mean and standard
deviations of estimates are also presented.

The simulation results are summarized in Table (.1 and (.2
When the true error distribution is GEV, the proposed GEV-AFT
model overall works well in terms of biases of 8. In addition, the
estimated SE of Bj (j = 1,2) is close to the empirical SD, which
is the estimate of {var(Bj)}l/Q. When the censoring rate is high
(90%), the proposed GEV-AFT model gives better agreement with
the nominal value of 0.95 for CPs of 3 in all cases, compared to
the Normal-AFT model.

We observe that the estimates (&,é , &) of all dispersion pa-
rameters are close to their true values even if the censoring rate
is extremely high. As expected, we see that the biases and varia-
tions (SEs and SDs) tend to decrease as the sample size increases.
On the other hand, the Normal-AFT model shows some underes-
timation for the absolute magnitude of 8; (j = 1,2) and variance
estimation, leading to substantially lower CPs.

When the error distribution is normal, the proposed method
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gives robust estimation results comparable to the normal AFT
model. We see that the normal AFT model by Ha et al. (Ha et
al., 2002) provides reasonable results under 50% censoring. This
indicates that the Normal-AFT model leads to biased results when
the censoring rate is high. Moreover, the estimation performance of
the proposed method still shows robust results for the estimated
regression parameters when the true error distribution is T or
LG. As expected, the Normal-AFT model gives severely biased
results, particularly for the variance of the random effect o under
the skewed LG distribution.

In summary, the simulation results suggest that the proposed
method is indeed reasonable and gives robust estimation results
for the regression parameters in all cases compared to the results

of normal AFT model.

5.4 Real Data Analysis: COHRI Data

In this section, we analyze the consortium for oral health-related
informatics (COHRI) data which is highly censored, correlated
survival data. The COHRI data consist of de-identified electronic
dental records of ¢ = 5, 336 subjects (baseline patient age between
16-90) with about 6 years of follow-up, derived from the AxiUm
database at Creighton University School of Dentistry |Stark et al.
(2010). This AxiUM consortium allowed for information exchange
of medical and dental electronic records, primarily for research.
Here, the survival time is the time until tooth-loss. The number of
teeth per subject n; varied from 1 to 30, with mean 12.35 and me-

dian 12. In particular, only about 7% (4,593 observations) among
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n = Zf:?’f 6 n; = 65,890 observations were lost during the follow-
up, clearly indicating that observations are heavily censored with
about 93%.

We consider the 14 covariates of interest as follows:
e Mobility (0-5 scale),
e BOP; proportion of tooth-sites that bled when probed (%),

e Plaque; proportion of tooth-sites stained with bacterial plaque

(%),
e PDmean; mean pocket depth for that tooth,
e CALmean; mean clinical attachment level for that tooth,
e Crown; tooth has crown (0 = yes, 1 = no),
e Filled; tooth has filled (O=yes, 1=no),
e Decayed; tooth has decayed (0=yes, 1=no),
e D.F.sites; the number of decayed and filled sites,
e Age (in years),
e Gender (0O=female, 1=male),
e Diabetes (0=yes, 1=no),
e Tobacco; use of tobacco (0=yes, 1=no),

e Molar; inspected tooth is molar (0=no, 1=yes).
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The mean (standard deviation) of age is 58.4 (18.1) years, with
49.5% males, 9.3% with diabetes, and 22.2% are smokers. Sum-
mary statistics of these covariates are presented in Table [5.3] For
molars, 7.3% were lost during the follow-up, while for the non-
molars, it is 6.8%, again implying that observations are heavily
censored.

The results of fitting GEV and Normal AFT models using the
h-likelihood are presented in Table[5.4] First, the GEV-AFT model
shows that all covariates are significant at level 5%. For example,
the tooth-loss time in the non-smoker group (Tobacco=no) is sig-
nificantly increased by a factor of exp(1.148) = 3.15, as compared
to the smoker group (Tobacco=yes), while the loss time in the
Molar group (Molar=yes) is significantly decreased by a factor of
exp(—0.262) = 0.77, as compared to the non-Molar group (Mo-
lar=no). The variance of random effect & = 2.399 is somewhat
large, which account for a correlation among survival times. Next,
we find that the Normal-AFT model also gives significant results
except for four covariates (Plaque, Age, Gender, and Diabetes).
The Normal-AFT model shows that most of the estimates of the
regression coefficient are smaller, which confirms the underestima-
tion from simulation results of Table Moreover, the simulation
results also indicate that the true distribution of the survival time
until tooth-loss seems to be skewed. In Table the Normal-AFT
model has wider confidence intervals than the GEV-AFT model.

For the selection between the GEV-AFT and Normal-AFT
models, two Akaike information criteria (AIC (Lee et al., 2017;
Ha et al., 2017)) are considered, the marginal AIC (mAIC (Ha
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et all [2012)) and conditional AIC (cAIC (Vaida and Blanchard),
2005)). The mAIC and cAIC are, respectively, defined by

mAIC = —2p,(h) + 2dfp,
cAIC = —20; + 2df..

Here, /1 = Z” 155 is given in , df,, is the number of fixed
parameters, and df. = trace(H;;Hfmp)w:&d):& with H,,, =
—8261/8¢0¢T. The mAIC selects a better marginal model be-
tween the two AFT models, whereas the cAIC selects a better

subject-specific model. The value of smaller AIC indicates a bet-

ter model. With the COHRI dataset, in the GEV-AFT model

mAIC=47839.13 and cAIC=31861.8, and in the Normal-AFT model

mAIC=48037.67 and cAIC=35138.24. Thus, both mAIC and cAIC
indicate that the proposed gives better marginal and subject-

specific models compared to the Normal-AFT model.

5.5 Conclusion

In this chapter, we propose the use of the AFT random effect
model with GEV distribution to analyze heavily censored clustered
data. Usually, it is assumed that the distribution of error term in
the AFT model is normal distribution. However, in simulation
study, we have shown that the assumption of normal distribution
for error term does not give valid estimates when censoring rate is
extremely high. We have also demonstrated via simulation and real
data example that the proposed method gives robust estimation
results for the model parameters even when the censoring rate

is extremely high and distributional assumption of error term is
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violated.

Appendix A: Computations for Estimation

Procedures

Let X € R™P be a model matrix for the fixed effect 3 € RP,

Z = diag (]lnl, cee Ilnq) € R™"*4 be a model matrix for the random
effect v € R?, § = ((511, e ,6qnq)T € R™ be a vector of censoring
indicators, and M = (MH, “ee ,quq)T € R™. Here, 1 is a vector

of ones with corresponding length. Then, the h-likelihood (5.2) can
be written in matrix form as follows:
h(@,v) = 6T (—logol, + (14 ¢)logM — M)
1
+ (1, — )" log (L, — e*M) - %log(27ra) - 2—UTU.
@

Here, log M = (log M3, ...,log quq)T and e M = (e~ M e Mang)T,

Appendix A.1: Computation of p,(h)

For estimating 3, we propose to use the adjusted profile likelihood
pv(h). Based on the h-likelihood (5.4), we can compute the p,(h)
as follows.

]
v=0

o) = 1(B.9) ~ 5 logdet (3 Hon

where ¥ = arg max, h(6,v),

0?h(0,v)

Hyy=——FF——"
OvovT

1 _ 1
— EZT diag(W)Z + ~1I,,
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and

W = KoM,

K = MYoB-(1+¢AoM¢,
1+¢ 1
A = 50<M—ﬂn>+(1n—5)061\4_1na
B 1+¢ eM
B = (50 M2 +(:ﬂ.n—6)om

Together with H ,,,, following quantities provide the estimation of

the variance of 3,

_82h(0,'v) 1

Hgg = - 20— = X7 diag(W)X

BB 0803T diag(W) X,
0?h(0,v) 1 o7

Hgy, = 2209 _ ° XT diag(W)Z

Bv 8ﬁ8’UT 0_2 dlag( ) )

where diag(W) is the diagonal matrix of which diagonal elements

are W.

Appendix A.2: Computation of py(h)

For estimating ¢, we propose to use the adjusted profile likelihood
Py (h). Based on the h-likelihood (5.4), we can compute the py(h)

as follows.

i

-1 1
py(h) = h(¢,9) — 5 logdet <2ﬁHW> ‘¢:¢

where ¢ = arg maxy h(¢, 1)) and

Hps Hpy
Hyyp =1 __.
H}, Hy.
Appendix B: Tables
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