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Abstract 

Background Differences in the composition and diversity of the gut microbial communities among individuals are 
influenced by environmental factors. However, there is limited research on factors affecting microbiome variation in 
colorectal cancer patients, who display lower inter‑individual variations than that of healthy individuals. In this study, 
we examined the association between modifiable factors and the microbiome variation in colorectal cancer patients.

Methods A total of 331 colorectal cancer patients who underwent resection surgery at the Department of Sur‑
gery, Seoul National University Hospital between October 2017 and August 2019 were included. Fecal samples from 
colorectal cancer patients were collected prior to the surgery. Variations in the gut microbiome among patients with 
different lifestyles and metabolic diseases were examined through the network analysis of inter‑connected microbial 
abundance, the assessment of the Anna Karenina principle effect for microbial stochasticity, and the identification of 
the enriched bacteria using linear discrimination analysis effect size. Associations of dietary diversity with microbiome 
variation were investigated using the Procrustes analysis.

Results We found stronger network connectivity of microbial communities in non‑smokers, non‑drinkers, obese 
individuals, hypertensive subjects, and individuals without diabetes than in their counterparts. The Anna Karenina 
principle effect was found for history of smoking, alcohol consumption, and diabetes (with significantly greater intra‑
sample similarity index), whereas obesity and hypertension showed the anti‑Anna Karenina principle effect (with sig‑
nificantly lower intra‑sample similarity index). We found certain bacterial taxa to be significantly enriched in patients 
of different categories of lifestyles and metabolic diseases using linear discrimination analysis. Diversity of food and 
nutrient intake did not shape the microbial diversity between individuals  (pProcrustes>0.05).

Conclusions Our findings suggested an immune dysregulation and a reduced ability of the host and its microbi‑
ome in regulating the community composition. History of smoking, alcohol consumption, and diabetes were shown 
to affect partial individuals in shifting new microbial communities, whereas obesity and history of hypertension 
appeared to affect majority of individuals and shifted to drastic reductions in microbial compositions. Understand‑
ing the contribution of modifiable factors to microbial stochasticity may provide insights into how the microbiome 
regulates effects of these factors on the health outcomes of colorectal cancer patients.
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Introduction
Given the complex and dynamic nature of the microbial 
community in the gastrointestinal tract, the gut micro-
biome can actively interact with immune cells through 
the intestinal mucosal surface, and provide the host with 
colonization resistance against foreign microbes [1–3]. 
When the bacterial homeostasis is disrupted, there is an 
imbalance between the commensal and pathogenic bac-
teria in the gut that can lead to the formation of inflam-
matory biomarkers and stimulate the carcinogenesis 
process [1, 4]. This condition is called dysbiosis, which 
is determined to involve several physiological processes, 
such as inflammation, pathogenic bacteria, genotoxins, 
oxidative stress, metabolites, and biofilm [5].

To date, several researchers have proposed using an 
Anna Karenina principle (AKP) effect to describe the 
increase of stochastic transitions from stable to unstable 
states in the gut microbiome [6]. Regarding microbiome-
associated factors, the AKP has been called “all healthy 
microbiomes are similar; each dysbiotic microbiome is 
dysbiotic in its own way” [6]. The AKP effect, therefore, 
indicates the increase of microbiome heterogeneity or 
stochasticity related to dysbiosis due to abnormal condi-
tions and the high personalization of factor-associated 
microbial communities [7].

Differences in the composition and diversity of the gut 
microbial communities among individuals are contrib-
uted by environmental factors [8, 9]. Lifestyle, diet, and 
chronic disease have been generally described to affect 
specific components of the gut microbiome [10]. Under 
some conditions of immune system dysfunctions, there 
could be a rise of stochasticity and the dysbiotic com-
munities much more veried from person to person [7]. 
However, the composition of the microbiome commu-
nity in colorectal cancer (CRC) patients differs from the 
core microbiome and diversity levels of healthy individ-
uals [11, 12]. More research is required to identify how 
modifiable factors affect the microbial instability in CRC 
patients and thus understand how the gut microbiome 
may regulate the effect of modifiable factors on the health 
outcomes of CRC patients.

In CRC patients, metabolic syndrome and lifestyle 
behaviors have been shown to contribute to the patient’s 
prognosis [13, 14]. In addition, dietary factors can modify 
the gut microbial community via energy harvesting and 
several diet-derived metabolites, such as short-chain 
fatty acids (SCFAs) [15].11 Although several data-driven 
approaches are available for the determination of a per-
son’s dietary patterns [16], individuals may differ not only 
in the specific food items they eat but also in their die-
tary diversity [17]. However, such a tree-based approach 
has not been applied to the habitual diets of the Korean 
population.

In this study, we first created the hierarchical tree of 
foods to reflect dietary diversity and investigated its asso-
ciations with lifestyle factors and metabolic diseases. 
Then, we examined the association of lifestyle factors, 
metabolic disease, and dietary intake with the gut micro-
biome variation. We hypothesized that CRC participants 
with unhealthy lifestyles, such as smoking and alcohol 
consumption, and metabolic diseases may associate with 
a higher level of microbiome stochasticity.

Methods
Healthy lifestyles and non‑metabolic diseases in the 
majority of study participants
The study was designed as a cross-sectional study and 
included study subjects who were diagnosed with CRC 
and underwent resection surgery between October 2017 
and August 2019 in the Department of Surgery, Seoul 
National University Hospital, Seoul, Korea. Among 
the selected CRC patients, a total of 331 patients were 
included in this study after excluding those who could 
not be analyzed due to the absence or small amount of 
fecal sample prior to the surgery. Of these, 115 patients 
provided their dietary information.

Demographic characteristics, lifestyle behaviors, and 
metabolic diseases of CRC patients are shown in Table 1. 
The mean age of study participants was 61.9 years, with 
14.8% of patients being early-onset (age ≤50 years old) 
cases (n=49). Of the included patients, 19.6% were ever 
smokers (n=65), 38.1% ever consumed alcohol (n=126), 
40.5% were obese (BMI≥25.0 kg/m2) (n=134), 39.3% 
had hypertension (n=130), and and 21.1% had diabetes 
(n=70). Patient demographics, family history of CRC, 
neoadjuvant therapy, lifestyles, and metabolic diseases 
did not differ between those with and without dietary 
information (p>0.05).

Collection of lifestyles, dietary habits, and clinical data
On the study enrollment, we obtained patient informa-
tion on age, sex, family history of CRC, neoadjuvant 
therapy, tobacco smoking and alcohol consumption 
experiences, and history of hypertension and diabe-
tes. Additionally, the height and weight of the patients 
were measured and used to calculate the body mass 
index (BMI). After surgery, the disease stage was further 
assessed following the American Joint Committee on 
Cancer (AJCC) criteria. The average amount of diet con-
sumption during the preceding year was assessed using 
validated a semi-quantitative food frequency question-
naire (SQFFQ), which was developed by the Korea Cent-
ers for Disease Control and Prevention [18]. By using the 
Computer-Aided Nutritional Analysis Program (CAN-
Pro) 4.0 (Korean Nutrition Information Center, Seoul, 
Korea), we estimated the weight intake of macro- and 
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micronutrients from 663 food subitems, which were gen-
erated from 106 food items in the SQFFQ. From this, 
35 food groups were generated, which has been applied 
in previous studies [19]. The CAN-Pro software further 
identified the higher level with 17 food groups [20] and 
we determined the highest level with the plant-based 
foods, animal-based foods, beverages, and condiments. 
Details for the components of the tree-based diet are 
available in (Additional File 1: eTable1).

Fecal sample collection and 16S rRNA sequencing process
In this study, participants received a kit (DNeasyPower-
Soil Kit, Qiagen, Hilden, Germany) and collected a sin-
gle stool sample according to the kit instructions. The 
sample was collected before the operation date, and fecal 

microbiota was analyzed using 16S rRNA gene ampli-
con sequencing with V3-V4 primers. The first poly-
merase chain reaction (PCR) product was purified with 
AMPure beads (Agencourt Bioscience, Beverly, MA). 
Following purification, 2μl of the first PCR product was 
PCR amplified for final library construction containing 
the index using NexteraXT Indexed Primer. The cycle 
conditions for the second PCR were the same as the first 
PCR except for 10 cycles. The final PCR product was 
purified with AMPure beads and then quantified using 
qPCR according to the qPCR Quantification Protocol 
Guide (KAPA Library Quantificatoin kits for IlluminaSe-
quecing platforms) and qualified using the TapeStation 
D1000 ScreenTape (Agilent Technologies, Waldbronn, 
Germany). The paired-end (2×300 bp) sequencing was 

Table 1 Characteristics of study participants

Data are presented as mean ± standard deviation for continuous variables and counts (percentages) for categorical variables

P-values are calculated from a t-test for continuous variables and a Chi-square test for categorical variables

CRC  Colorectal cancer, BMI Body mass index

Factor Total (N=331) With dietary data 
(N=115)

Without dietary data 
(N=216)

P‑value

Age (mean ± sd, years) 61.9 ± 11.0 60.8 ± 11.8 62.4 ± 10.5 0.21

 ≤50 49 (14.8) 23 (20.0) 26 (12.0) 0.23

 50‑≤60 94 (28.4) 31 (27.0) 63 (29.2)

 60‑≤70 118 (35.6) 36 (31.3) 82 (38.0)

 >70 70 (21.1) 25 (21.7) 45 (20.8)

Sex
 Female 122 (36.9) 41 (35.7) 81 (37.5) 0.83

 Male 209 (63.1) 74 (64.3) 135 (62.5)

Family history of CRC 
 No 291 (87.9) 105 (91.3) 186 (86.1) 0.23

 Yes 40 (12.1) 10 (8.7) 30 (13.9)

Neoadjuvant therapy
 No 290 (87.6) 104 (90.4) 186 (86.1) 0.34

 Chemotherapy and/or radiotherapy 41 (12.4) 11 (9.6) 30 (13.9)

Smoking status
 Never 266 (80.4) 92 (80.0) 174 (80.6) >0.99

 Ever 65 (19.6) 23 (20.0) 42 (19.4)

Alcohol consumption
 Never 205 (61.9) 74 (64.3) 131 (60.6) 0.59

 Ever 126 (38.1) 41 (35.7) 85 (39.4)

BMI (mean ± sd, kg/m2) 24.4 ± 3.2 24.6 ± 3.3 24.3 ± 3.2 0.44

 Normal (<25.0) 197 (59.5) 38 (33.0) 136 (63.0) 0.10

 Obesity (≥25.0) 134 (40.5) 77 (67.0) 80 (37.0)

Hypertension
 No 201 (60.7) 75 (65.2) 126 (58.3) 0.27

 Yes 130 (39.3) 40 (34.8) 90 (41.7)

Diabetes
 No 261 (78.9) 94 (81.7) 167 (77.3) 0.43

 Yes 70 (21.1) 21 (18.3) 49 (22.7)
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performed by the Macrogen using the MiSeq™ platform 
(Illumina, San Diego, USA). The number of operational 
taxonomic units was identified by utilizing the preproc-
essed reads of samples and clustering the sequences from 
samples using a 97% sequence identity cut-off.

Statistical analysis
Lifestyle factors, metabolic diseases, and microbial variation
The interaction of microbiome relative abundance was 
visualized using a network analysis approach. Given the 
compositional and zero-inflated properties of the micro-
biome data, numerous correlation-focused approaches 
have been developed to overcome the difficulty of infer-
ring dependencies in microbial data, such as CCREPE, 
SparCC, CCLasso, and REBACCA [21, 22]. However, 
these methods may be limited in reflecting indirect rela-
tionships and causing spurious associations from the 
creation of pseudo-counts [21, 22]. Ha et al. introduced 
a COpositional Zero-Inflated Network Estimation (COZ-
INE) to address this challenge by generating a binary 
incidence matrix and a compositional abundance matrix 
in which the centered log-ratio transformation can be 
applied for non-zero counts only [21, 22]. In this study, 
the network structure was constructed for each group of 
smoking status, alcohol consumption, BMI, and under-
lying diseases using the COZINE method (R packages 
‘COZINE’ and ‘HurdleNormal’) [21, 22].

For the estimation of the AKP effect on the increase of 
microbial stochasticity associated with dysbiosis due to 
the external factor, Ning et al. recently developed a frame-
work to assess and present the ecological stochasticity as 
a single index, which is called normalized stochasticity 
ratio [23]. Borrowing the Ružička similarity concept from 
this framework, we calculated the intra-sample similarity 
(C) index to reflect the similarity in microbiome compo-
sition of individuals in each group according to exposure 
status [7]. In general, if the C-index of the exposed group 
was higher than that of the non-exposed group, it implied 
presence of the AKP effect according to that exposed fac-
tor and the higher stochasticity or heterogeneity in the 
exposed group [7]. The C-indexes of groups were then 
compared using a Wilcoxon test, with the level of signifi-
cance defined as p<0.05.

Furthermore, we conducted the linear discrimination 
analysis effect size (LEfSe) to identify bacteria that are 
phylogenetically abundant in each group of lifestyle fac-
tors and metabolic diseases.

Dietary diversity and microbial variation
Our previous study identified several dietary factors 
that were correlated with the relative abundance of sev-
eral taxon [24], however, whether the overall diversity of 
source food intake reflecting differences of microbiome 

composition among CRC patients remained unclear. 
Given an estimate of almost 10% of dietary energy was 
obtained due to microbial fermentation and volatile fatty 
acid production [25], we used a tree-based approach to 
assess the dietary diversity of energy intake and its com-
ponents in associations with microbiome variations. The 
assessment of dietary diversity included considerations 
of the consumption of energy intake (kcal/day), plant/
animal protein (g/day), plant/animal fat (g/day), carbohy-
drate (g/day), and fiber (g/day). Based on the tree-based 
structure of dietary intake, we calculated Chao1, Shan-
non, and Simpson indices for within-subject (alpha)-
diversity, which reflected the overall diversity of food 
source consumption within each patient. In addition, to 
capture the variation from patient to patient in terms of 
dietary intake composition, we calculated unweighted 
and weighted UniFrac distances for between-subject 
(beta)-diversity of dietary intake (R packages ‘vegan’ and 
‘GuniFrac’).

To test for the association of dietary diversity with 
microbiome variation across subjects, we performed the 
Procrustes analysis to compare the shapes of two beta-
diversity matrixes by translating, rotating, and uniformly 
scaling the matrixes (R package ‘ape’).

Dietary diversity in associations with lifestyle factors 
and metabolic diseases
To explore whether the AKP or anti-AKP effect of life-
style factors and metabolic diseases might be attributed 
by the dietary diversity,we examined the difference of 
dietary diversity indices according to lifestyle factors 
and metabolic diseases. Thus, we applied the general-
ized linear model to investigate the association of alpha-
diversity and the permutational multivariate analysis of 
variance (PERMANOVA) test to investigate the associa-
tion of beta-diversity of diet consumption with lifestyle 
factors and metabolic diseases. Significant differences in 
the alpha- and beta-diversity according to lifestyle factors 
and metabolic diseases were visualized as box plot and 
principal coordinate analysis plots.

The LEfSe analysis was performed in the Galaxy web 
application (https:// hutte nhower. sph. harva rd. edu/ gal-
axy/) and other statistical analyses were performed in R 
3.6.0.

Results
Lifestyle factors and metabolic diseases and microbial 
variation
Network structure for the partial correlation of the gut 
microbiome in CRC 
The Spearman partial correlation between phyla across 
different population groups is shown in Figs. 1A-1J. Sig-
nificant non-zero edges were identified in the COZINE 

https://huttenhower.sph.harvard.edu/galaxy/
https://huttenhower.sph.harvard.edu/galaxy/
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framework. The networks of phylum abundance in the 
exposed group of smoking status, alcohol consumption, 
or diabetes were relatively sparse compared to the non-
exposed group, whereas the networks of phylum abun-
dance in the obese or hypertensive group were relatively 
dense compared to the counterpart. In these groups of 
patients with more connected microbial communities 
(never smokers, never drinkers, obese, hypertensive, and 
non-diabetic individuals), there were strong abundance 
correlations between Tenericutes and Verrucomicro-
bia (ρ=0.30 to ρ=0.42), Tenericutes and Lentisphaerae 

(ρ=0.31 to ρ=0.35). Nevertheless, abundances between 
Bacteroidetes and Firmicutes phyla, which were the 
two most abundant phyla, were negatively correlated 
(ρ=-0.16 to ρ=-0.06). Of all communities, Firmicutes 
appeared to be the central phylum, which mostly con-
nected with other phyla in the networks.

Assessment of the Anna Karenina principle effect
Table 2 presents the summary statistics of medians and 
interquartile ranges and p-values from the Wilcoxon 
test for the difference in intra-sample similarity (C) 

Fig. 1 COpositional Zero‑Inflated Network Estimation (COZINE) identifies network structure of phylum abundance in (A) ever smoking, (B) 
never smoking, (C) ever drinking, (D) never drinking, (E) obese, (F) normal weight, (G) hypertensive, (H) non‑hypertensive, (I) diabetic, and (J) 
non‑diabetic individuals. Nodes represent the abundance of phyla, and edges represent the partial correlation coefficient between phyla. Brown 
lines show positive partial correlations, and blue lines show negative partial correlations. The thickness of the edges is proportional to their partial 
correlations

Table 2 Intra‑sample similarity index and Wilcoxon test for the detection of AKP effects of lifestyle factors and metabolic diseases

a Data are presented as median (interquartile range)
b P-value less than 0.05 indicates the presence of AKP or anti-AKP effect
c P-value less than 0.05 indicates AKP effect
d P-value less than 0.05 indicates anti-AKP effect

Factor Exposed (E) group a Non‑exposed (NE) group a P‑value (E≠NE) b P‑value (E>NE) c P‑value (E<NE) d

Smoking status 0.812 (0.695‑0.877) 0.790 (0.690‑0.870) 0.001 <0.001 >0.99

Alcohol consumption 0.815 (0.709‑0.882) 0.784 (0.689‑0.861) <0.001 <0.001 >0.99

Obesity 0.778 (0.679‑0.855) 0.807 (0.705‑0.877) <0.001 >0.99 <0.001

Hypertension 0.782 (0.678‑0.861) 0.803 (0.705‑0.874) <0.001 >0.99 <0.001

Diabetes 0.804 (0.694‑0.889) 0.790 (0.690‑0.870) <0.001 <0.001 >0.99
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index. Accordingly, smoking, drinking, and diabetes 
exhibited the AKP effect (p<0.05 for the null hypothesis 
that C index in the exposed group is higher than in the 
non-exposed group), whereas obesity and hypertension 
exhibit the anti-AKP effect (p<0.05 for the null hypoth-
esis of C index in the exposed group is less than in the 
non-exposed group). This suggested different responses 
among individuals who had history of tobacco smok-
ing, alcohol consumption, and diabetes, that not all indi-
viduals showed shifts to new microbial compositions, as 
a result, resulted in an increase in beta-diversity. Under 
conditions of obesity and hypertension, all individuals 
were affected and showed shifts to new microbial com-
positions which were similar from person to person, 
which resulted in an excessive reduction in microbial 

compositions and lower beta-diversity compared to their 
counterparts.

Differentially abundant bacteria
Bacteria that were highly enriched in individuals who 
have smoked on at least one occasion or have never 
smoked, who have consumed alcohol on at least one 
occasion or have never consumed alcohol, who are obese 
or are of normal weight, who have hypertension or do 
not have hypertension, and who are diabetic or non-dia-
betic are presented in (Additional File 1: eFigure1-5). The 
list of these taxa at different phylum, class, order, family, 
genus, and species levels is summarized in Table 3. Taxa 
related to class Bacilli were enriched in smokers, whereas 
taxa related to order Desulfovibrionales and Synergistales 

Table 3 Abundant bacteria identified by linear discriminant analysis effect size analysis in different statuses of lifestyles and metabolic 
diseases

Factor Phylum Class Order Family Genus Species

Smoking status
 Never Synergistetes Deltaproteobacteria

Synergistia
Desulfovibrionales
Synergistales

Desulfovibrionaceae
Synergistaceae

Bilophila
Synergistes

Desulfovibrio D168
Bilophila sp.
Synergistes sp.

 Ever Bacilli Lactobacillales Streptococcaceae Streptococcus
Hafnia

Streptococcus sp.
Hafnia alvei

Alcohol consumption
 Never rc4_4 rc4_4 sp.

 Ever Gammaproteobac-
teria

Enterobacteriales Micrococcaceae
Enterobacteriaceae
Enterococcaceae

Rothia
Citrobacter
Enterococcus

Citrobacter sp.
Enterococcus sp.

Body mass index
 <25.0 kg/m2 SHA_98 Fusobacterium Ruminococcus albus

Peptostreptococcus 
anaerobius
Streptococcus aga-
lactiae
Fusobacterium sp.

 ≥25.0 kg/m2 Betaproteobacteria Burkholderiales Lachnospiraceae
Alcaligenaceae

Faecalibacterium
Sutterella

Bacteroides coprophilus
Clostridium baratii
Faecalibacterium 
prausnitzi
Blautia obeum
Sutterella sp.

Hypertension
 No Eubacterium Eubacterium biforme

Yes Elusimicrobia Syner-
gisteles

Elusimicrobia
Synergistia

Elusimicrobiales
Synergistales

Elusimicrobiaceae Desulfovibrio sp.

Diabetes
 No Synergisteles Synergistia Synergistales S24_7 Ruminococcus

Barnesiella
Desulfovibrio D168
Prevotella sp.
Ruminococcus lactaris
Barnesiella intesttini-
hominis

 Yes Elusimicrobia Elusimicrobia Lactobacillales
Elusimicrobiales

Peptostreptococ-
caceae
Streptococcaceae
Elusimicrobiaceae

Veillonella
Streptococcus

Desulfovibrio sp.
Ruminococcus gnavus
Veillonella dispar
Streptococcus sp.
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were enriched in non-smokers. Additionally, taxa related 
to family Micrococcaceae, Enterococcaceae, and Entero-
bacteriaceae were enriched in non-drinkers, and taxa 
related to class Betaproteobacteria was enriched in obese 
individuals. In terms of metabolic diseases, taxa related 
to phylum Elusimicrobia was enriched in individuals with 
hypertension and diabetes.

Dietary diversity and microbial variation
The rotation from the dietary beta-diversity matrix 
(for weight consumption, energy intake, plant protein, 
animal protein, plant fat, animal fat, carbohydrates, 
fiber, total fatty acids, saturated fatty acids, monoun-
saturated fatty acids  (MUFAs), and polyunsaturated 
fatty acids (PUFAs)) into the microbiome diversity 
matrix was examined by the Procrustes analysis. We 
found that the food choice of an individual did not 
correspond with the microbiome composition of 
that individual when analyzed using the unweighted 
(Figs.  2A-2L) and weighted (Figs.  3A-3L) UniFrac-
based food distances (p>0.05).

Dietary diversity in associations with lifestyle factors 
and metabolic diseases
The association between the diversity of diet consump-
tion and lifestyle factors and metabolic diseases is shown in 
(Additional File 1: eTable 2). All alpha-diversity indices of 
PUFA intake are significantly lower in hypertensive individ-
uals than those without history of hypertension (Additional 
File 1: eFigures 6A-C). Both the distances for beta-diversity 
measurements showed the significant difference of diverse 
PUFA intake between smokers and non-smokers. However, 
the percentages of the variance explained by smoking status 
were observed to be very low (the R-square values of 1.95% 
and 1.88% for unweighted and weighted UniFrac distance 
metrics for PUFA intake diversity, respectively), which food 
source diversity of PUFA intake appeared not to be dis-
tinct (Additional File 1: eFigures 6D-E). The differences in 
within-subject dietary diversity of PUFA intake by history 
of diabetes and plant fat intake by history of hypertension 
were found; whereas between-subject dietary diversity of 
plant fat, carbohydrates, fiber, total fatty acids, and MUFA 
intake was associated with smoking status, depending on 
indices and measurements.

Fig. 2 Procrustes analysis of tree‑based food beta‑diversity (unweighted UniFrac) of daily (A) weight consumption, (B) energy intake (C) plant 
protein, (D) animal protein, (E) plant fat, (F) animal fat, (G) carbohydrates, (H) fiber, (I) total fatty acids, (J) saturated fatty acids, (K) monounsaturated 
fatty acids, and (L) polyunsaturated fatty acids with microbiome composition beta‑diversity (Aitchison’s distance). The plots show the rotation 
between the two ordinations necessary to make them match as closely as possible. Symbols (in black color) show the position of the samples in the 
first ordination (tree‑based food), and arrows (in red color) point to their positions in the target ordination (microbiome composition)
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Discussion
In this cohort of CRC patients, we investigated the 
microbiome variation according to different lifestyles, 
metabolic diseases, and diet consumption. While smok-
ers, drinkers, and diabetic individuals had an increase in 
microbiome stochasticity (the AKP effect), the anti-AKP 
effects were presented in obese and hypertension indi-
viduals, compared to their counterparts.

The use of the AKP effects has been well established 
for the composition of microbiomes affected by exter-
nal diverse stressors, such as predators, parasites, and 
social disruption, through the replacement or generation 
of locally deterministic changes of sensitive bacteria [6, 
26]. Previous studies have demonstrated that modifiable 
factors have a strong effect on the structure and func-
tion of human gut microbial communities. Understand-
ing these effects in a cohort of CRC patients is a vital goal 
in consulting recommendations through microbial ecol-
ogy-based evidence. Here, we observed the AKP effects 
of smoking status, alcohol consumption, and diabetes, 
which indicates that smoking, drinking, and diabetes 
in CRC patients may cause a more variable and unsta-
ble microbiome structure due to the unavailability of 
the host to modulate their microbiome when disturbed. 

Consistently, findings from our network analyses indi-
cated increased dispersion of bacteria in smokers, drink-
ers, and diabetic individuals than those of non-smokers, 
non-drinkers, and non-diabetics, respectively. In con-
trast, we observed a more stable microbiome composi-
tion among patients with elevated BMI or blood pressure 
compared to patients with low BMI or blood pressure, 
which indicated a more stable microbiome in obese or 
hypertensive patients than their counterparts.

Furthermore, there was greater dispersion of the 
microbiome composition in smoking and alcohol-con-
suming patients than in their counterparts, which was 
interpreted as dysbiosis with the less connected net-
work in the dysbiotic group than in the non-dysbiotic 
group. Several biological mechanisms have been pro-
posed that describe how numerous toxic chemicals in 
cigarette smoke, such as nicotine, aldehydes, and heavy 
metals, can affect the bacterial community through the 
peripheral immune system [27, 28]. Tobacco smoking 
has been shown to inhibit natural killer cell activities, 
enhance white blood cell counts, and increase infection 
susceptibility, which results in the impairment of anti-
microbial defenses [27, 28]. Additionally, smoking can 
alter the gut microbiome by accumulating the gut taxon 

Fig. 3 Procrustes analysis of tree‑based food beta‑diversity (weighted UniFrac) of daily (A) weight consumption, (B) energy intake (C) plant protein, 
(D) animal protein, (E) plant fat, (F) animal fat, (G) carbohydrates, (H) fiber, (I) total fatty acids, (J) saturated fatty acids, (K) monounsaturated fatty 
acids, and (L) polyunsaturated fatty acids with microbiome composition beta‑diversity (Aitchison’s distance). The plots show the rotation between 
the two ordinations necessary to make them match as closely as possible. Symbols (in black color) show the position of the samples in the first 
ordination (tree‑based food), and arrows (in red color) point to their positions in the target ordination (microbiome composition)
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that promotes inflammation, such as Bacteroides, Lach-
nospira, Prevotella stercorea, and Ruminococcus [29]. 
Alcohol dependence has been associated with the onset 
of an inflammatory environment in the gut and alters the 
gut microbiome by deriving alcoholic metabolites and 
several neurotransmitters such as gamma-aminobutyric 
acid, serotonin, and dopamine [30–32].

The AKP effects of BMI remain controversial. Our 
study found a decrease in the gut microbiome varia-
tion related to obesity in CRC patients. However, Ma 
et  al. observed a significantly higher similarity index in 
obese than lean individuals but a non-significant differ-
ence between overweight and lean subjects, indicating 
the presence of AKP effects in obesity only [7]. In gen-
eral, a BMI in the overweight/obese range is related to 
the development of CRC through the mediators of sys-
temic inflammation such as tumor necrosis factor-alpha 
and interleukin 6 [33, 34]. Inflammation also contributes 
to an increased risk of CRC via affecting obesity-related 
dysbiosis [35]. A meta-analysis of 1,301 participants 
revealed a lower microbiome diversity in obese com-
pared to non-obese individuals without CRC, however, 
the diversity did not differ between obese and non-obese 
CRC patients [36], demonstrating the absence of AKP 
effects of obesity in individuals with CRC. Consider-
ing that Asian populations have a higher body fat per-
centage than non-Asian populations [37, 38], our study 
selected the cutoff BMI of 25 kg/m2 for obesity instead 
of the World Health Organization recommendation and 
observed the anti-AKP effect of obesity. We hypothesized 
that the different cutoffs of BMI affected our observation 
of AKP effects of obesity.

In this study, we found a decrease in the gut microbi-
ome variation related to a history of hypertension but an 
increased heterogeneity related to underlying diabetes 
among CRC patients. Such bidirectional effects of the 
gut microbiome on blood pressure and fasting glucose 
level have been proposed [39, 40]. The overgrowth of the 
genus Prevotella and Klebsiella was shown to contribute 
to pre-hypertension and hypertension, and a large sample 
of Finns reported a weak association between an increase 
in several genera in the phylum Firmicutes and a decrease 
in many distinct Lactobacillus species in patients with 
blood pressure [41, 42]. The modulation of metformin, as 
well as other anti-diabetic agents to the microbial com-
munity, also received much-deserved interest [43, 44]. 
Nevertheless, the AKP effects of hypertension and type 2 
diabetes have not been investigated before [45].

The concept of the AKP effect was introduced with the 
more extensive stochasticity and heterogeneity of micro-
biome composition between individuals, thus, leaded to 
a decrease in the ability of the immune responding to 
the exposure [6, 7]. However, the anti-AKP effect was 

further argued as an extreme case of the AKP effect [6]. 
Under mild conditions, dysbiosis in some individuals 
resulted in the difference of their microbial composition 
and increased between-individual variations [45]. Under 
severe conditions, dysbiosis occurred in most of indi-
viduals, which drastically reduced their microbial com-
munities and made the microbial composition to be more 
similar between individuals [15].

Associations of food groups and dietary patterns with 
microbiome composition and diversity have been iden-
tified in the Asian population [46–48]. However, how 
the overall diet shapes the microbiome profile remains 
unclear. By constructing the tree-based food from the 
SQFFQ of 106 food items, we observed that diversity in 
terms of weight, energy, macronutrients, and fatty acid 
intake did not shape the gut microbial community in our 
cohort of CRC patients, which might be similar to the 
result of diets accounting for the only small proportion 
of microbiome variation in population-level studies [9, 
49–51]. Notably, a recent ultra-dense longitudinal study 
revealed a high interaction of diet and microbiome at the 
individual level [45], which may explain our non-signifi-
cant findings.

The concept of dietary diversity has been introduced as 
an indicator of nutrient adequacy and overall diet qual-
ity [52]. Despite the disparity from different calculation 
methods, pooled results of 16 individual studies did not 
find any significant associations between dietary diver-
sity score with both overweight/obesity and BMI, which 
was consistent with our findings [53]. In addition, inverse 
associations between dietary diversity and the history of 
hypertension may partially support the reduced stochas-
ticity of the microbiome community among hypertensive 
individuals due to their reduced composition and quanti-
ties of foods. However, the link between dietary diversity 
and microbiome variation did not show any significant 
findings.

The strength of the current study includes the use of 
the hierarchical tree for food-based consumption, which 
could reduce the dimension of complex dietary intake 
information. Besides, this study contains some limita-
tions. First, from the nature of observational studies, 
there could be measurement errors in the assessment of 
modifiable factors and metabolic diseases due to recall 
bias. However, the utilization of a validated SQFFQ 
might minimize this error. Second, more than half of our 
study participants did not provide information on dietary 
intake, which may limit us in detecting the diet-microbi-
ome relationship. We assumed those with and without 
dietary data were comparable because they did not dif-
fer in terms of general characteristics. Last, our study was 
unable to expand the AKP theory in the identification of 
the diversity-stability association and the assessment of 
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the balance between deterministic and stochastic forces 
due to the lack of longitudinal data [7].

Conclusion
In summary, our findings suggested an immune dysregu-
lation and a reduced ability of the host and its microbi-
ome in regulating the community composition. History 
of smoking, alcohol consumption, and diabetes were 
shown to affect parts of individuals in shifting new 
microbial communities and exert higher levels of sto-
chasticity, whereas obesity and history of hypertension 
appeared to affect majority of individuals and shifted to 
drastic reductions in microbial compositions. Non-sig-
nificant associations between dietary choices and micro-
biome diversity suggested the only small proportion of 
microbiome variation can be explained by dietary intake 
at the population level. Understanding the contribution 
of modifiable factors to differentiations of the gut micro-
biome among individuals may provide insights into how 
the microbiome regulates the effects of these factors on 
the health outcomes of CRC patients.
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