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1 Introduction

Recently, there has been growing interest in classifying conformal field theories (CFTs)
and topological field theories (TQFTs) in various space-time dimensions. They describe
universal macroscopic behaviors of many-body quantum or statistical systems, ranging from
critical Ising model, fractional quantum hall systems to quantum gravity via holography
principle. Exact results in TQFTs and supersymmetric CFTs (SCFTs) have triggered the
currently ongoing explosion in the area of physical mathematics, see [1] for a recent nice
review on the subject.

In this paper, we focus on two corners of the big classification program, classification
of 3D N = 4 rank-0 SCFTs and 3D non-unitary TQFTs, and their intricate interplay.
Being rank-0 means absence of Coulomb and Higgs branches. Despite its simplicity, these
rank-0 theories have been overlooked in the classification program until quite recently.
One reason is that most classification schemes of SCFTs with 8 supercharges rely on the
existence of the vacuum moduli spaces and its geometric structures, which are absent in
the rank-0 theories. Another reason is that most rank-0 SCFTs do not allow microscopic
Lagrangian description with manifest 8 supercharges. They are constructed through a
non-trivial SUSY enhancement mechanism. Recently, the rank-0 SCFT turns out to
contain a pair of non-unitary (semi-simple) TQFTs, say TFT± in a Coulomb/Higgs branch
limit [2].1 The (rank-0 SCFT)/(non-unitary TQFTs) correspondence provides a novel
classification scheme of rank-0 SCFTs by studying its associated non-unitary TQFTs. Using
the correspondence, for example, one can derive a lower bound on F (round 3-sphere
free-energy) for N = 4 rank-0 SCFTs [2]. In this paper, we use the correspondence in
the opposite direction and construct a new class of exotic non-unitary TQFTs from a
known class of rank-0 SCFTs called ‘S-fold SCFTs’. The theory is obtained by gauging

1Generally, one can consider a pair of non-unitary TQFTs associated to any N = 4 SCFTs via topological
twisting using SU(2)L or SU(2)R subgroup of the SO(4) ' SU(2)L × SU(2)R R-symmetry. For non-zero
rank case, the resulting non-unitary TQFTs are non-semisimple and thus are not genuine TQFTs satisfying
Atiyah’s axioms. Understanding mathematical structures of the generalized notion of TQFTs and its relation
to 3D SCFTs are currently active research area [3–5].
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the diagonal SU(N) subgroup of the T [SU(N)] theory with Chern-Simons level k. Various
interesting aspects of the S-fold theory has been uncovered recently. For example, they
appear naturally in the context of 3D-3D correspondence [6], enjoy SUSY enhancement [7–9],
have non-geometrical holographic dual [8] and have exactly marginal deformation preserving
N = 2 superconformal algebra [10]. We focus on the case when N = 2 and the S-fold
SCFTs will be denoted by Sk. Based on the exact computations of BPS partition functions
combined with basic dictionaries of the correspondence and consistency conditions, we
propose the explicit expression for modular data, S and T matrices, of the non-unitary
TQFT, TFT[Sk] for all k ≥ 3. The modular data is given in (2.18). When k = 4m2 +4m+3
with m ∈ N, interestingly, the modular data is identical to a non-unitary Haagerup-Izumi
modular data [11–15] modulo a decoupled U(1)2 or U(1)−2. The modular data draws much
attention since it contains exotic fusion algebra (i.e. generalized symmetry) which can not
be constructed in the conventional approaches based on finite group or affine Lie algebra.
We give a physical realization of the exotic modular data from a Coulomb or Higgs branch
limit of the exotic (rank-0) 3D SCFTs2 and generalizes it to arbitrary k ≥ 3.

2 Non-unitary TQFTs from S-fold SCFTs

We review a field theoretic construction of S-fold SCFTs and its various supersymmetric
partition functions. From the computation, we extract the partial information on the
modular data of the non-unitary TQFTs appearing in the Coulomb/Higgs branch limit. By
imposing universal properties of modular data on the top of the partial information, we can
determine the full modular data given in (2.18).

2.1 3D S-fold SCFTs and its BPS partition functions

The T [SU(2)] theory is a 3D N = 4 U(1) gauge theory with 2 fundamental hypermulti-
plets [18]. The theory has UV SU(2)H × U(1)C flavor symmetry which is enhanced to
SU(2)H × SU(2)C in IR. The theory has vacuum moduli space H × C where both of
Coulomb branch C and Higgs branch H are C2/Z2. The Coulomb branch (resp. Higgs
branch) is parametrized by scalar fields charged under SU(2)C (resp. SU(2)H). By gauging
the diagonal SU(2)diag subgroup of the SU(2)H × SU(2)C with a non-zero Chern-Simons
level k, all the vacuum moduli are lifted. Generally gauging with non-zero CS level k breaks
N = 4 supersymmetries to N = 3. But thanks to the nilpotency property of the momenta
maps, µH and µC , of the SU(2)H × SU(2)C symmetry, the gauging does not break any
SUSY. When |k| < 2, the gauge theory has a mass gap and flows to a unitary topological
field theory (TQFT) in IR. For |k| = 2, there is a decoupled free hypermultiplet. For
|k| ≥ 3, the theory flows to a rank-0 N = 4 SCFT called ‘S-fold SCFT’.

S-fold SCFT: Sk:|k|≥3 := T [SU(2)]
SU(2)diag

k

. (2.1)

2Recently, a lattice model realization of a 2D CFT with Haagerup fusion algebra are studied [16, 17].
The Haagerup-Izumi modular data is a generalization of quantum double of the Haagerup fusion category.
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The (rank-0 SCFT)/(non-unitary TQFTs) correspondence predicts there is a pair of non-
unitary TQFTs, TFT±[Sk], associated with SCFTs. Due to the self-mirror property of the
T [SU(2)] theory, the two topological field theories are identical and will be denoted simply
by TFT[Sk]. To extract the modular data of the TQFT, we compute the BPS partition
functions using localization. First, the squashed 3-sphere partition function ZS

3
b
Sk (m, ν)

is [19–22]

ZS
3
b
Sk (m, ν) = 1

2

∫
dXdZ

2π~ I~(X,Z;W )
∣∣
W=m+ν(iπ+ ~

2 ) , where

I~(X,Z;W ) = 4 sinh(X) sinh
(2πiX

~

)
exp

(
2kX2 + 2(X − Z)2 +W 2 − (iπ + ~

2)W
2~

)

×

 ∏
ε1,ε2=±1

ψ~

(
ε1Z + ε2X + W + iπ + ~/2

2

)ψ~

(
−W + iπ + ~

2

)
.

(2.2)

Here ψ~ is the non-compact quantum dilogarithm (Q.D.L) function and ~ = 2πib2 where
b is the squashing parameter. We follow the notation as in [23]. The S-fold theory has
N = 4 superconformal symmetry which includes SO(4) ' SU(2)L × SU(2)R R-symmetry.
In terms of the N = 2 subalgebra on which the localization formula is based, the two
Cartans of SO(4) R-symmetry correspond to the superconformal U(1)R symmetry and a
flavor symmetry U(1)A called ‘axial symmetry’. The charges, R and A, of the U(1)R and
U(1)A are

R = JL3 + JR3 , A = JL3 − JR3 . (2.3)

Here JL3 ∈ Z/2 and JR3 ∈ Z/2 are the Cartan of SU(2)L and SU(2)R respectively. In the
localization computation, one needs to choose a U(1) R symmetry, which is not necessarily
identical to the superconformal R-symmetry. The general choice of U(1) symmetry is given
by a linear combination of the U(1)R and U(1)A symmetry parametrized by a mixing
parameter ν ∈ R, whose charge is given as

Rν = R+ νA . (2.4)

ν = 0 corresponds to the superconformal R-symmetry while Rν=1 = 2JL3 and Rν=−1 = 2JR3 .
m in the above is the real mass for the U(1)A symmetry.

By expanding the integrand in the asymptotic limit ~ → 0, one obtains quantum
twisted superpotential

log I~(X,Z;W = m+ ν(iπ + ~
2)) ~→0−−−−−−→ 1

~
W0(X,Z;m, ν) +W1(X,Z;m, ν) +O(~) .

(2.5)

For computation, use the following asymptotic expansion of the Q.D.L.

logψ~(Z) ~→0−−−−−−→ 1
~

Li2(e−X)− 1
2 log(1− e−X) +O(~) . (2.6)
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From the first two terms {W0,W1} in the expansion, one can obtain Bethe-vacua (zα, xα) ∈
SB.E. and their handle-gluing Hα and fibering Fα as follows [23–26]

SB.E.(m, ν) =
{
(z, x) : (exp(∂ZW0), exp(∂XW0)) |Z→log z,X→log x = (1, 1), x2 6= 1

}
/ZWeyl

2

= {(zα, xα)}r−1
α=0 ,

Hα(m, ν) = exp(−2W1) det
i,j
∂i∂jW0

∣∣
Z→log zα,X→log xα (we define ∂1 := ∂Z , ∂2 := ∂X) ,

Fα(m, ν) = exp
(
−W0 − 2πi~nα · (Z,X)

2πi

) ∣∣∣∣
Z→log zα,X→log xα

.

(2.7)

In the computation of the fibering operator, the integer-valued vector ~nα = (nZα , nWα ) is
defined by

∂i(W0 − 2πi~nα · (Z,X))|Z→log zα,X→log xα = 0 , i = 1, 2 . (2.8)

The ZWeyl
2 symmetry act as

ZWeyl
2 ; x↔ 1

x
, (2.9)

and we need to discard the Bethe-vacuum invariant under the symmetry, i.e. x2 = 1. Using
them, we can compute the twisted partition function ZMg,p(m, ν)

ZMg,p(m, ν) =
∑

α∈SB.E.(m,ν)
Hα(m, ν)g−1Fα(m, ν)p . (2.10)

The Mg,p denotes the degree p bundle over genus-g Riemann surface Σg. To preserve
some supercharges, we turned on a background magnetic monopole flux coupled to the
U(1)Rν symmetry.

Using the above expressions, one can compute the Hα and Fα for the Sk theory. There
are (2k+2) Bethe-vacua and their handle-gluing/fibering operator at ν = ±1 and m = 0 are

{Hα(m = 0, ν = ±1)}2k+1
α=0 =

{
(a−2

0 )⊗2, (a−2
1 )⊗(k−3), (a−2

2 )⊗(k+1), (a−2
3 )⊗2

}
,

{Fα(m = 0, ν = ±1)}2k+1
α=0 =

{
e2πiδ exp(2πihα)

}2k+1

α=0
with

{hα}2k+1
α=0 =

{
0, k + 2

4 ,
A2

4(k − 2)

∣∣∣∣
A=1,...,k−3

,
B2

4(k + 2)

∣∣∣∣
B=1,...,k+1

,
k + 2

4 , 0
}
.

(2.11)

δ is a rational number which is sensitive to local counter-terms. Here a0,1,2,3 are

(a0, a1, a2, a3)

=
(

1√
8(k − 2)

+ 1√
8(k + 2)

,
1√

2(k − 2)
,

1√
2(k + 2)

,
1√

8(k − 2)
− 1√

8(k + 2)

)
.
(2.12)
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2.2 Modular data of TFT[Sk≥3]

As a main dictionary of the (rank-0 SCFT)/(non-unitary TQFTs) correspondence, it is
proposed that

ZMg,p

Sk (m = 0, ν = ±1) = ZMg,p

TFT[Sk] . (2.13)

Here ZMg,p

TFT[Sk] is partition function of the non-unitary topological field theory TFT[Sk]
onMg,p. For general bosonic topological field theories, on the other hand, the partition
function can be given in terms of the modular data, S and T matrices, as follows

ZMg,p

TFT =
r−1∑
α=0

(S0α)2(1−g)(Tαα)p . (2.14)

Here r is the rank, i.e. the dimension of Hilbert-space on two-torus, of topological field
theory. Generally, the S matrix is symmetric and unitary while the T matrix is diagonal
and unitary. By combining BPS partition function results in (2.10) and (2.11) with (2.13)
and (2.14), we can extract some parts of modular data of TFT[Sk] as follows

{|S0α(of TFT[Sk])|}2k+1
α=0 =

{
a⊗2

0 , a
⊗(k−3)
1 , a

⊗(k+1)
2 , a⊗2

3

}
,

(Tαβ of TFT[Sk]) = δα,β exp(2πihα) , where hα is given in (2.11) .
(2.15)

A remaining non-trivial task is to find the full S-matrix satisfying following SL(2,Z)
relations3

S2 = C , (ST )3 = exp
(2πic2d

8

)
C , (2.16)

where C is a permutation matrix called charge conjugation and c2d ∈ Q is so-called 2d chiral
central charge defined only modulo 8. A priori, there is no reason to expect that the partial
modular data obtained from the handle gluing/fibering operators of a supersymmetric gauge
theory can be completed into unitary S and T matrices forming a SL(2,Z) representation.
To be completed to full SL(2,Z), for example, the handle-gluing/fibering operators should
satisfy following non-trivial conditions

|Fα| = 1,
∑
α

H−1
α = 1 ,

and ∃ a Bethe-vacuum α = 0 satsifying |
∑
α

H−1
α Fα| = H

−1/2
α=0 .

(2.17)

These conditions are not satisfied for generic N = 2 or N = 4 theories. The first condition
implies that the diagonal T -matrix is unitary, 2nd means (S2)00 = 1 and the last one
implies that |(STS)00| = |(T−1S−1T−1)00|. All the conditions above are satisfied for
the handle-gluing/fibering operators in (2.11). The (rank-0 SCFT)/(non-unitary TQFTs)
correspondence further predicts that for 3D N = 4 rank-0 SCFTs the full SL(2,Z) completion
is always possible and it can be embedded into a non-unitary modular tensor category.

3Conventionally, the T matrix is defined as Tαβ = δα,β exp
(
2πi(hα − c2d

24 )
)
and satisfies (ST )3 = C where

hα is topological spin. Our T is different from the conventional T by an overall phase factor exp
( 2πic2d

24

)
.
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As a main result of this paper, we propose following modular data of the non-unitary
TQFT TFT[Sk]:

(S of TFT[Sk])

=



a0 a0
a0 (−1)ka0

a1 a1 a1 · · · a1
−a1 a1−a1 · · · (−1)k−3a1

−a2−a2−a2 · · · −a2
a2 −a2 a2 · · · (−1)k+2a2

a3 a3
(−1)ka3 a3

a1 −a1
a1 a1
a1 −a1
...

...
a1 (−1)k−3a1

2a1 cos ijπ
k−2

∣∣∣∣
1≤i,j≤k−3

0

−a1 a1
a1 a1
−a1 a1
...

...
(−1)k−3a1 a1

−a2 a2
−a2 −a2
−a2 a2
...

...
−a2 (−1)k+2a2

0 2a2 cos ijπ
k+2

∣∣∣∣
1≤i,j≤k+1

−a2 a2
a2 a2
−a2 a2
...

...
(−1)k+1a2 a2

a3 (−1)ka3
a3 a3

−a1 a1−a1 · · · (−1)k−3a1
a1 a1 a1 · · · a1

−a2 a2−a2 · · · (−1)k+1a2
a2 a2 a2 · · · a2

(−1)ka0 a0
a0 a0



,

(T of TFT[Sk])

= diag
[
exp

(
2πi

{
0, k + 2

4 ,
A2

4(k − 2)

∣∣∣∣
A=1,...,k−3

,
B2

4(k + 2)

∣∣∣∣
B=1,...,k+1

,
k + 2

4 , 0
})]

.

(2.18)

Here {ai}3i=0 are given in (2.12). There are 2 + (k − 3) + (k + 1) + 2 = 2(k + 1) simple
objects which will be denoted as

{1,1′}, {Ii}k−3
i=1 , {Ji}k+1

i=1 and {V ′, V } . (2.19)

One can check that the modular matrices satisfy the SL(2,Z) relations in (2.16) with
C = (identity) and c2d = 1. The fusion coefficients Nγ

αβ can be computed using the Verlinde
formula

Nγ
αβ =

∑
σ

SασSβσS
∗
γσ

S0σ
(2.20)

and the non-trivial fusion coefficients are

For even k,
[1′]× [1′] = [1] , [1′]× [Ii] = [Ik−2−i] , [1′]× [Ji] = [Jk+2−i] ,
[1′]× [V ] = [V ′] , [1′]× [V ′] = [V ] ,

[V ]× [Ii] = [Ii] +
∑

j:i+j=even
([Ij ] + [Jj ]) +

[V ] + [V ′], i = even
0 , i = odd

,

– 6 –
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[V ]× [Ji] = −[Ji] +
∑

j:i+j=even
([Ij ] + [Jj ]) +

[V ] + [V ′], i = even
0 , i = odd

,

[V ′]× [Ii] = [Ik−2−i] +
∑

j:i+j=even
([Ij ] + [Jj ]) +

[V ] + [V ′], i = even
0 , i = odd

,

[V ′]× [Ji] = −[Jk+2−i] +
∑

j:i+j=even
([Ij ] + [Jj ]) +

[V ] + [V ′], i = even
0 , i = odd

,

[V ]× [V ] = [V ′]× [V ′] = [1] + [V ] + [V ′] +
∑
i:even

([Ii] + [Ji]) ,

[V ]× [V ′] = [1′] + [V ] + [V ′] +
∑
i:even

([Ii] + [Ji]) ,

[Ii]× [Ij ] = δi,j([1] + [V ]) + δi+j,k−2([1′] + [V ′]) +
∑

l : i+j+l=even
([Il] + [Jl])

+
∑

l:|j−l|=i or j+l=±i(mod 2k−4)
[Il] +

[V ] + [V ′], i+ j = even
0, i+ j = odd

,

[Ji]× [Jj ] = δi,j([1]− [V ]) + δi+j,k+2([1′]− [V ′]) +
∑

l : i+j+l=even
([Il] + [Jl])

−
∑

l:|j−l|=i or j+l=±i(mod 2k+4)
[Jl] +

[V ] + [V ′], i+ j = even
0, i+ j = odd

,

[Ii]× [Jj ] =
∑

l : i+j+l=even
([Il] + [Jl]) +

[V ] + [V ′], i+ j = even
0, i+ j = odd

(2.21)

For odd k,
[1′]× [1′] = [1] , [1′]× [Ii] = [Ik−2−i] , [1′]× [Ji] = [Jk+2−i] ,

[1′]× [V ] = [V ′] , [1′]× [V ′] = [V ] ,

[V ]× [Ii] = [Ii] +
∑

j:i+j=even
([Ij ] + [Jj ]) +

[V ], i = even
[V ′] , i = odd

,

[V ]× [Ji] = −[Ji] +
∑

j:i+j=even
([Ij ] + [Jj ]) +

[V ], i = even
[V ′] , i = odd

,

[V ′]× [Ii] = [Ik−2−i] +
∑

j:i+j=odd
([Ij ] + [Jj ]) +

[V ′], i = even
[V ] , i = odd

,

[V ′]× [Ji] = −[Jk+2−i] +
∑

j:i+j=odd
([Ij ] + [Jj ]) +

[V ′], i = even
[V ] , i = odd

,

[V ]× [V ] = [V ′]× [V ′] = [1] + [V ] +
∑
i:even

([Ii] + [Ji]) ,

– 7 –



J
H
E
P
0
3
(
2
0
2
3
)
1
8
5

[V ]× [V ′] = [1′] + [V ′] +
∑
i:odd

([Ii] + [Ji]) ,

[Ii]× [Ij ] = δi,j([1] + [V ]) + δi+j,k−2([1′] + [V ′]) +
∑

l : i+j+l=even
([Il] + [Jl])

+
∑

l:|j−l|=i or j+l=±i(mod 2k−4)
[Il] +

[V ], i+ j = even
[V ′], i+ j = odd

,

[Ji]× [Jj ] = δi,j([1]− [V ]) + δi+j,k+2([1′]− [V ′]) +
∑

l : i+j+l=even
([Il] + [Jl])

−
∑

l:|j−l|=i or j+l=±i(mod 2k+4)
[Jl] +

[V ], i+ j = even
[V ′], i+ j = odd

,

[Ii]× [Jj ] =
∑

l : i+j+l=even
([Il] + [Jl]) +

[V ], i+ j = even
[V ′], i+ j = odd

. (2.22)

Note that all the fusion coefficients are non-negative integers.
For lower k (3 ≤ k ≤ 5), the modular data of TFT[Sk] can be identified with that of

following known non-unitary TQFTs.

TFT[Sk=3] = (Lee-Yang TQFT)⊗ (Lee-Yang TQFT)⊗U(1)2 ,

TFT[Sk=4] = (a Galois conjugate of SU(2)10 )⊗ SU(2)2

Zdiag
2

,

TFT[Sk=5] = (a Galois conjugate of (G2)3 )⊗U(1)−2 .

(2.23)

Z2 1-form symmetry and its gauging. The TFT[Sk] has 1-form Z2 symmetry orig-
inated form the center Z2 of the SU(2) gauge symmetry in Sk. The 1-form symmetry is
generated by the anyon I ′ with topological spin hα=[I′] = k+2

4 .
For odd k, the 1-form symmetry is anomalous [27] and its ‘t Hooft anomaly is the same

as in U(1)2 or U(1)−2 theory. Actually, the theory has a decoupled U(1)±2 factor which
give the anomalous 1-form symmetry:

TFT[Sk] =


TFT0[Sk]⊗U(1)2 , k ∈ 4Z− 1

TFT0[Sk]⊗U(1)−2 , k ∈ 4Z + 1 .
(2.24)

The modular data of the non-unitary bosonic TQFT TFT0[Sk] is

(S of TFT0[Sk])|k∈2Z+1 =
√

2



a0 a3
a3 a0

a1 · · · a1
a1 · · · a1

−a2 · · · −a2
a2 · · · a2

a1 a1
...

...
a1 a1

2a1 cos 4ijπ
k−2

∣∣∣∣
1≤i,j≤ k−3

2

0

−a2 a2
...

...
−a2 a2

0 2a2 cos 4ijπ
k+2

∣∣∣∣
1≤i,j≤ k+1

2


,

– 8 –
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(T of TFT0[Sk])|k∈2Z+1 = diag

exp

2πi

0,0, A2

(k−2)

∣∣∣∣
A=1,··· , k−3

2

,
B2

(k+2)

∣∣∣∣
B=1,··· , k+1

2


 .
(2.25)

When k = 4n2 + 4n + 3 with n ∈ N, the modular data is identical to a non-unitary
Haagerup-Izumi modular data [11–15].

In the case k = 4n2 + 4n + 3 = (2n + 1)2 + 2, the topological spin for n anyons
corresponding to A = i(2n+ 1), i = 1, · · · , n is 0 mod 1. Thus, if we rearrange indices so
that T matrix becomes diag[1, 1; 1, 1, · · · , 1︸ ︷︷ ︸

n

, · · · ], S-matrix becomes

S =
√

2



a0 a3
a3 a0

a112×n a112×n(2n+1)
−a2 · · · −a2
a2 · · · a2

a11n×2 a12n×n D′ 0n×m
a11n(2n+1)×2 D′T E′ 0n(2n+1)×m
−a2 a2
...

...
−a2 a2

0m×n 0m×n(2n+1) 2a2 cos 4ijπ
k+2

∣∣∣∣
1≤i,j≤ k+1

2


(2.26)

for some appropriate matrices D′, E′, and m = 2n2 + 2n+ 2. We can see that it is identical
to (6.24) of [15], and is a Galois conjugate of (3.3) in [14] with ω = 2. The specific form of
Galois conjugation [28, 29] is given by(

S of D2Hg2n+1 in [14]
)
∼= T p̄S−1T pST p̄S2,(

T of D2Hg2n+1 in [14]
)
∼= T p̄,

(2.27)

up to permutations, for p = 2 and p̄ = k2−3
2 .

As a representation of SL(2,Z) = 〈s, t : s4 = 1, (st)3 = s2〉, the modular data is
equivalent to a direct sum of two irreducible representations ρ k−1

2
⊕ ρ k+3

2
where

ρd(s) = 1√
2d− 1


1
√

2 · · · · · ·
√

2√
2
...√
2

2 cos 4ijπ
2d−1

∣∣∣∣
1≤i,j≤d−1

 ,

ρd(t) = diag
[
exp

(
2πi

{
0, A2

2d− 1

∣∣∣∣
A=1,··· ,d−1

})]
.

(2.28)

In [30], they study conditions for a direct sum of irreducible SL(2,Z) representations to be
a modular data after an appropriate unitary similar transformation. The above modular
data satisfies the conditions.

For even k, the 1-form symmetry is non-anomalous and we consider the theory
TFT[Sk]/Z2 after gauging the 1-form symmetry. For k ∈ 4Z, the 1-form symmetry is
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fermionic, i.e. hα=[I′] = 1
2(mod 1), and thus we expect the resulting TQFT are fermionic.

The fermionic TQFT with k = 8 has the same modular data as one of newly found rank 10
TQFTs in [31]. For k ∈ 4Z + 2, the 1-form symmetry is bosonic and thus TFT[Sk]/Z2 is a
bosonic non-unitary TQFT and we can consider its modular data. The modular data after
the Z2 gauging is [27, 32, 33]

(S of TFT[Sk]/Z2)|k∈4Z+2 =

2a0 2a3
2a3 2a0

2a1 · · · 2a1
2a1 · · · 2a1

a1 a1
a1 a1

− 2a2 · · · − 2a2
2a2 · · · 2a2

−a2−a2
a2 a2

2a1 2a1
...

...
2a1 2a1

4a1 cos ijπ
n

∣∣∣∣
1≤i,j≤n−1

2a1Jn−1 2a1Jn−1 0 0

a1 a1
a1 a1

2a1JTn−1
2a1JTn−1

b1,+ b1,−
b1,− b1,+

0
in

2
√

2 −
in

2
√

2
− in

2
√

2
in

2
√

2
−2a2 2a2
...

...
−2a2 2a2

0 0 4a2 cos ijπ
n+1

∣∣∣∣
1≤i,j≤n

2a2Jn 2a2Jn

−a2 a2
−a2 a2

0
in

2
√

2 −
in

2
√

2
− in

2
√

2
in

2
√

2

2a2JTn
2a2JTn

b2,+ b2,−
b2,− b2,+



,

(T of TFT[Sk]/Z2)|k∈4Z+2 =

diag
[
exp

(
2πi

{
0, 0, A

2

(4n)

∣∣∣∣
A=1,··· ,n−1

,
n

4
⊗2
,

B2

4(n+ 1)

∣∣∣∣
B=1,··· ,n

,
n+ 1

4
⊗2
})]

,

(2.29)

where

n = k − 2
4 , JTn = (−1, 1,−1, · · · , (−1)n) ,

b1,± = (−1)na1 ±
in

2
√

2
, and b2,± = (−1)n+1a2 ±

(−i)n

2
√

2
.

(2.30)

3 Discussion and future directions

In the paper, we find a novel class of exotic non-unitary TQFTs arising in a Coulomb or
Higgs limit of S-fold SCFTs with SU(2) type. There are many interesting generalizations
and future applications.

Generalization to T [G]/Gdiag
k for general G = A, D, E and holographic dual.

By generalizing the work to more general S-fold SCFTs based on A,D,E Lie algebra, one
can consider exotic non-unitary TQFTs labeled by gauge group G = A,D,E and CS level k.
The gravity dual of the S-fold SCFT for G = AN−1 is studied in [8]. It would be interesting
to see the exotic fusion algebra from the holographic dual.
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Class R construction and its generalizations. The S-fold SCFTs have natural real-
ization in 3D-3D correspondence [6, 34, 35]. They correspond to a 3-manifold, mapping torus
whose fiber is once-punctured torus [6, 36]. By generalizing the 3-manifolds to more general
mapping torus and more general type of puncture, we expect interesting rank-0 SCFTs
and their associated exotic non-unitary TQFTs can be constructed. The modular data of
these non-unitary TQFTs can be obtained from topological invariants of the 3-manifolds as
studied in [37].

2D non-unitary RCFTs at the edge. From the bulk-edge correspondence, we expect
there is exotic class of non-unitary 2D rational conformal field theories associated to the
3D non-unitary TQFTs TFT[Sk]. It would be interesting to bootstrap the exotic RCFTs
using the modular data proposed in this paper as an input.

Acknowledgments

We would like to thank Hee-Cheol Kim, Sungjay Lee and Xiao-Gang Wen for useful
discussion. The work was presented at “East Asia Joint Workshop on Field and Strings
2022”. We thank the organizers and participants. The work of DG is supported in part
by the National Research Foundation of Korea grant NRF-2021R1G1A1095318 and NRF-
2022R1C1C1011979. DG also acknowledges support by Creative-Pioneering Researchers
Program through Seoul National University.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] I. Bah et al., A Panorama Of Physical Mathematics c. 2022, arXiv:2211.04467 [INSPIRE].

[2] D. Gang et al., Non-unitary TQFTs from 3D N = 4 rank 0 SCFTs, JHEP 08 (2021) 158
[arXiv:2103.09283] [INSPIRE].

[3] S. Gukov et al., Rozansky-Witten geometry of Coulomb branches and logarithmic knot
invariants, J. Geom. Phys. 168 (2021) 104311 [arXiv:2005.05347] [INSPIRE].

[4] T. Creutzig, T. Dimofte, N. Garner and N. Geer, A QFT for non-semisimple TQFT,
arXiv:2112.01559 [INSPIRE].

[5] N. Garner, Vertex Operator Algebras and Topologically Twisted Chern-Simons-Matter
Theories, arXiv:2204.02991 [INSPIRE].

[6] Y. Terashima and M. Yamazaki, SL(2, R) Chern-Simons, Liouville, and Gauge Theory on
Duality Walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].

[7] D. Gang and M. Yamazaki, Three-dimensional gauge theories with supersymmetry
enhancement, Phys. Rev. D 98 (2018) 121701 [arXiv:1806.07714] [INSPIRE].

[8] B. Assel and A. Tomasiello, Holographic duals of 3d S-fold CFTs, JHEP 06 (2018) 019
[arXiv:1804.06419] [INSPIRE].

– 11 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2211.04467
https://inspirehep.net/literature/2178153
https://doi.org/10.1007/JHEP08(2021)158
https://arxiv.org/abs/2103.09283
https://inspirehep.net/literature/1852052
https://doi.org/10.1016/j.geomphys.2021.104311
https://arxiv.org/abs/2005.05347
https://inspirehep.net/literature/1795904
https://arxiv.org/abs/2112.01559
https://inspirehep.net/literature/1983723
https://arxiv.org/abs/2204.02991
https://inspirehep.net/literature/2064340
https://doi.org/10.1007/JHEP08(2011)135
https://arxiv.org/abs/1103.5748
https://inspirehep.net/literature/894531
https://doi.org/10.1103/PhysRevD.98.121701
https://arxiv.org/abs/1806.07714
https://inspirehep.net/literature/1678660
https://doi.org/10.1007/JHEP06(2018)019
https://arxiv.org/abs/1804.06419
https://inspirehep.net/literature/1668843


J
H
E
P
0
3
(
2
0
2
3
)
1
8
5

[9] I. Garozzo, G. Lo Monaco, N. Mekareeya and M. Sacchi, Supersymmetric Indices of 3d S-fold
SCFTs, JHEP 08 (2019) 008 [arXiv:1905.07183] [INSPIRE].

[10] E. Beratto, N. Mekareeya and M. Sacchi, Marginal operators and supersymmetry enhancement
in 3d S-fold SCFTs, JHEP 12 (2020) 017 [arXiv:2009.10123] [INSPIRE].

[11] U. Haagerup, Principal graphs of subfactors in the index range 4 < [m : N ] < 3 +
√

2, in
Subfactors (Kyuzeso, 1993), River Edge (1993) pp. 1–38.

[12] U. Haagerup and M. Asaeda, Exotic subfactors of finite depth with jones indices
(5 +

√
13)/2 and (5 +

√
17)/2, Commun. Math. Phys. 202 (1999) 1.

[13] M. Izumi, The structure of sectors associated with Longo-Rehren inclusions. I: General theory,
Commun. Math. Phys. 213 (2000) 127 [INSPIRE].

[14] D.E. Evans and T. Gannon, The exoticness and realisability of twisted Haagerup-Izumi
modular data, Commun. Math. Phys. 307 (2011) 463 [arXiv:1006.1326] [INSPIRE].

[15] D.E. Evans and T. Gannon, Non-unitary fusion categories and their doubles via
endomorphisms, Adv. Math. 310 (2017) 1 [arXiv:1506.03546] [INSPIRE].

[16] T.-C. Huang et al., Numerical Evidence for a Haagerup Conformal Field Theory, Phys. Rev.
Lett. 128 (2022) 231603 [arXiv:2110.03008] [INSPIRE].

[17] R. Vanhove et al., Critical Lattice Model for a Haagerup Conformal Field Theory, Phys. Rev.
Lett. 128 (2022) 231602 [arXiv:2110.03532] [INSPIRE].

[18] D. Gaiotto and E. Witten, S-Duality of Boundary Conditions In N = 4 Super Yang-Mills
Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

[19] A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal
Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

[20] D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159
[arXiv:1012.3210] [INSPIRE].

[21] N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP
03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

[22] N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres, JHEP
05 (2011) 014 [arXiv:1102.4716] [INSPIRE].

[23] D. Gang and M. Yamazaki, Expanding 3d N = 2 theories around the round sphere, JHEP 02
(2020) 102 [arXiv:1912.09617] [INSPIRE].

[24] C. Closset and H. Kim, Comments on twisted indices in 3d supersymmetric gauge theories,
JHEP 08 (2016) 059 [arXiv:1605.06531] [INSPIRE].

[25] C. Closset, H. Kim and B. Willett, Supersymmetric partition functions and the
three-dimensional A-twist, JHEP 03 (2017) 074 [arXiv:1701.03171] [INSPIRE].

[26] C. Closset, H. Kim and B. Willett, Seifert fibering operators in 3d N = 2 theories, JHEP 11
(2018) 004 [arXiv:1807.02328] [INSPIRE].

[27] P.-S. Hsin, H.T. Lam and N. Seiberg, Comments on One-Form Global Symmetries and Their
Gauging in 3d and 4d, SciPost Phys. 6 (2019) 039 [arXiv:1812.04716] [INSPIRE].

[28] S.-H. Ng and X. Lin, Congruence Property In Conformal Field Theory, Alg. Numb. Theor. 9
(2015) 2121 [arXiv:1201.6644] [INSPIRE].

– 12 –

https://doi.org/10.1007/JHEP08(2019)008
https://arxiv.org/abs/1905.07183
https://inspirehep.net/literature/1735375
https://doi.org/10.1007/JHEP12(2020)017
https://arxiv.org/abs/2009.10123
https://inspirehep.net/literature/1818481
https://doi.org/10.1007/s002200050574
https://doi.org/10.1007/s002200000234
https://inspirehep.net/literature/537793
https://doi.org/10.1007/s00220-011-1329-3
https://arxiv.org/abs/1006.1326
https://inspirehep.net/literature/857192
https://doi.org/10.1016/j.aim.2017.01.015
https://arxiv.org/abs/1506.03546
https://inspirehep.net/literature/1375841
https://doi.org/10.1103/PhysRevLett.128.231603
https://doi.org/10.1103/PhysRevLett.128.231603
https://arxiv.org/abs/2110.03008
https://inspirehep.net/literature/1940068
https://doi.org/10.1103/PhysRevLett.128.231602
https://doi.org/10.1103/PhysRevLett.128.231602
https://arxiv.org/abs/2110.03532
https://inspirehep.net/literature/1940006
https://doi.org/10.4310/ATMP.2009.v13.n3.a5
https://arxiv.org/abs/0807.3720
https://inspirehep.net/literature/791356
https://doi.org/10.1007/JHEP03(2010)089
https://arxiv.org/abs/0909.4559
https://inspirehep.net/literature/832131
https://doi.org/10.1007/JHEP05(2012)159
https://arxiv.org/abs/1012.3210
https://inspirehep.net/literature/881491
https://doi.org/10.1007/JHEP03(2011)127
https://doi.org/10.1007/JHEP03(2011)127
https://arxiv.org/abs/1012.3512
https://inspirehep.net/literature/881696
https://doi.org/10.1007/JHEP05(2011)014
https://doi.org/10.1007/JHEP05(2011)014
https://arxiv.org/abs/1102.4716
https://inspirehep.net/literature/890516
https://doi.org/10.1007/JHEP02(2020)102
https://doi.org/10.1007/JHEP02(2020)102
https://arxiv.org/abs/1912.09617
https://inspirehep.net/literature/1772101
https://doi.org/10.1007/JHEP08(2016)059
https://arxiv.org/abs/1605.06531
https://inspirehep.net/literature/1464871
https://doi.org/10.1007/JHEP03(2017)074
https://arxiv.org/abs/1701.03171
https://inspirehep.net/literature/1508874
https://doi.org/10.1007/JHEP11(2018)004
https://doi.org/10.1007/JHEP11(2018)004
https://arxiv.org/abs/1807.02328
https://inspirehep.net/literature/1681291
https://doi.org/10.21468/SciPostPhys.6.3.039
https://arxiv.org/abs/1812.04716
https://inspirehep.net/literature/1708744
https://doi.org/10.2140/ant.2015.9.2121
https://doi.org/10.2140/ant.2015.9.2121
https://arxiv.org/abs/1201.6644
https://inspirehep.net/literature/1089053


J
H
E
P
0
3
(
2
0
2
3
)
1
8
5

[29] J.A. Harvey and Y. Wu, Hecke Relations in Rational Conformal Field Theory, JHEP 09
(2018) 032 [arXiv:1804.06860] [INSPIRE].

[30] S.-H. Ng, E.C. Rowell, Z. Wang and X.-G. Wen, Reconstruction of modular data from SL2(Z)
representations, arXiv:2203.14829.

[31] G.Y. Cho, H.-C. Kim, D. Seo and M. You, Classification of Fermionic Topological Orders from
Congruence Representations, arXiv:2210.03681 [INSPIRE].

[32] G.W. Moore and N. Seiberg, Taming the Conformal Zoo, Phys. Lett. B 220 (1989) 422
[INSPIRE].

[33] D. Delmastro, D. Gaiotto and J. Gomis, Global anomalies on the Hilbert space, JHEP 11
(2021) 142 [arXiv:2101.02218] [INSPIRE].

[34] T. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds, Commun.
Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].

[35] D. Gang and K. Yonekura, Symmetry enhancement and closing of knots in 3d/3d
correspondence, JHEP 07 (2018) 145 [arXiv:1803.04009] [INSPIRE].

[36] D. Gang, N. Kim, M. Romo and M. Yamazaki, Aspects of Defects in 3d-3d Correspondence,
JHEP 10 (2016) 062 [arXiv:1510.05011] [INSPIRE].

[37] G.Y. Cho, D. Gang and H.-C. Kim, M-theoretic Genesis of Topological Phases, JHEP 11
(2020) 115 [arXiv:2007.01532] [INSPIRE].

– 13 –

https://doi.org/10.1007/JHEP09(2018)032
https://doi.org/10.1007/JHEP09(2018)032
https://arxiv.org/abs/1804.06860
https://inspirehep.net/literature/1668932
https://arxiv.org/abs/2203.14829
https://arxiv.org/abs/2210.03681
https://inspirehep.net/literature/2162550
https://doi.org/10.1016/0370-2693(89)90897-6
https://inspirehep.net/literature/276583
https://doi.org/10.1007/JHEP11(2021)142
https://doi.org/10.1007/JHEP11(2021)142
https://arxiv.org/abs/2101.02218
https://inspirehep.net/literature/1839679
https://doi.org/10.1007/s00220-013-1863-2
https://doi.org/10.1007/s00220-013-1863-2
https://arxiv.org/abs/1108.4389
https://inspirehep.net/literature/924574
https://doi.org/10.1007/JHEP07(2018)145
https://arxiv.org/abs/1803.04009
https://inspirehep.net/literature/1662098
https://doi.org/10.1007/JHEP10(2016)062
https://arxiv.org/abs/1510.05011
https://inspirehep.net/literature/1398614
https://doi.org/10.1007/JHEP11(2020)115
https://doi.org/10.1007/JHEP11(2020)115
https://arxiv.org/abs/2007.01532
https://inspirehep.net/literature/1805147

	Introduction
	Non-unitary TQFTs from S-fold SCFTs
	3D S-fold SCFTs and its BPS partition functions
	Modular data of TFT[S(k > = 3)]

	Discussion and future directions

