

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사 학위논문

Adaptive Matching Time Intervals

based on Reinforcement Learning

for Ride-Hailing Services

승차 공유 서비스를 위한 강화학습 기반의

적응형 매칭 시간 간격 결정

2023년 2월

서울대학교 대학원

공과대학 건설환경공학부

신 용 근

Adaptive Matching Time Intervals

based on Reinforcement Learning

for Ride-Hailing Services

지도 교수 김 동 규

이 논문을 공학석사 학위논문으로 제출함

2022년 12월

서울대학교 대학원

공과대학 건설환경공학부

신 용 근

신용근의 공학석사 학위논문을 인준함

2023년 2월

위 원 장 이 청 원 (인)

부위원장 김 동 규 (인)

위 원 고 승 영 (인)

 i

Abstract

Ride-hailing services helped daily travel by efficiently matching

passengers and drivers. These services face inefficiency in system

operations due to supply and demand imbalances. A widely adopted

strategy is fixed batch-based matching, which accumulates requests

and idle drivers and matches them in batches. Recent studies have

proposed adaptive matching time intervals to consider dynamic

supply and demand patterns. However, matching failure factors such

as passenger request cancellation and driver acceptance are not

considered. This study aims to control adaptive matching time

intervals based on reinforcement learning considering matching

failure factors. To this end, we propose a two-step framework to

maximize the matching success rate. First, an agent based on Deep

Q-Network (DQN) determines the matching time interval, and then

combinatorial optimization is performed based on the driver's

acceptance probability. We conduct experiments on various supply-

demand patterns based on synthetic and real datasets and compare

performance with previous strategies. We confirmed that the

proposed strategy reduces the proportion of expired requests and

achieves the highest matching success rate. We also discussed the

trade-off between fixed matching time intervals and matching

success rates and interpreted agent policies. Our approach provides

insight by discussing matching failure factors, which cannot be

captured with performance alone.

Keyword : Ride-Hailing Service, Reinforcement Learning, Deep Q-

Network (DQN), Combinatorial Optimization, Matching Failure

Student Number : 2021-21896

 ii

Table of Contents

Chapter 1. Introduction ... 1

Chapter 2. Literature Review ... 7

Chapter 3. Methodology .. 11

3.1. Problem Statement ... 11

3.2. MDP formulation ... 13

3.3. Simulation Framework ... 15

3.4. Deep Q-Networks (DQN) ... 21

Chapter 4. Results ... 23

4.1. Data Description ... 23

4.2. Experimental Setup .. 26

4.3. Experiments on synthetic datasets 29

4.4. Experiments on real datasets .. 33

Chapter 5. Conclusion ... 41

Bibliography .. 44

Abstract in Korean .. 50

 iii

List of Tables

TABLE 3.1 Description of passenger requests and driver status in the

environmental simulator .. 20

TABLE 4.1 Distribution of historical data on passenger requests and

drivers .. 24

TABLE 4.2 Comparison of average performances of different strategies

... 36

TABLE 4.3 Comparison of results between our and other strategies

according to time step ... 40

 iv

List of Figures

Figure 1.1 Potential benefits of matching time intervals in order

dispatching ... 2

Figure 1.2 Matching failure factors between passenger requests and

drivers in ride-hailing service .. 4

Figure 3.1 The process of order dispatching based on the proposed

strategy (Source: Own elaboration based on Qin et al., 2020) 12

Figure 3.2 The ride-hailing simulator framework 16

Figure 4.1 Distribution of total and served requests 25

Figure 4.2 Spatial distribution of requests and drivers in the target area of

Singapore ... 27

Figure 4.3 The difference in matching success rate according to matching

time interval ... 29

Figure 4.4 The trade-off between matching failure factors according to

the matching time interval .. 30

Figure 4.5 Comparison of model performance for uniform (a) and gaussian

(b) distribution according to density variation ... 32

Figure 4.6 Convergence curve (a) and probability of taking action 1 by

DQN agent (b) while learning process .. 34

Figure 4.7 Comparison of matching failure factors between different

strategies ... 36

Figure 4.8 Observation of agent matching actions according to learned

policies with (a) density variation and (b) queue (motivated by Qin et al.,

2021) .. 38

Figure 4.9 Success rate between strategies according to time step 40

 1

Chapter 1. Introduction

Ride-hailing services such as Uber, Lyft, and KaKaoT (in Korea)

provide a platform that allows passengers to use taxis at any time

and place by sending requests for their departure and destination.

Unlike the traditional taxi system, where passengers had to catch

taxis on the street, these services help daily travel as intermediaries

that pair passenger requests with nearby idle drivers in real-time.

However, one of the operational challenges facing these services

is the imbalance between supply and demand. There may be gaps

between supply and demand, such as no idle driver available at peak

times when demand increases or, conversely, a large supply at a

non-peak time when demand decreases (Yang et al., 2002). To this

end, operators consider various strategies to maximize system

revenue (e.g., matching success rates) or to improve passengers'

degree of satisfaction by minimizing passenger waiting time (Qin et

al., 2021a): taxi demand prediction (Tong et al., 2017; Zhao et al.,

2016), Vehicle repositioning (Liu et al., 2022; Oda et al., 2018;),

Order dispatching (Li et al., 2019; Xu et al., 2018), Dynamic pricing

(Bimpikis et al., 2019; Chen et al., 2019), etc.

A widely adopted strategy in the Ride-hailing service is order

dispatching, a method in which a centralized system searches for the

driver and sends the request to the appropriate driver when it

receives a passenger request. Previous studies use terms such as

request dispatching or taxi dispatching, but this depends on the

assigned object. This study uses order dispatching in terms of

assigning passenger requests to vehicles.

 2

Figure 1.1 Potential benefits of matching time intervals in order

dispatching

Figure 1.1 shows the potential benefits of controlling matching

time intervals when two idle taxi drivers and two passenger requests

arrive in order. Traditional dispatch systems have adopted strategies

that immediately assign passengers to nearby drivers upon request

(Lee et al., n.d.) (Instantaneous matching). In this case, the first

passenger will match the nearby idle driver, but the second

passenger will match the relatively farther away driver. This strategy

is inefficient because it does not consider the system's perspective.

Considering these limitations, most studies use batch processing

based on fixed time intervals (Fixed Batch-Based matching). This

strategy improves overall efficiency by accumulating requests and

 3

drivers in the queue during matching time intervals and optimizing

objective functions such as the passenger's total waiting time. In this

case, the first passenger will have to wait a little longer, but all

passengers will board the taxi within a reasonable time, reducing the

total waiting time. Furthermore, to consider dynamic supply-demand

patterns, there have recently been attempts to determine adaptive

matching time intervals based on Deep Reinforcement Learning (Ke

et al., 2022; Qin et al., 2021a; Wang et al., 2019).

The critical factor to consider in order dispatching is matching

failure factors based on passenger or driver behavior patterns. Figure

1.2 shows the matching failure factors in the ride-hailing service

from the passenger's new request to the destination. During this

process, passengers can cancel requests based on their behavior, and

drivers can reject requests they do not prefer. For example,

passengers may cancel requests if waiting time (e.g., match waiting

time and pick-up waiting time) exceeds the tolerable range before

or after matching. The driver may also accept or reject according to

spatiotemporal characteristics such as the origin/destination context

of the assigned request. Therefore, we must consider these matching

failure factors when controlling the matching time interval.

These matching failure factors are important in controlling the

matching time intervals. However, many studies assume that the

driver always accepts requests assigned by the platform operator or

do not consider passengers' cancellation.

 4

Figure 1.2 Matching failure factors between passenger requests and drivers in ride-hailing service

 5

Considering these limitations, Zhang et al. (2019) proposed a

dispatch system that estimates the driver's acceptance probability

through a data-based approach and performs optimal matching based

on it. This affects direct operational efficiency gains to maximize

matching success rates. This approach can also improve the accuracy

of the estimated acceptance probability as data accumulates in the

future. We aim to extend the study of Zhang et al. (2019) by

controlling adaptive matching time intervals.

This study focuses on determining adaptive matching time

intervals based on reinforcement learning, considering the matching

failure factors according to passengers and drivers. To this end, we

construct a two-step framework to maximize the matching success

rate. 1) The reinforcement learning agent determines the matching

time intervals, and 2) performs combinatorial optimization based on

the driver's acceptance probability at the current matching time

interval.

In the first step, the platform operator is considered an agent,

and the dynamics of order dispatching are modeled as the Markov

decision process (MDP). The agent decides whether to match or hold

each matching time interval. You can control the time interval based

on the state variables that the agent observes. Once the agent has

decided to match, proceed to the second step, and perform

combinatorial optimization in the current queue to assign the driver a

passenger request. This is formulated to maximize the average

driver's acceptance probability.

The key contributions of this study are as follows: (a) proposal

of a two-step framework based on reinforcement learning and

combinatorial optimization; (b) Development of calibrated simulators

using real datasets and validation strategies with various

 6

experiments; (c) Providing analytical insight by visualizing optimal

policies of the agent.

The remainder of this paper is organized as follows. First, we

review previous studies to control matching time intervals or how to

match passengers and drivers. And we formulate the problem of this

study and describe reinforcement learning algorithms to solve them.

The overall simulation framework and its components are also

described in detail. The next section describes the data and

experimental settings. Then, a detailed analysis of the results is

provided. Lastly, findings are discussed along with brief concluding

remarks and notes on future research plans.

 7

Chapter 2. Literature Review

Previous studies can be classified into two categories: when to

match in the temporal context and how to pair drivers and passengers

in the current time interval. They focus on one category, and the

other adopts the existing method. In this section, the former was

referred to as online matching and order dispatching as commonly

used terms.

Online matching is formulated as an online bipartite matching

problem. It is related to the optimal matching of bipartite graphs in

situations where one or two groups arrive online (Karp et al., 1990;

Mehta et al., 2007). It is used in various fields, such as crowdsourcing

(Tong et al., 2016) between work and workers, advertising exposure

strategies in search engines, and passenger requests and drivers

(this study).

Previous studies have tried to improve performance by

dynamically controlling spatio-temporal variables such as matching

time intervals or radius (Özkan and Ward, 2020; Yan et al., 2020;

Yang et al., 2020).

Özkan and Ward (2020) developed a dynamic matching strategy

to maximize the cumulative matching rate. Based on the continuous

linear program (CLP), they proposed a matching policy that describes

passenger and driver arrival rates and waiting time features. Yang et

al. (2020) jointly optimized two spatio-temporal variables, matching

time interval and matching radius, and measured system performance

such as matching rate, passenger waiting time, and pick-up waiting

time. They also compared and validated the performance according

 8

to various supply-demand scenarios. Yan et al. (2020) proposed

joint pricing and matching optimization benefits. They confirmed that

this strategy could alleviate the price volatility problem using the

dynamic pricing strategy as a single model.

An approach based on these parameters requires unrealistic

assumptions for each parameter (Qin et al., 2021a), and it is difficult

to reflect the stochastic characteristics of the real-world

environment. It is impossible to mathematically formulate the

dynamics of supply-demand patterns in a complex ride-hailing

service market (Ke et al., 2022).

Recently, researchers have attempted to determine adaptive

matching time intervals (Ke et al., 2022; Qin et al., 2021b; Wang et

al., 2019). Reinforcement learning is a sequential decision that

affects the current action. This is a powerful way to learn and

experience optimal policies (Sutton and Bart 1998).

Wang et al. (2019) modeled the system from the perspective of

a platform operator. They configure the currently unmatched

bipartite graph as a state and decide whether to hold or match with

action. The reward is the sum of the weights on the graph and is

determined by the total revenue of each driver in the actual

experiment. Ke et al. (2020) constructed a multi-agent framework

based on individual passenger requests. They used Deep Q-

Networks (DQN), an Actor-Critic model based on deep neural

networks, and designed reward functions focusing on passenger

waiting time. Qin et al. (2021) determine adaptive matching time

intervals from the perspective of a single system. They also focused

on passenger waiting time and improved the reward sparsity problem,

which occurs only when the agent decides the action through the

decision of the reward function.

 9

Previous studies on order dispatching focus on how to pair

drivers and passengers in the current time step.

As mentioned in the previous section, the traditional dispatch

system has instantaneous matching or fixed batch-based matching

strategy for passenger requests. In the latter case, it is formulated

as a linear assignment problem (LAP), which optimizes the objective

function, such as the pick-up waiting time, for passenger requests

and drivers. This approach focuses only on the distance between

passengers and drivers, so the overall matching success rate is not

directly considered.

Zhang et al. (2017) formulated a combinatorial optimization

algorithm based on the driver's acceptance probability to maximize

the matching success rate. Estimating the driver's acceptance

probability is modeled as a binary classification problem, and

classification models such as logistic regression and gradient-

boosted decision tree (GBDT) are available. Based on this, they

formulate it as a combinatorial optimization problem to maximize the

average acceptance probability in the current time step. They derive

an approximation solution using the hill climbing algorithm.

As a result, it shows better results from the perspective of

matching success rate and passenger waiting time than the traditional

two strategies described above. Since passenger waiting time is also

reflected in the driver's acceptance probability model, it can be

confirmed that performance is improved from this point of view.

Xu et al. (2018) are divided into learning and planning steps, and

in the learning step, each driver is modeled as an agent, and the

state-value function is learned in advance based on historical data.

The planning step updates the weights of the bipartite graphs to be

currently allocated based on the value functions learned in the

 10

previous step. Finally, the final allocation is achieved through

combinatorial optimization that maximizes the sum of weights. Li et

al. (2019) used multi-agent reinforcement learning to maximize

accumulated driver income (ADI). They spread the decision-making

of individual drivers globally based on mean field approximation.

In addition, there have been applied studies that have either

relocated vehicles based on demand prediction models (Liu et al.,

2022b), or developed models that can be generalized at other times

and in other cities based on transfer learning (Wang et al., 2018).

In the above studies on online matching and order dispatching,

the former lacks consideration of the matching failure factors to be

considered in ride-hailing services, such as passenger request

cancellation, driver acceptance, and rejection. In the latter case, most

studies focus on the performance of the current time step so that it

may be suboptimal from a future perspective. Reinforcement

learning-based studies consider these limitations, but the factors of

matching failure are not considered. By considering each limit, we

maximize the matching success rate by determining the adaptive

matching time interval based on reinforcement learning by

considering the matching failure factors.

 11

Chapter 3. Methodology

3.1. Problem Statement

This section describes the background knowledge of this study

and the combinatorial optimization problem for controlling adaptive

matching time intervals. The proposed method in this work is a two-

stage framework consisting of determining matching time intervals

and solving combinatorial optimizations. Figure 3.1 describes how the

proposed method works when passenger requests and idle driver

information are sent to the platform.

The horizontal axis is a queue monitored by the platform, where

passengers' requests and idle drivers come online. The

reinforcement learning agent corresponding to the operator observes

the queue and decides whether to dispatch. Once the agent decides

to dispatch, it performs combinatorial optimization between

passenger requests and idle drivers within the current matching time

interval. Here, the matching failure factors mentioned in Figure 1.2

may cause the passenger to cancel the request. Depending on the

driver's acceptance, it may re-enter the queue or eventually expire.

Expired requests occur when the number of re-enters to the queue

reaches the threshold (discussed in Section 4.1). We implement

these processes repeatedly, and the agent learns optimal policies to

maximize the matching success rate. That is, the matching time

interval is controlled adaptively.

 12

Figure 3.1 The process of order dispatching based on the proposed strategy (Source: Own elaboration based on Qin

et al., 2020)

 13

3.2. MDP formulation

In this section, we model sequential decision problems that

control matching time intervals as a Markov Decision Process (MDP)

(Puterman 2014), which includes an agent, a set of states and actions,

state transitions, and rewards.

The agent is considered a platform operator (e.g., single agent

setting), and each time step 𝑡 ∈ {1,2, … , 𝑇} repeatedly performs a

two-step framework. The first step is to decide whether to keep or

match drivers with passenger requests accumulated in the queue at

a given time step. The second step is to perform combinatorial

optimization if the agent decides to match the previous step.

At every time step 𝑡, the agent observes the states associated

with the number of idle drivers and requests from passengers in the

queue. The set of states is represented by 𝑆(𝑡) = {𝑁𝑃(𝑡 − 1), 𝑁𝐷(𝑡 −

1), 𝜆𝑝(𝑡), 𝜆𝐷(𝑡)}. 𝑁𝑃(𝑡 − 1) and 𝑁𝐷(𝑡 − 1) are the number of passenger

requests and idle drivers present in the queue at the previous time

step 𝑡 − 1, respectively, and 𝜆𝑝(𝑡) and 𝜆𝐷(𝑡) are the number of new

passenger requests and idle drivers in the queue at the current time

step.

The set of actions taken by the agent is represented by 𝐴(𝑡) =

{0,1}. 𝐴(𝑡) = 0 means to suspend the matching decision and move to

the next time step 𝑡 + 1, and 𝐴(𝑡) = 1 moves to the second step to

perform combinatorial optimization.

The dynamics of the environment as it moves from time step 𝑡

to the next time step 𝑡 + 1 are represented by state transition

probability 𝑃(𝑆(𝑡 + 1) | 𝑆(𝑡), 𝐴(𝑡)). This means the probability that the

agent and the environment interact to update from state 𝑆(𝑡) of time

step 𝑡 to state 𝑆(𝑡 + 1) of next time step 𝑡 + 1 by action 𝐴(𝑡).

 14

The first is that after the agent has made a matching decision

𝐴(𝑡) = 1, the final pick-up may be completed, or passengers may

cancel the request without waiting for the matched driver. The

second is that the agent may hold the decision 𝐴(𝑡) = 0 and remain

in the queue, or passengers may cancel the request due to a longer

wait before matching. If the last attempt was made to match, but the

driver refused or did not attempt to match, re-enter the queue. New

drivers and requests are also queued every time step. Detailed

dynamics are discussed in the next section.

The reward given when an agent takes action is expressed as

𝑅(𝑆(𝑡), 𝐴(𝑡)) and is set to the number of requests finally served in the

current time step. Therefore, the agent receives rewards after

making matching decisions and otherwise receives zero rewards.

This is related to the objective function for combinatorial optimization

in the second stage leading to the maximum matching success rate.

Based on the reward function, the agent learns the optimal policy 𝜋

to maximize cumulative rewards. This is expressed as Equation (3.1).

𝑉𝜋(𝑆(𝑡)) = 𝐸𝜋 [∑ 𝛾𝑡

∞

𝑡=0

𝑅(𝑆(𝑡), 𝐴(𝑡))] (3.1)

𝑉𝜋(𝑆(𝑡)) is the expected value of the cumulative reward, and 𝛾

represents the discount factor. This reflects the weight between the

long-term and the current reward.

 15

3.3. Simulation Framework

This section describes the ride-hailing simulator and system

architecture that implements the dynamics mentioned in Figure 3.1.

The simulator induces the agent to learn the optimal policy by

interacting with the environment that emulates the ride-hailing

dynamics based on taxi data.

Figure 3.2 shows the environment, reinforcement learning agent,

and three main modules. The environment initializes the spatial map

information, the pool to store the passenger's request and driver, and

the time. It then repeats the following steps during each time interval:

Generate new passenger requests and idle driver information, store

them in the pool, and extract candidates for matching with queues.

Then apply the action according to the policy of the reinforcement

learning agent (dispatch or skip). In the former case, combinatorial

optimization is performed by the Order dispatcher module, and in the

latter, it re-enters the queue. Finally, update passenger requests and

driver status and provide the agent with updated status and rewards.

The environment repeats during consecutive time steps and

considers it an episode. When one episode ends, the simulator is

reinitialized.

 16

Figure 3.2 The ride-hailing simulator framework

 17

The simulator contains three main modules. ETA (Estimated

Time of Arrival) module maps location information based on a road

network and estimated arrival times. Order dispatcher module

performs combinatorial optimization based on the driver's acceptance

probability. AP (Acceptance Probability) module provides an

estimated driver's acceptance probability based on historical data.

ETA module contains road network and shortest path information.

We acquired Singapore's road network of 23,805 nodes and 35,649

edges from OpenStreetMap (OpenStreetMap, n.d.). Passenger

requests and driver GPS information are mapped to the nearest node,

and the shortest path between nodes is calculated based on the

Dijkstra algorithm (Dijkstra 1958). Through this, we can provide the

environment with the expected pick-up waiting time and the travel

time to the destination.

Order dispatcher module is based on the method proposed by

Zhang et al. (2017). They formulated it as a combinatorial

optimization problem to maximize the driver's acceptance probability,

which affects the direct matching success rate (Zhang et al., 2017).

At each matching time interval, the objective function and constraints

are formulated as shown in Equation (3.2), given the requests of 𝑁

passengers (𝑖 = 1,2, … , 𝑁) and 𝑀 idle drivers (𝑗 = 1,2, … , 𝑀).

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
1

𝑁
[∑ (1 − ∏(1 − 𝑝𝑖𝑗)𝑎𝑖𝑗

𝑀

𝑗=1

)

𝑁

𝑖=1

]

(3.2) 𝑠. 𝑡. ∑ 𝑎𝑖𝑗

𝑛

𝑖=1

≤ 1, ∀𝑗

 𝑎𝑖𝑗 ∈ {0,1}

 0 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑀

 18

𝑝𝑖𝑗 represents the driver's acceptance probability. 𝐴𝑖𝑗 is a

dummy variable to optimize and is defined as follows:

𝑎𝑖𝑗 = {
1, 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑖 𝑖𝑠 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑑 𝑡𝑜 𝑑𝑟𝑖𝑣𝑒𝑟 𝑗,

0, 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑑 𝑡𝑜 𝑑𝑟𝑖𝑣𝑒𝑟 𝑗
 (3.3)

The order dispatcher module performs combinatorial

optimization by Equation (3.2) whenever the agent dispatches. It

provides an approximate solution using the Hill-Climbing method, a

heuristic algorithm.

AP module provides the driver's acceptance probability 𝑝𝑖𝑗

mentioned in Equation (3.2). The driver's acceptance probability is a

binary classification problem of whether the driver has accepted a

particular request and can be estimated based on historical data

(Zhang et al., 2017). We used logistic regression (Hosmer et al.,

2013), which is widely adopted for these problems. The acceptance

probability 𝑝𝑖𝑗 of driver 𝑗 for passenger 𝑖 is defined as shown in

Equation (3.4).

𝑝𝑖𝑗 = 𝑝(𝑦 = 1|𝑝𝑖, 𝑑𝑗) =
1

exp (−𝑤𝑇𝑥𝑖𝑗)
 (3.4)

The logistic regression is expressed as a sigmoid function

between 0 and 1. It is derived from the logit transformation of the

target in linear regression, where 𝑥𝑖𝑗 is the feature vector

representing passenger 𝑖 and driver 𝑗. We obtained a model with

approximately 60% accuracy based on pick-up distance and

temporal context. The distribution of acceptance probabilities varies

with temporal characteristics and decreases with longer pick-up

 19

distances. In the future, we can improve accuracy and provide

sophisticated acceptance probabilities based on more feature vectors

and accumulated data.

Passenger requests and drivers may correspond to one of four

and three statuses at each matching time interval. TABLE 3.1 lists

the types and descriptions of each status. Requests and drivers first

entered the queue are "WAIT" and "IDLE," respectively. Depending

on the interaction of the environment, the state changes depending

on the several events described in Figure 3.1.

Passengers can cancel before matching (CBM) according to the

match waiting time or cancel after matching (CAM) according to the

pick-up waiting time. These passengers leave the queue. Regardless

of passenger cancellation, there may be expired requests (EXPIRED)

due to drivers not continuing to accept the request. This can be set

as a threshold for the number of attempts according to the platform

operating rules, and this is limited to four in this study. If they accept

the assigned request, drivers will switch to the "PICKUP" status. If

the request is canceled, the driver will switch to the "IDLE" status. If

not, the driver will switch to the "HIRED" status and leave the queue.

 20

TABLE 3.1 Description of passenger requests and driver status in

the environmental simulator

Status Description

1. Passenger

 SERVED Completed request

 WAIT Waiting for matching in the queue

 CBM Cancellation before matching

 CAM Cancellation after matching

 EXPIRED
Expired due to no driver accepting regardless of

passenger cancellation

2. Driver

 IDLE Waiting for matching in the queue

 PICKUP Picking up matched passengers

 HIRED Traveling to destination with passengers

 21

3.4. Deep Q-Networks (DQN)

This section describes Deep Q-Networks (DQN) (Mnih et al.,

2015), a reinforcement learning algorithm for optimal policies that

determine matching time intervals.

Q-learning (Watkins and Dayan, 1992) is the base model of DQN.

It stores the Q-value according to state and action in the Q-table

and updates this table repeatedly while interacting with the

environment. In this way, the Q-function that returns the current Q-

value is approximated. These mechanisms are formulated as

Equation (3.5) based on the MDP modeled in the previous section.

𝑄(𝑠(𝑡), 𝑎(𝑡) ← 𝑄(𝑠(𝑡), 𝑎(𝑡))

+ 𝛼[𝑅(𝑡) + 𝛾 max Q(s(t + 1), a(t + 1))

− Q(s(t), a(t)]

(3.5)

𝛼 represents the learning rate for each episode, and 𝛾 is the

discount factor. The Q-value updates it according to the current

state and action and the maximum Q-value that can be received in

the next state.

DQN improves the problem of storing too large a table size as

dimensions increases in q-learning. To approximate the Q-function,

it uses neural networks to optimize the loss function based on the

difference between the predicted value of the Q-network and the

target Q-value. The loss function is given in Equation (3.6), where

𝑦 represents the target Q-value.

 22

𝐿(𝜃) = 𝐸[(𝑄(𝑠(𝑡), 𝑎(𝑡)|𝜃) − 𝑦)2] (3.6)

Additionally, researchers structured the predicted values and

target Q-values into separate networks, improving the problem of

non-convergence due to fluctuations in target Q-values. The

estimation parameter of Equation (3.7) and Equation (3.6) are set

differently. In the terminal state, the current compensation is

received.

𝑦 = {
𝑅(𝑡)

𝑅(𝑡) + 𝛾max (𝑄(𝑠(𝑡 + 1), 𝑎(𝑡 + 1)|𝜃−)
 (3.7)

DQN increases efficiency through deep neural networks, and

experience replay algorithms using memory buffers are added. It

accumulates data in memory buffers instead of using it directly in

neural networks and learns with minibatch through random sampling.

This approach improves instability due to nonlinear functions and

solves sample correlation problems.

 23

Chapter 4. Results

4.1. Data Description

We experimented using the real dataset provided by MVL, which

operates the TADA service (TADA, n.d.) in Singapore. The dataset

was collected over two months, from 2020-11-01 to 2020-12-31,

and consists of three tables: The passenger's request information,

the driver's GPS record, and the list of requests sent to the driver.

The passenger's request information includes the request ID,

date, origin and destination latitude and longitude, and the final status

identifier (completion, cancellation, expiration, etc.). The driver's

GPS records included the driver's ID, date and time, vehicle latitude

and longitude, and status identifiers (during idle or hired) and were

recorded every 10 minutes. Finally, a list of requests sent to the

driver also called ping information, is an N × M dimension table for

M vehicles and N requests. Through this, we combined the request

and driver GPS tables to extract information about the matching

failure factors. And we analyzed the distribution of cancellations

before and after matching according to the match waiting time and

pick-up waiting time of passengers. It was also used to estimate the

driver's acceptance probability based on the ping information.

The distribution of passenger requests and drivers extracted

from the dataset is listed in TABLE 4.1. There were about 8,000

vehicles and about 700,000 requests. According to the status code

classified based on the final status identifier, the requests of the

finally serviced passengers were 32.7%. Among the requests that

 24

failed to match, the expired request was the highest (51.9%), and the

cancellation before matching was about 8%. Expired requests are

expected to be the highest because the dataset only includes

matching TADA drivers. That is, passengers who have sent a request

but have used other services (i.e., competitors) are marked as

expired, and the driver's acceptance is not recorded. So, we

calibrated the simulator so that the distribution of expired requests

was somewhat mitigated.

TABLE 4.1 Distribution of historical data on passenger requests and

drivers

Category Count Ratio (%)

Number of vehicles 8,122 100

Number of requests 729,992 100

 Served request 239,024 32.7

 Failed request 490,968 67.3

 Cancellation before matching 57,908 7.9

 Cancellation after matching 32,414 4.4

 Expired 378,948 51.9

 Rejected 21,698 3

Figure 4.1 shows the distribution of passenger requests

aggregated into hours of the day. Total requests and served requests

account for about 30% with similar patterns. The hour of the day

appears as four peak times. It includes the morning peak (travel to

work) and the afternoon peak (travel to home) that appear in the

transportation system. The other two peak times occur during the

 25

day and late at night. It can be seen as leisure or business activities

in the former case. In the latter case, it can be seen as the demand

of passengers who want to return home quickly or the available public

transportation time has ended.

Figure 4.1 Distribution of total and served requests

 26

4.2. Experimental Setup

The area of Singapore is 719.9km2, slightly larger than Seoul

(605.2km2), the capital of Korea. In this work, we limited the spatial

range observed by agents because we focus on controlling matching

time intervals from a temporal perspective. Therefore, the target

area is the 10km × 10km grid (Figure 4.2) in Singapore's Northeast

region, where demand is relatively high. Previous work has confirmed

that the more spatial units are subdivided using smaller grids, the

better the performance and the significant increase in training time

(Qin et al., 2021). we used one grid but can subdivide the spatial units

or expand the action dimension from a spatial perspective in the

future.

The time range is between 8 am and 9 am on weekdays and is

provided to the environment by sampling 1,000 requests and drivers

per episode. Each matching time interval is set to 1s, and the

simulation starts at 8 am, lasts for 10 min (i.e., 600-time steps), and

is reinitialized. The average vehicle speed is set to 20 km/h. And the

maximum number of allocatable times for each request is limited to

5. During this time, the agent interacts with the environment and

learns the optimal policies.

Baseline algorithms use the previous dispatch system,

Instantaneous (Instant.) and Fixed Batch-Based (FBB) matching, as

mentioned in Figure 1.1. Instant applies the action at all matching time

intervals, the latter at fixed time intervals. The fixed time interval is

set to the optimal value with the highest matching success rate

through repeated experiments.

 27

Figure 4.2 Spatial distribution of requests and drivers in the target

area of Singapore

We also conducted experiments based on the spatial distribution

and density variation of supply and demand based on the synthetic

dataset. The environment is set to 100-time steps for a 4 km × 4

km grid. The generative patterns of demand and supply are uniform

in the temporal context, and experiments are conducted on the

uniform and Gaussian distributions in the spatial context. In the

 28

gaussian distribution, the mean and standard deviation of driver and

passenger locations is (2 km, 2 km) and (0.6 km, 0.6 km),

respectively. The arrival density (person/s) is also set from 0.5 to 2.

We assume that the maximum time passengers can tolerate

cancellations before and after matching follows a gaussian

distribution. Cancellations before matching have a mean and standard

deviation of 25s and 12s, respectively, and cancellations after

matching are 600s and 120s. Passengers cancel the request when

this threshold is exceeded.

The proposed methods and baselines are evaluated regarding

matching success rate (= 𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 / 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠) and

matching failure factors (CBM, CAM, EXPIRED). The passenger

waiting time is measured for the final served request. Approximation

networks used in DQN consist of two fully connected layers of 256

and 256 neurons. All experiments are measured as the average value

after 50 experiments to ensure the robustness of the results.

 29

4.3. Experiments on synthetic datasets

We observe the effects of changes in fixed matching time

intervals before applying the proposed method. Figure 4.3 shows the

difference in the matching success rate according to the matching

time interval. The experiment was conducted with passenger

requests and drivers in uniform distribution and arrival density of 1.0

(person/s).

The matching time interval varies from 1s to 18s at 2s intervals.

Smoothed curves increase performance as fixed matching time

intervals increase and then decrease (8-10s) at the highest matching

success rate. This represents the potential benefits of matching time

intervals mentioned in Figure 1.1, and too long matching time

intervals can instead reduce performance. These results suggest that

an appropriate matching time interval is required in specific scenarios.

Figure 4.3 The difference in matching success rate according to

matching time interval

 30

Figure 4.4 shows the detailed matching failure factors according

to the matching time interval. As the matching time interval increases,

passengers' cancellation before matching (CBM) increases and

expired requests (EXPIRED) decrease. We confirm the trade-off

between these two factors, and the matching success rate is

maximized at the matching time interval of 8-10s, which is the

crossing point (Figure 4.3). This can be understood in the same

context as previous studies (Qin et al., 2021) regarding passenger

waiting time. They discussed a trade-off in the relationship between

match waiting time and pick-up waiting time and noted that this tends

to be observed only in specific demand-supply ratios.

Cancellation after matching (CAM) is not controlled by the

proposed method but can be derived by other factors. For example,

if the matching time interval is short, it is likely to be assigned to

drivers at relatively long distances. This increases the pick-up

waiting time, which may cause the request to be canceled.

Figure 4.4 The trade-off between matching failure factors according

to the matching time interval

 31

Figure 4.5 shows the matching success rate for three methods

for the synthetic dataset. The spatial distribution of demand and

supply follows the uniform (Figure 4.5a) and gaussian (Figure 4.5b)

distribution, with the arrival density of passengers and drivers

increasing from 0.5 (person/s) to 2.0 (person/s). Through this, we

compared the performance of the strategies according to the

spatiotemporal distribution.

Adaptive matching based on the DQN agent shows the highest

matching success rate in most scenarios. When the demand and

supply generation patterns are uniform (Figure 4.5a), as the density

increases, each method does not show the advantages of other

strategies over the immediately matching strategy. FBB even

recorded lower performance than Instant at a density of 2.0

(person/s). This is because as the density increases, the number of

valid pairs between the driver and the passenger increases, and thus

the advantage of controlling the matching time interval decreases.

When the demand and supply generation pattern is gaussian

(Figure 4.5b), the overall matching success rate increases, but the

performance difference between strategies decreases. At the largest

density of 2.0 (person/s), FFB has the lowest performance. This is

because Gaussian has a higher effect even at the same density.

 32

(a)

(b)

Figure 4.5 Comparison of model performance for uniform (a) and

gaussian (b) distribution according to density variation

 33

4.4. Experiments on real datasets

We evaluated the performance of the proposed method based on

a simulator calibrated with real datasets. DQN agent interacts with

the environment and learns optimal policies based on epsilon greedy

exploration. The hyper-parameters used for learning were set to 0.9,

0.01, and 200 for the start, end, and decay weights, respectively. The

learning rate for approximation of the state-value function is set to

0.001, and the batch size for experience replay is set to 64.

Figure 4.6 shows the convergence curve for the normalized

reward (Figure 4.6a) and probability of taking action 1 (Figure 4.6b)

while the DQN agent is learning. Through the convergence curve, we

can confirm that the agent learns optimal policies while maximizing

cumulative rewards. Total action probability refers to the proportion

of the matching action of the agent in all matching time intervals. For

example, suppose each matching time interval is 1 second and

interacts with the environment for 100-time steps. In that case, it

can be understood that 50% action probability is an average of 2s,

which determines the matching time interval.

Therefore, DQN agent initially randomly takes action to about 0.5

and then decreases the proportion of total action probabilities to

about 0.1. And when the agent reaches a certain probability, it is

shown that it tries to optimize while maintaining the matching time

interval. It can be understood that the agent is learning the policy to

converge with the reward by controlling the matching time interval.

 34

(a)

(b)

Figure 4.6 Convergence curve (a) and probability of taking action 1

by DQN agent (b) while learning process

 35

TABLE 4.2 lists the results comparing the average performance

metrics for the three methods, including the proposed method. And

Figure 4.7 shows multiple experimental results for matching failure

factors. The adaptive matching strategy showed the highest

performance (60.1%) compared to other strategies, followed by FBB

(55.3%) and Instant. (50.6%). Interestingly, the distribution of

matching failure factors appears differently in the three strategies.

The instantaneous matching (Instant) strategy shows the lowest

cancellation before matching rate (CBM) compared to other

strategies (1.6%), but the expired request (EXPIRED) rate is the

highest (39.5%). It can be understood because of repeated allocation

to drivers with low acceptance probabilities while idle drivers are not

accumulated in the queue.

The fixed batch-based matching (FBB) strategy reduces the

expired request (EXPIRED) rate (16.5%) by combinatorial

optimization based on a fixed matching time interval. However, the

cancellation before matching (CBM) rate increases with match

waiting time (13.8%). As the matching requests increase, the

cancellation after matching (CAM) rate for the pick-up waiting time

also increases (14.4%). Although pick-up distance is an influential

variable in the driver's acceptance probability, cancellation increases

with the gap between passengers and drivers.

The proposed adaptive matching strategy method showed the

highest matching success rate. The expired request (EXPIRED) rate

was the lowest (12.5%). The objective function of the two-step

framework induces as many requests as possible to be matched with

the driver. The matching success rate is maximized from a long-term

perspective through the balance between matching failure factors.

Although the cancellation before matching (CBM) rate was higher

 36

than other strategies, the expired request rate was the lowest, and

the cancellation after matching (CAM) rate was lower than FBB.

TABLE 4.2 Comparison of average performances of different

strategies

Average performances Instant. FBB Adaptive

Success rate(%) 50.6 55.3 60.1

CBM (%) 1.6 13.8 12.4

CAM (%) 8.3 14.4 13.7

EXPIRED(%) 39.5 16.5 12.5

Match waiting time(s) 1.1 10.4 8.5

Pick-up waiting time(s) 175.2 196.0 224.2

Total waiting time(s) 176.3 206.4 232.7

Figure 4.7 Comparison of matching failure factors between different

strategies

 37

We interpreted how matching actions unfold under the learned

policy based on the method motivated by Qin et al. (2021). Figure

4.8 shows the action probability curves of DQN agents according to

the (Figure 4.8a) arrival density and (Figure 4.8b) queue of

passengers and drivers at each time step. In sampled datasets, the

arrival density for passenger requests increases, and drivers appear

relatively uniform. Passenger requests leave the queue due to

success or failure, and the idle drivers remain relatively long.

The action probability curve can be divided into three stages. The

first is the initial stage (0-200s), with fewer drivers and requests

accumulated in the queue. The agent maintains the matching time

interval of 5 to 10 s because the arrival density is relatively low. The

second is the intermediate stage (200-400s). As the arrival density

of the request increases to 1.7 (person/s) and the remaining idle

drivers are accumulated, the agent reduces the matching time interval

to 2 to 5s. Later, like instantaneous matching, the matching time

interval is reduced by 1 to 2s and maintained with arrival density.

The third is the final step (400–600s), maintaining instantaneous

matching and reducing the interval further by increasing the arrival

density of requests.

From this, we can intuitively confirm that DQN agents adaptively

control matching time intervals according to generation patterns and

queue. It suggests that the proposed method can increase the

matching success rate by using comparison strategies in a timely

manner.

 38

(a)

(b)

Figure 4.8 Observation of agent matching actions according to

learned policies with (a) density variation and (b) queue (motivated

by Qin et al., 2021)

 39

We analyzed the performance for each time step range in detail.

Figure 4.9 shows the matching success rate between strategies in

each time step range. The overall matching success rate was high in

the order of Adaptive, FBB, and Instant (TABLE 4.2), but there are

differences in each time step range. TABLE 4.3 lists details of the

matching failure factors. The values in the table refer to the

percentage of requests made in each time step range. We discuss

different perspectives depending on the time-step range.

The first is the range [0-200s] with potential benefits of

matching time intervals, where Adaptive has the highest matching

success rate. Adaptive has a lower percentage of expired requests

(EXPIRED) compared to FBB, but fewer cancellations before

matching (CBM) increase. This suggests that the proposed method

can achieve better results than trade-offs due to fixed matching time

intervals. In the second range (200-400s], the FBB achieves slightly

higher performance. The fixed matching time interval (FBB) appears

to be more stable because Adaptive needs to transform the matching

time interval. However, performance differences are not noticeable.

The third range (400-600s] is in which instantaneous matching is

required. Therefore, the advantage of the matching time interval is

not noticeable, so Instant outperforms FBB.

We discussed the advantages and disadvantages of each strategy

by separating the aggregated results into each time step range. This

allows us to understand under which conditions the proposed method

can have a high matching success rate.

 40

Figure 4.9 Success rate between strategies according to time step

TABLE 4.3 Comparison of results between our and other strategies

according to time step

Time step Method Served CBM CAM Expired Total

[0,200]

Instant. 49% 2% 5% 45%

300 FBB 53% 19% 10% 18%

Adaptive 60% 24% 10% 6%

(200,400]

Instant. 56% 3% 3% 38%

331 FBB 61% 14% 7% 18%

Adaptive 60% 4% 4% 33%

(400,600]

Instant. 56% 2% 4% 38%

369 FBB 54% 14% 12% 20%

Adaptive 60% 2% 6% 32%

 41

Chapter 5. Conclusion

In ride-hailing services, the supply-demand imbalance problem

causes inefficiency in terms of system operation. To address this,

recent studies are interested in determining matching time intervals

based on reinforcement learning in the temporal context. However,

matching failure factors according to passengers and drivers are not

considered. Passengers can cancel their requests before and after

matching as the waiting time increases, and drivers can accept

requests based on their preferences. These have a significant impact

on the order dispatching system.

This study aimed to determine adaptive matching time intervals

based on reinforcement learning, considering the matching failure

factors. To this end, we propose a two-step framework to maximize

the matching success rate. The reinforcement learning agent

determines the matching time interval in the first step. And then,

combinatorial optimization is performed based on the estimated

driver acceptance probability within the current matching time

interval.

The agent interacts with simulators developed based on real

datasets and learned optimal policies using Deep Q-Network. We

compared and evaluated the performance of the existing and

proposed strategies through experiments based on synthetic

datasets and real datasets. Finally, we discuss how agent controls

matching time intervals by providing demand and supply samples to

the environment and observing action probability based on learned

policies.

 42

This approach allows us to consider integrally the control of

matching time intervals in the temporal context and the matching

failure factors that have been overlooked in previous studies.

Therefore, we were able to discuss the performance as well as the

detailed matching failure factors. In the last section, we provided

insights through a visual analysis of agent policies that are difficult

to understand intuitively.

We first conducted experiments on the spatial distribution and

density variation of demand and supply generation patterns based on

the synthetic datasets in the grid network. The results showed that

the proposed method had the highest matching success rate in most

experimental settings. We also discussed the inevitability of

instantaneous matching as the arrival density increases.

Next, we observed the distribution of matching success rates and

matching failure factors on the results based on real datasets. Each

strategy showed a different distribution of cancellations or expired

requests. However, we confirm that the proposed method can control

these matching failure factors and maximize the matching success

rate.

Finally, we visualized and analyzed the agent's policy patterns.

We observe that the agent initially increases the matching time

interval and then decreases as the arrival density of the request

increases and the remaining idle drivers are accumulated. We have

identified the benefits of adaptively controlling matching time

intervals according to supply-demand patterns.

In this study, we limited the target area. Our experiments' short

time steps make it difficult to discuss macroscopic supply-demand

patterns. Therefore, we will expand our spatio-temporal context and

scope in the future. We will then design the experiment with

 43

quantitative supply-demand indicators and discuss generalized

performance. For spatial ranges, we can control the matching radius

(Yang et al., 2020) or extend to a framework for learning multi-

dimensional action policies based on grids in Singapore. We will also

be able to expand the dimension of the state variable and improve the

matching efficiency based on the taxi demand prediction model.

 44

Bibliography

Bimpikis, K., Candogan, O., Saban, D., 2019. Spatial pricing in ride-

sharing networks. Oper Res 67, 744–769.

https://doi.org/10.1287/opre.2018.1800

Chen, H., Jiao, Y., Qin, Z., Tang, X., Li, H., An, B., Zhu, H., Ye, J., 2019.

InBEDE: Integrating contextual bandit with td learning for joint

pricing and dispatch of ride-hailing platforms, in: Proceedings -

IEEE International Conference on Data Mining, ICDM. Institute

of Electrical and Electronics Engineers Inc., pp. 61–70.

https://doi.org/10.1109/ICDM.2019.00016

Karp, R.M., Vazirani, U. v, Vazirani, V. v, 1990. An Optimal Algorithm

for On-line Bipartite Matching.

Ke, J., Xiao, F., Yang, H., Ye, J., 2022. Learning to Delay in Ride-

Sourcing Systems: A Multi-Agent Deep Reinforcement Learning

Framework. IEEE Trans Knowl Data Eng 34, 2280–2292.

https://doi.org/10.1109/TKDE.2020.3006084

Lee, D.-H., Wang, H., Cheu, R.L., Teo, S.H., n.d. Taxi Dispatch

System Based on Current Demands and Real-Time Traffic

Conditions.

Li, M., Yang, Y., Wang, C., Qin, Z., Gong, Z., Wu, G., Jiao, Y., Wang, J.,

Ye, J., 2019. Efficient ridesharing order dispatching with mean

field multi-agent reinforcement learning, in: The Web

Conference 2019 - Proceedings of the World Wide Web

Conference, WWW 2019. Association for Computing Machinery,

Inc, pp. 983–994. https://doi.org/10.1145/3308558.3313433

Liu, Z., Li, J., Wu, K., 2022a. Context-Aware Taxi Dispatching at

 45

City-Scale Using Deep Reinforcement Learning. IEEE

Transactions on Intelligent Transportation Systems 23, 1996–

2009. https://doi.org/10.1109/TITS.2020.3030252

Liu, Z., Li, J., Wu, K., 2022b. Context-Aware Taxi Dispatching at

City-Scale Using Deep Reinforcement Learning. IEEE

Transactions on Intelligent Transportation Systems 23, 1996–

2009. https://doi.org/10.1109/TITS.2020.3030252

Mehta, A., Saberi, A., Vazirani, U., Vazirani, V., 2007. AdWords and

generalized online matching. Journal of the ACM 54.

https://doi.org/10.1145/1284320.1284321

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J.,

Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K.,

Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,

King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D., 2015.

Human-level control through deep reinforcement learning.

Nature 518, 529–533. https://doi.org/10.1038/nature14236

Özkan, E., Ward, A.R., 2020. Dynamic matching for real-time ride

sharing. Stochastic Systems 10, 29–70.

https://doi.org/10.1287/stsy.2019.0037

Qin, G., Luo, Q., Yin, Y., Sun, J., Ye, J., 2021a. Optimizing matching

time intervals for ride-hailing services using reinforcement

learning. Transp Res Part C Emerg Technol 129.

https://doi.org/10.1016/j.trc.2021.103239

Qin, G., Luo, Q., Yin, Y., Sun, J., Ye, J., 2021b. Optimizing matching

time intervals for ride-hailing services using reinforcement

learning. Transp Res Part C Emerg Technol 129.

https://doi.org/10.1016/j.trc.2021.103239

Qin, Z., Tang, X., Jiao, Y., Zhang, F., Xu, Z., Zhu, H., Ye, J., 2020.

Ride-hailing order dispatching at DiDi via reinforcement learning.

 46

Interfaces (Providence) 50, 272–286.

https://doi.org/10.1287/INTE.2020.1047

Tong, Y., Chen, Y., Zhou, Z., Chen, L., Wang, J., Yang, Q., Ye, J., Lv,

W., 2017. The Simpler the Better: A unified approach to

predicting original taxi demands based on large-scale online

platforms, in: Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining.

Association for Computing Machinery, pp. 1653–1662.

https://doi.org/10.1145/3097983.3098018

Tong, Y., She, J., Ding, B., Wang, L., Chen, L., 2016. Online mobile

Micro-Task Allocation in spatial crowdsourcing, in: 2016 IEEE

32nd International Conference on Data Engineering, ICDE 2016.

Institute of Electrical and Electronics Engineers Inc., pp. 49–60.

https://doi.org/10.1109/ICDE.2016.7498228

Wang, Y., Tong, Y., Long, C., Xu, P., Xu, K., Lv, W., 2019. Adaptive

dynamic bipartite graph matching: A reinforcement learning

approach, in: Proceedings - International Conference on Data

Engineering. IEEE Computer Society, pp. 1478–1489.

https://doi.org/10.1109/ICDE.2019.00133

Wang, Z., Qin, Z., Tang, X., Ye, J., Zhu, H., 2018. Deep Reinforcement

Learning with Knowledge Transfer for Online Rides Order

Dispatching, in: Proceedings - IEEE International Conference on

Data Mining, ICDM. Institute of Electrical and Electronics

Engineers Inc., pp. 617–626.

https://doi.org/10.1109/ICDM.2018.00077

Watkins, C.J.C.H., Dayan, P., 1992. Q-Learning.

Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., Liu, C., Bian, W., Ye,

J., 2018. Large-scale order dispatch in on-demand ride-hailing

platforms: A learning and planning approach, in: Proceedings of

 47

the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. Association for Computing

Machinery, pp. 905–913.

https://doi.org/10.1145/3219819.3219824

Yan, C., Zhu, H., Korolko, N., Woodard, D., 2020. Dynamic pricing and

matching in ride-hailing platforms. Naval Research Logistics 67,

705–724. https://doi.org/10.1002/nav.21872

Yang, H., Qin, X., Ke, J., Ye, J., 2020. Optimizing matching time

interval and matching radius in on-demand ride-sourcing

markets. Transportation Research Part B: Methodological 131,

84–105. https://doi.org/10.1016/j.trb.2019.11.005

Yang, H., Wong, S.C., Wong, K.I., n.d. Demand-supply equilibrium of

taxi services in a network under competition and regulation.

Zhang, L., Hu, T., Min, Y., Wu, G., Zhang, J., Feng, P., Gong, P., Ye,

J., 2017. A taxi order dispatch model based on combinatorial

optimization, in: Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining.

Association for Computing Machinery, pp. 2151–2159.

https://doi.org/10.1145/3097983.3098138

Zhao, K., Khryashchev, D., Freire, J., Silva, C., Vo, H., 2016.

Predicting taxi demand at high spatial resolution: Approaching

the limit of predictability, in: Proceedings - 2016 IEEE

International Conference on Big Data, Big Data 2016. Institute of

Electrical and Electronics Engineers Inc., pp. 833–842.

https://doi.org/10.1109/BigData.2016.7840676

Oda, Takuma, and Carlee Joe-Wong. "MOVI: A model-free approach

to dynamic fleet management." IEEE INFOCOM 2018-IEEE

Conference on Computer Communications. IEEE, 2018.

Sutton, Richard S., and Andrew G. Barto. "Introduction to

 48

reinforcement learning." (1998): 551283.

Puterman, Martin L. Markov decision processes: discrete stochastic

dynamic programming. John Wiley & Sons, 2014.

Dijkstra, Edsger W. "A note on two problems in connexion with

graphs." Edsger Wybe Dijkstra: His Life, Work, and Legacy.

2022. 287-290.

Hosmer Jr, David W., Stanley Lemeshow, and Rodney X. Sturdivant.

Applied logistic regression. Vol. 398. John Wiley & Sons, 2013.

OpenStreetMap, n.d. OpenStreetMap [WWW Document]. URL

https://www.openstreetmap.org/ (accessed 5.1.22).

TADA, n.d. TADA[WWW Document]. URL https://tada.global/

(accessed 5.1.22).

 49

 50

Abstract

승차 공유 서비스들은 승객과 운전자들을 효율적으로 연결함으로써 일상

생활의 이동에 많은 도움을 주고 있다. 이러한 서비스들은 수요와

공급의 불균형 문제로 인해 시스템 운영 측면에서 비효율적인 상황에

직면한다. 이를 위해 일정한 매칭 시간 간격 동안 승객의 요청과 공차

통행 중인 운전자들을 모아 일괄적으로 매칭하는 전략을 주로 사용한다.

최근에는 수요와 공급의 동적 패턴을 효과적으로 반영하기 위한 적응형

매칭 시간 간격에 대한 연구들이 있었으나, 승객의 요청 취소와 운전자

거부와 같은 매칭 실패 요인들은 간과되었다. 본 연구의 목표는 매칭

실패 요인이 존재하는 상황에서 강화학습 기반의 적응형 매칭 시간

간격을 통해 매칭 성공률을 최대화하는 것이다. 연구 방법은 2단계

프레임워크로 구성된다. 먼저 DQN (Deep Q-Network) 기반의

강화학습 에이전트는 각 매칭 시간 간격마다 배차 행동(Dispatch

action)을 결정하며, 이후에는 운전자의 수락확률을 기반으로 한

조합최적화가 수행된다. 실제 데이터셋을 기반으로 한 실험을 통해 이전

전략들과 성능을 비교하고 매칭 실패 요인들에 대한 분석을 수행한다.

실험 결과, 제안된 방법은 대부분의 실험에서 가장 높은 매칭 성공률을

보였다. 구체적으로는 운전자의 미 수락에 의한 만료 요청의 비율을

감소시키며, 승객의 요청 취소 비율을 효율적으로 제어하는 것을

확인했다. 또한 학습된 에이전트의 정책 해석과 집계된 결과의 세분화를

기반으로 추가 분석이 수행되었다. 이러한 접근 방식은 매칭 성공률과

세부적인 매칭 실패 요인들에 대한 논의를 통해 기존 연구에서

간과되었던 통찰력을 제공한다.

Keyword : Ride-Hailing Service, Reinforcement Learning, Deep Q-

Network (DQN), Combinatorial Optimization, Matching Failure

Student Number : 2021-21896

	Chapter 1. Introduction
	Chapter 2. Literature Review
	Chapter 3. Methodology
	3.1. Problem Statement
	3.2. MDP formulation
	3.3. Simulation Framework
	3.4. Deep Q-Networks (DQN)

	Chapter 4. Results
	4.1. Data Description
	4.2. Experimental Setup
	4.3. Experiments on synthetic datasets
	4.4. Experiments on real datasets

	Chapter 5. Conclusion
	Bibliography
	Abstract in Korean

<startpage>8
Chapter 1. Introduction 1
Chapter 2. Literature Review 7
Chapter 3. Methodology 11
 3.1. Problem Statement 11
 3.2. MDP formulation 13
 3.3. Simulation Framework 15
 3.4. Deep Q-Networks (DQN) 21
Chapter 4. Results 23
 4.1. Data Description 23
 4.2. Experimental Setup 26
 4.3. Experiments on synthetic datasets 29
 4.4. Experiments on real datasets 33
Chapter 5. Conclusion 41
Bibliography 44
Abstract in Korean 50
</body>

