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Abstract 
 

Ride-hailing services helped daily travel by efficiently matching 

passengers and drivers. These services face inefficiency in system 

operations due to supply and demand imbalances. A widely adopted 

strategy is fixed batch-based matching, which accumulates requests 

and idle drivers and matches them in batches. Recent studies have 

proposed adaptive matching time intervals to consider dynamic 

supply and demand patterns. However, matching failure factors such 

as passenger request cancellation and driver acceptance are not 

considered. This study aims to control adaptive matching time 

intervals based on reinforcement learning considering matching 

failure factors. To this end, we propose a two-step framework to 

maximize the matching success rate. First, an agent based on Deep 

Q-Network (DQN) determines the matching time interval, and then 

combinatorial optimization is performed based on the driver's 

acceptance probability. We conduct experiments on various supply-

demand patterns based on synthetic and real datasets and compare 

performance with previous strategies. We confirmed that the 

proposed strategy reduces the proportion of expired requests and 

achieves the highest matching success rate. We also discussed the 

trade-off between fixed matching time intervals and matching 

success rates and interpreted agent policies. Our approach provides 

insight by discussing matching failure factors, which cannot be 

captured with performance alone. 

 
 

Keyword : Ride-Hailing Service, Reinforcement Learning, Deep Q-

Network (DQN), Combinatorial Optimization, Matching Failure 
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Chapter 1. Introduction 

 

 

Ride-hailing services such as Uber, Lyft, and KaKaoT (in Korea) 

provide a platform that allows passengers to use taxis at any time 

and place by sending requests for their departure and destination. 

Unlike the traditional taxi system, where passengers had to catch 

taxis on the street, these services help daily travel as intermediaries 

that pair passenger requests with nearby idle drivers in real-time. 

However, one of the operational challenges facing these services 

is the imbalance between supply and demand. There may be gaps 

between supply and demand, such as no idle driver available at peak 

times when demand increases or, conversely, a large supply at a 

non-peak time when demand decreases (Yang et al., 2002). To this 

end, operators consider various strategies to maximize system 

revenue (e.g., matching success rates) or to improve passengers' 

degree of satisfaction by minimizing passenger waiting time (Qin et 

al., 2021a): taxi demand prediction (Tong et al., 2017; Zhao et al., 

2016), Vehicle repositioning (Liu et al., 2022; Oda et al., 2018;), 

Order dispatching (Li et al., 2019; Xu et al., 2018), Dynamic pricing 

(Bimpikis et al., 2019; Chen et al., 2019), etc. 

A widely adopted strategy in the Ride-hailing service is order 

dispatching, a method in which a centralized system searches for the 

driver and sends the request to the appropriate driver when it 

receives a passenger request. Previous studies use terms such as 

request dispatching or taxi dispatching, but this depends on the 

assigned object. This study uses order dispatching in terms of 

assigning passenger requests to vehicles.  
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Figure 1.1 Potential benefits of matching time intervals in order 

dispatching 

 

Figure 1.1 shows the potential benefits of controlling matching 

time intervals when two idle taxi drivers and two passenger requests 

arrive in order. Traditional dispatch systems have adopted strategies 

that immediately assign passengers to nearby drivers upon request 

(Lee et al., n.d.) (Instantaneous matching). In this case, the first 

passenger will match the nearby idle driver, but the second 

passenger will match the relatively farther away driver. This strategy 

is inefficient because it does not consider the system's perspective. 

Considering these limitations, most studies use batch processing 

based on fixed time intervals (Fixed Batch-Based matching). This 

strategy improves overall efficiency by accumulating requests and 
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drivers in the queue during matching time intervals and optimizing 

objective functions such as the passenger's total waiting time. In this 

case, the first passenger will have to wait a little longer, but all 

passengers will board the taxi within a reasonable time, reducing the 

total waiting time. Furthermore, to consider dynamic supply-demand 

patterns, there have recently been attempts to determine adaptive 

matching time intervals based on Deep Reinforcement Learning (Ke 

et al., 2022; Qin et al., 2021a; Wang et al., 2019). 

The critical factor to consider in order dispatching is matching 

failure factors based on passenger or driver behavior patterns. Figure 

1.2 shows the matching failure factors in the ride-hailing service 

from the passenger's new request to the destination. During this 

process, passengers can cancel requests based on their behavior, and 

drivers can reject requests they do not prefer. For example, 

passengers may cancel requests if waiting time (e.g., match waiting 

time and pick-up waiting time) exceeds the tolerable range before 

or after matching. The driver may also accept or reject according to 

spatiotemporal characteristics such as the origin/destination context 

of the assigned request. Therefore, we must consider these matching 

failure factors when controlling the matching time interval. 

These matching failure factors are important in controlling the 

matching time intervals. However, many studies assume that the 

driver always accepts requests assigned by the platform operator or 

do not consider passengers' cancellation. 
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Figure 1.2 Matching failure factors between passenger requests and drivers in ride-hailing service 
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Considering these limitations, Zhang et al. (2019) proposed a 

dispatch system that estimates the driver's acceptance probability 

through a data-based approach and performs optimal matching based 

on it. This affects direct operational efficiency gains to maximize 

matching success rates. This approach can also improve the accuracy 

of the estimated acceptance probability as data accumulates in the 

future. We aim to extend the study of Zhang et al. (2019) by 

controlling adaptive matching time intervals. 

This study focuses on determining adaptive matching time 

intervals based on reinforcement learning, considering the matching 

failure factors according to passengers and drivers. To this end, we 

construct a two-step framework to maximize the matching success 

rate. 1) The reinforcement learning agent determines the matching 

time intervals, and 2) performs combinatorial optimization based on 

the driver's acceptance probability at the current matching time 

interval. 

In the first step, the platform operator is considered an agent, 

and the dynamics of order dispatching are modeled as the Markov 

decision process (MDP). The agent decides whether to match or hold 

each matching time interval. You can control the time interval based 

on the state variables that the agent observes. Once the agent has 

decided to match, proceed to the second step, and perform 

combinatorial optimization in the current queue to assign the driver a 

passenger request. This is formulated to maximize the average 

driver's acceptance probability. 

The key contributions of this study are as follows: (a) proposal 

of a two-step framework based on reinforcement learning and 

combinatorial optimization; (b) Development of calibrated simulators 

using real datasets and validation strategies with various 
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experiments; (c) Providing analytical insight by visualizing optimal 

policies of the agent. 

The remainder of this paper is organized as follows. First, we 

review previous studies to control matching time intervals or how to 

match passengers and drivers. And we formulate the problem of this 

study and describe reinforcement learning algorithms to solve them. 

The overall simulation framework and its components are also 

described in detail. The next section describes the data and 

experimental settings. Then, a detailed analysis of the results is 

provided. Lastly, findings are discussed along with brief concluding 

remarks and notes on future research plans. 
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Chapter 2. Literature Review 

 

 

Previous studies can be classified into two categories: when to 

match in the temporal context and how to pair drivers and passengers 

in the current time interval. They focus on one category, and the 

other adopts the existing method. In this section, the former was 

referred to as online matching and order dispatching as commonly 

used terms. 

Online matching is formulated as an online bipartite matching 

problem. It is related to the optimal matching of bipartite graphs in 

situations where one or two groups arrive online (Karp et al., 1990; 

Mehta et al., 2007). It is used in various fields, such as crowdsourcing 

(Tong et al., 2016) between work and workers, advertising exposure 

strategies in search engines, and passenger requests and drivers 

(this study). 

Previous studies have tried to improve performance by 

dynamically controlling spatio-temporal variables such as matching 

time intervals or radius (Özkan and Ward, 2020; Yan et al., 2020; 

Yang et al., 2020). 

Özkan and Ward (2020) developed a dynamic matching strategy 

to maximize the cumulative matching rate. Based on the continuous 

linear program (CLP), they proposed a matching policy that describes 

passenger and driver arrival rates and waiting time features. Yang et 

al. (2020) jointly optimized two spatio-temporal variables, matching 

time interval and matching radius, and measured system performance 

such as matching rate, passenger waiting time, and pick-up waiting 

time. They also compared and validated the performance according 
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to various supply-demand scenarios. Yan et al. (2020) proposed 

joint pricing and matching optimization benefits. They confirmed that 

this strategy could alleviate the price volatility problem using the 

dynamic pricing strategy as a single model. 

An approach based on these parameters requires unrealistic 

assumptions for each parameter (Qin et al., 2021a), and it is difficult 

to reflect the stochastic characteristics of the real-world 

environment. It is impossible to mathematically formulate the 

dynamics of supply-demand patterns in a complex ride-hailing 

service market (Ke et al., 2022). 

Recently, researchers have attempted to determine adaptive 

matching time intervals (Ke et al., 2022; Qin et al., 2021b; Wang et 

al., 2019). Reinforcement learning is a sequential decision that 

affects the current action. This is a powerful way to learn and 

experience optimal policies (Sutton and Bart 1998). 

Wang et al. (2019) modeled the system from the perspective of 

a platform operator. They configure the currently unmatched 

bipartite graph as a state and decide whether to hold or match with 

action. The reward is the sum of the weights on the graph and is 

determined by the total revenue of each driver in the actual 

experiment. Ke et al. (2020) constructed a multi-agent framework 

based on individual passenger requests. They used Deep Q-

Networks (DQN), an Actor-Critic model based on deep neural 

networks, and designed reward functions focusing on passenger 

waiting time. Qin et al. (2021) determine adaptive matching time 

intervals from the perspective of a single system. They also focused 

on passenger waiting time and improved the reward sparsity problem, 

which occurs only when the agent decides the action through the 

decision of the reward function. 
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Previous studies on order dispatching focus on how to pair 

drivers and passengers in the current time step. 

As mentioned in the previous section, the traditional dispatch 

system has instantaneous matching or fixed batch-based matching 

strategy for passenger requests. In the latter case, it is formulated 

as a linear assignment problem (LAP), which optimizes the objective 

function, such as the pick-up waiting time, for passenger requests 

and drivers. This approach focuses only on the distance between 

passengers and drivers, so the overall matching success rate is not 

directly considered. 

Zhang et al. (2017) formulated a combinatorial optimization 

algorithm based on the driver's acceptance probability to maximize 

the matching success rate. Estimating the driver's acceptance 

probability is modeled as a binary classification problem, and 

classification models such as logistic regression and gradient-

boosted decision tree (GBDT) are available. Based on this, they 

formulate it as a combinatorial optimization problem to maximize the 

average acceptance probability in the current time step. They derive 

an approximation solution using the hill climbing algorithm. 

As a result, it shows better results from the perspective of 

matching success rate and passenger waiting time than the traditional 

two strategies described above. Since passenger waiting time is also 

reflected in the driver's acceptance probability model, it can be 

confirmed that performance is improved from this point of view. 

Xu et al. (2018) are divided into learning and planning steps, and 

in the learning step, each driver is modeled as an agent, and the 

state-value function is learned in advance based on historical data. 

The planning step updates the weights of the bipartite graphs to be 

currently allocated based on the value functions learned in the 
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previous step. Finally, the final allocation is achieved through 

combinatorial optimization that maximizes the sum of weights. Li et 

al. (2019) used multi-agent reinforcement learning to maximize 

accumulated driver income (ADI). They spread the decision-making 

of individual drivers globally based on mean field approximation. 

In addition, there have been applied studies that have either 

relocated vehicles based on demand prediction models (Liu et al., 

2022b), or developed models that can be generalized at other times 

and in other cities based on transfer learning (Wang et al., 2018). 

In the above studies on online matching and order dispatching, 

the former lacks consideration of the matching failure factors to be 

considered in ride-hailing services, such as passenger request 

cancellation, driver acceptance, and rejection. In the latter case, most 

studies focus on the performance of the current time step so that it 

may be suboptimal from a future perspective. Reinforcement 

learning-based studies consider these limitations, but the factors of 

matching failure are not considered. By considering each limit, we 

maximize the matching success rate by determining the adaptive 

matching time interval based on reinforcement learning by 

considering the matching failure factors. 
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Chapter 3. Methodology 

 

 

3.1. Problem Statement 

 

 

This section describes the background knowledge of this study 

and the combinatorial optimization problem for controlling adaptive 

matching time intervals. The proposed method in this work is a two-

stage framework consisting of determining matching time intervals 

and solving combinatorial optimizations. Figure 3.1 describes how the 

proposed method works when passenger requests and idle driver 

information are sent to the platform. 

The horizontal axis is a queue monitored by the platform, where 

passengers' requests and idle drivers come online. The 

reinforcement learning agent corresponding to the operator observes 

the queue and decides whether to dispatch. Once the agent decides 

to dispatch, it performs combinatorial optimization between 

passenger requests and idle drivers within the current matching time 

interval. Here, the matching failure factors mentioned in Figure 1.2 

may cause the passenger to cancel the request. Depending on the 

driver's acceptance, it may re-enter the queue or eventually expire. 

Expired requests occur when the number of re-enters to the queue 

reaches the threshold (discussed in Section 4.1). We implement 

these processes repeatedly, and the agent learns optimal policies to 

maximize the matching success rate. That is, the matching time 

interval is controlled adaptively. 
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Figure 3.1 The process of order dispatching based on the proposed strategy (Source: Own elaboration based on Qin 

et al., 2020)  
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3.2. MDP formulation 

 

 

In this section, we model sequential decision problems that 

control matching time intervals as a Markov Decision Process (MDP) 

(Puterman 2014), which includes an agent, a set of states and actions, 

state transitions, and rewards. 

The agent is considered a platform operator (e.g., single agent 

setting), and each time step 𝑡 ∈ {1,2, … , 𝑇}  repeatedly performs a 

two-step framework. The first step is to decide whether to keep or 

match drivers with passenger requests accumulated in the queue at 

a given time step. The second step is to perform combinatorial 

optimization if the agent decides to match the previous step. 

At every time step 𝑡, the agent observes the states associated 

with the number of idle drivers and requests from passengers in the 

queue. The set of states is represented by 𝑆(𝑡) = {𝑁𝑃(𝑡 − 1), 𝑁𝐷(𝑡 −

1),  𝜆𝑝(𝑡), 𝜆𝐷(𝑡)}. 𝑁𝑃(𝑡 − 1) and 𝑁𝐷(𝑡 − 1) are the number of passenger 

requests and idle drivers present in the queue at the previous time 

step 𝑡 − 1, respectively, and 𝜆𝑝(𝑡) and 𝜆𝐷(𝑡) are the number of new 

passenger requests and idle drivers in the queue at the current time 

step. 

The set of actions taken by the agent is represented by 𝐴(𝑡) =

{0,1}. 𝐴(𝑡) = 0 means to suspend the matching decision and move to 

the next time step 𝑡 + 1, and 𝐴(𝑡) = 1 moves to the second step to 

perform combinatorial optimization. 

The dynamics of the environment as it moves from time step 𝑡 

to the next time step 𝑡 + 1  are represented by state transition 

probability 𝑃(𝑆(𝑡 + 1) | 𝑆(𝑡),  𝐴(𝑡)). This means the probability that the 

agent and the environment interact to update from state 𝑆(𝑡) of time 

step 𝑡 to state 𝑆(𝑡 + 1) of next time step 𝑡 + 1 by action 𝐴(𝑡). 
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The first is that after the agent has made a matching decision 

𝐴(𝑡) = 1, the final pick-up may be completed, or passengers may 

cancel the request without waiting for the matched driver. The 

second is that the agent may hold the decision 𝐴(𝑡) = 0 and remain 

in the queue, or passengers may cancel the request due to a longer 

wait before matching. If the last attempt was made to match, but the 

driver refused or did not attempt to match, re-enter the queue. New 

drivers and requests are also queued every time step. Detailed 

dynamics are discussed in the next section. 

The reward given when an agent takes action is expressed as 

𝑅(𝑆(𝑡), 𝐴(𝑡)) and is set to the number of requests finally served in the 

current time step. Therefore, the agent receives rewards after 

making matching decisions and otherwise receives zero rewards. 

This is related to the objective function for combinatorial optimization 

in the second stage leading to the maximum matching success rate. 

Based on the reward function, the agent learns the optimal policy 𝜋 

to maximize cumulative rewards. This is expressed as Equation (3.1). 

 

𝑉𝜋(𝑆(𝑡)) = 𝐸𝜋 [∑ 𝛾𝑡

∞

𝑡=0

𝑅(𝑆(𝑡), 𝐴(𝑡))] (3.1) 

 

𝑉𝜋(𝑆(𝑡)) is the expected value of the cumulative reward, and 𝛾 

represents the discount factor. This reflects the weight between the 

long-term and the current reward. 
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3.3. Simulation Framework 

 

 

This section describes the ride-hailing simulator and system 

architecture that implements the dynamics mentioned in Figure 3.1. 

The simulator induces the agent to learn the optimal policy by 

interacting with the environment that emulates the ride-hailing 

dynamics based on taxi data. 

Figure 3.2 shows the environment, reinforcement learning agent, 

and three main modules. The environment initializes the spatial map 

information, the pool to store the passenger's request and driver, and 

the time. It then repeats the following steps during each time interval: 

Generate new passenger requests and idle driver information, store 

them in the pool, and extract candidates for matching with queues. 

Then apply the action according to the policy of the reinforcement 

learning agent (dispatch or skip). In the former case, combinatorial 

optimization is performed by the Order dispatcher module, and in the 

latter, it re-enters the queue. Finally, update passenger requests and 

driver status and provide the agent with updated status and rewards. 

The environment repeats during consecutive time steps and 

considers it an episode. When one episode ends, the simulator is 

reinitialized. 
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Figure 3.2 The ride-hailing simulator framework  
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The simulator contains three main modules. ETA (Estimated 

Time of Arrival) module maps location information based on a road 

network and estimated arrival times. Order dispatcher module 

performs combinatorial optimization based on the driver's acceptance 

probability. AP (Acceptance Probability) module provides an 

estimated driver's acceptance probability based on historical data. 

ETA module contains road network and shortest path information. 

We acquired Singapore's road network of 23,805 nodes and 35,649 

edges from OpenStreetMap (OpenStreetMap, n.d.). Passenger 

requests and driver GPS information are mapped to the nearest node, 

and the shortest path between nodes is calculated based on the 

Dijkstra algorithm (Dijkstra 1958). Through this, we can provide the 

environment with the expected pick-up waiting time and the travel 

time to the destination. 

Order dispatcher module is based on the method proposed by 

Zhang et al. (2017). They formulated it as a combinatorial 

optimization problem to maximize the driver's acceptance probability, 

which affects the direct matching success rate (Zhang et al., 2017). 

At each matching time interval, the objective function and constraints 

are formulated as shown in Equation (3.2), given the requests of 𝑁 

passengers (𝑖 = 1,2, … , 𝑁) and 𝑀 idle drivers (𝑗 = 1,2, … , 𝑀). 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 
1

𝑁
[∑ (1 − ∏(1 − 𝑝𝑖𝑗)𝑎𝑖𝑗

𝑀

𝑗=1

)

𝑁

𝑖=1

] 

(3.2) 𝑠. 𝑡. ∑ 𝑎𝑖𝑗

𝑛

𝑖=1

≤ 1,   ∀𝑗 

 𝑎𝑖𝑗 ∈ {0,1} 

 0 ≤ 𝑖 ≤ 𝑁,  0 ≤ 𝑗 ≤ 𝑀  
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𝑝𝑖𝑗  represents the driver's acceptance probability. 𝐴𝑖𝑗  is a 

dummy variable to optimize and is defined as follows: 

 

𝑎𝑖𝑗 = {
1, 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑖 𝑖𝑠 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑑 𝑡𝑜 𝑑𝑟𝑖𝑣𝑒𝑟 𝑗,

0, 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑑 𝑡𝑜 𝑑𝑟𝑖𝑣𝑒𝑟 𝑗
 (3.3) 

 

The order dispatcher module performs combinatorial 

optimization by Equation (3.2) whenever the agent dispatches. It 

provides an approximate solution using the Hill-Climbing method, a 

heuristic algorithm. 

AP module provides the driver's acceptance probability 𝑝𝑖𝑗 

mentioned in Equation (3.2). The driver's acceptance probability is a 

binary classification problem of whether the driver has accepted a 

particular request and can be estimated based on historical data 

(Zhang et al., 2017). We used logistic regression (Hosmer et al., 

2013), which is widely adopted for these problems. The acceptance 

probability 𝑝𝑖𝑗  of driver 𝑗 for passenger 𝑖 is defined as shown in 

Equation (3.4). 

 

𝑝𝑖𝑗 = 𝑝(𝑦 = 1|𝑝𝑖, 𝑑𝑗) =
1

exp (−𝑤𝑇𝑥𝑖𝑗)
 (3.4) 

 

The logistic regression is expressed as a sigmoid function 

between 0 and 1. It is derived from the logit transformation of the 

target in linear regression, where 𝑥𝑖𝑗  is the feature vector 

representing passenger 𝑖 and driver 𝑗. We obtained a model with 

approximately 60% accuracy based on pick-up distance and 

temporal context. The distribution of acceptance probabilities varies 

with temporal characteristics and decreases with longer pick-up 
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distances. In the future, we can improve accuracy and provide 

sophisticated acceptance probabilities based on more feature vectors 

and accumulated data. 

Passenger requests and drivers may correspond to one of four 

and three statuses at each matching time interval. TABLE 3.1 lists 

the types and descriptions of each status. Requests and drivers first 

entered the queue are "WAIT" and "IDLE," respectively. Depending 

on the interaction of the environment, the state changes depending 

on the several events described in Figure 3.1. 

Passengers can cancel before matching (CBM) according to the 

match waiting time or cancel after matching (CAM) according to the 

pick-up waiting time. These passengers leave the queue. Regardless 

of passenger cancellation, there may be expired requests (EXPIRED) 

due to drivers not continuing to accept the request. This can be set 

as a threshold for the number of attempts according to the platform 

operating rules, and this is limited to four in this study. If they accept 

the assigned request, drivers will switch to the "PICKUP" status. If 

the request is canceled, the driver will switch to the "IDLE" status. If 

not, the driver will switch to the "HIRED" status and leave the queue. 
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TABLE 3.1 Description of passenger requests and driver status in 

the environmental simulator 

 

Status Description 

1. Passenger 

 SERVED Completed request 

  WAIT Waiting for matching in the queue 

  CBM Cancellation before matching 

  CAM Cancellation after matching 

  EXPIRED 
Expired due to no driver accepting regardless of 

passenger cancellation 

2. Driver 

  IDLE Waiting for matching in the queue 

  PICKUP Picking up matched passengers 

  HIRED Traveling to destination with passengers 
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3.4. Deep Q-Networks (DQN) 

 

 

This section describes Deep Q-Networks (DQN) (Mnih et al., 

2015), a reinforcement learning algorithm for optimal policies that 

determine matching time intervals. 

Q-learning (Watkins and Dayan, 1992) is the base model of DQN. 

It stores the Q-value according to state and action in the Q-table 

and updates this table repeatedly while interacting with the 

environment. In this way, the Q-function that returns the current Q-

value is approximated. These mechanisms are formulated as 

Equation (3.5) based on the MDP modeled in the previous section. 

 

𝑄(𝑠(𝑡), 𝑎(𝑡) ← 𝑄(𝑠(𝑡), 𝑎(𝑡))

+ 𝛼[𝑅(𝑡) + 𝛾 max Q(s(t + 1), a(t + 1))

− Q(s(t), a(t)] 

(3.5) 

 

𝛼 represents the learning rate for each episode, and 𝛾 is the 

discount factor. The Q-value updates it according to the current 

state and action and the maximum Q-value that can be received in 

the next state. 

DQN improves the problem of storing too large a table size as 

dimensions increases in q-learning. To approximate the Q-function, 

it uses neural networks to optimize the loss function based on the 

difference between the predicted value of the Q-network and the 

target Q-value. The loss function is given in Equation (3.6), where 

𝑦 represents the target Q-value. 
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𝐿(𝜃) = 𝐸[(𝑄(𝑠(𝑡), 𝑎(𝑡)|𝜃) − 𝑦)2] (3.6) 

 

Additionally, researchers structured the predicted values and 

target Q-values into separate networks, improving the problem of 

non-convergence due to fluctuations in target Q-values. The 

estimation parameter of Equation (3.7) and Equation (3.6) are set 

differently. In the terminal state, the current compensation is 

received. 

 

𝑦 = {
𝑅(𝑡)

𝑅(𝑡) + 𝛾max (𝑄(𝑠(𝑡 + 1), 𝑎(𝑡 + 1)|𝜃−)
 (3.7) 

 

DQN increases efficiency through deep neural networks, and 

experience replay algorithms using memory buffers are added. It 

accumulates data in memory buffers instead of using it directly in 

neural networks and learns with minibatch through random sampling. 

This approach improves instability due to nonlinear functions and 

solves sample correlation problems. 
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Chapter 4. Results 

 

 

4.1. Data Description 

 

 

We experimented using the real dataset provided by MVL, which 

operates the TADA service (TADA, n.d.) in Singapore. The dataset 

was collected over two months, from 2020-11-01 to 2020-12-31, 

and consists of three tables: The passenger's request information, 

the driver's GPS record, and the list of requests sent to the driver. 

The passenger's request information includes the request ID, 

date, origin and destination latitude and longitude, and the final status 

identifier (completion, cancellation, expiration, etc.). The driver's 

GPS records included the driver's ID, date and time, vehicle latitude 

and longitude, and status identifiers (during idle or hired) and were 

recorded every 10 minutes. Finally, a list of requests sent to the 

driver also called ping information, is an N × M dimension table for 

M vehicles and N requests. Through this, we combined the request 

and driver GPS tables to extract information about the matching 

failure factors. And we analyzed the distribution of cancellations 

before and after matching according to the match waiting time and 

pick-up waiting time of passengers. It was also used to estimate the 

driver's acceptance probability based on the ping information. 

The distribution of passenger requests and drivers extracted 

from the dataset is listed in TABLE 4.1. There were about 8,000 

vehicles and about 700,000 requests. According to the status code 

classified based on the final status identifier, the requests of the 

finally serviced passengers were 32.7%. Among the requests that 
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failed to match, the expired request was the highest (51.9%), and the 

cancellation before matching was about 8%. Expired requests are 

expected to be the highest because the dataset only includes 

matching TADA drivers. That is, passengers who have sent a request 

but have used other services (i.e., competitors) are marked as 

expired, and the driver's acceptance is not recorded. So, we 

calibrated the simulator so that the distribution of expired requests 

was somewhat mitigated. 

 

TABLE 4.1 Distribution of historical data on passenger requests and 

drivers 

 

Category Count Ratio (%) 

Number of vehicles 8,122 100 

Number of requests 729,992 100 

 Served request 239,024 32.7 

 Failed request 490,968 67.3 

  Cancellation before matching 57,908 7.9 

  Cancellation after matching 32,414 4.4 

  Expired 378,948 51.9 

  Rejected 21,698 3 

 

Figure 4.1 shows the distribution of passenger requests 

aggregated into hours of the day. Total requests and served requests 

account for about 30% with similar patterns. The hour of the day 

appears as four peak times. It includes the morning peak (travel to 

work) and the afternoon peak (travel to home) that appear in the 

transportation system. The other two peak times occur during the 
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day and late at night. It can be seen as leisure or business activities 

in the former case. In the latter case, it can be seen as the demand 

of passengers who want to return home quickly or the available public 

transportation time has ended. 

 

 
 

Figure 4.1 Distribution of total and served requests 

 

 

 

 

  



 

 26 

4.2. Experimental Setup 

 

 

The area of Singapore is 719.9km2, slightly larger than Seoul 

(605.2km2), the capital of Korea. In this work, we limited the spatial 

range observed by agents because we focus on controlling matching 

time intervals from a temporal perspective. Therefore, the target 

area is the 10km × 10km grid (Figure 4.2) in Singapore's Northeast 

region, where demand is relatively high. Previous work has confirmed 

that the more spatial units are subdivided using smaller grids, the 

better the performance and the significant increase in training time 

(Qin et al., 2021). we used one grid but can subdivide the spatial units 

or expand the action dimension from a spatial perspective in the 

future. 

The time range is between 8 am and 9 am on weekdays and is 

provided to the environment by sampling 1,000 requests and drivers 

per episode. Each matching time interval is set to 1s, and the 

simulation starts at 8 am, lasts for 10 min (i.e., 600-time steps), and 

is reinitialized. The average vehicle speed is set to 20 km/h. And the 

maximum number of allocatable times for each request is limited to 

5. During this time, the agent interacts with the environment and 

learns the optimal policies. 

Baseline algorithms use the previous dispatch system, 

Instantaneous (Instant.) and Fixed Batch-Based (FBB) matching, as 

mentioned in Figure 1.1. Instant applies the action at all matching time 

intervals, the latter at fixed time intervals. The fixed time interval is 

set to the optimal value with the highest matching success rate 

through repeated experiments. 
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Figure 4.2 Spatial distribution of requests and drivers in the target 

area of Singapore 

 

We also conducted experiments based on the spatial distribution 

and density variation of supply and demand based on the synthetic 

dataset. The environment is set to 100-time steps for a 4 km × 4 

km grid. The generative patterns of demand and supply are uniform 

in the temporal context, and experiments are conducted on the 

uniform and Gaussian distributions in the spatial context. In the 
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gaussian distribution, the mean and standard deviation of driver and 

passenger locations is (2 km, 2 km) and (0.6 km, 0.6 km), 

respectively. The arrival density (person/s) is also set from 0.5 to 2. 

We assume that the maximum time passengers can tolerate 

cancellations before and after matching follows a gaussian 

distribution. Cancellations before matching have a mean and standard 

deviation of 25s and 12s, respectively, and cancellations after 

matching are 600s and 120s. Passengers cancel the request when 

this threshold is exceeded. 

The proposed methods and baselines are evaluated regarding 

matching success rate ( = 𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 / 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 ) and 

matching failure factors (CBM, CAM, EXPIRED). The passenger 

waiting time is measured for the final served request. Approximation 

networks used in DQN consist of two fully connected layers of 256 

and 256 neurons. All experiments are measured as the average value 

after 50 experiments to ensure the robustness of the results. 
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4.3. Experiments on synthetic datasets 

 

 

We observe the effects of changes in fixed matching time 

intervals before applying the proposed method. Figure 4.3 shows the 

difference in the matching success rate according to the matching 

time interval. The experiment was conducted with passenger 

requests and drivers in uniform distribution and arrival density of 1.0 

(person/s). 

The matching time interval varies from 1s to 18s at 2s intervals. 

Smoothed curves increase performance as fixed matching time 

intervals increase and then decrease (8-10s) at the highest matching 

success rate. This represents the potential benefits of matching time 

intervals mentioned in Figure 1.1, and too long matching time 

intervals can instead reduce performance. These results suggest that 

an appropriate matching time interval is required in specific scenarios. 

 

 

Figure 4.3 The difference in matching success rate according to 

matching time interval 
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Figure 4.4 shows the detailed matching failure factors according 

to the matching time interval. As the matching time interval increases, 

passengers' cancellation before matching (CBM) increases and 

expired requests (EXPIRED) decrease. We confirm the trade-off 

between these two factors, and the matching success rate is 

maximized at the matching time interval of 8-10s, which is the 

crossing point (Figure 4.3). This can be understood in the same 

context as previous studies (Qin et al., 2021) regarding passenger 

waiting time. They discussed a trade-off in the relationship between 

match waiting time and pick-up waiting time and noted that this tends 

to be observed only in specific demand-supply ratios. 

Cancellation after matching (CAM) is not controlled by the 

proposed method but can be derived by other factors. For example, 

if the matching time interval is short, it is likely to be assigned to 

drivers at relatively long distances. This increases the pick-up 

waiting time, which may cause the request to be canceled. 

 

 

Figure 4.4 The trade-off between matching failure factors according 

to the matching time interval  
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Figure 4.5 shows the matching success rate for three methods 

for the synthetic dataset. The spatial distribution of demand and 

supply follows the uniform (Figure 4.5a) and gaussian (Figure 4.5b) 

distribution, with the arrival density of passengers and drivers 

increasing from 0.5 (person/s) to 2.0 (person/s). Through this, we 

compared the performance of the strategies according to the 

spatiotemporal distribution. 

Adaptive matching based on the DQN agent shows the highest 

matching success rate in most scenarios. When the demand and 

supply generation patterns are uniform (Figure 4.5a), as the density 

increases, each method does not show the advantages of other 

strategies over the immediately matching strategy. FBB even 

recorded lower performance than Instant at a density of 2.0 

(person/s). This is because as the density increases, the number of 

valid pairs between the driver and the passenger increases, and thus 

the advantage of controlling the matching time interval decreases. 

When the demand and supply generation pattern is gaussian 

(Figure 4.5b), the overall matching success rate increases, but the 

performance difference between strategies decreases. At the largest 

density of 2.0 (person/s), FFB has the lowest performance. This is 

because Gaussian has a higher effect even at the same density. 
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(a) 

 

(b) 

 

Figure 4.5 Comparison of model performance for uniform (a) and 

gaussian (b) distribution according to density variation 
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4.4. Experiments on real datasets 

 

 

We evaluated the performance of the proposed method based on 

a simulator calibrated with real datasets. DQN agent interacts with 

the environment and learns optimal policies based on epsilon greedy 

exploration. The hyper-parameters used for learning were set to 0.9, 

0.01, and 200 for the start, end, and decay weights, respectively. The 

learning rate for approximation of the state-value function is set to 

0.001, and the batch size for experience replay is set to 64. 

Figure 4.6 shows the convergence curve for the normalized 

reward (Figure 4.6a) and probability of taking action 1 (Figure 4.6b) 

while the DQN agent is learning. Through the convergence curve, we 

can confirm that the agent learns optimal policies while maximizing 

cumulative rewards. Total action probability refers to the proportion 

of the matching action of the agent in all matching time intervals. For 

example, suppose each matching time interval is 1 second and 

interacts with the environment for 100-time steps. In that case, it 

can be understood that 50% action probability is an average of 2s, 

which determines the matching time interval. 

Therefore, DQN agent initially randomly takes action to about 0.5 

and then decreases the proportion of total action probabilities to 

about 0.1. And when the agent reaches a certain probability, it is 

shown that it tries to optimize while maintaining the matching time 

interval. It can be understood that the agent is learning the policy to 

converge with the reward by controlling the matching time interval. 
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(a) 

 

(b) 

 

Figure 4.6 Convergence curve (a) and probability of taking action 1 

by DQN agent (b) while learning process 
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TABLE 4.2 lists the results comparing the average performance 

metrics for the three methods, including the proposed method. And 

Figure 4.7 shows multiple experimental results for matching failure 

factors. The adaptive matching strategy showed the highest 

performance (60.1%) compared to other strategies, followed by FBB 

(55.3%) and Instant. (50.6%). Interestingly, the distribution of 

matching failure factors appears differently in the three strategies. 

The instantaneous matching (Instant) strategy shows the lowest 

cancellation before matching rate (CBM) compared to other 

strategies (1.6%), but the expired request (EXPIRED) rate is the 

highest (39.5%). It can be understood because of repeated allocation 

to drivers with low acceptance probabilities while idle drivers are not 

accumulated in the queue. 

The fixed batch-based matching (FBB) strategy reduces the 

expired request (EXPIRED) rate (16.5%) by combinatorial 

optimization based on a fixed matching time interval. However, the 

cancellation before matching (CBM) rate increases with match 

waiting time (13.8%). As the matching requests increase, the 

cancellation after matching (CAM) rate for the pick-up waiting time 

also increases (14.4%). Although pick-up distance is an influential 

variable in the driver's acceptance probability, cancellation increases 

with the gap between passengers and drivers. 

The proposed adaptive matching strategy method showed the 

highest matching success rate. The expired request (EXPIRED) rate 

was the lowest (12.5%). The objective function of the two-step 

framework induces as many requests as possible to be matched with 

the driver. The matching success rate is maximized from a long-term 

perspective through the balance between matching failure factors. 

Although the cancellation before matching (CBM) rate was higher 
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than other strategies, the expired request rate was the lowest, and 

the cancellation after matching (CAM) rate was lower than FBB. 

 

TABLE 4.2 Comparison of average performances of different 

strategies 

 

Average performances Instant. FBB Adaptive 

Success rate(%) 50.6 55.3 60.1 

CBM (%) 1.6 13.8 12.4 

CAM (%) 8.3 14.4 13.7 

EXPIRED(%) 39.5 16.5 12.5 

Match waiting time(s) 1.1 10.4 8.5 

Pick-up waiting time(s) 175.2 196.0 224.2 

Total waiting time(s) 176.3 206.4 232.7 

 

 

 
 

Figure 4.7 Comparison of matching failure factors between different 

strategies 
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We interpreted how matching actions unfold under the learned 

policy based on the method motivated by Qin et al. (2021). Figure 

4.8 shows the action probability curves of DQN agents according to 

the (Figure 4.8a) arrival density and (Figure 4.8b) queue of 

passengers and drivers at each time step. In sampled datasets, the 

arrival density for passenger requests increases, and drivers appear 

relatively uniform. Passenger requests leave the queue due to 

success or failure, and the idle drivers remain relatively long. 

The action probability curve can be divided into three stages. The 

first is the initial stage (0-200s), with fewer drivers and requests 

accumulated in the queue. The agent maintains the matching time 

interval of 5 to 10 s because the arrival density is relatively low. The 

second is the intermediate stage (200-400s). As the arrival density 

of the request increases to 1.7 (person/s) and the remaining idle 

drivers are accumulated, the agent reduces the matching time interval 

to 2 to 5s. Later, like instantaneous matching, the matching time 

interval is reduced by 1 to 2s and maintained with arrival density. 

The third is the final step (400–600s), maintaining instantaneous 

matching and reducing the interval further by increasing the arrival 

density of requests. 

From this, we can intuitively confirm that DQN agents adaptively 

control matching time intervals according to generation patterns and 

queue. It suggests that the proposed method can increase the 

matching success rate by using comparison strategies in a timely 

manner. 
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(a) 

 

(b) 

 

Figure 4.8 Observation of agent matching actions according to 

learned policies with (a) density variation and (b) queue (motivated 

by Qin et al., 2021) 
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We analyzed the performance for each time step range in detail. 

Figure 4.9 shows the matching success rate between strategies in 

each time step range. The overall matching success rate was high in 

the order of Adaptive, FBB, and Instant (TABLE 4.2), but there are 

differences in each time step range. TABLE 4.3 lists details of the 

matching failure factors. The values in the table refer to the 

percentage of requests made in each time step range. We discuss 

different perspectives depending on the time-step range. 

The first is the range [0-200s] with potential benefits of 

matching time intervals, where Adaptive has the highest matching 

success rate. Adaptive has a lower percentage of expired requests 

(EXPIRED) compared to FBB, but fewer cancellations before 

matching (CBM) increase. This suggests that the proposed method 

can achieve better results than trade-offs due to fixed matching time 

intervals. In the second range (200-400s], the FBB achieves slightly 

higher performance. The fixed matching time interval (FBB) appears 

to be more stable because Adaptive needs to transform the matching 

time interval. However, performance differences are not noticeable. 

The third range (400-600s] is in which instantaneous matching is 

required. Therefore, the advantage of the matching time interval is 

not noticeable, so Instant outperforms FBB. 

We discussed the advantages and disadvantages of each strategy 

by separating the aggregated results into each time step range. This 

allows us to understand under which conditions the proposed method 

can have a high matching success rate. 
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Figure 4.9 Success rate between strategies according to time step 

 

 

TABLE 4.3 Comparison of results between our and other strategies 

according to time step 

 

Time step Method Served CBM CAM Expired Total 

[0,200] 

Instant. 49% 2% 5% 45% 

300 FBB 53% 19% 10% 18% 

Adaptive 60% 24% 10% 6% 

(200,400] 

Instant. 56% 3% 3% 38% 

331 FBB 61% 14% 7% 18% 

Adaptive 60% 4% 4% 33% 

(400,600] 

Instant. 56% 2% 4% 38% 

369 FBB 54% 14% 12% 20% 

Adaptive 60% 2% 6% 32% 
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Chapter 5. Conclusion 

 

 

In ride-hailing services, the supply-demand imbalance problem 

causes inefficiency in terms of system operation. To address this, 

recent studies are interested in determining matching time intervals 

based on reinforcement learning in the temporal context. However, 

matching failure factors according to passengers and drivers are not 

considered. Passengers can cancel their requests before and after 

matching as the waiting time increases, and drivers can accept 

requests based on their preferences. These have a significant impact 

on the order dispatching system. 

This study aimed to determine adaptive matching time intervals 

based on reinforcement learning, considering the matching failure 

factors. To this end, we propose a two-step framework to maximize 

the matching success rate. The reinforcement learning agent 

determines the matching time interval in the first step. And then, 

combinatorial optimization is performed based on the estimated 

driver acceptance probability within the current matching time 

interval. 

The agent interacts with simulators developed based on real 

datasets and learned optimal policies using Deep Q-Network. We 

compared and evaluated the performance of the existing and 

proposed strategies through experiments based on synthetic 

datasets and real datasets. Finally, we discuss how agent controls 

matching time intervals by providing demand and supply samples to 

the environment and observing action probability based on learned 

policies. 
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This approach allows us to consider integrally the control of 

matching time intervals in the temporal context and the matching 

failure factors that have been overlooked in previous studies. 

Therefore, we were able to discuss the performance as well as the 

detailed matching failure factors. In the last section, we provided 

insights through a visual analysis of agent policies that are difficult 

to understand intuitively. 

We first conducted experiments on the spatial distribution and 

density variation of demand and supply generation patterns based on 

the synthetic datasets in the grid network. The results showed that 

the proposed method had the highest matching success rate in most 

experimental settings. We also discussed the inevitability of 

instantaneous matching as the arrival density increases. 

Next, we observed the distribution of matching success rates and 

matching failure factors on the results based on real datasets. Each 

strategy showed a different distribution of cancellations or expired 

requests. However, we confirm that the proposed method can control 

these matching failure factors and maximize the matching success 

rate. 

Finally, we visualized and analyzed the agent's policy patterns. 

We observe that the agent initially increases the matching time 

interval and then decreases as the arrival density of the request 

increases and the remaining idle drivers are accumulated. We have 

identified the benefits of adaptively controlling matching time 

intervals according to supply-demand patterns. 

In this study, we limited the target area. Our experiments' short 

time steps make it difficult to discuss macroscopic supply-demand 

patterns. Therefore, we will expand our spatio-temporal context and 

scope in the future. We will then design the experiment with 
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quantitative supply-demand indicators and discuss generalized 

performance. For spatial ranges, we can control the matching radius 

(Yang et al., 2020) or extend to a framework for learning multi-

dimensional action policies based on grids in Singapore. We will also 

be able to expand the dimension of the state variable and improve the 

matching efficiency based on the taxi demand prediction model. 
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Abstract 

 

승차 공유 서비스들은 승객과 운전자들을 효율적으로 연결함으로써 일상 

생활의 이동에 많은 도움을 주고 있다. 이러한 서비스들은 수요와 

공급의 불균형 문제로 인해 시스템 운영 측면에서 비효율적인 상황에 

직면한다. 이를 위해 일정한 매칭 시간 간격 동안 승객의 요청과 공차 

통행 중인 운전자들을 모아 일괄적으로 매칭하는 전략을 주로 사용한다. 

최근에는 수요와 공급의 동적 패턴을 효과적으로 반영하기 위한 적응형 

매칭 시간 간격에 대한 연구들이 있었으나, 승객의 요청 취소와 운전자 

거부와 같은 매칭 실패 요인들은 간과되었다. 본 연구의 목표는 매칭 

실패 요인이 존재하는 상황에서 강화학습 기반의 적응형 매칭 시간 

간격을 통해 매칭 성공률을 최대화하는 것이다. 연구 방법은 2단계 

프레임워크로 구성된다. 먼저 DQN (Deep Q-Network) 기반의 

강화학습 에이전트는 각 매칭 시간 간격마다 배차 행동(Dispatch 

action)을 결정하며, 이후에는 운전자의 수락확률을 기반으로 한 

조합최적화가 수행된다. 실제 데이터셋을 기반으로 한 실험을 통해 이전 

전략들과 성능을 비교하고 매칭 실패 요인들에 대한 분석을 수행한다. 

실험 결과, 제안된 방법은 대부분의 실험에서 가장 높은 매칭 성공률을 

보였다. 구체적으로는 운전자의 미 수락에 의한 만료 요청의 비율을 

감소시키며, 승객의 요청 취소 비율을 효율적으로 제어하는 것을 

확인했다. 또한 학습된 에이전트의 정책 해석과 집계된 결과의 세분화를 

기반으로 추가 분석이 수행되었다. 이러한 접근 방식은 매칭 성공률과 

세부적인 매칭 실패 요인들에 대한 논의를 통해 기존 연구에서 

간과되었던 통찰력을 제공한다. 

 

Keyword : Ride-Hailing Service, Reinforcement Learning, Deep Q-

Network (DQN), Combinatorial Optimization, Matching Failure 
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