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Abstract

Analytical Solution for Velocity Field
Scattered by Submerged Permeable

Breakwaters

Jeongin Kim

Department of Civil and Environmental Engineering

Civil and Environmental Engineering Major

The Graduate School of Seoul National University

Presented herein are the formulation of the problem and its analytical solution for

the velocity field scattered by submerged permeable breakwaters under the linear

monochromatic wave.

This study set the problem that a permeable breakwater is submerged in the water

with vertically occupying a finite interval under a small amplitude linear wave train.

Assuming that the fluid has an infinite depth and the flow is incompressible, inviscid,

and irrotational, the potential wave theory can be applied. However, the flow through

the permeable plate imposes a nonlinear boundary condition on the plate.

Therefore, a perturbation method was applied to resolve this nonlinear boundary

condition, with a small parameter representing the permeability. When the problem
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was expanded up to the first order, the leading-order problem represents the velocity

potential scattered by the impermeable breakwater, whereas the first-order problem

gives the correction to the velocity potential considering the wave scattering by the

permeable breakwater.

The reduction method was adopted to simplify the boundary conditions, replac-

ing the spatial potential with the reduced potential. This leads to the homogeneous

Riemann-Hilbert problem for the leading-order problem and the nonhomogeneous

Riemann-Hilbert problem for the first-order problem. The exact, closed-form expres-

sions of the velocity field for each problem were derived.

As an illustrative example of the application of the obtained velocity field, the re-

flection and transmission coefficients were calculated in various wave and breakwater

conditions. Here, an approximate numerical quadrature method for evaluating finite

Hilbert transform using Chebyshev polynomials was used. The results showed that the

permeable breakwaters could dissipate more wave energy compared to the imperme-

able breakwaters. In addition to the evaluation of the wave attenuation efficiency, the

velocity field can be utilized in various ways, such as calculating the hydrodynamic

wave forces exerted on the breakwater.

Keywords: Permeable breakwater, Submerged floating breakwater, Linear wave, Per-

turbation method, Analytical solution

Student Number: 2021-23413
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Chapter 1. Introduction

1.1 Motivations

Waves from deep water propagate into the shoreline and affect the coastal area, often

causing severe problems. Therefore, various shapes and functions of breakwaters have

been investigated and constructed in maritime and offshore areas to dissipate wave

energy from the open sea. By their properties, such as installation method, geometry,

and permeability, breakwaters can be classified into various kinds.

The breakwaters can be classified into two broad categories by their method of

installation: fixed type and floating type. Traditional gravity-based breakwaters were

built on the ground and fixed by their own weight or pillar base in the ground. By

their shape, they can be classified again as rubble mound type, vertical wall type,

or composite type. Although these gravity-based type breakwaters are commonly

seen by their effectiveness in breaking waves, there are some disadvantages in that

they are typically expensive to build and difficult to remove since they resist the

wave by incorporating sufficient mass. Furthermore, these conventional breakwaters

are usually impermeable, so they may hinder seawater circulation, leading to ocean

environmental problems. Thus, floating or permeable breakwaters have often been

considered as the solution to this problem.

In recent decades, there has been a growing body of research that explores
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floating breakwaters. Considering floating breakwaters are less reliant on the seabed

topography and simply removable when additional sea space is required, they are

recognized as adequate alternatives to traditional gravity-type breakwaters (Ji et al.,

2017). In addition, they have the advantages of being able to circulate water, making

a fishway, and transporting sediment under the breakwater, and may be relatively

economical by protecting closer to the water surface where wave action is most no-

ticeable (Isaacson et al., 1998). Thus, these structures may be appropriate to attenuate

waves that are not extreme as tsunamis or storm waves, and especially useful to block

a significant portion of the wave energy near the surface in the case of deep water

waves (Briggs et al., 2002). Therefore, from an engineering perspective, investigating

the floating breakwaters is an important problem.

One of the noteworthy works on floating breakwaters is the Rapidly Installed

Breakwater System (RIBS) developed by U.S. Army Engineer Research and Devel-

opment Center (ERDC) Coastal and Hydraulics Laboratory (Briggs et al., 2002). As

shown in Fig. (1.1), RIBS has the shape of vertical barriers with a truss structure

covered with fabric. Although floating breakwaters can have various shapes, such as

a vertical barrier, a box, a pontoon, and so forth, highly inspired by this structure of

RIBS, the present study gave attention to vertical-shaped floating breakwaters.

In addition to the vertical shape, floating breakwaters can either emerge to

the water surface or submerge into the water. When it comes to the moored floating

2



(a)

(b)

Figure 1.1 (a) Rapidly Installed Breakwater System (RIBS) concept (Briggs, 2001);
(b) Prototype design of RIBS(XM99), illustrating the structure of truss connected
with fabric (Briggs et al., 2002)
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breakwaters, not the freely floating breakwaters relying on pontoons or empty boxes,

the breakwaters may be slightly submerged in the water. Although there are reports on

emerging floating breakwaters or surface-piercing breakwaters, there are few studies

on submerged floating breakwaters. Hence, the submerged floating breakwaters are

sought with a concentration in this study.

Meanwhile, in certain instances, permeable breakwaters can also resolve the

problems that conventional impermeable breakwaters have. For example, the per-

meable breakwaters can be selected in order to reduce excessive reflected waves by

the impermeable barrier (Isaacson et al., 1998). Moreover, Lee and Chwang (2000)

maintained that the porous barrier is effective in reducing the hydrodynamic wave

forces applied to the breakwater, as well as attenuating wave amplitude. Thus, herein

the effect of permeability of the breakwaters is considered necessary since the neces-

sity of porous coastal structures has grown recently, from both an engineering and

environmental perspective as prescribed.

In order to examine the use of submerged floating permeable breakwaters,

the interaction between the breakwaters and the waves will be essential for designing

this type of breakwater. For instance, when the wave velocity field scattered by the

breakwater is given, engineers can easily calculate the factors used in designing break-

waters, such as wave force applied on breakwaters, desired reflection and transmission

coefficients.
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Therefore, from these points of view, this paper focuses on deriving an analyt-

ical solution for the velocity field in the two-dimensional wave scattering problem by

an arbitrary number of vertical submerged floating permeable breakwaters in infinite-

depth water, using linear water-wave theory. Considering that this paper focuses on

the submerged case of the permeable breakwaters, hereinafter, the vertical submerged

floating permeable breakwaters are denoted as the submerged permeable breakwaters.

1.2 Literature review

Dean (1945) first solved the wave scattering problem due to the semi-infinite vertical

barrier at a distance below the water surface. Ursell (1948) obtained the velocity

field of waves by a finite thin plate oscillating with a small angle, following the

work of Havelock (1940). Subsequently, several authors, notably Lewin (1963) and

Mei (1966), have contributed to generalizing the problem of wave generation and

scattering by any number of vertical breakwaters in deep water. Later, Evans (1970)

solved the diffraction problems on a completely submerged rolling plate in close form,

determining the velocity potential everywhere in the fluid.

The problem of a permeable barrier has hitherto rarely received attention.

Macaskill (1979) first tried to numerically solve the water wave reflection by a perme-

able barrier, although the permeable barrier was considered an impermeable barrier

with numerous gaps. Chwang (1983) showed that the porosity can reduce the hydro-
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dynamic force impinging on the wavemakers as well as the wave amplitude. Yu and

Chwang (1994) thoroughly investigated the porous-effect parameter considering the

friction resistance effect and the inertial effect in the porous medium, incorporating

the results derived by Macaskill (1979) and Chwang (1983). Lee and Chwang (2000)

applied eigenfunction expansion to convert the boundary value problems into certain

dual series relations and solved them with the least square method. While the previ-

ous researchers used the domain decomposition method, Gayen and Mondal (2014)

utilized a hypersingular integral equation for the discontinuity of the potential across

the plate and numerically solved the equation with Chebyshev polynomial.

Fig. (1.2) shows the geometry of vertical breakwaters in previous studies, and

Table (1.1) briefly summarises the earlier studies on vertical breakwaters.

In the present study, an analytic solution for the velocity potential of the

scattering problem around submerged floating permeable breakwaters is obtained

for the first time. A small parameter representing the permeability of each plate

is defined, and a perturbation method is used to overcome the nonlinearity of the

boundary condition.

1.3 Research objective

The research objectives of this study are listed below:

(i) Derive an analytical solution for the velocity potential around the submerged

6



permeable breakwaters;

(ii) Numerically calculate the analytical expression of the reflection and transmis-

sion coefficients.

Table 1.1 Previous studies on vertical breakwaters

Author Permeability Plates # Remarks

Dean (1945) X 1 Semi-infinite barrier

Ursell (1948) X 1
Oscillating,

free surface punching plate

Lewin (1963) X N Riemann-Hilbert problem

Mei (1966) X
N fixed,
1 rolling

Rolling,
free surface punching plate

Evans (1970) X 1 Rolling, submerged plate

Macaskill (1979) O 1 Set of impermeable plates

Lee and Chwang
(2000)

O 1 or 2
Finite depth,

eigenfunction series expansion

Gayen and Mondal
(2014)

O 1
Numerically solved a second kind
hypersingular integral equation

7



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1.2 Geometry of the breakwaters in (a) Dean (1945); (b) Ursell (1948); (c)
Lewin (1963); (d) Mei (1966); (e) Evans (1970); (f) Macaskill (1979); (g) Lee and
Chwang (2000); (h) Gayen and Mondal (2014)
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Chapter 2. Formulation

2.1 Statement of problem

As prescribed in Chapter 1, we consider a problem involving the interaction of linear

monochromatic water waves and thin flat permeable plates. The geometry of the

breakwater is illustrated in Fig. (2.1). Here, we take the Cartesian coordinate system

(x, y) where the x-axis is the mean free surface, and the y-axis directs vertically

upwards. Under the water surface,N permeable plates occupy the intervals Ln : x =

0, −bn < y < −an, where n = 1, 2, 3, · · · , N . And on the water surface, a train of

waves with a small amplitude A and an angular wave frequency ω propagates from

x = +∞ in the negative x-direction.

Figure 2.1 Vertical plates occupy the intervals along the y axis and a regular wave
train of small amplitude propagates in the x-direction

9



In order to solve the problem in closed form using potential wave theory,

it is assumed that the fluid has infinite depth and is incompressible, inviscid, and

irrotational. Also, we assume that the wave amplitude is small and there is no wave

breaking. With the first assumption, the viscous effects on the boundary layer of the

fluid can be neglected since we are interested in the wave scattering problem, and

hydrodynamic forces are essentially due to the pressure gradient.

For an irrotational flow in two-dimension, there exists a velocity potential

Φ(x, y, t), and the negative of the gradient of the potential field becomes the velocity

field, v = (u, v). This velocity potential will also have a frequency of ω and be

harmonic in time. Without loss of generality, the velocity potential can be written as,

Φ(x, y, t) = φ(x, y)e−jωt, (2.1)

where φ(x, y) is the spatial velocity potential, and j is the time-related imaginary unit

defined as j =
√
−1.

We take the Euler equations for inviscid flow as the governing equations. Using

the total velocity potential Φ, these governing equations appear as,

∂2Φ

∂x2
+
∂2Φ

∂y2
= 0, (2.2)

∂Φ

∂t
+

1

2
∇2Φ · ∇2Φ− gy =

1

ρ
(P − Pa). (2.3)
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Here, ∇2 is the two-dimensional gradient operator, g is the gravitational ac-

celeration, ρ is the density of the fluid, P is the pressure, and Pa is the atmospheric

pressure. These fundamental equations have boundary conditions at the free surface

and the bottom. Also, there is no surface tension or external force on the surface.

Thus, the pressure at the free surface, η, is the same as the atmospheric pressure:

∂Φ

∂t
+

1

2
∇2Φ · ∇2Φ− gy = 0, on y = η. (2.4)

Expanding Eq. (2.4) into Taylor series with respect to y = 0 and ignoring the

higher-order terms, we get,

η = −1

g

∂Φ

∂t
, on y = 0, (2.5)

which is called linearized dynamic free surface boundary condition.

Next, we require a kinematic boundary condition that the free surface remains

the free surface. That is to say, the water particles in the free surface do not change,

and this condition can be imposed by using the material derivative as below:

D

Dt
(y − η) = 0, on y = η, (2.6)

where D
Dt = ∂

∂t + v · ∇.

Again, we obtain the linearized kinematic free surface boundary condition as

11



below by expanding Eq. (2.6) around y = 0 and neglecting the small higher-order

terms:

∂Φ

∂y
=
∂η

∂t
, on y = 0. (2.7)

Combining Eq. (2.5) and Eq. (2.7) with differentiating Eq. (2.5) with respect

to t once, we have the single form of free surface boundary condition in terms of the

velocity potential only:

∂2Φ

∂t2
+ g

∂Φ

∂y
= 0, on y = 0. (2.8)

Now, since we defined the velocity potential as Eq. (2.1), we can simplify the

governing equation and the combined free surface boundary condition by substituting

Eq. (2.1) into Eq. (2.2) and Eq. (2.8):

∂2φ

∂x2
+
∂2φ

∂y2
= 0, in the fluid, (2.9)

kφ− ∂φ

∂y
= 0, on y = 0. (2.10)

Here, k = ω2/g is known as the wavenumber. The dispersion relation of ω

and k at depth h is originally ω2 = gk tanh kh, but from the infinite-depth condition,

the dispersion relation is reduced to ω2 = gk.

Linear wave theory allows us to split the potential into the incident and scat-

tered wave potential. The incident wave velocity potential ΦI is also represented with
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the combination of spatial-related potential and the time-harmonic part, as below:

ΦI(x, y, t) = φI(x, y)e−jωt. (2.11)

Since the incident wave elevation is aforementioned as

ηI(x, t) = −1

g

∂ΦI

∂t
= A cos(kx+ ωt), (2.12)

the incident spatial velocity potential in Eq. (2.11) would be

φI(x, y) = −jgA
ω

eky−jkx. (2.13)

Since the scattering of thewave is due to the presence of the plate, this indicates

that the radiation condition for the spatial velocity potential is needed. The scattered

wave propagating to the positive side of the x-axis will be superposedwith the incident

wave, and the scattered wave propagating to the negative side of the x-axis will travel

outwards to −∞. Therefore, the desired behavior at x→ ±∞ would be,

φ+∞(x, y) ∼ A+∞eky+jkx − jgA

ω
eky−jkx, x→ +∞, (2.14)

φ−∞(x, y) ∼ A−∞eky−jkx, x→ −∞. (2.15)

for some constantsA±∞. Superscripts (·)+∞ and (·)−∞mean (·) atx→ ±∞, respec-
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tively. A+∞eky+jkx in Eq. (2.14) represents the spatial velocity potential generated

by the reflected wave propagating to +x direction, and A−∞eky−jkx in Eq. (2.15)

represents the spatial velocity potential due to the transmitted wave propagating to

−x direction.

Also, the fluid velocity will vanish as y → −∞. Thus,

∂φ

∂x
∼ 0,

∂φ

∂y
∼ 0, y → −∞. (2.16)

The velocity components are bounded everywhere, but at the edges of the

plates, the velocity may be unbounded and permit a mild, integrable singularity as

below:

∂φ

∂r
= O

(
1

rλ

)
, 0 < λ < 1, near z = −ian,−ibn. (2.17)

Here, r is the distance from a point in the fluid to either of these points.

2.2 Permeable boundary condition on the plates

As suggested by Taylor (1956), the boundary condition on the permeable breakwaters

is obtained with the assumption that the flow through the permeable plates is due to

the pressure difference between both sides of the plates. This assumption makes the

14



boundary condition in Eq. (2.18) have a similar form to Darcy’s law:

∂Φ

∂x
= − κ

ρνD
(p+ − p−), on Ln, n = 1, 2, 3, · · · , N. (2.18)

Here, κ is the porosity of the plates, ρ is the density of the water, ν is the

kinematic viscosity of the water, D is the thickness of the plates, and p+ and p− are

the pressure on the positive and the negative side of the plates, respectively.

Meanwhile, for an infinitesimal amplitude, Bernoulli’s equation may be lin-

earized, and the pressure can be expressed as,

p(x, y, t) = −ρ∂Φ

∂t
(x, y, t)− ρgy. (2.19)

Substituting Eq. (2.19) into Eq. (2.18), the spatial derivative of the total ve-

locity potential is represented by the difference with the time derivative of the total

wave on both sides of the plates:

∂Φ

∂x
=

κ

νD

(
∂Φ+

∂t
− ∂Φ−

∂t

)
, on Ln. (2.20)

Superscripts (·)+ and (·)− mean (·) on the positive side and the negative side

of the plates, respectively. Here, κ/νD can be considered as a parameter representing

permeability. Since Φ(x, y, t) = φ(x, y)e−jwt from Eq. (2.1), we can simplify Eq.
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(2.20) as below:

∂φ

∂x
= −j κω

νD
(φ+ − φ−), on Ln. (2.21)

In Eq. (2.21), the spatial velocity potential itself is affected by the spatial

velocity potential on both sides of the plates. This leads to the nonlinearity of the

problem, and the perturbation method is introduced to solve this problem.

2.3 Perturbation expansion

To convert the original problem into a perturbation problem, define a small, dimen-

sionless parameter ε as

ε =
κω

νDk
. (2.22)

Introducing the small parameter ε, we may assume a perturbative solution to

Eq. (2.21) of the form,

φ = φ0 + εφ1 + · · · . (2.23)

Here in Eq. (2.23), φ0 represents the spatial velocity potential due to the

impermeable plates, and φ1 shows the correction when the plate has permeability.

Thus, φ0 will explain the tendency of the solution, where φ1 adds some correction on

φ0 and explains the effect of permeability.

Although there are higher-order terms in Eq. (2.23), this paper only considers

the leading and first-order terms. In order to investigate the effect of the permeability
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of the breakwater.

Substituting Eq. (2.23) into Eq. (2.21), we can get the boundary conditions of

the leading-order and the first-order spatial velocity potential function on the vertical

plates:

∂φ0

∂x
= 0 on Ln, n = 1, 2, 3, · · · , N, (2.24)

∂φ1

∂x
= −jk(φ+

0 − φ
−
0 ), on Ln, n = 1, 2, 3, · · · , N. (2.25)

Also, in view of Eq. (2.14) and Eq. (2.15), we require the behavior of φ0 at

x→ ±∞ to be,

φ+∞
0 (x, y) ∼ A+∞

0 eky+jkx − jgA

ω
eky−jkx, x→ +∞, (2.26)

φ−∞0 (x, y) ∼ A−∞0 eky−jkx, x→ −∞., (2.27)

and for φ1,

φ+∞
1 (x, y) ∼ A+∞

1 eky+jkx, x→ +∞, (2.28)

φ−∞1 (x, y) ∼ A−∞1 eky−jkx, x→ −∞. (2.29)

From the equation, it is intuitively seen that the first order solution φ1 does

not affect by the incident wave but is generated by the leading order solution.
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With these boundary conditions on the plate and at x → ±∞, we can derive

the leading order and the first order solution of the spatial velocity potential.
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Chapter 3. Leading-order solution

3.1 Leading-order solution for the case of multiple plates

Define the complex potential w0(z) as,

w0(z) = φ0(x, y) + iψ0(x, y), Imi{z} < 0, (3.1)

where z = x + iy, i =
√
−1 and ψ0(x, y) is the two-dimensional stream function.

Here, i is independent of j and is used to explain the complex potential w0(z) as a

space-related imaginary unit.

In addition, since the breakwater has the form of thin plates, it is convenient

to consider the reduced potentialW0(z), defined by,

W0(z) =
dw0

dz
+ ikw0, Imi{z} < 0. (3.2)

This method is called the reduction method, which is effective for simplifying

the boundary conditions (Porter, 1972). By the use of the reduced potential, from Eq.

(2.10),

Imi{W0(z)} = 0, along the horizontal axis (y=0). (3.3)

If the imaginary part of W0(z) is zero on x-axis, the function W0(z) is the
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analytic continuation of W0(z) through this interval (Muskhelishvili, 1977). This

property is called Schwarz’s principle of reflection. Therefore,W0(z) can be defined

not only on the lower half-plane but also on the upper half-plane. Now,W0(z) can be

continued by Schwarz’s reflection principle into y > 0, where,

W0(z) = W0(z). (3.4)

Since W0(z) is a single-valued function outside the circle |z| = bN , it has a

Laurent expansion of the form,

W0(z) =

∞∑
n=−∞

cnz
n. (3.5)

Assume Eq. (2.14) and Eq. (2.15) may be differentiated once with respect to

x or y. Then it follows that,

W0(z) = O(1), |z| → ∞, (3.6)

which means thatW0(z) is bounded as z goes to infinity.

In addition, from Eq. (2.24), the real part ofW0(z) is zero on the plate:

Rei{W0(z)} = 0, on Ln, n = 1, 2, 3, · · · , N. (3.7)
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From Eq. (3.4), the equation above can be expanded through the whole com-

plex plane:

Rei{W0(z)} = 0, on Ln + L′n, (3.8)

where L′n is the interval x = 0, an < y < bn, the reflection of Ln with respect to the

real axis.

Finally,W0(z) may be unbounded near the ends of Ln, L′n. Thus,

W0(z) = O
(

1

rλ

)
, 0 < λ < 1, near z = ±ian, ±ibn. (3.9)

The problem of determining W0(z) satisfying Eq. (3.6), Eq. (3.8), and Eq.

(3.9) is a typical homogeneous Riemann-Hilbert problem.

The solution of the homogeneous Riemann-Hilbert problem for the plane with

cuts distributed along a straight line is given by Muskhelishvili (1977, p. 261):

W0(z) =
C0 +

∑N
n=1Cnz

2n∏N
n=1

√
z2 + a2

n

√
z2 + b2n

. (3.10)

Here, C0 and Cn (n = 1, 2, 3, · · · , N) are real constants with respect to

i. Substituting Eq. (3.10) into Eq. (3.2), the complex potential w0(z) is found by

integrating Eq. (3.2):

w0(z) = e−ikz
[
B0 +

∫ z

−ia1
eikζW0(ζ) dζ

]
, (3.11)
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where B0 is an arbitrary real constant with respect to i.

It remains to determine the constants B0, C0, and Cn. From the first assump-

tion that the circulation around each plate is zero, which implies the potential is

single-valued within the fluid, it follows that,

Rei
{∮

Γn

eikζW0(ζ) dζ

}
= 0, (3.12)

where Γn is a closed contour surrounding Ln, and yields N conditions.

Eq. (2.26) and Eq. (2.27), the behavior of the solution away from the plates,

provide two remaining conditions, which now complete the solution.

3.2 Leading-order solution for the case of a single plate

For an illustrative example, the case of the breakwater consisting of a single plate

is sought, and the process of calculating the undetermined constants is presented in

detail in this section. When N = 1, Eq. (3.10) and Eq. (3.11) are simplified to,

W0(z) =
C0 +D0z

2√
(z2 + a2)(z2 + b2)

, (3.13)

w0(z) = e−ikz
[
B0 +

∫ z

−ia
eikζW0(ζ) dζ

]
. (3.14)

To determine the unknown coefficients, as in the case of multiple plates, the
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radiation boundary conditions prescribed in Eq. (2.26) and Eq. (2.27) will be first

imposed onto Eq. (3.14). To do this, the asymptotic behavior of the integral term in

Eq. (3.14) is sought.

Figure 3.1 Integration path for w0(z) as z → ±∞

For z → +∞, let us modify the integral term in Eq. (3.14) as,

∫ z

−ia
eikζW0(ζ) dζ

=

∫ 0++i∞

−ia
eikζW0(ζ) dζ +

∫ z

i∞+0+
eikζ (W0(ζ)−D0) dζ − iD0

k
eikz. (3.15)

When the second integral in Eq. (3.15) is taken following a large arc, which is

noted as Γ+ in Fig. (3.1), this term vanishes to zero by Jordan’s lemma, sinceW0(z)

is bounded at infinity and W0(z) − D0 → 0 as |z| → ∞. Thus, for z → +∞ the
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complex potential turns into,

w+∞
0 (z) ∼ e−ikz

[
B0 +

∫ i∞+0+

−ia
eikζW0(ζ) dζ

]
− iD0

k
. (3.16)

Contracting the integral term in Eq. (3.16) onto the y-axis from the right, the

integration should be separately examined for some interval parts on account of the

branch cut (a, b) in the reduced potential:

∫ 0++i∞

−ia
eikζW0(ζ) dζ

=

∫ ∞
−a

e−kuW+
0 (iu) i du

= −
∫ ∞
−a

e−ku Imi{W+
0 (iu)} du+ i

∫ ∞
−a

e−ku Rei{W+
0 (iu)} du

= −
∫ b

a

e−ku
(
C0 −D0u

2
)√

(u2 − a2)(b2 − u2)
du

+ i

(∫ a

−a

e−ku
(
C0 −D0u

2
)√

(a2 − u2)(b2 − u2)
du−

∫ ∞
b

e−ku
(
C0 −D0u

2
)√

(u2 − a2)(b2 − u2)
du

)
. (3.17)

Although it is conventional to denote the left-sided approach of the arc as +

side, in the sense that W0(z) is concerned on the positive x side, (·)+ is used for

representing the right side—approaching from the right side—of the plate.

To simplify the expression, it is convenient to define some functions repre-
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senting each interval along the integration path,

a1(k) =

∫ b

a

e−ku√
(u2 − a2)(b2 − u2)

du, (3.18)

a2(k) =

∫ a

−a

e−ku√
(a2 − u2)(b2 − u2)

du, (3.19)

a3(k) =

∫ ∞
b

e−ku√
(u2 − a2)(u2 − b2)

du, (3.20)

and their second derivative with respect to k,

a′′i (k) =
d2ai
dk2

, i = 1, 2, 3. (3.21)

Fig. (3.2-3.3) are figures of constants ai(k), a′′i (k), a1(−k) and a′′1(−k) vary-

ing with µ and kb. Here, µ is the ratio of the absolute values of the top point of the

breakwater, a, and the bottom end of the breakwater, b, defined as µ = a/b.

Then, for z → +∞,

w+∞
0 (z) ∼ e−ikz

[
B0 −

(
C0a1(k)−D0a

′′
1(k)

)
+i
((
C0a2(k)−D0a

′′
2(k)

)
−
(
C0a3(k)−D0a

′′
3(k)

))]
− iD0

k
. (3.22)

Again for brief-expression, some functions are defined for each interval:

γ0(k) = C0a1(k)−D0a
′′
1(k), (3.23)
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Figure 3.2 (left) ai(k) and (right) a′′i (k) versus kb for (a) µ = 0.001, (b) µ = 0.01,
(c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5. ( , a1(k) and a′′1(k) ; ,
a2(k) and a′′2(k); , a3(k) and a′′3(k).)
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Figure 3.2 (left) ai(k) and (right) a′′i (k) versus kb for (a) µ = 0.001, (b) µ = 0.01,
(c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5. ( , a1(k) and a′′1(k) ; ,
a2(k) and a′′2(k); , a3(k) and a′′3(k).) (cont.)

27



0 0.5 1 1.5 2 2.5 3

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3

0

10

20

30

40

50

60

(a)

0 0.5 1 1.5 2 2.5 3

0

20

40

60

80

0 0.5 1 1.5 2 2.5 3

0

10

20

30

40

50

60

(b)

0 0.5 1 1.5 2 2.5 3

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3

0

10

20

30

40

50

60

70

(c)

Figure 3.3 (left) a1(−k) and (right) a′′1(−k) versus kb for (a) µ = 0.001, (b) µ = 0.01,
(c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5.
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Figure 3.3 (left) a1(−k) and (right) a′′1(−k) versus kb for (a) µ = 0.001, (b) µ = 0.01,
(c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5 (cont.).
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α0(k) = C0a2(k)−D0a
′′
2(k), (3.24)

β0(k) = C0a3(k)−D0a
′′
3(k). (3.25)

Finally, Eq. (3.22) is shortened as below:

w+∞
0 (z) ∼ e−ikz [B0 − γ0(k) + i(α0(k)− β0(k))]− iD0

k
. (3.26)

Similarly, for z → −∞, the integration path of an integral part in Eq. (3.14) is

taken as a union of a vertical upward line contracted to the left side of the y-axis and

an arc noted as Γ−. Because of the branch cut on (a, b), the imaginary part ofW−0 (iu)

has a different sign from W+
0 (iu). Thus, the asymptotic behavior of leading-order

complex potential as z → ±∞ is expressed in terms of γ0(k), α0(k), and β0(k):

w±∞0 (z) ∼ e−ikz [B0 ∓ γ0(k) + i(α0(k)− β0(k))]− iD0

k
. (3.27)

Taking the real part of Eq. (3.27) with respect to i, the leading-order spatial

velocity potential for z → ±∞ can be obtained:

φ±∞0 (x, y) = Rei {w0(z)}

∼ eky [(B0 ∓ γ0(k)) cos kx+ (α0(k)− β0(k)) sin kx] . (3.28)
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Substituting this into the radiation boundary conditions—Eq. (2.26) and Eq.

(2.27)—and dividing both sides with eky, a pair of equations is obtained:

(B0 − γ0(k)) cos kx+ (α0(k)− β0(k)) sin kx

=

(
A+∞

0 − jgA

ω

)
cos kx+

(
jA+∞

0 − gA

ω

)
sin kx, (3.29)

(B0 + γ0(k)) cos kx+ (α0(k)− β0(k)) sin kx

= A−∞0 cos kx− jA−∞0 sin kx, (3.30)

which gives a set of simultaneous equations:



B0 − γ0(k) = A+∞
0 − jgA

ω
, (3.31a)

α0(k)− β0(k) = jA+∞
0 − gA

ω
, (3.31b)

B0 + γ0(k) = A−∞0 , (3.31c)

α0(k)− β0(k) = −jA−∞0 . (3.31d)

From the equation set above, the value of B0 is found as,

B0 = −jgA
ω

, (3.32)

and A±∞0 as,

A+∞
0 = −γ0(k) = −j

(
α0(k)− β0(k) +

gA

ω

)
, (3.33)
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A−∞0 = γ0(k)− jgA

ω
= j(α0(k)− β0(k)). (3.34)

The relation of α0(k), β0(k), and γ0(k) in Eq. (3.33) and Eq. (3.34) can be

rearranged with respect to C0 andD0, and this gives one equation for determining C0

and D0:

(a1(k)− j (a2(k)− a3(k)))C0 −
(
a′′1(k)− j

(
a′′2(k)− a′′3(k)

)
D0

)
=
jgA

ω
. (3.35)

In addition to the radiation boundary condition, the zero-circulation condition

can be applied to find C0 andD0. Assuming that the circulation around a plate is zero

and applying the zero-circulation condition Eq. (3.12) with contracting the path of

integration onto L,

Rei
{∮

Γ
eikζW0(ζ) dζ

}
=

∫ −a
−b

e−ku(C0 −D0u
2)√

(u2 − a2)(b2 − u2)
du

=

∫ b

a

eku(C0 −D0u
2)√

(u2 − a2)(b2 − u2)
du = 0. (3.36)

Introducing the functions in Eq. (3.18) and Eq. (3.23), a simplified expression

of Eq. (3.36) is given below:

γ0(−k) = a1(−k)C0 − a′′1(−k)D0 = 0. (3.37)
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Thus, combining Eq. (3.35) and Eq. (3.37), a system of linear equations in C0

and D0 is obtained. Especially in a matrix form,

a1(k)−j(a2(k)−a3(k)) −a′′1 (k)+j(a′′2 (k)−a′′3 (k))

a1(−k) −a′′1(−k)


C0

D0

 =

 jgAω
0

 . (3.38)

Using Cramer’s rule, the unknown constants C0 and D0 can be determined

after some algebra:

C0 =
jgA

ω

a′′1(−k)

∆123
, (3.39)

D0 =
jgA

ω

a1(−k)

∆123
, (3.40)

where,

∆123 = ∆11 − j(∆12 −∆13), (3.41)

∆1i =

∣∣∣∣∣∣∣∣
ai(k) a1(−k)

a′′i (k) a′′1(−k)

∣∣∣∣∣∣∣∣ , for i = 1, 2, 3. (3.42)

Constants∆1i andC0,D0 for variousµ and kb conditions are illustrated below

in Fig. (3.4 - 3.5).
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Figure 3.4 ∆1i versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1,
(e) µ = 0.25, (f) µ = 0.5. ( , ∆11 ; , ∆12; , ∆13.)
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Figure 3.4 ∆1i versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1,
(e) µ = 0.25, (f) µ = 0.5. ( , ∆11 ; , ∆12; , ∆13.) (cont.).
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Figure 3.4 ∆1i versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1,
(e) µ = 0.25, (f) µ = 0.5. ( , ∆11 ; , ∆12; , ∆13.) (cont.).
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Figure 3.5 (left) C0 and (right) D0 versus kb for (a) µ = 0.001, (b) µ = 0.01, (c)
µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5. ( , Rej{C0} and Rej{D0} ; ,
Imj{C0} and Imj{D0}.)
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Figure 3.5 (left) C0 and (right) D0 versus kb for (a) µ = 0.001, (b) µ = 0.01, (c)
µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5. ( , Rej{C0} and Rej{D0} ; ,
Imj{C0} and Imj{D0}.) (cont.)
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Thus, the leading-order term of the complex potential is fully determined

below:

w0(z) = −jgA
ω

e−ikz

[
1− 1

∆123

∫ z

−ia

eikζ
(
a′′1(−k) + a1(−k)ζ2

)√
(ζ2 + a2) (ζ2 + b2)

dζ

]
. (3.43)

Taking the real part of Eq. (3.43)with respect to i andmultiplying the harmonic

term e−jωt, the leading-order term of the velocity potential can be attained.

3.3 Wave scattering by an impermeable plate

An analytical solution can be utilized in a wide variety of ways. One of the usages of

the solution is evaluating the wave attenuation efficiency by comparing the reflected

and transmitted wave amplitude and that of the incident wave. Especially for the

leading-order solution, the leading-order terms of the reflected and transmitted wave

indicate the waves scattered by an impermeable plate.

Let the leading-order reflection coefficientR0 and the leading-order transmis-

sion coefficient T0 defined as the ratio of the wave amplitude of the leading-order

component of the reflected and transmitted wave at x → ±∞ to the incident wave

amplitude.

R0 =
AR0

A
, T0 =

AT0

A
, (3.44)

where AR0 and AT0 denotes the leading-order reflected and transmitted wave ampli-
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tude at x→ ±∞, respectively. These wave amplitudes are calculated from the water

surface elevation of the reflected wave and the transmitted wave.

Substituting the coefficients for the leading-order spatial velocity potential

derived as in Eq. (3.33), and Eq. (3.34), the leading-order spatial velocity potentials

at x→ ±∞ Eq. (2.26) and Eq. (2.27) are rephrased as,

φ+∞
0 (x, y) ∼ −γ0(k)eky+jkx − jgA

ω
eky−jkx, x→ +∞, (3.45)

φ−∞0 (x, y) ∼
(
γ0(k)− jgA

ω

)
eky−jkx, x→ −∞. (3.46)

In Eq. (3.45), the leading-order spatial velocity potential at x → +∞ is the

sum of the spatial velocity potential of the leading-order reflected wave and the spatial

velocity potential of the incident wave:

φ+∞
0 (x, y) ∼ φR0(x, y) + φI(x, y). (3.47)

From Eq. (3.47) and the linearized dynamic free surface boundary condition,

the free surface elevation of leading-order reflected wave, ηR0, is calculated as below:

ηR0 = −1

g

∂

∂t
(ΦR0(x, 0, t))

= −1

g

∂

∂t

(
φR0(x, 0)e−jωt

)
= −1

g

∂

∂t

(
−γ0(k)ej(kx−ωt)

)
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= −j ω
g
γ0(k)ej(kx−ωt). (3.48)

Since γ0(k) is predefined in Eq. (3.23) as,

γ0(k) = C0a1(k)−D0a
′′
1(k)

=
jgA

ω

1

∆123

(
a′′1(−k)a1(k)− a1(−k)a′′1(k)

)
=
jgA

ω

∆11

∆123
, (3.49)

the leading-order reflected wave elevation finally has the form of,

ηR0 = −j ω
g

jgA

ω

∆11

∆123
ej(kx−ωt) = A

∆11

∆123
ej(kx−ωt). (3.50)

Thus, from Eq. (3.50), the leading-order reflected wave amplitude is found

below:

AR0 =

∣∣∣∣A ∆11

∆123

∣∣∣∣ = A
|∆11|√

∆2
11 + (∆12 −∆13)2

. (3.51)

Similarly, the leading-order spatial velocity potential at x→ −∞ in Eq. (3.46)

can be thought of as the spatial velocity potential of the leading-order transmitted

wave:

φ−∞0 (x, y) ∼ φT0(x, y). (3.52)

From Eq. (3.52) and the linearized dynamic free surface boundary condition,
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the leading-order transmitted wave is obtained as,

ηT0 = −1

g

∂

∂t

(
Φ+∞

T0 (x, 0, t)
)

= −1

g

∂

∂t

(
φ+∞

T0 (x, 0)e−jωt
)

= −1

g

∂

∂t

((
γ0(k)− jgA

ω

)
e−j(kx+ωt)

)
= j

ω

g

(
γ0(k)− jgA

ω

)
e−j(kx+ωt)

= j
ω

g

(
jgA

ω

∆11

∆123
− jgA

ω

)
e−j(kx+ωt)

= A
−j(∆12 −∆13)

∆123
e−j(kx+ωt). (3.53)

Then, the wave amplitude of the leading-order transmitted wave will be,

AT0 =

∣∣∣∣A−j(∆12 −∆13)

∆123

∣∣∣∣
= A

|∆12 −∆13|√
∆2

11 + (∆12 −∆13)2
. (3.54)

Dividing Eq. (3.51) and Eq. (3.54) with the incident wave amplitude A,

leading-order reflection coefficient and transmission coefficient can be obtained:

R0 =
AR0

A
=

|∆11|√
∆2

11 + (∆12 −∆13)2
, (3.55)

T0 =
AT0

A
=

|∆12 −∆13|√
∆2

11 + (∆12 −∆13)2
(3.56)
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The reflection and transmission coefficients in Eq. (3.55) and Eq. (3.56) in

various wave and breakwater conditions are plotted in Fig. (3.6) and Fig. (3.7).

As in the function of kb for different values of µ, Fig. (3.55) illustrates the

leading-order reflection coefficients, and Fig. (3.56) shows the leading-order trans-

mission coefficients. Assuming that k is fixed, larger kb means that the breakwater

is more extended into the bottom. Thus, the physical explanation of increasing R0

and decreasing T0 is obvious. In the view of fixed b, small kb indicates the long

wavelength. If the incident wave has a very long wavelength, then the wave would

not even sense the existence of the plate. Therefore, the reflection is small, and most

waves are transmitted.

When µ = 0, the plate intersects the surface, and R0 keeps increasing as

kb becomes larger. However, in contrast, when µ has a specific value, R0 has the

maximum value in the intermediate value of kb. This is because µ represents the

ratio of a and b, not the difference between them. If b becomes extremely large, a

would also have a large value since µ is a constant. This means that the breakwater

goes further from the water surface and cannot reflect the surface waves effectively.

Therefore, for each µ > 0, R0 will have its maximum value on a certain intermediate

value of kb.
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Figure 3.6 Leading-order reflection coefficient R0 versus kb: ∗ , µ = 0.001; ,
µ = 0.01; , µ = 0.05; , µ = 0.1; , µ = 0.25; , µ = 0.5.
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Figure 3.7 Leading-order transmission coefficient T0 versus kb: ∗ , µ = 0.001; ,
µ = 0.01; , µ = 0.05; , µ = 0.1; , µ = 0.25; , µ = 0.5.
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Chapter 4. First-order solution

4.1 First-order solution for the case of a single plate

As proposed in the formulation section, it is assumed that the velocity potential

comprises the perturbed sum of the leading-order and the first-order velocity potential,

which represent the potential due to the impermeable plate and the permeable plate,

respectively. In this chapter, the first-order solution for the case of a single permeable

plate is sought.

In a similar way that the complex potential and the reduced potential are

introduced to seek the solution for the leading-order problem, the first-order complex

potential w1(z) and the first-order reduced potential W1(z) are proposed as in Eq.

(4.1) and Eq. (4.2):

w1(z) = φ1 + iψ1, Imi{z} < 0, (4.1)

W1(z) =
dw1(z)

dz
+ ikw1(z), Imi{z} < 0. (4.2)

As in the previous chapter, the reduced potentialW1(z) can be continued into

Imi{z} > 0 by Schwarz’s reflection principle since the imaginary part of W1(z) is

zero along the x-axis.

Firstly, the boundary condition on L was sought before reflecting to L′. Using
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the notation of Eq. (4.2), the boundary condition of the first-order reduced potential

on the permeable plate becomes,

Rei{W1(z)} =
∂φ1

∂x
− kψ1, on L. (4.3)

Unlike in the leading-order problem, the partial derivative of the spatial ve-

locity potential is not zero (see Eq. (2.25)); thus, defining the boundary condition on

the plate is necessary. In order to fully describe the boundary condition of the first-

order reduced potential on the plate, the partial derivative of the first-order spatial

potential φ1 with respect to x and the first-order stream function must be derived.

When the breakwater comprises a single permeable plate, the boundary condition of

the first-order spatial velocity potential on the breakwater in Eq. (2.25) becomes,

∂φ1

∂x
= −jk(φ+

0 (0, y)− φ−0 (0, y)), on L. (4.4)

Taking the real part of the leading-order complex potential, which is presented

in Eq. (3.43), the leading-order spatial velocity potential on the plate can be obtained:

φ0(x, y) = Rei {w0(z)}

= Rei

{
−jgA

ω
e−ikz

[
1− 1

∆123

∫ z

−ia

eikζ
(
a′′1(−k) + a1(−k)ζ2

)√
(ζ2 + a2) (ζ2 + b2)

dζ

]}
. (4.5)
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Contracting the integration path onto the right and left sides of the plate, the

leading-order spatial velocity potential on both sides of the plates can be calculated

as follows:

φ±0 (0, y) = lim
x→0±

φ0(x, y)

= Rei

{
−jgA

ω
eky

[
1− 1

∆123

∫ iy+0±

−ia

eikζ
(
a′′1(−k) + a1(−k)ζ2

)√
(ζ2 + a2) (ζ2 + b2)

dζ

]}

= −jgA
ω

eky

[
1∓ 1

∆123

∫ y

−a

e−kη
(
a′′1(−k)− a1(−k)η2

)√
(η2 − a2) (b2 − η2)

dη

]

= −jgA
ω

eky

[
1∓ 1

∆123

(∫ y

−b

e−kη
(
a′′1(−k)− a1(−k)η2

)√
(η2 − a2)(b2 − η2)

dη

+

∫ −b
−a

e−kη
(
a′′1(−k)− a1(−k)η2

)√
(η2 − a2)(b2 − η2)

dη

)]
. (4.6)

Defining

γ0(−k, y) = −jgA
ω

1

∆123

∫ y

−b

e−kη
(
a′′1(−k)− a1(−k)η2

)√
(η2 − a2)(b2 − η2)

dη, (4.7)

Eq. (4.6) is shortened to,

φ±0 (0, y) = eky
[
−jgA

ω
∓ γ0(−k, y)

]
, on L. (4.8)

Substituting Eq. (4.8) into Eq. (4.4) gives a complete expression of the partial
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derivative of the first-order spatial velocity potential with respect to x:

∂φ1

∂x
= −jk

(
eky
[
−jgA

ω
− γ0(−k, y)

]
− eky

[
−jgA

ω
+ γ0(−k, y)

])
= j 2kekyγ0(−k, y). (4.9)

To utilize Eq. (4.9) in finding the first-order stream function, the equation

on the relation of the first-order spatial velocity potential and the first-order stream

function is brought about. Applying the Cauchy-Riemann equation on Eq. (4.1),

∂φ1

∂x
=
∂ψ1

∂y
. (4.10)

Integrating the both sides of Eq. (4.4) with respect to y, especially y ∈

(−b, −a), ψ1(x, y) on the barrier can be derived. Although previous studies (Evans,

1970, etc.) which dealt with impermeable breakwaters nicely defined ψ1(0, y) so that

the constant of integration becomes zero, or just gave the indefinite integral function

of ∂ψ1

∂y with respect to y, the arbitrariness in φ1 should be resolved in this study

since there is a flow through the permeable breakwater. Thus, this study defined the

first-order stream function on L as the sum of the definite integral of ∂ψ1

∂y from −b to

y and the constant of integration, I:

ψ1(0, y) =

∫ y

−b

(
j 2kekηγ0(−k, η)

)
dη + I. (4.11)
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Using integration by parts and substituting Eq. (4.7) into Eq. (4.11), ψ1(x, y)

along the plate is obtained as a function of y:

ψ1(0, y) =
[
j 2ekηγ0(−k, η)

]y
−b
−
∫ y

−b
j 2ekη

d (γ0(−k, η))

dη
dη + I

= j 2ekyγ0(−k, y)− j 2e−kbγ0(−k,−b)

−
∫ y

−b
j 2ekη

(
−jgA

ω

1

∆123

e−kη
(
a′′1(−k)− a1(−k)η2

)√
(η2 − a2) (b2 − η2)

)
dη + I

= j 2ekyγ0(−k, y)

− gA

ω

2

∆123

∫ y

−b

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη + I, on L. (4.12)

γ0(−k,−b) = γ0(−k) = 0 on L, thus eliminated. Now, substituting Eq. (4.9)

and Eq. (4.12) into Eq. (4.3), the boundary condition of the reduced potential at the

permeable plate can be obtained:

Rei{W1(z)} =
∂φ1

∂x
− kψ1

= j 2kekyγ0(−k, y)− j 2kekyγ0(−k, y)

+
gA

ω

2k

∆123

∫ y

−b

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη − kI

=
gA

ω

2k

∆123

∫ y

−b

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη − kI

= f(y), on L. (4.13)
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And this can be reflected in the upper-half complex plane:

Rei {W1(z)} = f(−|y|), on L+ L′. (4.14)

Solving forW1(z) which satisfies Eq. (4.13) is a non-homogeneous Riemann-

Hilbert problem, and the solution that vanishes at infinity can be found as,

W1(z) =
C1 +D1z

2 + 2
π

∫ −a
−b

√
(y2−a2)(b2−y2)yf(y)

y2+z2
dy√

(z2 + a2)(z2 + b2)
, (4.15)

where C1, D1 are some constants (Muskhelishvili, 1977).

Similarly, from the leading order solution, the complex potentialw1(z) can be

obtained as,

w1(z) = e−ikz
[
B1 +

∫ z

−ia
eikζW1(ζ) dζ

]
, (4.16)

where B1 is a constant.

Especially when the integration path is taken to follow the plate, i.e., y ∈

(−b,−a), the complex potential on the plate is as below:

w±1 (iy) = eky
[
B1 +

∫ +iy+0±

−ia
eikζW1(ζ) dζ

]
= eky

[
B1 −

∫ y

−a
e−kuImi

{
W±1 (iu)

}
du

+i

∫ y

−a
e−kuRei

{
W±1 (iu)

}
du

]
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= eky
[
B1 −

∫ y

−a
e−kuImi

{
W±1 (iu)

}
du+ i

∫ y

−a
e−kuf(u) du

]
. (4.17)

Taking the imaginary part of Eq. (4.17) only, the first-order stream function

on the plate is obtained:

ψ1(0, y) = Imi

{
w±1 (iy)

}
= eky

∫ y

−a
e−kuf(u) du, on L. (4.18)

Here, ψ1(0, y) in Eq. (4.12) and ψ1(0, y) in Eq. (4.18) should be the same. In

other words, the integral of φ(0, y) along the plate and the imaginary part ofw1(z) on

the plate must have the same value. Hence, one equation for determining the constant

of integration, I , is presented as:

j 2ekyγ0(−k, y)− gA

ω

2

∆123

∫ y

−b

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη + I

= eky
∫ y

−a
e−ku

(
gA

ω

2k

∆123

∫ u

−b

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη − kI

)
du. (4.19)

When y → −b,

0 + 0 + I

=
gA

ω

2k

∆123
e−kb

∫ −b
−a

e−ku
∫ u

−b

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη du

− kIe−kb
∫ −b
−a

e−ku du
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=
gA

ω

2k

∆123
e−kb

∫ −b
−a

e−ku
∫ u

−b

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη du

+
(

1− ek(a−b)
)
I. (4.20)

Therefore, rearranging the equation above gives the value of I:

I =
gA

ω

2k

∆123
e−ka

∫ −b
−a

e−ku
∫ u

−b

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη du. (4.21)

I differs by the wave number k and µ, the ratio of a and b. The behavior of I

is well presented in Fig. (4.1).

Thus, f(y) is now fully defined by substituting the expression of I in Eq.

(4.21) into Eq. (4.13):

f(y) =
gA

ω

2k

∆123

∫ y

−b

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη

− kgA
ω

2k

∆123
e−ka

∫ −b
−a

e−ku
∫ u

−b

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη du

=
gA

ω

2k

∆123

[∫ y

−b

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη

−ke−ka
∫ −b
−a

e−ku
∫ u

−b

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη du

]

=
gA

ω

2k

∆123

[∫ y

−b

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη − kĨ

]

=
gA

ω
f̃(y). (4.22)
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Figure 4.1 I versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e)
µ = 0.25, (f) µ = 0.5. ( , Rej{I} ; , Imj{I}.)
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Figure 4.1 I versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e)
µ = 0.25, (f) µ = 0.5. ( , Rej{I} ; , Imj{I}.) (cont.).
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Figure 4.1 I versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e)
µ = 0.25, (f) µ = 0.5. ( , Rej{I} ; , Imj{I}.) (cont.).
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In Eq. (4.22), it is worth noting that the first integral term can be expressed in

elliptic integral form.

∫ b

−y

a′′1(−k)− a1(−k)η2√
(η2 − a2)(b2 − η2)

dη =
a′′1(−k)

b
F (ϕ,m)− a1(−k)bE(ϕ,m), (4.23)

where F (ϕ,m) is the incomplete elliptic integral of the first kind and E(ϕ,m) is the

incomplete elliptic integral of the second kind (Byrd and Friedman, 1954, p. 56), and

each parameter represents,

ϕ = sin−1

√
b2 − y2

b2 − a2
, m =

b2 − a2

b2
. (4.24)

Using these continuous elliptic integral functions and the previously calculated

value of I , f(y) with various kb and µ can be plotted as shown in Fig. (4.2).

To define the unknown constants B1, C1, and D1, the same way used in the

leading-order problem can be utilized. First, the radiational boundary conditions will

be applied. SinceW1(z)−D1 → 0 as |z| → ±∞, for large z,

w1(z) ∼ e−ikz
[
B1 +

∫ i∞

−ia
eikuW1(ζ) dζ

+

∫ z

i∞
eikζ (W1(ζ)−D1) dζ − iD1

k
eikζ

]
∼ e−ikz

[
B1 +

∫ i∞

−ia
eikζW1(ζ) dζ − iD1

k
eikz

]
. (4.25)
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Figure 4.2 f(y) versus y for (top) kb = 0.5, (center) kb = 1.5, (bottom) kb = 2.5.
(a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5.
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Figure 4.2 f(y) versus y for (top) kb = 0.5, (center) kb = 1.5, (bottom) kb = 2.5.
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Figure 4.2 f(y) versus y for (top) kb = 0.5, (center) kb = 1.5, (bottom) kb = 2.5.
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Figure 4.2 f(y) versus y for (top) kb = 0.5, (center) kb = 1.5, (bottom) kb = 2.5.
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As in the previous chapter, the integration path along the y-axis is split into

three intervals by defining functions as below:

F (u) =
gA

ω

2

π

∫ −a
−b

√
(y2 − a2)(b2 − y2)yf̃(y)

y2 − u2
dy =

gA

ω
F̃ (u), (4.26)

a1(k, F ) =
gA

ω

∫ b

a

e−kuF̃ (u)√
(u2 − a2)(b2 − u2)

du =
gA

ω
a1(k, F̃ ), (4.27)

a2(k, F ) =
gA

ω

∫ a

−a

e−kuF̃ (u)√
(a2 − u2)(b2 − u2)

du =
gA

ω
a2(k, F̃ ), (4.28)

a3(k, F ) =
gA

ω

∫ ∞
b

e−kuF̃ (u)√
(u2 − a2)(u2 − b2)

du =
gA

ω
a3(k, F̃ ) (4.29)

γ1(k) = C1a1(k)−D1a
′′
1(k) + a1(k, F ), (4.30)

α1(k) = C1a2(k)−D1a
′′
2(k) + a2(k, F ), (4.31)

β1(k) = C1a3(k)−D1a
′′
3(k) + a3(k, F ), (4.32)

δ1(k) =
gA

ω

∫ b

a
e−kuf̃(u) du =

gA

ω
δ̃1(k). (4.33)

Then, Eq. (4.16) can be simplified:

w1(z) ∼ e−ikz [B1 ∓ γ1(k) + i (α1(k)− β1(k) + δ1(k))]− iD1

k
. (4.34)

Although α1(k), β1(k) and γ1(k) cannot be presented since they require a

numerical calculation of F (u), δ1(k) can be illustrated since it only needs the value

of f(y). δ1(k) for various kb is represented as in Fig. (4.3).
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Figure 4.3 δ1(k) versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1,
(e) µ = 0.25, (f) µ = 0.5. ( , Rej{δ1(k)} ; , Imj{δ1(k)}.)
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Figure 4.3 δ1(k) versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1,
(e) µ = 0.25, (f) µ = 0.5. ( , Rej{δ1(k)} ; , Imj{δ1(k)}.) (cont.)
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Around the plate, the zero-circulation condition is enforced:

Rei
{∮

Γ
eikuW1(u) du

}

=

∫ −a
−b

e−ku
C1 −D1u

2 + 2
π

∫ −a
−b

√
(y2−a2)(b2−y2)yf(y)

y2−u2 dy√
(u2 − a2)(b2 − u2)

du

= 0. (4.35)

Eq. (4.35) can be shortened using the notations above:

γ1(−k) = C1a1(−k)−D1a
′′
1(−k) + a1(−k, F ) = 0. (4.36)

We also defined the radiation boundary conditions at x → ±∞ in Eq. (2.28)

and Eq. (2.29). Substituting the first-order complex potential Eq. (4.34) into these

radiation boundary conditions gives,

γ1(k) = j (α1(k)− β1(k) + δ1(k)) . (4.37)

Combining Eq. (4.36) and Eq. (4.37) gives simultaneous linear equations:


γ1(k) = j (α1(k)− β1(k) + δ1(k)) ,

γ1(−k) = 0 .

(4.38)
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Rewriting in a matrix form,

a1(k)−j(a2(k)−a3(k)) −a′′1 (k)+j(a′′2 (k)−a′′3 (k))

a1(−k) −a′′1(−k)


C1

D1



=

−a1(k, F ) + j (a2(k, F )− a3(k, F ) + δ1(k))

−a1(−k, F )

 . (4.39)

By Cramer’s rule, B1, C1, and D1 are obtained to be,

B1 = 0, (4.40)

C1 =
∆′′F1 − j (∆′′F2 −∆′′F3 − a′′1(−k)δ1(k))

∆123
, (4.41)

D1 =
∆F1 − j (∆F2 −∆F3 − a1(−k)δ1(k))

∆123
, (4.42)

where,

∆Fi =

∣∣∣∣∣∣∣∣
ai(k) a1(−k)

ai(k, F ) a1(−k, F )

∣∣∣∣∣∣∣∣ , i = 1, 2, 3 (4.43)

∆′′Fi =

∣∣∣∣∣∣∣∣
a′′i (k) a′′1(−k)

ai(k, F ) a1(−k, F )

∣∣∣∣∣∣∣∣ . i = 1, 2, 3. (4.44)

Now, the first-order solution of the complex potential is fully defined, and the
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spatial potential is also obtained from taking the real part of the complex potential:

φ1(x, y) = Rei{w1(z)}. (4.45)

4.2 Wave scattering by a permeable plate

In order to consider the effect of the permeability of the plate, perturbed expressions

for a reflection coefficient and a transmitted coefficient are presented in this section.

Using the constants we obtained, the first-order spatial wave potential at x→

+∞ is calculated as below:

φ+∞
1 (x, y) ∼ eky [(B1 − γ1(k)) cos kx+ (α1(k)− β1(k) + δ1(k)) sin kx]

∼ eky [−γ1(k) cos kx− jγ1(k) sin kx] (∵ Eq. (4.37))

∼ −γ1(k)ejkx+ky

∼ φ+∞
R1 (x, y). (4.46)

To distinguish the real and imaginary part of γ1(k) with respect to j, we

rearranged the expression of γ1(k).

γ1(k) = C1a1(k)−D1a
′′
1(k) + a1(k, F )
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=
a1(k)∆′′F1 − j (a1(k)∆′′F2 − a1(k)∆′′F3 − a1(k)a′′1(−k)δ1(k))

∆123

− a′′1(k)∆F1 − j (a′′1(k)∆F2 − a′′1(k)∆F3 − a′′1(k)a1(−k)δ1(k))

∆123

+ a1(k, F )

=
a1(k)∆′′F1 − a′′1(k)∆F1

∆123
+ a1(k, F )

− j−a1(−k, F )(∆2 −∆3)− (a2(k, F )− a3(k, F ) + δ1(k))∆11

∆123

= −j 1

∆123

(
a1(k, F )(∆12 −∆13)− a1(−k, F )(∆2 −∆3)

−
(
a2(k, F )− a3(k, F ) + δ1(k)

)
∆11

)
= −jgA

ω

1

∆123

(
a1(k, F̃ )(∆12 −∆13)− a1(−k, F̃ )(∆2 −∆3)

−
(
a2(k, F̃ )− a3(k, F̃ ) + δ̃1(k)

)
∆11

)
= −jgA

ω

Λ

∆123
, (4.47)

where,

∆i =

∣∣∣∣∣∣∣∣
ai(k) a1(k)

a′′i (k) a′′1(k)

∣∣∣∣∣∣∣∣ , i = 2, 3, (4.48)

Λ = a1(k, F̃ )(∆12 −∆13)− a1(−k, F̃ )(∆2 −∆3)− (a2(k, F̃ )− a3(k, F̃ ) + δ̃1(k))∆11. (4.49)

With this simplified expression, the first-order reflectedwave atx→∞ below:

ηR1 = −1

g

∂

∂t

(
Φ+∞

R1 (x, 0, t)
)

71



= −1

g

∂

∂t

(
φ+∞

R1 (x, 0)e−jωt
)

= −1

g

∂

∂t

(
−γ1(k)ej(kx−ωt)

)
= −1

g
(−γ1(k))(−jω)ej(kx−ωt)

= −A Λ

∆123
ej(kx−ωt). (4.50)

From Eq. (4.50), the first-order reflected wave amplitude is,

AR1 =

∣∣∣∣−A Λ

∆123

∣∣∣∣
= A

|Λ|√
∆2

11 + (∆12 −∆13)2
. (4.51)

Likewise, the first-order spatial velocity potential at x→ −∞ is,

φ−∞1 (x, y) ∼ eky [(B1 + γ1(k)) cos kx+ (α1(k)− β1(k) + δ1(k)) sin kx]

∼ eky [γ1(k) cos kx− jγ1(k) sin kx] (∵ Eq. (4.37))

∼ γ1(k)e−jkx+ky

∼ φ−∞T1 (x, y). (4.52)

From the result above, the first-order transmitted wave can be obtained.

ηT1 = −1

g

∂

∂t

(
Φ+∞

T1 (x, 0, t)
)

72



= −1

g

∂

∂t

(
φ+∞

T1 (x, 0)e−jωt
)

= −1

g

∂

∂t

(
γ1(k)e−j(kx+ωt)

)
= −1

g
γ1(k)(−jω)e−j(kx+ωt)

= A
Λ

∆123
e−j(kx+ωt). (4.53)

Therefore, the first-order transmitted wave amplitude is calculated below:

AT1 =

∣∣∣∣A Λ

∆123

∣∣∣∣
= A

|Λ|√
∆2

11 + (∆12 −∆13)2
. (4.54)

Consequently, from the perturbed solution form as in Eq. (2.23), the reflected

wave and the transmitted wave are expressed in the perturbed series of the form,

ηR = ηR0 + εηR1

=
A (∆11 − εΛ)

∆123
ej(kx−ωt), (4.55)

and,

ηT = ηT0 + εηT1

=
−A (j(∆12 −∆13)− εΛ)

∆123
e−j(kx+ωt). (4.56)
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Dividing Eq. (4.55) and Eq. (4.56) with the incident wave amplitude A, the

reflection coefficient and transmission coefficient considering the permeability of the

plate are represented below.

R =
AR

A
=

|∆11 − εΛ|√
∆2

11 + (∆12 −∆13)2
. (4.57)

T =
AT

A
=
|j(∆12 −∆13)− εΛ|√
∆2

11 + (∆12 −∆13)2
. (4.58)

4.3 Numerical approximate integration of R and T

Unlike in the case of the leading-order problem, the reflection and transmission coef-

ficients of the first-order solution for the velocity potential cannot be easily evaluated

with ordinary sense since it has an improper integral when calculating F (u) in Eq.

(4.26). In Eq. (4.26), in the denominator of the integrand, u2 can have the same

value with y2 when y ∈ (−b,−a) and u ∈ (a, b). Thus, this integral cannot be

calculated in the normal quadrature rule, and it has the same form of finite Hilbert

transform—or Cauchy principal value integral—of
√

(y2 − a2)(b2 − y2)yf(y). This

type of singular integral equation can be seen in numerous practical problems in

science and engineering disciplines (Keller and Wróbel, 2016; Kaya and Erdogan,

1987). Therefore, an appropriate scheme for the numerical evaluation of this integral

is needed.
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In this paper, following the uniform approximation methods to finite Hilbert

transform by Hasegawa (2004), F (u) was numerically calculated with interpolating

numerator with Chebyshev polynomials. First of all, Eq. (4.26) is transformed with

subtracting out the singularity, which is the typical procedure for approximating

the principal value integral (Kumar, 1980; Davis, 1984; Hasegawa and Torii, 1991;

Diethelm, 1999; Hasegawa, 2004; Keller andWróbel, 2016). Let the Cauchy principal

value ofF (u) as 1
π I(g;u2), where g represents the numerator of the integrand inF (u).

I(g;u2) = 2 p.v.
∫ −a
−b

√
(y2 − a2)(b2 − y2)yf(y)

y2 − u2
dy

= p.v.
∫ a2

b2

√
(τ − a2)(b2 − τ)f(−

√
τ)

τ − u2
dτ

= p.v.
∫ a2

b2

g(t)

τ − u2
dτ

=

∫ a2

b2

g(τ)− g(u2)

τ − u2
dτ + p.v.

∫ a2

b2

g(u2)

τ − u2
dτ

=

∫ a2

b2

g(τ)− g(u2)

τ − u2
dτ + g(u2) ln

(
a2 − u2

u2 − b2

)
. (4.59)

Eq. (4.59) may be evaluated by approximating g(τ) as a polynomial pM (t),

which is the finite sum of Chebyshev polynomial of the first kind Tr(t) (Hasegawa

and Torii, 1991). Here, τ is the variable, that the interval of t, [−1, 1], is mapped to

[b2, a2] by the affine transformation.

τ =
a2 − b2

2
t+

a2 + b2

2
, t ∈ [−1, 1]. (4.60)
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When t is given as t = cos θ, Tr(t) = cos rθ. Then, the function g(τ) can be

approximated to pM (t) as below (Clenshaw and Curtis, 1960).

pM (t) =
M∑
r=0

′′aMr Tr(t), −1 ≤ t ≤ 1, (4.61)

where double prime is the symbol of the summation whose first and last terms are

halved. Selecting tq = cos (πq/M), q = 0, · · · ,M as the M + 1 interpolating

abscissa, the interpolation condition becomes,

g (τq) = pM (tq) = pM

(
cos
(πq
M

))
, q = 0, · · · ,M. (4.62)

Here, τq = a2−b2
2 tq + a2+b2

2 . Then, the coefficients aMr of the approximating

polynomial pM (t) in Eq. (4.61) can be calculated as below:

aMr =
2

M

M∑
q=0

′′g (τq) cos
(πqr
M

)
, r = 0, · · · ,M. (4.63)

Hasegawa and Torii (1994) have shown that the integral term in Eq. (4.59)

can be evaluated by substituting pM (t) into g(τ) and adopting the quadrature rule

using Chebyshev expansion in terms of Tr(t). Since the interval of integration is not

[−1, 1], u2 should not be directly substituted into the quadrature rule which Hasegawa

and Torii (1994) presented. Therefore, c ∈ (−1, 1) is used to map the singular point
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u2 ∈ (a2, b2) into the interval (−1, 1), which has the mapping function of,

u2 =
b2 − a2

2
c+

a2 + b2

2
, c ∈ (−1, 1). (4.64)

Now, for pM (t) defined in Eq. (4.61), the approximated quadrature rule for

the integral in Eq. (4.59) is,

∫ b2

a2

pM (t)− pM (c)

t− u2
dt = 4

M−1∑
r=0

′AMr Tr(c), −1 < c < 1, (4.65)

where AMr is defined as,

AMr =

[(M−r−1)/2]∑
m=0

aM2m+r+1

2m+ 1
, ≤ r ≤M − 1, (4.66)

with using 1
2a

M
M instead of aMM (Hasegawa, 2004). Here, [�] is the floor function that

gives the output of the greatest integer less than or equal to �.

In sum, QM (g;u2), which is the approximation to I(g;u2) in Eq. (4.59), is

given as follows:

QM (g;u2) = 4
M−1∑
r=0

′AMr Tr(c) + g(u2) ln

(
a2 − u2

u2 − b2

)
. (4.67)

Employing Eq. (4.67) to evaluate F (u) in Eq. (4.26) and sequentially calculat-

ing a1(k, F ) and γ1(k), in Eq. (4.27) and Eq. (4.30), the reflection and transmission
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coefficient considering the permeability of the plate can be illustrated.

Before computing the reflection and transmission coefficients, the convergence

of aMM was examined. aMM , the last coefficient of the approximating polynomial weighs

heavily when calculating the upper limit of error. Thus, the reasonable M making

the absolute tolerance of aMM as 10−6 was taken. Therefore, as shown in Fig. (4.4),

M = 212 was used to determine the number of interpolating abscissa.

2 4 6 8 10 12 14
10

-8

10
-6

10
-4

10
-2

10
0

Figure 4.4 aMM in log scale for µ = 0.001 and kb = 1.5.

UsingM + 1 = 212 + 1 points, F (u) was evaluated. The outline of F (u) can

be found in Fig. (4.5). Corresponding ai(k, F ), a1(−k, F ), ∆Fi and ∆′′Fi are shown

in Fig. (4.8 - 4.9).
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(a)

Figure 4.5 F (u) versus u for (top) kb = 0.5, (center) kb = 1.5, (bottom) kb = 2.5.
(a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5.
( , Rej{F (u)} ; , Imj{F (u)}.)
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Figure 4.5 F (u) versus u for (top) kb = 0.5, (center) kb = 1.5, (bottom) kb = 2.5.
(a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5.
( , Rej{F (u)} ; , Imj{F (u)}.) (cont.)
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Figure 4.5 F (u) versus u for (top) kb = 0.5, (center) kb = 1.5, (bottom) kb = 2.5.
(a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5.
( , Rej{F (u)} ; , Imj{F (u)}.) (cont.)
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Figure 4.5 F (u) versus u for (top) kb = 0.5, (center) kb = 1.5, (bottom) kb = 2.5.
(a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5.
( , Rej{F (u)} ; , Imj{F (u)}.)(cont.)
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Figure 4.5 F (u) versus u for (top) kb = 0.5, (center) kb = 1.5, (bottom) kb = 2.5.
(a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5.
( , Rej{F (u)} ; , Imj{F (u)}.) (cont.)
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Figure 4.5 F (u) versus y for (top) kb = 0.5, (center) kb = 1.5, (bottom) kb = 2.5.
(a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5.
( , Rej{F (u)} ; , Imj{F (u)}.) (cont.)
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Figure 4.6 (left) Rej{ai(k, F )} and (right) Imj{ai(k, F )} versus kb for (a)µ = 0.001,
(b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5. ( , a1(k, F ) ;

, a2(k, F ); , a3(k, F ).)
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Figure 4.6 (left) Rej{ai(k, F )} and (right) Imj{ai(k, F )} versus kb for (a)µ = 0.001,
(b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5. ( , a1(k, F ) ;

, a2(k, F ); , a3(k, F ).) (cont.)
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Figure 4.7 (left) Rej{a1(−k, F )} and (right) Imj{a1(−k, F )} versus kb for (a) µ =
0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5.
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Figure 4.7 (left) Rej{a1(−k, F )} and (right) Imj{a1(−k, F )} versus kb for (a) µ =
0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5 (cont.).
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Figure 4.8 (left) Rej{∆Fi} and (right) Imj{∆Fi} versus kb for (a) µ = 0.001, (b)
µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5. ( , ∆F1 ; ,
∆F2; , ∆F3.)
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Figure 4.8 (left) Rej{∆Fi} and (right) Imj{∆Fi} versus kb for (a) µ = 0.001, (b)
µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5. ( , ∆F1 ; ,
∆F2; , ∆F3.) (cont.)
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Figure 4.9 (left) Rej{∆′′Fi} and (right) Imj{∆′′Fi} versus kb for (a) µ = 0.001, (b)
µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5. ( , ∆′′F1 ; ,
∆′′F2; , ∆′′F3.)
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Figure 4.9 (left) Rej{∆′′Fi} and (right) Imj{∆′′Fi} versus kb for (a) µ = 0.001, (b)
µ = 0.01, (c) µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5. ( , ∆′′F1 ; ,
∆′′F2; , ∆′′F3.) (cont.)
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Then, from Eq. (4.41) and Eq. (4.42), C1 and D1 can be calculated.
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Figure 4.10 (left) C1 and (right) D1 versus kb for (a) µ = 0.001, (b) µ = 0.01, (c)
µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5. ( , Rej{C1} and Rej{D1} ; ,
Imj{C1} and Imj{D1}.)
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Figure 4.10 (left) C1 and (right) D1 versus kb for (a) µ = 0.001, (b) µ = 0.01, (c)
µ = 0.05, (d) µ = 0.1, (e) µ = 0.25, (f) µ = 0.5. ( , Rej{C1} and Rej{D1} ; ,
Imj{C1} and Imj{D1}.) (cont.)
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Λ in Eq. (4.49) determines the magnitude of the first-order term in reflec-

tion and transmission coefficients, and critically affects the applicable range of the

perturbation method. Hence, ∆i and Λ were also plotted.
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Figure 4.11 ∆i versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1,
(e) µ = 0.25, (f) µ = 0.5. ( , ∆2; , ∆3.)
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Figure 4.11 ∆i versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1,
(e) µ = 0.25, (f) µ = 0.5. ( , ∆2; , ∆3.) (cont.).
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Figure 4.11 ∆i versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1,
(e) µ = 0.25, (f) µ = 0.5. ( , ∆2; , ∆3.) (cont.).
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Figure 4.12 Λ versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1,
(e) µ = 0.25, (f) µ = 0.5. ( , Rej{Λ}; , Imj{Λ}.)
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Figure 4.12 Λ versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1,
(e) µ = 0.25, (f) µ = 0.5. ( , Rej{Λ}; , Imj{Λ}.) (cont.).
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Figure 4.12 Λ versus kb for (a) µ = 0.001, (b) µ = 0.01, (c) µ = 0.05, (d) µ = 0.1,
(e) µ = 0.25, (f) µ = 0.5. ( , Rej{Λ}; , Imj{Λ}.) (cont.).
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Finally, the reflection and transmission coefficients considering the permeable

effect are presented. In Fig. (4.12), it can be found that both the real part and the

imaginary part of Λ become negative values after crossing certain point. Also, its

magnitude diverges when kb grows. This indicates that the range of kb should be

limited for the perturbation method to be valid. Thus, the range that Λ is positive, and

has smaller value than ∆11 in the leading order term is only considered to calculate

the reflection and transmission coefficients.

In Fig. (4.13-4.24), it is seen that both the reflection coefficient and the trans-

mission coefficient decrease as the perturbation parameter ε increases. That is to say,

due to the permeability effect, the total wave energy is dissipated while going through

the permeable plate. Especially this wave energy decline becomes more evident as µ

is smaller, which means that the more the breakwater stretches to the water surface,

the bigger the permeability effect influences the reflection and transmission coeffi-

cients. Also, considering the valid range of kb, it is found that the perturbation method

solution is effective when kb has small value.
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Figure 4.13 Reflection coefficient R versus kb for µ = 0.001: , ε = 0; ,
ε = 0.25; , ε = 0.5; , ε = 1.
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Figure 4.14 Transmission coefficient T versus kb for µ = 0.001: , ε = 0; ,
ε = 0.25; , ε = 0.5; , ε = 1.
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Figure 4.15Reflection coefficientR versus kb forµ = 0.01: , ε = 0; , ε = 0.25;
, ε = 0.5; , ε = 1.
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Figure 4.16 Transmission coefficient T versus kb for µ = 0.01: , ε = 0; ,
ε = 0.25; , ε = 0.5; , ε = 1.
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Figure 4.17Reflection coefficientR versus kb forµ = 0.05: , ε = 0; , ε = 0.25;
, ε = 0.5; , ε = 1.
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Figure 4.18 Transmission coefficient T versus kb for µ = 0.05: , ε = 0; ,
ε = 0.25; , ε = 0.5; , ε = 1.
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Figure 4.19 Reflection coefficientR versus kb for µ = 0.1: , ε = 0; , ε = 0.25;
, ε = 0.5; , ε = 1.
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Figure 4.20 Transmission coefficient T versus kb for µ = 0.1: , ε = 0; ,
ε = 0.25; , ε = 0.5; , ε = 1.
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Figure 4.21Reflection coefficientR versus kb forµ = 0.25: , ε = 0; , ε = 0.25;
, ε = 0.5; , ε = 1.
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Figure 4.22 Transmission coefficient T versus kb for µ = 0.25: , ε = 0; ,
ε = 0.25; , ε = 0.5; , ε = 1.
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Figure 4.23 Reflection coefficientR versus kb for µ = 0.5: , ε = 0; , ε = 0.25;
, ε = 0.5; , ε = 1.
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Figure 4.24 Transmission coefficient T versus kb for µ = 0.5: , ε = 0; ,
ε = 0.25; , ε = 0.5; , ε = 1.
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Chapter 5. Conclusion and Future Studies

The analytical solution for the velocity field around submerged permeable breakwa-

ters and its application in computing the reflection and transmission coefficients are

presented in this study.

Formulating the two-dimensional problem of wave scattering by a vertical

submerged permeable breakwater in infinite-depth water, the potential wave theory is

adopted, and mild singularity on the edges of the plate is assumed. Then, a permeable

boundary condition on the breakwater is given, which makes the boundary condition

nonlinear. Using the perturbation series expansion and the reduction method, homo-

geneous and nonhomogeneous Riemann-Hilbert problems are defined up to the first

order. Then, the exact, closed-form analytical solutions for each problem are derived

to obtain the perturbed velocity field.

In order to present the application of the obtained velocity potential, the

reflection and transmission coefficients are calculated. From the computed leading-

order reflection and transmission coefficients, the wave attenuation effect is shown

to fit well with physical intuition and is consistent with the previous studies which

investigated the impermeable vertical breakwaters.

Then, numerical computation of the first-order wave amplitude is presented

so that the effect of the permeability of the plate can be qualitatively examined.
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Since the singularity along the plate hinders the discrete integration directly using the

uniform grid, significant effort into evaluating numerically approximated solutions

near the contour was paid. Involving Chebyshev series interpolation and subtracting

the singular point, the discontinuity by the plate is approximated, and a numerical

approach to the Cauchy principal value integral (finite Hilbert transform) is used to

construct a collocation method. This allows for the integration of a singular integral

following the discontinuous contour. The reflection and transmission coefficients

calculated in the present study appeared that the wave energy dissipation effect is

better when using the permeable breakwaters.

In contrast to previous studies that used the eigenfunction expansion method,

this study uses the perturbation method to formulate the problem of wave scattering

by the submerged floating vertical permeable breakwater. Moreover, the reduction

method is adopted to form the Riemann-Hilbert problem so that the exact, closed

form of the solution can be derived. Not only presenting the solution, the application

of the solution is also considered together by illustrating the reflection coefficient and

the transmission coefficient in various wave, breakwater geometry, and permeability

conditions. Besides the conditions selected in the present research, onemay choose the

arbitrary wave, breakwater, and permeability conditions and can obtain the velocity

field or calculate the wave attenuation effect.

Despite the effort, there are some points that can be improved by further
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research. First, although selecting large enoughM does not give much error, applying

the automatic quadrature scheme to calculate the singular integral numerically can

efficiently handle the truncation error by interpolating integration points or the round-

off error by the machine epsilon. Second, the case of µ = 0 is not presented in

considering the permeable effect since this needs another approach taking the limit to

zero. To compare with the surface-piercing type permeable breakwaters, asymptotic

behavior when µ→ 0 should be considered.
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국문초록

본 연구는 선형파 조건에서 수중 투과성 방파제에 의해 산란된 유속장에

대한문제를정의하고그에대한해석해를제시한다.

본연구에서는문제상황으로물에잠긴투과성방파제가수직하게유한한

구간만큼있고,그위에미소진폭파가오는상황을상정하였다.유체의수심이무한

히 깊고 흐름이 비압축성, 비점성, 비회전성을 만족한다면, 포텐셜 이론을 적용할

수있다.그러나,투과성판을뚫는흐름으로인해판에서는비선형적인경계조건이

주어지고,이는문제에대한해가존재할수없도록한다.

따라서, 이러한 비선형적인 경계조건을 해결하기 위해 투과성을 대표하는

작은 매개변수를 설정해 섭동법을 적용하였다. 일차항까지 전개하였을 때, 영차

문제는불투과성방파제에의한산란된유속포텐셜을나타나개되고,일차문제는

투과성방파제에의해산란된유속장을고려해영차해에수정효과를준다.

이에더해경계조건을더욱간단히하기위해공간포텐셜에관한문제를축

소포텐셜(reduced potential)에관한문제로치환하여축소법(reduction method)을

적용하였다. 이는 영차 문제에 관해서는 동차 리만-힐베르트 문제를 만족시키고,

일차 문제에서는 비동차 리만-힐베르트 문제가 된다. 이렇게 정의한 문제를 풀어

각차수의유속장에대해완전한닫힌형태의해를유도하였다.

유도된 유속장 해의 활용 방안 예시로, 다양한 파랑 조건과 방파제 조건에
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서의 반사계수와 투과계수를 산정하였다. 이 때, 유한 힐베르트 변환은 체비셰프

다항식을 이용한 근사 수치 구적법으로 계산되었다. 산정 결과 투과성 방파제가

불투과성방파제보다파랑에너지를더많이소산시키는것을볼수있었다.본연

구에서유도된유속장은파고감쇠효과를평가하는것외에도방파제에가해지는

힘이난모멘트등유체역학적파력을산정하는것과같이다양하게활용될수있다.

주요어:투과성방파제,수중부유식방파제,선형파이론,섭동법,해석해

학번: 2021-23413
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