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Abstract 

 
Lane-drop bottleneck is a frequently observed bottleneck in a 

freeway due to lane closures, work zones, and incidents. A potential 

cause for a capacity drop at a lane-drop bottleneck is the critical 

conflicts by mandatory lane changing near the lane-dropping point, 

and the upstream inflow higher than the downstream capacity. 

Therefore, the throughput is expected to increase by operating CAV 

control strategy that can reduce disruption and keep the upstream 

inflow under downstream capacity. CAVs in this study are assumed to 

provide multiple gap settings, including the shortest and the longest 

gap settings currently available in commercial AVs. A novel concept 

that controls the gap setting of CAVs to increase throughput at a lane-

drop bottleneck is proposed. The proposed strategy consists of 

merging control and inflow control. Merging control adjusts the gap 

setting of CAVs to a proposed gap setting that can reduce disruption 

caused by merging when applied to CAVs. Inflow control adjusts the 

gap setting of CAVs to either the shortest or the longest gap setting 

dynamically to regulate upstream inflow and keep bottleneck 

occupancy at the target occupancy. Proportional-Integral-Derivative 

(PID) controller was utilized for inflow control. To validate the 

proposed strategy, the simulation experiment was conducted with 

micro-simulation VISSIM. The results indicated that the proposed 

strategy prevents capacity drop and improves traffic flow efficiency in 

all demand scenarios under CAV environment. The proposed strategy 

also improved traffic flow efficiency under all simulated MPR 

scenarios, and the gain in performance was marginal for MPRs higher 

than 50%. Furthermore, the proposed strategy reduced 𝐶𝑂2 emissions 

and the number of conflicts for all MPRs. 

 

Keyword: Gap Setting, CAV, Lane-drop Bottleneck, Proportional-

Integral-Derivative Control, VISSIM 

Student Number: 2019-27105 
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Chapter 1. Introduction 
 

 

Lane-drop bottleneck is a frequently observed bottleneck in a 

freeway due to lane closures, work zones, and incidents (Jin and Jin, 

2015; Guo et al., 2020). At a lane-drop bottleneck, the capacity of 

the downstream is lower than that of the upstream as the number of 

lanes decreases. Therefore, the upstream inflow of the bottleneck is 

likely to exceed the downstream capacity during peak hours. This 

situation may lead to a capacity drop; which refers to the state when 

the maximum throughput is lowered than the downstream capacity 

(Jin and Jin, 2015; Yuan et al., 2015; Zhang and Ioannou, 2016). 

Another potential cause of a capacity drop is the critical conflicts by 

mandatory lane changing near the lane-dropping point (Zhou et al., 

2017; Hu and Sun, 2019; Guo et al., 2020). 

The capacity drop still occurs even in the existence of Automated 

Vehicles (AVs). Commercial AVs provide multiple gap settings that 

can be adjusted by drivers while driving. Tesla, for example, provides 

seven gap settings and Hyundai provides four gap settings. All car 

makers reviewed in this study including BMW, Mercedes-Benz, 

AUDI, and Toyota also provide multiple gap settings. Shi and Li 

(2021) found that compared to Human-Driven Vehicles (HDVs), 

AVs with the shortest gap setting have a shorter average time gap, 

and longer average time gap with the longest gap setting. Therefore, 

the capacity is expected to be significantly increased when all AVs 

drive with the shortest gap setting. However, the capacity drop may 

still occur at the lane-drop bottleneck due to large upstream inflow 

and lane changing, as mentioned above, meaning that the throughput 

would still be lower than the downstream capacity. Consequently, 

even with the technology of AVs that allows driving with a small gap 

(Ren et al., 2020), there still is room for improvement in terms of 

throughput at the lane-drop bottleneck with traffic management and 

control. 
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To improve the operational efficiency of traffic flow, the 

cooperation of individual vehicles based on the global condition is 

required (Ren et al., 2020). Connected and Automated Vehicles 

(CAVs) not only allow to operate in isolation with internal sensors 

but can also make cooperative decisions via communication with the 

surrounding vehicles and the infrastructures nearby (Wang et al., 

2018). Especially, the benefits of these technologies are even more 

prominent in freeway bottlenecks where frequent lane changing, 

merging, and yielding maneuvers occur (Hu and Sun, 2019).  

Various studies proposed CAV control strategies that facilitate 

smooth merging in freeway bottlenecks. Some studies proposed 

optimization-based methods that optimize the accelerations of CAVs 

to improve the efficiency at the bottlenecks (Chen et al. 2020; Karimi 

et al., 2020; Min et al., 2020). Others proposed strategy-based 

methods that design rules that can be applied to CAVs for smooth 

merging (Lu and Hedrick., 2003; Zhou et al., 2016; Bang and Ahn, 

2018). However, controlling individual vehicles can only benefit from 

local and microscopic levels, since it does not consider macroscopic 

control in traffic flow level (Zhu et al, 2022). 

Another mainstream of traffic management at the freeway 

bottleneck is regulating the upstream inflow of the bottleneck 

considering the macroscopic traffic flow characteristics. The 

upstream inflow can be indirectly controlled by adjusting the speed 

limit of vehicles (Variable Speed Limit, VSL), or by controlling the 

ramp metering rates (Ramp Metering, RM). However, these 

algorithms only control macroscopic traffic flow characteristics in an 

aggregate and inaccurate way (Hu and Sun, 2019; Zhu et al., 2022). 

Therefore, the operation at the bottleneck is expected to be further 

improved when CAVs are controlled appropriately with the 

consideration of both microscopic merging maneuvers and 

macroscopic traffic flow characteristics. 

 This study aims to develop a novel CAV gap setting control 

strategy that can relieve or even prevent congestion at the lane-drop 

bottleneck. The CAVs in this study are assumed to provide multiple 

gap settings, including the shortest and the longest gap settings 
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currently available in commercial AVs. Also, it is assumed that the 

gap setting of CAVs can be controlled by the traffic management 

center by V2I communications. The proposed strategy consists of 

merging control and inflow control. Merging control applies a new gap 

setting to CAVs to reduce oscillation caused by merging. Inflow 

control changes the gap setting of CAVs to either the shortest or the 

longest gap setting dynamically to regulate the upstream inflow and 

keep the bottleneck occupancy at the target occupancy. The main 

contributions can be summarized as follows: 

⚫ Car-following models for both the shortest and the longest 

gap settings of commercial AVs were calibrated using real-

world data 

⚫ A novel concept that controls the gap setting of CAVs is 

proposed 

⚫ The proposed strategy considers both microscopic merging 

maneuvers and macroscopic traffic flow characteristics 

⚫ A platform based on Python, VISSIM COM, and C++ is 

developed to implement the proposed strategy 

⚫ The results showed that the proposed strategy can prevent 

capacity drop and reduce travel time in all simulated traffic 

demand scenarios under CAV environment 

⚫ The proposed strategy improved traffic efficiency for all 

MPRs under mixed-traffic environment of CAVs and HDVs 

⚫ The proposed strategy also reduced 𝐶𝑂2 emissions and the 

number of conflicts for all MPRs 
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Chapter 2. Literature Review 
 

2.1. Microscopic Control Algorithms 
 

Many studies that control CAVs located near a bottleneck to 

facilitate smooth merging have been presented. These works can be 

roughly classified into two types:  strategy-based and 

optimization-based methods (Hu and Sun, 2019). 

In strategy-based methods, many rules that can be applied in 

various circumstances are designed with a common goal to obtain a 

smooth merging maneuver. First, some studies control the car-

following model parameters of CAVs near the merging area. These 

studies assume that the car-following model parameters of CAVs 

can be set differently depending on the situation. Zhou et al. (2016) 

proposed CIDM-based AV that the car-following parameters are set 

depending on the merging condition. They showed that the proposed 

AV can relieve freeway oscillations. Bang and Ahn (2018) proposed 

a method that can resolve a disturbance created by a merging vehicle 

by controlling two parameters, the spring constant and the damping 

coefficient, of the SMD-based control model under a full CAV 

environment. Ren et al. (2020) showed an appropriate gap can be 

formed for the merging vehicle by controlling the VISSIM car-

following parameters. However, the parameters controlled in the 

studies mentioned above may significantly differ from the commercial 

AVs and may show unrealistic or uncomfortable behavior with the set 

parameters. 

Additionally, several studies tried to solve the on-ramp merging 

problem with a virtual vehicle mapping technique. These works 

converted on-ramp merging maneuvers to car-following tasks 

(Liang et al., 2022). Lu and Hedrick (2003) proposed a virtual vehicle 

following concept that can form a platoon effectively in two topologies 

(i.e. either with or without an acceleration lane). Hu et al. (2021) 

determined a merging sequence based on the estimated merging point 

arrival time and proved that merging efficiency can be improved by 
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each vehicle following the preceding vehicle defined in the merging 

sequence. Chen et al. (2021) converted the on-ramp merging 

problem into a car-following problem at a virtual axle, that is based 

on a virtual car-following sequencing through a virtual rotation 

technique. Through numerical simulation, the authors showed that the 

proposed control can reduce voids and guarantee to dampen traffic 

oscillation. However, since the majority of strategy-based methods 

are decentralized, optimal control for the merging system cannot be 

achieved (Zhou et al., 2018; Hu and Sun, 2019; Zhu et al. 2022). 

On the other hand, the majority of the works deploying 

optimization-based methods assume that the acceleration of CAVs 

can be controlled by the traffic management center. These studies 

calculate the appropriate acceleration for each CAV to form a merging 

gap to maximize or minimize the objective function. Cao et al. (2015) 

proposed a predictive control-based optimization model that can 

successfully generate a cooperative merging path in a typical traffic 

situation. Karimi et al. (2020) calculated the appropriate acceleration 

of CAVs in mixed traffic flow, depending on the combinations of CAVs 

and HDVs in a merging triplet of the subject vehicle, lead vehicle, and 

lag vehicle. The prediction has been made to predict the behavior of 

HDVs. Other studies (Rios-Torres et al., 2016; Min et al., 2020; 

Chen et al. 2020) also presented strategies for CAV acceleration rate 

determination under CAV 100% environment and evaluated the 

performance by numerical simulation. However, in an environment 

where the traffic management center controls the acceleration rate 

of all CAVs, the safety of the vehicles can be critically jeopardized 

when communication is delayed or failed. Also, the assumption that 

the acceleration of the CAVs can be controlled by the traffic 

management center completely ignores the current decentralized 

driving behavior of AVs that relies on internal sensor information. 

Therefore, full acceleration rate control by the traffic management 

center is expected to be possible in the very distant future. 

Furthermore, controlling individual vehicles can only benefit from 

local and microscopic levels, since macroscopic control in traffic flow 

level is not considered (Zhu et al., 2022). 
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2.2. Macroscopic Control Algorithms 
 

Other strategies implemented in a freeway bottleneck control the 

upstream inflow of the bottleneck from a macroscopic viewpoint to 

improve flow efficiency. The upstream inflow can be indirectly 

controlled by controlling the speed limit of the vehicles (VSL), or by 

controlling the ramp metering rate at the ramp located upstream of 

the bottleneck (RM). The control of upstream inflow depending on 

the traffic state has been proven to improve traffic flow efficiency. 

Khondaker and Kattan (2015) used microsimulation VISSIM to 

verify that travel time can be reduced by controlling the speed limit 

of Connected Vehicles (CVs). Müller et al. (2015) evaluated both 

point VSL and space VSL, and concluded that both strategies can 

improve traffic conditions where space VSL performs better than 

point VSL. Jin and Jin (2015) controlled the upstream speed limit 

using a PI controller and numerically showed that travel time can be 

decreased by up to 86%. Wu et al. (2020) developed a deep-

reinforcement learning-based lane-specific speed limit selection 

method and proved its effectiveness using microsimulation SUMO. 

The aforementioned studies have verified the usefulness of 

controlling the speed of the vehicles located upstream of the 

bottleneck in relieving congestion. 

Another strategy that controls upstream inflow is a well-known 

RM system. Papageorgiou et al. (1991) presented ALINEA and found 

that occupancy could be maintained near critical occupancy with the 

metering rate calculated by the P controller. Also, Wang et al. (2014) 

showed PI-ALINEA can effectively improve the traffic state with an 

active bottleneck downstream of the merging area. 

However, these algorithms only control macroscopic traffic flow 

characteristics in an aggregate and inaccurate way (Hu and Sun, 2019; 

Zhu et al., 2022). Therefore, the operation at the bottleneck is 

expected to be further improved when macroscopic inflow control is 

combined with microscopic merging control in CAV environment.  
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2.3. Impact of AV on Traffic Flow 
 

Adaptive Cruise Control (ACC) systems, that control the 

longitudinal behavior of AVs, are now largely available in commercial 

vehicles. Changing the car-following dynamics can have a large 

impact and therefore, there have been efforts to analyze the impact 

of AV on traffic flow. 

Many studies analyzed the impact of AVs based on the assumed 

driving behavior. Davis (2004) assumed string stable AV and showed 

that on-ramp jam is prevented with an AV penetration rate higher 

than 20%. Kesting et al. (2010) found that AVs modeled by Intelligent 

Driver Model (IDM), which adjusts the parameters depending on the 

situation, can increase capacity. Talebpour and Mahmassani (2016) 

analyzed stability and throughput in a mixed flow of HDV, CV, and AV 

and claimed that both CV and AV improve stability and throughput. 

Calvert et al. (2017) assumed AV modeled by IDM and found AV can 

have a negative effect on flow with low MPR. Zhu and Zhang (2018) 

found that when density is lower than the critical value, both 

throughput and stability improve with the increase of AV. However, 

AV may negatively affect throughput when density is higher than the 

critical value. Although the aforenoted works quantitively analyzed 

the effects of AV in a mixed environment, the results are highly 

dependent on the assumed behavior of AVs so the results can change 

significantly when the model is calibrated with commercial AV data.  

To fill this gap, recent studies evaluated the impact of AVs by 

utilizing the trajectory data of commercial AV datasets. Gunter et al. 

(2020) analyzed the string stability using the trajectory data of seven 

commercial AVs and concluded that they are all string unstable for 

both the shortest and longest gap settings. Makridis et al. (2020) 

evaluated the trajectory data of the platooning experiment with five 

commercial AVs. 23 experiments all showed that the vehicles are 

string unstable. Shang and Stern (2021) compared string stability and 

capacity calibrated by theoretical AV and commercial AV. They found 

that theoretical AV improves both string stability and capacity, 

whereas commercial AVs are string unstable and can reduce 
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bottleneck capacity with a high penetration rate. The findings of Shi 

and Li (2021), evaluated with the commercial AV dataset, showed 

that the shortest gap setting of AVs can increase capacity 

significantly compared to that of HDV, and the longest gap setting 

relatively reduces the capacity. 

In summary, recent studies analyzing commercial AVs showed a 

discrepancy between theoretically assumed AVs and commercial 

AVs. Also, although most studies analyzing the impact of AV assumed 

homogeneous longitudinal behavior of AVs, commercial AVs offer 

multiple gap settings meaning that the longitudinal behavior of AVs 

can differ significantly depending on the gap setting.  

Therefore, this study aims to develop a realistic CAV control 

strategy by considering the longitudinal dynamics of commercial AVs 

depending on the gap settings. CAVs are assumed to provide gap 

settings including the shortest and the longest gap settings currently 

provided in commercial AVs. A novel strategy that controls the gap 

setting of CAVs is proposed in this study so as to reduce disruption 

caused by merging and to regulate the upstream inflow appropriately. 

A detailed description of the proposed strategy is introduced in the 

following chapter. 
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Chapter 3. Methodology 
 

3.1. Vehicle Modeling 
 

3.1.1. Car-Following Models 
 

This study focused on the fact that commercial AVs provide 

multiple gap settings that perform significantly different longitudinal 

behavior. To develop a realistic CAV control strategy, this study 

calibrated a car-following model that can represent the longitudinal 

maneuver of AVs with different gap settings, and assumed that CAVs 

also provide multiple gap settings including those equipped in current 

commercial AVs. For the car-following model selection, the models 

that were frequently applied for modeling (C)AVs were compared. 

In the previous studies, various car-following models were 

adopted for modeling the longitudinal car-following behaviors of 

vehicles, including HDV, AV, CV, and CAV. The car-following models 

used in the previous studies for various types of vehicles are 

summarized in Table 3.1. 

 

Table 3.1 Car-following models used in previous studies 

Authors (Year) Car-Following Models 

HDV CV AV CAV 

Kesting et al. (2010) IDM - IDM - 

Talebpour and  

Mahmassani (2016) 

Talebpour 

(2011) 

IDM Van Arem 

(2006) 

- 

Monteil et al. (2018) IDM - - IDM 

Zheng et al. (2020) OVM - OVM - 

Gunter et al. (2020) - - FVDM - 

Yao et al. (2021) IDM - - IDM 

 

Three car-following models (OVM, FVDM, and IDM) frequently 

applied for (C)AV modeling were selected for commercial AV 

modeling in this study.  
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Bando et al. (1995) developed the Optimal Velocity Model (OVM). 

Mathematically, the model can be expressed as 

𝑥�̈� = 𝑎[𝑣𝑜𝑝𝑡(𝑥𝑛−1 − 𝑥𝑛) − 𝑥�̇�] (3.1) 

where, 

𝑥�̈� = acceleration applied by driver n, 

𝑎 = sensitivity constant, 

𝑣𝑜𝑝𝑡(𝑠) = desired velocity function, 

𝑥�̇� = the speed of vehicle number n, 

𝑥𝑛 = the coordinate of the vehicle number n, 

𝑥𝑛−1 = the coordinate of the preceding vehicle. 

 

Various desired velocity functions, 𝑣𝑜𝑝𝑡(𝑠), were used in previous 

studies, with the common fact that the desired velocity depends on 

the relative position of the vehicle (Aghabayk et al., 2015). In this 

study, the desired velocity function presented by Trieber and Kesting 

(2013) shown in Equation 3.2 was chosen. 

𝑣𝑜𝑝𝑡(𝑠) = max [0,𝑚𝑖𝑛 (𝑣0,
𝑥𝑛−1 − 𝑥𝑛 − 𝑠0

𝑇
)] (3.2) 

Where, 

𝑣0 = desired speed, 

𝑠0 = minimum gap, 

T = time gap. 

 

The OVM, however, encounters the problems of generating 

unrealistic acceleration and deceleration values (Jiang et al., 2001).  

To present a more realistic model, Jiang et al. (2001) introduced 

the Full Velocity Difference Model (FVDM) which takes both positive 

and negative velocity differences into account. Mathematically, the 

model can be expressed as 

𝑥�̈� = 𝜅[𝑣𝑜𝑝𝑡(𝑥𝑛−1 − 𝑥𝑛) − 𝑥�̇�] + 𝜆(𝑥𝑛−1̇ − 𝑥�̇�) (3.3) 

Where, 

𝑥�̈� = acceleration applied by driver n, 

𝜅 = sensitivity constant, 

𝜆 = sensitivity constant, 

𝑣𝑜𝑝𝑡(𝑠) = desired velocity of vehicle number n, 
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𝑥�̇� = the velocity of vehicle number n, 

𝑥𝑛−1̇  = the velocity of the preceding vehicle, 

𝑥𝑛 = the coordinate of the vehicle number n, 

𝑥𝑛−1 = the coordinate of the preceding vehicle. 

 

For modeling the longitudinal behavior of commercial AV, the 

desired velocity function in Equation 3.2 is also applied for the FVDM, 

and the calibrated parameters are presented in the following section.  

This model has a limitation in describing all traffic situations. 

Specifically, since the term 𝜆(𝑥𝑛−1̇ − 𝑥�̇�) is not dependent on the gap, 

a slow preceding vehicle far away leads to significant unrealistic 

decelerating behavior of the following vehicle (Trieber and Kesting, 

2013). 

The last car-following model considered in this study is the 

Intelligent Driver Model (IDM). The model can be expressed as 

𝑥�̈� =  𝛼

(

 
 
1 − (

𝑥�̇�
𝑣0
)
𝛿

−  

(

 
 
𝑠0 +  𝑇𝑥�̇� −  

𝑥�̇�(𝑥𝑛−1̇ − 𝑥�̇�)

2√𝛼𝛽

𝑠𝑛

)

 
 

2

)

 
 

 (3.4) 

Where, 

𝑥�̈� = acceleration applied by driver n, 

𝑣0 = desired speed, 

𝑠0 = minimum gap, 

𝑠𝑛 = distance gap. 

T = time gap. 

𝛼 = maximum acceleration, 

𝛽 = comfortable deceleration, 

𝛿 = acceleration exponent, 

𝑥�̇� = the velocity of vehicle number n, 

𝑥𝑛−1̇  = the velocity of the preceding vehicle. 

 

IDM is an accident-free model that produces realistic 

acceleration profiles, and each model parameters describe only one 

aspect of the driving behavior which is favorable for the model 

calibration (Trieber and Kesting, 2013). Thus, this model has been 
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implemented in micro-simulation in several studies (Guériau et al., 

2016; Talebpour and Mahmassani, 2016; Zhu et al., 2018; Rahman et 

al., 2019). 

 

 

3.1.2. Parameter Calibration 
 

Recent studies showed that the car-following model parameters 

can be calibrated with high-resolution trajectory data of the vehicles. 

Punzo et al. (2021) reviewed objective functions for the previous 

studies and found they varied widely. An objective function for the 

car-following model calibration can be defined with the Goodness-

of-Fit function (GoF) and Measure-of-Performance (MoP). The 

authors compared possible combinations of 7 GoFs and 4 MoPs and 

the results were consistent that regardless of the GoF, the model, 

and the dataset, spacing is preferable as MoP. Also, focusing on 

spacing, GoFs which are not based on percentage errors are always 

preferable to percentage-based GoFs. Therefore, this study applied 

spacing as GoF, and Root Mean Squared Error (RMSE) as MoP for 

parameter calibration as in Equation 3.5, with a gradient-based 

optimization method used for calibration. 

minimize √
1

𝑇
∑ [𝑠𝑒𝑠𝑡(𝑡) − 𝑠𝑜𝑏𝑠(𝑡)]2

𝑇

𝑡=1
 (3.5) 

Where, 

𝑇 = number of time steps, 

𝑡 = a time step, 

𝑠𝑒𝑠𝑡(𝑡) = estimated spacing at time step 𝑡, 

𝑠𝑜𝑏𝑠(𝑡) = observed spacing at time step 𝑡. 
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3.2. Gap Setting Control Strategy 
 

The objective of the proposed strategy is to improve throughput 

at a lane-drop bottleneck by controlling the gap setting of CAVs 

located near the lane-drop bottleneck. The proposed strategy 

consists of merging control and inflow control and is operated within 

section 1 to section 3 (Figure 3.1). 

 

 

Figure 3.1. Overview of the control region 

 

Merging control instructs CAVs, located in the center lane and 

the merge lane in section 2 of Figure 3.1, to change gap setting to the 

proposed gap setting. It is a microscopic control strategy that 

relieves disruption caused by mandatory merging in section 2. Inflow 

control is a macroscopic control strategy that controls the gap setting 

of CAVs entering section 1 to regulate the upstream inflow and keep 

bottleneck occupancy at the target occupancy. Outside the control 

region, CAVs remain uncontrolled with a gap setting set by the 

driver’s preference.  

 

3.2.1. Merging Control 
 

Merging control changes gap setting of CAVs, located in the 

center lane and the merge lane in section 2, to a proposed gap setting 

to reduce disruption caused by merging. As shown in Figure 3.2, 

when a proposed gap setting is applied, the CAV in the center lane in 

section 2 follows both the preceding vehicle in the center lane and 

the preceding vehicle in the merge lane. The same logic is applied to 

CAV in the merge lane, following both the preceding vehicle in the 

merge lane and the center lane.  
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Figure 3.2. Conceptual diagram of merging control 

 

A car-following model for the proposed gap setting that is 

designed to be applied for CAVs on the center lane and the merge 

lane in section 2 is described in Equation 3.6 and Equation 3.7. 

𝑥�̈� = 𝑚𝑖𝑛(𝑎𝑆𝑎𝑚𝑒 𝐿𝑎𝑛𝑒 ,  𝑚𝑎𝑥 (−2,  𝑎𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝐿𝑎𝑛𝑒)) (3.6) 

𝑎𝑗 = 𝛼(1 − (
𝑣𝑛

𝑣0
)
𝛿
−  (

𝑆0+ 𝑇𝑣𝑛+ 
𝑣𝑛∆𝑣

2√𝛼𝛽

𝑆𝑛
)

2

),   𝑗 = {
𝑆𝑎𝑚𝑒 𝐿𝑎𝑛𝑒

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝐿𝑎𝑛𝑒
 (3.7) 

Where, 

𝑣0 = desired speed,  

𝑠0 = minimum gap, 

𝑠𝑛 = distance gap between preceding vehicle 

and subject vehicle, 

∆𝑣 = relative speed between preceding 

vehicle and subject vehicle, 

𝑇 = time gap, 

𝛼 = maximum acceleration, 

𝛽 = comfortable deceleration, 

𝛿 = acceleration exponent. 

 

In a case where there only exists a preceding vehicle in the same 

lane within a detection range of CAV, the original car-following 

model is applied (Equation 3.8). 

𝑥�̈� = 𝛼

(

 
 
1 − (

𝑣𝑛
𝑣0
)
𝛿

−  

(

 
 
𝑆0 +  𝑇𝑣𝑛 +  

𝑣𝑛∆𝑣

2√𝛼𝛽

𝑆𝑛

)

 
 

2

)

 
 

 (3.8) 

 

Likewise, in a case where there only exists a preceding vehicle 

in an adjacent lane within a detection range of CAV, CAV would follow 
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a preceding vehicle in an adjacent lane with original car-following 

logic with a minimum deceleration of -2m/𝑠2  for a comfortable 

deceleration (Equation 3.9).  

𝑥�̈� = 𝑚𝑎𝑥

(

 
 
 
−2,  𝛼

(

 
 
1 − (

𝑣𝑛
𝑣0
)
𝛿

−  

(

 
 
𝑆0 +  𝑇𝑣𝑛 +  

𝑣𝑛∆𝑣

2√𝛼𝛽

𝑆𝑛

)

 
 

2

)

 
 

)

 
 
 

 (3.9) 

 

Lastly, if no preceding vehicles exist for both current and 

adjacent lanes, CAV would accelerate until the free flow speed is 

reached (Equation 3.10). 

𝑥�̈� = 𝛼 (1 − (
𝑣𝑛
𝑣0
)
𝛿

) (3.10) 

 

By applying the proposed gap setting to CAVs on both the center 

lane and the merge lane, a CAV would decelerate considering both 

preceding vehicles when present, if one of the current time gaps with 

the preceding vehicles is smaller than the desired time gap. Thereby, 

enough gap for merging will be formed, so the oscillation caused by 

a merging vehicle is expected to decrease. For all four situations 

mentioned above, the corresponding parameters are set with the 

calibrated shortest gap setting parameters of commercial AVs to 

maximize throughput. Note that the proposed gap setting can also be 

applied in a mixed traffic flow of CAVs and HDVs. Regardless of the 

vehicle type of preceding vehicles, a CAV would follow two preceding 

vehicles if preceding vehicles in both lanes exist. 

The gap settings of CAVs in the median lane of section 2 and in 

section 3 are switched to the shortest gap setting, maximizing the 

capacity of the controlled regions near the lane-dropping point. If the 

length of section 2 (𝐿2) is too short, the desired gap for CAVs 

considering the vehicles in the adjacent lane may not be formed 

before merging. Finding a proper length for section 2, however, is 

beyond the scope of this study. Despite the improvement in merging 

behaviors through the operation of merging control, the control does 

not guarantee the optimum operation in any sense since it does not 
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consider macroscopic traffic flow characteristics. 

 

3.2.2. Inflow Control 
 

From a macroscopic traffic flow perspective, bottleneck flow 

efficiency can be improved by keeping the bottleneck occupancy or 

density at a target value, such as critical occupancy. Inflow control 

tries to keep the bottleneck occupancy at the target occupancy by 

adjusting the gap setting of CAVs entering section 1 to either the 

shortest or the longest gap setting. To successfully control the inflow, 

this study applied a Proportional-Integral-Derivative (PID) 

controller, which is widely used in industrial control. As shown in 

Figure 3.3, a PID controller determines the input value based on the 

error between the output and the target value. 

 

 

Figure 3.3. Conceptual diagram of PID control 

 

This study applied a discrete time PID controller to determine 

the desired short gap setting ratio, 𝑝𝑆,𝑑𝑒𝑠(𝑘) (Figure 3.4). The gap 

setting of a CAV is controlled to either the shortest gap setting 

(namely, short gap setting) or the longest gap setting (namely, long 

gap setting) to match the current short gap setting ratio in section 1 

to the desired value, 𝑝𝑆,𝑑𝑒𝑠(𝑘). The equation for the discrete time PID 

controller is as follows (Equation 3.11-3.15). 

𝑝𝑆, 𝑑𝑒𝑠(𝑘) = 𝑝𝑆, 𝑑𝑒𝑠(𝑘 − 1) + 𝐾0𝑒(𝑘) + 𝐾1𝑒(𝑘 − 1) +𝐾2𝑒(𝑘 − 2) (3.11) 

𝑒(𝑘) = 𝑜𝑐𝑐𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑐𝑐(𝑘) (3.12) 

𝐾0 = 𝐾𝑃 + 𝐾𝐼𝑇 + 𝐾𝐷𝑇
−1 (3.13) 

𝐾1 = −𝐾𝑃 − 2𝐾𝐷𝑇
−1 (3.14) 

𝐾2 = 𝐾𝐷𝑇
−1 (3.15) 
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Where, 

𝑝𝑆, 𝑑𝑒𝑠(𝑘) = desired short gap setting ratio at time 𝑘𝑇, 

𝑇 = discrete time step (e.g., 1 second), 

𝑘 = sample time index (0, 1, 2, …), 

𝑒(𝑘) = error at time 𝑘𝑇, 

𝑜𝑐𝑐(𝑘) = occupancy at time 𝑘𝑇, 

𝑜𝑐𝑐𝑡𝑎𝑟𝑔𝑒𝑡 = target occupancy, 

𝐾𝑃, 𝐾𝐼 , 𝐾𝐷 = PID parameters. 

 

 

Figure 3.4. Conceptual diagram of inflow control 

 

If the current occupancy is smaller than the target occupancy 

(e(k) > 0), the controller would increase the desired short gap setting 

ratio to increase upstream inflow. In the opposite situation, the 

desired short gap setting ratio would be decreased to reduce 

upstream inflow. The loop detector is located upstream of the lane-

dropping point to sensitively detect the formation of the queue and 

the capacity drop. If 𝐿𝑑, the distance from the lane-dropping point, 

is too long, the controller would not be able to prevent the formation 

of a queue. Finding the optimal location for the loop detector is not 

considered in this study.  

The gap settings of CAVs entering section 1 are adjusted via V2I 

communication with the traffic management center. Note that the gap 

setting for each CAV is adjusted at most once in section 1. Also, lane 

changing in section 1 is prohibited to allow CAVs to accelerate 

without disturbance when the queue forms upstream of section 1. If 

the length of section 1 (𝐿1) is too short, the space for acceleration 

may be insufficient. If the length is too long, a disturbance may occur 
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frequently between the starting point of section 1 and the point where 

the loop detector is located. The optimal value of 𝐿1 is outside the 

scope of this study. 

 

3.2.3. Combination of Merging Control and Inflow Control 
 

The proposed strategy that considers both microscopic and 

macroscopic control themes at a lane-drop bottleneck is proposed. 

First, merging control is always operated to reduce disruption caused 

by mandatory lane changing. However, when upstream inflow 

exceeds downstream capacity, the capacity drop that lowers the 

throughput than the capacity can still occur, as shown in Figure 3.5.  

 

 

Figure 3.5. Theoretical MFD at the upstream section of the lane-drop 

bottleneck 

 

Inflow control is combined with merging control to regulate 

bottleneck inflow when the capacity drop cannot be prevented by 

operating merging control only. Inflow control is operated when 

𝑜𝑐𝑐(𝑘) >  𝑜𝑐𝑐1, and the target occupancy (𝑜𝑐𝑐𝑡𝑎𝑟𝑔𝑒𝑡) is set between 

𝑜𝑐𝑐1 and 𝑜𝑐𝑐2 as in Figure 3.5. The objective of inflow control is to 

keep occupancy at the target occupancy to keep throughput over  

(1 − ε)𝐶𝑏 without turning into a congested state. Note that adjusting 

PID parameters and the target occupancy can further improve the 

operational benefits of the proposed strategy. The optimal tuning for 

those parameters is out of the scope of this study. Figure 3.6 shows 
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the flowchart of the proposed strategy. 

 

 
 

Figure 3.6. Flow chart of the proposed strategy 
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Chapter 4. Simulation Analysis 
 

 

4.1. Simulation Design 
 

4.1.1. Vehicle Modeling 
 

This study evaluated the performance of the proposed strategy 

via microsimulation VISSIM, with a platform based on Python, 

VISSIM COM, and C++ External Driver Model. Both macroscopic and 

microscopic results can vary significantly depending on the behaviors 

of CAVs and HDVs modeled in the simulation. Therefore, reasonable 

modeling of CAVs is quite important. 

As mentioned previously, this study assumed that the gap 

settings of CAVs can be controlled by the traffic management center 

in the control region to improve the efficiency of the traffic flow. It 

was also assumed that CAVs provide gap settings, including short and 

long gap setting. Since the longitudinal behavior of CAVs depending 

on the gap setting differs significantly, the car-following model for 

each setting was calibrated separately from high-resolution 

trajectory data of commercial AVs. 

To calibrate the commercial AVs’ longitudinal driving behavior, 

the AstaZero test track data included in the Open ACC database was 

utilized in this study. The Open ACC database consists of car-

following experiments that involve vehicles with ACC systems. 

Although there are 7 datasets available in the Open ACC database, 

the car-following dataset that was tested on the 5.7km long AstaZero 

test track in Sweden was chosen for two reasons. Firstly, unlike the 

conventional dataset, this dataset includes both starting from a 

standstill and stopping, allowing more precise calibration for the car-

following models. Secondly, unlike the other datasets that only 

include the shortest gap setting, each high-end commercial AV was 

tested with both the shortest and longest gap setting. 

The car-following experiment taken in the AstaZero test track 

was conducted in the second quarter of 2019. Five high-end vehicles 
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were involved in the experiment, from four different makes and all 

different models (Table 4.1). In all tests, the leader vehicle, AUDI 

A8, was followed by the four vehicles in various order with the ACC 

enabled with either the short or long gap setting available. 

 

Table 4.1 Vehicle specification 

Vehicle Model Max Power (kW) Drive-Fuel Model Year 

AUDI A8 (Leader) 250 Diesel 2018 

TESLA Model 3 150 Electricity 2019 

BMW X5 195 Diesel 2018 

MERCEDES A Class 165 Gasoline 2019 

AUDI A6 150 Diesel 2018 

 

The trajectory data of the vehicles were collected with the 

system called RT-Range S multiple target ADAS measurements 

solution by Oxford Technical Solutions Company. This system 

provides a frequency higher than 100Hz, so the collected data was 

processed with down sampling to achieve 10 Hz. The dataset includes 

the speed, latitude, longitude, and distance gap as shown in Table 4.2. 

 

Table 4.2 AstaZero data columns description 

Columns Unit Description 

Time s Common time frame for all vehicles 

Speed m/s Raw Speed 

Lat Rad Latitude 

Lon Rad Longitude 

Alt m Altitude 

E m East (x) coordinate in the local ENU plane 

N m North (y) coordinate in the local ENU plane 

U m Up (z) coordinate in the local ENU plane 

IVS m 
Inter Vehicle Spacing computed from GNSS data 

after bumper to bumper correction 
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As mentioned in the previous chapter, spacing was selected as 

GoF, and RMSE was selected as MoP for the parameter calibration of 

three car-following models: OVM, FVDM, and IDM. Table 4.3 

summarizes the calibration errors for three calibrated car-following 

models. Root mean squared error for the estimated and observed 

acceleration, RMSE(a), is shown in the table as a measure for the 

calibration error. It should be noted that the two parameters that 

could be extracted straight from the data were fixed before the 

calibration. Specifically, the minimum gap (𝑠0) was set by the shortest 

distance measured in the test data for each vehicle with each gap 

setting since the dataset includes the stopping of a platoon. Also, the 

maximum acceleration (𝛼 ) for IDM was calculated by the 99th 

percentile value of the observed accelerations. 99th percentile was 

selected to exclude the unreasonably high maximum acceleration 

value.  

 

Table 4.3 Calibration errors for car-following models 

Vehicle Model (Gap Setting) Calibration Errors (RMSE(a)[m/𝑠2]) 

OVM FVDM IDM 

AUDI A6 (Short) 0.51  0.59  0.46  

AUDI A6 (Long) 0.38  0.17  0.19  

BMW X5 (Short) 0.40  0.52  0.48  

BMW X5 (Long) 0.31  0.25  0.22  

MERCEDES A Class (Short) 0.36  0.43  0.51  

MERCEDES A Class (Long) 0.24  0.28  0.22  

TESLA Model 3 (Short) 0.54  0.46  0.46  

TESLA Model 3 (Long) 0.35  0.22  0.31  

Average 0.39  0.37  0.36  

 

As mentioned previously, the short gap setting represents the 

shortest gap setting provided by each vehicle, and the long gap 

setting represents the longest gap setting provided. The average 

calibration error for three vehicles shows that IDM has the smallest 

error. In the following sections, IDM was implemented for modeling 
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CAVs since it is the only model with the accident-free property 

among the three models with the smallest calibration error. 

To check whether the calibration result is reasonable, string 

stability analysis is conducted and compared with the results from 

the previous research. Recently, many studies assessed the impact 

of AVs concerning string stability, which can be characterized by 

local stability and string stability. Local stability refers to the stability 

of a single vehicle’s movement over time under the influence of a 

small perturbation originating from the leading vehicle’s movement 

(Sun et al., 2018). The vehicle is locally stable if the magnitude of 

the perturbation is smaller in the following vehicle compared to the 

leading vehicle. In the meantime, string stability, also known as 

asymptotic stability, focuses on the stability of a platoon of vehicles 

over space (Sun et al., 2018). When a platoon of vehicles is string 

unstable, the amplitude of the perturbation, initiated by the leader 

vehicle, becomes larger as it propagates upstream in the platoon.  

Sun et al. (2018) summarized the methods of determining the 

string stability that can be applied to IDM. The methods include the 

direct transfer function-based, the Laplace transform-based, and 

the characteristic equation-based methods. All three methods end 

up with the same string stability criterion as in Equation 4.1. 

1

2
−
𝑓∆𝑣
𝑓𝑣
−
𝑓𝑠

𝑓𝑣
2 ≥ 0 (4.1) 

Where, 

𝑓𝑠 =
𝜕𝑎

𝜕𝑠
|
𝑒
, 𝑓𝑣 =

𝜕𝑎

𝜕𝑣
|
𝑒
, 𝑓∆𝑣 =

𝜕𝑎

𝜕∆𝑣
|
𝑒

 (4.2) 

 

are the first-order Taylor expansion coefficients. 

The formulation of IDM is shown in Equation 3.4. The Taylor 

expansion coefficients shown in Equation 4.2 for IDM are formulated 

as in Equation 4.3-4.5. 

 𝑓𝑠 =
2𝛼

𝑠𝑒
(
𝑠0 + 𝑇𝑣𝑒
𝑠𝑒

)
2

 (4.3) 

 𝑓𝑣 = −𝛼 [
4

𝑣0
(
𝑣𝑒
𝑣0
)
3

+
2𝑇(𝑠0 + 𝑇𝑣𝑒)

𝑠𝑒
2

] (4.4) 
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 𝑓∆𝑣 = √
𝛼

𝛽

𝑣𝑒
𝑠𝑒

𝑠0 + 𝑇𝑣𝑒
𝑠𝑒

 (4.5) 

 

The calibrated parameters of IDM and the results of string 

stability analysis are presented in Table 4.4. It shows that all vehicles 

are string unstable for both short and long gap settings. Also, all 

vehicles showed improved stability with long gap setting. 

 

Table 4.4 Calibrated parameters for IDM 

Vehicle Model (Gap Setting) 
𝑣0 

(𝑠) 
𝑇 

(𝑠) 
𝛼 𝛽 

𝑆0 

(𝑚) 
𝛿 

Stable* 

AUDI A6 (Short) 50.08  0.96  1.39  5.00  2.27  15.73  -2.88 (X)  

AUDI A6 (Long) 37.87  3.34  1.18  3.00  4.62  11.52  -0.34 (X)  

BMW X5 (Short) 46.44  1.00  1.31  5.00  1.27  15.41  -2.58 (X)  

BMW X5 (Long) 38.29  2.33  1.14  5.00  3.27  12.36  -1.12 (X)  

MERCEDES A Class (Short) 56.95  0.90  1.35  5.00  1.75  9.05  -3.02 (X)  

MERCEDES A Class (Long) 37.38  2.07  1.00  5.00  3.74  9.92  -1.78 (X)  

TESLA Model 3 (Short) 47.19  0.97  1.22  5.00  1.25  13.23  -2.99 (X)  

TESLA Model 3 (Long) 38.22  1.98  1.09  3.00  6.23  12.97  -1.50 (X)  

* The value stands for the left-hand side of Equation 4.1 

 

It is worth noting that the results of string stability correspond 

to the previous studies. This supports that the result of the 

calibration, conducted in this study, is reasonable. Milanés and 

Shladover (2014) tested with Infinity M56s test vehicle and found 

that string stability cannot be achieved for a platoon of vehicles using 

ACC systems. Makridis et al. (2020) analyzed the field test data of 

five vehicles equipped with ACC that were conducted in AstaZero in 

Sweden. The study found that the results highlight the instability of 

the car platoon. Gunter et al. (2020) assessed the string stability of 

seven commercial ACC-equipped vehicles. All seven vehicles were 

tested with both the longest and the shortest gap settings, and they 

modeled the vehicles with FVDM. The results show that all seven 

vehicles are string unstable under both gap settings. These results 
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imply that the longitudinal behavior of AV needs improvement 

regarding string stability. Otherwise, the impact of the string unstable 

platoon on traffic flow needs to be closely examined, as the number 

and the length of the AV platoons are expected to increase in the 

future. More discussions on the string stability of the currently 

available commercial AVs are out of the scope of this study. 

In this study, CAVs with short and long gap settings were 

modeled by IDM. The average values for each of the calibrated 

parameters of four vehicles were applied as representative 

parameters for short and long gap settings, respectively. Vehicles 

with short and long gap settings were implemented in VISSIM by 

C++ based External Driver Model. For the modeling of HDVs, 

VISSIM default parameters (Wiedemann 97, Freeway) were applied. 

Furthermore, the lateral movements of CAVs and HDVs were handled 

by VISSIM, assuming the same lateral movements of CAVs as HDVs, 

due to limitations of obtaining real-world AV data including lateral 

movements. 

 

4.1.2. Network 
 

This study selected a 6km-long 3 to 2-lane hypothetical lane-

drop bottleneck to evaluate the proposed strategy (Figure 4.1). The 

speed limit is set as 120kph, and the proposed strategy is operated 

within a 1.5km section. The detector for the inflow control is located 

100m upstream from the lane-dropping point. 

 

 

Figure 4.1. Layout of the hypothetical network 

 

As mentioned in the previous chapter, the gap settings of CAVs 

are controlled in a control region. However, CAVs that are not located 

in the control region remain uncontrolled and the gap setting is 
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chosen by the drivers. To reflect the heterogeneity of the drivers’ 

preferences, this study reviewed related research (Nowakowski et 

al., 2010). The experiment, described in the research, offered ACC-

equipped vehicles to the drivers for 13 days and asked the drivers to 

use the ACC mode while driving. The test results showed that the 

drivers chose the longest gap setting (2.2s) among the provided 

three gap settings (1.1s, 1.6s, and 2.2s) 20% of the time. Therefore, 

this study assumed that 20% of the drivers prefer long gap setting 

while the other 80% of the drivers prefer short gap setting. 

 

4.1.3. Scenarios 
 

To evaluate the effectiveness of the proposed strategy, this 

study compared the proposed strategy with uncontrolled case (no 

control) and merging control only. Also, to evaluate the effectiveness 

of the strategies on various demands, a simulation was conducted 

with three demand scenarios with a length of 90 minutes (Figure 4.2). 

The warm-up time was set as 5 minutes for all scenarios.  

 

 

Figure 4.2. Demand scenarios 

 

Also, it should be noted that CAVs and HDVs are expected to 

co-exist on the highway for a long time (Zhou et al., 2017; Karimi et 

al., 2020; Chen et al., 2021). Therefore, to evaluate the effectiveness 

of the proposed strategy in a mixed-flow, various market penetration 

rates (MPRs) of CAVs are evaluated: 1%, 3%, 10%, 20%, 30%, 40%, 

50%, 60%, 70%, 80%, 90%, 97%, 99%, and 100%. 
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4.2. Results and Discussions 
 

4.2.1. Results under CAV 100% Environment 
 

To evaluate the operational benefits of the proposed strategies, 

average travel time of all vehicles traveled within the simulation 

network was calculated. Also, the standard deviation of speed was 

analyzed with the detector data located 100m upstream from the 

lane-dropping point. Note that each scenario was repeatedly 

simulated 30 times in order to consider the random effects of the 

simulation. 

Table 4.5 summarizes the simulated results under three demand 

scenarios. Clearly, the results show that operating the proposed 

strategy can significantly improve the efficiency of the traffic flow in 

terms of travel time, regardless of the demand levels. The benefit 

increases with the increase in the demand level, and the results 

indicate that combining inflow control is necessary when the demand 

is high. Also, the standard deviation of speed is reduced by more than 

50% for all demand scenarios when merging control is operated, 

indicating that the disruption due to mandatory lane changing is 

reduced significantly. 

 

Table 4.5 Travel time and standard deviation of speed under CAV 

environment 

Demand Control Avg. Travel Time 

(sec/veh) 

Speed Std. Dev. 

(kph) 

Value % change Value % change 

Demand  

1 

No control 190.2 - 17.8 - 

Merging control only 183.6 -3.5% 6.9 -61.0% 

Proposed strategy 183.6 -3.5% 6.9 -61.1% 

Demand  

2 

No control 383.3 - 47.5 - 

Merging control only 186.7 -51.3% 7.4 -84.4% 

Proposed strategy 186.4 -51.4% 6.8 -85.7% 

Demand  

3 

No control 736.7 - 39.5 - 

Merging control only 486.0 -34.0% 14.5 -63.2% 

Proposed strategy 284.8 -61.3% 7.9 -79.9% 

 

The density heatmap for each scenario is shown in Figure 4.3. 
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For a high demand scenario (Demand 3), the queue forms from the 

lane-dropping point for no control whereas the starting point of the 

queue moves upstream, when the control is operated. Specifically, 

for merging control only, the queue forms from the starting point of 

section 2, and for the proposed strategy, the queue forms from the 

starting point of section 1. As a consequence, the density is kept low 

near the lane-dropping point. Both the maximum queue length and 

the duration of the congestion are reduced by operating the proposed 

strategy. Also, for Demand 2, operating merging control significantly 

lowers the density by enhancing merging with reduced disruption. 

For Demand 1, no difference can be found depending on whether the 

strategy was operated or not. 

 

Figure 4.3. Density heatmap under CAV environment 
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However, it should be noted that keeping the density low does 

not guarantee an increase in throughput at the lane-drop bottleneck. 

The time-occupancy plot shown in Figure 4.4 demonstrates the 

result for the PID controller. The occupancy is collected every 10 

seconds from the detector located upstream of the bottleneck. As 

explained in the previous section, inflow control uses a PID controller 

to keep the occupancy near the target occupancy and prevent the 

capacity drop. When merging control is operated without inflow 

control, it shows that the occupancy is not maintained at the target 

occupancy. This is because merging control is a rule-based 

microscopic control that does not guarantee optimized operation. For 

the proposed strategy, however, inflow control successfully controls 

the occupancy near target occupancy. As mentioned previously, 

target occupancy is set so that the throughput exceeds the original 

throughput without control. This guarantees the operational benefit 

when the proposed strategy is operated.  

 

 
Figure 4.4. Occupancy-time plot under CAV environment 
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Figure 4.5 shows the throughput collected from the detector 

located 100m upstream from the lane-dropping point under demand 

3. The throughput was aggregated every 60 seconds. The figure 

shows that capacity drop occurs in no control scenario. When 

merging control was operated without inflow control, capacity drop 

was delayed compared to no control, but the throughput was kept 

around 3,000vph before the queue dissipation. The proposed 

strategy successfully prevented the capacity drop and also kept 

throughput around 4,000vph, which is higher than the compared 

scenarios. The result verifies that when the occupancy is controlled 

properly by the PID controller, the throughput can be controlled high. 

 

 
Figure 4.5. Throughput under CAV environment (Demand 3) 

 

Other than the operational benefit of the traffic flow, the 

environmental benefit was also addressed (Table 4.6). Average 𝐶𝑂2 

emissions was calculated by the Comprehensive Modal Emission 

Model (CMEM). The results show that the improvement in the 

environmental aspect was significant in high-demand scenarios 

(Demand 2, Demand 3), and the percent change was less than 1% in 

the lowest-demand scenario. The result implies that the 

environmental benefit increases with higher demands. 
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Table 4.6 𝑪𝑶𝟐 Emissions under CAV environment 

Demand Control 𝐶𝑂2 Emissions (g/km) 

Value % change 

Demand  

1 

No control 197.8 - 

Merging control only 197.7 -0.0% 

Proposed strategy 197.7 -0.0% 

Demand  

2 

No control 215.2 - 

Merging control only 195.6 -9.1% 

Proposed strategy 195.6 -9.1% 

Demand  

3 

No control 248.0 - 

Merging control only 224.2 -9.6% 

Proposed strategy 196.5 -20.8% 

 

Also, Surrogate Safety Assessment Model 3 (SSAM3) was used 

to evaluate the safety improvement. In SSAM, the potential conflicts 

are considered if the Time-To-Collision (TTC) and the Post 

Encroachment Time (PET) values are lower than 1.5 seconds and 

5.0 seconds, respectively (Rahman et al., 2019). The number of 

conflicts when the proposed strategy is operated was calculated and 

compared with that of no control and merging control only scenarios 

(Table 4.7). The results show that the number of conflicts reduces 

significantly when the proposed strategy is activated. Also, it should 

be noted that under low-demand scenarios (Demand 1 and Demand 

2), both merging control only and the proposed strategy show their 

capability of nearly eliminating the conflicts caused by mandatory 

lane changing.  

 

Table 4.7 Number of conflicts under CAV environment 

Demand Control Number of Conflicts 

Value % change 

Demand  

1 

No control 214 - 

Merging control only 0 -100.0% 

Proposed strategy 0 -100.0% 

Demand  

2 

No control 2,632 - 

Merging control only 1 -100.0% 

Proposed strategy 0 -100.0% 

Demand  

3 

No control 7,195 - 

Merging control only 3,886 -46.0% 

Proposed strategy 619 -91.4% 
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4.2.2. Results under Mixed Traffic Environment 
 

CAVs and HDVs are expected to co-exist on the highway for a 

long time (Zhou et al., 2016; Karimi et al., 2020). Therefore, it is 

necessary to further investigate the performance of the proposed 

strategy in a mixed-traffic environment. For the evaluation under a 

mixed traffic environment, Demand 3 is selected since it is the most 

critical scenario. Various Market Penetration Rates (MPRs) were 

evaluated with 30 random seeds for each scenario. 

As shown in Figure 4.6 and Table 4.8, the travel time is reduced 

for all MPR scenarios when the control is operated. For the proposed 

strategy, the travel time reduction rate increases as the CAV MPR 

increases. This indicates that the traffic efficiency at the lane-drop 

bottleneck increases with more controllable CAVs. Furthermore, 

when CAV MPR is higher than 50%, the gain in performance is 

marginal. In other words, even with the coexistence of the 

unpredictable HDVs, the proposed strategy successfully improves 

efficiency with a minor loss in performance compared to a fully 

controllable environment. It is also interesting that the travel time 

reduction rate for MPRs lower than 50% does not show a difference 

between the merging control only and the proposed strategy. This 

implies that the inflow is not controlled sufficiently by controlling the 

gap settings of a limited number of vehicles upstream. When MPR is 

more than 50%, inflow control successfully further improves the 

traffic flow efficiency when operated with merging control.  

 

 

Figure 4.6. Travel time reduction rate with different MPRs 
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Table 4.8 Travel time and standard deviation of speed with different 

MPRs 

MPR  

(%) 

Control Avg. Travel Time 

(sec/veh) 

Speed Std. Dev. 

(kph) 

Value % change Value % change 

1 No control 481.8 - 41.7 - 

Merging control only 457.3 -5.1% 40.9 -2.0% 

Proposed strategy 461.9 -4.1% 40.9 -2.0% 

3 No control 496.1 - 41.9 - 

Merging control only 433.4 -12.6% 39.7 -5.1% 

Proposed strategy 428.1 -13.7% 39.7 -5.3% 

10 No control 523.2 - 41.9 - 

Merging control only 389.7 -25.5% 37.8 -9.6% 

Proposed strategy 387.6 -25.9% 37.7 -9.9% 

20 No control 558.1 - 41.7 - 

Merging control only 349.2 -37.4% 35.8 -14.3% 

Proposed strategy 346.0 -38.0% 35.7 -14.4% 

30 No control 590.8 - 41.5 - 

Merging control only 328.1 -44.5% 34.2 -17.5% 

Proposed strategy 325.6 -44.9% 33.6 -18.9% 

40 No control 615.6 - 41.3 - 

Merging control only 311.4 -49.4% 32.3 -21.6% 

Proposed strategy 314.4 -48.9% 31.9 -22.6% 

50 No control 641.3 - 40.9 - 

Merging control only 303.3 -52.7% 27.1 -33.6% 

Proposed strategy 292.2 -54.4% 27.3 -33.2% 

60 No control 666.6 - 40.5 - 

Merging control only 321.6 -51.7% 20.9 -48.4% 

Proposed strategy 287.0 -56.9% 15.7 -61.1% 

70 No control 691.4 - 40.0 - 

Merging control only 367.7 -46.8% 19.0 -52.4% 

Proposed strategy 288.4 -58.3% 11.2 -72.1% 

80 No control 713.5 - 39.7 - 

Merging control only 399.5 -44.0% 17.3 -56.3% 

Proposed strategy 292.7 -59.0% 7.3 -81.5% 

90 No control 722.6 - 39.6 - 

Merging control only 430.7 -40.4% 16.9 -57.4% 

Proposed strategy 282.6 -60.9% 7.2 -81.8% 

97 No control 732.5 - 39.6 - 

Merging control only 456.5 -37.7% 15.9 -59.9% 

Proposed strategy 282.5 -61.4% 7.9 -80.1% 

99 No control 731.2 - 39.7 - 

Merging control only 470.2 -35.7% 14.8 -62.6% 

Proposed strategy 279.7 -61.7% 7.6 -80.9% 

100 No control 736.7 - 39.5 - 

Merging control only 486.0 -34.0% 14.5 -63.2% 

Proposed strategy 284.8 -61.3% 7.9 -79.9% 
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The effectiveness of the proposed strategy under various MPR 

scenarios can be further discussed with a macroscopic fundamental 

diagram shown in Figure 4.7. As shown in Figure 4.7(a), for no 

control, the capacity drop occurs. Even when the input volume was 

high, the capacity drop is perfectly prevented with the operation of 

the proposed strategy. Also, when unpredictable HDVs coexist, the 

capacity drop can still be prevented for MPRs over 70%. Moreover, 

the red dots, indicating the operation of the proposed strategy, 

located in the congested regime is significantly reduced for MPRs 

higher than 50%. Figure 4.7(j) shows the effect of the proposed 

strategy for the MPR 10% scenario. Although the capacity drop is not 

prevented, the average density for the congested state is reduced 

significantly with higher throughput. This trend applies to the other 

MPR scenarios, which explains the reduction in travel time for all 

MPR scenarios as presented in Table 4.8. 

The environmental and safety effects are also presented in Table 

4.9 and Table 4.10, respectively. Both merging control only and the 

proposed strategy reduced 𝐶𝑂2 emissions, as well as the number of 

conflicts significantly for all MPRs. The results suggest that the 

proposed strategy is not only effective in improving traffic flow 

efficiency, but also has positive effects on environmental 

performance and safety. 
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Figure 4.7. Flow-density curve with different MPRs 
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Table 4.9 𝑪𝑶𝟐 emissions with different MPRs 

MPR 

(%) 

Control 𝐶𝑂2 Emissions (g/km) 

Value % change 

1 No control 223.4 - 

Merging control only 223.0 -0.2% 

Proposed strategy 222.2 -0.5% 

3 No control 229.2 - 

Merging control only 221.1 -3.5% 

Proposed strategy 219.6 -4.2% 

10 No control 233.3 - 

Merging control only 211.3 -9.4% 

Proposed strategy 211.2 -9.4% 

20 No control 236.1 - 

Merging control only 206.2 -12.6% 

Proposed strategy 20.5 -12.9% 

30 No control 241.2 - 

Merging control only 203.2 -15.8% 

Proposed strategy 200.8 -16.7% 

40 No control 242.4 - 

Merging control only 200.8 -17.2% 

Proposed strategy 199.1 -17.9% 

50 No control 247.6 - 

Merging control only 200.5 -19.0% 

Proposed strategy 197.8 -20.1% 

60 No control 248.2 - 

Merging control only 204.3 -17.7% 

Proposed strategy 198.0 -20.2% 

70 No control 250.8 - 

Merging control only 210.1 -16.2% 

Proposed strategy 198.2 -20.9% 

80 No control 253.0 - 

Merging control only 215.2 -14.9% 

Proposed strategy 198.1 -21.7% 

90 No control 248.4 - 

Merging control only 216.8 -12.7% 

Proposed strategy 196.5 -20.9% 

97 No control 250.1 - 

Merging control only 221.4 -11.5% 

Proposed strategy 197.1 -21.2% 

99 No control 249.8 - 

Merging control only 227.2 -9.1% 

Proposed strategy 197.7 -20.9% 

100 No control 248.0 - 

Merging control only 224.2 -9.6% 

Proposed strategy 196.5 -20.8% 
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Table 4.10 Number of conflicts with different MPRs 

MPR 

(%) 

Control Number of Conflicts 

Value % change 

1 No control 5,515 - 

Merging control only 5,086 -7.8% 

Proposed strategy 5,054 -8.4% 

3 No control 5,955 - 

Merging control only 4,249 -28.7% 

Proposed strategy 4,170 -30.0% 

10 No control 6,523 - 

Merging control only 3,237 -50.4% 

Proposed strategy 3,204 -50.9% 

20 No control 6,539 - 

Merging control only 2,752 -57.9% 

Proposed strategy 2,634 -59.7% 

30 No control 8,755 - 

Merging control only 2,744 -68.7% 

Proposed strategy 2,378 -72.8% 

40 No control 9,662 - 

Merging control only 2,366 -75.5% 

Proposed strategy 2,132 -77.9% 

50 No control 11,666 - 

Merging control only 2,771 -76.2% 

Proposed strategy 2,042 -82.5% 

60 No control 12,414 - 

Merging control only 3,679 -70.4% 

Proposed strategy 1,572 -87.3% 

70 No control 13,118 - 

Merging control only 5,191 -60.4% 

Proposed strategy 1,680 -87.2% 

80 No control 13,085 - 

Merging control only 6,009 -54.1% 

Proposed strategy 1,445 -89.0% 

90 No control 10,805 - 

Merging control only 5,465 -49.4% 

Proposed strategy 811 -92.5% 

97 No control 9,336 - 

Merging control only 5,716 -38.8% 

Proposed strategy 737 -92.1% 

99 No control 8,640 - 

Merging control only 5,412 -37.4% 

Proposed strategy 826 -90.4% 

100 No control 7194 - 

Merging control only 3886 -46.0% 

Proposed strategy 619 -91.4% 
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Chapter 5. Conclusions 
 

 

This study proposed a novel concept of controlling the gap 

setting of CAVs to improve throughput at a freeway lane-drop 

bottleneck. The proposed strategy consists of two parts: merging 

control and inflow control. Merging control is a microscopic control 

strategy that adjusts the gap setting of CAVs to a proposed gap 

setting to reduce disruption due to merging. The CAVs with a 

proposed gap setting not only follow the preceding vehicle in the 

same lane but also follow the preceding vehicle in the adjacent lane 

if the vehicle is present. Inflow control controls the gap settings of 

CAVs dynamically to regulate the upstream inflow and keep the 

bottleneck occupancy at the target occupancy. Proportional-

Integral-Derivative (PID) controller was utilized for inflow control. 

The effectiveness of the proposed strategy was evaluated using 

microsimulation VISSIM. The simulation results confirmed that the 

proposed strategy improved traffic flow efficiency near the lane-

drop bottleneck under all demand scenarios in the CAV environment. 

Merging control of the proposed strategy could reduce the speed 

disturbance by more than 60% and inflow control could keep the 

occupancy at the target. Consequently, the proposed strategy 

successfully prevented capacity drop and improved flow efficiency. 

The proposed strategy also reduced 𝐶𝑂2 emissions and the number 

of conflicts under all demand scenarios. 

The impact of the proposed strategy in a mixed-traffic 

environment was further analyzed. The results showed that the 

proposed strategy can improve the efficiency of the traffic flow for 

all MPRs, and the gain in performance was marginal for MPRs higher 

than 50%. The proposed strategy also reduced 𝐶𝑂2 emissions and 

the number of conflicts under all MPRs. 

It should be noted that the only property controlled by the traffic 

management center for the proposed strategy is the gap settings of 

CAVs. This minimized control by the center allows being easily 
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implemented in the field in a technical aspect. Moreover, since the 

CAVs are only controlled in the control region, another strong 

advantage of the proposed strategy is its minimized need for 

infrastructure for the operation.   



 

 ４０ 

Bibliography 

Aghabayk, K., Sarvi, M., & Young, W. (2015). A state-of-the-art 

review of car-following models with particular considerations of 

heavy vehicles. Transport reviews, 35(1), 82-105. 

Bando, M., Hasebe, K., Nakayama, A., Shibata, A., & Sugiyama, Y. 

(1995). Dynamical model of traffic congestion and numerical 

simulation. Physical review E, 51(2), 1035. 

Bang, S., & Ahn, S. (2018). Control of connected and autonomous 

vehicles with cut-in movement using spring mass damper 

system. Transportation Research Record, 2672(20), 133-143. 

Cao, W., Mukai, M., Kawabe, T., Nishira, H., & Fujiki, N. (2015). 

Cooperative vehicle path generation during merging using model 

predictive control with real-time optimization. Control 

Engineering Practice, 34, 98-105.  

Chen, N., van Arem, B., Alkim, T., & Wang, M. (2020). A hierarchical 

model-based optimization control approach for cooperative 

merging by connected automated vehicles. IEEE Transactions on 

Intelligent Transportation Systems, 22(12), 7712-7725. 

Chen, T., Wang, M., Gong, S., Zhou, Y., & Ran, B. (2021). Connected 

and automated vehicle distributed control for on-ramp merging 

scenario: A virtual rotation approach. Transportation Research 

Part C: Emerging Technologies, 133, 103451. 

Cho, H. W., & Laval, J. A. (2020). Combined ramp-metering and 

variable speed limit system for capacity drop control at merge 

bottlenecks. Journal of Transportation Engineering, Part A: 

Systems, 146(6), 04020033. 

Davis, L. C. (2004). Effect of adaptive cruise control systems on 

traffic flow. Physical Review E, 69(6), 066110. 

Guériau, M., Billot, R., El Faouzi, N. E., Monteil, J., Armetta, F., & 

Hassas, S. (2016). How to assess the benefits of connected 

vehicles? A simulation framework for the design of cooperative 

traffic management strategies. Transportation research part C: 

emerging technologies, 67, 266-279. 

Gunter, G., Gloudemans, D., Stern, R. E., McQuade, S., Bhadani, R., 



 

 ４１ 

Bunting, M., ... & Work, D. B. (2020). Are commercially 

implemented adaptive cruise control systems string stable?. IEEE 

Transactions on Intelligent Transportation Systems, 22(11), 

6992-7003. 

Guo, Y., Xu, H., Zhang, Y., & Yao, D. (2020). Integrated variable 

speed limits and lane-changing control for freeway lane-drop 

bottlenecks. IEEE Access, 8, 54710-54721. 

Hu, Z., Huang, J., Yang, Z., & Zhong, Z. (2021). Embedding robust 

constraint-following control in cooperative on-ramp 

merging. IEEE Transactions on Vehicular Technology, 70(1), 

133-145. 

Hu, X., & Sun, J. (2019). Trajectory optimization of connected and 

autonomous vehicles at a multilane freeway merging 

area. Transportation Research Part C: Emerging 

Technologies, 101, 111-125. 

Jiang, R., Wu, Q., & Zhu, Z. (2001). Full velocity difference model for 

a car-following theory. Physical Review E, 64(1), 017101. 

Jin, H. Y., & Jin, W. L. (2015). Control of a lane-drop bottleneck 

through variable speed limits. Transportation Research Part C: 

Emerging Technologies, 58, 568-584. 

Karimi, M., Roncoli, C., Alecsandru, C., & Papageorgiou, M. (2020). 

Cooperative merging control via trajectory optimization in mixed 

vehicular traffic. Transportation Research Part C: Emerging 

Technologies, 116, 102663. 

Kesting, A., Treiber, M., & Helbing, D. (2010). Enhanced intelligent 

driver model to access the impact of driving strategies on traffic 

capacity. Philosophical Transactions of the Royal Society A: 

Mathematical, Physical and Engineering Sciences, 368(1928), 

4585-4605. 

Khondaker, B., & Kattan, L. (2015). Variable speed limit: A 

microscopic analysis in a connected vehicle environment. 

Transportation Research Part C: Emerging Technologies, 58, 

146-159. 

Liang, J., Guan, T., Liu, D., Liu, X., Luan, Z., Liu, H., & Yuan, X. (2022). 

An optimal trajectory planning for automated on‐ramp 



 

 ４２ 

merging. IET Intelligent Transport Systems. 

Lu, X. Y., & Hedrick, J. K. (2003). Longitudinal control algorithm for 

automated vehicle merging. International Journal of 

Control, 76(2), 193-202. 

Makridis, M., Mattas, K., Ciuffo, B., Re, F., Kriston, A., Minarini, F., & 

Rognelund, G. (2020). Empirical study on the properties of 

adaptive cruise control systems and their impact on traffic flow 

and string stability. Transportation research record, 2674(4), 

471-484. 

Milanés, V., & Shladover, S. E. (2014). Modeling cooperative and 

autonomous adaptive cruise control dynamic responses using 

experimental data. Transportation Research Part C: Emerging 

Technologies, 48, 285-300. 

Min, H., Fang, Y., Wang, R., Li, X., Xu, Z., & Zhao, X. (2020). A novel 

on-ramp merging strategy for connected and automated vehicles 

based on game theory. Journal of Advanced Transportation, 2020. 

Monteil, J., Bouroche, M., & Leith, D. J. (2018). ℒ2 and ℒ∞ Stability 

Analysis of Heterogeneous Traffic With Application to Parameter 

Optimization for the Control of Automated Vehicles. IEEE 

Transactions on Control Systems Technology, 27(3), 934-949. 

Müller, E. R., Carlson, R. C., Kraus, W., & Papageorgiou, M. (2015). 

Microsimulation analysis of practical aspects of traffic control 

with variable speed limits. IEEE Transactions on Intelligent 

Transportation Systems, 16(1), 512-523. 

Nowakowski, C., O'Connell, J., Shladover, S. E., & Cody, D. (2010, 

September). Cooperative adaptive cruise control: Driver 

acceptance of following gap settings less than one second. In 

Proceedings of the Human Factors and Ergonomics Society 

Annual Meeting (54, 24, 2033-2037) 

Papageorgiou, M., Hadj-Salem, H., & Blosseville, J. M. (1991). 

ALINEA: A local feedback control law for on-ramp metering. 

Transportation research record, 1320(1), 58-67. 

Punzo, V., Zheng, Z., & Montanino, M. (2021). About calibration of 

car-following dynamics of automated and human-driven 

vehicles: Methodology, guidelines and codes. Transportation 



 

 ４３ 

Research Part C: Emerging Technologies, 128, 103165. 

Rahman, M. S., Abdel-Aty, M., Lee, J., & Rahman, M. H. (2019). 

Safety benefits of arterials’ crash risk under connected and 

automated vehicles. Transportation Research Part C: Emerging 

Technologies, 100, 354-371. 

Ren, T., Xie, Y., & Jiang, L. (2020). Cooperative highway work zone 

merge control based on reinforcement learning in a connected 

and automated environment. Transportation research record, 

2674(10), 363-374. 

Ren, T., Xie, Y., & Jiang, L. (2021). New England merge: a novel 

cooperative merge control method for improving highway work 

zone mobility and safety. Journal of Intelligent Transportation 

Systems, 25(1), 107-121. 

Rios-Torres, J., & Malikopoulos, A. A. (2016). A survey on the 

coordination of connected and automated vehicles at 

intersections and merging at highway on-ramps. IEEE 

Transactions on Intelligent Transportation Systems, 18(5), 

1066-1077. 

Shang, M., & Stern, R. E. (2021). Impacts of commercially available 

adaptive cruise control vehicles on highway stability and 

throughput. Transportation research part C: emerging 

technologies, 122, 102897. 

Shi, X., & Li, X. (2021). Empirical study on car-following 

characteristics of commercial automated vehicles with different 

headway settings. Transportation research part C: emerging 

technologies, 128, 103134. 

Sun, J., Zheng, Z., & Sun, J. (2018). Stability analysis methods and 

their applicability to car-following models in conventional and 

connected environments. Transportation research part B: 

methodological, 109, 212-237. 

Talebpour, A., & Mahmassani, H. S. (2016). Influence of connected 

and autonomous vehicles on traffic flow stability and throughput. 

Transportation Research Part C: Emerging Technologies, 71, 

143-163. 

Treiber, M., & Kesting, A. (2013). Traffic flow dynamics. Traffic 



 

 ４４ 

Flow Dynamics: Data, Models and Simulation, Springer-Verlag 

Berlin Heidelberg, 983-1000. 

Wang, Y., Kosmatopoulos, E. B., Papageorgiou, M., & Papamichail, I. 

(2014). Local ramp metering in the presence of a distant 

downstream bottleneck: Theoretical analysis and simulation 

study. IEEE Transactions on Intelligent Transportation Systems, 

15(5), 2024-2039. 

Wang, Z., Wu, G., & Barth, M. (2018). Distributed consensus-based 

cooperative highway on-ramp merging using V2X 

communications (No. 2018-01-1177). SAE Technical Paper. 

Wu, Y., Tan, H., Qin, L., & Ran, B. (2020). Differential variable speed 

limits control for freeway recurrent bottlenecks via deep actor-

critic algorithm. Transportation research part C: emerging 

technologies, 117, 102649. 

Yao, Z., Xu, T., Jiang, Y., & Hu, R. (2021). Linear stability analysis 

of heterogeneous traffic flow considering degradations of 

connected automated vehicles and reaction time. Physica A: 

Statistical Mechanics and Its Applications, 561, 125218. 

Yuan, K., Knoop, V. L., & Hoogendoorn, S. P. (2015). Capacity drop: 

Relationship between speed in congestion and the queue 

discharge rate. Transportation Research Record, 2491(1), 72-

80. 

Zhang, Y., & Ioannou, P. A. (2016). Combined variable speed limit 

and lane change control for highway traffic. IEEE Transactions 

on Intelligent Transportation Systems, 18(7), 1812-1823. 

Zheng, Y., Wang, J., & Li, K. (2020). Smoothing traffic flow via 

control of autonomous vehicles. IEEE Internet of Things Journal, 

7(5), 3882-3896. 

Zhou, M., Qu, X., & Jin, S. (2016). On the impact of cooperative 

autonomous vehicles in improving freeway merging: a modified 

intelligent driver model-based approach. IEEE Transactions on 

Intelligent Transportation Systems, 18(6), 1422-1428. 

Zhou, Y., Cholette, M. E., Bhaskar, A., & Chung, E. (2018). Optimal 

vehicle trajectory planning with control constraints and recursive 

implementation for automated on-ramp merging. IEEE 



 

 ４５ 

Transactions on Intelligent Transportation Systems, 20(9), 

3409-3420. 

Zhu, J., Easa, S., & Gao, K. (2022). Merging control strategies of 

connected and autonomous vehicles at freeway on-ramps: a 

comprehensive review. Journal of Intelligent and Connected 

Vehicles. 

Zhu, W. X., & Zhang, H. M. (2018). Analysis of mixed traffic flow 

with human-driving and autonomous cars based on car-

following model. Physica A: Statistical Mechanics and its 

Applications, 496, 274-285. 

  



 

 ４６ 

Abstract 

 

차로감소 병목구간은 차로감소, 공사, 사고 등으로 인해 

고속도로에서 자주 관측된다. 이러한 고속도로 차로감소 병목구간에서는 

필수적인 차로변경으로 인한 차들 간의 상충, 그리고 상류부 

유입교통량이 하류부 용량보다 큰 상황으로 인해 용량저하가 발생할 수 

있다. 따라서 CAV 제어를 통해 차량 합류 행태를 개선하고 상류부 

유입교통량을 조절할 수 있다면 정체구간 유출교통량을 늘릴 수 있을 

것으로 기대된다. 본 연구는 CAV가 현재 판매되는 자율주행차들이 

제공하는 차간거리설정을 포함하여 여러 차간거리설정들을 제공한다고 

가정하였으며, CAV의 차간거리설정 제어를 통해 차로감소 병목구간의 

유출교통량을 증가시킬 수 있는 새로운 개념의 전략을 제안하였다. 본 

연구에서 제안하는 전략은 합류제어와 유입량제어로 구성된다. 

합류제어는 CAV의 차간거리설정을 합류를 개선할 수 있도록 제안된 

새로운 차간거리설정으로 조정한다. 유입량제어는 비례-적분-미분 

제어기를 활용하여 CAV들의 차간거리설정을 가장 긴 설정 혹은 가장 

짧은 설정으로 동적으로 제어함으로써 상류부 유입교통량을 조절하고 

병목구간 점유율을 목표 점유율에 가깝게 유지하도록 한다. 본 연구는 

제안된 전략의 성능을 평가하기 위해 미시교통류시뮬레이션 VISSIM에 

전략을 구현하고 시뮬레이션을 진행하였다. 시뮬레이션 결과, CAV 

환경에서 본 전략은 모든 용량 시나리오에 대해 용량저하를 방지하고 

운영성을 개선하였다. 또한 본 전략은 검토된 모든 CAV 

시장점유율에서 운영성을 개선하였고, 시장점유율 50% 이상에서는 개선 

정도의 증가율이 미미함을 확인하였다. 운영성 뿐만 아니라 환경성과 

안전성 측면에서도 모든 시장점유율에서 전략이 효과적임을 확인하였다. 

 

주요어: 차간거리설정, 자율협력주행자동차, 차로감소 병목구간, 비례-

적분-미분 제어, VISSIM 
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