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ABSTRACT 

Cost Minimization of Reinforcing Bar Order  

By Applying Bin-Packing Approach  

Woo Seok Choi 

Department of Civil and Environmental Engineering 

Seoul National University 

 

Recently, in an environment where the price of domestic reinforcing bars 

is steadily rising, the cost of rebar construction accounts for about 16% of the 

total construction cost, so reducing the cost of rebar construction is a very 

important factor in reducing construction costs. This paper conducts research 

to reduce rebar ordering costs. 

For this purpose, existing representative algorithms of the Column-gener-

ation approach and the Bin-packing approach, which are one of the linear 

programming solutions are introduced. 

Revised-Best-fit-decreasing algorithm is proposed, which improve the ex-

isting Best-fit-decreasing algorithm. For the newly proposed Revised-Best-

fit-decreasing, divide the price of the stock rebar by the length of the stock 

rebar, reselect the stock rebar with the smallest value as the best rebar, and 

rearrange the demand rebar in descending order of length. When the demand 

rebar enters the new stock rebar, it goes into the best rebar. Additionally, it 
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considers two demand rebars at the same time and creates a stock rebar that 

can contain both demand rebars if the sum of the lengths of the two demand 

rebars is greater than or equal to the best rebar length. 

The algorithm developed above is applied to the caisson structure of Ulsan 

New Port Development Project. The demand rebars for the above caisson 

structure consist of 818 types and 36,478 pieces. A quantity of approximately 

326.463 tons multiplied by a 6% surcharge for these rebars is the quantity 

executed for the actual rebar order. As a result of minimizing the rebar order 

cost with the Revised-Best-fit-decreasing algorithm, the order quantity of the 

stock rebar was about 322.427 tons, resulting in a reduction of about 4.1 tons 

and a reduction of about 4.2 million won in the order cost. 

 The degree of optimization of the algorithm varied with the diameter of 

the rebar, but the smaller the rebar diameter and the greater the number of 

demand rebars input to run the algorithm, the greater the minimization effect. 

Appropriate use of the algorithm proposed in this paper can reduce the order 

quantity of rebars and reduce the cost of ordering rebars. 

 

Keywords: Rebar; Pattern; Linear programming; Bin-packing approach; 

Revised-best-fit-decreasing; 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Reinforcing bars are members that bear tensile force in reinforced concrete 

structures and are widely used in civil engineering and building structures. 

The rebar construction cost accounts for about 16% of the total project cost, 

making it a very high proportion of the construction cost (Kim, Hong & Joo, 

2004). In addition, as the price of reinforcing bars in the Korean market tends 

to rise recently, there is a risk that the construction cost of reinforcing bars 

will increase.  

Reinforcing bars are required to have different diameters and lengths de-

pending on the shape of the structure, and these reinforcing bars are called 

demand rebars. Rebars sold in the market are called stock rebars, stock rebars 

are sold in units of 1m from 6m to 12m according to diameter, so after pur-

chasing the stock rebars, they are processed to make demand rebars and scraps 

are generated in this process. In other words, the quantity and cost of the stock 

rebars to be ordered vary depending on how the demand rebars are produced 

from the stock rebars of a specific length and how the stock rebars and the 

demand rebars are combined.  

The purpose of this study is to analyze the combination of stock rebar and 

demand rebar to minimize the cost of ordering the entire stock rebars.  



 

2 

However, this paper does not consider other costs such as the cost of pro-

cessing rebar or the labor of workers. Research is focused solely on minimiz-

ing the cost of ordering rebar.  

1.2 Definitions and Notations 

A particular combination of stock and demand rebars is called a pattern, as 

shown in Figure 1.1 below.  

In this paper, Terms used in the paper follow the definitions below.  

 

Demand rebar = Rebar required for construction 

Stock rebar = Rebar sold in the market, usually sold by whole number 

Pattern = Any combination of stock rebar and demand rebar(s) 

Scrap = Rebar left from the stock rebar after extraction of demand rebars 

 

 

Figure 1.1 Definitions 
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In this paper, the following notations are used with the following meanings:  

 

li = Length of demand rebar (i=1, …, m) 

Ni = Required number of demand rebar (i=1, …, m) 

Lt = Length of stock rebar (t= 1, …, k) 

ct = Cost of stock rebar (t= 1, …, k) 

aij = Number of pieces of li in the pattern j  

Pj = Each pattern (j=1, …, n) 

xj = The number of specific pattern j that need to be created (j=1, …, n) 

1.3 Structure of the Thesis 

This paper consists of five chapters to introduce each part of the proposed 

methodology. 

This chapter describes the background of the research on minimizing the 

order cost of rebar and expresses definitions and notations used in this paper. 

Next, Chapter 2 analyzes a previous paper that conducted similar studies 

to the rebar order cost minimization study. Specifically, after defining a prob-

lem with integer linear programming, describing how to solve it with Column 

generation method. It also describes the limitations that make it impossible to 

directly apply this method to this research paper. 
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Chapter 3 introduces the Bin-packing approach method to complement for 

the limit point that occurs when applying the Column generation method in-

troduced in Chapter 2 to the rebar ordering case. It also introduces and applies 

three typical solutions for the Bin-packing approach. Furthermore, it im-

proves the Best-fit-decreasing algorithm and propose a new solving algorithm, 

Revised-Best-fit-decreasing. 

Chapter 4 tests the newly proposed Revised-Best-fit-decreasing algorithm 

directly on real structures and analyzes the validity and problems of the results. 

Finally, Chapter 5 summarizes the main findings and contributions of this 

study and discusses several additional research topics. 
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CHAPTER 2 

EXISTING METHOD 

 

2.1 Basic Concept  

The problem of minimizing the cost of ordering stock rebars can be thought 

of as the problem of meeting all the demand rebars and minimizing the num-

ber of stock rebar orders.  

Gilmore and Gomory (1961) proposed this as an integer linear program-

ming problem. Such integer linear programming is the problem of finding 

optimized values of objective functions that satisfy given inequality condi-

tions.  

Looking at Figure 2.1 below, n patterns are generated to meet all demand 

rebars. A pattern is a specific combination of stock rebar and demand rebars 

as defined earlier and each pattern consists of one specific stock rebar and 

multiple specific demand rebar combinations. All n patterns must contain 

both all kinds of demand rebars and their respective quantities.  

For Figure 2.1 below, number of demand rebar l1 must be greater than or 

equal to N1 in n patterns, which is expressed in Inequation (2.1) below. The 

required number of conditions must be met for every kind of demand rebars.  
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The number of demand rebars li included in the specific pattern Pj can be 

expressed by aij based on the notations expressed above. 

 It is represented by the following Inequation in (2.2). 

 

𝟐𝒙𝟏 + 𝟏𝒙𝟐 + ⋯𝟎𝒙𝒏 ≥ 𝑵𝟏 (2.1) 

  

 

 

Figure 2.1 Example of rebars and patterns 

 

𝒂𝒊𝟏𝒙𝟏 + 𝒂𝒊𝟐𝒙𝟐 + ⋯𝒂𝒊𝒏𝒙𝒏 ≥ 𝑵𝒊, (𝒊 = 𝟏,⋯ ,𝒎) (2.2) 

 

By multiplying the price of stock rebars used for each pattern by the num-

ber of productions for that pattern, the objective function to be minimized is 

derived as shown in Function (2.3) below. Since each pattern must be at least 

0, the condition of Inequation (2.4) must also be satisfied. 
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𝒄𝟏𝒙𝟏 + 𝒄𝟐𝒙𝟐 + ⋯𝒄𝒏𝒙𝒏 (2.3)  

𝒙𝒋 ≥ 𝟎, (𝒋 = 𝟏,⋯ , 𝒏 + 𝒎) (2.4) 

 

After all, the problem of minimizing the rebar order cost can be considered 

as a linear programming problem of minimizing the objective function (2.3) 

among the values satisfying the conditions of Inequations (2.2) and (2.4).  

Gilmore et al. (1961) showed an integer linear programming solution to the 

Column generation method.  

2.2 Example  

The Column generation method is explained in the example below.   

A total of 5 types of demand rebar are required from 2m to 6m in 1m in-

crements, and 10 of each are required. Market sells only 8m stock rebar at 

$10, 9m stock rebar at $12, 10m stock rebar at $14. The stock rebar order cost 

can be minimized in 5 stages.   

 

Step 1. Make basic patterns 

The first step is to create the basic patterns. A basic pattern is created with 

the simplest combination of demand rebars and stock rebar. The total number 

of patterns is equal to the number of demand rebar types and each pattern 



 

8 

consists of only one demand rebar type. With the demand rebars and stock 

rebars conditions in the example above, basic patterns are constructed as 

shown in Figure 2.2 below. The basic pattern is constructed by combining the 

shortest stock rebar and demand that leave no scrap. If there is no combination 

that separates to fit exactly, construct the basic pattern with the stock rebar 

with the smallest difference from the length of the demand rebar. 

 

 

Figure 2.2 Basic patterns 

 

Step 2. Objective function and constraints 

Based on the created basic patterns, the objective function and conditional 

inequation can be derived. The objective function can be expressed as Func-

tion (2.5). This cost function consists of the stock rebar price for each pattern 

multiplied by the unknown quantity produced for each pattern. Conditional 
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inequations are generated for the number of types of demand rebars. Condi-

tional inequations are constructed as in Inequation (2.6) through (2.10) below.  

 

𝟏𝟎𝒙𝟏 + 𝟏𝟐𝒙𝟐 + 𝟏𝟎𝒙𝟑 + 𝟏𝟒𝒙𝟒 + 𝟏𝟎𝒙𝟓 (2.5) 

  

𝟒𝒙𝟏 + 𝟎𝒙𝟐 + 𝟎𝒙𝟑 + 𝟎𝒙𝟒 + 𝟎𝒙𝟓 ≥ 𝟏𝟎 (2.6) 

𝟎𝒙𝟏 + 𝟑𝒙𝟐 + 𝟎𝒙𝟑 + 𝟎𝒙𝟒 + 𝟎𝒙𝟓 ≥ 𝟏𝟎 (2.7) 

𝟎𝒙𝟏 + 𝟎𝒙𝟐 + 𝟐𝒙𝟑 + 𝟎𝒙𝟒 + 𝟎𝒙𝟓 ≥ 𝟏𝟎 (2.8) 

𝟎𝒙𝟏 + 𝟎𝒙𝟐 + 𝟎𝒙𝟑 + 𝟐𝒙𝟒 + 𝟎𝒙𝟓 ≥ 𝟏𝟎 (2.9) 

𝟎𝒙𝟏 + 𝟎𝒙𝟐 + 𝟎𝒙𝟑 + 𝟎𝒙𝟒 + 𝟏𝒙𝟓 ≥ 𝟏𝟎 (2.10) 

  

Step 3. Matrix form 

Represent each formula constructed in Step 2 in Matrix format. The objec-

tive function (2.5) is represented by a matrix C of 1 row and 5 columns, and 

all the left formulas of Inequations (2.6) to (2.10) are bundled and represented 

by a matrix A of 5 rows and 5 columns.  C is a matrix that informs the price 

information of the basic pattern, and A is a matrix that informs the structure 

of the basic pattern.  

In the example, matrix C and matrix A are equal to the values of (2.11) and 

(2.12) respectively.  
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After that, this price matrix C and basic pattern matrix A are used to deter-

mine whether the introduction of new patterns improve the basic patterns in 

terms of price.  

 

𝑪 = [𝟏𝟎 𝟏𝟐 𝟏𝟎 𝟏𝟒 𝟏𝟎] (2.11) 

  

𝑨 =

[
 
 
 
 
𝟒 𝟎 𝟎 𝟎 𝟎
𝟎 𝟑 𝟎 𝟎 𝟎
𝟎 𝟎 𝟐 𝟎 𝟎
𝟎 𝟎 𝟎 𝟐 𝟎
𝟎 𝟎 𝟎 𝟎 𝟏]

 
 
 
 

 (2.12) 

 

Step 4. Introduce a new pattern P 

The fourth step is to introduce new patterns. The new pattern differs from 

the basic patterns and consists of any combination of stock and demand rebars. 

The matrix P representing the new pattern has 5 rows and 1 column, with 

each row representing the number of each demand rebar in the pattern.  

Introducing a new pattern as shown in Figure 2.3 below, the new pattern P 

can be expressed as (2.13).  
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Figure 2.3 Example of a new pattern 

 

After expressing the matrix P for the new pattern, the relationship with the 

existing C, A matrices is derived. There is a specific matrix U of 5 rows and 

1 column representing the relationship between the basic pattern matrix A and 

the new pattern P. Their relation can be expressed as (2.14), and the matrix U 

always exists.  

 

𝑷 =

[
 
 
 
 
𝟏
𝟎
𝟎
𝟎
𝟏]
 
 
 
 

 (2.13) 

  

𝑨 ∙ 𝑼 = 𝑷 (2.14) 
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In this example the matrix U is derived (2.15) as follows. The meaning of 

each element of the matrix U is the proportion of each demand rebar required 

to make the new pattern P in the basic pattern A.  

In other words, the basic pattern p1 originally consisted of 4 2m demand 

rebars, and only 1/4 of the basic pattern is required to generate a new 2m 

single rebar.  

 

𝑼 =

[
 
 
 
 
𝟏/𝟒
𝟎
𝟎
𝟎
𝟏 ]

 
 
 
 

 (2.15) 

 

Multiplying the pattern cost matrix C by the matrix U gives the price value 

of the new pattern. If this value is greater than c representing the price of the 

stock rebar used in the new pattern, the new pattern is considered an improve-

ment over the existing patterns.  

That is, a new pattern is introduced if the following Inequation (2.16) is 

satisfied.  

 

𝑪 ∙ 𝑼 > 𝒄 (2.16) 
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Step 5. Find the best fitting new patterns by repeating Step 4. 

Repeat Step 4 until no more price-improving patterns are introduced. While 

repeating Step 4, existing basic patterns are changed to new pattern combina-

tions. Generating a new pattern is the same as generating a new column. 

Therefore, this method is called column generation method.  

Finding the number of orders for the changed pattern yields the overall or-

der cost, which is reduced compared to the existing order cost. 

 

2.3 Limitations of this Method  

The above-described method is effective when the length of the demand 

rebars and the length of the stock rebars are integers and the types of demand 

rebars are small. As in the previous example, there are 5 demand rebar types 

and demand rebar lengths are integers, so it is suitable because it is easy to 

generate basic patterns.  

However, in the case of actual civil engineering reinforced concrete struc-

tures, there are many types of demand rebars, and the length of the demand 

rebars is a decimal point, so it is judged that the above method is not suitable.  

According to (Jahromi et al., 2012) the one-dimensional cutting stock prob-

lem, which considers many combinations of demand rebars and stock rebars, 
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is the Np-hard problem, and the computation time increases exponentially as 

the number of demand orders increases.  

When the number of types of demand rebar is about 1000 or more, it was 

confirmed that the CPU time took more than 15000 seconds, and when the 

number of types of demand rebar was more than 5000, an appropriate solution 

could not be found even after 24 hours (Jahromi et al., 2012). 

Column generation method is basically based on simplex method, according 

to (Fourer, 1988). In the worst case of the simplex method, degeneracy may 

occur. In simplex method, basically the basic feasible solution proceeds in the 

direction of decreasing, but if there is a 0 variable in the basic variables and 

the basic feasible solution does not decrease and the value does not change, 

infinite cycling is performed (Fourer, 1988). 

Therefore, Chapter 3 introduces the Bin-packing approach, which is the 

core approach of this paper, as a methodology for minimizing the ordering 

cost of rebars and applies it to a simple example where the column generation 

method can be applied.  
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CHAPTER 3 

BIN-PACKING APPROACH  

 

The Bin-packing approach is an optimization problem about filling all the 

demands while minimizing the number of bins used when there is a finite 

number of bins (Martello & Toth, 1990). 

Here, the stock rebar can be regarded as a bin and the problem of minimiz-

ing the number of stock rebars generated while putting all the demand rebars 

into the stock rebar.  

The stock rebar order cost is generally related to the number of stock rebar 

orders, so it fits the overall purpose.  

The Column generation method is a method of generating patterns consid-

ering many combinations of stock rebars and demand rebars and comparing 

the prices with existing patterns. In contrast, the Bin-packing approach is con-

cerned with which stock rebars the demand rebar is put into, where the stock 

rebar is fixed, and does not consider in advance the number of pattern cases.  

Each pattern is only made up after adding demand rebars to stock rebars. 

 Solving the bin-packing approach is generally a linear complexity in com-

putational time complexity (Bekesi, Galambos & Kellerer, 2000).  

As shown in Figure 3.1 below, the bin-packing approach, whose computa-

tional complexity is a linear complexity proportional to the absolute amount 
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of demand rebar, is superior to the Column-generation method, whose com-

putational complexity is exponential complexity. Computational speed is 

much faster.  

 

 

Figure 3.1 Big-O complexity 

 

Due to the above characteristics, it is more advantageous to apply the Bin- 

packing approach to the problem of minimizing the rebar order cost of real 

reinforced concrete structures.  



 

17 

3.1 Basic Concept 

3.1.1 General Solutions 

Martello et al. (1990) introduced algorithms that solves the bin packing 

approach. 

The first is the Best-fit algorithm. The Best-fit algorithm puts the demand 

into the bin(stock) with the least length of remaining space when it is put into 

the bin(stock). Here "Best" means the best space, but the best space is the one 

with the least remaining space when the demand is put into bin(stock).  

The second is the Best-fit-decreasing algorithm. The logic of entering de-

mand is the same as the Best-fit algorithm. However, before the demands are 

put into the bin(stock), they are sorted in descending order of size, here in 

descending order of length from long to short. The meaning of decreasing 

added later is to order these demands in descending order.  

The third is the First-fit-decreasing algorithm. It is an algorithm that tries 

to put it in the first bin it meets, unlike the best that puts it in the most optimal 

space. Similarly, since it is decreasing, sort demand in descending order of 

length.  
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Figure 3.2 An example of the bin-packing approach  

 

The example in Figure 3.2 illustrates the above three common solutions for 

the Bin-packing approach.  

The stock rebar is available in 12m, 10m and 6m at $10, $8, and $6 respec-

tively. Demand rebar requires 6 as above. 
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(a) 

 
 (b) 

 
 

(c) 
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Figure 3.3 General solutions of the bin packing approach  

(a) Best-fit 

 (b) Best-fit-decreasing (c) First-fit-decreasing 

 

First, in the case of (a) Best-fit, the first demand rebar of 2m is taken 

into the bin(stock), but according to the best principle of putting it in the 

smallest space, it goes into the 6m stock rebar at first. For the second 6m 

demand rebar, the smallest space is the first created 6m stock rebar con-

taining the 2m demand rebar and the remaining 4m space, but the 6m 

demand rebar cannot enter. So, create a new 6m stock rebar and fill that 

space with a 6m demand rebar. The third demand rebar, 1m, can fit into 

the existing minimum space of 4m, so it goes into the first generated 

stock on the best-fit principle. Using these rules is the Best-fit algorithm. 

The second (b) Best-fit-decreasing is an algorithm that arranges the 

demand rebars in descending order of length in advance and then puts 

the demands into the minimum space like Best-fit algorithm. So, the first 

demand rebar in Best-fit-decreasing is 12m, naturally generating a 12m 

stock rebar to enter. The second demand rebar is 7m and can enter the 

12m stock rebar and 10m stock rebar but enters the 10m stock rebar in 

the best(smallest) space. 

The third (c) First-fit-decreasing is an algorithm that sorts the demand 

rebars in descending order of length and then puts them into the stock 

rebar where they first meet. The order of stock rebars met at this time is 
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the same as the order of stock rebars specified by the user. The stock re-

bars are set to 12m, 10m, 6m, so the first 12m demand rebar goes into 

the 12m stock rebar, the second 7m demand rebar goes into the 10m 

stock rebar. The difference with the Best-fit-decreasing algorithm comes 

when inserting the 4th 6m demand rebar, while the Best-fit-decreasing 

algorithm produces the smallest space, 6m stock rebar, For the first-fit-

decreasing algorithm, put a 6m demand rebar on the 12m stock rebar, 

which is the fourth order of the stock rebar. 

For the total rebar order costs derived by the above three algorithms, 

they are shown in Table 3.1 below. Among the above three algorithms, 

the Best-fit-decreasing algorithm has the highest degree of cost minimi-

zation with a total order cost of $30.   

 

Table 3.1 Total cost for each solution 

Method Total Cost ($) 

Best-fit 36 

Best-fit-decreasing 30 

First-fit-decreasing 34 
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3.1.2 Limitations of General Solutions 

The three general algorithms above do not lead to an exact solution of order 

cost minimization. The minimum cost for the example corresponding to Fig-

ure 3.1 is to order two 12m stock rebars and one 10m stock rebar for a total 

order cost of $28.  

First, in the case of the Best-fit algorithm, the overall order volume in-

creases compared to the Best-fit-decreasing algorithm because the demand 

rebars are not sorted in descending order. The shorter the length of the re-

maining demand rebar, the more advantageous it is to fill the remaining space 

of the already used stock rebar. Therefore, sorting the demand rebars in de-

scending order of length is even more effective in minimizing the generation 

of the number of stock rebars. 

The First-fit-decreasing algorithm is related to the stock rebar sort order. 

This is valued by the algorithm user randomizing the sort order of the stock 

rebar.  

Finally, the Best-fit-decreasing algorithm, which had slightly less order 

cost of the three methods, failed to derive the exact solution. In Figure 3.2(b), 

the 3rd and 4th demand rebars each generate a 6m stock rebar. An exact solu-

tion would be two 6m demand rebars fitting into one 12m stock rebar, further 

reducing the overall order cost.    
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3.2 Revised-Best-Fit-Decreasing 

To improve the limitations of the three algorithms mentioned above and 

derive a solution close to the exact solution of rebar order cost minimization, 

I modify the existing Best-fit-decreasing algorithm and propose it.  

First, the three existing algorithms focus only on the rebar length and set 

the space with the least remaining space to the best bin (stock). The length 

and cost of a stock rebar must be considered together to consider not only the 

number of stock rebar orders, but also the order cost.  

Second, two demand rebars need to be considered simultaneously when 

putting the demand rebar into the stock rebar to improve the Best-fit-decreas-

ing algorithm presented previously. 

The Revised-Best-fit-decreasing algorithm added the above two conditions.  

3.2.1 Condition to Consider the Price of Stock Rebar 

A condition that considers the price of stock rebar relates to how to define 

the best bin(stock). In the conventional Best-fit algorithm and Best-fit-de-

creasing algorithm, only the length variable is considered and the space with 

the minimum remaining length is regarded as the best bin(stock), but the Re-

vised-Best-fit-decreasing algorithm considers length and price simultane-

ously. 
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In other words, divide the stock rebar price by the stock rebar length, and 

the lowest value is the best bin(stock). Because to minimize the overall cost 

of ordering stock rebars, the cost of stock rebar should be considered at the 

same time as the length of stock rebar.  

Adding the above condition makes the best stock in the example in Figure 

3.1 a 10m stock rebar instead of a 6m stock rebar. This means the relative 

price of 10m stock rebar is cheaper than 6m stock rebar. The 10m stock rebar 

is relatively inexpensive compared to the 6m stock rebar and has more space 

for other demand rebars. This is shown in Figure 3.4 below 

And considering the price conditions, the stock rebar that has already been 

used will have a price of zero and will be considered a stock rebar that is 

cheaper than other stock rebars that are not being used.   

Also, if the relative price obtained by dividing the price of the stock rebar 

by the length of the stock rebar is the same, the longest stock rebar that can 

contain many demand rebars is the best stock. 
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Figure 3.4 Condition to consider the price of stock rebar  

 

3.2.2 Condition to Consider Two Demand Rebars at the same time 

The second condition is one that considers two demand rebars simultane-

ously. The Best-fit-decreasing algorithm in Figure 3.2(b) creates a 6m stock 

rebar when entering the 3rd demand rebar and creates another 6m stock rebar 

when entering the 4th demand rebar and inserts it. This is because demand 

rebars are considered one at a time.  

Considering two demand rebars at the same time, if the total length of the 

two demand rebars is greater than the best stock length set in the first condi-

tion, generate a stock rebar that is longer than the combined length of the two 
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demand rebars. This is because it is usually advantageous to have multiple 

demand rebars in one stock rebar. 

Applying this condition, as shown in Figure 3.5, inserting the third demand 

rebar from the example in Figure 3.1 produces a 12m stock rebar that is more 

than the combined length of the third and fourth demand rebars, which is 12m.  

 

 

Figure 3.5 Condition to consider two demand rebars at the same time 

Adding the above two conditions to the example in Figure 3.1 and applying 

the Revised-Best-fit-decreasing algorithm results in the pattern shown in Fig-

ure 3.6, where the overall order cost is $28, the same as the optimal solution. 
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Figure 3.6 Example of Figure 3.1 with Revised-best-fit-decreasing applied 

 

3.3 Simple Test 

Gilmore et al. (1961) presented a simple example on minimizing order 

costs. In this example, I applied the Column generation method of Chapter 2, 

the existing algorithm of the bin-packing approach introduced in Chapter 3, 

and the newly proposed Revised-Best-fit-decreasing algorithm.  

Gilmore et al. (1961) used as an example a demand of 20 pcs of 2m, 10 pcs 

of 3m, 20 pcs of 4m and a stock of 5m of 6$, 6m of 7$ and 9m of 10$.  

The optimization result values for each method are derived as shown in 

Table 3.2 below. 
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Table 3.2 Comparison of total cost incurred by each method 

 Method 

Number of Stock Rebar(s) 

 

Total  

Cost($) 

5m 

($6 each) 

6m 

($7 each) 

9m 

($10 each) 

Column Generation 0 10 10 170 

Best-fit 40 0 0 240 

Best-fit-decreasing 35 0 0 210 

First-fit-decreasing 9 9 9 207 

Revised-Best-fit-decreasing 0 0 19 190 
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The solution of the existing Column generation method can be regarded as 

an exact solution when the types of demand rebar are small, and the lengths 

are an integer. A simple test result confirms that the Bin-packing approach 

algorithm increases the overall order cost compared to the Column generation 

method.  

In the simple test above, the total number of demands is 50 and the number 

of demands is slightly less to find the optimal solution. Due to the algorithmic 

characteristics of the Bin-packing approach, the greater the number of de-

mands, the greater the chances of filling the remaining space with demands, 

resulting in greater optimization efficiency. 

Among the Bin-packing approach algorithms, the newly proposed Re-

vised-Best-fit-decreasing algorithm is confirmed to be the best in order cost 

minimization compared to the existing Bin-packing approach algorithms. 

Therefore, the newly proposed Revised-Best-fit-decreasing algorithm is ef-

fective in minimizing the rebar order cost.  

The Revised-Best-fit-decreasing algorithm ordered the least number of re-

bars in stock at 19 out of all the methods. The Revised-Best-fit-decreasing 

algorithm is expected to be the most effective if the cost of stock rebar does 

not vary significantly with length. 

 

 

 

 



 

30 

 

CHAPTER 4 

ACTUAL CASE TEST 

 

Through simple test, the newly proposed Revised-Best-fit-decreasing al-

gorithm derives an optimized solution compared to the existing Bin-packing 

approach Best-fit, Best-fit-decreasing, and First-fit-decreasing algorithms. 

After confirming that, I applied this to an actual reinforced concrete structure.  

In the actual case test, the number of types of reinforcing bars in demand 

was very large, so the Column generation method in Chapter 2 is not applied.  

The Bin-packing approach algorithm is coded in Python language and the 

result values were compared.  

Before conducting the actual case test, it is necessary to create input data 

containing various types of information on demand rebars, which was created 

in the csv format of an excel file. The actual rebar design information can be 

obtained from the rebar processing shop drawing provided by the rebar design 

company. The design data for the foundation caisson of the south side wave 

block construction of Ulsan New Port is provided by the rebar processing 

shop drawing file provided by Kangshin Development Co., Ltd.  
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4.1 Test Bed and Market Conditions 

Figure 4.1 below shows the caisson structure to which the Bin-packing ap-

proach algorithm is applied. The caisson structure for which the actual case 

test is conducted is a reinforced concrete structure with a width of 38.1m, a 

length of 32.5m, and a height of 25.0m.  

The foundation caisson in Figure 4.1 below is designed as a total of 818 

lengths of demand rebar, for a total of 36,478 demand rebars. The types and 

numbers of rebars required by structure type are shown in Table 4.1 below. 

  

 

 

Figure 4.1 Foundation caisson of Ulsan New Port Construction 
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Table 4.1 Detailed information of the Foundation Caisson 

Types Number of Sub-Types Pieces 

Bottom Plate 151 6905 

Front Wall 72 929 

Back Wall 84 940 

Side Wall 65 1024 

Longitudinal Bulkhead 132 3154 

Transverse Bulkhead 119 3007 

Others 195 20519 

Total 818 36478 

 

In addition, in the case of reinforcing bar shop drawing, the rebar data is 

classified according to the diameter of the rebar, and the required quantity for 

each diameter is calculated in units of weight. The design quantities by rebar 

diameter for the foundation caisson in Figure 4.1 above are shown in Table 

4.2 below.  

Table 4.2 Design quantity by diameter 

Diameter As Drawing(ton) 

H13 11.045 

H16 86.587 

H19 43.789 

H22 101.392 

H25 31.142 

H29 34.029 

Total 307.984 
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The actual construction company orders the rebars by multiplying the de-

sign shop drawing values in Table 4.2 above by a 6% design surcharge. If the 

quantity obtained from the newly proposed Revised-Best-fit-decreasing algo-

rithm is less than that multiplied by the 6% design surcharge, the newly pro-

posed algorithm is a valid algorithm.  

It is also an important point to analyze how much the Revised-Best-fit-

decreasing algorithm offers significant cost savings compared to the existing 

Bin-packing approach algorithm. 

In fact, in the Korean rebar market, rebars are sold by diameter and length, 

but the unit of sale is weight. Figure 4.2 below shows how to calculate the 

rebar order cost. The total rebar order quantity is the product of rebar diameter, 

rebar length, rebar unit weight, and order quantity. Once the amount of rebars 

is calculated, multiply it by the unit price for the weight to obtain the order 

cost for the entire rebars.  

As shown in Figure 4.2 below, the variable is the number of orders per 

length of each rebar to minimize rebar ordering costs. Determining the num-

ber of orders for each length of rebar is the core of this research and the core 

of the Revised-Best-fit-decreasing algorithm.   

Finally, for the stock rebar used for the real case test bed, three most com-

mon rebars are used: 8m, 10m and 12m.
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Figure 4.2 The process of calculating rebar order cost 
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4.2 Results and Resolutions 

The test bed in Figure 4.1 above is used to calculate the overall order quan-

tity of rebars using the Best-fit, Best-fit-decreasing, and Revised-Best-fit-de-

creasing algorithms. This value is compared to the existing 6% design sur-

charge to derive the overall order cost savings. 

To compare the total order quantity of rebar derived by the optimization 

algorithm with the values in the rebar shop drawing, the resulting values are 

grouped by rebar diameter and summarized in Table 4.3 below. 

It is found that the conventional Best-fit algorithm and Best-fit-decreasing 

algorithm slightly increase the total order volume compared to the values of 

6% surcharge. There is no optimization effect as the overall order volume has 

increased. 

However, it is confirmed that the newly proposed Revised-Best-fit-de-

creasing algorithm reduces the total order volume by about 4 tons compared 

to the 6% surcharge. 

The Revised-Best-fit-decreasing algorithm can save about 4 tons of rebar 

order quantity in one caisson, resulting in a total order cost reduction of about 

4.22 million won. 
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Table 4.3 Comparison of implementation values and optimization algorithm values 

Diame-

ter 

 

Implementation Drawing Best-fit Best-fit-decreasing 
Revised-Best-fit-de-

creasing 

Savings (₩) 

Drawing 

(ton) 

6% surcharge 

(ton) 

Order quantity 

(ton) 

H13 11.045 11.708 11.701 11.247 11.235 494,285 

H16 86.587 91.782 90.642 88.658 88.040 3,910,390 

H19 43.789 46.416 49.158 46.764 45.819 623,865 

H22 101.392 107.476 108.613 107.543 107.215 272,475 

H25 31.142 33.011 37.579 37.579 33.527 -539,220 

H29 34.029 36.071 41.378 41.016 36.590 -542,355 

Total 307.984 326.463 339.072 332.807 322.427 4,219,710 
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From 13mm to 22mm, which has a slightly smaller rebar diameter, the re-

bar order quantity of the Revised-Best-fit-decreasing algorithm decreased 

compared to the 6% surcharge. However, at 25mm and 29mm, the total order 

volume increased with the Revised-Best-fit-decreasing algorithm.  

The rebar diameter range in which Revised-Best-fit-decreasing algorithm 

shows good results in real case test is from 13mm to 22mm.    

It is judged that the difference in the results for each diameter is due to the 

difference in the number of input data for each diameter and the unit weight. 

Table 4.4 below shows the number of demand rebars required by rebar di-

ameter and the order saving rates of rebar by diameter. The number of rebars 

in demand, that is, the diameters of 13mm to 22mm, which have many input 

data, have positive savings effect. However, there is a negative savings effect 

at 25mm and 29mm where the input data is small. Revised-Best-fit-decreas-

ing algorithm is effective when there are enough demand rebars and many 

input data. 

The larger the rebar diameter, the smaller the savings. The total weight of 

the rebar is calculated by multiplying the rebar length, the unit weight and the 

order quantity. Unit weight of rebar is related to the rebar diameter. As the 

diameter of the rebar increases, the unit weight of the rebar greatly affects the 

overall weight of the rebar. In such cases, the effectiveness of the algorithm 

in minimizing rebar order costs by reducing the number of rebar orders de-

creases.  
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The newly proposed Revised-Best-fit-decreasing algorithm is effective 

when the diameter of rebars is small, the number of demand rebars is suffi-

ciently large, and sufficient input data is secured for optimization. 

 

Table 4.4 Difference in saving rates according to the amount of data per di-

ameter 

Dia Pieces 
Design 

(ton) 

Revised-Best-

fit-decreasing 

(ton) 

Saving 

Rates 

(%) 

H13 5,183 11.708 11.235 4.21% 

H16 20,209 91.782 88.040 4.25% 

H19 4,397 46.416 45.819 1.30% 

H22 4,583 107.476 107.215 0.24% 

H25 1,087 33.011 33.527 -1.54% 

H29 1,017 36.071 36.590 -1.42% 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS FOR 

FURTHER STUDY 

 

In an environment where rebar material supply is scarce and rebar prices 

are rising, optimizing rebar order quantity, and reducing rebar order costs can 

reduce a lot of construction costs.  

Through this paper, I improve the Best-fit-decreasing algorithm of the ex-

isting Bin-packing approach for the purpose of minimizing rebar orders and 

propose a Revised-Best-fit-decreasing algorithm. 

The Revised-Best-fit-decreasing algorithm is more effective in reducing 

rebar order cost than the existing Best-fit and Best-fit-decreasing algorithms. 

In particular, the Revised-Best-fit-decreasing algorithm was applied to the 

foundation caisson that was used as the actual test bed to optimize the order 

quantity of rebars, resulting in a quantity reduction effect of about 4 tons and 

a cost reduction effect of about 4.2 million won.  

The Revised-Best-fit-decreasing algorithm is more effective when the 

quantity of demand rebar is high, and the diameter of rebar is small.  

Applying this algorithm selectively where the diameter is small or where 

the number of rebars in demand is high can maximize the effect of reducing 

rebar order quantity and reducing rebar order cost. 
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Running the algorithm required the process of creating the Input data, 

which took a long time. Therefore, there are advantages in applying this al-

gorithm to highly reproducible or simple structures. Since this algorithm is 

effective when the quantity of demand rebar is large, the cost reduction effect 

will be greater if the demand input data of multiple structures are applied to 

the algorithm at once. 

Further study is planned to analyze the results of the algorithm based on 

the distribution of length of demand rebar. The degree of distribution, such as 

the standard deviation of the length of demand rebar, will affect the number 

of stock rebar orders.  

Also, I proceed to study the minimum quantity of demand rebar that can 

derive a valid degree of optimization for the Revised-Best-fit-decreasing al-

gorithm. Since the effectiveness of the algorithm varies with the number of 

demand rebars, a study of the minimum quantity of demand rebars applicable 

to this algorithm provides information on the number of input data to which 

the algorithm can be applied.  

Finally, in conducting this research, I did not consider various incidental 

costs such as labor and transportation costs for processing rebars, but through 

additional study, I will consider not only the order quantity of simple rebars 

but also incidental costs.   
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국 문 초 록 

최우석 

건설환경공학부 

서울대학교 대학원 

 

최근 국내 철근의 가격이 꾸준하게 상승추세에 있는 환경 속에서 

철근 공사비는 전체 공사비용의 약 16%를 차지하기에 철근공사비를 줄이는 

것은 공사비 절감에 매우 중요한 요소이다. 이번 논문은 철근 주문 비용을 

줄이기 위한 연구를 수행한다.  

이를 위해 선형계획법의 풀이방식 중 하나인 Column-generation ap-

proach와 빈-패킹 접근방식의 기존 대표적인 알고리즘에 대해 살펴보았다. 

기존 Best-fit-decreasing 알고리즘을 개선해 Revised-Best-fit-de-

creasing 알고리즘을 새롭게 제안하였다. 새롭게 제안한 Revised-Best-

fit-decreasing의 경우 재고 철근의 가격을 재고 철근의 길이로 나눠 이 

값이 가장 작은 재고 철근을 최적 철근으로 재선정하였고 수요 철근은 

길이 순으로 내림차순 정렬하였다. 수요 철근이 새로운 재고 철근에 

들어갈 때 먼저 앞서 선정한 최적 철근에 먼저 들어가게 된다. 또한, 한 

번에 두 개의 수요 철근을 동시에 고려하여 두 개의 수요 철근 길이의 

합이 최적 철근의 길이보다 크거나 같은 경우에는 두 수요 철근을 모두 

담을 수 있는 재고 철근을 생성하는 알고리즘을 적용하였다.  
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 위 개발된 알고리즘을 울산 신항 개발 공사의 케이슨 구조물에 

적용해보았다. 위 케이슨 구조물의 수요 철근은 818가지 종류로 구성되어 

전체 36,478개로 설계되어 있는데 이 철근들에 6%의 할증을 가한 약 

326.463 톤의 물량이 실제 철근 주문에 실행된 물량이다. Revised-Best-

fit-decreasing 알고리즘으로 철근 주문비용 최소화를 진행한 결과 약 

322.427 톤의 재고 철근 주문 물량이 나와 약 4.1 톤의 물량 절감효과 

그리고 약 420만원의 주문 비용 절감효과가 발생한다.  

철근의 직경 별로 알고리즘의 최적화 정도가 달라졌는데 철근의 직경이 

작을수록, 알고리즘을 수행하는 데 투입되는 수요 철근의 개수가 많을수록 

최소화 효과가 컸다. 이 논문에서 제안한 알고리즘을 적절하게 활용할 

경우, 철근의 발주물량을 절감하고 철근 주문비용을 줄일 수 있다. 

  

주요어: 철근; 패턴; 선형계획법; 빈-패킹 접근방식; Revised-Best-

fit-decreasing;  
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