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ABSTRACT
Cost Minimization of Reinforcing Bar Order
By Applying Bin-Packing Approach

Woo Seok Chot
Department of Civil and Environmental Engineering

Seoul National University

Recently, in an environment where the price of domestic reinforcing bars
is steadily rising, the cost of rebar construction accounts for about 16% of the
total construction cost, so reducing the cost of rebar construction is a very
important factor in reducing construction costs. This paper conducts research
to reduce rebar ordering costs.

For this purpose, existing representative algorithms of the Column-gener-
ation approach and the Bin-packing approach, which are one of the linear
programming solutions are introduced.

Revised-Best-fit-decreasing algorithm is proposed, which improve the ex-
isting Best-fit-decreasing algorithm. For the newly proposed Revised-Best-
fit-decreasing, divide the price of the stock rebar by the length of the stock
rebar, reselect the stock rebar with the smallest value as the best rebar, and
rearrange the demand rebar in descending order of length. When the demand

rebar enters the new stock rebar, it goes into the best rebar. Additionally, it
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considers two demand rebars at the same time and creates a stock rebar that
can contain both demand rebars if the sum of the lengths of the two demand
rebars is greater than or equal to the best rebar length.

The algorithm developed above is applied to the caisson structure of Ulsan
New Port Development Project. The demand rebars for the above caisson
structure consist of 818 types and 36,478 pieces. A quantity of approximately
326.463 tons multiplied by a 6% surcharge for these rebars is the quantity
executed for the actual rebar order. As a result of minimizing the rebar order
cost with the Revised-Best-fit-decreasing algorithm, the order quantity of the
stock rebar was about 322.427 tons, resulting in a reduction of about 4.1 tons
and a reduction of about 4.2 million won in the order cost.

The degree of optimization of the algorithm varied with the diameter of
the rebar, but the smaller the rebar diameter and the greater the number of
demand rebars input to run the algorithm, the greater the minimization effect.
Appropriate use of the algorithm proposed in this paper can reduce the order

quantity of rebars and reduce the cost of ordering rebars.

Keywords: Rebar; Pattern; Linear programming; Bin-packing approach;

Revised-best-fit-decreasing;

Student Number: 2020-28658
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Reinforcing bars are members that bear tensile force in reinforced concrete
structures and are widely used in civil engineering and building structures.
The rebar construction cost accounts for about 16% of the total project cost,
making it a very high proportion of the construction cost (Kim, Hong & Joo,
2004). In addition, as the price of reinforcing bars in the Korean market tends
to rise recently, there is a risk that the construction cost of reinforcing bars
will increase.

Reinforcing bars are required to have different diameters and lengths de-
pending on the shape of the structure, and these reinforcing bars are called
demand rebars. Rebars sold in the market are called stock rebars, stock rebars
are sold in units of Im from 6m to 12m according to diameter, so after pur-
chasing the stock rebars, they are processed to make demand rebars and scraps
are generated in this process. In other words, the quantity and cost of the stock
rebars to be ordered vary depending on how the demand rebars are produced
from the stock rebars of a specific length and how the stock rebars and the
demand rebars are combined.

The purpose of this study is to analyze the combination of stock rebar and

3 '
demand rebar to minimize the cost of ordering the entire stock rebars.—7 - | H
1



However, this paper does not consider other costs such as the cost of pro-
cessing rebar or the labor of workers. Research is focused solely on minimiz-

ing the cost of ordering rebar.

1.2 Definitions and Notations

A particular combination of stock and demand rebars is called a pattern, as
shown in Figure 1.1 below.

In this paper, Terms used in the paper follow the definitions below.

Demand rebar = Rebar required for construction
Stock rebar = Rebar sold in the market, usually sold by whole number
Pattern = Any combination of stock rebar and demand rebar(s)

Scrap = Rebar left from the stock rebar after extraction of demand rebars

- 12m Stock Rebar (pattern 1)

- 12m Stock Rebar (pattern 2) scrap

- 10m Stock Rebar (pattern 3) ; scrap

scrap

Figure 1.1 Definitions



In this paper, the following notations are used with the following meanings:

li = Length of demand rebar (=1, ..., m)

N: = Required number of demand rebar (i=1, ..., m)
L: = Length of stock rebar (=1, ..., k)

¢t = Cost of stock rebar (=1, ..., k)

aij = Number of pieces of li in the pattern j

P; = Each pattern (j=1, ..., n)

x; = The number of specific pattern j that need to be created (j=1, ..., n)

1.3 Structure of the Thesis

This paper consists of five chapters to introduce each part of the proposed
methodology.

This chapter describes the background of the research on minimizing the
order cost of rebar and expresses definitions and notations used in this paper.

Next, Chapter 2 analyzes a previous paper that conducted similar studies
to the rebar order cost minimization study. Specifically, after defining a prob-
lem with integer linear programming, describing how to solve it with Column
generation method. It also describes the limitations that make it impossible to

directly apply this method to this research paper.



Chapter 3 introduces the Bin-packing approach method to complement for
the limit point that occurs when applying the Column generation method in-
troduced in Chapter 2 to the rebar ordering case. It also introduces and applies
three typical solutions for the Bin-packing approach. Furthermore, it im-
proves the Best-fit-decreasing algorithm and propose a new solving algorithm,
Revised-Best-fit-decreasing.

Chapter 4 tests the newly proposed Revised-Best-fit-decreasing algorithm
directly on real structures and analyzes the validity and problems of the results.

Finally, Chapter 5 summarizes the main findings and contributions of this

study and discusses several additional research topics.



CHAPTER 2

EXISTING METHOD

2.1 Basic Concept

The problem of minimizing the cost of ordering stock rebars can be thought
of as the problem of meeting all the demand rebars and minimizing the num-
ber of stock rebar orders.

Gilmore and Gomory (1961) proposed this as an integer linear program-
ming problem. Such integer linear programming is the problem of finding
optimized values of objective functions that satisfy given inequality condi-
tions.

Looking at Figure 2.1 below, n patterns are generated to meet all demand
rebars. A pattern is a specific combination of stock rebar and demand rebars
as defined earlier and each pattern consists of one specific stock rebar and
multiple specific demand rebar combinations. All n patterns must contain
both all kinds of demand rebars and their respective quantities.

For Figure 2.1 below, number of demand rebar /; must be greater than or
equal to N; in n patterns, which is expressed in Inequation (2.1) below. The

required number of conditions must be met for every kind of demand rebars.



The number of demand rebars /; included in the specific pattern P; can be

expressed by a; based on the notations expressed above.

It is represented by the following Inequation in (2.2).

le + lxz + "'Oxn = N1

< N,

2

. H - g

Stock Demand

Figure 2.1 Example of rebars and patterns
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Pattern n

(2.2)

By multiplying the price of stock rebars used for each pattern by the num-

ber of productions for that pattern, the objective function to be minimized is

derived as shown in Function (2.3) below. Since each pattern must be at least

0, the condition of Inequation (2.4) must also be satisfied.



C1X1 + CaXp + - CpXp (2.3)

x;=20,(j=1,,n+m) (2.4)

After all, the problem of minimizing the rebar order cost can be considered
as a linear programming problem of minimizing the objective function (2.3)
among the values satisfying the conditions of Inequations (2.2) and (2.4).

Gilmore et al. (1961) showed an integer linear programming solution to the

Column generation method.

2.2 Example

The Column generation method is explained in the example below.

A total of 5 types of demand rebar are required from 2m to 6m in Im in-
crements, and 10 of each are required. Market sells only 8m stock rebar at
$10, 9m stock rebar at $12, 10m stock rebar at $14. The stock rebar order cost

can be minimized in 5 stages.

Step 1. Make basic patterns
The first step is to create the basic patterns. A basic pattern is created with
the simplest combination of demand rebars and stock rebar. The total number

of patterns is equal to the number of demand rebar types and each pattern



consists of only one demand rebar type. With the demand rebars and stock
rebars conditions in the example above, basic patterns are constructed as
shown in Figure 2.2 below. The basic pattern is constructed by combining the
shortest stock rebar and demand that leave no scrap. If there is no combination
that separates to fit exactly, construct the basic pattern with the stock rebar

with the smallest difference from the length of the demand rebar.

5m
om 3m
4m
2m
3m
om 6m
5m
4m
3m
2m
8m 9Im 8m 10m 8m
(p1) (p2) (p3) (p4) (p5)

Figure 2.2 Basic patterns

Step 2. Objective function and constraints

Based on the created basic patterns, the objective function and conditional
inequation can be derived. The objective function can be expressed as Func-
tion (2.5). This cost function consists of the stock rebar price for each pattern

multiplied by the unknown quantity produced for each pattern. Co_pdit_ionall_
-':l-\."i . ;:: - .I_- .:
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inequations are generated for the number of types of demand rebars. Condi-

tional inequations are constructed as in Inequation (2.6) through (2.10) below.

10x4 +12x, + 10x3 + 14x, + 10x5 (2.5)
4x4 + 0x, + Ox3 + Ox4 + Ox5 > 10 (2.6)
Ox; + 3x; + 0x3 + 0x4 + 0x5 > 10 2.7)
Ox; + 0x; + 2x3 + 0x4 + Ox5 > 10 (2.8)
Ox; + 0x; + 0x3 + 2x4 + 0x5 > 10 (2.9)
0Ox; + 0x; + 0x3 + 0x4 + 1x5 > 10 (2.10)

Step 3. Matrix form

Represent each formula constructed in Step 2 in Matrix format. The objec-
tive function (2.5) is represented by a matrix C of 1 row and 5 columns, and
all the left formulas of Inequations (2.6) to (2.10) are bundled and represented
by a matrix 4 of 5 rows and 5 columns. C is a matrix that informs the price
information of the basic pattern, and A is a matrix that informs the structure
of the basic pattern.

In the example, matrix C and matrix 4 are equal to the values of (2.11) and

(2.12) respectively.



After that, this price matrix C and basic pattern matrix 4 are used to deter-
mine whether the introduction of new patterns improve the basic patterns in

terms of price.

C=[10 12 10 14 10] (2.11)
4 0 0 00
[0 300 0]
A=|0 0 2 0 0| (2.12)
0 00 20
lo 0 0 o 1

Step 4. Introduce a new pattern P
The fourth step is to introduce new patterns. The new pattern differs from
the basic patterns and consists of any combination of stock and demand rebars.
The matrix P representing the new pattern has 5 rows and 1 column, with
each row representing the number of each demand rebar in the pattern.
Introducing a new pattern as shown in Figure 2.3 below, the new pattern P

can be expressed as (2.13).

10



em

2m

8m ($10)

Figure 2.3 Example of a new pattern

After expressing the matrix P for the new pattern, the relationship with the

existing C, A matrices is derived. There is a specific matrix U of 5 rows and

1 column representing the relationship between the basic pattern matrix 4 and

the new pattern P. Their relation can be expressed as (2.14), and the matrix U

always exists.

(2.13)

11



In this example the matrix U is derived (2.15) as follows. The meaning of
each element of the matrix U is the proportion of each demand rebar required
to make the new pattern P in the basic pattern 4.

In other words, the basic pattern p1 originally consisted of 4 2m demand
rebars, and only 1/4 of the basic pattern is required to generate a new 2m

single rebar.

(2.15)

=0 O O~

S —

Multiplying the pattern cost matrix C by the matrix U gives the price value
of the new pattern. If this value is greater than c representing the price of the
stock rebar used in the new pattern, the new pattern is considered an improve-
ment over the existing patterns.

That is, a new pattern is introduced if the following Inequation (2.16) is

satisfied.

C-U>c (2.16)

12



Step 5. Find the best fitting new patterns by repeating Step 4.

Repeat Step 4 until no more price-improving patterns are introduced. While
repeating Step 4, existing basic patterns are changed to new pattern combina-
tions. Generating a new pattern is the same as generating a new column.
Therefore, this method is called column generation method.

Finding the number of orders for the changed pattern yields the overall or-

der cost, which is reduced compared to the existing order cost.

2.3 Limitations of this Method

The above-described method is effective when the length of the demand
rebars and the length of the stock rebars are integers and the types of demand
rebars are small. As in the previous example, there are 5 demand rebar types
and demand rebar lengths are integers, so it is suitable because it is easy to
generate basic patterns.

However, in the case of actual civil engineering reinforced concrete struc-
tures, there are many types of demand rebars, and the length of the demand
rebars is a decimal point, so it is judged that the above method is not suitable.

According to (Jahromi et al., 2012) the one-dimensional cutting stock prob-

lem, which considers many combinations of demand rebars and stock rebars,

13



is the Np-hard problem, and the computation time increases exponentially as
the number of demand orders increases.

When the number of types of demand rebar is about 1000 or more, it was
confirmed that the CPU time took more than 15000 seconds, and when the
number of types of demand rebar was more than 5000, an appropriate solution
could not be found even after 24 hours (Jahromi et al., 2012).

Column generation method is basically based on simplex method, according
to (Fourer, 1988). In the worst case of the simplex method, degeneracy may
occur. In simplex method, basically the basic feasible solution proceeds in the
direction of decreasing, but if there is a 0 variable in the basic variables and
the basic feasible solution does not decrease and the value does not change,
infinite cycling is performed (Fourer, 1988).

Therefore, Chapter 3 introduces the Bin-packing approach, which is the
core approach of this paper, as a methodology for minimizing the ordering
cost of rebars and applies it to a simple example where the column generation

method can be applied.

14



CHAPTER 3

BIN-PACKING APPROACH

The Bin-packing approach is an optimization problem about filling all the
demands while minimizing the number of bins used when there is a finite
number of bins (Martello & Toth, 1990).

Here, the stock rebar can be regarded as a bin and the problem of minimiz-
ing the number of stock rebars generated while putting all the demand rebars
into the stock rebar.

The stock rebar order cost is generally related to the number of stock rebar
orders, so it fits the overall purpose.

The Column generation method is a method of generating patterns consid-
ering many combinations of stock rebars and demand rebars and comparing
the prices with existing patterns. In contrast, the Bin-packing approach is con-
cerned with which stock rebars the demand rebar is put into, where the stock
rebar is fixed, and does not consider in advance the number of pattern cases.
Each pattern is only made up after adding demand rebars to stock rebars.

Solving the bin-packing approach is generally a linear complexity in com-
putational time complexity (Bekesi, Galambos & Kellerer, 2000).

As shown in Figure 3.1 below, the bin-packing approach, whose computa-

tional complexity is a linear complexity proportional to the absolute amount

:l -I

—
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of demand rebar, is superior to the Column-generation method, whose com-
putational complexity is exponential complexity. Computational speed is

much faster.

Big-O Complexity

1000
900
800
700
600
500 —0((2"n)

400
300
200

O(nlogn)

100

0 10 20 30 40 50 60 70 80 90 100

Figure 3.1 Big-O complexity

Due to the above characteristics, it is more advantageous to apply the Bin-
packing approach to the problem of minimizing the rebar order cost of real

reinforced concrete structures.

M2 g

16 e



3.1 Basic Concept

3.1.1 General Solutions

Martello et al. (1990) introduced algorithms that solves the bin packing
approach.

The first is the Best-fit algorithm. The Best-fit algorithm puts the demand
into the bin(stock) with the least length of remaining space when it is put into
the bin(stock). Here "Best" means the best space, but the best space is the one
with the least remaining space when the demand is put into bin(stock).

The second is the Best-fit-decreasing algorithm. The logic of entering de-
mand is the same as the Best-fit algorithm. However, before the demands are
put into the bin(stock), they are sorted in descending order of size, here in
descending order of length from long to short. The meaning of decreasing
added later is to order these demands in descending order.

The third is the First-fit-decreasing algorithm. It is an algorithm that tries
to put it in the first bin it meets, unlike the best that puts it in the most optimal
space. Similarly, since it is decreasing, sort demand in descending order of

length.

17



D

4
Ds
$10 —= D,
$8 12m
m
D
56 ! 6m
Dy
2m

12m 10m 6m

Stock rebar Demand rebar

Figure 3.2 An example of the bin-packing approach

The example in Figure 3.2 illustrates the above three common solutions for
the Bin-packing approach.
The stock rebar is available in 12m, 10m and 6m at $10, $8, and $6 respec-

tively. Demand rebar requires 6 as above.

18




(a)

(b)

12m 10m

(c)

12m 10m

12m
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Figure 3.3 General solutions of the bin packing approach
(a) Best-fit
(b) Best-fit-decreasing (c) First-fit-decreasing

First, in the case of (a) Best-fit, the first demand rebar of 2m is taken
into the bin(stock), but according to the best principle of putting it in the
smallest space, it goes into the 6m stock rebar at first. For the second 6m
demand rebar, the smallest space is the first created 6m stock rebar con-
taining the 2m demand rebar and the remaining 4m space, but the 6m
demand rebar cannot enter. So, create a new 6m stock rebar and fill that
space with a 6m demand rebar. The third demand rebar, 1m, can fit into
the existing minimum space of 4m, so it goes into the first generated
stock on the best-fit principle. Using these rules is the Best-fit algorithm.

The second (b) Best-fit-decreasing is an algorithm that arranges the
demand rebars in descending order of length in advance and then puts
the demands into the minimum space like Best-fit algorithm. So, the first
demand rebar in Best-fit-decreasing is 12m, naturally generating a 12m
stock rebar to enter. The second demand rebar is 7m and can enter the
12m stock rebar and 10m stock rebar but enters the 10m stock rebar in
the best(smallest) space.

The third (c) First-fit-decreasing is an algorithm that sorts the demand
rebars in descending order of length and then puts them into the stock
rebar where they first meet. The order of stock rebars met at t}l_i{.s ti_mfe is,y

20



the same as the order of stock rebars specified by the user. The stock re-
bars are set to 12m, 10m, 6m, so the first 12m demand rebar goes into
the 12m stock rebar, the second 7m demand rebar goes into the 10m
stock rebar. The difference with the Best-fit-decreasing algorithm comes
when inserting the 4th 6m demand rebar, while the Best-fit-decreasing
algorithm produces the smallest space, 6m stock rebar, For the first-fit-
decreasing algorithm, put a 6m demand rebar on the 12m stock rebar,
which is the fourth order of the stock rebar.

For the total rebar order costs derived by the above three algorithms,
they are shown in Table 3.1 below. Among the above three algorithms,
the Best-fit-decreasing algorithm has the highest degree of cost minimi-

zation with a total order cost of $30.

Table 3.1 Total cost for each solution

Method Total Cost ($)

Best-fit 36
Best-fit-decreasing 30
First-fit-decreasing 34

21



3.1.2 Limitations of General Solutions

The three general algorithms above do not lead to an exact solution of order
cost minimization. The minimum cost for the example corresponding to Fig-
ure 3.1 is to order two 12m stock rebars and one 10m stock rebar for a total
order cost of $28.

First, in the case of the Best-fit algorithm, the overall order volume in-
creases compared to the Best-fit-decreasing algorithm because the demand
rebars are not sorted in descending order. The shorter the length of the re-
maining demand rebar, the more advantageous it is to fill the remaining space
of the already used stock rebar. Therefore, sorting the demand rebars in de-
scending order of length is even more effective in minimizing the generation
of the number of stock rebars.

The First-fit-decreasing algorithm is related to the stock rebar sort order.
This is valued by the algorithm user randomizing the sort order of the stock
rebar.

Finally, the Best-fit-decreasing algorithm, which had slightly less order
cost of the three methods, failed to derive the exact solution. In Figure 3.2(b),
the 3rd and 4th demand rebars each generate a 6m stock rebar. An exact solu-
tion would be two 6m demand rebars fitting into one 12m stock rebar, further

reducing the overall order cost.

22



3.2 Revised-Best-Fit-Decreasing

To improve the limitations of the three algorithms mentioned above and
derive a solution close to the exact solution of rebar order cost minimization,
I modify the existing Best-fit-decreasing algorithm and propose it.

First, the three existing algorithms focus only on the rebar length and set
the space with the least remaining space to the best bin (stock). The length
and cost of a stock rebar must be considered together to consider not only the
number of stock rebar orders, but also the order cost.

Second, two demand rebars need to be considered simultaneously when
putting the demand rebar into the stock rebar to improve the Best-fit-decreas-
ing algorithm presented previously.

The Revised-Best-fit-decreasing algorithm added the above two conditions.

3.2.1 Condition to Consider the Price of Stock Rebar

A condition that considers the price of stock rebar relates to how to define
the best bin(stock). In the conventional Best-fit algorithm and Best-fit-de-
creasing algorithm, only the length variable is considered and the space with
the minimum remaining length is regarded as the best bin(stock), but the Re-
vised-Best-fit-decreasing algorithm considers length and price simultane-

ously.

23



In other words, divide the stock rebar price by the stock rebar length, and
the lowest value is the best bin(stock). Because to minimize the overall cost
of ordering stock rebars, the cost of stock rebar should be considered at the
same time as the length of stock rebar.

Adding the above condition makes the best stock in the example in Figure
3.1 a 10m stock rebar instead of a 6m stock rebar. This means the relative
price of 10m stock rebar is cheaper than 6m stock rebar. The 10m stock rebar
is relatively inexpensive compared to the 6m stock rebar and has more space
for other demand rebars. This is shown in Figure 3.4 below

And considering the price conditions, the stock rebar that has already been
used will have a price of zero and will be considered a stock rebar that is
cheaper than other stock rebars that are not being used.

Also, if the relative price obtained by dividing the price of the stock rebar
by the length of the stock rebar is the same, the longest stock rebar that can

contain many demand rebars is the best stock.
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Compare [price of stock / length of stock]

$10/12m = 0.83[$/m]
$8/10m = 0.8[S/m]
$6/6m =1[$/m] |

$10
$8

$6 Newly defined best stock

(previously 6m)

12m 10m 6m
Stock rebar

Figure 3.4 Condition to consider the price of stock rebar

3.2.2 Condition to Consider Two Demand Rebars at the same time

The second condition is one that considers two demand rebars simultane-
ously. The Best-fit-decreasing algorithm in Figure 3.2(b) creates a 6m stock
rebar when entering the 3rd demand rebar and creates another 6m stock rebar
when entering the 4th demand rebar and inserts it. This is because demand
rebars are considered one at a time.

Considering two demand rebars at the same time, if the total length of the
two demand rebars is greater than the best stock length set in the first condi-

tion, generate a stock rebar that is longer than the combined length of the two
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demand rebars. This is because it is usually advantageous to have multiple
demand rebars in one stock rebar.

Applying this condition, as shown in Figure 3.5, inserting the third demand
rebar from the example in Figure 3.1 produces a 12m stock rebar that is more

than the combined length of the third and fourth demand rebars, which is 12m.

Consider the following demand
when generating a new stock

6m following

New stock
(6m, 10m, 12m)

Figure 3.5 Condition to consider two demand rebars at the same time

Adding the above two conditions to the example in Figure 3.1 and applying
the Revised-Best-fit-decreasing algorithm results in the pattern shown in Fig-

ure 3.6, where the overall order cost is $28, the same as the optimal solution.
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12m 10m 12m

Figure 3.6 Example of Figure 3.1 with Revised-best-fit-decreasing applied

3.3 Simple Test

Gilmore et al. (1961) presented a simple example on minimizing order
costs. In this example, I applied the Column generation method of Chapter 2,
the existing algorithm of the bin-packing approach introduced in Chapter 3,
and the newly proposed Revised-Best-fit-decreasing algorithm.

Gilmore et al. (1961) used as an example a demand of 20 pcs of 2m, 10 pcs
of 3m, 20 pcs of 4m and a stock of 5m of 6$, 6m of 7$ and 9m of 108$.

The optimization result values for each method are derived as shown in

Table 3.2 below. 2] o r
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Table 3.2 Comparison of total cost incurred by each method

Number of Stock Rebar(s) Total
Cost($)
Method
Sm 6m 9m
($6 each) ($7 each) ($10 each)
Column Generation 0 10 10 170
Best-fit 40 0 0 240
Best-fit-decreasing 35 0 0 210
First-fit-decreasing 9 9 9 207
Revised-Best-fit-decreasing 0 0 19 190
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The solution of the existing Column generation method can be regarded as
an exact solution when the types of demand rebar are small, and the lengths
are an integer. A simple test result confirms that the Bin-packing approach
algorithm increases the overall order cost compared to the Column generation
method.

In the simple test above, the total number of demands is 50 and the number
of demands is slightly less to find the optimal solution. Due to the algorithmic
characteristics of the Bin-packing approach, the greater the number of de-
mands, the greater the chances of filling the remaining space with demands,
resulting in greater optimization efficiency.

Among the Bin-packing approach algorithms, the newly proposed Re-
vised-Best-fit-decreasing algorithm is confirmed to be the best in order cost
minimization compared to the existing Bin-packing approach algorithms.
Therefore, the newly proposed Revised-Best-fit-decreasing algorithm is ef-
fective in minimizing the rebar order cost.

The Revised-Best-fit-decreasing algorithm ordered the least number of re-
bars in stock at 19 out of all the methods. The Revised-Best-fit-decreasing
algorithm is expected to be the most effective if the cost of stock rebar does

not vary significantly with length.
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CHAPTER 4

ACTUAL CASE TEST

Through simple test, the newly proposed Revised-Best-fit-decreasing al-
gorithm derives an optimized solution compared to the existing Bin-packing
approach Best-fit, Best-fit-decreasing, and First-fit-decreasing algorithms.
After confirming that, I applied this to an actual reinforced concrete structure.

In the actual case test, the number of types of reinforcing bars in demand
was very large, so the Column generation method in Chapter 2 is not applied.

The Bin-packing approach algorithm is coded in Python language and the
result values were compared.

Before conducting the actual case test, it is necessary to create input data
containing various types of information on demand rebars, which was created
in the csv format of an excel file. The actual rebar design information can be
obtained from the rebar processing shop drawing provided by the rebar design
company. The design data for the foundation caisson of the south side wave
block construction of Ulsan New Port is provided by the rebar processing

shop drawing file provided by Kangshin Development Co., Ltd.
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4.1 Test Bed and Market Conditions

Figure 4.1 below shows the caisson structure to which the Bin-packing ap-
proach algorithm is applied. The caisson structure for which the actual case
test is conducted is a reinforced concrete structure with a width of 38.1m, a
length of 32.5m, and a height of 25.0m.

The foundation caisson in Figure 4.1 below is designed as a total of 818
lengths of demand rebar, for a total of 36,478 demand rebars. The types and

numbers of rebars required by structure type are shown in Table 4.1 below.

Figure 4.1 Foundation caisson of Ulsan New Port Construction

5 2T 8w

.
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Table 4.1 Detailed information of the Foundation Caisson

Types Number of Sub-Types Pieces
Bottom Plate 151 6905
Front Wall 72 929
Back Wall 84 940
Side Wall 65 1024
Longitudinal Bulkhead 132 3154
Transverse Bulkhead 119 3007
Others 195 20519
Total 818 36478

In addition, in the case of reinforcing bar shop drawing, the rebar data is
classified according to the diameter of the rebar, and the required quantity for
each diameter is calculated in units of weight. The design quantities by rebar
diameter for the foundation caisson in Figure 4.1 above are shown in Table

4.2 below.

Table 4.2 Design quantity by diameter

Diameter As Drawing(ton)
H13 11.045
H16 86.587
H19 43.789
H22 101.392
H25 31.142
H29 34.029
Total 307.984
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The actual construction company orders the rebars by multiplying the de-
sign shop drawing values in Table 4.2 above by a 6% design surcharge. If the
quantity obtained from the newly proposed Revised-Best-fit-decreasing algo-
rithm is less than that multiplied by the 6% design surcharge, the newly pro-
posed algorithm is a valid algorithm.

It is also an important point to analyze how much the Revised-Best-fit-
decreasing algorithm offers significant cost savings compared to the existing
Bin-packing approach algorithm.

In fact, in the Korean rebar market, rebars are sold by diameter and length,
but the unit of sale is weight. Figure 4.2 below shows how to calculate the
rebar order cost. The total rebar order quantity is the product of rebar diameter,
rebar length, rebar unit weight, and order quantity. Once the amount of rebars
is calculated, multiply it by the unit price for the weight to obtain the order
cost for the entire rebars.

As shown in Figure 4.2 below, the variable is the number of orders per
length of each rebar to minimize rebar ordering costs. Determining the num-
ber of orders for each length of rebar is the core of this research and the core
of the Revised-Best-fit-decreasing algorithm.

Finally, for the stock rebar used for the real case test bed, three most com-

mon rebars are used: 8m, 10m and 12m.
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Dia (mm)| Length (m)el)Unit Weight (kg/m)(l'_i Number of Order 'ﬂ Total Weight (ton) CI)Unit Price* (%/kg)
12 9 0.11 100,320
13 11 1 20 0.22 229,900
: (Fixed) :
6 130 0.78 815,100
Sum 1.12 1,045 1,170,400
12 32 1.17 (Fixed) 1,219,891
- 11 3.04 11 0.37 384,393
(Fixed)
6 12 0.22 228,730
Sum 2.58 2,696,100

Figure 4.2 The process of calculating rebar order cost
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4.2 Results and Resolutions

The test bed in Figure 4.1 above is used to calculate the overall order quan-
tity of rebars using the Best-fit, Best-fit-decreasing, and Revised-Best-fit-de-
creasing algorithms. This value is compared to the existing 6% design sur-
charge to derive the overall order cost savings.

To compare the total order quantity of rebar derived by the optimization
algorithm with the values in the rebar shop drawing, the resulting values are
grouped by rebar diameter and summarized in Table 4.3 below.

It is found that the conventional Best-fit algorithm and Best-fit-decreasing
algorithm slightly increase the total order volume compared to the values of
6% surcharge. There is no optimization effect as the overall order volume has
increased.

However, it is confirmed that the newly proposed Revised-Best-fit-de-
creasing algorithm reduces the total order volume by about 4 tons compared
to the 6% surcharge.

The Revised-Best-fit-decreasing algorithm can save about 4 tons of rebar
order quantity in one caisson, resulting in a total order cost reduction of about

4.22 million won.
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Table 4.3 Comparison of implementation values and optimization algorithm values

Revised-Best-fit-de-

Implementation Drawing Best-fit Best-fit-decreasing .
Diame. creasing
ter Savings (W)
Drawing 6% surcharge Order quantity

(ton) (ton) (ton)
H13 11.045 11.708 11.701 11.247 11.235 494,285
H16 86.587 91.782 90.642 88.658 88.040 3,910,390
H19 43.789 46.416 49.158 46.764 45.819 623,865
H22 101.392 107.476 108.613 107.543 107.215 272,475
H25 31.142 33.011 37.579 37.579 33.527 -539,220
H29 34.029 36.071 41.378 41.016 36.590 -542,355
Total 307.984 326.463 339.072 332.807 322.427 4,219,710
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From 13mm to 22mm, which has a slightly smaller rebar diameter, the re-
bar order quantity of the Revised-Best-fit-decreasing algorithm decreased
compared to the 6% surcharge. However, at 25mm and 29mm, the total order
volume increased with the Revised-Best-fit-decreasing algorithm.

The rebar diameter range in which Revised-Best-fit-decreasing algorithm
shows good results in real case test is from 13mm to 22mm.

It is judged that the difference in the results for each diameter is due to the
difference in the number of input data for each diameter and the unit weight.

Table 4.4 below shows the number of demand rebars required by rebar di-
ameter and the order saving rates of rebar by diameter. The number of rebars
in demand, that is, the diameters of 13mm to 22mm, which have many input
data, have positive savings effect. However, there is a negative savings effect
at 25mm and 29mm where the input data is small. Revised-Best-fit-decreas-
ing algorithm is effective when there are enough demand rebars and many
input data.

The larger the rebar diameter, the smaller the savings. The total weight of
the rebar is calculated by multiplying the rebar length, the unit weight and the
order quantity. Unit weight of rebar is related to the rebar diameter. As the
diameter of the rebar increases, the unit weight of the rebar greatly affects the
overall weight of the rebar. In such cases, the effectiveness of the algorithm
in minimizing rebar order costs by reducing the number of rebar orders de-

creascs.
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The newly proposed Revised-Best-fit-decreasing algorithm is effective
when the diameter of rebars is small, the number of demand rebars is suffi-

ciently large, and sufficient input data is secured for optimization.

Table 4.4 Difference in saving rates according to the amount of data per di-

ameter
Design Revised-Best- Saving
Dia Pieces ( tong) fit-decreasing Rates
(ton) (Y0)
H13 5,183 11.708 11.235 4.21%
H16 20,209 91.782 88.040 4.25%
H19 4,397 46.416 45.819 1.30%
H22 4,583 107.476 107.215 0.24%
H25 1,087 33.011 33.527 -1.54%
H29 1,017 36.071 36.590 -1.42%
% 7
i
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS FOR
FURTHER STUDY

In an environment where rebar material supply is scarce and rebar prices
are rising, optimizing rebar order quantity, and reducing rebar order costs can
reduce a lot of construction costs.

Through this paper, I improve the Best-fit-decreasing algorithm of the ex-
isting Bin-packing approach for the purpose of minimizing rebar orders and
propose a Revised-Best-fit-decreasing algorithm.

The Revised-Best-fit-decreasing algorithm is more effective in reducing
rebar order cost than the existing Best-fit and Best-fit-decreasing algorithms.
In particular, the Revised-Best-fit-decreasing algorithm was applied to the
foundation caisson that was used as the actual test bed to optimize the order
quantity of rebars, resulting in a quantity reduction effect of about 4 tons and
a cost reduction effect of about 4.2 million won.

The Revised-Best-fit-decreasing algorithm is more effective when the
quantity of demand rebar is high, and the diameter of rebar is small.

Applying this algorithm selectively where the diameter is small or where
the number of rebars in demand is high can maximize the effect of reducing

rebar order quantity and reducing rebar order cost.

39



Running the algorithm required the process of creating the Input data,
which took a long time. Therefore, there are advantages in applying this al-
gorithm to highly reproducible or simple structures. Since this algorithm is
effective when the quantity of demand rebar is large, the cost reduction effect
will be greater if the demand input data of multiple structures are applied to
the algorithm at once.

Further study is planned to analyze the results of the algorithm based on
the distribution of length of demand rebar. The degree of distribution, such as
the standard deviation of the length of demand rebar, will affect the number
of stock rebar orders.

Also, I proceed to study the minimum quantity of demand rebar that can
derive a valid degree of optimization for the Revised-Best-fit-decreasing al-
gorithm. Since the effectiveness of the algorithm varies with the number of
demand rebars, a study of the minimum quantity of demand rebars applicable
to this algorithm provides information on the number of input data to which
the algorithm can be applied.

Finally, in conducting this research, I did not consider various incidental
costs such as labor and transportation costs for processing rebars, but through
additional study, I will consider not only the order quantity of simple rebars

but also incidental costs.

40



REFERENCE

Kim, S. K., Hong, W. K., & Joo, J. K. (2004). Algorithms for reducing the
waste rate of reinforcement bars. Journal of Asian Architecture and Build-

ing Engineering, 3(1), 17-23.

Gilmore, P. C., & Gomory, R. E. (1961). A Linear Programming Approach to
the Cutting-Stock Problem. Operations Research, 9(6), 849-859.

Jahromi, M. H., Tavakkoli-Moghaddam, R., Makui, A., & Shamsi, A. (2012).
Solving an one-dimensional cutting stock problem by simulated annealing

and tabu search. Journal of Industrial Engineering International, 8(1), 1-8.

Fourer, R. (1988). A simplex algorithm for piecewise-linear programming II:
Finiteness, feasibility and degeneracy. Mathematical Programming, 41(1),

281-315.

Martello, S., & Toth, P. (1990). Bin-packing problem. Knapsack problems:
Algorithms and computer implementations, 221-245.Kato, Y., & Kanda,
M. (2014). Development of a modified hybrid aerodynamic vibration
technique for simulating aerodynamic vibration of structures in a wind
tunnel. Journal of Wind Engineering and Industrial Aerodynamics, 135,

10-21.

Bekesi, J., Galambos, G., & Kellerer, H. (2000). A 5/4 linear time bin packing
algorithm. Journal of Computer and System Sciences, 60(1), 145-160.

Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear pro-
grams. Operations research, 8(1), 101-111.

Gomory, R. E. (2010). Outline of an algorithm for integer solutions to linear
programs and an algorithm for the mixed integer problem. In 50 Years of
:l -I

—
|

41



Integer Programming 1958-2008 (pp. 77-103). Springer, Berlin, Heidel-
berg.

Poldi, K. C., & Arenales, M. N. (2009). Heuristics for the one-dimensional
cutting stock problem with limited multiple stock lengths. Computers &
operations research, 36(6), 2074-2081.

Johnson, D. S. (1973). Near-optimal bin packing algorithms (Doctoral disser-
tation, Massachusetts Institute of Technology).

Gilmore, P. C., & Gomory, R. E. (1963). A linear programming approach to
the cutting stock problem—Part II. Operations research, 11(6), 863-888.

Vanderbeck, F. (1999). Computational study of a column generation algo-
rithm for bin packing and cutting stock problems. Mathematical Program-

ming, 86(3), 565-594.

Nadoushani, Z. S. M., Hammad, A. W., Xiao, J., & Akbarnezhad, A. (2018).
Minimizing cutting wastes of reinforcing steel bars through optimizing lap
splicing within reinforced concrete elements. Construction and Building

Materials, 185, 600-608.

Berberler, M. E., Nuriyev, U., & Yildirim, A. (2011). A software for the one-
dimensional cutting stock problem. Journal of King Saud University-Sci-

ence, 23(1), 69-76.

Belov, G., & Scheithauer, G. (2002). A cutting plane algorithm for the one-
dimensional cutting stock problem with multiple stock lengths. European

Journal of Operational Research, 141(2), 274-294.

Zheng, C., Y1, C., & Lu, M. (2019). Integrated optimization of rebar detailing
design and installation planning for waste reduction and productivity im-

provement. Automation in Construction, 101, 32-47.

42



Haessler, R. W. (1975). Controlling cutting pattern changes in one-dimen-
sional trim problems. Operations Research, 23(3), 483-493.

Lee, D., Son, S., Kim, D., & Kim, S. (2020). Special-length-priority algorithm
to minimize reinforcing bar-cutting waste for sustainable construction.

Sustainability, 12(15), 5950.

Kwon, K., Kim, D., & Kim, S. (2021). Cutting Waste Minimization of Rebar
for Sustainable Structural Work: A Systematic Literature Review. Sustain-

ability, 13(11), 5929.

43



TEEF

294
A8 87 F oty
EEEEER ET
Ao Fu Aol Aol RESA AEFA A 87 Sl
Ao A A FA L oF 1683 AXarlo] A E Fol
AL A Ao W F8F axolth o]l wEE AT FE 1§

Zol7] 918 ATE YT}

proach & W1-97) 220 7]& 32 ¢l dag=of sl Aty 2 ktt.

71% Best—-fit-decreasing L1 &5S

creasing ¢85S AEA AT

fit-decreasing @ A% AL ZHte] 7M4S A Ao Hol= vy o
grol 7bd A2 A ASs HH doo® QA Fa HES
dol oz WHAe AHEsu. o Aol =R Aa F

ol W WA kA g A dtel WA So7A Ao, B, 3
Holl = 7He] o HIS SAlol aLelste] €] A Aol
ol HA He] dolutt aAY 22 Aedde F e LS BT

o =~
9SS T A

rr

44



& FRE

Apel Aol

oL
o

Vil

9 Aol e o WL 8187 FRE T

3l 2okt

g

gl o

o] =
A -

AA 36,478 M= A A = o

o]t}. Revised-Best—

9

326.463

fit-decreasing

322.427 &9 A A

a7k 2

2 2:3)

Revised-Best-

fit-decreasing;

Student Number: 2020-28658

45



	CHAPTER 1
	1.1 Research Background
	1.2 Definitions and Notations
	1.3 Structure of the Thesis

	CHAPTER 2
	2.1 Basic Concept
	2.2 Example
	2.3 Limitations of this Method

	CHAPTER 3
	3.1 Basic Concept
	3.1.1 General Solutions
	3.1.2 Limitations of General Solutions

	3.2 Revised-Best-Fit-Decreasing
	3.2.1 Condition to Consider the Price of Stock Rebar
	3.2.2 Condition to Consider Two Demand Rebars at the same time

	3.3 Simple Test

	CHAPTER 4
	4.1 Test Bed and Market Conditions
	4.2 Results and Resolutions

	CHAPTER 5
	REFERENCE


<startpage>9
CHAPTER 1 1
 1.1 Research Background 1
 1.2 Definitions and Notations 2
 1.3 Structure of the Thesis 3
CHAPTER 2 5
 2.1 Basic Concept 5
 2.2 Example 7
 2.3 Limitations of this Method 13
CHAPTER 3 15
 3.1 Basic Concept 17
  3.1.1 General Solutions 17
  3.1.2 Limitations of General Solutions 22
 3.2 Revised-Best-Fit-Decreasing 23
  3.2.1 Condition to Consider the Price of Stock Rebar 23
  3.2.2 Condition to Consider Two Demand Rebars at the same time 25
 3.3 Simple Test 27
CHAPTER 4 30
 4.1 Test Bed and Market Conditions 31
 4.2 Results and Resolutions 35
CHAPTER 5 39
REFERENCE 41
</body>

