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Abstract 

 
Ride-pooling has significantly enhanced the system efficiency in 

current on-demand ride-sharing services. However, as the numbers 

of on-board passengers increase, more detours inevitably occur 

since it provides door-to-door service for everyone. To solve this 

problem, we focus on rider-participating dispatch by searching 

walking points, equivalent to alternative pick-up points from origins 

and alternative drop-off points from destinations. Based on the 

existing framework for large-scale ride-pooling, we develop our 

walking point search algorithm, which finds cost-minimizing 

alternatives. In addition, our approach enables the model to reflect 

the sensitivity of riders to given walking points by introducing the 

probability of riders’ acceptance. We conduct a simulation with the 

Yellow Cap Taxi dataset in New York City to validate and compare 

with the base model, which does not include walking. The results 

show an increase from 69.56% to 77.84% in the service rate, an 

improvement of 18.2% in delay time, and 8.6% in in-vehicle time. 

With the increased service rate, the average travel times of vehicles 

are reduced by 1.5%, allowing drivers to spend more time rebalancing. 

Furthermore, we show that the effect of walking is maximized in 

high-demand areas during peak hours. This study demonstrates that 

walking can substantially enhance operational efficiency, mitigating 

the supply-demand imbalance with limited fleets. The proposed 

model can also be utilized in optimizing the meeting points for various 

high-capacity vehicles, such as on-demand shuttles. 

Keyword : Ride-sharing, Ride-pooling, On-demand mobility, 

Walking to ride, Meeting points 

Student Number : 2021-26822 
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Chapter 1. Introduction 
 
 

The sharing economy has dramatically changed mobility 

industries, led by various ride-sharing companies, such as Uber and 

Lyft. The entire shared-mobility market accounted for $130 to $140 

billion in global consumer spending in 2019 (pre-pandemic). Ride-

sharing services accounted for the largest share, in the range of $120 

billion to $130 billion, and they had massive growth from 2016 to 

2019 during their number of trips almost tripled (Heineke et al., 

2021). 

Ride-sharing services, such as Uber Pool and Lyft Line, have 

expanded their coverage to ride-pooling to offer more rides with 

limited fleets and reduced fares. In ride-pooling, multiple on-

demand requests are served by a single vehicle. Online matching of 

this system was done by solving assignment problems, constructing 

multiple trip sets in a batch, and assigning them to vehicles. These 

separated modules enable real-time dispatching in large-scale ride-

sharing services (Alonso et al., 2017; Simonetto et al., 2019; Shah et 

al., 2020). In addition to these real-time serving algorithms, dynamic 

strategies have been developed to enhance the efficiency of the 

service. For instance, Uber uses a dynamic waiting mechanism to 

thicken the pool contributing to assigning the nearest passengers to 

the same trip. Dynamic waiting requires passengers to wait for a 

certain duration by dynamically adjusting the waiting time to join with 

other passengers with similar origins and destinations. This 

mechanism thickens the pool of eligible requests for matching, 

resulting in a higher matching rate (Yan et al., 2020).  

When a region’s demand is relatively higher than the 
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demands of other regions, riders sometimes have difficulty in finding 

empty vehicles. However, some people implicitly know where to 

search for available vehicles if they are willing to walk some distance. 

Idle vehicles that would not be included in the radius of the previous 

searches can be found by walking to certain points. The problem is 

that most potential riders do not know where they should walk to 

attain rides. Therefore, suggesting optimized walking points can be 

informative for these riders, especially in high-demand hours and 

regions. It also benefits operators since it improves the utility rates 

of their fleets by shortening routes with less detour while serving 

more riders.  

In current ride-pooling algorithms, when a vehicle serves 

more riders in a trip, the computational complexity grows 

exponentially, and more in-car delays occur. Therefore, it is 

essential to find ways to shorten travel detours to maintain the quality 

of service and improve the system’s efficiency. In this aspect, 

optimizing the meeting points of vehicles and riders can be an 

efficient solution since it not only suggests locations where riders 

can walk but also minimizes the detours they will incur. Figure 1 

shows an example of how walking reduces detours, thereby serving 

additional riders. To this end, we propose a ride-pooling framework 

with a walking points search algorithm that provides cost-minimizing 

pick-up and drop-off locations. We show that this algorithm can 

significantly reduce riders’ delay times and achieve higher service 

rates.  

To the best of our knowledge, only one paper addressed the 

optimization of walking points, and it only resulted in a 2% to 4% 

enhancement in request rejection rates (Fielbaum et al., 2021). In 

addition, few studies have focused on the effects of allowing the 



 ３ 

walking option or the probability of accepting suggested walking 

times (Stiglic et al., 2015). Since there is a trade-off between the 

system efficiency and riders’ convenience, the objective function in 

the assignment problem should include riders’ acceptance 

probability to reflect whether the suggested matching is likely to be 

accepted.  

In this paper, we propose a dispatching algorithm with walking 

points search in ride-pooling. We incorporate rider-side flexibility 

to improve the service’s overall quality, unlike most existing 

literature on online dispatching focused on enhancing computational 

efficiency or the rebalancing method. Furthermore, by including the 

riders’ utility model regarding walking time in the objective function, 

our framework presents a more practical assessment of willingness-

to-ride of riders on optimized pick-up and drop-off points. We 

achieved an enhancement in the service rate that was more than 

double the enhancements in the previous literature on optimizing 

walking points. Our work can contribute to the current ride-sharing 

market and other types of high-capacity ride-sharing services 

where dynamic meeting points are needed.  

 

Figure 1. An illustration of ride-pooling with and without walking points 
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Chapter 2. Literature Review 
 
 

Matching and assignment in ride-sharing, including both 

single-rider and multi-rider services, are based on various 

algorithms and objective functions. Since matching riders and drivers 

is constructed as a bipartite structure, mixed integer linear 

optimization and combinatorial optimization often are used (Hosni et 

al., 2014; Qian et al., 2017). In addition, dynamic programming also 

is applied to model the dynamics of complex systems (Yu et al., 2020; 

Duan et al., 2019). The integrated framework of combinatorial 

optimization   with learning models refers to predicted information 

for non-myopic solutions (Shah et al., 2020; Zhang et al., 2019; Xu 

et al., 2018). Deep reinforcement learning also is used to represent 

interaction with the environment and to increase adaptability to 

rapidly changing environments (Wang et al., 2018; Al-Abbasi et al., 

2019). Previous studies have used diverse objective functions for 

order dispatching in single-rider services, such as minimizing pick-

up time, minimizing passenger request waiting time, maximizing 

quality of service, and maximizing total profit (Lee et al., 2004; Wong 

et al., 2006; Seow et al., 2010; Bertsimas et al., 2019). Unlike single-

rider services, order dispatching in multi-rider services (ride-

pooling) considers travel detours that occur by other riders served 

together. Studies on ride-pooling aim to minimize an increase in 

travel distance, total mileage driven with limited detours, passenger 

travel time, detour cost, and total travel miles (Simonetto et al., 2019; 

Qian et al., 2017; Ma et al., 2015; Pelzer et al., 2015; Jung et al., 

2016).  

Specifically, in ride-pooling, pick-up and drop-off 
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sequences should be considered to serve each of the riders while 

satisfying their constraints, and this makes the assignment of ride-

pooling combinatorially harder (Yan et al., 2020). To deal with the 

large-scale ride-sharing services with higher capacities in real time, 

Alonso et al. proposed a highly-scalable, anytime optimal algorithm 

(Alonso et al., 2017). They built the framework by constructing 

feasible pairs of trips and vehicles from an existing concept of the 

shareability graph (Santi et al., 2014). Simonetto et al. enhanced 

computational efficiency based on the framework of Alonso et al. 

(Simonetto et al., 2019). They proposed a distributable optimized 

framework pointing out that current centralized systems are 

unsuitable for multiple ride-sharing operators in the market. This 

algorithm reduced computational time with the single-request 

assignment four times more. Liu et al. improved the computational 

efficiency of the framework in Alonso et al. (Liu et al., 2022). They 

proposed search space pruning techniques to reduce the computation 

time and input/output reduction techniques for parallelization, 

allocating requests with similar candidate vehicle sets to the same 

computing unit. Since these studies only consider current time steps, 

Shah et al. pointed out that optimizing the fixed objective function, 

which ignores its effects on future time steps, results in myopic 

solutions (Shah et al., 2020). They provided approximate dynamic 

programming updating value from the integer linear programming 

(ILP) based assignment. As a result, their proposed method served 

more requests during peak times and improved the state of the art 

by 16%.    

Existing works on ride-sharing dispatching have been 

conducted given fixed locations of riders. However, a few works have 

addressed meeting points where riders are picked up. Stiglic et al. 
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investigated the benefits of meeting points where multiple riders can 

be picked-up or dropped-off within their acceptable distances 

(Stiglic et al., 2015). They achieved a significant increase in possible 

matches without any increase in the number of stops for vehicles. 

However, four randomly generated meeting points were used in each 

travel analysis zones, which limits the flexibility of riders and hinders 

the identification of the optimal meeting points. Fielbaum et al. 

designed frameworks for requesting users to walk towards/from 

actual origins and destinations (Fielbaum et al., 2021). By applying 

the proposed method to the real dataset, they showed that walking 

improved the system meaningfully, especially the number of 

rejections and vehicle-hours traveled. However, they allowed only a 

small proportion of walking by applying a fixed walking-time penalty, 

which resulted in only up to 4%p reduction in rejection rates in one-

hour simulations with approximately 10,000 requests in Manhattan. 

Aivodji et al. proposed a decentralized architecture for computing 

privacy-preserving meeting points in ride-sharing (Aivodji et al., 

2016). Their experiment results showed the feasibility of both the 

privacy of location information and utility levels. 

While adjusting meeting points by walking in ride-sharing 

rarely has been addressed, walking in public transit has been 

addressed in numerous studies. Although there has been very little 

research that has explored riders’ willingness to walk as a part of 

ride-sharing, the research on public transit passengers would 

provide a reasonable criterion. Studies on passengers’ walking 

behavior to reach public transit can be utilized in ride-sharing with 

free-floating walking points in terms of modeling the relationship 

between walking distance and percentage of passengers, determining 

walking distance threshold, and reflecting modal difference.  
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Zhao et al. found that transit usage is reduced exponentially 

with walking distance to transit stops, so that the relationship could 

be modeled by a decay function (Zhao et al., 2003). In addition, 

walking distances greater than 800 m did not affect increasing 

accessibility in southeast Florida. Applying the walking time decay 

function in Zhao et al., Chia et al. revealed the variation in walking 

time among bus riders with different socioeconomic characteristics 

(Chia et al., 2016). The household travel survey in Brisbane, 

Australia showed that transit use drops drastically at 5 min and 10 

min, 375 m and 750 m, with a mean walking speed of 75 m/min. 

Walking access also varies with travel mode. Ker et al. showed that, 

in the case of rail stations, passengers walk further than the 

conventionally-assumed 5 min and 10 min limits (Ian et al., 1998). 

Likewise, Weinstein et al. revealed that passengers walk more than 

805 m, approximately 10 min, to railway stations, a much longer 

distance than they will walk to bus stops (Agrawal et al., 2008). 

Similarly, Daniels et al. found that passengers walk farther to access 

train stations than bus stations, suggesting that the difference in the 

supply of travel modes contributes to variability in walking distances 

(Daniels et al., 2013). 

Although a few studies have taken into account riders’ 

walking in the ride-sharing dispatching problem, some dynamic 

pricing and matching algorithms consider riders’ sensitivity to price 

and waiting time or their preference on trip attributes. For example, 

Yan et al. jointly optimized dynamic pricing and dynamic waiting to 

mitigate price variability while considering the probability of riders’ 

acceptance (Yan et al., 2020). hey estimated riders’ request rate 

function with respect to surge multiplier and waiting time by 

calibrating parameters using UberX data. By maximizing welfare 
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defined by these riders’ request functions, they showed that the 

joint optimization of price and waiting time prevents high/volatile 

prices or waiting times. Prior to Yan et al., Castillo et al. demonstrated 

that dynamic pricing could prevent from falling into Wild Goose Chase 

zones, depleting idle vehicles on the street in high-demand areas or 

times, thus significantly disrupting service functioning (Castillo et al., 

2017). This study defined gross utility in terms of riders’ 

willingness to pay and wait when determining platform revenue to 

validate their theory. On the other hand, Qiu et al. specified a choice 

model with respect to the type of service, travel mode, travel time, 

and travel cost (Qiu et al., 2018). For a practical optimal pricing 

strategy, they used this behavior model reflecting riders’ sensitivity 

towards price surges and reductions and showed superior 

performance in profit. As stated so far, many strategic frameworks 

for pricing or dispatching indicate that the final decision is directly 

affected by riders’ preference or their likelihood to accept orders. 

Thus, riders’ reluctance to walk, which might be higher than waiting 

still at a fixed point, should be considered to evaluate the model in 

realistic settings. 
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Chapter 3. Methods 
 

 

 

3.1. Preliminaries 
 

In every batch, we consider a fixed number of vehicles, 𝑚, 

with capacity 𝜈  of vehicle set 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚}  and 𝑛  newly 

received requests set 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛}. Each vehicle 𝑣 ∈ 𝑉 consists of 

the current location updated at every iteration, assigned schedules, 

and on-board passengers. Each request 𝑟 ∈ 𝑅 consists of origin 𝑜𝑟, 

destination 𝑑𝑟, maximum pick-up time 𝛿𝑟
𝑝

, and maximum drop-off 

time 𝛿𝑟
𝑑 determined by parameters of maximum waiting time, Ω, and 

maximum detour rate, Δ, respectively. Trips generated for vehicle 𝑣 

are denoted as 𝑇𝑣, which is a set of  𝑇𝑣,Γ
𝑘  that contains a set of 𝑘 new 

requests, Γ.  

 

3.2. General Formulation of the Ride-Pooling Problem 
 

For the general formulation, we chose the most extensively 

used framework for online dispatching in Alonso et al. and its 

implementation Li et al. (Alonso et al., 2017; Li et al., 2021). It 

separates the process of finding feasible schedules containing 

multiple trips from assigning the schedules generated for vehicles, 

which maximizes the objective function. A set of requests that can be 

served by a vehicle satisfying 𝛿𝑟
𝑝

 and 𝛿𝑟
𝑑  denotesa feasible or 

possible schedule. In each iteration, for each vehicle 𝑣, we generated 

possible drop-off schedules for on-board passengers in 𝑣. Then, for 

newly received requests, including unassigned requests in the 

previous batch, we insert every {𝑜𝑟, 𝑑𝑟} into every location of its 

drop-off schedules checking feasibility. These generated feasible 
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schedules of size 1 (one new request inserted) are saved as a set of 

trip 𝑇𝑣
1 with every schedule’s total travel durations, 𝛿𝑡. A schedule 

of minimum duration is denoted as the best feasible schedule. Based 

on 𝑇𝑣
1, we generated 𝑇𝑣

2 containing 2 new requests. For every 2 size 

combinations of new requests, for example {𝑟1, 𝑟2}, we insert {𝑜𝑟2
, 𝑑𝑟2

} 

into 𝑇𝑣,{𝑟1}
1  to check its feasibility. Then, these feasible sets of trips 

constitute 𝑇𝑣,{𝑟1,𝑟2}
2 . As was done in the previous step, we build 𝑇𝑣

𝑘 

based on 𝑇𝑣
𝑘−1. However, if 𝑇𝑣,Γ\𝑟

𝑘−1  does not exists for a request 𝑟, we 

do not build 𝑇𝑣,Γ
𝑘  since the base schedule is already infeasible.  

Each 𝑇𝑣,Γ
𝑘  contains the best feasible trips for every set of 

requests, and they are considered when assigning trips to vehicles. 

Optimal assignment is obtained by solving the ILP problem, which is 

used to  determine whether to assign a trip to a vehicle. The term 

𝑥𝑡𝑣 is a binary variable, and it is 1 if a trip 𝑡 is assigned to a vehicle 

𝑣. The ILP formulation minimizes 𝑐𝑡𝑣𝑥𝑡𝑣 following constraints, and 

each vehicle must serve less than one trip, and each request must be 

served by less than one vehicle. The problem formulation is 

described in Equation (1a) - (1d). 

 

Min ∑ ∑ 𝑐𝑡𝑣𝑥𝑡𝑣

𝑣∈𝑉𝑡∈𝑇

  (1a) 

s.t.    

 ∑ 𝑥𝑡𝑣 ≤ 1,

𝑡∈𝑇

 ∀𝑣 ∈ 𝑉 (1b) 

 ∑ 𝑥𝑡𝑣 ≤ 1,

𝑡∈𝑇(𝑟)

 ∀𝑟 ∈ 𝑅 (1c) 

 𝑥𝑡𝑣 ∈ {0, 1}, ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉 (1d) 
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Idle vehicles are matched to unassigned requests to relocate 

vehicles to high-demand areas efficiently. Only one vehicle is 

assigned to one unassigned request to prevent assigning multiple 

vehicles to the same request. Vehicles not assigned any schedules, 

including rebalancing schedules and not traveling to pick-up requests, 

are denoted as empty vehicles. 

 

 

3.3. Walking Points Search Algorithm 
 

To determine walking points, which are equivalent to pick-

up points from actual origins and drop-off points from actual 

destinations, we modified the module to find feasible schedules. 

Initially, we define neighborhood nodes of 𝑜𝑟 and 𝑑𝑟 as 𝑜𝑟
′  and 𝑑𝑟

′ , 

which are nodes within maximum walking radius Λ from 𝑜𝑟 and 𝑑𝑟. 

With this precomputed set of neighborhood nodes, we iterate the 

process of finding feasible schedules replacing 𝑜𝑟 and 𝑑𝑟 into 𝑜𝑟
′ ∈

𝑂𝑟
′ and 𝑑𝑟

′ ∈ 𝐷𝑟
′ . As described in Table 1, we replace 𝑜𝑟 into 𝑜𝑟

′  only 

when sequence 𝑖 where 𝑜𝑟 is picked is feasible in base schedule. If 

this is satisfied, 𝑜𝑟
′  is inserted at 𝑖  instead of 𝑜𝑟 . To reduce the 

computational complexity, only when total travel duration 𝛿𝑡  is 

minimum, (𝑜𝑟
′ , 𝑑𝑟) is added to a set of possible pick-up and drop-off 

pairs of request 𝑟  when assigned to vehicle 𝑣  within trip 𝑡 , 𝑃𝑟,𝑣
𝑡 . 

Feasible trip 𝑡 with replaced origin also is added to the feasible trip 

table of size 1, 𝑇𝑣,Γ
1 . Also, only when this is the case, 𝑑𝑟

′  is searched, 

and (𝑜𝑟
′ , 𝑑𝑟

′ ) is added to 𝑃𝑟,𝑣
𝑡  when 𝛿𝑡 is at its minimum value. Thus, 

𝑑𝑟
′  is only searched when the minimum 𝛿𝑡 of 𝑜𝑟

′  is discovered. After 

finishing this iteration for insertion location of 𝑟, (𝑖, 𝑗), we conduct 

the same iteration, fixing the insertion location and replacing 𝑜𝑟 and 

𝑑𝑟. 
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When generating 𝑘 > 1 size of trips, we utilize 𝑃𝑟,𝑣
𝑡  to make 

combinations of multiple requests with their previously discovered 

pick-up and drop-off points. We insert these alternative pairs 

(𝑜𝑟
′ , 𝑑𝑟

′ ) ∈ 𝑃𝑟,𝑣
𝑡  while iterating possible insertion locations (𝑖, 𝑗) . And 

same as building 𝑘 = 1 size of trip, only the trips with the minimum 

𝛿𝑡 are added to 𝑇𝑣,Γ
𝑘 . Algorithm for generating k > 1 feasible schedules 

in detail is described in Table 2 

 

 

TABLE 1. Algorithm for generation of k = 1 feasible schedules with 

walking points 

Algorithm 1: Generation of 𝑘 = 1 feasible schedules with walking points 

1 𝑇𝜐,𝑅
1 = ∅ ∀𝜐 ∈ 𝑉; 𝑂𝑟

′ = get_neighborhood_nodes (𝑜𝑟);  

𝐷𝑟
′ = get_neighborhood_nodes (𝑑𝑟);  

2 for each vehicle 𝜐 ∈ 𝑉 do 

3  for request in 𝑟 ∈ 𝑅 do 

4   Γ = {𝑟}; 𝑃𝑟,𝑣  = {(𝑜𝑟, 𝑑𝑟)} 

5   [Insert request’s pick-up & drop-off points] 

6   for (𝑖, 𝑗)  ∈ possible_insertion_locations do 

7    if new_schedule exists then 

8     [Check feasibility of new pick-up points] 

9     for 𝑜𝑟
′  ∈  𝑂𝑟

′ do 

10      if new_pickup_schedule exists then 

11       if new_pickup_cost < min_cost then 

12        Add (𝑜𝑟
′ , 𝑑𝑟) to 𝑃𝑟,𝑣 

13        Add new_pickup_schedule to 𝑇𝑣,𝛤
1  

14        [Check feasibility of new drop-off points] 

15        for 𝑑𝑟
′  ∈  𝐷𝑟

′ do 

16         if new_dropoff_schedule then 

17          if new_dropoff_cost < min_cost then 

18           Add (𝑜𝑟
′ , 𝑑𝑟

′ ) to 𝑃𝑟,𝑣 

19           Add new_dropoff_schedule to 𝑇𝑣,Γ
1  
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TABLE 2. Algorithm for generation of k > 1 feasible schedules with 

walking points 

Algorithm 2: Generation of 𝑘 > 1 feasible schedules with walking points 

1 for 𝑣 ∈ 𝑉 do 

2  while 𝑘 > 1 do 

3   for 𝑡 ∈ 𝑇𝑣,Γ
𝑘  do 

4    for 𝑟 ∈ 𝑅/Γ do 

5     Add 𝑟 to Γ 

6     if 𝑇𝑣,Γ/𝑟
𝑘  is empty break 

7     for (𝑜𝑟
′ , 𝑑𝑟

′ ) ∈ 𝑃𝑟,𝑣 do 

8      [Insert request’s pick-up & drop-off points]  

9      for (𝑖, 𝑗)  ∈ possible_insertion_locations do 

10       if new_schedule exists then 

11        if new_schedule_cost < min_cost then 

12         Add new_ schedule to 𝑇𝑣,𝛤
𝑘+1 

13         𝑘 = 𝑘 + 1 
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3.4. Rider Acceptance Probability with Walking Distance 
 

In this section, we define the objective function that reflects 

the decreasing probability of rider acceptance with increasing 

walking time. It takes into account the stochastic behavior of riders 

that affect the total expected revenue. By including the reduction in 

the expected revenue depending on riders’ acceptance probability, 

we analyze the realistic effects of the walking points suggestion. We 

assume that the riders’ acceptance probability for the suggested 

walking points is determined by walking time.  

We use the existing rider utility model with respect to waiting 

time and surge multiplier of price from Yan et al. (Yan et al., 2020), 

which is estimated based on UberX data that contain whether the 

rider accepted trips when providing the price and the waiting time of 

a trip. In this estimated model, the rider’s utility of a trip is defined 

as 𝑢(𝑝, 𝑤) + 𝜖, where 𝜖 is a Gumbel distributed random variable, as 

shown in Equation (2a). Then, the rider’s acceptance probability 

𝜏(𝑤) is assumed to follow a logit form, as shown in Equation (2b). 

The coefficients we use for 𝜂 and 𝛽  were 1.643 and -0.6693 , 

respectively, as estimated in Yan et al. (Yan et al., 2020). However, 

since riders are expected to be more reluctant to walk than to wait, 

we use a higher value for δ than was used in Yan et al. (Yan et al., 

2020). The value is set to -0.199, which was estimated empirically 

through the distribution of walking time of bus riders in Chia et al. 

(Chia et al., 2016). The surge multiplier is set to the default value of 

1.0 since we do not consider the sensitivity to price. Considering that 

the revealed fixed hour-of-day effects {𝜅𝑖} were between 0.05 and 

0.2 in the existing work (Yan et al., 2020), we scale 𝜅𝑖  to be 

proportional to the demand within range from 0.05 to 0.2. Figure 2 
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shows the acceptance probability with walking time in minutes when 

the hour of day effect 𝜅𝑖 is minimum (𝜅4= 0.061) during 04:00-

05:00 and maximum ( 𝜅19 = 0.211)  during 19:00-20:00. The 

acceptance probability starts near 0.7 when the walking time is 0, and 

it decreases to 0.3 when the walking time is 10 minutes. In these two 

cases, the average difference of acceptance probability is 3.4%p. 

 

 
𝑢(𝑝, 𝑤) = 𝜂 + 𝛽 ∙ 𝑝 + 𝛿 ∙ 𝑤 + ∑ 𝜅𝑖 ∙ 𝐼(ℎ = 𝑖)

23

𝑖=1

 
(2a) 

 
𝜏(𝑤) =

𝑒𝑥𝑝(𝑢(𝑝, 𝑤))

1 + 𝑒𝑥𝑝 (𝑢(𝑝, 𝑤)
  

(2b) 

 

 

Figure 2 Acceptance probability to walking time with hour-of-day 

effects 
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Then, we define our objective function, 𝑝𝑡𝑣, as maximizing the 

expected revenue and minimizing the cost, as in Equation (3a). The 

expected revenue, 𝑒𝑡𝑣 , is determined by riders’ acceptance 

probability and the fare that is proportional to the shortest travel 

distance, as shown in Equation (3b). In the case of walking, replaced 

pick-up and drop-off points are used to calculate the shortest travel 

distance. Cost function 𝑐𝑡𝑣  is travel delay time 𝑑𝑟  obtained by 

subtracting the request time 𝑡𝑟
𝑞
 and the shortest travel duration 𝑠𝑟 

from drop-off time 𝑡𝑟
𝑑 , as in Equation (3c). Thus, it includes the 

travel detour time and the waiting time of riders. By including the 

travel delay, the objective function works to increase both the profit 

and the operational efficiency.  

 

 𝑝𝑡𝑣 = 𝑒𝑡𝑣 − 𝑐𝑡𝑣 (3a) 

 𝑒𝑡𝑣 = ∑ 𝜏𝑟(𝑤𝑟) ∙ 𝑓𝑟(𝑑)

𝑟∈𝑡

 (3b) 

 𝑐𝑡𝑣 = ∑(𝑡𝑟
𝑑 − 𝑡𝑟

𝑞
)

𝑟∈𝑡

− 𝑠𝑟  (3c) 
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Chapter 4. Results 
 

 

 

4.1. Simulation Settings 
 

This section shows how we simulated the proposed walking 

points search model (WSM) to compare the performance with the 

original model without walking. We used the public dataset of New 

York City taxis on May 25, 2016 (404,310 requests). This dataset 

contains pick-up and drop-off points with the times that riders 

requested taxis. The road network of New York City consists of 

4,091 nodes and 9,452 edges, with the mean travel time and shortest 

travel distance precomputed for routing. At the beginning of the 

simulation, vehicles are distributed uniformly in vehicle stations. For 

simulation parameters, the maximum waiting time of riders (including 

walking time) is set to 5 minutes, the maximum travel detour (in-

vehicle time to shortest travel time) is set to 1.3, and the maximum 

walking time is set to 5 minutes (461 m in distance) for pick-up and 

drop-off points, respectively, assuming that people walk at 5 km/hr 

(Browning et al., 2006). The walking time used to calculate riders’ 

acceptance probability is the sum of the walking time at the origin 

and destination. In addition, we fix the capacity parameters of 

vehicles to 4, and the batch period is 30 seconds. Unassigned 

requests to vehicles in previous batches are assigned requests in the 

next batch under their maximum waiting time constraints. The main 

simulation time is between 1:00 and 23:00 (22 hours), and we use 

30% (113,126 requests) of the randomly selected requests among 

the real datasets with a fleet size of 500 vehicles.  
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4.2. Simulation Results 
 

4.2.1. Comparison with the base model 

Table 3 shows performance metrics for the base model and 

WSM. With 500 vehicles, WSM serves 77.84% of requests, which is 

an 8.28%p improvement. The increased number of requests directly 

lead to an increase in the total revenue of $ 63,182. Average delay 

time (sum of waiting time and detour time) and average in-vehicle 

time decreased by 18.2% (44 sec) and 8.6% (68 sec), respectively. 

Even though average waiting time increases slightly, i.e., by 7.5% 

(12 sec), over the base model, walking shortens the total travel time 

of riders (from request time to drop-off time) significantly, which is 

attributed to the reduction of the time in the vehicle. The average 

travel time of each vehicle is decreased by 1,093 seconds (18.21 min) 

while serving more riders during the entire simulation time. 

Furthermore, less time is wasted in empty travel, i.e., with not being 

assigned any schedules and not serving any riders, showing a 

decrease of 12.8% (382 sec). Due to reduced detours, they rather 

spend more time rebalancing themselves to where there are 

unserved requests. By leading riders to walk, a small increase in 

waiting time contributes to shorter travel time and higher utility rates 

of vehicles, which enables the vehicles to serve more riders.  
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TABLE 3 Simulation Results of Performance Metrics 

 WSM Base 

Serviced requests 
88,054 

(77.84 %) 

78,691 

(69.56 %) 

Total revenue $ 814,047 $ 750,865 

Riders 

Avg. waiting time  

(including walking time) 
172 s 160 s 

Avg. delay time 258 s 302 s 

Avg. in-vehicle time 719 s 787 s 

Vehicles 

Avg. travel time 68,003 s 69,096 s 

Avg. empty travel time  2,583 s 2,965 s 

Avg. rebalancing travel 

time  
5,937 s 4,796 s 

 

Figure 3 describes the hourly distribution of these metrics to 

compare the difference with varying demands. Figure 3 shows the 

total requests that occurred and the serviced (completed) requests. 

As shown in this figure, the gap of serviced requests, indicated by 

the shaded area, becomes larger when the demand is high. When the 

demand is low, around 17:00 and during the night, enough vehicles 

exist to serve requests for both models. The hourly differences are 

better described in Figure 4. The service rate of the base model 

around 9:00 drops to 62.86%, which is 10.87% lower than the service 

rate of WSM. Around 10:00, when the soaring demands at 19:00 are 

maintained, the base model serves only 50% of total requests, while 

WSM serves 60% of total requests. Similarly, around 3:00, the 

service rates of the base model and WSM show a gap of 12.62%. As 

demands increase or remain higher than the supply during a certain 

period, more near-capacity vehicles accumulate on the streets, 

worsening the service rate. Showing a larger performance gap, in this 

case, indicates that adjusted acceptance probability proportional to 



 ２０ 

demand has an impact on controlling the over-demand. 

Figure 5 represents the waiting times of both models and the 

walking time of WSM. The waiting time of WSM is higher than the 

base model throughout the day, and the time riders spend walking 

also is more than the waiting time of the base model, usually within 

20 seconds. Around 15:00, as above, which shows the maximum gap 

in the service rate, the walking time of WSM catches up with its 

waiting time. In addition, as walking time increases to deal with the 

high demands, waiting time increases, but less time is spent waiting 

at the pick-up points. However, the improvement in the delay time 

indicates that this slight increase in waiting time is canceled out, as 

depicted in Figure 6. After 7:00, when the number of requests 

exceeds 2,000 (four times more than fleet size 500), the delay time 

of WSM remains 30 to 60 seconds lower than the base model. 

 

 

Figure 3 Hourly distribution of (a) total/serviced requests 
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Figure 4 Hourly distribution of (b) service rate 

 

 

 

Figure 5 Hourly distribution of (c) waiting/waking time 
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Figure 6 Hourly distribution of (d) delay time 

 

Figure 7 shows heat maps weighted by additionally serviced 

requests by WSM. This figure depicts when and where the WSM 

serves the unmet demands of the original model. To see where the 

effect of walking appears markedly, we selected three time periods, 

i.e., 08:00-10:00, 14:00-16:00, and 22:00-24:00, when differences 

in service rates are substantial, as described above. As shown in 

Figure 7 (a), during 08:00-10:00, additionally serviced requests are 

highly concentrated in some points in mid-Manhattan, near Penn 

Station, in particular. During 14:00-16:00 in Figure 7 (b), 

additionally serviced requests show more dispersed distribution 

around mid-Manhattan and the Upper East Side. Finally, as in Figure 

7 (c), between 22:00 and 24:00, requests in mid-Manhattan, 

especially near Columbus Circle, are served more with WSM.  
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Figure 7 Heat maps weighted by additionally serviced requests by 

WSM during (a) 08:00-10:00; (b) 14:00-16:00; (c) 22:00-24:00 
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4.2.2. Analysis of WSM 

In this part, we look further at walking-related indicators in 

WSM to reveal how it works in detail. First, as described in Table 4, 

the number of serviced requests with walking accounts for 86.63% 

of total serviced requests. The average walking distance to pick-up 

points and from drop-off points are 223 m and 256 m, respectively. 

Considering the maximum walking radius is a total of 10 minutes, 

riders usually walk half of the threshold, which might be affected by 

decreasing acceptance probability up to 30% near 10 minutes. Thus, 

the average acceptance probability is 49.81%, determined by total 

walking distance. Since the acceptance probability decreases to less 

than 50% if required to walk more than 5 minutes, if we want to make 

riders walk longer, which enables the search for better walking points, 

pricing strategies should be provided to entice them.  

 

TABLE 4 Results of WSM regarding walking 

  

 WSM  

Serviced requests with walking 76,289 (86.63% of total 

serviced requests) 

Avg. walking distance (time) to 

pick-up points 

223 m (2.67 min) 

Avg. walking distance (time) from 

drop-off points 

256 m (3.07 min) 

Avg. acceptance probability 49.81% 

Avg. OD distance 3,287 m 

Avg. updated OD distance 2,725 m 

Avg. waiting time of vehicle 3.72 s 

Avg. waiting time or rider (except 

walking time) 

10.42 s 
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The average shortest travel distance between actual origin 

and destination is 3,287 m, but it is shortened by 562 m with replaced 

pick-up and drop-off points. It means that to reduce the travel 

detour, WSM optimizes the walking points toward shortening the 

route. In the process of finding better combinations with other riders’ 

pick-up and drop-off points, it actually contributes to providing 

faster routes leading to the shorter travel time of vehicles while 

serving more riders. Furthermore, we also consider the situation in 

which vehicles arrive earlier than riders walking to the pick-up 

points. In this case, the vehicles need to wait for additional waiting 

time, which might lower the utility rate. Although we do not set the 

threshold waiting time for vehicles, the average time a given vehicle 

must wait is only 3.72 seconds, mainly due to in-vehicle riders' 

detour constraints. The average waiting time of riders, except for 

walking time, is 10.42 seconds, which is approximately 5% of the 

total waiting time. This indicates that riders of WSM usually 

exchange waiting time for walking time.      
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Actual origins of serviced requests 
Relocated pick-up points of serviced 

requests 

  

  

Figure 8 Heat maps of actual origins and relocated pick-up points of 

serviced requests around high-demand areas in peak hours; (a) 

Columbus Circle (08:00-10:00); (b) Penn Station (19:00-21:00) 
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Figure 8 shows some cases of how optimized walking points 

rebalance requests in high-demand areas during peak hours within 

the walkable range of 461 m. Figure 8 (a) and (b) describe actual 

origins and relocated pick-up points of serviced requests by walking 

near Columbus Circle from 08:00 to 10:00, respectively. As shown 

in the figures, the origins of requests concentrated around Columbus 

Circle disperse, and some requests are replaced to lower street. 

Figure 8 (c) and (d) depict the area near Penn Station from 19:00 to 

21:00. Similarly, requests previously around Penn Station are 

relocated to nearby intersections. Considering these areas are one of 

the high-demand areas in Manhattan, WSM can function as 

dispersing or relocating requests, thereby mitigating the imbalance 

between demand and supply. These effects of walking are noticeable 

in high-demand areas during peak hours.  

  



 ２８ 

Chapter 5. Conclusion 
 

 
In this study, a walking points search algorithm was 

developed to enable riders to participate actively in the current 

dispatching framework of ride-pooling services. With the aim of 

mitigating increasing travel delays with higher capacity common in 

ride-pooling, the proposed algorithm searches cost-minimizing 

neighborhood nodes that riders can walk to and walk from. With these 

optimized walking points, riders can get crucial information to be 

matched with vehicles, and operators can highly enhance the utility 

rates of the fleet. Furthermore, we take into account riders’ 

probability of acceptance of suggested walking points. By reflecting 

riders’ sensitivity to walking, which also is affected by hourly 

demand, we penalize our model more realistically.  

The key contribution of this study is proving the enhancement 

achieved by walking and showing the effects both spatially and 

temporally with a simulation for a day. The proposed real-time 

walking points search algorithm shows significant improvement in all 

indicators used and the ability to deal with long-lasting over-demand, 

especially in high-demand areas. In our simulation results, the 

service rate increases by 8.28%, with decreases in delay time and 

in-vehicle time of 18.2% and 8.6%, respectively. The average 

waiting time shows a slight increase of 12 seconds; however, 95% of 

the waiting time is replaced by walking rather than standing still. 

While serving more requests, vehicles' average travel time and empty 

travel time are reduced by 1.5% and 12.8%, respectively. By saving 

previously wasted time, vehicles can spend more time rebalancing to 

serve more unassigned requests. 

In addition, the results show that the performance of WSM is 
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remarkable when high demand is maintained for hours. While over-

demand hinders the utility rate of vehicles, dropping the service rate 

of the base model by as much as 50%, WSM is more resistant to it, 

serving a maximum of 12.62% more requests in an hour than the base 

model. Furthermore, WSM achieves this significant improvement 

with only 5 minutes walks on average. It is also observed that WSM 

disperses or relocates concentrated requests in high-demand areas 

to be matched. In this way, WSM serves additional requests that 

might not be served in the base model not including walking.  

There is some future work to be done. First, since we could 

not obtain the riders’ revealed preference data for walking time, we 

had to use the disutility parameter of bus riders. By estimating the 

disutility of the walking of riders in ride-sharing services, we can 

better describe their behavior in the framework. In addition, as shown 

in the results, the acceptance probability is lowered as the walking 

time increases. Therefore, price discounts should be optimized to 

encourage riders to walk more often to exploit the benefit of walking 

fully. Joint optimization of price and walking points would benefit both 

operators and riders by increasing the total profit and giving riders 

more options. 
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Abstract 

 

 Ride-pooling 서비스는 기존의 ride-sharing 서비스의 시스템 효율성

을 크게 증대시켰다. 하지만 여러 명의 승객들이 하나의 차량에 동승하

여 운행하는 특성으로 인해, 동승하는 승객들이 많을수록 승객당 통행 

지체 시간이 길어진다는 단점이 존재한다. 이러한 문제를 해결하기 위해, 

본 연구는 승객들의 기존 승하차 지점으로부터 걸어서 도달 가능한 대안 

승하차 지점을 최적화하는 알고리즘을 제안한다. 기존의 승객-차량 배

정 프레임워크를 기반으로, 비용을 최소화하는 대안 승하차지점 탐색 알

고리즘을 구현하였다. 또한, 도보 이동 거리에 대한 승차 수락률 모델을 

통해 승객들의 도보 이동에 대한 민감도를 반영하였다. 뉴욕시티의 옐로

우캡 택시 데이터를 이용한 하루 동안의 시뮬레이션을 통해 제안한 모델

을 검증하고 기존 모델과의 비교를 수행하였다. 시뮬레이션 결과, 서비

스율은 69.56%에서 77.84%로 증가하였으며, 통행 지체 시간은 평균적

으로 18.2% 감소하였고, 차내 시간은 8.6% 감소하였다. 서비스율의 증

가와 함께, 차량들의 평균 총 운행 시간은 1.5% 감소하였고 이는 차량 

재배치 시간의 증가로 이어짐을 확인하였다. 또한, 시뮬레이션 결과를 

시공간 상에서 분석함으로서, 피크 시간대에 수요가 밀집되는 지역에서 

도보 이동의 효과가 극대화됨을 보였다. 본 연구는 도보 이동을 통한 대

안 승하차지점 이용이 ride-pooling 서비스의 운영 효율성을 향상시키

며, 제한된 수의 공급 대수로 수요-공급의 불균형을 해소시킴을 증명하

였다. 제안된 모델은 택시 뿐 아니라 수요응답형 셔틀 등 다양한 종류의 

다인승 차량 서비스에서 승객과 차량의 승하차 지점을 최적화하는 데에 

활용될 수 있다.   
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