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ABSTRACT

Geometric Methods
for Manifold Representation Learning

by

Yonghyeon Lee

Department of Mechanical and Aerospace Engineering
Seoul National University

Observations from real-world problems are often high-dimensional, and it is very chal-
lenging to directly apply machine learning algorithms to data living in such a high-
dimensional space, known as the curse of dimensionality. The manifold hypothesis as-
sumes that high-dimensional data lie approximately on some lower-dimensional mani-
fold, suggesting that the data set initially described by many variables can actually be
described by a much smaller number of variables. Discovering the lower-dimensional
manifold structure and finding its representation – which we call the manifold repre-
sentation – is one of the most fundamental problems in machine learning.

Autoencoders – which consist of the encoders that map high-dimensional data
points to their low-dimensional representations (i.e., latent values) and decoders that
map the latent values back to their original data points – are widely used to identify
the underlying lower-dimensional manifold and its representation space, simultaneously.
In this thesis, we address two fundamental problems of vanilla autoencoders: (i) the
wrong manifold problem – they often produce manifolds that overfit to noisy training
data or have the wrong local connectivity and geometry –, and (ii) the distorted latent
space problem – they learn geometrically distorted latent representations in the sense

iii



that distances and angles between data points are not well-preserved in the represen-
tation space.

Because the manifold is usually not flat but rather a curved space, taking into
account the underlying geometry of the manifold is crucial to ensuring good results
that do not depend on, e.g., the choice of coordinates. Not surprisingly, existing au-
toencoder methods for the most part focus on the latent space distributions that are
entirely determined by the encoders, yet little if any consideration has been given to
the decoders, and they often fail to correctly account for the underlying geometry of
the data. This thesis presents a class of autoencoder-based algorithms for manifold
representation learning that address these shortcomings. One of the interesting find-
ings in this thesis is that the decoder plays an equally or sometimes more important
role than the encoder in autoencoder-based representation learning.

The proposed geometric methods either exploit a priori constructed neighborhood
graph or pre-designed Riemannian metric in data space to formulate new loss functions
for learning correct manifolds and geometry-preserving latent space coordinates. In par-
ticular, in our Riemannian geometric formulations – when we assume and adopt the
Riemannian geometry of the data space –, we pay special attention to the coordinate-
invariance properties of the regularization terms so that they capture geometrically
meaningful quantities. Experiments with a wide range of image, motion capture, and
point cloud data sets confirm that, compared to existing state-of-the-art methods, our
methods learn the manifold more accurately and with less distortion, improving per-
formance for standard downstream tasks such as image retrieval, clustering, and clas-
sification, in some cases by significant margins.

Keywords: Manifold learning, Autoencoder, Riemannian geometry, Isometric represen-
tation.

Student Number: 2018-20161
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by decoding Û . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Examples of one-dimensional manifold, line and circle, and non-manifold,
lemniscate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Examples of embedded manifolds, curves in two- and three-dimensional
Euclidean spaces, and a surface in three-dimensional Euclidean space. 22

2.3 Examples of non-differentiable manifolds (not differentiable at the red
circled points). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xvi



2.4 Two local coordinate systems ϕ1, ϕ2 : R1 → S1 ⊂ R2 globally parametrize
the circular manifold S1; in the overlapped region, a transition map
ϕ−1
2 ◦ ϕ1 : R1 → R1 is defined. . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Illustration of the tangent space of M attached at x̄ ∈ M, Tx̄M,
which is equivalent to the column space of the matrix ∂ϕ

∂q (q̄). . . . . . 24
2.6 The length of an object can have different numerical representations

depending on the choice of local coordinates (cm or mm). . . . . . . 27
2.7 A mapping f : M → N and its coordinate representation f : Rm → Rn. 32
2.8 Illustration of the two-dimensional manifold of 1-dimensional Gaussian

distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Learned manifolds that (a) overfit the data or (b) have the wrong local
geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The training data points (blue), the decoded manifold (orange), the
neighborhood of x denoted by N (x), and the neighborhood reconstruc-
tion (red). The black dotted lines represent the correspondences be-
tween x′ ∈ N (x) and F̃θ,ϕ(x

′;x). . . . . . . . . . . . . . . . . . . . . 42
3.3 The orange curves represent the learned manifolds, the red points rep-

resent the neighborhood reconstruction, and the lengths of the black
dotted lines represent the neighborhood reconstruction loss. . . . . . . 43

3.4 The noisy samples (blue) and learned manifolds (orange). . . . . . . . 46
3.5 Generated samples of rotating digit 8 from regular grids of the latent

spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 The scalar curvature field (brighter-the-larger). . . . . . . . . . . . . . 47
3.7 Swiss roll data trained with one-dimensional latent spaces. The dots

below the figures represent the one-dimensional latent space encoding
of the training set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Generated rotated/shifted MNIST images. Discontinuities are marked
by orange boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 Circular latent space encoding of the rotated MNIST images of digit 6. 49
3.10 The test reconstruction MSEs as the number of training data changes. 49

4.1 Left: Two decoders f and f ′ parameterize the same data manifold where
the norm of Jacobian of f ′ is smaller than that of f , i.e., ∥Jf∥ > ∥Jf ′∥.
Right: A curve and developable surface embedded in R3 have zero in-
trinsic curvatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xvii



4.2 Learned manifold becomes flatter as the regularization coefficient α in-
creases. Upper : Learned data manifolds of 1d sin-curve and noisy train-
ing data points. Lower : Learned data manifolds of 1d S-curve projected
to the 2-sphere and sparse training data points. . . . . . . . . . . . . 60

4.3 (a) Learned manifold by IRAE becomes flatter as the regularization co-
efficient α increases. (b) Test data reconstruction MSE (i.e., manifold
learning accuracy) as a function of the extrinsic curvature obtained by
IRAE and MCAE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Learning by DAE and RCAE for examples in Figure 4.2. . . . . . . . . 62
4.5 Test set MSEs as a function of the number of training (80%) + vali-

dation (20%) data, the lower the better. . . . . . . . . . . . . . . . . 63
4.6 De-noising examples (noise level 0.3). . . . . . . . . . . . . . . . . . . 64
4.7 Test set Peak Signal-to-Noise Ratios (PSNR) as a function of the noise

level, the higher the better. . . . . . . . . . . . . . . . . . . . . . . . . 64
4.8 Corrupted SVHN and CIFAR10 images. . . . . . . . . . . . . . . . . . 64
4.9 Density plots of the log-normalized local curvatures of manifolds learned

by vanilla AEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.10 Human skeleton pose de-noising examples obtained by reconstructing

noisy input data (noise level 0.05). Example poses are from the action
class “eat meal”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 The tradeoff curves for FMVAE, IRVAE, IRVAE + FM trained with the
pose data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Top: The MSE and VoR, MCN tradeoff curves, and some example re-
constructed images produced by IRVAE trained with various regulariza-
tion coefficients. Bottom: Two-dimensional latent space representations
with some equidistance plots whose centers consist of a randomly se-
lected data point zc from each class for A, B, F, I.The equidistance
plots are {z|(z − zc)

TJTf (zc)Jf (zc)(z − zc) = k for k > 0. (The more
homogeneous and isotropic, the better.) . . . . . . . . . . . . . . . . 79

5.2 Tradeoff curves for FMVAE, IRVAE, and IRVAE + FM, and two-dimensional
latent space representations with some equidistance plots (under the
same experimental setting as Figure 5.1). . . . . . . . . . . . . . . . . 80

5.4 Latent spaces and equidistance ellipses for VAE, FMVAE, IRVAE, and
IRVAE + FM (the redder the ellipse, the larger the condition number). 80

5.5 Some example image retrieval results (top 5 images). Common attributes
of query image sets are written above the figures. Higher rank images
are located left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xviii



6.1 Illustration of statistical manifold obtained from the 1-1 mapping be-
tween the space of point cloud data and the space of probability density
functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Probability heat maps for various k (the greener, the higher) for some
examples from the ShapeNet dataset [80], where we set σ = k×MED
for k ∈ (0,∞). MED denotes the median of the distances between the
points in the point cloud and their nearest points. . . . . . . . . . . . 89

6.3 Two moving point clouds with different velocity matrices. . . . . . . . 91
6.4 Left: Latent space with linear and geodesic interpolants. The orange

interpolants connect a wide cylinder to a tall cylinder, while the ma-
genta interpolants connect a cylinder to a cone. Linear interpolants and
geodesic interpolants under the Euclidean and info-Riemannian metrics
are drawn as dotted, dashed, and solid lines, respectively. Right: Gen-
erated point clouds from those interpolants. To visually indicate which
class generated point cloud belong to, we color these according to the
ratio of the Chamfer distances to the nearest point cloud for each class
(see Appendix D). For example, when it is uncertain which class a gen-
erated data belongs to (i.e., the nearest distances to each class are sim-
ilar), it is assigned some color other than blue, red, or green. . . . . . 94

6.5 Latent spaces produced by regularized autoencoders, each of which is
trained with the Euclidean (Left) and info-Riemannian metric (Right).
Representative intra-class linear interpolants between two cylinders and
two cones are drawn as black solid lines. . . . . . . . . . . . . . . . . 95

6.6 From left to right: latent spaces with equidistant ellipse ({z|(z−z∗)TG(z∗)(z−
z∗) = 1} for center z∗) centered on some selected points and sampled
points from interspaces, Gaussian Mixture Model (GMM) fitting results,
generated samples from the GMM, and the heat map of the pairwise
Euclidean distances in the latent space of all test data. The upper fig-
ure is a vanilla autoencoder trained without regularization, while the
lower figure is trained with regularization (using the info-Riemannian
metric). For the samples in the third column, we assign colors using
the same method of Section 6.4.1.1 to visually express which classes
the samples are likely to belong to. . . . . . . . . . . . . . . . . . . . 96

6.7 Learning curves in the presence of noise (left: 5% noise; right: 20%
noise), ModelNet40 transfer classification accuracy and reconstruction
error as functions of the training epoch. . . . . . . . . . . . . . . . . . 99

xix



7.1 The proposed algorithms either require to construct a neighborhood
graph or Riemannian metric for the data space. . . . . . . . . . . . . 104

7.2 Maze Game Example. . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3 Cat and dog images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4 Left: An example of the disentangle representation. Right: Vanilla AE

learns an entangled representation. It is adopted from [125]. . . . . . . 109
7.5 Disentangling by isometry. . . . . . . . . . . . . . . . . . . . . . . . . 110

A.1 The per-epoch runtimes as the functions of the input dimension (left)
and the number of nearest neighbors (right). . . . . . . . . . . . . . . 116

A.2 Comparisons of the test mean reconstruction errors of NRAE and base-
line AEs. For NRAE, we report the results as a function of the number
of nearest neighbors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.3 The test image data reconstruction results where the NRAE-L and NRAE-
Q show lower MSEs and FID scores than the other baselines. (left)
SVHN (S), (right) CIFAR10 (S). . . . . . . . . . . . . . . . . . . . . 119

A.4 The test image data reconstruction results where the NRAE-L and NRAE-
Q show lower MSEs but higher FID scores than the other baselines.
(left) CIFAR (L), (right) CELEBA (L). . . . . . . . . . . . . . . . . . 120

B.1 De-noising examples of grayscale image data (noise level 0.1). . . . . 131
B.2 De-noising examples of grayscale image data (noise level 0.2). . . . . 131
B.3 De-noising examples of grayscale image data (noise level 0.3). . . . . 132
B.4 De-noising examples of SVHN data. . . . . . . . . . . . . . . . . . . . 132
B.5 De-noising examples of CIFAR10 data. . . . . . . . . . . . . . . . . . 132
B.6 De-noising examples of human pose data. . . . . . . . . . . . . . . . . 133

C.1 The original pose is encoded in the latent space, then the encoded la-
tent value is translated along each latent space axis (z1, z2, ..., z8). The
translated latent values are decoded back to generate a new eight pose
for each model VAE and IRVAE. The translated distances are propor-
tional to the standard deviations of the encoded training data. . . . . 145

C.2 Pose interpolations between a walking pose and balancing pose with
linear interpolations in the latent spaces. The red box indicates sud-
denly appeared punching poses. . . . . . . . . . . . . . . . . . . . . . 145

C.3 The tradeoff curves of FMVAE, IRVAE, and IRVAE + FM. . . . . . . 146
C.4 The effect of mixup augmentation with varying mixup parameters η. . 147

xx



C.5 Isometric regularization with diverse autoencoder methods. The more
homogeneous and isotropic equidistance plots are, the more isometric
the representations are. . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.6 Tradeoff curves obtained by changing the regularization coefficients α
(lower-the-better). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.7 Averaged tradeoff curves and standard deviations represented as ellipses
for MNIST and CMU experiments in Figure 1 and 3 of the main manuscript
(20 times run). We wanted to draw ellipses by using the standard er-
rors, but they were too small to visualize. Even standard deviations are
really small. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

D.1 Representative shape to each class and the shape parameters required
to define it. There are 5 shape classes including cylinder, cone, elliptic
cone, ellipsoid, and box. . . . . . . . . . . . . . . . . . . . . . . . . . 159

D.2 The representative five examples of the regularization experiments on
the synthetic dataset. From left to right: latent spaces, decision bound-
ary according to the color assigning method introduced in Appendix
D.3.2, latent spaces with equidistant ellipse ({z|(z − z∗)TG(z∗)(z −
z∗) = 1} for center z∗) centered on some selected points and sam-
pled points from interspaces, Gaussian Mixture Model (GMM) fitting
results, and the heat map of the pairwise Euclidean distances in the
latent space of all test data. For each experiment, the upper figure is
a vanilla autoencoder trained without regularization, while the lower fig-
ure is trained with regularization. . . . . . . . . . . . . . . . . . . . . 168

D.3 The generated point clouds from the linear interpolants of the regular-
ized autoencoders with the Euclidean metric (Upper) and info-Riemannian
metric (Lower). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

D.4 Graphs of classification accuracy versus reconstruction error measured
on ModelNet datasets. More transparent markers have larger coeffi-
cients λ; detailed values are in Table D.4 and Table D.5. . . . . . . . 170

D.5 Learning curves of classification accuracy and reconstruction error mea-
sured on ModelNet datasets (ModelNet40 and ModelNet10) according
to the noise levels (1%, 5%, 10%, and 20%). In each plot, the light
colored lines are the result of the non-regularized autoencoders (i.e.,
FcNet), and the dark colored lines are the result of the regularized au-
toencoders (i.e., FcNet + E and FcNet + I). . . . . . . . . . . . . . . 171

xxi



D.6 Learning curves of classification accuracy and reconstruction error mea-
sured on ModelNet datasets (ModelNet40 and ModelNet10) according
to the label rates (50%, 10%, 5%, and 1%). In each plot, the light
colored lines are the result of the non-regularized autoencoders (i.e.,
FcNet), and the dark colored lines are the result of the regularized au-
toencoders (i.e., FcNet + I). . . . . . . . . . . . . . . . . . . . . . . . 172

xxii



1
Introduction

1.1 Manifold Hypothesis in Machine Learning

Observations from real-world problems are often high-dimensional, i.e., a large number
of variables is used to numerically represent the observed data. For example, consider
an RGB image data of size 128×128. The number of variables needed to numerically
represent this image is 49, 152 = 3 × 128 × 128 (3 is from RGB intensities), mean-
ing that this image data is living in a high-dimensional data space R49152. It is very
challenging to analyze data living in such a high-dimensional space, because when the
dimensionality increases, the number of data required to fill the the volume of the en-
tire space increases so fast that the available data become inevitably sparse, and thus
to obtain a reliable result, the amount of data needed often grows exponentially with
the dimensionality, known as the curse of dimensionality [1].

Manifold hypothesis, which assumes that high-dimensional data lie approximately
on some lower-dimensional manifold, suggests that many data sets that appear to ini-
tially require many variables to describe can actually be described by a comparatively
small number of variables [2]; below shows some intuitive examples.

Example 1.1.1. Rotating face image manifold. There is a sequence of pictures of
a person turning his head from left to right as shown in Figure 1.1, where each image
size is 3× 728× 1280. These images can be initially viewed as elements of the high-
dimensional image data space R3×728×1280, however, they clearly do not fill up the
entire image space, but rather form a lower-dimensional subspace. We need only one
variable to represent the image, i.e., the angle of the person’s head, meaning that the
set of images can be interpreted as lying on a one-dimensional subspace or a curve as
shown in Figure 1.1.

Example 1.1.2. Robot water-pouring motion manifold. Consider a 7-dof robot’s
discrete-time water-pouring motion data for a fixed cup position as illustrated in Fig-
ure 1.2. The data is given as a sequence of 500 robot poses; thus the dimension of

1
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Figure 1.1: A set of face images, where the person turns his head from left to right,
approximately lie on a one-dimensional manifold or a curve.

Figure 1.2: An example of a discrete-time robot water-pouring motion data (a se-
quence of robot poses) for a fixed cup position, where the robot’s dof is 7 and the
sequence length is 500; thus the data dimension is 7× 500.

data is 7×500 which is high-dimensional. Now, suppose we are given 12 water-pouring
motion data with varying cup positions as shown in Figure 1.3. These data can be
viewed as 12 data points in the high-dimensional robot motion data space R7×500,
however, they clearly do not fill up the entire motion space, but rather form a lower-
dimensional subspace. We need two variables to represent the motion, i.e., the xy
position of the cup, meaning that the set of motion data can be interpreted as lying
on a two-dimensional subspace or a surface as shown in Figure 1.3.

Formally, under the manifold hypothesis, the manifold representation learning prob-
lem consists of the following two components (Figure 1.4): (i) identifying the low-
dimensional manifold M of dimension m in the higher-dimensional data space RD
(m < D) and (ii) learning a coordinate system, i.e., a homeomorphism, continuous
and invertible map, f : Rm → M ⊂ RD (where we assume M is homeomorphic to
Rm). In the context of machine learning, the coordinate space Rm is often referred to
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Figure 1.3: A set of water-pouring motion data with varying cup positions approxi-
mately lie on a two-dimensional manifold or a surface. Moving in the direction of the
red or blue arrow moves the cup position to the right or to the bottom, respectively.

as the latent space or representation space. Then, the coordinate system f and its in-
verse f−1 can be used for making various high-dimensional machine learning problems
tractable.

The mapping f can be used to restrict the space of interest in the high-dimensional
data space when performing generative or search tasks. For example, to model prob-
ability density functions on M, we can push forward density functions on the low-
dimensional coordinate space by f . Also, when desired, we can formulate optimal
search problems constrained on the learned manifold M as

min
x∈M

J (x) = min
z∈Rm

J (f(z)). (1.1.1)

The inverse mapping f−1 can be used as a feature extractor that maps high-dimensional
data to their low-dimensional feature vectors or representations; standard machine learn-
ing algorithms (e.g., classification and clustering) can then be applied in the feature
space.

1.2 Simultaneous Manifold and Coordinates Learning

Earlier manifold learning approaches mostly focus on finding an embedding of the set
of high-dimensional data points to the lower-dimensional space, i.e., {xi ∈ RD}Ni=1 7→
{zi ∈ Rm}Ni=1 (m < D), in a way that the local geometrical structures in the graph
(the data manifold M is usually approximated with a neighborhood graph) are pre-
served in the graph constructed in the lower-dimensional space [3, 4, 5, 6, 7, 8]. These
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Figure 1.4: Illustration of the two components in the manifold representation learning:
(i) identifying the manifold and (ii) determining a coordinate chart.

classical manifold learning methods, however, only find the lower-dimensional represen-
tations and do not learn how the manifold actually lies inside the data space RD. That
is, in other words, they can be used for feature extraction but not for data generation.

To know how the manifold is embedded in the ambient data space, we need to
learn a mapping f : Rm → RD so that the image of f corresponds to the manifold of
dimension m.1 In this thesis, we will use the term manifold learning as a synonym for
learning this map f . Once the map f that parametrizes the manifold M is learned,
we can find the coordinates of x ∈ M in Rm by solving the inverse problem, i.e.,
find z ∈ Rm such that x = f(z), for example by solving an optimization problem
minz∈Rm ∥f(z) − x∥2. However, solving this coordinates finding problem is computa-
tionally very expensive. Hence, it is desired to have a mapping g : M → Rm such that
g is a coordinate map that maps a data point on the manifold to its corresponding
coordinates.

The main focus of this section is to introduce an effective way of learning the man-
ifold and the coordinate map simultaneously, which is based on the “encoder-decoder”
framework often referred to as the autoencoder [9]. We will begin by introducing a
simple classic example of the linear encoder-decoder. Let E ∈ Rm×D be an encoder
matrix and D ∈ RD×m be a decoder matrix. A data point x ∈ RD is mapped to

1Rigorously, the Jacobian of f should be a full rank everywhere for the image of f to be a
manifold.
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Figure 1.5: Illustration of the linear autoencoder. The linear decoder maps the low-
dimensional space to the linear subspace in the higher-dimensional space, and the en-
coder maps the data points to their coordinates.

the low-dimensional space by the encoder as z = Ex ∈ Rm and a point z ∈ Rm is
mapped back to the data space by the decoder as x = Dz ∈ RD. Given a set of high-
dimensional data points {xi ∈ RD}Ni=1 approximately lying on some lower-dimensional
linear subspace, the linear encoder and decoder can be trained simultaneously, so that
the decoder discovers the linear subspace and the encoder maps the data points to
their coordinates as illustrated in Figure 1.5, with the following reconstruction error
minimization framework:

min
E,D

N∑
i=1

∥xi −DExi∥2. (1.2.2)

By minimizing this objective function, the data points become to lie on the image of
the decoder D and the encoder E maps x to z = Ex such that z is the solution of
the aforementioned inverse problem, i.e., minz ∥x − Dz∥2. It is well-known that the
subspace discovered by the linear decoder D is equivalent to the subspace obtained
by the PCA algorithm [10].

While the linear autoencoder can only discover linear manifolds, this framework has
been successfully generalized to learn arbitrarily curved manifolds, together with the
recent advances in deep learning techniques used for approximating arbitrary complex
functions [11]. Similar to the linear case, the core idea is to learn two mappings an
encoder g : RD → Rm and a decoder f : Rm → RD approximated with deep neural
networks so that the composition of them reconstructs the given data points xi ∈ RD,
i.e., f ◦ g(xi) ≈ xi, for i = 1, · · · , N . One of the most straightforward ways to learn
these mappings is to solve the following reconstruction error minimization problem
with parametric models gϕ and fθ, each of which is parametrized by ϕ and θ (e.g.,
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Figure 1.6: Illustration of the nonlinear autoencoder. The decoder maps the low-
dimensional space to the nonlinear manifold in the higher-dimensional space, and the
encoder maps the data points to their coordinates. In particular, the range of the de-
coder’s Jacobian at z corresponds to the tangent space of the learned manifold M
attached at fθ(z).

neural networks):

min
θ,ϕ

N∑
i=1

∥xi − fθ(gϕ(xi))∥2. (1.2.3)

Then, the data points lie on the image of the decoder fθ, and the encoder gϕ maps
the data points to their coordinates. In other words, the image of the decoder fθ is
the learned manifold M embedded in RD as illustrated in Figure 1.6.

Of particular relevance to this thesis is the geometric property of the decoder’s
higher-order derivatives, which later gives us the key insight to solving the research
problems that we pose in the next section. The first-order derivative or Jacobian de-
noted by Jfθ = ∂fθ

∂z at z corresponds to the tangent space of the learned manifold
M attached at fθ(z). The m column vectors in the Jacobian matrix Jfθ(z) ∈ RD×m

can be viewed as a set of linearly independent basis vectors for the tangent space at-
tached at fθ(z) denoted by Tfθ(z)M (under the condition that Jfθ(z) is full rank).
And the second-order derivative, which computes how the Jacobian changes locally,
has information about the manifold’s curvature. These notions will come important to
understanding geometric ideas introduced later.

In concluding this section, we introduce some notations and terminologies used
throughout this thesis. The coordinate space Rm for the learned manifold M will also
be referred to as the latent space and representation space, and its coordinates as
the latent coordinates and latent (space) representation. The image of the decoder
will be considered as the learned manifold M, which sometimes will be referred to as
the decoded manifold, and the decoder fθ will be treated as the coordinate system.
Depending on the context, we will introduce other notations as needed
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1.3 Motivation and Research Problems

In vanilla autoencoders, there are two fundamental issues that we aim to address in
this thesis: (i) they often produce manifolds that overfit to noisy training data or have
the wrong local connectivity and geometry, and (ii) they learn geometrically distorted
latent representations where geometric quantities such as the lengths, angles, and vol-
umes are not preserved compared to those in the data manifold. Below, we will take
a closer look at the following issues one by one.

1.3.1 Wrong Manifold

In the traditional autoencoder training setting, we are given a set of finite data points
{xi ∈ RD}Ni=1. Assuming the data points are clean and perfectly lie on the ground-
truth data manifold M, the primary condition for a correct coordinate system f :
Rm → RD to satisfy is the following:

xi ∈ M ⊂ RD for all i⇐⇒ xi ∈ image(f) for all i. (1.3.4)

However, finding such a map f is fundamentally ill-posed, meaning that there are in-
finitely many mappings f that satisfy the above condition. For example, as shown in
Figure 1.7, assume that there exists a ground-truth one-dimensional manifold embed-
ded in the two-dimensional data space and we are given a set of finite two-dimensional
data points (blue points). There are many manifolds (orange manifolds) where the
given data points perfectly lie; thus, we cannot specify the solution manifold without
further assumptions on the manifold or decoder f .

Vanilla autoencoders learn arbitrary manifolds which often overfit the training data
or have the wrong local connectivity and geometry; some examples are given below.

Example 1.3.1. CIFAR-10 image data. The CIFAR-10 dataset consists of 32 × 32
color images in 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck). A vanilla autoencoder trained with 10000 images (with 128-dimensional latent
space) learns the manifold that overfits the training data as illustrated in Figure 1.8;
for the (unseen) test image data, the reconstructed images are blurry and very different
from the original input images.

Example 1.3.2. Rotated MNIST image data of digit 3. Given a set of rotated
MNIST images of digit 3 shown in Figure 1.9 (upper-right), a vanilla autoencoder is
trained with one-dimensional latent space. We generate a sequence of digit 3 images
by traveling the one-dimensional latent space as shown in the lower-right part of the
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Figure 1.7: Illustration of the fundamental ill-posedness of the manifold learning prob-
lem. Given blue data points, there are many manifolds where the given data points
perfectly lie. We cannot specify the solution without further assumptions.

Figure 1.8: A pictorial description of how the learned CIFAR-10 image manifold that
overfits the training data (blue points) might look like, and some reconstruction results
of the test data (red points). The manifold is indeed a multi-dimensional surface; here
it is described as an orange curve just for visualization.

figure. In the generated images, the digit 3 image rotates smoothly but at one point
abruptly changes as marked in the orange box, because, as shown in the left part of
the figure, the manifold has learned the wrong local connectivity.
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Figure 1.9: Upper-left: A set of rotated MNIST images of digit 3 (training data).
Lower-left: A sequence of digit 3 images generated by traveling the one-dimensional
latent space. Right: A pictorial description of how the learned one-dimensional mani-
fold (a curve) with the wrong local connectivity might look.

1.3.2 Distorted Latent Space

Given a ground-truth data manifold M, the problem of finding a coordinate system
for M is again fundamentally ill-posed because there exist infinitely many coordinate
systems. For example, if f : Rm → M is one coordinate system, then for any contin-
uous and invertible map h : Rm → Rm the composition map f ◦ h−1 : Rm → M is
also another coordinate system (Figure 1.10). Recall the reconstruction error objective
function in the vanilla autoencoder

∑
i ∥xi − f ◦ g(xi)∥2, if f∗ and g∗ are solutions,

then for any continuous and invertible map h : Rm → Rm the composition maps
f∗ ◦ h−1 and h ◦ g∗ are also solutions. Therefore, we cannot specify one coordinate
system over the others without further assumptions on the mappings.

This is closely related to the classical map-making problem, i.e., making a map
of the earth, by finding a mapping from the surface of the earth approximated by
a two-dimensional sphere S2 to a two-dimensional Cartesian plane R2 (Figure 1.11).
As shown in Figure 1.12, a wide variety of maps of the earth exist, each of which is
based on different projection methods. In general, maps that are arbitrarily distorted
are not preferred, rather it is designed to preserve specific intrinsic geometric quanti-
ties defined based on the purpose of the map. For example, the Mercator projection
preserves angles while the areas are distorted, and the Gall-Peters map preserves areas
although the shapes are distorted (Figure 1.13).

Vanilla autoencoders often learn arbitrarily distorted coordinate spaces (e.g., coor-
dinate space 1 in Figure 1.10) – by being distorted, we mean that straight lines on the
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Figure 1.10: There are many coordinate systems for a data manifold M; some produce
geometrically distorted coordinate spaces.

coordinate space do not correspond to the actual shortest paths (i.e., geodesics) on the
manifold – and standard machine learning algorithms applied to their representations
often show less-than-desirable performances on downstream tasks; some examples are
provided below.

Example 1.3.3. Interpolation. Let f : Rm → M be a decoder or coordinate system
for the learned manifold M, and g : M → Rm be its encoder or approximate inverse
of f , i.e., x ≈ f(g(x)) for all x ∈ M. Given two data points x1, x2 ∈ M, one of the
simplest interpolation methods is to linearly interpolate their latent representations and
decode them back to the data manifold, i.e., f(g(x1) + (g(x2)− g(x1))× t) ∈ M for
t ∈ [0, 1]. However, when the coordinate space is distorted, the latent space linear
paths do not produce the shortest paths (i.e., geodesics) on the manifold, and thus
they may not produce smooth interpolation results along the data manifold.

Figure 1.14 shows some latent space linear interpolation examples compared to ac-
tual geodesic paths on the learned manifold. We provide three examples: (a) MNIST
image manifold of digits 3, 6, 8, 9 produced by autoencoder with two-dimensional la-
tent space, (b) point cloud manifold of shapes cylinder, ellipsoid, cone produced by
autoencoder with two-dimensional latent space, and (c) human pose manifold from
motions walking, balancing, punching, jogging produced by autoencoder with eight-
dimensional latent space. Linear interpolants are shown in upper rows while the geodesic
interpolants are shown in lower rows, and abrupt changes are marked by the orange
boxes. Overall, sudden changes occur in the middle of the linear interpolants while
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Figure 1.11: Map-making: finding a mapping from a sphere to a Cartesian plane,
adopted from Figure 1.5 in [12].

Figure 1.12: Maps of the earth, adopted from Figure 1.6 in [12].
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Figure 1.13: Two examples of maps of the earth, adopted from Figure 1.7 in [12].

geodesic interpolants are smooth, which shows that autoencoders have learned dis-
torted latent representations.
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Figure 1.14: Interpolation examples on various manifolds train with autoencoders: (a)
MNIST image manifold of digits 3, 6, 8, 9, (b) point cloud manifold of shapes cylinder,
ellipsoid, cone, and (c) human pose manifold from motions walking, balancing, punch-
ing, jogging. Upper: Linear interpolants in the distorted latent space. Lower: Geodesic
interpolants along the learned manifold. Abrupt changes are marked by orange boxes.
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Example 1.3.4. Clustering. The goal of clustering is to divide data points into groups
so that data points in the same group are more similar to other data points in the
same group than data points in other groups. While directly applying standard clus-
tering algorithms to the high-dimensional data space shows poor performances (recall
the curse of dimensionality), autoencoder can produce a lower-dimensional represen-
tation space where the algorithms can be instead applied. In general, clustering in the
low-dimensional latent space produces much better results than that in the original
high-dimensional data space.

However, when the latent space is distorted, latent space clustering algorithms still
do not produce satisfying results. In such cases, the Euclidean distances do not cap-
ture the actual data distances along the data manifold (i.e., geodesic distances), and
thus, although the cluster structure is clear in the data manifold, it may not be in the
distorted latent space.

Figure 1.15 shows some latent space clustering results by using the Gaussian mix-
ture model. We provide two examples: Left: FMNIST image data of classes trouser,
sandals produced by autoencoder with two-dimensional latent space, and Right: point
cloud data of shapes box, cone, ellipsoid produced by autoencoder with two-dimensional
latent space. Overall, their clustering structures are not clear in the distorted latent
spaces; the Gaussian mixture models cannot separate different classes as can be seen
from the samples from each mixture component.

Figure 1.15: Clustering examples on the distorted latent spaces obtained by autoen-
coders: Left: FMNIST image data of classes trouser, sandals, Right: point cloud data
of shapes box, cone, ellipsoid. Gaussian mixture models fitted to the distorted latent
representations cannot find separate clusters.

Example 1.3.5. Optimization on the data manifold. Many machine learning prob-
lems can be solved in the following two-step approach: (i) learning a low-dimensional
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manifold M via a mapping from a low-dimensional latent space Rm to the high-
dimensional data space RD denoted by f : z ∈ Rm 7→ x ∈ M ⊂ RD (called a
coordinate system) and (ii) solving an optimization problem with an objective func-
tion J : RD → R constrained on the manifold as follows:

min
x∈M

J (x) = min
z∈Rm

J (f(z)). (1.3.5)

To solve this type of latent space optimization problem, many existing works use
the standard Euclidean optimization algorithms, assuming the Euclidean geometry of
the latent space. However, the latent space is in general geometrically distorted so
the Euclidean metric in the latent space does not capture the actual geometry of the
data space. Therefore, applying the standard Euclidean optimization algorithms in the
distorted latent space can be sometimes very inefficient.

Consider an example shown in Figure 1.16, where, given three data points (black
dots) on the sphere manifold, we find the intrinsic mean of them in the spherical coor-
dinates (θ∗, ϕ∗) by solving an optimization problem, i.e., the minimization of the sum
of the geodesic distances from (θ∗, ϕ∗) to the given points. When the Euclidean gra-
dient descent algorithm is used in the spherical coordinates, because of the geometric
distortion between the coordinates and the sphere manifold, the gradient flow (blue) is
unnaturally curved toward the north pole and the objective function slowly decreases.

Figure 1.16: Left: Euclidean optimization in the distorted latent space produces un-
natural gradient flow (blue) on the sphere manifold, whereas the Riemannian gradient
flow (green) is smoother and more natural. Right: The objective much more quickly
decreases with the Riemannian gradient descent method.
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1.4 Statistical Interpretations *

In this section, we go beyond the intuitive perspective of autoencoder-based manifold
learning and discuss what it means from a statistical perspective in a more formal
way. Starting with the simplest case where the data manifold has a constant dimen-
sion (with boundary), we prove how the autoencoder can be used to estimate the
ground truth manifold. Then we discuss how we should approach the manifold learn-
ing problem when the lower-dimensional structure is much more complex – e.g., not
a constant-dimensional manifold nor homeomorphic to the Cartesian space – so a sin-
gle autoencoder cannot represent the manifold explicitly, and how we should measure
the manifold learning accuracy in practice. For those who are not familiar with the
notions of manifold and its explicit/implicit parametrizations, we recommend to read
Chapter 2.1.1 before this section.

Given a high-dimensional data space RD, suppose there is a probability density
function pdata(x) of our interest. We interpret the manifold hypothesis as when the
support of pdata(x) has a lower-dimensional structure. To be called a manifold, math-
ematically, the support should be locally homeomorphic to the Euclidean space at all
points, but in this thesis, as the abuse of terminology, we use the data manifold to
indicate more complex lower-dimensional structure embedded in the high-dimensional
data space although it does not have a constant dimension globally, e.g., a union of
manifolds of different dimensions.

To begin with the simplest case, assume that the lower-dimensional structure is a
differentiable manifold of constant dimension m with boundary that is homeomorphic
to some subset in Rm; denote the manifold by M := supp(pdata(x)) ⊂ RD. Let
ĝ : RD → Rm be an estimate of the encoder and f̂ : Rm → RD be an estimate of the
decoder that are trained by some autoencoder training method given a set of training
data Dtrain := {xi ∈ RD}Ni=1 sampled from pdata. The autoencoder is a manifold
estimator in the following sense: (i) let Û := ∪Ni=1Bri(ĝ(xi)) ⊂ Rm describe the data
region in the latent space where ri is the average of the distances from ĝ(xi) to its
k-nearest neighbor points in the latent space (Br(z) denotes an open ball of radius r
centered at z) as shown in Figure 1.17(a) and (ii) the decoding of Û , i.e., f̂(Û), is an
estimate of the manifold which we denote by M̂(Dtrain) as shown in Figure 1.17(b).
There may be other ways to define Û , but for ease of discussion, we will consider it
as a union of balls.

The vanilla autoencoder trained to reconstruct the training data

f̂ , ĝ := min
f,g∈F ,G

N∑
i=1

∥xi − f ◦ g(xi)∥2 (1.4.6)
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Figure 1.17: (a) The union of balls Û , a subset of the latent space, describes the
data region (where the radius of each ball ri is set to be the average of the 3 nearest
neighbor distances) and (b) the manifold is estimated by decoding Û .

with sufficiently expressive model search space F ,G – so that, as the number of train-
ing data increases to infinite, f̂ , ĝ converge to satisfy f̂ ◦ ĝ(Dtrain) = Dtrain – is an
asymptotically unbiased manifold estimator, i.e., M̂(Dtrain) → M as |Dtrain| →
∞. To see why, consider Û = ∪z∈ĝ(Dtrain)Br(z)(z); as |Dtrain| → ∞, since r(z) → 0,

Br(z)(z) → z and Û → ĝ(Dtrain). And M̂(Dtrain) = f̂ ◦ ĝ(Dtrain) → f̂ ◦ ĝ(M) = M.
However, in non-asymptotic situations where the number of training data is limited,
the estimated manifolds can be wrong as discussed in the above chapters, and proper
regularizations are necessary to learn accurate manifolds.

Meanwhile, the assumption that supp(pdata) is a differentiable manifold of con-
stant dimension homeomorphic to some subset in Rm in practice mostly does not
hold, and rather it is a union of multiple manifolds each of which has different di-
mensions and topologies. In such cases, a single decoder cannot explicitly parametrize
the manifold; to see why, we refer to Figure 2.5. As in many other currently existing
autoencoder studies, we give up to satisfy M̂(Dtrain) = M, yet focus on learning the
manifold such that M ⊂ M̂(Dtrain) by choosing a big enough latent space dimension.
It is desirable to find the smallest latent space dimension but big enough to implicitly
parametrize the lower-dimensional structure (e.g., multiple manifolds) that we call the
data manifold with the abuse of terminology.

Satisfying M ⊂ M̂(Dtrain) is more important than the opposite direction in the
manifold representation learning, since it is of utmost importance that representations
do not lose information about the data as they reduce dimensionality. Of course, not
every point in the union of balls Û is decoded to data in M, and to address this
issue, we need to identify a lower-dimensional data structure lying in the latent space
again, which is out of the scope of the thesis.

For the above reasons, in this thesis, we evaluate the manifold learning accuracy
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of autoencoder methods by investigating whether M ⊂ M̂(Dtrain). In practice, we
are given a set of test data Dtest := {xi ∈ M}Mi=1 not used for estimating f̂ , ĝ. The
most straightforward way to measure how well Dtest lies on M̂(Dtrain) would be to
compute the following error metric:

1

|Dtest|
∑

x∈Dtest

min
z∈Û

∥f̂(z)− x∥2, (1.4.7)

where Û := ∪Ni=1Bri(ĝ(xi)) ⊂ Rm. However, this metric requires to solve the optimiza-
tion problem multiple-times, which is computationally expensive. Instead, to reduce the
cost, we assume the estimated encoder ĝ is good enough to provide an approximate
solution to the above optimization, i.e., ĝ(x) ≈ argminz∈Û ∥f̂(z) − x∥2 for x ∈ M.
Consequently, we use the test set reconstruction error to measure the manifold learning
accuracy:

1

|Dtest|
∑

x∈Dtest

∥f̂ ◦ ĝ(x)− x∥2. (1.4.8)

1.5 Outline & Contributions

This thesis consists of the introduction (chapter 1), background (chapter 2), four main
chapters (chapter 3, 4, 5, 6) each of which covers one research topic, and conclusion
(chapter 7). In Chapter 2, we explain some mathematical preliminaries expected to
be helpful for those who are not familiar with Riemannian manifold and information
geometry. Chapters 3 & 4 present methods to resolve the first issue of the vanilla
autoencoder, the “wrong manifold” issue, introduced in Section 1.3.1. Chapter 5 pro-
poses an algorithm to resolve the second issue of the vanilla autoencoder, the “dis-
torted latent space” issue, introduced in Section 1.3.2. In Chapter 6, we apply the
algorithm proposed in Chapter 5 to the point cloud data and develop a mathemati-
cally necessary tool for this, that is, the Riemannian geometry of the point cloud data
space.

Listed below are the publications on which each chapter is based and my personal
contributions to each project.

Chapter 1 Introduction. Not published before, and written from scratch for this the-
sis.

Chapter 2 Mathematical Preliminaries. Not published before, and written from scratch
for this thesis.
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Chapter 3 is based on:
Yonghyeon Lee, Hyukjun Kwon, and Frank C. Park, Neighborhood Reconstruct-
ing Autoencoders. Conference on Neural Information Processing Systems (NeurIPS),
2021 [13].
Personal contributions: original idea to define a new neighborhood reconstruction
loss by exploiting the higher-order derivatives of the decoder, implementation &
a majority of the experiments, and writing.

Chapter 4 Not published before, and written from scratch for this thesis.

Chapter 5 is based on:
Yonghyeon Lee, Sangwoong Yoon, Minjun Son, and Frank C. Park, Regularized
Autoencoders for Isometric Representation Learning. International Conference on
Learning Representation (ICLR), 2022 [14].
Personal contributions: original idea to generalize the distortion minimization
framework in [12] to a more relaxed version tailored for autoencoder regular-
izations, practical implementation & a majority of the experiments, and writing.

Chapter 6 is based on:
Yonghyeon Lee*, Seungyeon Kim*, Jinwon Choi, and Frank C. Park (*: equal
contribution), A Statistical Manifold Framework for Point Cloud Data. Interna-
tional Conference on Machine Learning (ICML), 2022 [15].
Personal contributions: original idea to use the statistical manifold framework to
construct the Riemannian geometric structure for the point cloud data space,
and writing. Development of mathematical theory presented in this paper to-
gether with Seungyeon Kim. Experiments were mostly performed by Seungyeon
Kim.

Chapter 7 Conclusion. Not published before, and written from scratch for this thesis.
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2
Mathematical Preliminaries

2.1 Riemannian Manifold

2.1.1 Riemannian Manifolds in RD

A manifold is a mathematical object that formalizes and generalizes the notions of
curves and surfaces which correspond to one- and two-dimensional manifolds, respec-
tively. Formally, an m-dimensional manifold is a topological space1 where each point
has a neighborhood that is homeomorphic2 to an open subset of m-dimensional Eu-
clidean space. One-dimensional manifolds include lines and circles, but not lemniscates
(figure-eight or ∞-shaped curves), because, near the intersection point of the lemnis-
cate, it does not look like a one-dimensional Euclidean space (Figure 2.1).

Figure 2.1: Examples of one-dimensional manifold, line and circle, and non-manifold,
lemniscate.

Probably, the easiest way to imagine manifolds is to think of them as being lies

1A topological space allows for the definition of limits, continuity, and connectedness (e.g., Eu-
clidean space Rm).

2Two spaces are homeomorphic if there exists a homeomorphism, a continuous and invertible
map, between the two spaces.

21
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Figure 2.2: Examples of embedded manifolds, curves in two- and three-dimensional
Euclidean spaces, and a surface in three-dimensional Euclidean space.

in surrounding Euclidean spaces.3 Figure 2.2 shows examples of the manifolds embed-
ded in the ambient Euclidean spaces, curves in two- and three-dimensional Euclidean
spaces, and a surface in three-dimensional Euclidean space.

We first introduce two ways to (locally) parametrize manifolds M of dimension
m embedded in the ambient Euclidean space RD (D > m). The manifold M of
dimension m in RD can be locally parametrized explicitly in terms of local coordinates
q = (q1, · · · , qm) ∈ Rm with a coordinate system ϕ : Rm → M ⊂ RD such that
x = ϕ(q). This is called explicit parametrization. The other way is to parametrize
M in implicit form by a system of D − m equations of the form f(x) = 0 with
f : RD → RD−m. This is called implicit parametrization.

Remark 1 Differentiable manifold. If a mapping ϕ : Rm → RD is smooth and the
D ×m Jacobian matrix ∂ϕ

∂q (q) is of maximal rank m at every point, then the image
of ϕ is an m-dimensional differentiable manifold. If a system of D − m equations
f : RD → RD−m is smooth and the D × D −m Jacobian matrix ∂f

∂x is of maximal
rank D −m at every x that satisfies f(x) = 0, then the set {x ∈ RD|f(x) = 0} is
an m-dimensional differentiable manifold. Manifolds need differentiable structures for
useful geometric concepts – which will be introduced later such as the tangent vector,
tangent space, Riemannian metric, etc. – to be defined. Examples of non-differentiable
manifolds are shown in Figure 2.3.

Example 2.1.1. Sphere manifold S2. Consider a two-dimensional sphere manifold
S2, a set of all unit vectors in R3. To explicitly (locally) parametrize the manifold, we
can use a spherical coordinate system (θ, ϕ) ∈ R2 7→ (sin θ cosϕ, sin θ sinϕ, cos θ) ∈

3The Whitney embedding theorem states that any manifold can be embedded in some higher-
dimensional Euclidean space.
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Figure 2.3: Examples of non-differentiable manifolds (not differentiable at the red cir-
cled points).

R3, or to implicitly parametrize the manifold, we can think of the equation (x1)2 +
(x2)2 + (x3)2 − 1 = 0 for x = (x1, x2, x3) ∈ R3.

Example 2.1.2. Manifold of symmetric positive-definite matrices (SPD mani-
fold). Consider a set of m×m symmetric positive-definite matrices

P(m) := {P ∈ Rm×m|P = P T , eigenvalues(P ) > 0}. (2.1.1)

This is an m(m+1)/2-dimensional manifold embedded in Rm2
, where m2−m(m−1)/2

(symmetry constraints) computes the dimension of the manifold. The m ×m matrix
expression can be considered as an implicit parametrization. Consider an m(m+1)/2-
dimensional vector v ∈ Rm(m+1)/2, by rearranging it to an m ×m symmetric matrix
S(v) ∈ Rm×m and applying the matrix exponential exp(S(v)), the vector v maps to a
symmetric positive-definite matrix; v ∈ Rm(m+1)/2 7→ exp(S(v)) ∈ P(m) is an explicit
parametrization.

When explicitly parametrizing a manifold that is not homeomorphic to the Eu-
clidean space, e.g., a one-dimensional circular manifold S1, to globally parametrize
the manifold, we need more than one local coordinate system. Considering the cir-
cular manifold S1, we need at least two local coordinate systems to cover the entire
manifold as shown in Figure 2.4, and a transition map in the overlapped region can
be defined. The family of coordinate systems that covers the manifold is called an
atlas. Throughout, we will assume the manifold is homeomorphic to the Euclidean
space and consider a single coordinate system for simplicity; geometric concepts ex-
plained later can be straightforwardly generalized to arbitrary manifolds with multiple
coordinate systems.

Let M be an m-dimensional differentiable manifold in RD parametrized in local
coordinates q by x = ϕ(q). Let x(t) be an arbitrary smooth curve in M that passes
through x̄ at t = 0, i.e., x(0) = x̄, and q(t) ∈ Rm be the corresponding curve in local
coordinates, i.e., x(t) = ϕ(q(t)) such that x(0) = ϕ(q(0)) = ϕ(q̄). Differentiating both
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Figure 2.4: Two local coordinate systems ϕ1, ϕ2 : R1 → S1 ⊂ R2 globally parametrize
the circular manifold S1; in the overlapped region, a transition map ϕ−1

2 ◦ϕ1 : R1 → R1

is defined.

sides and evaluating at t = 0, we have

ẋ(0) =
m∑
i=1

∂ϕ

∂qi
(q̄)q̇i(0). (2.1.2)

We note that the velocity vector ẋ(0) cannot be an arbitrary vector in RD but must
lie in the column space of the matrix ∂ϕ

∂q (q̄) (i.e., must be tangent to M at x̄), which
is a linear subspace of dimension m. This vector space is called the tangent space
viewed as being attached at x̄ as illustrated in Figure 2.5, and denoted by Tx̄M. For
any point x ∈ M, there is a tangent space TxM attached at x, and they are all
different vector spaces.

Figure 2.5: Illustration of the tangent space of M attached at x̄ ∈ M, Tx̄M, which
is equivalent to the column space of the matrix ∂ϕ

∂q (q̄).
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In linear algebra, a mathematical object called an inner product can be defined in
vector space, which is used to define the length (or norm) of a vector or the angle
between the vectors. As a generalization to differentiable manifolds, one can define
the length of a curve, the angle between two intersecting curves, and the volume of
an area in the manifold by specifying the inner products for all tangent spaces, and
the family of the inner products defined for all tangent spaces

{⟨−,−⟩x : TxM× TxM → R|x ∈ M}, (2.1.3)

which is assumed to be smoothly varying over M, is called the Riemmanian metric.
The manifold M with the Riemannian metric is called the Riemannian manifold.

Given an explicit parametrization by ϕ : q ∈ Rm → x ∈ M ⊂ RD, the Riemannian
metric can be expressed as m × m positive-definite matrices in local coordinates q:
let q(t) be a curve in the local coordinates and x(t) = ϕ(q(t)) be the corresponding
curve in M, and consider the following inner product

⟨ẋ, ẋ⟩x = ⟨
m∑
i=1

∂ϕ

∂qi
q̇i,

m∑
j=1

∂ϕ

∂qj
q̇j⟩ϕ(q)

=

m∑
i=1

m∑
j=1

q̇iq̇j⟨ ∂ϕ
∂qi

,
∂ϕ

∂qj
⟩ϕ(q)

=
m∑
i=1

m∑
j=1

q̇iq̇jgij(q)

= q̇TG(q)q̇, (2.1.4)

where gij(q) := ⟨ ∂ϕ
∂qi
, ∂ϕ
∂qj

⟩ϕ(q) and G(q) = (gij(q))i,j=1,··· ,m that is an m×m positive-

definite matrix. The family of G(q) for q ∈ Rm is the Riemannian metric expressed in
the local coordinates.

For example, the simplest choice of the Riemannian metric is to inherit the inner
product of the ambient Euclidean space RD as follows:

⟨v, w⟩x := v · w for all v, w ∈ TxM ⊂ RD, (2.1.5)

for all x ∈ M. Then, we can define the length of a curve x(t) : t ∈ [0, 1] in M as
follows:

Len(x(t)) :=

∫ 1

0

√
⟨ẋ(t), ẋ(t)⟩x(t) dt =

∫ 1

0

√
ẋ(t) · ẋ(t) dt. (2.1.6)

In local coordinates where x(t) = ϕ(q(t)), the length of q(t) can be expressed as
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follows:

Len(q(t)) :=

∫ 1

0

√
q̇(t)TG(q(t))q̇(t) dt, (2.1.7)

where

G(q) :=
∂ϕ

∂q
(q)T

∂ϕ

∂q
(q) ∈ Rm×m (2.1.8)

is a symmetric and positive-definite matrix that smoothly varies over q ∈ Rm. The
family of G(q) for q ∈ Rm is the Riemannian metric expressed in local coordinates q.

Example 2.1.3. Riemannian metric of sphere manifold S2. Consider a local coor-
dinate system for the two-dimensional spherical manifold S2, that is ψ : (θ, ϕ) ∈ R2 7→
(sin θ cosϕ, sin θ sinϕ, cosϕ) ∈ S2 ⊂ R3. The Riemannian metric inherited from the
three-dimensional ambient Euclidean space can be expressed in the local coordinates
as follows:

G(θ, ϕ) =

[
1 0
0 sin2 θ

]
. (2.1.9)

Then, given a curve in S2 expressed in local coordinates as (θ(t), ϕ(t)) : t ∈ [0, 1], the

length of it can be computed as follows:
∫ 1
0

√
θ̇(t)2 + ϕ̇(t)2 sin2 θ(t)dt.

Given two points x1, x2 ∈ M, let q1, q2 ∈ Rm be their local coordinates and G(q)
be the Riemannian metric expressed in the local coordinates. The minimal geodesic
on M can be defined as the curve of the shortest length connecting the two points
with the constant velocity:

min
q(t)

∫ 1

0
q̇(t)TG(q(t))q̇(t) dt s.t. q(0) = q1, q(1) = q2. (2.1.10)

The solution curve is also a minimizer of Len(q(t)). Then the geodesic distance be-
tween x1, x2 ∈ M is defined as the length of the minimal geodesic curve.

Consider an open subset U ⊂ M and the corresponding subset V ⊂ Rm in local
coordinates such that U = ϕ(V ). The volume of U can be computed in the coordi-
nates as follows:

Vol(V ) :=

∫
V

√
det(G(q))dq1 · · · dqm, (2.1.11)

where
√

det(G(q)) compensates for any distortion in the infinitesimal volume dq1 · · · dqm
when mapped to the manifold M,

√
det(G(q))dq1 · · · dqm is called the Riemannian

volume form.
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Figure 2.6: The length of an object can have different numerical representations de-
pending on the choice of local coordinates (cm or mm).

2.1.2 Intrinsic Definition of Riemannian Manifolds *

In this section, we revisit the notion of the Riemannian manifold from the intrinsic
point of view without involving any embedding in RD. To parametrize the manifold,
one needs to set a local coordinate system (just as the explicit parametrization in-
troduced in the previous section), however, all the constructs – minimal geodesics,
volume forms, etc. – should not depend on the choice of local coordinates, but only
on the structure of the manifold and the choice of Riemannian metric. All geometric
concepts on the manifold should be defined intrinsically without involving any coordi-
nate system, and once local coordinates are introduced, they have the corresponding
numerical representations in these local coordinates. Given another choice of local co-
ordinates, the numerical representations become different, and there exist proper co-
ordinate transformation laws. For example, when representing the length of an object,
the number depends on which unit you use, cm or mm, and there is a transformation
law (Figure 2.6). Throughout this section, we will focus on providing coordinate-free
formulations of the geometric notions such as the tangent space and Riemannian met-
ric and their coordinate transformation laws.

For a differentiable manifold M, let ψ : M → Rm be a homeomorphism (we
assume M is homeomorphic to Rm for simplicity). To define the tangent vector and
tangent space in a coordinate-free manner, we use a real-valued function f : M → R
whose coordinate representation f ◦ ψ−1 : Rm → R is infinitely differentiable (the set
of all such functions is denoted by C∞(M)). Intuitively, given a direction vector v
(here v is an abstract symbol) tangent to the manifold at x ∈ M, as a generalization
of the directional derivative from vector calculus, we can think of the rate at which
the function f changes at a point x in the direction v. A derivation at x ∈ M (in v)
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is defined as a linear map Dv(·)|x : C∞(M) → R that satisfies the Leibniz identity:

∀f, g ∈ C∞(M) Dv(fg)|x = Dv(f)|x · g(x) + f(x) ·Dv(g)|x, (2.1.12)

which is modeled on the product rule of calculus. Setting

(Dv +Dw)(f)|x := Dv(f)|x +Dw(f)|x & (λ ·Dv)(f)|x := λ ·Dv(f)|x, (2.1.13)

the set of all derivations at x turns into a vector space, which is defined to be the
tangent space attached at x ∈ M denoted by TxM. A derivation Dv(·)|x becomes
a tangent vector at x ∈ M. We note that no local coordinates are introduced in
these definitions.

Let x be the coordinates of x ∈ M, i.e., ψ(x) = x, then a tangent vector or
derivation at x can be written in the local coordinates as follows:

Dv(·)|x =

m∑
i=1

vi
∂

∂xi
((·) ◦ ψ−1)|x, (2.1.14)

where v = (v1, · · · , vm) ∈ Rm is the coordinate representation of the tangent vector,
and ∂

∂xi
((·) ◦ ψ−1)|x or shortly ∂

∂xi
is often used to denote the i-th basis vector for

TxM (the tangent vector is often simply denoted by
∑m

i=1 v
i ∂
∂xi

). Now, consider a

different coordinate system ψ̃ : M → Rm and denote the corresponding coordinates
by x̃ = ψ̃(x); then ψ ◦ ψ̃−1 : x̃ ∈ Rm 7→ x ∈ Rm is the coordinate transformation. Let
ṽ ∈ Rm be the coordinate representation of the tangent vector Dv(·)|x in coordinates
x̃, then the following equalities hold:

Dv(f)|x =

m∑
i=1

vi
∂

∂xi
(f ◦ ψ−1)|x =

m∑
j=1

ṽj
∂

∂x̃j
(f ◦ ψ̃−1)|x̃

=

m∑
j=1

ṽj
∂

∂x̃j
(f ◦ ψ−1 ◦ ψ ◦ ψ̃−1)|x̃

=

m∑
i=1

m∑
j=1

ṽj
∂

∂x̃j
(ψ ◦ ψ̃−1)i|x̃

∂

∂xi
(f ◦ ψ−1)|x.

(2.1.15)
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Therefore, the coordinate transformation law between v and ṽ is given as follows:

vi =

m∑
j=1

ṽj
∂

∂x̃j
(ψ ◦ ψ̃−1)i|x̃ =

m∑
j=1

ṽj
∂xi

∂x̃j
, (2.1.16)

where ∂xi

∂x̃j
denotes ∂

∂x̃j
(ψ ◦ ψ̃−1)i|x̃.

Consider a symmetric bilinear form (or inner product) on the tangent vector space
TxM and denote it by ⟨·, ·⟩x : TxM × TxM → R. The Riemannian metric is a
family of the inner products {⟨·, ·⟩x|x ∈ M} that smoothly varies over M. We note
that this is again defined in a coordinate-free way. Given local coordinates x = ψ(x),
consider two tangent vectors

∑m
i=1 v

i ∂
∂xi
,
∑m

j=1w
j ∂
∂xj

∈ TxM. The inner product be-
tween these two vectors can be written as follows:

⟨
m∑
i=1

vi
∂

∂xi
,
m∑
j=1

wj
∂

∂xj
⟩x =

m∑
i=1

m∑
j=1

viwj⟨ ∂

∂xi
,
∂

∂xj
⟩x. (2.1.17)

If we denote ⟨ ∂
∂xi
, ∂
∂xj

⟩x by gij(x), then the inner product is expressed as follows:

m∑
i=1

m∑
j=1

viwjgij(x) = vTG(x)w, (2.1.18)

where G(x) ∈ Rm×m is the symmetric positive-definite matrix whose (i, j)-th element
is gij(x). With the Riemannian metric expressed in the local coordinates G(x), all the
constructs introduced in the previous chapter – minimal geodesics, volume forms, etc.
– can be computed using the same formulas.

Lastly, we introduce a coordinate transformation law for the Riemanian metric
gij(x) or G(x). Let x̃ = ψ̃(x) be another coordinate system and g̃ab(x̃) and G̃(x̃)
be the corresponding coordinate representations of the Riemannian metric, given two
tangent vectors expressed in each coordinate as v, w and ṽ, w̃, the following equalities
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hold:

m∑
i=1

m∑
j=1

viwjgij(x) =
m∑
a=1

m∑
b=1

ṽaw̃bg̃ab(x̃)

=
m∑
a=1

m∑
b=1

m∑
i=1

m∑
j=1

vi
∂x̃a

∂xi
wj
∂x̃b

∂xj
g̃ab(x̃)

=
m∑
i=1

m∑
j=1

viwj(
m∑
a=1

m∑
b=1

∂x̃a

∂xi
∂x̃b

∂xj
g̃ab(x̃)), (2.1.19)

and thus

gij(x) =

m∑
a=1

m∑
b=1

∂x̃a

∂xi
∂x̃b

∂xj
g̃ab(x̃). (2.1.20)

In the matrix representation,

G(x) = (
∂x̃

∂x
)T G̃(x̃)(

∂x̃

∂x
), (2.1.21)

where ∂x̃
∂x ∈ Rm×m is the invertible matrix whose (a, i)-th element is ∂x̃a

∂xi
.

Example 2.1.4. Grassmannian manifold The set of all k-dimensional linear sub-
spaces in Rn is called the Grassmannian manifold of k-planes in Rn and denoted by
GRk(Rn). One may want to represent k-planes in Rn as the column spaces of n× k
matrices X ∈ Rn×k of rank k and think of the Grassmannian manifold as an nk-
dimensional manifold, but this representation is not one-to-one, i.e., there are many
n × k matrices (indeed infinitely many) that have the same column space – for any
k × k invertible matrix I ∈ Rk×k, the matrices X and XI ∈ Rn×k have the same
column space. Therefore, when considering the dimension of GRk(Rn), the dimension
of the set of all k × k invertible matrices must be subtracted from the dimension of
the set of all n× k matrices of rank k, and thus it is an nk − k2-dimensional (more
precisely, GRk(Rn) is a quotient of the set of all n× k matrices of rank k by the set
of all invertible k × k matrices).

Now we describe one choice of local coordinate system. For n × k matrix whose
range in an element of GRk(Rn), i.e., has a maximal rank k, we can apply elementary
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column operations to obtain its reduced column echelon form:

1
1

. . .

1
a1,1 · · · · · · a1,k
...

...
an−k,1 · · · · · · an−k,k


, (2.1.22)

where the n− k× k matrix A = (ai,j)i=1,··· ,n−k & j=1,··· ,k determines which element it
is in the manifold.

2.1.3 Mappings between Riemannian Manifolds

In this section, we introduce an isometry – which preserves the geometric quantities
such as the distances between points, angles between curves, and volumes of regions –
between Riemannian manifolds, and the Riemannian distortion measure that measures
how far a mapping from being an isometry, which is particularly relevant to Chapter 5.
This section summarizes Chapter 2 of Jang’s thesis “Riemannian Distortion Measures
for Non-Euclidean Data” [12], please refer to the original paper for details.

Let M be an m-dimensional Riemannian manifold with local coordinates x =
(x1, · · · , xm) and Riemannian metric gij(x) or G(x), and N be an n-dimensional
Riemannian manifold with local coordinates y = (y1, · · · , yn) and Riemannian metric
hab(y) or H(y). Consider a mapping f : M → N between two Riemannian manifolds
M and N , which maps a point x, a curve C, and a region V to f(x), f(C), and f(V)
as shown in Figure 2.7. Let x(t) : t ∈ [0, 1] represent the curve C and V represent
the region V in the local coordinates of M and f : Rm → Rn be the coordinate
representation of the mapping f, then the mapped curve and region are represented
as y(t) = f(x(t)) : t ∈ [0, 1] and f(V ) in the local coordinates of N .

To introduce the conditions for the mapping f to being an isometry, let’s compare
the length of a curve C in M and that of f(C) ∈ N . The lengths of both curves are
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Figure 2.7: A mapping f : M → N and its coordinate representation f : Rm → Rn.

computed as follows:

Len(C) =
∫ 1

0

√
ẋTG(x)ẋ dt (2.1.23)

Len(f(C)) =
∫ 1

0

√
ẏTH(y)ẏ dt

=

∫ 1

0

√
ẋT
∂f

∂x
(x)TH(f(x))

∂f

∂x
(x)ẋ dt

=

∫ 1

0

√
ẋTJf (x)TH(f(x))Jf (x)ẋ dt, (2.1.24)

where Jf (x) =
∂f
∂x (x) ∈ Rn×m (the differential of f at x expressed in local coordinates)

and we omit writing (t) in the integrands for better readability (e.g., x(t) 7→ x).
For the lengths of the two curves to be identical for any curve C in M, the fol-

lowing equality should hold:

G(x) = Jf (x)
TH(f(x))Jf (x) for all x ∈ M, (2.1.25)

where x denotes the coordinate representation of x, and in this case, f is called an
isometry. Note that, if f is an isometry, the volume of a region V in M and that of
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f(V) in N are also identical:

Vol(V) =
∫
V

√
det(G(x)) dx (2.1.26)

Vol(f(V)) =
∫
f(V )

√
det(H(y)) dy

=

∫
V

√
det(H(f(x))) |det(Jf (x))| dx

=

∫
V

√
det(H(f(x))) det(Jf (x))2 dx

=

∫
V

√
det(Jf (x)TH(f(x))Jf (x)) dx. (2.1.27)

The matrix JTf (x)H(f(x))Jf (x) ∈ Rm×m is referred to as the pullback metric of H
via the mapping f. The pullback metric may become positive-semidefinite, e.g., when
m > n, an isometry is unachievable in such cases.

Now, we introduce how to formulate global geometric distortion measures for
a smooth mapping f : M → N which measures how far the mapping f from be-
ing an isometry. The measure should be defined intrinsically, i.e., in a coordinate-
invariant way. Denote by y = f(x) and y = f(x) in local coordinates. At a point
x ∈ M denoted by x in local coordinates, let λi, i = 1, · · · ,m be the eigenvalues of
Jf (x)

TH((f(x)))Jf (x)G(x)
−1. Apart from their order, a set of them {λi}mi=1 is in-

trinsically associated with JTf HJf and G, meaning that it is invariant under a pair of
coordinate transformations x 7→ x̃ = ϕ(x) and y 7→ ỹ = ψ(y). The metrics G, H, and
the Jacobian Jf transform according to the following rules: (i) G 7→ G̃ = Φ−TGΦ−1,

where Φ = ∂ϕ
∂x ; (ii) H 7→ H̃ = Ψ−THΨ−1, where Ψ = ∂ψ

∂y ; (iii) Jf 7→ J̃f̃ = ΨJfΦ
−1;

and thus

JTf HJfG
−1 7→ J̃T

f̃
H̃J̃f̃ G̃

−1 = (ΨJfΦ
−1)T (Ψ−THΨ−1)ΨJfΦ

−1(Φ−TGΦ−1)−1

= Φ−TJTf HJfG
−1ΦT ; (2.1.28)

it is then straightforward to verify that the eigenvalues remain the same (To see why,
observe that det(ΦAΦ−1 − λI) = det(ΦAΦ−1 − λΦΦ−1) = det(Φ(A − λI)Φ−1) =
det(A− λI)).

Let σ(λ1, · · · , λm) be any symmetric function (i.e., a function whose value is in-
variant with respect to permutations of its arguments) of the m eigenvalues, then the



34 Mathematical Preliminaries

integral ∫
M
σ(λ1, · · · , λm)

√
detG dx1 · · · dxm (2.1.29)

is an intrinsic quantity, i.e., coordinate-invariant. We now examine choices for σ that
capture the intrinsic distortion of the mapping f. The ideal case of no distortion is
achieved when f is an isometry, i.e., JTf HJfG

−1 = I or λi = 1, i = 1, · · · ,m at every
x ∈ M. Therefore, one straightforward choice for σ(λ) that captures the intrinsic
distortion is

σ(λ) =
1

2

m∑
i=1

(1− λi)
2. (2.1.30)

There are other choices as well, we refer to [12].

2.2 Information Geometry

2.2.1 Statistical Manifold

A statistical manifold is a manifold, each of whose points is a probability distribution.
Consider a set of parametric probability density functions

S := {p(x; θ)|θ ∈ Θ}, (2.2.31)

where Θ ⊂ Rm and p(x; θ) denotes a probability density function in Rn with the
parameters θ = (θ1, · · · , θm) ∈ Θ. If a mapping that maps the parameter vector to
the corresponding density function p(x; ·) : θ 7→ p(x; θ) is injective (i.e., if p(x; θ1) =
p(x; θ2), then θ1 = θ2) and smooth, then the set of density functions S can be viewed
as an m-dimensional differentiable manifold with local coordinates θ.

Example 2.2.1. Manifold of 1-d Gaussian distributions. Consider a set of 1-dimensional
Gaussian distributions S := {p(x;µ, σ) = 1√

2πσ
exp(−1

2(
x−µ
σ )2)|µ ∈ R, σ ∈ R>0} with

parameters µ, σ. It is straightforward that the parametrization is injective and smooth,
and thus the set S is a two-dimensional differentiable manifold with local coordinates
(µ, σ) ∈ R2 (Figure 2.8).

Example 2.2.2. Manifold of multivariate Gaussian distributions. Consider a set of
n-dimensional multivariate Gaussian distributions

N (n) := {p(x;µ,Σ) = 1√
(2π)n|Σ|

exp(−1

2
(x− µ)TΣ−1(x− µ))|µ ∈ Rn,Σ ∈ P(n)},

(2.2.32)
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Figure 2.8: Illustration of the two-dimensional manifold of 1-dimensional Gaussian dis-
tributions.

where P(n) is the manifold of symmetric positive-definite matrices from example 2.1.2;
the set N (n) is a differentiable manifold of dimension n+n(n+1)/2. A natural choice
of local coordinates is given by (µi)i=1,··· ,n and (σij)i≥j where µ = (µ1, · · · , µm) and
Σ = (σij)i,j=1,··· ,n.

2.2.2 Fisher Information Metric

Let S = {p(x; θ)|θ ∈ Θ ⊂ Rm} be the statistical manifold with coordinates θ =
(θ1, · · · , θm) for x ∈ Rn, then the Fisher information metric that takes the form

gij(θ) :=

∫
Rn

∂ log p(x; θ)

∂θi
∂ log p(x; θ)

∂θj
p(x; θ) dx1 · · · dxn (2.2.33)

acts as a natural Riemannian metric for the statistical manifold. An equivalent form
of the above definition is:

gij(θ) =

∫
Rn

− ∂2

∂θi∂θj
log p(x; θ) p(x; θ) dx. (2.2.34)

To show that this equivalence, note that Ex∼p(x;θ)[
∂ log p(x;θ)

∂θi
] = 0 and apply ∂

∂θj
on

both sides. We note that the Fisher information metric in invariant under the co-
ordinate transformation x 7→ x′ = ϕ(x) which transforms p(x; θ) 7→ p′(x′; θ) =

p(ϕ−1(x′); θ)|∂ϕ
−1

∂x′ (x′)|, because p(x; θ)dx = p′(x′; θ)dx′ and log p′(x′; θ) = log p(x; θ)+

log |∂ϕ
−1

∂x′ (x′)|.
Consider a curve θ(t) : t ∈ [0, 1] and the corresponding curve of density functions

p(x; θ(t)) in the statistical manifold, the length of this curve is then computed as
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follows:

Len(θ(t)) =

∫ 1

0

√√√√ m∑
i=1

m∑
j=1

gij(θ(t)) θ̇i(t)θ̇j(t) dt

=

∫ 1

0

√√√√∫
Rn

( m∑
i=1

θ̇i(t)
∂ log p(x; θ(t))

∂θi
)2
p(x; θ(t)) dxdt

=

∫ 1

0

√∫
Rn

( d
dt

log p(x; θ(t))
)2
p(x; θ(t)) dxdt

=

∫ 1

0

√
Ex∼p(x;θ)[

( d
dt

log p(x; θ(t))
)2
] dt. (2.2.35)

The length is computed as an integral of the expected magnitude of the time deriva-
tive of log probability density that measures how much the density function has changed
over time.

One of the most well-known and interesting properties of the Fisher information
metric is that it approximates the KL-divergence up to the second order as follows:

DKL(p(x; θ)|p(x; θ + dθ)) = Ex∼p(x;θ)[log p(x; θ)− log p(x; θ + dθ)]

= Ex∼p(x;θ)[−
m∑
i=1

dθi
∂

∂θi
log p(x; θ)

− 1

2

m∑
i,j=1

∂2

∂θi∂θj
log p(x; θ)dθidθj ]

= Ex∼p(x;θ)[−
1

2

m∑
i,j=1

∂2

∂θi∂θj
log p(x; θ)dθidθj ]

=
1

2
gij(θ)dθ

idθj , (2.2.36)

where we use Ex∼p(x;θ)[ ∂∂θi log p(x; θ)] = 0.

Example 2.2.3. Riemannian manifold of multivariate Gaussian distributions. The
manifold of multivariate Gaussian distributions N (n) from example 2.2.2 can be turned
into a Riemannian manifold with the Fisher information metric. In terms of the im-
plicit parametrization (µ,Σ) ∈ Rm × P(n), given two tangent vectors V = (Vµ, VΣ)
and W = (Wµ,WΣ) (where VΣ and WΣ are n× n symmetric matrices) defined at a
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point (µ,Σ), the inner product is given by

⟨V,W ⟩(µ,Σ) = V T
µ Σ−1Wµ +

1

2
Tr(Σ−1VΣΣ

−1WΣ). (2.2.37)

The geodesic curve and distance between two multivariate Gaussian distributions can
be computed by solving a pair of partial differential equations called the geodesic equa-
tion, we refer to [16] for details.
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3
NeighborhoodReconstructing

Autoencoders

3.1 Introduction

Autoencoders are widely used to identify, and to generate samples from, the under-
lying low-dimensional manifold structure of a given data distribution [9, 17]. It has
been widely observed that vanilla autoencoders quite often produce manifolds that (i)
are highly sensitive to noisy training data (see Figure 3.1(a)), or (ii) have the wrong
local connectivity and geometry (see Figure 3.1(b)), significantly impairing their per-
formance. Regularization techniques have had some success in mitigating the former,
e.g., the Denoising Autoencoder [18], which uses deliberately corrupted inputs to train
the autoencoder, typically learns manifolds that are robust to noise, but not always
with the correct local geometry.

Figure 3.1: Learned manifolds that (a) overfit the data or (b) have the wrong local
geometry.

Recently, autoencoder regularization methods that use neighborhood graphs have
had some success in addressing the incorrect connectivity issue [19, 20, 21, 22]. Notwith-
standing the additional computational overhead of constructing local neighborhood

39
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graphs, the local geometric information obtained from these graphs can significantly
reduce errors in the local geometry of the learned manifold, and make learning more
well-behaved and robust.

The underlying premise behind these methods is that since the local geometry and
topology of the data is captured in the latent space distribution, which is determined
entirely by the encoder, regularizing only the encoder should be sufficient; little if any
consideration needs to be given to the decoder. The flaw with this premise is that
although the encoder learns the correct latent space representation of the manifold
data, the decoder is still susceptible to overfitting of the type shown in Figure 3.1(a).
These existing methods moreover rely on computation-intensive preprocessing steps
like manifold learning [21], linear coefficients computation [22], or computing topo-
logical features using persistent homology at each training iteration [19, 23], each of
whose computational requirements can grow significantly with problem dimension and
scale.

The main contribution is a new graph-based autoencoder training method that ad-
dresses both the overfitting and connectivity issues illustrated in Figure 3.1(a)-(b). Like
current methods, our method also employs local graphs that capture the local geome-
try of the data distribution. The key idea behind our method, which we call the Neigh-
borhood Reconstructing Autoencoder (NRAE), is to employ a local quadratic (and
in some cases linear) approximation of the decoder function to formulate a new neigh-
borhood reconstruction loss in lieu of the point reconstruction loss typically used for
autoencoder training. This idea leads to learning the correct geometry and reducing
noise sensitivity, significantly improving the robustness of autoencoder training.

To make things more explicit, let gϕ : Rn → Rm be the encoder (parametrized by
ϕ) and fθ : Rm → Rn be the decoder (parametrized by θ). Whereas vanilla autoen-
coders are trained to minimize the sum of the point reconstruction errors

∑
i ∥xi −

fθ(gϕ(xi))∥2, NRAE minimizes a reconstruction error of the form∑
i

∑
x∈N (xi)

∥∥∥x− f̃θ(gϕ(x); gϕ(xi))
∥∥∥2 , (3.1.1)

where N (xi) is the set of neighborhood points of xi (including xi) and f̃θ(·; gϕ(xi))
is a local quadratic (or linear) approximation of fθ about gϕ(xi). The vanilla autoen-
coder is obtained by setting N (xi) = {xi} for all i. The key idea here is to locally
approximate the decoder only, and to exploit the local geometric information extracted
from the decoded manifold represented by the image of fθ.
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Like other neighborhood graph-based methods, NRAE also learns the correct lo-
cal geometry of the decoded manifold. At the same time, the local quadratic (or lin-
ear) approximation of fθ considerably reduces any overfitting to noisy training data
or sensitivity to outliers, while maintaining computational efficiency – rather than the
entire Jacobian or Hessian of fθ, only the more easily computed Jacobian-vector and
Hessian-vector products are needed for the approximation.

Compared to existing graph-based autoencoder regularization methods, NRAE is
easy to implement, computationally efficient, and scalable, requiring only a single prior
construction of the graph without additional pre-processing steps. Experiments with
both synthetic and image data (MNIST, Fashion-MNIST, KMNIST, Omniglot, SVHN,
CIFAR10, CIFAR100, CelebA) confirm that overall our method better learns the cor-
rect geometry of manifolds, showing improved generalization performance vis-á-vis ex-
isting graph-based and other autoencoder regularization methods.

3.2 Neighborhood Reconstructing Autoencoder

In this section, we first provide a high-level mathematical description of the Neigh-
borhood Reconstructing Autoencoder (NRAE), followed by algorithmic details and a
discussion of the NRAE’s properties and behavior. Throughout we consider a deter-
ministic autoencoder with an encoder function gϕ : Rn → Rm and decoder function
fθ : Rm → Rn (m ≤ n), with their composition denoted by Fθ,ϕ := fθ ◦ gϕ. We use
the notation D := {xi ∈ Rn}Mi=1 to denote the set of observed data points.

3.2.1 Mathematical Description

In what follows we use the notation N (x) to denote the set of neighborhood points
of x, with x included in N (x). We begin with the following definition:

Definition 3.2.1. Let F̃θ,ϕ(·;x) := f̃θ(gϕ(·); gϕ(x)), where f̃θ(·; z) is a local quadratic
(or in some cases linear) approximation of fθ at z = (z1, z2, ...zm):

f̃θ(z
′; z) := fθ(z) +

m∑
i=1

∂fθ
∂zi

(z)dzi +
m∑

i,j=1

1

2

∂2fθ
∂zi∂zj

(z)dzidzj , (3.2.2)

where dz = z′ − z. F̃θ,ϕ(N (x);x) is said to be a neighborhood reconstruction of
N (x).

If instead of a quadratic approximation we use the linear approximation of fθ, the
image of F̃θ,ϕ(·;x) is the tangent space of the decoded manifold at Fθ,ϕ(x), and the
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neighborhood reconstruction of N (x) is a subset of the tangent space; the neighbor-
hood reconstruction in this case contains first-order local geometric information about
the decoded manifold.

The key idea behind Definition 3.2.1 is that we locally approximate the decoder,
and not the encoder, to extract and exploit local geometric information on the decoded
manifold, which is captured in the image of F̃θ,ϕ(·;x) (i.e., the local approximation
of the decoded manifold). Figure 3.2 illustrates an example where the autoencoder
reconstructs the points almost perfectly, but the neighborhood reconstruction of N (x),
whose elements lie in the tangent space (here we use the linear approximation of fθ)
is considerably different from N (x).

Figure 3.2: The training data points (blue), the decoded manifold (orange), the neigh-
borhood of x denoted by N (x), and the neighborhood reconstruction (red). The black
dotted lines represent the correspondences between x′ ∈ N (x) and F̃θ,ϕ(x

′;x).

Given that the neighborhood reconstruction of N (x) reflects the local geometry
of the decoded manifold, minimizing a loss function that measures the difference be-
tween N (x) and its image F̃θ,ϕ(N (x);x) is one means of training an autoencoder to
preserve the local geometry of the original data distribution. With that goal in mind,
we formulate a neighborhood reconstruction loss L as follows:

L(θ, ϕ;D) =
1

|D|
∑
x∈D

1

|N (x)|
∑

x′∈N (x)

K(x′, x) · ∥x′ − F̃θ,ϕ(x
′;x)∥2, (3.2.3)

where K(x′, x) is a positive symmetric kernel function that determines the weight for
each x′ ∈ N (x). Figure 3.3 illustrates how the neighborhood reconstruction loss can
differentiate among the quality of the learned manifolds whose point reconstruction
losses are all the same (close to zero): Case 3 has the smallest neighborhood recon-
struction loss compared to Case 1 (wrong local geometry) and Case 2 (overfitting).
NRAE converges to the vanilla AE – that is, the neighborhood reconstruction loss re-
covers the point reconstruction loss – if one of the following conditions is met: (i)
N (x) = {x}, (ii) K(x′, x) = δ(x′, x), or (iii) fθ is linear.
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Figure 3.3: The orange curves represent the learned manifolds, the red points represent
the neighborhood reconstruction, and the lengths of the black dotted lines represent
the neighborhood reconstruction loss.

It is reasonable to ask whether there are any advantages to using an approximation
for both the encoder and decoder, i.e., to use a local quadratic (or linear) approxima-
tion for the composition map Fθ,ϕ rather than just the decoder. As verified below in
Section 3.4.3, using a quadratic approximation for both the encoder and decoder re-
sults in minimal to no performance improvement (the results for this Extended NRAE
(E-NRAE) case are nearly identical to those obtained for NRAE), but the computa-
tional requirements increase substantially. As intuition suggests, applying a quadratic
approximation for the decoder is sufficient in evaluating the neighborhood reconstruc-
tion loss.

3.2.2 Algorithmic Details

Graph construction. The problem of inferring the geometric structure of a data
distribution is typically posed as a graph construction problem [24]. We use one of
the simplest graph construction methods, the k-NN graph with the Euclidean distance
metric. The robustness of our algorithm with respect to the choice of k is tested in
the Appendix A.

Kernel design. We choose the following simple kernel

K(x′, x) = λ+ (1− λ) δ(x′, x), (3.2.4)

where 0 ≤ λ < 1 and δ(x′, x) = 1 if x′ = x and zero otherwise. This assigns the
weight 1 for the center x ∈ N (x) and the weight λ for the remaining neighborhood
points.
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Batch sampling. To estimate the gradient of the proposed loss function, we use
batch sampling for both summations over D and N (x). Given a batch B ⊂ D, we
again sample a batch Bx from N (x). We empirically find that forcing each batch Bx
to include x improves convergence. In this thesis, we set Bx = {x, xn} where xn is
uniformly sampled from N (x)− {x}.

3.3 Related Work: Regularization of Autoencoders

In this section, we review some standard autoencoder regularization techniques and
their relation to NRAE: i) regularizing latent space distributions, ii) Jacobian regular-
ization, and iii) regularization using neighborhood graphs.

Regularizing latent space distributions. One popular regularization strategy is to
enforce the latent space distribution to be close to some user-specified prior distri-
bution; some examples include the Variational Autoencoder (VAE) [25], Adversarial
Autoencoder (AAE) [26], and Wasserstein Autoencoder (WAE) [27]. The Gaussian
distribution is a popular choice for the prior, but this choice often leads to over-
regularization. Several works improve the VAE by learning more complex priors, or an
optimal prior in terms of maximizing the training objective function of the VAE [28,
29, 30, 31]. These techniques are developed to make latent space distributions close to
some easy-to-sample prior distribution, but are not designed to resolve the two main
issues (local geometry and overfitting) addressed in this thesis.

Jacobian regularization. The Contractive Autoencoder (CAE) attempts to enhance
robustness of representation by penalizing the Jacobian norm of the encoder func-
tion [32]. However, like other encoder-only regularization methods, it often learns a
manifold that overfits the data. More recently [33] regularizes the Jacobian of the de-
coder function to learn a flat manifold. The trained decoder function may produce
a smooth manifold but with the wrong local geometry. The main difference between
these methods and NRAE is the use of a neighborhood graph containing local con-
nectivity information.

Regularization using neighborhood graphs. Several recent works have developed
graph-based autoencoder regularization methods that, at least implicitly, try to learn
manifolds with the right local geometry: Generalized Autoencoder (GAE) [34], Topo-
logical Autoencoder (TopoAE) [19], Witness Autoencoder (W-AE) [20], Geometry Reg-
ularized Autoencoder (GRAE) [21], and Structure-Preserving Variational Autoencoder
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(Sp-VAE) [22]. These works focus almost entirely on the encoder when regularizing
the latent space distribution (with the exception of GAE [34]); using the regulariza-
tion term that does not depend on the decoder lead to noise sensitivity and over-
fitting issues as described in detail above. These methods are also computationally
intensive, especially for large scale high-dimensional problems, as a result of expensive
pre-processing [21, 22] or computation in training [19, 20].

In contrast, by focusing more on the geometry of the decoded manifold, NRAE is
able to learn smooth manifolds with the correct local geometry, simpler to implement,
and more scalable since it requires only a single prior construction of the graph without
other additional pre-processing steps. Indeed, with the exception of Sp-VAE [22], all
other approaches test their algorithms with two-dimensional latent spaces, while we
test NRAE for latent spaces with up to 128 dimensions.

For general regularization methods that focus on latent space distributions, we sur-
mise that using our neighborhood reconstruction loss in lieu of the point reconstruction
loss may lead to several performance improvements; this is verified in Section 3.4.3,
where we combine our neighborhood reconstruction loss with some existing encoder
regularization methods and compare their performance against the original methods.

3.4 Experiments

In this section, through extensive experiments with both synthetic and real-world im-
age data, we compare NRAE with a range of existing regularization methods: the
Variational Autoencoder (VAE) [25], Wasserstein Autoencoder (WAE) [27], Denois-
ing Autoencoder (DAE) [18], Contractive Autoencoder (CAE) [32], Geometry Regu-
larized Autoencoder (GRAE) [21], and Structure-Preserving Variational Autoencoder
(Sp-VAE) [22]. For comparison with Sp-VAE, we augment the regularization term in-
troduced in [22] to a vanilla autoencoder rather than the variational autoencoder –
we refer to this autoencoder as the Structure-Preserving Autoencoder (SPAE) – since
a direct comparison with the variational autoencoder is already made, and our intent
is to examine the effects of the structure-preserving regularization term.

For NRAE, we use both the local quadratic and linear approximations, respectively
denoted NRAE-Q and NRAE-L. Our focus is on comparing the manifold smoothing
property, geometry preserving property, and generalization ability of NRAE against
baseline methods. We refer the reader to the Appendix A for a description of the
network architectures used in the experiments, together with implementation details
including the hyperparameter tuning strategy.
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3.4.1 Manifold Smoothing Property

Smoothness of learned manifolds. We first consider a one-dimensional manifold
embedded in R2, {x, sin(x)|x ∈ [−π, π]}. Given 50 randomly sampled data points, we
add isotropic Gaussian noise with a standard deviation of 0.2. We train the NRAE and
baseline AEs with one-dimensional latent spaces. Figure 3.4 and Table 3.1 show that
NRAE-L and NRAE-Q successfully re-produce smooth manifolds compared to other
baseline methods.

Figure 3.4: The noisy samples (blue) and learned manifolds (orange).

Table 3.1: The mean-squared reconstruction errors of 10,000 clean test data. The av-
erages and standard deviations are computed over ten times run with different noises,
and multiplied by 100 (the highest and lowest scores are ignored). The best and
second-best results are colored red and blue, respectively.

AE VAE WAE DAE CAE
1.90 ± 0.23 1.45 ± 0.39 2.02 ± 0.76 1.09 ± 0.21 1.33 ± 0.30

GRAE SPAE NRAE-L NRAE-Q
1.56 ± 0.43 1.28 ± 0.30 0.29 ± 0.06 0.30 ± 0.07

Second, we rotate 100 MNIST images of the digit eight 100 times by 3.6 degrees,
obtaining a set of 10,000 training data. We train the NRAE and baseline AEs with
two-dimensional latent spaces, normalize each latent space, and generate rotating im-
ages by sampling regular grids of the latent spaces. NRAE-L and NRAE-Q generate
smoothly varying images compared to other baselines (Figure 3.5). The DAE does not
generate smoothly varying samples because the noise statistics (Gaussian noise) used
in training is different from the statistical noise in the rotating image data.

Finally, to confirm the denoising effect of NRAE on common image data, we train
the NRAE and baseline AEs on MNIST and CIFAR10 data corrupted with various
levels of Gaussian noise (we use sufficiently large epochs for convergence). We then
compare denoising performance measured by the Peak Signal-to-Noise Ratio (PSNR).
As shown in Table 3.2, NRAE-L and NRAE-Q outperform other baselines including
DAE which performed the third best (the noise statistics used in training is the same
as the added noise statistics).
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Figure 3.5: Generated samples of rotating digit 8 from regular grids of the latent
spaces.

Table 3.2: Comparison of PSNR (higher-the-better). The latent space dimensions are
16 for MNIST and 128 for CIFAR10. The best and second-best results are colored red
and blue, respectively.

Dataset Noise AE VAE WAE DAE CAE GRAE SPAE NRAE-L NRAE-Q

MNIST
0.1 20.19 19.61 19.83 20.69 20.08 20.06 20.01 21.07 21.27
0.2 17.15 16.36 16.96 18.37 17.24 17.34 17.34 18.55 18.90

CIFAR10
0.1 18.22 19.87 19.54 20.42 20.73 19.79 19.43 22.21 22.27
0.2 17.84 18.25 17.38 19.30 18.86 16.98 16.90 21.04 20.94

Curvature of learned manifolds. We train the NRAE and baseline AEs on MNIST
images with two-dimensional latent spaces, normalize each latent space, then visualize
the scalar curvature field (i.e., twice the Gaussian curvature [35]) (Figure 3.6). As
shown in Figure 3.6, NRAE-L and NRAE-Q both learn flatter manifolds compared to
our baseline AEs.

Figure 3.6: The scalar curvature field (brighter-the-larger).

3.4.2 Geometry Preserving Property.

Swiss roll. Consider a one-dimensional Swiss roll r(θ) = 0.1 + 0.9 · θ/(2π) for θ ∈
[0, 2π]. Given 30 randomly sampled data points, we add isotropic Gaussian noise with
a standard deviation of 0.01. We then train the NRAE and baseline AEs with one-
dimensional latent spaces. Figure 3.7 shows the reconstruction results for 1000 test
data points. Only GRAE, SPAE, and NRAE-Q successfully learn manifolds with the
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right local geometry. However, unlike NRAE-Q, the regularization terms in GRAE and
SPAE have the effect of increasing reconstruction errors (observe the red rectangles in
Figure 3.7). NRAE-L fails to reconstruct points around the point xr circled in red: the
nearest neighbor to xr in the training set, marked by the blue circle, lies close to the
tangent space of the decoded manifold at xr, i.e., the neighborhood reconstruction
loss is small.

Figure 3.7: Swiss roll data trained with one-dimensional latent spaces. The dots below
the figures represent the one-dimensional latent space encoding of the training set.

Rotated/Shifted MNIST. First, as shown in the first row of the two figures in
Figure 3.8, we generate two sets of 20 training data: the rotated MNIST images of
the digit 3 and shifted MNIST images of the digit 7. We train NRAE and baseline
AEs with one-dimensional latent spaces, encode the training data to the latent spaces,
sort the encoded values in ascending order, and decode them to generate the images
(Figure 3.8). Only SPAE, NRAE-L, and NRAE-Q successfully learn manifolds of the
rotated/shifted images with the correct geometry.

Figure 3.8: Generated rotated/shifted MNIST images. Discontinuities are marked by
orange boxes.

Second, we rotate an MNIST image of the digit six 300 times by 1.2 degrees and
obtain 300 training data; 40 of these are visualized in the first row of Figure 3.9. We
further generate 1000 test data in a similar manner. We then train the AE, DAE, CAE,
and NRAE with one-dimensional circular latent spaces by adding one layer to the end
of the encoder corresponding to z → z/∥z∥, and visualize which data are encoded to
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which point in the latent spaces via the cyclic color map. Only NRAE-Q is able to
learn a manifold with the correct local geometry.

Figure 3.9: Circular latent space encoding of the rotated MNIST images of digit 6.

3.4.3 Generalization

Test data reconstruction. With various large-scale standard benchmark image data,
we show that NRAE generalizes better to the test data compared to other baseline
methods. We use the test reconstruction Mean Square Error (MSE) for quantitative
comparison.

First, we train fully-connected neural networks with the MNIST, FMNIST, and
KMNIST data by varying the number of training data from 1000, 2000 . . . , 10, 000,
and compare the test reconstruction MSEs. The numbers for the validation and test
data are fixed at 10, 000 and 50, 000, respectively. Figure 3.10 shows the MSEs as a
function of the number of training data. The MSEs decrease as the number of training
data increases, while those of the NRAE are lower than most of the other baselines
regardless of the number of training data.

Figure 3.10: The test reconstruction MSEs as the number of training data changes.

Second, we train convolutional neural networks and compare the test reconstruc-
tion MSEs (Table 3.3). We conduct two experiments i) with the entire public data de-
noted by L (large) and ii) with the subset of data denoted by S (small). The number
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of selected subsets are around 20 ∼ 30% of the entire data. NRAE-L and NRAE-Q
produce lower reconstruction MSEs than most of the other baselines, meaning that
the manifolds learned with our methods better generalize to the test data. The CAE
experiment on CELEBA data is excluded because of its high computational cost for
high-dimensional data. Other measures such as the Frechet-Inception Distance (FID)
scores [36] and the Evidence Lower Bound (ELBO) are reported in the Appendix A.

Table 3.3: The test reconstruction MSEs, the lower the better. The latent space di-
mensions are 16, 32, 32, 32, 64, 128, 128, 128 for MNIST, FMNIST, KMNIST, Om-
niglot, SVHN, CIFAR10, CIFAR100, and CELEBA, respectively. The best and second-
best results are colored red and blue, respectively.

Dataset Size AE VAE WAE DAE CAE GRAE SPAE NRAE-L NRAE-Q

MNIST
S 0.01002 0.01091 0.01009 0.00999 0.00998 0.01004 0.00989 0.00953 0.00968
L 0.00688 0.00756 0.00690 0.00684 0.00692 0.00696 0.00694 0.00649 0.00683

FMNIST
S 0.01485 0.01652 0.01428 0.01446 0.01319 0.01331 0.01363 0.01289 0.01277
L 0.01118 0.01235 0.01106 0.01099 0.01052 0.01060 0.01065 0.01060 0.01044

KMNIST
S 0.03267 0.03234 0.03283 0.03280 0.03279 0.03206 0.03268 0.03071 0.03021
L 0.02844 0.02963 0.02776 0.02814 0.02762 0.02753 0.02732 0.02564 0.02602

Omniglot
S 0.03038 0.03627 0.03078 0.03068 0.02714 0.02967 0.02889 0.02668 0.02631
L 0.02704 0.03192 0.02728 0.02696 0.02567 0.02648 0.02644 0.02578 0.02539

SVHN
S 0.00320 0.00420 0.00320 0.00369 0.00273 0.00317 0.00307 0.00202 0.00192
L 0.00174 0.00204 0.00190 0.00177 0.00178 0.00173 0.00175 0.00148 0.00147

CIFAR10
S 0.01466 0.01620 0.01431 0.01427 0.01208 0.01452 0.01504 0.00768 0.00691
L 0.00960 0.01123 0.00863 0.00900 0.00755 0.00832 0.00898 0.00629 0.00587

CIFAR100
S 0.01465 0.01713 0.01463 0.01484 0.01369 0.01391 0.01477 0.00765 0.00717
L 0.01015 0.01064 0.00951 0.00862 0.00842 0.00910 0.00912 0.00678 0.00635

CELEBA
S 0.00780 0.00937 0.00830 0.00782 - 0.00814 0.00861 0.00608 0.00747
L 0.00613 0.00646 0.00630 0.00590 - 0.00595 0.00665 0.00563 0.00565

Compatibility with other regularization methods. In this section, we show that
the NRAE loss function can be used together with other existing latent space distri-
bution regularization methods to improve their generalization performance. We train
convolutional neural networks with the MNIST and CIFAR10 data (small). As shown
in Table 3.4, the NRAE loss improves WAE, CAE, and SPAE by significant margins.
For VAE, there is only little improvement, primarily because the VAE regularization
term is too dominant in training. Interestingly, some cases of WAE, CAE, and SPAE
combined with the NRAE loss show even better generalization performance compared
to NRAE alone. These results imply that a proper combination of the neighborhood
reconstruction loss and existing regularization methods can lead to further improve-
ments in performance.
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Table 3.4: Comparison of the test reconstruction MSEs for VAE, WAE, CAE, GRAE,
and SPAE before and after being combined with the NRAE loss function. MNIST and
CIFAR10 data (small) are used.

Dataset NRAE-L NRAE-Q VAE NRVAE-L NRVAE-Q WAE NRWAE-L NRWAE-Q

MNIST 0.00953 0.00968 0.01091 0.01089 0.01098 0.01009 0.00952 0.00966
CIFAR10 0.00768 0.00691 0.01620 0.01613 0.01609 0.01431 0.00707 0.00684

NRAE-L NRAE-Q CAE NRCAE-L NRCAE-Q SPAE NRSPAE-L NRSPAE-Q

MNIST 0.00953 0.00968 0.00998 0.00936 0.00965 0.00989 0.00942 0.00975
CIFAR10 0.00768 0.00691 0.01208 0.00718 0.00724 0.01504 0.00723 0.00703

NRAE-L NRAE-Q GRAE NRGRAE-L NRGRAE-Q

MNIST 0.00953 0.00968 0.01004 0.00945 0.00974
CIFAR10 0.00768 0.00691 0.01452 0.00716 0.00694

Extended NRAE. Instead of using a quadratic (or linear) approximation of fθ, we
can approximate the composition function Fθ,ϕ = fθ ◦ gϕ to define the neighborhood
reconstruction loss. While NRAE only requires the computation of the Jacobian-vector
product or Hessian-vectors product of fϕ, E-NRAE requires the computation of these
quantities for Fθ,ϕ. We train convolutional neural networks on the MNIST and CI-
FAR10 data (small) and compare their generalization abilities and computational re-
quirements. As shown in Table 3.5, the extended versions show comparable general-
ization performance to the original version, yet take a longer per-epoch runtime (100
batch size and 10,000 training data).

Table 3.5: Comparison of the test reconstruction MSEs and per-epoch runtime esti-
mates for NRAE-L, NRAE-Q, E-NRAE-L, and E-NRAE-Q using MNIST and CIFAR10
data (small).

Dataset Metric NRAE-L E-NRAE-L NRAE-Q E-NRAE-Q

MNIST
mse 0.00953 0.01000 0.00968 0.01017

runtime 21.57 s 24.85 s 34.73 s 40.96 s

CIFAR10
mse 0.00768 0.00712 0.00691 0.00732

runtime 59.14 s 61.28 s 89.24 s 100.18 s

3.5 Conclusion

We have proposed a new graph-based autoencoder, the Neighborhood Reconstructing
Autoencoder (NRAE), that is capable of learning accurate manifolds that are robust to
noisy training data and have the correct local connectivity and geometry, while being
easy to implement, scalable, and computationally efficient. Neighborhood graphs that
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capture the local geometry of the data distribution are combined with local quadratic
(or linear) approximations of the decoder function to formulate a new neighborhood
reconstruction loss, which turns out to be a generalization of the original point recon-
struction loss. Through extensive experiments with both synthetic and standard image
datasets, we have demonstrated the manifold smoothing property, geometry preserving
property, and the generalization performance advantages – in some cases by significant
margins – of our method.

Further, we have empirically verified that (i) a proper combination of the neigh-
borhood reconstruction loss and existing regularization terms that focus on the latent
space distributions can lead to further improvements in performance and (ii) in neigh-
borhood reconstruction loss, approximating the decoder only is sufficient for learning
the correct manifold while being computationally more efficient than approximating
both the encoder and decoder.

Our algorithm can be further enhanced in a number of different ways. First, the
current implementation of NRAE uses the k-NN graph construction with Euclidean dis-
tance metric and a simple kernel function that outputs binary values. These choices
are made for simplicity, and clearly sub-optimal. Other combinations of the graph con-
struction method (e.g., the persistent homology [37]), distance metric (e.g., using deep
metric learning), and kernel function (e.g., the Gaussian kernel) are worth exploring.
Second, NRAE can be extended to a stochastic model in a number of ways, e.g.,
using the probabilistic autoencoder [38] that uses the latent variable model, or the
energy-based approach as done in [39].
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4.1 Introduction

Autoencoders are widely used to identify, given a set of high-dimensional data, the
underlying lower-dimensional manifold structure and its coordinate space, simultane-
ously [9]. The decoder explicitly parameterizes the data manifold as a mapping from
a lower-dimensional coordinate space (i.e., latent space) to the high-dimensional data
space, and the encoder maps data points to their corresponding coordinates (i.e., la-
tent values). However, vanilla autoencoders trained to reconstruct the given training
data often learn manifolds that severely overfit to noisy training data or are wrong in
regions where there are fewer data, impairing their manifold learning performances.

It has been recently discovered by [13] that autoencoder regularization methods
that focus on regularizing the latent space distributions determined entirely by the en-
coders [25, 40, 26, 32] are not sufficient to learn correct manifolds, yet it is important
to properly regularize the decoders that parameterize the manifolds. In [13], neighbor-
hood graphs constructed from data are successfully utilized to regularize the local ge-
ometry and connectivity of the manifold, significantly improving the manifold learning
accuracy. However, the underlying premise behind this method is that the graph has
to be accurate, yet constructing a correct graph may not be always straightforward.

There are some graph-free methods such as the denoising autoencoder [18] and
reconstruction contractive autoencoder [41] that regularize not only an encoder but
also a decoder. They can learn manifolds that are robust to noise to some extent, but
when the noise level is large, the performance is often less-than-desirable, and they do
not always produce correct manifolds, especially in regions where there are fewer data
(discussed in more detail in Section 4.4.2).

Since the decoder needs to be regularized, one may come up with some naive

53
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Figure 4.1: Left: Two decoders f and f ′ parameterize the same data manifold where
the norm of Jacobian of f ′ is smaller than that of f , i.e., ∥Jf∥ > ∥Jf ′∥. Right: A
curve and developable surface embedded in R3 have zero intrinsic curvatures.

regularization strategies such as minimizing the norm of the decoder’s Jacobian or
Hessian, considering them as measures of the manifold’s smoothness. However, these
norms do not properly capture any geometric quantity of the manifold because they
are not reparametrization-invariant (or coordinate-invariant). As shown in Figure 4.1
(Left), just by increasing the volume of the latent space without actually changing
the manifold, i.e., re-parametrizing the manifold f 7→ f ′, the above norms can be
minimized.

Just recently, a coordinate-invariant geometric distortion measure has been intro-
duced to regularize the decoder to be a geometry-preserving mapping, which is called
the isometric regularization [14], so that the data space geometry is preserved in the
latent space. Minimizing this distortion measure implicitly forces the learned manifold
to have zero intrinsic curvature – which only depends on distances measured within the
manifold (e.g., a cylinder’s side surface has zero intrinsic curvature unlike the spherical
surface) –, resulting in some geometrically meaningful manifold regularization effects.

The intrinsic curvature, however, does not capture how the manifold lies in the
data space,1 and thus minimizing the manifold’s intrinsic curvature may not be enough
to learn correct manifolds. For example, curves and developable surfaces2 in R3 always
have zero intrinsic curvatures, e.g., Figure 4.1 (Right), regardless of how severely they
are curved from an extrinsic point of view [35].

The main contribution is a coordinate-invariant extrinsic curvature minimization
framework for autoencoder regularization, which we refer to a Minimum Curvature

1Manifold’s intrinsic properties are defined without involving any embedding.
2A developable surface can be formed by bending or rolling a planar surface without stretching

or tearing.
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Autoencoder (MCAE), that is graph-free and effectively improves the manifold learn-
ing accuracy given a noisy or small training dataset. Specifically, we develop a coordinate-
invariant extrinsic curvature measure of the learned manifold, by investigating how
smoothly tangent space changes on the manifold, and use it as a regularization term.

To make things more explicit, let M be a manifold of dimension m embedded in
RD. Consider a mapping T that maps a point x in M to its tangent space TxM, a
linear subspace that has the dimension of m attached at x, i.e., T (x) = TxM. The set
of all linear subspaces of dimension m in RD forms a manifold called the Grassmann
manifold denoted by Gr(m,RD) [42], and thus the mapping T can be viewed as a
mapping between two Riemannian manifolds, i.e., T : M → Gr(m,RD). By using
the Dirichlet energy [43], a natural smoothness measure of mappings between two
Riemannian manifolds defined in a coordinate-invariant way, we formulate an extrinsic
curvature measure. We also propose a practical estimation strategy of the curvature
measure that can be used for high-dimensional problems, reducing computation costs.

Experiments on diverse image and motion capture data confirm that, compared
to existing graph-free regularized autoencoders, our MCAE improves manifold learning
accuracy for noisy and small training datasets. In particular, our experiments show that
even compared to the methods specially designed to be robust to input perturbations
such as the DAE [18] and RCAE [41], the MCAE shows comparable or even in some
cases significantly higher robust manifold learning performance.

4.2 Geometric Preliminaries

4.2.1 Grassmann Manifold

In this section, we review the Grassmann manifold and its Riemannian geometry from
a matrix-analytic perspective. The Grassmann manifold is defined as the set of all m
dimensional linear subspaces of the Euclidean space RD, denoted by Gr(m,RD); this
can be identified with the set of orthogonal rank-m projection matrices as follows:

Gr(m,RD) = {P ∈ RD×D | P T = P, P 2 = P, rank(P ) = m}, (4.2.1)

which is an m(D−m) dimensional manifold; which associates P ∈ Gr(m,RD) with the
linear subspace range(P ) ⊂ RD. This is an implicit parametrization of the Grassmann
manifold considered as being embedded in the Euclidean space RD×D. For more formal
and detailed descriptions of the Grassmann manifold, we refer to [42].

Given a rank-m matrix J ∈ RD×m, one may want to consider its range, an m-
dimensional linear subspace in RD, as an element of the Grassmann manifold. The
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embedding E : RD×m → Gr(m,RD) such that E(J) = J(JTJ)−1JT properly con-
verts J to the element of (4.2.1). We note that (i) range(J) = range(E(J)) and (ii)
E(J) = E(JA) for any m×m invertible matrix A ∈ Rm×m since the transformation
J 7→ JA does not change the range.

Next, we introduce the basic Riemannian structure of the Grassmann manifold. At
a point P ∈ Gr(m,RD), the tangent space is defined as follows:

TPGr(m,RD) := {V ∈ RD×D | V T = V, V P + PV = V }, (4.2.2)

which can be derived from (4.2.1) by differentiating the constraints. One canonical
choice of the Riemannian metric is given as follows:

⟨V1, V2⟩ :=
1√
2
Tr(V T

1 V2) for V1, V2 ∈ TPGr(m,RD). (4.2.3)

This metric is invariant under the orthogonal transformation, i.e., ⟨V1, V2⟩ = ⟨RV1, RV2⟩
for any D ×D orthogonal matrix R.

4.2.2 Dirichlet Energy for Mappings between Riemannian Manifolds

This section introduces the Dirichlet energy for mappings between two Riemannian
manifolds. Let M and N be Riemannian manifolds of dimension m and n; we will
consider a differentiable mapping f : M → N . We will assume x ∈ M is explicitly
parametrized by local coordinates as x ∈ Rm and the Riemannian metric at x ∈ M
is expressed as m × m positive-definite matrix G(x) = (gij(x)) ∈ Rm×m, and N is
embedded in the Euclidean space of higher dimension as N ⊂ Rd (d ≫ n) and the
Riemannian metric at y ∈ N is given as ⟨·, ·⟩y for y ∈ N (e.g. Grassmann manifold).
The mapping f is expressed as f : Rm → N ⊂ Rd such that y = f(x).

The Dirichlet energy, a global measure of how much the mapping f changes, is
defined as follows:∫

M

m∑
i=1

m∑
j=1

gij(x)⟨ ∂f
∂xi

(x),
∂f

∂xj
(x)⟩f(x)

√
det G(x) dx1 · · · dxm, (4.2.4)

where gij(x) denotes (i, j)-th element of the inverse of G(x) and
√

det G(x) dx1 · · · dxm
is the Riemannian volume form, which corresponds to the integral functional from
the theory of harmonic maps; this integral is an intrinsic quantity (i.e., coordinate-
invariant). We note that the integrand is a local measure of how much the mapping
f changes. We refer to the extensive literature on the theory and applications of har-
monic maps, e.g., [43, 44, 45, 46, 14].
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4.3 Minimum Curvature Autoencoders

In this section, we propose a regularized autoencoder based on the principle of mini-
mum curvature manifold learning. Throughout, we consider a data space RD and la-
tent space Rm (D ≫ m) and denote a parametric encoder by gϕ : RD → Rm such
that z = gϕ(x), and a parametric decoder by fθ : Rm → RD such that x = fθ(z).
The manifold parametrized by the decoder will be denoted by Mθ, and the Jacobian
of the decoder by Jθ(z) =

∂fθ
∂z (z). Given a set of data points {xi ∈ RD}Ni=1, the em-

pirical data distribution will be denoted by p̂(x) := 1
N

∑N
i=1 δ(x − xi) and the latent

space distribution encoded by gϕ by p̂ϕ(z) := 1
N

∑N
i=1 δ(z − gϕ(xi)). The subscripts

show what variables each function or geometric object depends on, either θ or ϕ.

4.3.1 Coordinate-Invariant Extrinsic Curvature Measure

In this section, we formulate a coordinate-invariant (i.e., reparametrization-invariant)
extrinsic curvature measure of the manifold Mθ embedded in RD. We begin by in-
troducing the notion of coordinate-invariance:

Definition 4.3.1. Given a manifold M of dimension m embedded in RD, let f :
Rm → M be its explicit parametrization. A functional F(f) is coordinate-invariant
(i.e., reparametrization-invariant) if, given any invertible mapping or coordinate trans-
formation (i.e., reparametrization) h : Rm → Rm, F(f) = F(f ◦ h−1).

The coordinate-invariance is necessary to properly measure any geometrically mean-
ingful quantity of the manifold. For example, the integration of the Frobenius norm
of Jθ in coordinate space Rm is not coordinate-invariant, and hence does not capture
any geometrically meaningful quantity of Mθ.

Now, we define a coordinate-invariant extrinsic curvature measure of Mθ. The
core idea is to define a local measure of the extrinsic curvature by measuring how
fast the tangent space TxMθ changes within the neighborhood of x, and then in-
tegrate it over the manifold to define a global curvature measure. For this purpose,
let a pair of mappings, encoder gϕ and decoder fθ, be a coordinate system for Mθ,
and consider a mapping T : Rm → Gr(m,RD) such that T (z) is the element of
the Grassmann manifold (4.2.1) whose range is equal to Tfθ(z)Mθ. We note that the

range of the Jacobian matrix Jθ(z) ∈ RD×m is TxMθ, hence, by using the embedding
E : RD×m → Gr(m,RD) such that E(Jθ) := Jθ(J

T
θ Jθ)

−1JTθ , we can explicitly write
the mapping T as T (z) = E(Jθ(z)).

Let Mθ be assigned with the Riemannian metric induced from the data space
Riemannian metric H(x), so that the metric expressed in the coordinate space is
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JTθ (z)H(fθ(z))Jθ(z), and Gr(m,RD) be assigned with the Riemannian metric in (4.2.3).
We use the dirichlet energy in (4.2.4) of the mapping T as a coordinate-invariant ex-
trinsic curvature measure, where the integral is replaced by the expectation over p̂ϕ(z):

Definition 4.3.2. Given an encoder gϕ, decoder fθ, and empirical distribution in co-
ordinate space p̂ϕ(z), the global extrinsic curvature measure of Mθ with respect to
p̂ϕ(z) is defined as

C(θ, ϕ) := Ez∼p̂ϕ(z)[
m∑
i=1

m∑
j=1

(JTθ HJθ)
−1
ij Tr(

∂

∂zi
(E(Jθ))

∂

∂zj
(E(Jθ)))]. (4.3.5)

In this thesis, we use the identity metric for the ambient data space, i.e., H(x) =
ID×D.

Proposition 4.1. The curvature measure C(θ, ϕ) in Definition 4.3.2 is coordinate-
invariant, i.e., for another pair of encoder gϕ′ := h◦gϕ and decoder fθ′ := fθ◦h−1 with
any invertible map or coordinate transformation h such that z′ = h(z), the measure
is invariant, i.e., C(θ, ϕ) = C(θ′, ϕ′).

Proof. The proof is given in the Appendix B.2

Our definition of the curvature generalizes classical definition of the curvature of
a curve embedded in R3 from differential geometry [47] (please see Appendix B.3 for
more details).

With the proposed curvature measure, we define a regularized autoencoder where
the loss function consists of the following two terms i) reconstruction error term for
manifold learning and ii) regularization term C(θ, ϕ) for curvature minimization:

min
θ,ϕ

Ex∼p̂(x)[∥x− fθ ◦ gϕ(x)∥2] + α C(θ, ϕ), (4.3.6)

where α is the regularization coefficient, which we refer to as the Minimum Curva-
ture Autoencoder (MCAE).

4.3.2 Practical Implementations

This section introduces two practical strategies for computation of the curvature mea-
sure (4.3.5).

Augmented Distribution: In (4.3.5), the local curvature measure is expected over
the empirical latent space distribution. However, the influence of the measure is then
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limited to regions where data is available; thus the manifold’s curvature in regions
where data is no data may not be properly regularized. In practice, we use data aug-
mentation to resolve this issue. Following [33, 14], we use the modified mix-up data-
augmentation method with a parameter η > 0, where p̂ϕ(z) is augmented by z =
δz1 + (1 − δ)z2 such that zi ∼ pϕ(z), i = 1, 2, where δ is uniformly sampled from
[−η, 1 + η]. We set η = 0.2 throughout.

Stochastic Trace Estimation: At first glance, the curvature measure (4.3.5) seems
computationally very expensive, because it involves the computation of the full Jaco-
bian Jθ of a deep neural network and derivative of the Jacboaidn ∂Jθ

∂z , and we even
need to backpropagate through them when using the standard stochastic gradient de-
scent algorithms. To efficiently compute the measure in practice, we use the Hutchin-
son’s trace estimator [48], i.e., Tr(A) = Ev∼N (0,I)[v

TAv], then the curvature measure
C(θ, ϕ) has the following expression:

C(θ, ϕ) = Ez∼p̂ϕ(z),v∼N (0,Im),w∼N (0,ID)[v
T ∂(w

TE(Jθ))

∂z

∂(E(Jθ)w)

∂z
G−1
θ v], (4.3.7)

where Ik is the k × k identity matrix and Gθ = JTθ HJθ. To implement this compu-
tationally efficiently, we use the Jacobian-vector and vector-Jacboian products in mul-
tiple times: (i) for E(Jθ)w = JθG

−1
θ JTθ w, we first use the vector-Jacobian product

for JTθ w and the Jacobian-vector product for Jθ(G
−1
θ JTθ w), and (ii) for ∂(E(Jθ)w)

∂z v

and ∂(E(Jθ)w)
∂z (G−1

θ v), we use the Jacobian-vector products. These techniques make
the computation of (4.3.5) tractable for high-dimensional complex problems. Surpris-
ingly, for the estimation of (4.3.7), using one sample of v and w at each z ∼ p̂ϕ(z)
was sufficient to train MCAE in our later experiments. When the latent space is high-
dimensional, the matrix inverse computation G−1

θ takes up most of the computation
time. Using an approximate inverse can significantly reduce the computation time, see
the Appendix B.6.

4.4 Experiments

4.4.1 Parameter Sweep

We first provide an empirical study on the effect of the most important parameter
of MCAE, the regularization coefficient α. Intuitively, as α increases, the tendency
to minimize the extrinsic curvature of the manifold becomes stronger, so the learned
manifold will become closer to a linear subspace. And, if α is too small, the learned
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manifold will not be different from that of the vanilla autoencoder; hence it is impor-
tant to select an appropriate value for α depending on the dataset.

Figure 4.2 shows how α affects the learned manifold in MCAE with two examples.
In the upper figure, given noisy two-dimensional data points, we train MCAEs with
one-dimensional latent spaces. In the lower figure, given sparse three-dimensional data
points constrained on the 2-sphere S2 := {x ∈ R3 | ∥x∥ = 1}, we train MCAEs with
one-dimensional latent spaces, where the decoder outputs are normalized to be in S2.
As can be seen, α = 0.01 and α = 0.0001 are good values for the upper and lower
examples, respectively. In practice, we can find the optimal value of α with a proper
validation criteria (e.g., mean reconstruction error for validation data).

Figure 4.2: Learned manifold becomes flatter as the regularization coefficient α in-
creases. Upper : Learned data manifolds of 1d sin-curve and noisy training data points.
Lower : Learned data manifolds of 1d S-curve projected to the 2-sphere and sparse
training data points.

4.4.2 Comparison to Other Regularization Methods

In this section, we compare the proposed MCAE with other regularized autoencoders
and highlight the differences. Please refer to Appendix B.1 for more detailed compar-
isons.

Comparison to Isometrically Regularized Autoencoders: In the Isometrically
Regularized Autoencoder (IRAE) [14], the decoder is regularized to be a scaled isom-
etry; similar to (4.3.6), a regularization term that measures how far fθ from being a
scaled isometry is added to the reconstruction error term with the regularization co-
efficient α. This regularization implicitly forces the learned manifold Mθ to have zero
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intrinsic curvature, but not the extrinsic curvature; therefore it is at first glance ex-
pected that, when learning a one-dimensional manifold, the IRVE should not have any
meaningful manifold regularization effect (since one-dimensional manifolds always have
zero intrinsic curvatures).

Counterintuitively, as shown in Figure 4.3(a), our experiments show that the ex-
trinsic curvature of the one-dimensional manifold learned by IRAE decreases as α in-
creases. If the decoder’s hypothesis space was a set of arbitrary smooth functions, this
result would not have been obtained, but since the hypothesis space defined as the set
of neural networks is smaller, the isometric regularization seems to reduce the extrin-
sic curvature at the expense of obtaining the isometric representations. Figure 4.3(b)
shows how the reconstruction MSE for clean test data varies as a function of the
extrinsic curvature of the learned manifold by IRAE and MCAE. As the curvature de-
creases or the regularization coefficient increases (from left to right), the test recon-
struction MSE decreases, reaches a minimum, and then increases again. We note that
the graph of MCAE lies lower than that of IRAE, implying that the MCAE can learn
a more accurate manifold than the IRAE.

Figure 4.3: (a) Learned manifold by IRAE becomes flatter as the regularization coeffi-
cient α increases. (b) Test data reconstruction MSE (i.e., manifold learning accuracy)
as a function of the extrinsic curvature obtained by IRAE and MCAE.

Comparison to Denoising and Reconstruction Contractive Autoencoders: De-
noising Autoencoder (DAE) [18] and Reconstruction Contractive Autoencoder (RCAE) [41]
are intuitive and straightforward regularization methods for learning manifolds robust
to input perturbations. As shown in Figure 4.4 (Upper), the DAE and RCAE learn
manifolds robust to noise to some extent. However, as shown in Figure 4.4 (Lower),
for the projected S-curve example in Figure 4.2 (Lower), they still learn wrong man-
ifolds in regions where there are fewer data and do not improve the vanilla autoen-
coder. On the other hand, the MCAE explicitly regularizes the learned manifold to
have a small curvature globally and improves the manifold learning accuracy.
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Figure 4.4: Learning by DAE and RCAE for examples in Figure 4.2.

Table 4.1: Averages and standard errors of the test data set reconstruction MSEs (5
times run) for the sincurve example in Figure 4.2 (Upper) with various Gaussian noise
of standard deviations 0.1, 0.2, 0.3, the lower the better. The best results are marked
in bold. The numbers are written in units of 10−3.

Noise AE VAE DAE RCAE

0.1 3.98 ± 0.22 2.05 ± 0.36 2.23 ± 0.26 2.95 ± 0.44
0.2 22.7 ± 2.9 6.34 ±0.72 6.99 ± 1.04 12.5 ± 1.1
0.3 68.5 ± 17.3 13.5 ± 2.3 17.8 ± 3.4 30.5 ± 7.9

DCAE DHAE IRAE MCAE

0.1 2.81 ± 0.21 2.68 ± 0.31 1.63 ± 0.25 1.28 ± 0.13
0.2 10.9 ± 1.02 14.9 ± 2.87 6.59 ± 1.09 4.56 ± 0.69
0.3 30.7 ± 4.8 46.9 ± 12.5 20.2 ± 5.1 9.80 ± 1.55

Quantitative Comparisons of Noise Robustness: As seen from the above ex-
amples, besides the proposed MCAE, the IRAE, DAE, RCAE all have the robustness
properties to noise. We quantitatively compare the robust manifold learning perfor-
mance given noisy input training data with the sincurve example in Figure 4.2 (Upper)
with various noise levels, i.e., Gaussian noise with standard deviations of 0.1, 0.2, 0.3.
In addition to the IRAE, DAE, RCAE, we compare the MCAE with the vanilla Autoen-
coder (AE) and other regularized autoencoders such as the Variational Autoencoder
(VAE) [25], Decoder Contractive Autoencoder (DCAE), and Decoder Hessian Con-
tractive Autoencoder (DHAE), where the DCAE and DHAE minimize the decoder’s
Jacobian norm and the decoder’s Hessian norm, respectively. Table 4.1 shows the av-
erages and standard errors of the test data set reconstruction MSEs, the lower the
better. The MCAE produces the lowest errors regardless of the noise level.
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4.4.3 Image Data

Grayscale Image: First, we investigate the manifold learning performance of MCAE
compared to the other regularized autoencoders with the standard grayscale image
data (MNIST, Fashion-MNIST, KMNIST ) as the number of training + validation data
and noise level varies. We use two-layer fully connected neural networks (512 nodes
per layer) for both encoder and decoder with ELU activation functions, and the latent
space dimensions are 16, 32, 32, respectively.

Figure 4.5 shows the test reconstruction MSEs as a function of the number of
training (80%) + validation (20%) data. For all methods, the error decreases as the
number of data increases; MCAEs mostly produce the lowest errors except for some
MNIST cases. Figure 4.7 shows the Peak Signal-to-Noise Ratios (PSNRs) computed
with the clean test set data (the higher the better) as a function of the standard de-
viation of the Gaussian noise added to the training data (the number of training data
is 8000). The PSNR decreases as the noise level increases; MCAEs mostly produce
the highest PSNRs. Figure 4.6 shows some de-noising examples with corrupted input
data of MNIST and FMNIST.

Figure 4.5: Test set MSEs as a function of the number of training (80%) + validation
(20%) data, the lower the better.

SVHN & CIFAR10 Image: We compare the manifold learning performances of
MCAE with other regularized autoencoders for the SVHN and CIFAR10 image datasets
for both clean and corrupted training datasets. We use the convolutional and trans-
posed convolutional neural networks for encoder and decoder with ReLU activation
functions and the latent space dimensions are 64; the number of training data is 8000.
For the corrupted training dataset cases, we add three different types of noise: (i)
Gaussian, (ii) Shot, and (iii) Impulse noises adopted from [49]; see Figure 4.8.

Table 4.2 shows the test set MSEs for experiments with the clean training datasets,
and Table 4.3 shows the PSNRs for experiments with the corrupted training datasets,
where in both cases the metrics are computed with the clean test data. From the re-
sults, we note that (i) MCAE shows the second or third best results, (ii) MCAE does
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Figure 4.6: De-noising examples (noise level 0.3).

Figure 4.7: Test set Peak Signal-to-Noise Ratios (PSNR) as a function of the noise
level, the higher the better.

Figure 4.8: Corrupted SVHN and CIFAR10 images.

not improve the vanilla AE for the SVHN clean training dataset case, and (iii) for
the corrupted training dataset cases, RCAE produces better results than the MCAE
unlike the grayscale image data. Overall, compared to the grayscale image data, the
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minimum curvature regularization is less effective for SVHN and CIFAR10. One pos-
sible interpretation is related to the limitation of MCAE (discussed in the conclusion
section), that the SVHN and CIFAR10 manifolds have locally very different curvatures
and thus it is difficult to find a proper constant regularization coefficient α in (4.3.6),
because if we use a big enough α to correctly learn low curvature areas of the man-
ifold, then high curvature areas can be overly flattened, and vice versa. Figure 4.9
shows the density plots of the log normalized local curvature of the learned manifolds
by vanilla autoencoders, i.e., log(κi)− log(κ), i = 1, . . . , N where κi is the local cur-
vature at i-th training data points and log(κ) = 1/N

∑
i log(κi), which is invariant to

the scale of the mean curvature. As shown in Figure 4.9, the variance of the SVHN
manifold’s local curvature is bigger than those of the others, which supports the above
interpretation.

Figure 4.9: Density plots of the log-normalized local curvatures of manifolds learned
by vanilla AEs.

Table 4.2: Test set MSEs of autoencoders trained with clean datasets, the lower, the
better. The best and second best results are marked in red and blue, respectively.

Dataset AE VAE DAE RCAE DCAE DHAE IRAE MCAE

SVHN 0.00228 0.00461 0.00228 0.00252 0.00255 0.00233 0.00213 0.00229
CIFAR10 0.01204 0.01533 0.01204 0.01119 0.01303 0.01244 0.01176 0.01125
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Table 4.3: Test data set PSNRs with various noise types, the higher, the better. The
best and second best results are marked in red and blue, respectively.

Dataset Noise type AE VAE DAE RCAE DCAE DHAE IRAE MCAE

SVHN
Gaussian 20.13 22.60 22.04 25.39 20.92 19.87 20.74 24.37
Shot 21.11 22.49 22.97 26.20 22.41 21.23 25.18 24.73

Impulse 19.33 19.06 20.28 23.31 19.18 19.25 19.71 20.18

CIFAR10
Gaussian 17.06 17.60 17.78 19.51 17.10 16.92 17.35 18.62
Shot 17.18 17.46 17.87 19.52 17.26 17.18 18.49 18.64

Impulse 16.71 16.03 16.93 18.49 16.58 16.59 16.62 17.04

4.4.4 Human Skeleton Pose Data

In this section, we evaluate the MCAE with the human skeleton pose data adopted
from the NTU RGB+D dataset [50]. A human pose skeleton data onsists of 25 three-
dimensional key points and thus is considered a 75-dimensional vector. There are 60
different action classes (e.g., drinking water, brushing teeth), and each action data
consists of a sequence of skeleton poses. For each action class, we use randomly-
selected 800 and 200 skeleton poses as training and validation data, and 9000 poses
as test data. We use two-layer fully connected neural networks (512 nodes per layer)
for both encoder and decoder with ELU activation functions, and the latent space
dimension is 8.

Table 4.4 shows the averages and standard errors of the test data set reconstruc-
tion MSEs over 60 different action classes, the lower the better. MCAE mostly pro-
duces the lowest errors, especially by a significant margin for noisy training data cases.
Figure 4.10 shows some example reconstruction results of noisy input skeleton data
(noise level 0.05); MCAE shows the best de-noising results.

Figure 4.10: Human skeleton pose de-noising examples obtained by reconstructing
noisy input data (noise level 0.05). Example poses are from the action class “eat
meal”.
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Table 4.4: Averages and standard errors of the test data set reconstruction MSEs with
various Gaussian noise of standard deviations 0.05, 0.1, the lower the better. The best
and second best results are marked in red and blue, respectively. The numbers are
written in units of 10−3.

Noise AE VAE DAE RCAE

0 2.23 ± 0.09 2.95 ± 0.13 2.21 ± 0.09 2.17 ± 0.09
0.05 4.60 ± 0.04 4.32 ± 0.02 2.70 ± 0.01 2.98 ± 0.01
0.1 15.3 ± 0.2 13.5 ± 0.2 5.54 ± 0.17 7.50 ± 0.16

DCAE DHAE IRAE MCAE

0 2.25 ± 0.09 2.22 ± 0.09 2.08 ± 0.09 2.11 ± 0.09
0.05 3.92 ± 0.03 4.07 ± 0.03 2.93 ± 0.02 2.20 ± 0.01
0.1 11.7 ± 0.2 12.5 ± 0.2 12.7 ± 0.2 3.09 ± 0.15

4.5 Conclusion

In this thesis, we have proposed a minimum extrinsic curvature principle for manifold
regularization and developed a Minimum Curvature Autoencoder (MCAE), by for-
mulating a coordinate-invariant (reparametrization-invariant) hence geometrically cor-
rect extrinsic curvature measure. Our experiments show that the minimum curvature
regularization can improve manifold learning accuracy for both noisy and small training
datasets. The degree to which the performance is improved depends on the datasets,
and especially for the grayscale image and human skeleton pose datasets, the MCAE
outperforms the existing methods by a significant margin.

Limitations and Future Directions: In the current implementation of MCAE,
the manifold’s extrinsic curvature is minimized globally by using equal weights for all
points. However, for manifolds that have locally very different curvatures, it is difficult
to find a proper weight parameter α in (4.3.6). Ideally, low and high curvature areas
of the manifold need to be regularized with higher and lower weights, respectively.
By exploiting local curvature estimation algorithms, e.g., diffusion-based method [51],
developing a curvature regularization method with different local weights will be an
interesting future research direction.



68 Minimum Curvature Manifold Learning



5
RegularizedAutoencoders for

Isometric Representation Learning

5.1 Introduction

Learning a good representation for high-dimensional data is one of the most funda-
mental problems in machine learning. A good representation should capture all es-
sential information about the data in a parsimonious manner while filtering out all
non-essential variations. Clearly what is “essential” or “non-essential” depends heavily
on the end task [52], and numerous criteria have been proposed for a range of con-
texts, e.g., disentanglement [53, 54], clustering [26], sparsity [55], hierarchy [56], and
isometric embedding [57, 58].

In this thesis we take the view that the essential information is best captured by
the geometry of the data. More specifically, we adopt the manifold hypothesis as our
point of departure, and further argue that a good representation should also preserve
the geometry of the data manifold. That is, nearby points on the manifold should
have representations in the latent representation space that are also nearby, and angles
and volumes should be preserved as much as possible when moving between the data
manifold and its representation space. To find such a representation, it is important
to (i) learn the correct low-dimensional data manifold, and (ii) to find an optimal set
of latent space coordinates that preserves the geometry of the learned data manifold.

A primary reason that autoencoders are widely used for unsupervised representa-
tion learning is that they can learn both the manifold and the latent space coordi-
nates simultaneously during the training phase. Vanilla autoencoders trained purely to
minimize reconstruction loss tend to overfit, and the learned manifolds are often in-
accurate. As demonstrated in [32, 25, 26, 40, 13], by augmenting the reconstruction
loss with a regularization term, manifold learning performance of autoencoders can
be significantly enhanced. However, little if any consideration has been given to the

69
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concurrent problem of learning a set of latent space coordinates that preserves the
geometry of the data manifold (with the exception of FMVAE [33], which we discuss
further below).

The main contribution is a regularized autoencoder that simultaneously learns the
data manifold and a geometry-preserving set of latent space coordinates. For this pur-
pose, we first formulate a hierarchy of geometry-preserving mappings. At the top of the
hierarchy are isometries, which preserve distances and angles, followed by conformal
maps, which preserve angles, and then area-preserving maps. Of particular relevance to
this thesis are the conformal maps, which we further stratify into degree k conformal
maps, with k = 0 corresponding to scaled isometries, i.e., maps that preserve angles
and distances up to some scale factor.

Based on this hierarchy of mappings, we then formulate a corresponding hierarchy
of regularization criteria for training the autoencoder. One of the important findings of
our study is that somewhat counterintuitively, using a regularization term that mea-
sures the nearness to an isometry is in fact detrimental; such a regularization term
overly constrains the mapping, resulting in a higher reconstruction loss whose effects
cannot be mitigated even with adjustments to the regularization term weight. Rather,
using a less stringent regularization term is more helpful. In our examples the degree
zero conformal maps, or scaled isometries, seem to offer the best balance between
reconstruction accuracy and model parsimony.

We note that if the exact data manifold were known in advance, then the scale
factor could be pre-computed, e.g., to make the latent space and the data manifold
have the same volume, in which case it would make sense to use a normalized ver-
sion of the isometry measure as regularization term. When using an autoencoder for
representation learning, however, the data manifold is not known a priori but rather
learned together with the latent space representation. The more effective alternative,
we argue, is to learn this scale together with the manifold and the latent space repre-
sentation. The FMVAE of [33] is in fact the first work to adopt this approach, but the
measure does not adequately capture the nearness to a scaled isometry, and is also
not coordinate-invariant, limiting its performance as we show later in our experiments.

Once the data manifold and an initial set of geometry-preserving latent space co-
ordinates are learned, it is possible to further “flatten” the latent space, by adding a
postprocessing step that leads to an even more isometric set of coordinates. Specifi-
cally, we use an invertible neural network model to map the pre-trained latent space
to a more isometric representation space, without incurring any further losses in re-
construction accuracy.

Experiments on diverse image and motion capture data confirm that, compared to
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existing related methods, our geometrically regularized autoencoder produces more iso-
metric representations of the data while incurring only minimal losses in reconstruction
accuracy. In particular, information retrieval task experiments conducted with CelebA
data show that data similarity measurements performed in our representation space
lead to significantly improved levels of retrieval performance.

Our specific contributions can be summarized as follows:

� We define a family of coordinate-invariant regularization terms that measure how
close the decoder is to being a scaled isometry;

� We propose an isometric regularization method for autoencoders that learns both
the data manifold and a set of geometry-preserving latent space coordinates, all
while incurring minimal losses in reconstruction accuracy;

� We propose a postprocessing flattening technique that learns a more isometric
representation space without further losses in reconstruction accuracy.

5.2 A Hierarchy of Geometry-Preserving Mappings

This section introduces a hierarchy of geometry-preserving mappings between two Rie-
mannian manifolds. Let M be a Riemannian manifold of dimension m with local
coordinates z ∈ Rm and Riemannian metric G(z) ∈ Rm×m, and N be a Rieman-
nian manifold of dimension n with local coordinates x ∈ Rn and Riemannian metric
H(x) ∈ Rn×n. Let f : M → N be a smooth mapping, represented in local coordinates
by the italic symbol f : Rm → Rn. Its differential is denoted by the Jacobian matrix
Jf (z) :=

∂f
∂z (z) ∈ Rn×m.

Intuitively, an isometry is a mapping between two spaces that preserves distances
and angles everywhere. For a linear mapping between two vector spaces equipped with
inner products, an isometry preserves the inner product everywhere. In the case of a
mapping between Riemannian manifolds, f : M → N is an isometry if

G(z) = Jf (z)
TH(f(z))Jf (z) ∀z ∈ Rm. (5.2.1)

Sometimes, requiring a map f to be an isometry can be overly restrictive; preserving
only angles may be sufficient. A conformal map is a mapping that preserves angles
but not necessarily distances. Mathematically, f : M → N is conformal (or angle-
preserving) if

G(z) = c(z)Jf (z)
TH(f(z))Jf (z) ∀z ∈ Rm, (5.2.2)
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for some positive function c : M → R. The positive function is called the conformal
factor.

Conformal maps can be further categorized by the polynomial degree of c(z). A
conformal map of degree zero, i.e., one in which c(z) is constant, sits one level below
the isometric mapping and is defined formally as any mapping f for which a positive
scalar constant c satisfying

G(z) = cJf (z)
TH(f(z))Jf (z) ∀z ∈ Rm (5.2.3)

can be found. Such a map not only preserves angles but also scaled distances; for
this reason we shall also refer to a degree zero conformal map as a scaled isometry.
Area-preserving maps also can be placed within this hierarchy, but for the purposes of
this thesis our focus will be exclusively on isometric and conformal mappings.

5.3 A Coordinate-Invariant Relaxed Distortion Measure

The goal of this section is to design a coordinate-invariant functional F that mea-
sures the proximity of the mapping f : M → N to a scaled isometry. Section 5.3.1
shows how to construct coordinate-invariant functionals for a smooth mapping be-
tween two Riemannian manifolds, while Section 5.3.2 introduces a simple technique
to define coordinate-invariant distortion measures that measure how close the map-
ping is to being an isometry. Section 5.3.3 defines a family of coordinate-invariant
relaxed distortion measures that measure how close the mapping is to being a scaled
isometry.

In order to extend the discussion of traditional distortion measures to more general
cases (we will later use a probability measure), we consider a positive measure ν on
M absolutely continuous to the Riemannian volume form,1 the spaces of interest will
then be limited to the support of ν rather than the entire manifold M.

5.3.1 Coordinate-Invariant Functionals on Riemannian Manifolds

We begin this section by reviewing how to construct coordinate-invariant functionals
for a smooth mapping f : M → N [46]. At a point z ∈ M, consider the character-
istic values of the pullback metric JTf HJf relative to the metric G of M, i.e., the

1Given a measurable space M, a measure ν is absolutely continuous to the Riemannian volume
measure Vol such that dVol(z) =

√
detG(z)dz, if Vol(A) = 0 implies ν(A) = 0 for any measurable

set A ⊂ M.
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m eigenvalues λ1(z), ..., λm(z) of Jf (z)
TH(f(z))Jf (z)

TG−1(z). Apart from their or-
der, these eigenvalues are intrinsically associated with JTf HJf and G, i.e., they are

invariant under coordinate transformations.2

Let S(λ1, ..., λm) be any symmetric function (i.e., a function whose value is invari-
ant with respect to permutations of its arguments) of the m eigenvalues. Then the
integral

IS(f) :=
∫
M
S(λ1(z), ..., λm(z)) dν(z) (5.3.4)

is an intrinsic quantity, i.e., coordinate-invariant.
In this thesis we introduce a new family of coordinate-invariant functionals that can

be used to formulate measures for scaled isometries in a more natural way. Consider a
symmetric function S such that the above integral IS(f) ̸= 0, and let S′(λ1, ..., λm)
be any symmetric function. The following integral∫

M
S′(

λ1(z)

IS(f)
, ...,

λm(z)

IS(f)
) dν(z) (5.3.5)

is then an intrinsic quantity, since the eigenvalues and IS(f) are both intrinsic quan-
tities.

5.3.2 Distortion Measures of Isometry

Recall that f : M → N is a local isometry at z if λi(z) = 1 for ∀i, and a global
isometry if f is a local isometry everywhere [46]. In this section we introduce a simple
technique to define a family of distortion measures that measure the proximity to an
isometry. Consider any convex function h : R → [0,∞) such that h(1) = 0, h′(λ) =
0 iff λ = 1, and define a symmetric function S(λ1, ..., λm) =

∑m
i=1 h(λi). Then the

coordinate-invariant functional ∫
M

m∑
i=1

h(λi(z)) dν(z) (5.3.6)

is a global measure of distortion (restricted to the support of ν). Since the integrand
in the above functional locally measures the deviation of the mapping f from an isom-
etry, its integral also serves as a global measure of distortion. Popular choices include
h(λ) = (1− λ)2 and h(λ) = (log(λ))2.

2Eigenvalues of JT
f HJfG

−1 remain the same under coordinate transformations z 7→ ϕ(z), x 7→
ψ(x).
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5.3.3 A Relaxed Distortion Measure and Scaled Isometry

The goal of this section is to design a family of coordinate-invariant functionals F
that measure how far the mapping f : M → N is from being a scaled isometry (over
the support of ν). We refer to these as relaxed distortion measures, in the sense that
a larger set of mappings are minimizers of the relaxed distortion measure than the
original distortion measure.

Given mappings f, f ′ : M → N (denoted f and f ′ in local coordinates) with
respective Jacobians Jf , Jf ′ , the desired properties of F are as follows:

(i) F(f) ≥ 0;

(ii) F(f) = 0 if and only if λi(z) = c for ∀i, ∀z ∈ Supp(ν), and for some c > 0;

(iii) F(f) = F(f ′) if JTf HJf = cJTf ′HJf ′ for ∀z ∈ Supp(ν), and for some c > 0,

where λi(z) denotes the eigenvalues of JTf (z)H(f(z))Jf (z)G
−1(z) and Supp(ν) is

the support of ν. The first condition is to ensure a minimum of zero, while the sec-
ond condition is to make any scaled isometry (restricted to the support of ν) be a
minimizer. Although the first and second conditions are sufficient to use F(f) as a
measure of the proximity of f to a scaled isometry, we impose an additional third
condition to make the measure more natural in the following sense: since the mea-
sure should not a priori favor a particular scale for the pullback metric, if the pullback
metrics are equivalent up to some scale, then these should be treated equivalently.

Our core idea for constructing such a measure is to use the newly proposed fam-
ily of coordinate-invariant functionals (5.3.5) with the technique used in (5.3.6) as
follows:

F(f) :=

∫
M

m∑
i=1

h(
λi(z)∫

M S(λ1(z), ..., λm(z)) dν(z)
) dν(z) (5.3.7)

where h is some convex function and S is some symmetric function. This functional
automatically satisfies the first condition. To satisfy the second and third conditions,
the symmetric function S must satisfy some further conditions:

Proposition 5.3.1. The functional in (5.3.7) satisfies the second and third conditions
if ν is a finite measure, S(kλ1, ..., kλm) = kS(λ1, ..., λm), and S(1, ..., 1) = 1/ν(M).
Proof: See Appendix C.
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5.4 Isometric Representation Learning

We now introduce a regularized autoencoder with a practical form of the relaxed
coordinate-invariant distortion measure. We also describe the additional postprocess-
ing step for further flattening the latent space. Finally, we introduce some relevant
implementation details.

5.4.1 Isometric Regularization with the Relaxed Distortion Measure

Denote a parametric encoder function by gϕ : RD → Rm and decoder function by
fθ : Rm → RD. We consider the latent space Rm with coordinates z assigned with
the identity metric G(z) = I and the data space RD with coordinates x assigned
with the metric H(x). We denote the data distribution in RD by x ∼ PD and the
distribution of the encoded data in Rm by z ∼ Pϕ where z = gϕ(x).

First, to construct a relaxed distortion measure of fθ, we need to select a posi-
tive measure ν. Considering ν as a probability measure Pϕ and replacing the integrals∫
M dν(z) in (5.3.7) by expectations Ez∼Pϕ

, we get the following expression:

F(fθ;Pϕ) := Ez∼Pϕ
[
m∑
i=1

h(
λi(z)

Ez∼Pϕ
[S(λ1(z), ..., λm(z))]

)], (5.4.8)

where λi(z) are the eigenvalues of the pullback metric JTfθ(z)H(fθ(z))Jfθ(z).
Then, we propose a regularized autoencoder where the loss function consists of the

following two terms i) loss function L(θ, ϕ) for manifold learning (e.g., reconstruction
error) and ii) regularization term F(fθ;Pϕ) for learning a scaled isometric decoder:

min
θ,ϕ

L(θ, ϕ) + αF(fθ;Pϕ). (5.4.9)

Training an autoencoder to minimize (5.4.9) is referred to as Isometric Regulariza-
tion (IR).

In practice, the computation of and back-propagation through F(fθ;Pϕ) that in-
cludes the computation of the entire Jacobian of fθ requires sufficient memory and
computational cost. Instead, with an appropriate choice of convex function h and sym-
metric function S, the measure F(fθ;Pϕ) can be efficiently estimated by using the
more easily computed Jacobian-vector and vector-Jacobian products and Hutchinson’s
stochastic trace estimator [48]:
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Proposition 5.4.1. Let h(λ) = (1− λ)2 and S(λ1, ..., λm) =
∑m

i=1 λi/m, then

F(fθ;Pϕ) = Ez∼Pϕ
[

m∑
i=1

(
λi(z)

Ez∼Pϕ
[
∑

i λi(z)/m]
− 1)2] = m2

Ez∼Pϕ
[Tr(H2

θ (z))]

Ez∼Pϕ
[Tr(Hθ(z))]2

−m,

(5.4.10)
where λi(z) means the eigenvalues of Hθ(z) := JTfθ(z)H(fθ(z)))Jfθ(z). Proof: See
Appendix C.

5.4.2 Latent Space Flattening

In the isometric regularization approaches, autoencoders are trained to minimize both
manifold learning loss and geometric regularization term; hence there exists an inherent
tradeoff. We introduce a postprocessing step to further flatten the pre-trained latent
space to a more isometric representation space without incurring any further losses in
reconstruction accuracy.

Given a trained encoder gϕ : RD → Rm and trained decoder fθ : Rm → RD,
consider an invertible map i : Rm → Rm such that z′ = i(z) and the composition
fθ ◦ i−1 : Rm → RD. The map i transforms the pre-trained latent space to a new
set of latent coordinates without affecting the reconstruction accuracy. This gives an
additional degree of freedom to find a more isometric representation space. Based on
this idea, we formulate the latent space flattening problem as follows:

min
i

F(fθ ◦ i−1;P ′
i ) + β Ez∼Pϕ

[∥i(z)∥2], (5.4.11)

where z′ ∼ P ′
i is the distribution of the encoded data in Rm (z′ = i ◦ gϕ(x)) and the

second term is the regularization term with coefficient β added to prevent i(z) from
diverging. In this thesis, we use the invertible deep neural network RealNVP [59] for
i.

5.4.3 Implementation Details

We now explain some relevant implementation details of our approach. We use a Gaus-
sian encoder qϕ(z|x) and decoder pθ(x|z), and treat the mean of pθ(x|z) as fθ(z).
We use the negative evidence lower bound for L(θ, ϕ) from the VAE with the unit
Gaussian prior distribution [25]. We assume the identity metric for the data space,
i.e., H(x) = I. We use the particular combination of h and S described in Proposi-
tion 5.4.1. In cases when the latent space dimension is sufficiently small, it becomes
feasible to compute the full metric and use other combinations. As an example, when
the dimension is two, we use another popular choice h(λ) = (log(λ))2.
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Augmented Distribution: The relaxed distortion measure is defined as the ex-
pectation over the encoded data distribution P . However, the influence of the mea-
sure is then limited to regions where data is available; in practice, data augmentation
can resolve this issue. Following the FMVAE [33], we use the modified mix-up data-
augmentation method with η > 0, where P is augmented by z = δz1+(1− δ)z2 such
that zi ∼ P, i = 1, 2, where δ is uniformly sampled from [−η, 1 + η]. Sampling from
the augmented latent space data distribution is denoted as z ∼ PZ .

The pseudocode is available in Appendix C.

5.5 Experiments

Throughout this section we use isometric regularization on VAE [25, 60] which we refer
to as the Isometrically Regularized VAE (IRVAE). We then train the Flattening Mod-
ule (FM) in a post hoc manner, which we denote by IRVAE + FM. In Section 5.5.1,
we show that (i) IRVAE can effectively learn the isometric representation with a min-
imal loss in reconstruction accuracy compared to vanilla VAE and FMVAE [33], and
(ii) IRVAE + FM leads to a more isometric representation without any loss in re-
construction accuracy. In Section 5.5.2, through an unsupervised human face retrieval
task, we show that measuring data similarity in our isometric representation spaces sig-
nificantly improves retrieval performance. A mathematical comparison of IRVAE with
FMVAE and experimental details are given in Appendix C.

5.5.1 Isometric Representation with Minimal Loss in Reconstruction Ac-
curacy

We first introduce some evaluation metrics that measure (i) the accuracy of the learned
manifolds, and (ii) how isometric the latent space is (i.e., how close the pullback met-
ric M(z) := JTf (z)Jf (z) is to {cI|c ∈ (0,∞)}). These metrics are computed over the
test datasets.

The accuracy of the learned manifolds is measured in terms of the mean square
reconstruction errors. To evaluate M(z), we introduce two different metrics that are
scale-invariant (i.e., M(z) and kM(z) have the same values). First, the Variance of
the Riemannian metric (VoR) is defined as the mean square distance from M(z) to
M̄ := Ez∼PZ

[M(z)], where we use the affine-invariant Riemannian distance d, i.e.,
d2(A,B) =

∑m
i=1(log λi(B

−1A))2 [61, 62]. Second, we use the Mean Condition Num-
ber (MCN) of the Riemannian metric, where the condition number of M(z) is the
ratio between the maximum eigenvalue and minimum eigenvalue. Both metrics are
computed by sampling a sufficiently large number of points from PZ .
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VoR measures how the Riemannian metric is spread out from M̄ , which becomes
zero when the metric is constant for all z in the support of PZ . While VoR mea-
sures the spatial variance of the metric in z, MCN measures how much the metric is
isotropic. MCN becomes one when M(z) ∝ I for all z in the support of PZ .

For IRVAE and FMVAE, there are natural tradeoffs between MSE versus VoR and
MCN. If we use higher weights α for the regularization terms, the representation be-
comes more isometric with losses in reconstruction accuracy. In order to compare the
algorithms in a regularization coefficient α-invariant manner, we compare the tradeoff
curves, i.e., MSE as a function of VoR and MCN obtained by using varying regular-
ization coefficients α.

Sections 5.5.1.1 and 5.5.1.2 use the MNIST image and CMU motion capture data,
respectively, with two-dimensional latent spaces. Additional experimental results in-
cluding experiments on more diverse image data (MNIST, FMNIST, SVHN, CIFAR-10)
are provided in Appendix C.

5.5.1.1 MNIST

Figure 5.1 shows tradeoff curves of FMVAE and IRVAE trained on MNIST data with
two-dimensional latent spaces, some example reconstructed images, and latent space
representations with equidistance plots. We note that the tradeoff curves of IRVAE
(orange) are below those of FMVAE (blue), meaning that the IRVAE learns more iso-
metric representations at any level of reconstruction accuracy. Cases A and B produce
good reconstruction results, but non-homogeneous and non-isotropic equidistance plots
since lower regularization coefficients are used. For cases F, I, opposite results are ob-
tained.

Figure 5.2 shows tradeoff curves and latent space representations for IRVAE +
FM (under the same experimental setting as above). IRVAE + FM results in more
isometric representations than IRVAE, with no losses in MSE. In particular, for cases
A and B, which have the lowest MSE but the highest VoR and MCN, the flattener
significantly lowers both VoR and MCN. These improvements can be qualitatively seen
by comparing the equidistance plots of A and B in Figure 5.1 and Figure 5.2.

5.5.1.2 CMU Motion Capture Data

Figure 5.3: The tradeoff curves for FMVAE, IR-
VAE, IRVAE + FM trained with the pose data.

We use a subset of the CMU mo-
tion capture data by selecting four
classes: walking, jogging, balancing,
and punching, with two-dimensional
latent spaces. The motion data in
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Figure 5.1: Top: The MSE and VoR, MCN tradeoff curves, and some example recon-
structed images produced by IRVAE trained with various regularization coefficients.
Bottom: Two-dimensional latent space representations with some equidistance plots
whose centers consist of a randomly selected data point zc from each class for A, B,
F, I.The equidistance plots are {z|(z − zc)

TJTf (zc)Jf (zc)(z − zc) = k for k > 0. (The
more homogeneous and isotropic, the better.)

each class is a sequence of pose
data, where each pose data is rep-
resented by a 50-dimensional vec-
tor of joint angles. We use a to-
tal of 10,000, 2,000 and 2,000 pose
data items for training, validation,
and test, respectively.

Figure 5.3 shows the tradeoff curves for FMVAE, IRVAE, and IRVAE + FM. The
results of VAE are omitted from the figure since the MSE, VoR, and MCN are too
large to be plotted together with the other models (MSE: 1.72×10−4, VoR: 4.86,
MCN: 20.3). The tradeoff curves for IRVAE are far below compared to those for FM-
VAE, while the IRVAE + FM results in a more isometric representation without any
loss in MSE.

Figure 5.4 shows the latent space representations with equidistance ellipses. For a
fair comparison, we select models with similar reconstruction accuracy (the selected
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Figure 5.2: Tradeoff curves for FMVAE, IRVAE, and IRVAE + FM, and two-
dimensional latent space representations with some equidistance plots (under the same
experimental setting as Figure 5.1).

regularization coefficients are marked by the black circles in Figure 5.3). We observe
that the ellipses for IRVAE and IRVAE + FM are much more homogeneous (blue)
than those for VAE and FMVAE.

Figure 5.4: Latent spaces and equidistance ellipses for VAE, FMVAE, IRVAE, and IR-
VAE + FM (the redder the ellipse, the larger the condition number).

5.5.2 Unsupervised Human Face Retrieval

We also demonstrate the effectiveness of our approach to image-to-image retrieval
of human faces. We consider the retrieval of face images that have a queried set of
attributes, in which the query is also given as a set of face images that share some
visual attributes. For example, if a user provides a set of photos that contain smiling
faces but differ in other attributes, a retrieval algorithm is expected to return a set of
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smiling face images from the database. In this setting, a user communicates with a
retrieval system by providing examples, avoiding the dependence on human language.

We focus in particular on an unsupervised scenario in which a retrieval algorithm is
built without any annotation. Unsupervised representation learning methods are trained
on CelebA [63], which contains 182,637 training images and 19,962 test images. Each
image in CelebA has 64×64×3 pixels and contains an aligned human face with binary
annotations on 40 attributes. The attribute annotations are only used to evaluate re-
trieval performance.

We refer to attributes that query images have in common as query attributes. We
experiment with different settings in which there is a single query attribute (single
attribute retrieval; SAR) and also with two query attributes (double attribute retrieval;
DAR). We use all images that have given query attributes in the training set as query
images, and retrieve the top K similar images from the test set based on the summed
cosine similarity to the query images.

The quality of a retrieval is measured using precision at K for K = 1, 5, 10, 20
(P@K). P@K denotes the ratio of images that have query attributes among the K
retrieved images. For SAR, P@K are averaged over the 40 attributes. For DAR, there
are 780 possible combinations of two attributes. We select a combination of attributes
if the images that have those attributes account for more than one percent and less
than fifty percent of the total test data; thus P@K are averaged over 487 selected
combinations.

Retrieval is performed in the latent space of the representation learning algorithms.
Algorithms to be compared include (i) unsupervised representation learning methods
VAE [25], FMVAE [33], IRVAE (ours), and IRVAE + FM (ours), whose latent space
dimensions are 128, (ii) a neural network (ResNet-50) pre-trained on ImageNet [64],
and (iii) a supervised learning method (binary relevance) [65]. The performance of
the pre-trained network and the supervised learning method serve as lower and upper
bounds for the unsupervised methods, respectively.

Table 5.1 lists the retrieval performance for the various cases. IRVAE outperforms
FMVAE, which in turn outperforms VAE. FM improves the performance of IRVAE for
most cases with only one exception, P@1 score in SAR. More detailed results on SAR
are included in Appendix C. Some example image retrieval results are visualized in
Figure 5.5.
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Table 5.1: Precision at K retrieved images, i.e., P@K, averaged over the attributes.
The best results among unsupervised methods are colored red, while the second best
results are colored blue.

Method P@1 P@5 P@10 P@20 P@1 P@5 P@10 P@20

Single Attribute Retrieval Double Attribute Retrieval
VAE 60.0 60.5 61.0 58.4 39.8 38.7 37.0 34.7

FMVAE 67.5 66.0 64.0 62.6 41.5 39.1 38.8 36.8
IRVAE (ours) 82.5 72.0 71.5 69.0 56.1 50.8 47.2 44.2

IRVAE + FM (ours) 75.0 79.0 75.3 74.1 57.3 54.0 51.4 49.4
Pre-trained (ResNet-50) 35.0 28.5 23.5 23.9 18.3 11.0 8.7 9.2

Supervised (BR) 87.5 82.5 80.3 80.8 66.9 65.2 63.7 62.6

5.6 Conclusion

We have formulated the problem of learning the manifold simultaneously with a set
of optimal latent space coordinates that preserve the geometry of the learned mani-
fold. We have introduced a hierarchy of geometry-preserving mappings between two
Riemannian manifolds (e.g., isometry, conformal mapping of degree k, area-preserving
mappings) and defined a family of coordinate-invariant relaxed distortion measures
that measure the proximity of the mapping to a scaled isometry (i.e., conformal map-
ping of degree 0). Finally, two algorithms, isometric regularization and latent space
flattening, have been proposed. We have verified the efficacy of our methods with di-
verse image and motion capture data, and through a human face retrieval task with
CelebA data.

We believe the algorithm can be further enhanced in a number of different ways.
The current implementation of IRVAE and IRVAE + FM assumes the identity metric
in the ambient data space, i.e., H(x) = I. Although this is a reasonable choice in
a fully unsupervised setting, we think that domain-specific knowledge or a few labels
can be leveraged to define better H(x). In addition, instead of the mix-up data aug-
mentation method used in this thesis, developing a principled approach for defining
PZ will be an interesting future research direction.
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Figure 5.5: Some example image retrieval results (top 5 images). Common attributes
of query image sets are written above the figures. Higher rank images are located left.
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6
AStatisticalManifold Framework

for Point CloudData

6.1 Introduction

Many machine learning problems involve data sets in which each data point is a point
cloud in RD. For example, to measure the similarity between two shapes, point cloud
representations of the two shapes can be obtained with a depth camera, and a distance
metric on the space of point clouds, e.g., the Hausdorff distance, the chamfer distance
[66], or earth mover distance [67] used to measure their similarity.

The distance metric measures just one aspect of point cloud data; other appli-
cations may require more advanced concepts and tools. For example, in the case of
a moving point cloud, one may seek any number of quantities such as the velocity,
acceleration, relative heading direction, or the swept volume. For multiple point cloud
samples, one may seek a measure of their dispersion, e.g., the covariance or higher
moments.

In fact, a growing number of applications involving point cloud data require a
means of measuring not only distances, but also angles, volumes, derivatives, and other
advanced geometric and analytical concepts. In principle one could choose some ar-
bitrary coordinates to parameterize the space of point clouds, and extend the usual
Euclidean notions of angles, volumes, and derivatives, but such an approach would
not only be ad hoc, but likely not be invariant with respect to the choice of coordi-
nates.

To formulate and quantify these concepts in a coordinate-invariant, geometrically
meaningful way, as a first contribution we develop a Riemannian geometric framework
for point cloud data. The key idea behind our approach draws upon information geom-
etry [68, 69]: by interpreting each point in a point cloud as a sample drawn from some
known probability density, the space of point cloud data can be given the structure of
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Figure 6.1: Illustration of statistical manifold obtained from the 1-1 mapping between
the space of point cloud data and the space of probability density functions.

a statistical manifold – each point on this manifold represents a point cloud – with
the Fisher information metric acting as a natural Riemannian metric. Under some mild
assumptions, i.e., the number of points in a point cloud is fixed, and all points are
distinct, a one-to-one mapping between the space of point clouds and probability den-
sities can be constructed. That is, a point cloud X = {x1, ..., xN |xi ∈ RD} is mapped
to a density function p(x;X) on RD in a 1-1 fashion as illustrated in Figure 6.1.

We remark that the idea of interpreting each point in a point cloud as a sam-
ple drawn from some given probability density is well-known, and has been applied
to problems ranging from point set registration [70, 71, 72, 73, 74, 75, 76] to point
cloud de-noising [77, 78]. These applications, however, only require a similarity mea-
sure between point clouds, typically formulated in terms of some divergence measure.

Two autoencoder applications of our framework are presented: (i) smoothly de-
forming one 3D object (a cylinder) into another (a cone), and (ii) learning an optimal
set of latent space coordinates for point cloud data that best preserves distances and
angles. In the former case, a pre-trained autoencoder is used to encode two 3D point
clouds – one representing the cylinder, the other the cone – and the minimal geodesic
with respect to the natural Riemannian metric is then constructed between these two
objects. The shape evolution obtained for this Riemannian metric is seen to be far
more natural and intuitive than that obtained for the straight line interpolant in la-
tent space.

In the second application, we use the statistical manifold framework to find a set
of distortion minimizing latent space coordinates, in the sense that Euclidean straight
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lines in the latent space closely approximate minimal geodesics on the statistical mani-
fold. Such a set of coordinates offers a more discriminative representation for the data
manifold [33, 79] that results in, e.g., higher linear SVM classification accuracy vis-á-
vis existing state-of-the art methods. Experiments are carried out with both synthetic
and standard benchmark datasets (ShapeNet [80], ModelNet [81]).

6.2 Statistical Manifold Framework for Point Cloud Data

We begin this section with some information geometric preliminaries. A statistical man-
ifold is an infinite-dimensional Riemannian manifold each of whose points is a proba-
bility density, with the Fisher information metric acting as a natural Riemannian met-
ric. Finite-dimensional statistical manifolds can be obtained by considering a family of
parametric probability density functions:

Definition 6.2.1. Given an m-dimensional differentiable manifold Θ and a smooth 1-1
map from Θ to the space of probability density functions θ 7→ p(x;θ), the image of
this mapping, denoted S := {p(x;θ)|θ ∈ Θ}, is an m-dimensional statistical manifold.

Let θ = (θ1, ..., θm) ∈ Rm be local coordinates for θ ∈ Θ, which by trivial exten-
sion also act as local coordinates for S. Throughout we use italics to represent local
coordinates, e.g., θ ∈ Θ has local coordinates θ ∈ Rm. In this coordinate system,
elements gij of the Fisher information metric G(θ) ∈ Rm×m are given by

gij(θ) :=

∫
p(x; θ)

∂ log p(x; θ)

∂θi
∂ log p(x; θ)

∂θj
dx, (6.2.1)

where i, j = 1, . . . ,m. The length of a curve on S parametrized by θ(t), t ∈ [0, T ],

can then be computed as the integral
∫ T
0 ds, where the infinitesimal length ds on S

is given by ds2 = dθTG(θ)dθ. Further details on statistical manifolds and the Fisher
information metric can be found in, e.g., [68, 82, 83, 16].

With the above statistical manifold preliminaries, we now construct a Riemannian
geometric structure for the space of point cloud data. Section 6.2.1 defines a statisti-
cal manifold from the point cloud data, while Section 6.2.2 uses the Fisher information
metric to construct a Riemannian metric for point cloud data. To keep the definitions
and ensuing results simple, we assume throughout that all point clouds consist of ex-
actly n distinct points in RD, i.e., each point cloud is of the form

X = {x1, ..., xn | xi ∈ RD, xi ̸= xj if i ̸= j}. (6.2.2)

The set of all point clouds is denoted X . Later we discuss methods for dealing with
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point clouds that do not satisfy these assumptions. Proofs of all propositions in this
section can be found in Appendix D.

6.2.1 Statistical Manifold of Point Cloud Data

Given a point cloud X, a parametric probability density function p(x;X) can be de-
fined in terms of a positive kernel function X itself as the parameter [84, 85]:

Definition 6.2.2. Given a positive kernel function K : RD → R that satisfies the
following constraint

∫
RD K(u)du = 1, and a D×D symmetric positive-definite matrix

Σ (the bandwidth matrix), the kernel density estimate

p(x;X) :=
1

n
√
|Σ|

n∑
i=1

K(Σ− 1
2 (x− xi)) (6.2.3)

is said to be a statistical representation of the point cloud X ∈ X . The set of statis-
tical representations is denoted S := {p(x;X) |X ∈ X}.

To ensure that S is a statistical manifold, recall from Definition 6.2.1 that the
following two conditions need to be satisfied: (i) X is a differentiable manifold; (ii) A
1-1 mapping h : X → S, h(X) = p(x;X) must be defined. The first condition can be
satisfied with the “distinct points” assumption:

Proposition 6.2.1 (Corollary 2.2.11. in [86]). The set of point clouds in which each
point cloud is a set of n distinct points of dimension D, is an nD-dimensional differ-
entiable manifold.1

To satisfy the second condition, additional assumptions are needed. The following
proposition provides a sufficient condition for h to be 1-1:

Proposition 6.2.2. If the kernel function

Ψ(x, y) = K(Σ− 1
2 (x− y)) (6.2.4)

is strictly positive-definite,2 then the mapping h : X → S given by

h(X)(x) =
1

n
√
|Σ|

n∑
i=1

K(Σ− 1
2 (x− xi)) (6.2.5)

1Without the distinct points assumption, the set of point clouds is no longer a manifold, but
only an orbifold that is locally a finite group quotient of a Euclidean space.

2A kernel function Ψ(·, ·) is said to be strictly positive-definite if the matrix (Ψ(xi, xj))1≤i,j≤m

is positive-definite for all positive integers m and all mutually distinct x1, ..., xm.
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is 1-1.

The above proposition offers guidance on the choice of kernel in our statistical
manifold framework. Throughout the remainder of the thesis, we use the standard
and widely used strictly positive-definite kernel function

K(u) =
1√

(2π)D
exp(−u

Tu

2
), (6.2.6)

with the scaled identity bandwidth matrix, i.e., Σ = σ2I. We note that other choices
of kernel function are possible, e.g., the Laplacian kernel, or inverse multiquadratic
kernel [87].

From Propositions 6.2.1 and 6.2.2 we have established that, under the distinct
points assumption and using the normal kernel function, the mapping h : X → S is
1-1; S can therefore be given the structure of statistical manifold. Figure 6.2 illustrates
statistical manifold representations of some example point clouds.

Figure 6.2: Probability heat maps for various k (the greener, the higher) for some
examples from the ShapeNet dataset [80], where we set σ = k×MED for k ∈ (0,∞).
MED denotes the median of the distances between the points in the point cloud and
their nearest points.

6.2.2 Information Riemannian Metric for Point Cloud Data Space

We now equip the point cloud statistical manifold S with the Fisher information met-
ric, which we refer to as the info-Riemannian metric and denote by H. The first task
is to define a local coordinate system on the space of point clouds X . Toward this end,
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we use the matrix representation X ∈ Rn×D of a point cloud X. Observe that the ma-
trix representation is not unique: given an n× n permutation matrix P ∈ Rn×n, then
X and PX represent the same point cloud X. Fortunately, this does not cause prob-
lems since p(x;X) is defined in a permutation-invariant way, i.e., p(x;X) = p(x;PX)
for any n× n permutation matrix P . We again note that we use italics to denote lo-
cal coordinate representations, e.g., X has local coordinates X ∈ Rn×D, the tangent
vector V ∈ TXX has local coordinates V ∈ Rn×D.

The info-Riemannian metric H can be expressed in local coordinates coordinates
X as follows:

Hijkl(X) :=

∫
p(x;X)

∂ log p(x;X)

∂Xij

∂ log p(x;X)

∂Xkl
dx, (6.2.7)

for i, k = 1, ..., n and j, l = 1, ..., D. Given two tangent vectors V,W ∈ TXX with
respective matrix representations V,W ∈ Rn×D, their inner product is then computed
as follows:

⟨V,W⟩X :=
n∑

i,k=1

D∑
j,l=1

Hijkl(X)V ijW kl. (6.2.8)

The coordinate expression of the info-Riemannian metric Hijkl(X) results in a permu-
tation invariant inner product, i.e.,

∑
Hijkl(X)V ijW kl =

∑
Hijkl(PX)(PV )ij(PW )kl

for any n × n permutation matrix P , showing that the metric is geometrically well-
defined.

Using the standard normal kernel function, the coordinate expression of the info-
Riemannian metric Hijkl has a simple analytic expression as follows:

Proposition 6.2.3. With the standard (multivariate) normal kernel function and the
bandwidth parameter σ, the information Riemannian metric Hijkl(X) is given by∫

p(x;X)
K(x−xiσ )K(x−xkσ )

(
∑n

m=1K(x−xmσ ))2

[(x− xi)(x− xk)
T

σ4

]
jl
dx, (6.2.9)

Figure 6.3 shows that, given two moving point cloud data whose velocity matrices
have equal Euclidean norm (i.e., ||V||2 =

∑n
i=1

∑D
j=1 V

ijV ij), the velocity norms un-
der the info-Riemannian metric are significantly different: the velocity A has a value
of 0.2626, while the velocity B has a value of 2.2× 10−8. In particular, observe that
the tangential velocity in the case B, which does not change the overall distribution
of the point cloud, has a very small velocity norm under the info-Riemannian metric
as it should.
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Figure 6.3: Two moving point clouds with different velocity matrices.

6.3 Applications to Point Cloud Autoencoders

Riemannian geometric formulations of autoencoders for representation learning have
recently been introduced and extensively studied in [88, 17, 89, 90, 91, 92, 33, 79]. In
these works, the image of the decoder function is viewed as a low-dimensional mani-
fold embedded in the high-dimensional data space – we refer to this manifold as the
decoded manifold – and a Riemannian metric for the decoded manifold is obtained
by projecting the data space Riemannian metric to this manifold. In contrast, this
perspective cannot be reasonably extended to existing point cloud autoencoders (e.g.,
FoldingNet [93], AtlasNet [94], AtlasNetV2 [95], and TearingNet [96]), due to the ab-
sence of a geometrically well-formulated Riemannian manifold structure.

In this section, using the info-Riemannian metric, we extend this perspective by
defining a Riemannian metric for the decoded manifold of the point cloud autoen-
coder. With this info-Riemannian metric, we examine two case studies: (i) interpo-
lation between two points of latent space via the minimal geodesic; (ii) learning an
optimal set of latent space coordinates that best preserves distances and angles (or
intuitively, minimizes distortion).

Consider a point cloud decoder function with the m-dimensional latent space f :
Rm → Rn×D, where the output is expressed in terms of the matrix representation.
The projection of the info-Riemannian metric on the point cloud statistical manifold
to the decoded manifold is then expressed in latent space coordinates z ∈ Rm as
follows:

Gab(z) :=
n∑

i,k=1

D∑
j,l=1

Hijkl(f(z))(Jf )
ij
a (z)(Jf )

kl
b (z), (6.3.10)

where Jf denotes the Jacobian of f , and the indices a, b both range from 1 to m.
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The latent space is then assigned a Riemannian metric Gab(z); the following two ap-
plications rely on G(z) ∈ Rm×m.
Geodesic interpolation: The latent space metric G(z) can be used to find the mini-
mal geodesic curve connecting two point clouds (i.e., the shortest length curve in the
decoded manifold). Let z1, z2 be the encoded values of the two point clouds in the
latent space Rm. In terms of the metric G(z), the geodesic curve connecting these
two points can be determined as a solution to the following optimization problem [35]:

min
z(t)

∫ 1

0
ż(t)TG(z(t))ż(t) dt, (6.3.11)

subject to z(0) = z1 and z(1) = z2. Parametrizing z(t) by a cubic spline with fixed
boundary points z1, z2 then leads to an unconstrained optimization problem. To avoid
excessive memory consumption when computing the objective function and its gradi-
ent, instead of the usual Riemann sum approximation of the integral, we interpret the
integral as an expectation over the uniform distribution t ∼ U(0, 1) and accordingly
use the mini-batch sampling technique.
Learning optimal latent space coordinates: The latent space metric G(z) can be
used to formulate a regularization term when training an autoencoder to learn an op-
timal set of latent space coordinates; by “optimal” we mean G(z) = cI for some
positive scalar c, so that the decoder preserves distances and angles as much as pos-
sible. Recently, a regularization technique for this purpose has been introduced in [33].
Specifically, the following regularization term is added to the reconstruction loss func-
tion:

Ez∼P [∥G(z)− cI∥2F ], (6.3.12)

where ∥ · ∥F is the Frobenius norm, c = Ez∼P [ 1mTr(G(z))], and P is defined via the
modified mix-up augmentation, i.e., z ∼ P ⇐⇒ z = αz1 + (1 − α)z2 where z1, z2
are sampled from the set of encoded training data and α ∼ U(−η, 1 + η) for η > 0.
For latent spaces whose dimension m is large, in order to avoid the expensive and
memory-consuming computation of G(z) ∈ Rm×m, we use the following regularization
term in the subsequent experiments:

Ez∼P [Ev∼N (0,I)[∥vTG(z)v − cvT v∥2]], (6.3.13)

where we use mini-batch sampling to estimate the expectations. This can be done
much more efficiently since we need only compute the Jacobian-vector product, i.e.,∑

a(Jf )
ij
a va.
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6.4 Experimental Results

We now verify the effectiveness of the info-Riemannian metric for the two point cloud
autoencoder applications described above using both a synthetic 3D basic shape dataset
and standard benchmark point cloud datasets.

The synthetic 3D basic shape dataset consists of cylinders, cubes, cones, and el-
lipsoids with various aspect ratios of the shape parameters (e.g., radius versus height
for the cylinder). We sample 512 points from the surface mesh of the shapes using a
greedy sample elimination algorithm, so that each sampled point is approximately the
same distance from its neighborhood points [97]. Each point cloud is then normalized
so that the two farthest points are a unit distance apart. Further details about the
synthetic 3D basic shape dataset generation are provided in Appendix D.

The benchmark point cloud dataset consists of ModelNet [81] and ShapeNet [80],
where ModelNet consists of ModelNet10 and ModelNet40, each of which consist of
10 and 40 shape classes, respectively. Each point cloud data has 2048 points; we nor-
malize these into a unit sphere as done in [93].

6.4.1 Synthetic 3D Basic Shape Dataset

In Section 6.4.1.1, we use a dataset consisting of cones, cylinders, and ellipsoids, which
are split into training/validation/test sets of size 3196/800/804. We then confirm the
validity of the proposed metric by comparing the results of several shape interpolation
methods in the latent space.

In Section 6.4.1.2, to study the effects of the regularization term when learning
the optimal latent coordinates (with respect to the info-Riemannian metric), we use a
dataset consisting of boxes, cones, and ellipsoids divided into training/validation/test
sets of size 720/240/240.

We use DGCNN as the encoder [98] and a fully-connected neural network as the
decoder. The latent space is assumed to be two-dimensional. For the reconstruction
loss term, we use the Chamfer distance. The regularization term in Equation (6.3.12)
is multiplied by a coefficient λ > 0 and added to the reconstruction loss term. Further
details about the network architectures and training are provided in Appendix D.

6.4.1.1 Example 1: Cone, Cylinder, and Ellipsoid

Figure 6.4 shows the test data encoded in the latent space together with the inter-
polation trajectories and generated point clouds from those interpolants. In the case
of intra-class interpolations (i.e., interpolants between cylinders), the linear interpolant
clearly passes through the red ellipsoid region in the latent space, with some of the
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Figure 6.4: Left: Latent space with linear and geodesic interpolants. The orange in-
terpolants connect a wide cylinder to a tall cylinder, while the magenta interpolants
connect a cylinder to a cone. Linear interpolants and geodesic interpolants under the
Euclidean and info-Riemannian metrics are drawn as dotted, dashed, and solid lines,
respectively. Right: Generated point clouds from those interpolants. To visually indi-
cate which class generated point cloud belong to, we color these according to the ratio
of the Chamfer distances to the nearest point cloud for each class (see Appendix D).
For example, when it is uncertain which class a generated data belongs to (i.e., the
nearest distances to each class are similar), it is assigned some color other than blue,
red, or green.

generated point clouds clearly ellipsoids. The geodesic interpolations under the Eu-
clidean and info-Riemannian metrics both avoid ellipsoid regions in the latent space.
In particular, the geodesic interpolants between two cylinders are also cylinders; this is
well-aligned with human intuition. However, if we look at the generated point clouds
in detail, while the info-Riemannian metric produces clearly blue cylinders, some of the
generated point clouds with the Euclidean metric are non-blue cylinders (i.e., relatively
closer to the ellipsoid region) with noisy side surfaces. For the inter-class interpolations
(i.e., interpolants between a cylinder and a cone), the linear interpolant also clearly
passes through the red ellipsoid region. The geodesic interpolation under the Euclidean
metric produces many non-blue and non-green color shapes during the transition from
cylinders to cones, while geodesic interpolation under the info-Riemannian metric pro-
duces such cases far less. Overall, it can be observed that the geodesic interpolants
under the info-Riemannian metric have minimal shape class changes.

Figure 6.5 shows the latent spaces produced by the regularized autoencoders us-
ing the Euclidean and Info-Riemannian metrics. Compared to the latent space in Fig-
ure 6.4 (trained without regularization), the following observations can be made: (i)
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Figure 6.5: Latent spaces produced by regularized autoencoders, each of which is
trained with the Euclidean (Left) and info-Riemannian metric (Right). Representative
intra-class linear interpolants between two cylinders and two cones are drawn as black
solid lines.

the encoded latent spaces of cones and cylinders are flattened, and (ii) the ellipsoids
and cones become more discriminative. Furthermore, we note that the encoded latent
space curves of cones and cylinders in the right figure (where the info-Riemannian
metric is used) are clearly flatter than those in the left figure (where the Euclidean
metric is used). In other words, if we linearly interpolate between two cylinders or two
cones, the interpolants in the right case will most likely remain in the same class, un-
like the left case (the generated point clouds from the linear interpolants are provided
in Appendix D).

6.4.1.2 Example 2: Box, Cone, and Ellipsoid

Figure 6.6 shows the test data encoded in the latent space together with the visual-
ization of the Riemannian metric, the fitted Gaussian Mixture Model and its samples,
and pairwise Euclidean distances. From the first column of Figure 6.6, by comparing
the results with and without regularization, the following two key observations can be
made: (i) in the vanilla autoencoder case (upper case), the major axes of the gray
ellipses are aligned with the decision boundary (i.e., a hypersurface that partitions the
different class regions), which implies that shapes of different classes are actually more
distant in the learned manifold (under the info-Riemmanian metric) than shown in the
latent space, and (ii) in the regularized autoencoder case (lower case), by encouraging
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Figure 6.6: From left to right: latent spaces with equidistant ellipse ({z|(z −
z∗)TG(z∗)(z − z∗) = 1} for center z∗) centered on some selected points and sam-
pled points from interspaces, Gaussian Mixture Model (GMM) fitting results, gener-
ated samples from the GMM, and the heat map of the pairwise Euclidean distances
in the latent space of all test data. The upper figure is a vanilla autoencoder trained
without regularization, while the lower figure is trained with regularization (using the
info-Riemannian metric). For the samples in the third column, we assign colors using
the same method of Section 6.4.1.1 to visually express which classes the samples are
likely to belong to.

the metric to be isotropic (i.e., turning ellipses into circles), the gaps between differ-
ent class regions are widened. The second column confirms that the components of
the GMM are better separated after regularization; each component of the GMM on
the regularized autoencoder generates high-quality, even samples from the same class
shape as shown in the third column. The heat maps of the pairwise distances in the
last column also indicate that shapes in different classes are more distant, and there-
fore more easily separable in the latent space of the regularized autoencoder.

To quantitatively verify, we repeat this experiment with multiple different synthetic
datasets (details are in Appendix D), and report the averaged GMM clustering scores,
Normalized Mutual Information (NMI) and Adjusted Rand Index (ADI), in Table 6.1.
Ours shows higher clustering accuracy.



6.4. Experimental Results 97

Table 6.1: Averaged clustering scores over 27 different datasets, each of which consists
of diverse shapes of boxes, cones, and ellipsoids; the higher the better.

METHOD NMI ADI
Vanilla AE 0.7624 ± 0.2132 0.7209 ± 0.2598

Regularized AE 0.9484 ± 0.1391 0.9368 ± 0.1737

6.4.2 Standard Benchmark Data

To show that the regularization technique with the info-Riemannian metric can benefit
unsupervised representation learning from the perspective of discriminative representa-
tion learning, we compare the transfer classification accuracy of ShapeNetCore.v2 to
ModelNet following the same experimental procedure outlined in [93]. When training
autoencoders with ShapeNet, random rotations about an axis parallel to the direction
of gravity are applied to each point cloud. We use four different point cloud autoen-
coders: FcNet and FoldingNet adopted from [93], PointCapsNet adopted from [99],
and DGCNN-FcNet using DGCNN [98]; the latent space is 512-dimensional for all.
The four autoencoders are trained with and without regularization.

In the former case, the regularization terms of Equation (6.3.13) under both the
Euclidean and info-Riemannian metrics are used while varying the regularization co-
efficient λ. We distinguish between regularized autoencoders using the Euclidean and
info-Riemannian metrics by an “+E” or “+I” after the network name. After network
training is finished, we train linear SVM classifiers with the encoded data for Model-
Net10 and ModelNet40. These are split into training/test sets of sizes 3991/909 and
9843/2468, respectively. Further experimental detail are provided in Appendix D.

Table 6.2 shows a comparison of transfer classification accuracy from ShapeNet
to ModelNet10 (MN10) and ModelNet40 (MN40) for various recent state-of-the-art
methods. In the upper table (Adopted from References), the numbers are adopted
from previous papers (the experimental procedures may differ slightly from ours). In
the lower table (Implemented by Authors), we report the best numbers obtained. First,
although their performance is not directly comparable due to differences in the experi-
mental procedures, it can be seen that our regularized autoencoders are comparable to
the state-of-the-art methods. Second, at least for our implementation, regularization
using the info-Riemannian metric improves classification accuracy over vanilla autoen-
coders, with higher accuracy compared to the Euclidean metric case.

Next, based on the intuition that kernel-based statistical representations are robust
to noise, we also conduct additional experiments to determine how much more robust
the representation obtained with our regularization approach is for noisy point cloud
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Table 6.2: Classification accuracy by transfer learning for ModelNet10 (MN10) and
ModelNet40 (MN40) from ShapeNet.

METHOD MN40 MN10
Adopted from References

SPH [100] 68.2% 79.8%
LFD [101] 75.5% 79.9%
VConv-DAE [102] 75.5% 80.5%
3D-GAN [103] 83.3% 91.0%
Latent-GAN [104] 84.5% 95.4%
FoldingNet [93] 88.4% 94.4%
PointFlow [105] 86.8% 93.7%
Multi-Task [106] 89.1% -
PointCapsNet [99] 89.3% -

Implemented by Authors
FcNet 88.3% 93.5%
FcNet + E (ours) 89.3% 93.7%
FcNet + I (ours) 90.4% 94.3%
FoldingNet 89.3% 93.7%
FoldingNet + E (ours) 88.9% 94.4%
FoldingNet + I (ours) 90.1% 94.5%
PointCapsNet 87.2% 93.6%
PointCapsNet + E (ours) 88.1% 93.7%
PointCapsNet + I (ours) 88.5% 93.9%
DGCNN-FcNet 90.3% 94.5%
DGCNN-FcNet + E (ours) 89.9% 94.4%
DGCNN-FcNet + I (ours) 91.0% 95.2%

data. We add noise with different levels of standard deviation (1%, 5%, 10%, and
20% of the diagonal length of the point cloud bounding box) to point cloud data
(see Appendix D for details). Then FcNet is trained with and without regularization
in the same way as above.

Table 6.3 shows a comparison of transfer classification accuracy in the presence of
noise. As the noise level increases, the classification accuracy obviously decreases, but
the reduction is the least dramatic for regularized autoencoders under Info-Riemannian
metric. Figure 6.7 shows learning curves, ModelNet40 transfer classification accuracy
and reconstruction error as functions of the training epoch, in the presence of noise.
Throughout the learning process, compared to vanilla autoencoders (light colored lines),
regularized autoencoders under Info-Riemannian metric (dark colored lines) show higher
classification accuracy and similar levels of reconstruction errors. In particular, as shown
in the right figure, as the learning progresses, the classification accuracy of the vanilla
autoencoder largely decreases in expense of minimizing the reconstruction error, while
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that of our regularized autoencoder is maintained. This shows our regularization ap-
proach helps autoencoders to learn robust representations to noise as expected.

Table 6.3: Classification accuracy by transfer learning for ModelNet10 (MN10) and
ModelNet40 (MN40) from ShapeNet under the noise levels of 1%, 5%, 10%, and 20%.

MN40
METHOD 1% 5% 10% 20%

FcNet 87.8% 83.2% 75.6% 64.5%
FcNet + E (ours) 86.6% 85.1% 79.1% 70.4%
FcNet + I (ours) 89.0% 86.6% 81.4% 72.4%

MN10
1% 5% 10% 20%

FcNet 92.4% 91.9% 88.4% 79.8%
FcNet + E (ours) 92.2% 91.1% 88.2% 82.6%
FcNet + I (ours) 93.3% 92.6% 91.6% 84.8%

Figure 6.7: Learning curves in the presence of noise (left: 5% noise; right: 20% noise),
ModelNet40 transfer classification accuracy and reconstruction error as functions of
the training epoch.

Lastly, we compare the semi-supervised transfer classification accuracy. In the semi-
supervised settings, not all the training data have labels, which are actually more fre-
quent situations in reality. When we train linear SVM classifier, we use different num-
bers of training data (1%, 5%, 10%, and 50% of the overall training data, see Ap-
pendix D for details). Table 6.4 shows a comparison of transfer classification accuracy
according to the percentage of training label used. As the label rate decreases, the
classification accuracy decreases, but the reduction is more dramatic for vanilla autoen-
coders. Together with the results in Table 6.2, this clearly shows that our regularization
approach helps autoencoders to learn more discriminative representation spaces, and
the effect is greater with a small number of labeled data.
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Table 6.4: Classification accuracy by transfer learning for ModelNet10 (MN10) and
ModelNet40 (MN40) from ShapeNet under the different percentages of labeled train-
ing data for linear SVM classifier (50%, 10%, 5%, and 1%).

METHOD MN40
50% 10% 5% 1%

FcNet 85.7% 78.0% 70.6% 50.3%
FcNet + I (ours) 87.9% 81.6% 76.8% 57.4%

MN10
50% 10% 5% 1%

FcNet 91.7% 90.1% 87.2% 74.1%
FcNet + I (ours) 93.2% 91.2% 88.3% 78.1%

Overall, it is indeed somewhat surprising that unsupervised classification accuracy
can be improved (i.e., more discriminative representation space can be obtained) with
a simple regularization technique in lieu of a complex neural network architecture or
loss function. We include additional experimental results and analysis in Appendix D.

6.5 Discussion and Conclusion

We have proposed a new Riemannian geometric structure for the space of point cloud
data. We have defined a statistical representation of point cloud data and constructed
a statistical manifold in a mathematically rigorous way. Then a natural Riemannian
metric – Fisher information metric – is assigned to the point cloud statistical mani-
fold, which provides geometrically well-defined measures needed for applications. We
demonstrate its advantages through two applications involving point cloud autoen-
coders: (i) minimal geodesic interpolants under info-Riemannian metric have minimal
shape changes compared to the standard linear interpolants, and (ii) the optimal la-
tent coordinates learned using our method produce more discriminative representation
spaces than existing methods. In particular, transfer classification accuracy has been
greatly improved in noisy data and semi-supervised settings.

As a potential issue, the “fixed number of points” assumption used in our con-
struction of the statistical manifold may be violated in real world problems. In such
cases, we can easily mitigate this issue by matching the number of points in each point
cloud through a simple upsampling/downsampling algorithm. Further, the kernel func-
tion used in our current implementations, the standard normal kernel function, may
not be an optimal choice. Other choices can be explored to enhance our algorithms
as long as the conditions of Proposition 6.2.2 are satisfied.
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Compared to research on distance metric, there are relatively few studies on Rie-
mannian metric despite its importance and utility. This work is the starting point of
research on point cloud space Riemannian metric, and we believe the study on di-
verse Riemannian metrics, just as various distance metrics with different properties
have been developed, should be continued.

In certain real-life scenarios containing multiple 3d objects that (i) are only par-
tially observed (e.g., only one side of the underlying surface is observed), and (ii) local
densities of the measured points for each object are different, using a single probabil-
ity density function with a single kernel-type and fixed bandwidth parameter to rep-
resent the measured point cloud can be problematic. For example, consider a point
cloud data obtained through LiDAR; the point cloud can include diverse objects such
as cars, pedestrians, trees, buildings, and lanes. They are obviously partially observed,
and local point cloud densities are different since their distances from the sensors are
different. One way to approach this problem is to (i) first decompose the measured
point cloud into several multiple point clouds, each of which represents a single ob-
ject (for example, by using existing object detection techniques); (ii) use point cloud
completion and super resolution algorithms as needed to make each point cloud rich
enough to represent the corresponding object, and (iii) apply our methods by using dif-
ferent kernels and bandwidth parameters suitable to represent each point cloud. Other
approaches are also possible, and we believe it is an worthwhile future research topic
to examine which approaches are best suited to different application domains.
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7
Conclusion

7.1 Summary and Discussion

This thesis has proposed geometric methods that solve the two problems of the vanilla
autoencoders introduced in Chapter 1.3: (i) wrong manifold and (ii) distorted latent
space problems. The Neighborhood Reconstructing Autoencoder in Chapter 3 and Min-
imum Curvature Autoencoder in Chapter 4 are solutions to “the wrong manifold prob-
lem”, where the former exploits the neighborhood graph information constructed in the
data space and the later is based on the minimum extrinsic curvature principle. The
Isometric Regularization in Chapter 5 is the solution to “the distorted latent space
problem”, and its one application case with point cloud data is introduced in Chap-
ter 6.

Contrary to many existing autoencoder regularization methods that focus on reg-
ularizing the latent space distributions that are entirely determined by the encoders,
we have discovered that the decoders play equally or sometimes more important roles
than the encoders in autoencoder-based manifold representation learning. This is be-
cause the decoder explicitly parametrizes the manifold hence the decoder is aware of
how the manifold actually lies in the data space while the encoder is not, and local
geometry of the manifold can be described by taking higher-order derivatives of the
decoder.

The proposed algorithms can be classified based on what needs to be determined
in prior to use the algorithms. The neighborhood reconstructing autoencoder needs a
prior construction of the neighborhood graph, whereas the minimum curvature au-
toencoder and isometric regularization method need to define the Riemannian met-
ric for the ambient data space (Figure 7.1). In particular, the curvature and distortion
measure have been carefully defined to be coordinate-invariant so that they mea-
sure geometrically meaningful quantities. Apparently, the proposed algorithms depend
on either the graph or Riemannian metric H(x) construction. In this thesis, we have
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explored one of the simplest choices: the k-nn graph construction method and the
identity metric for H(x). It is notable that, even with these simple choices, our algo-
rithms outperform most existing autoencoder regularization methods.

Figure 7.1: The proposed algorithms either require to construct a neighborhood graph
or Riemannian metric for the data space.

It is particularly worthwhile to compare the Neighborhood Reconstructing Autoen-
coder (NRAE) and Minimum Curvature Autoencoder (MCAE). Recall the autoencoder’s
manifold estimation perspective discussed in the previous Chapter 1.4. Interestingly,
the NRAE asymptotically converges to the vanilla autoencoder – since the neighbor-
hood graph N (x) converges to the center point x –, and thus is an asymptotically
unbiased manifold estimator just as the vanilla autoencoder. On the other hand, the
MCAE designed to learn a flatter manifold is biased unless the ground truth manifold
is flat. Nevertheless, in non-asymptotic situations where the number of training data
is limited, the inductive biases that NRAE and MCAE have can help learning accurate
manifolds. In NRAE, the manifold is trained to be locally linear or quadratic within a
region specified by the local neighborhood graph. In MCAE, the manifold is trained to
be flat. Both approaches can be seen as learning smooth manifolds. While the NRAE
smooth out the manifold considering local density of data and local directions that
data lie, the MCAE smooth out the manifold with the same local weights in all direc-
tions and tends to produce overly-flattened manifolds. In comparison, NRAE generally
has higher manifold learning performance than MCAE. Meanwhile, we have empiri-
cally observed that the MCAE shows strong robustness to noise, which seems to be
because the manifold fitted to noisy data tends to be curvier than the ground truth
manifold.



7.2. Limitations and Future Directions 105

We have conducted a wide range experiments with image, motion capture, and
point cloud data sets, compared to existing state-of-the-art methods, and shown that
our methods learn more accurate manifold and its representation with less distortion,
improving performance for standard downstream tasks such as image retrieval, clus-
tering, and classification, in some cases by significant margins.

7.2 Limitations and Future Directions

Finding good lower-dimensional representations of real-world complex high-dimensional
problems – for example, in the presence of multiple objects not aligned in the center
of the image, bias in the training data set (e.g., the background of images containing
birds is highly likely the sky), data corruptions by outliers, noises, and occlusions, and
many others – is still a challenging problem, and our algorithms have the potential
to be further improved in many directions. In this section, we pose some limitations
of the current implementations of our manifold representation learning algorithms and
discuss some promising future research directions. The rest of the section is organized
as follows: (i) Graph and Riemannian Metric Construction, (ii) Manifold with Complex
Topology, and (iii) Disentangled Representation.

7.2.1 Graph and Riemannian Metric Construction

In the current implementations of our algorithms in Chapters 3, 4, 5, we have only
considered unsupervised settings and assumed Euclidean geometry of data spaces when
constructing the graph or Riemannian metric. However, in real-world problems, Eu-
clidean geometry may not reflect the geometric structures of data manifolds that we
expect and may not be optimal for the downstream tasks (just as shown in Chapter 6
with point cloud data).

For example, suppose we want to train a machine that plays a maze game, and
the set of maze game screen images is given as a training data set for representa-
tion learning; see Figure 7.2. Clearly, the screen image data form a two-dimensional
manifold since the position of an agent, i.e., the red circle, is fully described by two
variables, i.e., xy-position. Considering the characteristics of the maze game, the dis-
tance between images (a) and (b) should be closer than the distance between images
(a) and (c) in the learned representation space. However, a graph or Riemannian met-
ric constructed based on the Euclidean geometry of the image space does not capture
the geometry of the maze structure.

As another example, suppose we want to find lower-dimensional representations of
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Figure 7.2: Maze Game Example.

cat and dog images suitable for the classification task. If we assume Euclidean geome-
try of the image space, even in the lower-dimensional cat and dog image manifold, the
geodesic distance between the cat and dog images in Figure 7.3(a) and Figure 7.3(b) is
closer than the geodesic distance between the dog and dog images in Figure 7.3(b) and
Figure 7.3(c), since the faces are aligned so well in the images (a) and (b). Therefore,
dog and cat images will not be well separated in the learned manifold representation
space.

Figure 7.3: Cat and dog images.

As such, unsupervised learning approaches have clear limitations since the canon-
ical Euclidean geometry of data spaces does not always capture the geometric struc-
tures optimal for downstream tasks. A promising next step would be to exploit su-
pervised signals (e.g., labels, self-supervision via data augmentations, interactions with
environments, temporal relations in time series data) for graph and Riemannian metric
constructions; then our autoencoder methods can be naturally used without any signif-
icant modifications. For example, in reinforcement learning settings, high-dimensional
observation data are usually given as a sequential data; we may construct graphs or
Riemannian metrics that capture the temporal proximity of data. Or, for classification
tasks, class labels or class-preserving data augmentation techniques may be used to
construct graphs or Riemannian metrics that capture class-aware geometric structures.
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There are unsupervised local metric learning and supervised local metric learning liter-
atures either non-parametric or parametric, which are closely related to our isometric
representation learning methods [107, 108, 109, 110, 92].

7.2.2 Manifold with Complex Topology

In the current implementations of our autoencoder methods, we use a single Carte-
sian space Rm as the latent space, which implicitly assumes that the data manifold is
homeomorphic to Rm. However, in real-world scenarios, this assumption mostly does
not hold. Data manifolds can be in fact homeomorphic to S1, S2, SO(3) [111, 112], or
more complex topological manifolds, or may have locally different dimensions [113]. If
we could know the topology of the data manifold in prior, we would be able to define
a homeomorphic latent space, however, in most cases, it is unknown.

For example, real world images that include multiple objects with various back-
ground scenes less likely lie on smooth manifold of constant dimension that is home-
omorphic to the Cartesian space. For each image, the number of objects varies, the
dimension and topology for each object manifold is different, and, when objects are
overlapped in the image, it is difficult to imagine how geometrically the object man-
ifolds would intersect in the image data space. It is very challenging to identify an
arbitrary complex lower-dimensional structure and the corresponding representation.

Reluctantly but compelled, current existing approaches including ours select a big
enough latent space dimension, so that the complex geometric structure can be em-
bedded in a higher dimensional latent space. As a result, the image of the latent space
does not exactly match the data manifold, rather the data manifold is included in the
image of the latent space, and some latent points do not produce meaningful data
points (e.g., in the image manifold representation learning, unnatural and highly dis-
torted images can be generated).

There could be two possible future research directions: (i) using multiple coordi-
nate charts [114] and (ii) re-identifying geometric structure of the data distribution
in the latent space. Multiple coordinate charts may be useful for describing complex
data manifold of non-constant dimension, i.e., multiple decoders each of which spans
only part of the data manifold. In this approach, another challenge arises in that we
need to identify the intersections between the multiple charts. Or, we may identify ge-
ometric structures (e.g., manifold) again in the latent space. The key difference to the
original problem is the dimensionality: since the latent space dimension is much lower-
dimensional than the original data space, machine learning methods difficult to use in
high-dimensional spaces, e.g., non-parametric methods, are expected to be feasible to
use.
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7.2.3 Disentangled Representation

Assuming high-dimensional observations are in fact a manifestation of a low-dimensional
set of independent ground-truth factors of variation – for instance, in human face data,
the size of eyes, noses, and the hair color are examples of the factors of variation –, the
ability to disentangle these factors has been a critical ingredient in disentangled repre-
sentation learning [115]. This abstract concept has spawned various formalizations, but
the community has yet to agree on a single definition of disentangled representation.

The most popular one is the probabilistic definition based on the (statistical) in-
dependence prior factorization [53, 116, 117, 118]. However, as reported in recent
studies [119, 120], this definition is severely under-specified and does not reflect the
commonly used intuitive notion of disentanglement, which is often referred to as the
“impossibility result”. On the other hand, there are recently introduced geometric defi-
nitions that either rely on the group theory or product manifold assumption [121, 122],
which intuitively better reflect our abstract sense of disentanglement. However, these
definitions have many and complex elements to identify such as the groups, group
actions, projection mappings for sub-manifolds [123, 124, 122].

We believe our geometric regularization methods are closely linked to the disentan-
gled representation learning. First of all, learning a correct manifold, or more specifi-
cally a correctly-connected manifold, is a necessary condition to learn the disentangled
representation. For example, consider a two-dimensional cat image data manifold with
different fur colors and poses and its disentangled representation as shown in Fig-
ure 7.4 (Left). In this disentangled latent coordinates, translation on one axis changes
only the cat’s pose, and translation on the other axis changes only the fur color. How-
ever, vanilla autoencoder does learn this disentangled representation as shown in Fig-
ure 7.4 (Right). One of the obvious problems is that the vanilla AE has learned an
incorrectly-connected data manifold as visualized in the red box, where abrupt changes
in images occur. Learned data manifolds should be accurate – in this case, smoothly
connected – so as to have disentangled representations where smooth transitions in
the latent spaces produce smooth changes in data.

Secondly, we view that the disentanglement property is closely related to the geometry-
preserving property of the decoder. Suppose we have a data point x ∈ RD in an m-
dimensional data manifold M ⊂ RD (D ≥ m), and a set of m infinitesimal direction
vectors ei(x) ∈ RD, i = 1, . . . ,m that are disentangled, i.e., each i-th change x 7→
x+ ei(x) only changes one factor. If we could find a coordinate system f : Rm → M
such that x = f(z) and f(z + dzi) = x+ ei(x) for all i, z, then the coordinates can
be considered as the disentangled representation as illustrated in Figure 7.5. The con-
dition can be written as Jf (z)dz

i = ei(f(z)). Assuming ∥dz∥ = 1 for simplicity, then(
JTf (z)Jf (z)

)
ij

= ei(f(z))
T ej(f(z)). This condition is an equality constraint on the
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Figure 7.4: Left: An example of the disentangle representation. Right: Vanilla AE
learns an entangled representation. It is adopted from [125].

space of Riemannian metrics (i.e., m×m positive-definite tensor fields), and it would
be interesting to see if we can construct a Riemannian metric H(x) for RD by using
ei so that the aforementioned equality condition becomes identical to the isometry
condition.

7.3 Concluding Remark

A class of geometric methods proposed in this thesis can be used to learn lower-
dimensional manifold representations for high-dimensional data. The next step is to
explore more advanced structures in the manifold representation space. For example,
it is desired to know what changes in a particular direction in the representation space
physically mean, e.g., interpretable and disentangled representation, and how interac-
tions with environments can be described mathematically in the representation space,
e.g., group action on a manifold. Investigating the manifold representation space for
more advanced geometric structures will be important future research directions.
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Figure 7.5: Disentangling by isometry.



A
Appendix: Neighborhood

ReconstructingAutoencoders

A.1 Experimental Details

In what follows we will call each experiment by its corresponding figure or table num-
ber for convenience.

A.1.1 Dataset

Except for a few synthetic data whose generation processes are described in the main
script (Figure 3.4, 3.7), we use the standard benchmark datasets downloaded from
TorchVision library. For the rotated/shifted MNIST images (Figure 3.8, 3.9), we use
the Affine transformation function in the TorchVision library.

For Figure 3.5, we select the first 100 images of digit 8 from 50000 training data
in the original MNIST dataset and rotate by 3.6 degrees 100 times to generate a new
10000 training data. For Figure 3.6, we use the entire 50000 training data for training.
For the rotated MNIST of digit 3 in Figure 3.8, we select the first image of digit 3
from the original MNIST dataset and rotate by 9 degrees 20 times to generate a new
20 training data. For the shifted MNIST of digit 7 in Figure 3.8, we select the first
image of digit 7 from the original MNIST dataset and transform with scale 0.8 and
shift range [-10,10] to generate 20 training data. For Figure 3.9, we select the first
image of digit 6 from the original MNIST dataset and rotate by 9 degrees 20 times
to generate a new 20 training data. For Figure 3.10, we use the 1000,2000,...,10000
training data selected from the training dataset, 10000 validation data, and 50000 test
data.

In experiments (Table 3.2, 3.3, 3.4, 3.5), we use either or both of the Large (L)

111



112 Appendix: Neighborhood Reconstructing Autoencoders

and Small (S) dataset for the standard benchmark vision data: MNIST, FMNIST, KM-
NIST, Omniglot, SVHN, CIFAR10, CIFAR100, CELEBA. The large denotes the use of
entire public data where training, validation, and test splits are (50000,10000,10000)
for MNIST, FMNIST, KMNIST, (15000,4280,13180) for Omnigolot, (60000, 13257,
26032) for SVHN, (45000,5000,10000) for CIFAR10, CIFAR100, and (162770,19867,19962)
for CELEBA. The small denotes the use of 20 to 30 percents of the entire public train-
ing data where training, validation, and test splits are (10000,2000,50000) for MNIST,
FMNIST, KMNIST, SVHN, CIFAR10, CIFAR100, (8000,1000,4180) for Omnigolot,
and (50000,10000,100000) for CELEBA. For Table 3.2, we use the large dataset. For
Table 3.3, we use both large and small datasets. For Table 3.4 and 5, we use the
small dataset.

A.1.2 Network Architecture

In this thesis, we use fully connected neural network and convolutional neural network.
For VAE, we use the Gaussian encoders whose output dimension is always doubled
to represent both mean and variance, and use the isotropic Gaussian decoders with
trainable variances. For DAE, we use the Gaussian noise in training. For WAE, we use
the MMD loss and median heuristic.

Fully connected neural network (Figure 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10) For
Figure 3.4, we use the networks of size (2-1024-1024-1) and (1-1024-1024-2) with
ReLU activation functions for the encoder and decoder, respectively. For Figure 3.5,
we use the networks of size (784-1024-1024-1024-2) and (2-1024-1024-1024-784) with
ReLU activation functions for the encoder and decoder, respectively. For Figure 3.6, we
use the networks of size (784-500-500-2) and (2-500-500-784) with Softplus activation
functions (a smooth approximation of the ReLU function) for the encoder and decoder,
respectively. For Figure 3.7, we use the networks of size (2-512-512-1) and (1-512-
512-2) with ReLU activation functions for the encoder and decoder, respectively. For
the rotated MNIST of digit 3 in Figure 3.8, we use the networks of size (784-32-
32-1) and (1-32-32-784) with ReLU activation functions for the encoder and decoder,
respectively. For the shifted MNIST of digit 7 in Figure 3.8, we use the networks of size
(784-128-128-128-128-1) and (1-128-128-128-128-784) with ReLU activation functions
for the encoder and decoder, respectively. For Figure 3.9, we use the networks of size
(784-512-512-2) and (2-512-512-784) with ReLU activation functions for the encoder
and decoder, respectively, where the latent values are normalized after encoding. For
Figure 3.10, we use the networks of size (784-512-512-m) and (m-512-512-784) with
ELU activation functions for the encoder and decoder, respectively. m is 16, 32, and
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32 for MNIST, FMNIST, and KMNIST, respectively.

Convolutional neural network (Table 3.2, 3.3, 3.4, 3.5) We will denote a convo-
lution and deconvolution layer by Conv2d(a,b,c,d,e) and ConvTranspose2d(a,b,c,d,e),
respectively, where a is the number of input channel, b is the number of output chan-
nel, c is the kernel size, d is the stride (biases are always set True), and e is the
padding. We use ReLU activation functions.

For MNIST, FMNIST, KMNIST, Omniglot whose image sizes are (1,28,28), we
use the convolutional encoder networks

Conv2d(1,128,3,2,0) - Conv2d(128,256,3,2,0) -
Conv2d(256,512,3,2,0) - Conv2d(512,1024,3,2,0) - Conv2d(1024,zdim,1,1,0),

and the decoder networks

ConvTranspose2d(zdim,1024,8,1,0) - ConvTranspose2d(1024,512,3,2,1) -
ConvTranspose2d(512,256,2,2,1) - ConvTranspose2d(256,1,1,1,0),

where zdim is 16,32,32,32, respectively.
For SVHN, CIFAR10, CFIAR100 whose image sizes are (3,32,32), we use the con-

volutional encoder networks

Conv2d(3,128,4,2,0) - Conv2d(128,256,4,2,0) -
Conv2d(256,512,4,2,0) - Conv2d(512,1024,2,2,0) - Conv2d(1024,zdim,1,1,0),

and the decoder networks

ConvTranspose2d(zdim,1024,8,1,0) - ConvTranspose2d(1024,512,4,2,1) -
ConvTranspose2d(512,256,4,2,1) - ConvTranspose2d(256,3,1,1,0),

where zdim is 64,128,128, respectively.
For CELEBA whose image size is (3,64,64), we use the convolutional encoder net-

works

Conv2d(3,128,5,2,0) - Conv2d(128,256,5,2,0) -
Conv2d(256,512,5,2,0) - Conv2d(512,1024,5,2,0) - Conv2d(1024,zdim,1,1,0),

and the decoder networks

ConvTranspose2d(zdim,1024,8,1,0) - ConvTranspose2d(1024,512,4,2,1) -
ConvTranspose2d(512,256,4,2,1) - ConvTranspose2d(256,128,4,2,1) -

ConvTranspose2d(128,3,1,1,0),

where zdim is 128.



114 Appendix: Neighborhood Reconstructing Autoencoders

A.1.3 Training Details

We first introduce how we choose the hyperparameter for each algorithm and experi-
ment. AE, VAE do not have hyperparameters, WAE, CAE, SPAE have the regulariza-
tion coefficients, DAE has the noise level, and NRAE-L, NRAE-Q have λ. For NRAE,
we fix the number of nearest neighbors as 15 for MNIST, FMNIST, KMNIST, Om-
niglot, SVHN, CELEBA (S) and 30 for CIFAR10, CIFAR100, CELEBA (L). We note
that these values are not found through extensive search processes, nevertheless, our
algorithms show good results. The same numbers of nearest neighbors are used for
SPAE except for the CELEBA where we choose 15 nearest neighbors because the com-
putational complexity of SPAE largely increases as the number of nearest neighbors
increases.

For experiments that show qualitative results (Figure 3.4, 3.5, 3.6, 3.7, 3.8, 3.9),
we try our best for searching proper hyperparameters for all experiments. For experi-
ments that show quantitative results, we select the best hyperparameters based on the
reconstruction error metrics evaluated with the validation data. For Figure 3.10, Table
3.3, the regularization coefficients for CAE, WAE are searched around 0.01 ∼ 0.001,
the noise level used in DAE is searched around 0.1 ∼ 0.01, and the regularization coef-
ficient and λ for SPAE and NRAE are searched around 0.001 ∼ 0.0001. For Table 3.2,
we use the best hyperparameters selected from the Table 3.3, 3.5 except for the DAE
(we use the same noise statistics for DAE in training as the added noise statistics).
For Table 3.4, we search the parameters over the joint hyperparameter spaces.

For Figure 3.10 and Table 3.3, 3.4, 3.5, we use the Adam optimizer with learning
rates 0.001 ∼ 0.0001 for 1000 epochs using 100 batch size. We use the following early-
stopping criteria: we stop the training if the mean reconstruction error on validation
data increases 10 times in a row. For Table 3.2, we did not use the early-stopping
since we do not have clean data in this setting.

In experiments, we use the following GPU: TITAN X (Pascal), GeForce GRX 1080
Ti, GeForce RTX 2080 Ti, GeForce RTX 3090, each of which RAM has 10 ∼ 24 GB
memory. For CAE, we need 24 GB RAM. We did not use multiple GPUs for each
experiment; a single machine is enough to run the experiments.

A.2 Additional Experimental Results.

A.2.1 Computational Time

In this section, all experiments are performed on TITAN X (Pascal) with 12GB RAM.
We first compare the per-epoch runtime of NRAE with the vanilla AE, VAE and the
graph-based method TopoAE in Table A.1. The runtime of TopoAE is adopted from
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the original paper, and we take experiments of AE, VAE, and NRAE with the same
setting (100 batch size with MNIST dataset, 3 hidden FC layers). Although the device
and other environments used in TopoAE experiment can be different from those used
in our experiments, as shown in Table A.1, the difference in computational time is big
enough to compensate those differences in devices and environments. As discussed in
the main script, TopoAE-like methods that require to compute the topological features
using the persistent homology at every training iteration are yet computationally very
expensive.

Table A.1: Comparisons of the per-epoch runtime with 100 batch size with MNIST
dataset. The network architecture is composed of 3 hidden FC layers (1000-500-250)
and (250-500-1000) for the encoder and decoder, respectively, with two-dimensional
latent space (The runtime of TopoAE is adopted from the original paper).

AE VAE NRAE-L NRAE-Q TopoAE

time (s) 1.74 2.17 3.13 4.15 68

Using the fully connected neural networks, we compute the per-epoch runtimes
(100 batch size and 50000 training data) of our algorithms and the baselines (Fig-
ure A.1). Firstly, we compute the per-epoch runtimes by changing the input dimen-
sion as 100, 500, 1000, 3000, 5000. The runtime of CAE rapidly increases because
it uses the full Jacobian in the loss function, and, when the input dimension is be-
yond 1000, we couldn’t run the experiments due to the GPU memory limitation. On
the other hand, the runtimes of our algorithms are comparable with other existing
methods. Secondly, we compare the runtimes of our algorithms with the graph-based
method SPAE by changing the number of nearest neighborhood points. The runtime
of the SPAE linearly increases (logarithmic in the graph) since it requires to compute
the forward pass of the encoder function as many times as the number of neighbor-
hood points during training. In contrast, our algorithms can use the batch sampling
method for the neighborhood points, thus the runtimes maintain constant.

A.2.2 Robustness to the Choice of the Number of Nearest Neighbors

It is reasonable to ask how robust the NARE is to the choice of the number of nearest
neighbors. We take an experiment with the MNIST dataset to show its behavior given
varying number of nearest neighbors. Figure A.2 shows the test mean reconstruction
errors of NRAE as a function of the number of nearest neighbors compared to the
other baselines. As shown in the figure, the generalization performances of NRAE are
mostly better than the other baselines robustly to the number of nearest neighbors.
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Figure A.1: The per-epoch runtimes as the functions of the input dimension (left) and
the number of nearest neighbors (right).

Figure A.2: Comparisons of the test mean reconstruction errors of NRAE and baseline
AEs. For NRAE, we report the results as a function of the number of nearest neigh-
bors.

A.2.3 Robustness to the Choice of the Batch Size

In the main script, we set the neighborhood batch size two. We have conducted ad-
ditional experiments to test the robustness of our approach to the choice of neigh-
borhood batch size (We use MNIST data with a 16-dimensional latent space). For
batch sizes (2, 4, 6, 8, 10, 12), the corresponding reconstruction losses of NRAE-L
are (0.00953, 0.00952, 0.00950, 0.00952, 0.00955, 0.00945), while those of NRAE-Q
are (0.00968, 0.00966, 0.00975, 0.00983, 0.00975, 0.00982), which we think is quite
robust.
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A.2.4 Extension of the Table 3.3

In Table 3.3 of the main script, we only report the test MSE as a measure of the
generalization performance due to the space limitation. To better understand the al-
gorithms, here we report the following additional measures: the Frechet-Inception Dis-
tance (FID) scores and the Evidence Lower Bound (ELBO). Also, to see the variances
of the algorithms, we repeat the experiments with small datasets five times to compute
and report the standard errors of the test MSEs.

FID score and ELBO While the mean reconstruction error is one of the most intu-
itive methods to measure the difference between data, there are other similarity mea-
sures frequently used in the community. The Frechet-Inception Distance (FID) score
is a measure of similarity between two datasets of images. It was shown to correlate
well with human judgement of visual quality and is most often used to evaluate the
quality of generated samples. FID score is calculated by computing the Fréchet dis-
tance between two Gaussians fitted to latent feature representations of two sets of im-
ages. We measure the FID score with a provided model from github.com/mseitzer/

pytorch-fid.
As another way to measure the quality of the learned manifold or generalization

performance, we convert the trained deterministic models to stochastic models and
compare the Evidence Lower Bound (ELBO) (a lower bound of log probability) eval-
uated with the test data.

Once fθ and gϕ of autoencoder are trained, adopting the idea in [38], we define
a latent variable model to estimate pD(x) as follows:

pσ,γ(x) =

∫
z
pσ(x|z)pγ(z)dz, (A.2.1)

where pγ(z) is a parametric density model such as the normalizing flow models [126,
59, 127, 128], and pσ(x|z) is the stochastic decoder defined as the Gaussian ansatz:

pσ(x|z) :=
1√

(2π)n
∏n
i=1 σ

2
i

exp(−1

2

n∑
i=1

(xi − (fθ(z)i))
2

σ2i
), (A.2.2)

where the noise covariance is the diagonal matrix with σ = (σ1, . . . , σn). We interpret
the deterministic encoder function gθ as a stochastic encoder qϵ(z|x) = N (gθ(x), ϵ

2I)
with a learnable scalar parameter ϵ, and train pσ,γ and qϵ(z|x) by maximizing the
evidence lower bound (ELBO) as in variational autoencoders training [25] (θ, ϕ are

github.com/mseitzer/pytorch-fid
github.com/mseitzer/pytorch-fid
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fixed during training), where the ELBO at data point x is obtained as follows:

ELBO(x) = Eqϵ(z|x)[log pσ(x|z)]−DKL(qϵ(z|x)||pγ(z)), (A.2.3)

where DKL is the KL-divergence. We use the realnvp model [59] for pγ where the
depth is 8, the lengths of hidden vectors are 32, and resale and permutation are set
true.

Test Reconstruction MSEs, FID scores, and ELBOs. As shown in Table A.2, the
ELBOs are likely to be high if the MSEs are low because the learned density functions
tend to assign high probability densities to the test data whose reconstruction errors
are low. The NRAE-L and NRAE-Q mostly show lower MSEs and higher ELBOs than
the other baselines. However, for some cases such as the FMNIST, KMNIST, and Om-
niglot, the CAE or SPAE produce higher ELBOs even though their MSEs are higher
than the NRAEs. This is because the ELBOs not only depend on the quality of the
learned manifolds but also how easily their encoded latent space distributions can be
fit with the normalizing flow models pγ (i.e., minimizing the KL-divergence term). The
MSE and ELBO results in Table A.2 imply that the NRAE-L and NRAE-Q i) mostly
learn better manifolds (i.e. low MSEs) than the other baselines yet sometimes ii) pro-
duce latent space distributions that are difficult to be learned with pγ . Although study-
ing how to train the autoencoder in a way that its latent space distribution can be
easily learned is an out-of-scope of this thesis, developing a new regularization method
that can be added to the NRAE for making its latent space distribution easier to be
learned would be an interesting future direction.

On the other hand, the FID scores are not always positively correlated to the
MSEs. Since our algorithms are implemented using the Euclidean distance metric for
graph construction, the FID scores may not be lower than the others. Nevertheless,
for some examples especially small datasets, the NRAE-L and NRAE-Q produce not
only lower MSEs but also lower FID scores. For example, the NRAE-L and NRAE-Q
show lower MSEs and FID scores for SVHN (S,L), CIFAR10 (S), and CIFAR100 (S),
but show lower MSEs yet higher FID scores for CIFAR10 (L), CELEBA (L).

Figure A.3 shows some of the test image reconstruction results of SVHN (S) and
CIFAR10 (S). Not only the MSEs and FID scores are lower, but also visual qualities
of the reconstructed images by the NARE-L and NRAE-Q are much better than the
other baselines. Figure A.4 shows some of the test image reconstruction results of
CIFAR10 (L) and CELEBA (L). For CIFAR10 (L), reconstructed results are not signif-
icantly different, visually. For CELEBA (L), where the NRAE-L and NRAE-Q show the
lowest MSEs but the highest FID scores, reconstructed results of the NRAEs are little
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more blurry than the others. Our algorithms seem to overly smooth out the CELEBA
data. We believe that this can be alleviated either by decreasing the number of nearest
neighbors or decreasing λ. Although we didn’t have enough time to empirically prove
that NRAEs can better perform on CELEBA (L) in FID scores, in principle, there exist
proper number of nearest neighbors and λ with which NRAEs perform at least better
or equal to the vanilla AE in FID scores, because the NRAEs have the convergence
(to the vanilla AE) property.

It is remarkable that, especially for SVHN, CIFAR10, CIFAR100, CELEBA datasets,
the NRAE-L and NRAE-Q trained with small datasets i) largely outperform the other
baselines trained with small datasets and ii) show comparable performances compared
to the other baselines trained with large datasets. This shows that our algorithm, by
leveraging the local geometric information contained in the neighborhood graph, has
a significant advantage in generalization when the number of training data is small.

Figure A.3: The test image data reconstruction results where the NRAE-L and NRAE-
Q show lower MSEs and FID scores than the other baselines. (left) SVHN (S), (right)
CIFAR10 (S).

Standard errors of MSEs (5 times run). In this section, we report the means and
standard errors for 5 times run of NRAE and baseline AEs for small datasets. The
hyperparameters during 5 times run for each AE are same with the settings whose
results are reported in Table 3.3. In table 3.3, we report the means and standard er-
rors of the test reconstruction MSEs. As shown in the table, the standard errors are
negligible and the NRAE-L and NRAE-Q show lower MSEs than the other baselines.
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Figure A.4: The test image data reconstruction results where the NRAE-L and NRAE-
Q show lower MSEs but higher FID scores than the other baselines. (left) CIFAR (L),
(right) CELEBA (L).

A.3 Further Discussion

Relation to local polynomial regression. Smoothing data points by fitting a lo-
cal polynomial model is a well-known technique in non-parametric regression [129].
Assuming a fixed encoder function g, training the decoder in NRAE shares some sim-
ilarities to local polynomial regression. For example, given a set of paired data Dp :=
{(z, x)|z = g(x), x ∈ D}, the local linear regression problem for estimating f at z is
typically formulated as follows:

f(z), A∗(z) = argmin
x∈Rn,A∈Rn×m

∑
(z′,x′)∈Dp

K(z′, z) · ∥x′ − (x+A(z′ − z))∥2, (A.3.4)

where K(z′, z) is a kernel function, f(z) is the estimate of x at z, and A∗(z) ∈ Rn×m
is the estimated linear coefficient at z. While local polynomial regression is a non-
parametric technique that requires solving an optimization for every query point z,
NRAE learns a parametric model fθ for a similar-looking loss function that uses a
local polynomial approximation of fθ.

Convergence to vanilla AE. NRAE is a generalization of a vanilla AE in the follow-
ing sense: NRAE converges to the vanilla AE – that is, the neighborhood reconstruc-
tion loss converges to the point reconstruction loss – if N (x) → {x} or K(x′, x) →
δ(x′, x).
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Linear decoder function. As a special case, consider an autoencoder with a linear
decoder function such that fθ(z) = θ1z+θ0 for θ1 ∈ Rn×m, θ0 ∈ Rn. The second-order

derivative of fθ is zero while the first-order derivative ∂fθ(z)
∂z = θ1; the neighborhood

reconstruction loss for a point x′ ∈ N (x) then becomes

∥x′ − F̃θ,ϕ(x
′;x)∥2 := ∥x′ − θ1gϕ(x)− θ0 − θ1(gϕ(x

′)− gϕ(x))∥2 = ∥x′ − Fθ,ϕ(x
′)∥2.

(A.3.5)
The above implies that NRAE with a linear decoder function is identical to the vanilla
AE with the linear decoder.
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Table A.2: The test reconstruction MSEs, FID scores (the lower the better) and ELBO
(the higher the better). The FID scores are computed on RGB-image datasets only.
The best and second-best are colored red and blue, respectively.

Dataset Metric Size AE VAE WAE DAE CAE SPAE NRAE-L NRAE-Q

MNIST
MSE

S 0.01002 0.01091 0.01009 0.00999 0.00998 0.00989 0.00953 0.00968
L 0.00688 0.00756 0.00690 0.00684 0.00692 0.00694 0.00649 0.00683

ELBO
S 202.59 209.31 208.34 201.38 252.31 239.96 371.01 413.16
L 327.65 223.62 375.6 366.38 458.34 375.62 631.17 658.87

FMNIST
MSE

S 0.01485 0.01652 0.01428 0.01446 0.01319 0.01363 0.01289 0.01277
L 0.01118 0.01235 0.01106 0.01099 0.01052 0.01065 0.01060 0.01044

ELBO
S 311.30 285.37 347.14 320.51 494.85 421.59 410.97 430.03
L 434.51 398.10 443.26 443.44 580.62 533.97 498.14 505.10

KMNIST
MSE

S 0.03267 0.03234 0.03283 0.03280 0.03279 0.03268 0.03071 0.03021
L 0.02844 0.02963 0.02776 0.02814 0.02762 0.02732 0.02564 0.02602

ELBO
S -19.19 22.17 12.98 -23.78 96.98 63.03 42.89 59.58
L 35.96 43.65 66.34 42.58 174.05 131.77 112.32 120.35

Omniglot
MSE

S 0.03038 0.03627 0.03078 0.03068 0.02714 0.02889 0.02668 0.02631
L 0.02704 0.03192 0.02728 0.02696 0.02567 0.02644 0.02578 0.02539

ELBO
S 33.00 -24.62 35.93 30.60 150.62 110.65 96.96 117.34
L 92.10 20.78 90.65 97.89 189.11 141.95 132.96 148.22

SVHN

MSE
S 0.00320 0.00420 0.00320 0.00369 0.00273 0.00307 0.00202 0.00192
L 0.00174 0.00204 0.00190 0.00177 0.00178 0.00175 0.00148 0.00147

ELBO
S 1146.20 987.80 1015.34 1145.97 1304.49 1291.12 3908.37 4050.09
L 3576.44 3307.51 3100.47 3567.15 4330.74 4130.41 5134.48 4762.67

FID
S 91.69 124.51 105.00 90.54 60.48 77.38 31.54 28.61
L 40.44 40.88 40.16 38.34 41.02 40.20 36.95 35.95

CIFAR10

MSE
S 0.01466 0.01620 0.01431 0.01427 0.01208 0.01504 0.00768 0.00691
L 0.00960 0.01123 0.00863 0.00900 0.00755 0.00898 0.00629 0.00587

ELBO
S 565.04 269.54 398.32 547.34 908.45 768.79 1963.12 1823.59
L 520.46 342.21 425.80 631.54 1813.96 930.47 2607.25 2643.33

FID
S 137.12 157.18 132.79 133.82 108.39 122.20 94.27 85.73
L 77.43 94.43 71.51 74.91 62.14 66.05 68.74 70.53

CIFAR100

MSE
S 0.01465 0.01713 0.01463 0.01484 0.01369 0.01477 0.00765 0.00717
L 0.01015 0.01064 0.00951 0.00862 0.00842 0.00912 0.00678 0.00635

ELBO
S 571.81 257.07 522.22 508.72 812.30 772.32 2004.62 1603.06
L 625.13 354.69 481.51 468.68 1446.45 917.11 2463.61 2498.37

FID
S 122.28 139.20 131.91 156.50 127.29 108.86 85.56 80.06
L 81.35 86.96 78.77 73.95 65.02 66.68 64.84 68.02

CELEBA

MSE
S 0.00780 0.00937 0.00830 0.00782 - 0.00861 0.00608 0.00747
L 0.00613 0.00646 0.00630 0.00590 - 0.00665 0.00563 0.00565

ELBO
S 4298.56 4101.55 6043.03 4311.07 - 4513.48 12934.30 11692.26
L 11224.41 10628.09 11146.31 11634.83 - 11328.64 13456.26 13457.03

FID
S 60.40 70.13 60.40 59.92 - 60.15 57.51 68.59
L 43.02 45.18 44.74 42.55 - 43.54 57.70 55.28
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Table A.3: The means and standard errors of the test reconstruction MSEs (the lower
the better). The metrics are computed with 5 times run except that metrics on the
CELEBA data are computed with 3 times run. The best and second-best results are
colored red and blue, respectively.

Dataset Statistic AE VAE WAE DAE CAE SPAE NRAE-L NRAE-Q

MNIST
mean 0.010670 0.01094 0.01075 0.01065 0.01037 0.01064 0.00971 0.01013
ste ±0.00028 ±0.00006 ±0.00031 ±0.00026 ±0.00023 ±0.00034 ±0.00018 ±0.00020

FMNIST
mean 0.01435 0.01656 0.01391 0.01403 0.01303 0.01342 0.01281 0.01273
ste ±0.00015 ±0.00003 ±0.00013 ±0.00014 ±0.00008 ±0.00009 ±0.00003 ±0.00003

KMNIST
mean 0.03254 0.03251 0.03306 0.03283 0.03213 0.03255 0.03053 0.02996
ste ±0.00008 ±0.00008 ±0.00013 ±0.00027 ±0.00026 ±0.00019 ±0.00012 ±0.00010

Omniglot
mean 0.03028 0.03146 0.03155 0.03086 0.02891 0.02886 0.02684 0.02631
ste ±0.00018 ±0.00109 ±0.00109 ±0.00020 ±0.00040 ±0.00011 ±0.00006 ±0.00016

SVHN
mean 0.00323 0.00431 0.00319 0.00333 0.00271 0.00310 0.00205 0.00220
ste ±0.00002 ±0.00012 ±0.00004 ±0.00009 ±0.00004 ±0.00005 ±0.00002 ±0.00019

CIFAR10
mean 0.01472 0.01709 0.01445 0.01486 0.01251 0.01465 0.00816 0.00700
ste ±0.00032 ±0.00026 ±0.00022 ±0.00036 ±0.00011 ±0.00015 ±0.00070 ±0.00006

CIFAR100
mean 0.01463 0.017318 0.014548 0.01435 0.01361 0.01455 0.00781 0.00732
ste ±0.00008 ±0.00019 ±0.00023 ±0.00022 ±0.00026 ±0.00017 ±0.00011 ±0.00005

CELEBA
mean 0.00797 0.00914 0.00821 0.00780 - 0.00839 0.00602 0.00727
ste ±0.00012 ±0.00010 ±0.00009 ±0.00001 - ±0.00009 ±0.00003 ±0.00008
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B
Appendix:MinimumCurvature

Manifold Learning

The appendix is organized as follows: (B.1) Related Works, (B.2) Proof of Proposi-
tion 4.1, (B.3) On the Extrinsic Curvature, (B.4) Experiment Details, (B.5) Additional
Experiment Results, and (B.6) Computational Complexity.

B.1 Related Works: Regularized Autoencoders

The framework of autoencoding together with the recent advances in deep learning
techniques used for approximating arbitrary complex functions successfully addresses
the manifold learning problem [9]. The core idea is to learn two mappings an encoder
g : RD → Rm and a decoder f : Rm → RD approximated with deep neural networks
so that the composition of them reconstructs the given data points xi ∈ RD, i.e.,
f ◦ g(xi) ≈ xi, for i = 1, · · · , N , and that the data points approximately lie on the
image of the decoder, which we refer to as the learned manifold.

Many existing autoencoder regularization methods have focused on the represen-
tation learning perspective of autoencoders and studied how to regularize the latent
space distributions for purposes like sampling, topology and geometry preserving, clus-
tering, or capturing hierarchical structure [32, 25, 34, 26, 27, 29, 30, 31, 19, 20, 21,
22]; since the latent space distributions are entirely determined by the encoders, they
mostly focus on regularizing the encoders but not decoders.

As discovered in [13], to learn the accurate manifold in the presence of data noise
or given a small number of training data, regularization of the decoder is indeed more
important, because it is the decoder that has information about how the manifold lies
in the data space. Based on the intuition that a local approximation of the decoder
contains local geometric information on the decoded manifold (i.e. learned manifold),
e.g., a local linear approximation of f spans the tangent space, a priori constructed

125
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neighborhood graph is employed to regularize the local approximation of the decoder
and hence the decoded manifold. This has shown improved manifold learning accuracy
for both noisy and small training dataset cases, however obviously, the performance
largely depends on the quality of the graph as in many other graph-based methods.

There are graph-free autoencoder regularization methods that regularize not only
an encoder but also the decoder. Denoising autoencoder [18] is trained to reconstruct
a corrupted input to its clean version with the following loss

N∑
i=1

∥xi − f(g(xi + ϵ))∥2, (B.1.1)

for some noise variable ϵ. As a limit case in [41], the Jacobian of the reconstruction
function is minimized where the loss is defined as follows:

N∑
i=1

∥xi − f(g(xi))∥2 + α ∥∂f ◦ g
∂x

(xi)∥2F , (B.1.2)

where α is the regularization coefficient and ∥ ·∥F denotes the Frobenius norm. These
by construction attempt to learn manifolds robust to noise, but we note that (i) they
are designed to be robust to noise during inference after being trained with clean data,
but if training data points themselves are noisy, the robust manifold learning perfor-
mance decreases and (ii) their regularization effects are limited to where data points
are available.

Since regularizing the decoder that explicitly parameterizes the manifold is impor-
tant, one may consider minimizing the norm of decoder’s Jacobian as

N∑
i=1

∥xi − f(g(xi))∥2 + α ∥∂f
∂z

(g(xi))∥2F (B.1.3)

with the regularization coefficient α or the norm of decoder’s Hessian
∑

i,j ∥
∂2f
∂zi∂zj

(g(xi))∥2.
However, these norms do not capture geometric quantities of the learned manifold be-
cause they are not coordinate-invariant or reparmetrization-invariant, and thus they do
not produce any meaningful regularization effects.

For example, consider a coordinate transformation z′ = h(z) which converts the
encoder as g 7→ g′ = h ◦ g and decoder as f 7→ f ′ = f ◦ h−1. The reconstruction loss
is invariant since f ◦ g = f ′ ◦ g′, and hence the learned manifold is invariant, but the
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regularization term, the norm of decoder’s Jacobian, is different:

∥∂f
′

∂z′
(g′(xi))∥2F = ∥∂f

∂z
(g(xi))

∂h−1

∂z′
(g′(xi))∥2F ̸= ∥∂f

∂z
(g(xi))∥2F . (B.1.4)

This implies that we can minimize the norm of decoder’s Jacobian just by increasing
the norm of Jacobian of h−1 without actually changing the learned manifold. A similar
argument holds for the Hessian norm.

Recent works [33, 14] have suggested decoder regularization methods for learning
isometric representations that preserve geometry of the data space. A common goal
is to learn a decoder f : Rm → RD that satisfies

∂f

∂z
(z)T

∂f

∂z
(z) = cI for all z ∈ ν(Rm) (B.1.5)

for some positive scalar c, where I is the m × m identity matrix and ν(Rm) is the
support of the latent space data distribution. Such mappings are formally defined as
scaled isometries in [14], which are geometry-preserving mappings in the sense that
latent space straight lines are mapped to the geodesic curves in the learned manifold.

Regularizing the decoder to be a scaled isometry, beyond finding geometry-preserving
representations, has an implicit manifold regularization effect. According to Gauss’s
Theorema Egregium which states that “The Gaussian curvature of a surface is invari-
ant under local isometry”, for scaled isometries f to exist, the Gaussian curvature of
the learned manifold should be the same as that of the Euclidean space (i.e., zero).
In other words, it has an implicit intrinsic curvature minimization effect, which is dif-
ferent from the method proposed in this paper that explicitly minimizes the extrinsic
curvature.

B.2 Proof of Proposition 4.1

Proof. Let’s denote by

c(θ, ϕ) =
∑
i,j

(JTθ Jθ)
−1
ij Tr(

∂E(Jθ)

∂zi

∂E(Jθ)

∂zj
).

Given a coordinate transformation z′ = h(z) that maps (gϕ, fθ) 7→ (gϕ′ , fθ′) = (h ◦
gϕ, fθ ◦ h−1), the following transformation rules hold: Jθ 7→ Jθ′ = Jθ · ∂h−1

∂z′ and
∂I
∂z 7→ ∂I

∂z′ =
∂I
∂z

∂h−1

∂z′ for some scalar-valued function I(z). We note that, since E(J) =
E(JA) for some arbitrary invertible matrix A, the embedding is invariant, i.e., E(Jθ′) =
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E(Jθ). Let Iαβ denote the (α, β)-component of E(Jθ), then, by using Tr(AB) =∑
α,β AαβBβα and denoting ∂h−1

∂z′ by H,

c(θ, ϕ) 7→ c(θ′, ϕ′) =
∑
i,j

(JTθ′Jθ′)
−1
ij

∑
α,β

∂Iαβ
∂z′i

∂Iβα
∂z′j

=
∑
α,β

∂Iαβ
∂z′

(JTθ′Jθ′)
−1

(∂Iβα
∂z′

)T
=

∑
α,β

∂Iαβ
∂z

H(HTJTθ JθH)−1HT
(∂Iβα
∂z

)T
=

∑
α,β

∂Iαβ
∂z

(JTθ Jθ)
−1

(∂Iβα
∂z

)T
=

∑
i,j

(JTθ Jθ)
−1
ij

∑
α,β

∂Iαβ
∂zi

∂Iβα
∂zj

= c(θ, ϕ). (B.2.6)

B.3 On the Extrinsic Curvature Measure

In this section, we we will derive the expression of our extrinsic curvature measure

∑
i,j

(JTJ)−1
ij Tr(

∂J(JTJ)JT

∂zi
∂J(JTJ)JT

∂zj
)

for a one-dimensional manifold, i.e., a curve, embedded in RD. Let x : R → RD be a
smooth curve and assume that it is parameterized by arc-length, i.e., ∥∂x∂z ∥ = JTJ = 1.
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Then, the curvature becomes

Tr((
∂JJT

∂z
)2) = Tr((

∂

∂z
(
∂x

∂z

∂x

∂z

T

))2)

= Tr((
∂2x

∂z2
∂x

∂z

T

+
∂x

∂z

∂2x

∂z2

T

)2)

= Tr(
∂2x

∂z2
∂x

∂z

T ∂2x

∂z2
∂x

∂z

T

+ 2
∂2x

∂z2
∂x

∂z

T ∂x

∂z

∂2x

∂z2

T

+
∂x

∂z

∂2x

∂z2

T
∂x

∂z

∂2x

∂z2

T

)

=
∂x

∂z

T ∂2x

∂z2
∂x

∂z

T ∂2x

∂z2
+ 2

∂x

∂z

T ∂x

∂z

∂2x

∂z2

T
∂2x

∂z2
+
∂2x

∂z2

T
∂x

∂z

∂2x

∂z2

T
∂x

∂z

= 2(
∂x

∂z

T ∂2x

∂z2
)2 + 2

∂2x

∂z2

T
∂2x

∂z2
. (B.3.7)

Since ∂
∂z∥

∂x
∂z ∥ = 0 implies that ∂x

∂z

T ∂2x
∂z2

= 0, our curvature measure for an arc-length

parameterized curve x(z) is simplified to 2∥∂2x
∂z2

∥ that is twice the norm of second
derivative. This is equivalent to the classical definition of the curvature of a curve.

B.4 Experiment Details

B.4.1 Grayscale Image Data

The image size is 28 × 28 and the pixel values are normalized between 0 and 1.
The encoder and decoder are two-layer fully connected neural networks with the ELU
activation functions and 512 nodes for each layer. The output layer is linear for the
encoder and sigmoid for the decoder. For clean dataset cases, we use the following
early stopping criteria in training: we stop the training if the mean reconstruction error
for the validation dataset increases 10 times in a row; then we use the best model (i.e.
the lowest validation errors) for evaluation. For noisy dataset cases, assuming that we
don’t have an access to the clean dataset during training, we do not use the early
stopping and trained the model for a sufficiently big number of epochs for convergence
(the number of epochs is 1000). The number of test data is 60000. For evaluation,
we use clean test data for noisy training dataset cases as well. The batch size is 100
and the learning rate is 0.001.

B.4.2 SVHN & CIFAR10 Image Data

The image size is 32 × 32 and the pixel values are normalized between 0 and 1. For
noisy training dataset experiments, we add noises as follows: (i) for Gaussian noise,
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the standard deviation is 0.1, (ii) for Shot noise, we multiply 0.15 to noise variables
sampled from the Poisson distributions where λ are image pixel values, and (iii) for
Impulse noise, with 5% probability we randomly add 1 to each pixel. The encoder and
decoder are convolutional and transposed convolutional neural networks with the ReLU
activation functions, where, denoting a convolution layer of input channel size ci, out-
put channel size co, kernel size k, stride s, and padding p by Conv2d(ci, co, k, s, p) and
transposed convolution layer by ConvTrans2d(ci, co, k, s, p), the following sequence of
layers Conv2d(3, 128, 4, 2)-Conv2d(128, 256, 4, 2)-Conv2d(256, 512, 4, 2)-Conv2d(512,
1024, 2, 2)-Conv2d(1024, 64, 1) is used for encoder and ConvTrans2d(64, 1024, 8)-
ConvTrans2d(1024, 512, 4, 2, 1)-ConvTrans2d(512, 256, 4, 2, 1)-ConvTrans2d(512, 3,
1) for decoder. The output layer is linear for the encoder and sigmoid for the decoder.
For clean dataset cases, we use the following early stopping criteria in training: we
stop the training if the mean reconstruction error for the validation dataset increases
10 times in a row; then we use the best model (i.e. the lowest validation errors) for
evaluation. For noisy dataset cases, assuming that we don’t have an access to the
clean dataset during training, we do not use the early stopping and trained the model
for a sufficiently big number of epochs for convergence (the number of epochs is 100).
The number of test data is 63257 for SVHN and 10000 for CIFAR10. For evaluation,
we use clean test data for noisy training dataset cases as well. The batch size is 8
and the learning rate is 0.0001.

B.4.3 Human Skeleton Pose Data

From the NTU RGB+D dataset, a set of human pose skeleton data that consists of
25 key points is extracted and pre-processed to be aligned. Specifically, 10000 poses
are extracted from each action class (a total of 60 action classes is used), and they
are rotated and translated so that the 1-2 key points direction becomes z-axis and 1-
13 key points direction becomes the y-axis and the key point number 2 becomes the
origin. The encoder and decoder are two-layer fully connected neural networks with the
ELU activation functions and 512 nodes for each layer. The output layers are linear
for both the encoder and decoder. For clean dataset cases, we use the following early
stopping criteria in training: we stop the training if the mean reconstruction error for
the validation dataset increases 10 times in a row; then we use the best model (i.e.
the lowest validation errors) for evaluation. For noisy dataset cases, assuming that
we don’t have an access to the clean dataset during training, we do not use the early
stopping and trained the model for a sufficiently big number of epochs for convergence
(the number of epochs is 5000). The number of test data is 9000. For evaluation, we
use clean test data for noisy training dataset cases as well. The batch size is 100 and
the learning rate is 0.0001.
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Figure B.1: De-noising examples of grayscale image data (noise level 0.1).

Figure B.2: De-noising examples of grayscale image data (noise level 0.2).

B.5 Additional Experiment Results

B.5.1 More Qualitative Results

Figure B.1, B.2, B.3, B.4, B.5, B.6 show additional de-noising results for image data
and human skeleton pose data.

B.6 Computational Complexity

In this section, we provide actual computation time of the curvature measure in (4.3.7)
and backpropagation time with two-layer fully connected neural networks used for gray-
scaled image data and convolutional and transposed convolutional neural networks
used for the SVHN and CIFAR10 image data. Throughout this study, the NVIDIA
GeForce RTX 3090 is used.
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Figure B.3: De-noising examples of grayscale image data (noise level 0.3).

Figure B.4: De-noising examples of SVHN data.

Figure B.5: De-noising examples of CIFAR10 data.

Table B.1 shows the per-batch computation time comparisons between reconstruc-
tion loss term and curvature term in (4.3.7). Although the curvature computation has
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Figure B.6: De-noising examples of human pose data.

become feasible through the stochastic trace estimation, compared to the original re-
construction loss term, it still takes much longer time. Especially, looking at the for-
ward computation time for the Conv net case, the curvature computation is almost
100 to 150 times slower than the reconstruction term computation.

To see which part in the below curvature measure

C(θ, ϕ) = Ez∼p̂ϕ(z),v∼N (0,Im),w∼N (0,ID)[v
T ∂(w

TE(Jθ))

∂z

∂(E(Jθ)w)

∂z
G−1
θ v]
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Table B.1: Per-batch computation time comparisons. For the FC net with 1× 28× 28
image, the latent space dimension is 16 and the batch size is 100, and for the Conv
net with 3× 32× 32 image, the latent space dimension is 64 and the batch size is 8
(for GPU memory limitation).

FC net with 1× 28× 28 image Conv net with 3× 32× 32 image
Forward Computation Back-Propagation Forward Computation Back-Propagation

Reconstruction 0.00037 s 0.00045 s 0.00220 s 0.00114 s
Curvature 0.00967 s 0.00447 s 0.30147 s 0.06051 s

requires a major computational cost, we compare the computation times of the fol-
lowing operations: (i) the Riemannian metric Gθ = JTfθJfθ , (ii) the inverse of Gθ, (iii)

the Jacobian-vector product for ∂(E(Jθ)w)
∂z v, and (iv) the Jacobian-vector product for

∂(E(Jθ)w)
∂z (G−1

θ v).
Table B.2 shows the per-batch computation times of the intermediate operations in

curvature measure (4.3.7) for the Conv net case. As can be seen, the inverse compu-
tation takes up most of the total computation time. To reduce the computation time
of the matrix inverse, one can consider an approximate inverse computation method.
For example, given Gθ, let us define a function f : Rm×m → Rm×m such that

f(X) = X−1 −Gθ. (B.6.8)

To find the root of f , we can use the standard Newton-Raphson method:

Xn+1 = 2Xn −XnGθXn, (B.6.9)

which is known as the Newton-Schulz iteration method for the matrix inversion. We
can get an approximation of G−1

θ by iteratively applying the above, where it gets closer
to the true inverse as we increase the number of iteration.

Table B.3 shows the per-batch computation times and percent errors of the ap-
proximate matrix inverse G−1

θ in curvature measure (4.3.7) as the number of iteration
increases with the Conv net case. The percent error is computed as 100 ∗ ∥G−1

true −
G−1

est∥F /∥G−1
true∥F . When the number of iterations is set to be 100, the percent er-

ror is only 0.01 % while significantly reducing the computation time as 0.28353 s →
0.005669 s. It is highly recommended to use the approximate matrix inverse when the
latent space dimension is high.
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Table B.2: Per-batch computation times of the intermediate operations in curvature
measure (4.3.7) with the Conv net with 3× 32× 32 image and 64-dimensional latent
space.

JT
fθ
Jfθ G−1

θ
∂(E(Jθ)w)

∂z
v

∂(E(Jθ)w)
∂z

(G−1
θ v)

0.00192 s 0.28353 s 0.00682 s 0.00647 s

Table B.3: Per-batch computation times and percent errors of the approximate matrix
inverse G−1

θ in curvature measure (4.3.7) as the number of iteration increases with
the Conv net with 3× 32× 32 image and 64-dimensional latent space.

number of iterations ground truth 1 5 10 100 1000
time 0.28353 s 0.000256 s 0.000507 s 0.000807 s 0.005669 s 0.053519 s

percent error 0 % 99.83 % 97.69 % 71.35 % 0.0109 % 0.0095 %
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C
Appendix: Regularized

Autoencoders for Isometric
Representation Learning

C.1 Proof of Propositions

Proof of Proposition 5.3.1. For sufficiency (⇒) of the second condition, suppose F(f) =
0. Then, denoting by c =

∫
M S(λ1(z), ..., λm(z)) dν(z),

m∑
i=1

h(
λi(z)

c
) = 0 ∀z ∈ Supp(ν).

Since h(λ) ≥ 0 for ∀λ ∈ R, h(λi(z)/c) = 0 for ∀i,∀z ∈ Supp(ν). Since h′(λ) = 0 iff
λ = 1, λi(z) = c for ∀i,∀z ∈ Supp(ν).

For necessity (⇐) of the second condition, suppose λi(z) = c for ∀i,∀z ∈ Supp(ν),
then

λi(z)∫
M S(λ1(z), ..., λm(z)) dν(z)

=
c∫

M S(c, ..., c) dν(z)

=
c

c
∫
M S(1, ..., 1) dν(z)

=
1

1
ν(M)

∫
M dν(z)

= 1 for ∀z ∈ Supp(ν).

137



138 Appendix: Regularized Autoencoders for Isometric Representation Learning

Then consequently,

F(f) =

∫
M

m∑
i=1

h(
λi(z)∫

M S(λ1(z), ..., λm(z)) dν(z)
) dν(z) =

∫
M

m∑
i=1

h(1) dν(z) = 0.

For the third condition, suppose JTf HJf = cJTg HJg in Supp(ν) for some c >

0. Denote the eigenvalues of JTf HJfG
−1 and JTg HJgG

−1 by λi[f ] and λi[g] where
λ1[f ] ≥ ... ≥ λm[f ] and λ1[g] ≥ ... ≥ λm[g], respectively. Then, obviously, λi[f ] =
cλi[g] for ∀i. Then consequently,

F(f) =

∫
M

m∑
i=1

h(
λi[f ](z)∫

M S(λ1[f ](z), ..., λm[f ](z)) dν(z)
) dν(z)

=

∫
M

m∑
i=1

h(
cλi[g](z)∫

M c · S(λ1[g](z), ..., λm[g](z)) dν(z)
) dν(z)

=

∫
M

m∑
i=1

h(
λi[g](z)∫

M S(λ1[g](z), ..., λm[g](z)) dν(z)
) dν(z) = F(g).

Proof of Proposition 5.4.1. Note that Tr(Hθ(z)) =
∑

i λi(z) and Tr(H2
θ (z)) =

∑
i λ

2
i (z),

and denote by E := Ez∼Pϕ
[Tr(Hθ(z))]. Then

Ez∼Pϕ
[

m∑
i=1

(
λi(z)

Ez∼Pϕ
[
∑

i λi(z)/m]
− 1)2] = Ez∼Pϕ

[

m∑
i=1

(
mλi(z)

E
− 1)2]

= Ez∼Pϕ
[

m∑
i=1

(
m2λ2i (z)

E2
− 2mλi(z)

E
+ 1)]

= Ez∼Pϕ
[

m∑
i=1

m2λ2i (z)

E2
]−m

= m2
Ez∼Pϕ

[Tr(H2
θ (z))]

Ez∼Pϕ
[Tr(Hθ(z))]2

−m.
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C.2 Pseudocode

In this section, we provide pytorch style pseudocode for our Isometric Regularization
and Flattening Module.

C.2.1 Isometric Regularization of Autoencoders

In the main manuscript, we mainly study the isometric regularization effect on Varia-
tional Autoencoder (VAE). VAE is just one possible choice; our method is straightfor-
wardly applicable to other types of autoencoders. We consider a deterministic encoder
and decoder in the following pseudocode.

1 ’’’We assume

2 x: input data w/ size (batch_size , data_space_dimension)

3 z: latent value w/ size (batch_size , latent_space_dimension)

4 encoder: torch.nn.Module (e.g., z = encoder(x))

5 decoder: torch.nn.Module (e.g., x = decoder(z))

6 eta: mixup parameter

7 ’’’

8 def relaxed_distortion_measure(decoder , z):

9 bs , z_dim = z.size()

10

11 v = torch.randn(bs , z_dim)

12 Jv = torch.autograd.functional.jvp(decoder , z, v=v)

13 TrG = torch.sum(Jv**2, dim =1).mean()

14 JTJv = torch.autograd.functional.vjp(decoder , z, v=JV)

15 TrG2 = torch.sum(JTJv**2, dim =1).mean()

16 return TrG2/(TrG **2)

17

18 def isometric_regularization_term(x, encoder , decoder , eta):

19 z = encoder(x)

20 bs , z_dim = z.size()

21

22 # sample z_augmented from P_Z

23 z_permuted = z[torch.randperm(bs)]

24 alpha_samples = (torch.rand(bs , 1) * (1 + 2*eta) - eta)

25 z_augmented = alpha_samples*z + (1 - alpha_samples)*z_permuted

26

27 # compute relaxed distortion measure

28 return relaxed_distortion_measure(decoder , z_augmented)

C.2.2 Flattening Module

1 ’’’In addition to the above , we assume

2 z_: new latent value w/ size (batch_size , latent_space_dimension)
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3 flattening_module: torch.nn.Module (e.g., z_ = flattening_module(z)),

invertible

4 ’’’

5

6 def flattening_loss(x, encoder , decoder , flattening_module , eta):

7 z_ = flattening_module(encoder(x))

8 bs , z_dim = z_.size()

9

10 z_permuted = z_[torch.randperm(bs)]

11 alpha_samples = (torch.rand(bs , 1) * (1 + 2*eta) - eta)

12 z_augmented = alpha_samples*z_ + (1 - alpha_samples)*z_permuted

13

14 def func(z_):

15 z = inverse_of_flattening_module(z_)

16 return decoder(z)

17

18 return relaxed_distortion_measure(func , z_augmented)

C.3 Comparison to Other Regularization Approaches that use
the Jacobian.

There have been several works on regularized autoencoders that use the Jacobian of
the encoder or decoder. In the following discussion, let g(x) be an encoder and f(z)
be a decoder, and denote the Jacobian of g(x) by Jg(x) and the Jacobian of f(z) by
Jf (z). Let ∥·∥F denote the Frobenius norm. The latent space dimension is denoted by
m. PD is the data distribution and PZ is the (augmented) encoded data distribution.

The Contractive Autoencoder (CAE) attempts to enhance robustness of represen-
tation by penalizing the Jacobian norm of the encoder function [32]. Mathematically,
the regularization term is

Ex∼PD
[∥Jg(x)∥2F ].

The Contractive Autoencoder with Hessian regularization (CAE+H) introduced not
long after in [130] has regularization term

Ex∼PD
[∥Jg∥2F + γ∥Jg(x)− Jg(x+ ϵ)∥2F ],

where ϵ is a small value and γ controls the balance between the two terms. The sec-
ond order regularization using the Hessian penalizes curvature, and thus favors smooth
manifolds. These approaches mainly aim to learn robust representations by finding
smooth encoders g that have small Jacobian and Hessian norms.

More recently, a regularization method that finds a geometry preserving mapping
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has been introduced [33], called the Flat Manifold Variational Autoencoder (FMVAE).
This is the closest work to our thesis, and similarly aims to find a scaled isometry.
However, the regularization term introduced in FMVAE has several limitations com-
pared to ours.

We first note that geometric objects that we want to preserve, such as length,
angle, and volume, are all coordinate invariant concepts, which require a coordinate
invariant formulation from the start. If one uses a coordinate-variant measure, then
there is no guarantee that it will work effectively for different choices of coordinates.
Also, there is no a priori way of knowing which coordinates are best.

In this regard, we first show that the regularization term defined in FMVAE is
not coordinate-invariant. Let M be a Riemannian manifold of dimension m with local
coordinates z ∈ Rm and Riemannian metric G(z) ∈ Rm×m, and N be a Riemannian
manifold of dimension n with local coordinates x ∈ Rn and Riemannian metric H(x) ∈
Rn×n. Let f : M → N be a smooth mapping, represented in local coordinates by the
italic symbol f : Rm → Rn. Let Jf be the Jacobian of f and PZ be the probability
distribution expressed in Rm. Let ν be a positive measure on M.

The regularization term defined in FMVAE is then

∥JTf (z)H(f(z))Jf (z)− cG(z)∥2F ,

where ∥ · ∥F is the Frobenius norm and c =
∫
M

1
mTr(JTf (z)H(f(z))Jf (z))dν. For

simplicity, consider a pair of linear coordinate transformations on the input manifold
z′ = Az and output manifold x′ = Bx. Then the function f is transformed to
f ′(z′) := Bf(A−1z′), G(z) is transformed to G′(z′) := A−TG(z)A−1 and H(x) is
transformed to H ′(x′) := B−TH(x)B−1. Then, after some calculations, the above
regularization term is transformed to∥∥A−T (JTf (z)H(f(z))Jf (z)− c′G(z)

)
A−1

∥∥2
F
,

where c′ =
∫
M

1
mTr(A−TJTf (z)H(f(z))Jf (z)A

−1)dν. Recall that the Frobenius norm

∥A∥2F = 1
2Tr(A

TA), the A−T and A−1 multiplied at sides are not canceled; we can
see that this is not coordinate-invariant.

In addition to this, perhaps a more direct reason that the FMVAE does not per-
form as well as our method can be explained as follows. We remark that one of
the desired properties of the scaled isometry measure is the third condition in Sec-
tion 3.3: given two mappings f and f ′ from M to N , if JTf (z)H(f(z))Jf (z) =

cJTf ′(z)H(f ′(z))Jf ′(z) for some c > 0 for all z, then the scaled isometry measure
should be the same (that is, the metric should not distinguish between f and f ′).
This makes the measure more natural, in the sense that it does not a priori favor a
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particular scale for the pullback metric; if the pullback metrics are equivalent up to
some scale, then these should be treated the same.

The regularization term introduced in FMVAE can also be viewed as a scaled isom-
etry measure. However, it fails to satisfy the all-important third property. Even though
the pullback metrics of f and f ′ are equivalent up to some scalar multiplication, i.e.,
JTf (z)H(f(z))Jf (z) = cJTf ′(z)H(f ′(z))Jf ′(z) for some c > 0 for all z, the one with
the “smaller” Jacobian (i.e., smaller norm) achieves a lower value of the regularization
term. As a result, the FMVAE favors a mapping with a smaller Jacobian, which can
be detrimental to learning accurate data manifolds.

On the other hand, our relaxed distortion measures are defined in a coordinate-
invariant way. Further, as we have shown in our main manuscript, the measure does
not favor a particular scale of the pullback metric. We believe, because of these char-
acteristics, IRVAE can outperform FMVAE.

C.4 Experimental Details

C.4.1 Section 5.5.1.1

Dataset: We use MNIST dataset. The training, validation, and test data are 50,000,
10,000, and 10,000, respectively.

Network Architecture: For both FMVAE, IRVAE, we use fully-connected neural
networks that have four hidden layers with ReLU activation functions (256 nodes for
each layer are used) for encoder and decoder. The output activation functions are
linear and sigmoid for encoder and decoder, respectively. For FM, we use the RealNVP
model of depth 8 and length 512.

Other Details: For FMVAE and IRVAE, the batch size is 100, the number of
training epochs is 300, the learning rate is 0.0001, and η = 0.2. For FM, the batch
size is 100, the number of training epochs is 100, the learning rate is 0.0001, β = 0,
and η = 0.2. We use Adam optimizer. Validation sets are used to determine optimal
models during training.

C.4.2 Section 5.5.1.2

Dataset: We use CMU motion capture dataset. The training, validation, and test data
are 10,000, 2,000, and 2,000, respectively.

Preprocessing: In the pre-processing step, the position and orientation of human
body center (root) are removed. In addition, the joint angles that have nearly no move-
ments (clavicles, fingers) are removed as done in FMVAE [33], and as a result, each
pose data is expressed as a 50-dimensional vector.
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Network Architecture: For VAE, FMVAE, and IRVAE, we use fully-connected
neural networks that have two hidden layers with ReLU activation functions (512 nodes
for each layer are used) for encoder and decoder. The output activation functions are
linear and tanh for encoder and decoder, respectively. For FM, we use the RealNVP
model of depth 8 and length 512.

Other Details: For VAE, FMVAE and IRVAE, the batch size is 100, the number
of training epochs is 300, the learning rate is 0.0001. η = 0.2 for FMVAE and IRVAE.
For FM, the batch size is 100, the number of training epochs is 300, the learning rate
is 0.0001, β = 0, and η = 0.2. We use Adam optimizer. Validation sets are used to
determine optimal models during training.

C.4.3 Section 5.5.2

Dataset: The number of training, validation, and test data are 162700, 19937, and
19962.

Network Architecture: We denote a Con2d layer by Con2d (input channel, output
channel, kernel size, stride, padding) and ConvTranspose2d layer by ConvT2d (input
channel, output channel, kernel size, stride, padding).

For VAE, FMVAE, and IRVAE, encoders are Convolutional Neural Networks with
the following architecture: i) Conv2d (3, 128, 5, 2, 0), ii) Conv2d (128, 256, 5, 2, 0),
iii) Conv2d (256, 512, 5, 2, 0), iv) Conv2d (512, 1024, 5, 2, 0), v) Conv2d (1024, 256,
1, 1, 0) with ReLU hidden layer activation functions, and decoders are Convolutional
Neural Networks with the following architecture: i) ConvT2d (128, 1024, 8, 1, 0), ii)
ConvT2d (1024, 512, 4, 2, 1), iii) ConvT2d (512, 256, 4, 2, 1), iv) ConvT2d (256,
128, 4, 2, 1) , and v) ConvT2d (128, 3, 1, 1, 0) with ReLU hidden layer activation
functions. The output activation functions are linaer and tanh for encoder and decoder,
respectively.

For FM, we use the RealNVP model of depth 8 and length 512.
For BR, we use the same encoder network as VAE, but add a normalizing layer

(i.e., divide the output by its norm) at last (this addition improves the retrieval per-
formance, very significantly).

For ResNet-50, we use the pre-trained model on ImageNet.
Other Details: For FMVAE and IRVAE, the batch size is 100, the number of

training epochs is 100, the learning rate is 0.0001, and η = 0.2. For FM, the batch
size is 100, the number of training epochs is 100, the learning rate is 0.00001, and
η = 0.2. We use Adam optimizer. For BR, the batch size is 100, the number of
training epochs is 100, the learning rate is 0.001 (binary cross entropy loss is used).
Validation sets are used to determine optimal models during training.
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For FMVAE, we test the following regularization coefficients α ∈ {0.1, 1, 10, 100}
and report the best results at α = 1. For IRVAE, we test the following regularization
coefficients α ∈ {1, 10, 100, 1000} and report the best results at α = 10. For FM, we
use the stabilizing term with β = {10, 100} and report the best results at β = 100;
and it is empirically observed that using small learning rate is very important.

Cosine similarity is used as a similarity measure except for the ResNet-50 that uses
Euclidean metric (we have tested both cosine similarity and Euclidean metric for each
learned representation, and found that cosine similarity mostly works better except the
ResNet-50).

C.5 Additional Experimental Results

C.5.1 Advantages of Isometric Regularization from a Generative Per-
spective

Autoencoders are not only useful for representation learning, but also can be used for
realistic data generation. In this section, we show advantages of our isometric regular-
ization from a generative perspective with the following experiments: (i) modulation
in the latent space and (ii) linear interpolation in the latent space. We use the CMU
motion capture data with the fully connected neural network as described in C.4.2.
We use the latent space of dimension 8.

Latent Space Modulation : Figure C.1 shows eight generated poses for VAE and
IRVAE obtained by the following procedure: (i) encode the original pose in the latent
space, (ii) translate the encoded latent value along each latent space axis, and (iii)
decode the translated values back to the data space. In case of VAE, translations along
the latent space axes except z2, z6 axes do not generate new poses. In particular, the
pose changes really a lot along the z2 axis and yet just a little along the z6 axis. This
shows that the trained decoder in VAE is far from the isometry. In contrast, with the
isometric regularization in IRVAE, each translated latent value along each latent space
axis generates a different pose. Unlike VAE, diverse poses are generated, and in other
words, a more disentangled representation is obtained. This property of the isometric
decoder has a great advantage [115, 131].

Latent Space Interpolation : Figure C.2 shows sequences of poses generated
from the latent space linear interpolants between a walking pose and balancing pose.
In case of VAE, punching poses suddenly appear in the interpolation of the walking
and balancing poses. In contrast, IRVAE does not produce such poses irrelevant to
the two given start and end poses. The IRVAE produces more smoothly varying poses
than VAE, and the pose interpolation obtained by the IRVAE is closer to the geodesic
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Figure C.1: The original pose is encoded in the latent space, then the encoded latent
value is translated along each latent space axis (z1, z2, ..., z8). The translated latent
values are decoded back to generate a new eight pose for each model VAE and IRVAE.
The translated distances are proportional to the standard deviations of the encoded
training data.

interpolation along the pose data manifold.

Figure C.2: Pose interpolations between a walking pose and balancing pose with linear
interpolations in the latent spaces. The red box indicates suddenly appeared punching
poses.

C.5.2 Diverse Image Data with Higher Latent Space Dimensions

We provide additional results with diverse image data (MNIST, FMNIST, SVHN, CIFAR-
10) using various latent space dimensions. Figure C.3 shows that i) the tradeoff curves
of IRVAE are located lower than those of FMVAE and ii) the FM learns more isometric
representations without losses in MSEs.

Dataset: The number of training, validation, test data is 50,000, 10,000, 10,000
for MNIST, FMNIST, SVHN, and 45000, 5000, 10,000 for CIFAR-10.
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Network Architecture: Let m denotes the latent space dimension. For VAE, FM-
VAE, IRVAE, encoders are Convolutional Neural Networks with the following architec-
ture: i) Conv2d (3, 32, 4, 2, 0), ii) Conv2d (32, 64, 4, 2, 0), iii) Conv2d (64, 128, 4,
2, 0), iv) Conv2d (128, 256, 2, 2, 0), v) Conv2d (256, 2m, 1, 1, 0) with ReLU hid-
den layer activation functions, and decoders are Convolutional Neural Networks with
the following architecture: i) ConvT2d (m, 256, 8, 1, 0) ii) ConvT2d (256, 128, 4, 2,
1) iii) ConvT2d (128, 64, 4, 2, 1) iv) ConvT2d (64, 3, 1, 1, 0) with ReLU hidden
layer activation functions. The output activation functions are linear and sigmoid for
encoder and decoder, respectively.

For FM, we use the RealNVP model of depth 8 and length 512.
Other Details: For FMVAE and IRVAE, the batch size is 100, the number of

training epochs is 100, the learning rate is 0.0001, and η = 0.2. For FM, the batch
size is 100, the number of training epochs is 100, the learning rate is 0.00001, and
η = 0.2. We use Adam optimizer. Validation sets are used to determine optimal models
during training.

Figure C.3: The tradeoff curves of FMVAE, IRVAE, and IRVAE + FM.

C.5.3 Ablation Study on Mixup Parameter η

In the isometric regularization (and flattening module), we use the augmented encoded
data distribution PZ whose sampling procedure is given as follows: (i) encode data
xi, xj to zi, zj by the encoder (and by the invertible map composed with the encoder)
and (ii) compute a new latent value z with z = δzi+(1−δ)zj for δ uniformly sampled
form [−η, 1+η], where η is the mixup parameter. Then, our relaxed distortion measure
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is defined over the support of PZ , i.e.,

Ez∼PZ

[∑
i

(
λi(z)

1
mEz∼PZ

[
∑

i λi(z)]
− 1)2

]
,

where f is the decoder, Jf is the Jacobian of f , and λi(z) are eigenvalues of JTf Jf (z).
The mixup augmentation technique is used to extend the influence of isometric regu-
larization to an area where data does not exist.

In this section, we visually analyze the effects of the mixup augmentations in a
range of mixup parameters η. We use the CMU data with fully connected networks
described in C.4.2 and 2-dimensional latent spaces.

Figure C.4 shows the latent space data distributions with some equidistance ellipses
(the colors of the ellipses represent the condition numbers; redder-the-bigger). In no
mixup case, there are many un-isotropic red ellipses in regions between data points,
meaning that they are not isometrically regularized. Mixup augmentation makes it pos-
sible to regularize even regions between data. When the mixup parameter η = 0, only
the area covered by data interpolation is regularized. By increasing the mixup parame-
ter η, the outer area, which is covered by data extrapolation, begins to be regularized.
Although using bigger eta seems to be unconditionally good because the wider area
is regularized, there is indeed a tradeoff as we can see from Figure C.4. When the
mixup parameter is too big as η = 1, some inner area (i.e., area covered by data in-
terpolation) is not sufficiently regularized because of the cost of regularizing the outer
domain. We use a balanced value η = 0.2 for all experiments conducted in this thesis
(for all algorithms IRVAE, FM and FMVAE).

Figure C.4: The effect of mixup augmentation with varying mixup parameters η.
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C.5.4 Computational Speed

In this section, we provide per-epoch runtimes of VAE, FMVAE, IRVAE, and FM. We
use the MNIST data and same experiment settings in C.4.1. We use the GeForce RTX
3090 for GPU resources. Table C.1 shows the per-epoch runtimes. The difference in
computation times arises from the computations of the regularization terms. The IR-
VAE takes a little longer than the FMVAE because, while the regularization term in
FMVAE requires to compute the Jacobian vector product only, the regularization term
in IRVAE requires to compute both the Jacobian vector product and vector Jacobian
product. In the case of FM, it takes much longer because the invertible neural net-
work architecture is relatively heavier. Fortunately, in training of FM that uses the
pre-trained IRVAE, we empirically observed that only a few epochs are required for
convergence, probably because the IRVAE already had learned isometric representa-
tions to a certain degree.

Table C.1: Averages and standard deviations of the per-epoch runtimes. 50,000
MNIST image training data are used with 100 batch size. For VAE, FMVAE, IRVAE,
we use the 4 layers of fully connected neural networks, and for FM, we use the Real-
NVP of depth 8.

VAE FMVAE IRVAE FM
per-epoch runtime 1.91 ± 0.0818 s 2.80 ± 0.0755 s 2.81 ± 0.0869 s 19.9 ± 0.235 s

C.5.5 Isometric Regularization for Other Autoencoders

Our isometric regularization algorithm can be used with other types of autoencoders
although we focus on the Variational Autoencoder (VAE) in the main manuscript.
In this section, we verify the effects of the isometric regularization with more di-
verse autoencoder methods: Vanilla Autoencoder (AE) [9], Wasserstein Autoencoder
(WAE) [40], and Denoising Autoencoder (DAE) [18].

We use the MNIST data and same experiment settings in C.4.1. For DAE, we use
the Gaussian noise with a standard deviation of 0.01. For WAE, we use the maximum
mean discrepancy, median heuristic for bandwidth selection, and the regularization co-
efficient 0.001.

Figure C.5 shows the effects of the isometric regularization to diverse autoncoders
(AE, VAE, DAE, WAE). Regardless of the autoencoder types, we consistently ob-
serve that the added isometric regularization terms effectively separate data of different
classes (even without major tuning of the regularization coefficient α).
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Figure C.5: Isometric regularization with diverse autoencoder methods. The more ho-
mogeneous and isotropic equidistance plots are, the more isometric the representations
are.

C.5.6 Isometry vs Scaled Isometry

In this section, we show empirical results that support our claim in the introduction
that finding a scaled isometry is better than finding a strict isometry.

Whereas an isometry exactly preserves angles and distances, a scaled isometry pre-
serves angles and scaled distances. At first this may seem a superficial difference – why
not simply choose length scales so that the two spaces have the same scales? – but
the reason this difference is consequential for our problem is that we do not a priori
have a precise charcterization (and hence their relative scales) of the two spaces. We
are in effect discovering the manifold structure of the data space while constructing a
latent space representation for the data manifold at the same time.

To characterize the above more precisely, let f(z) be a decoder, Jf (z) be the
Jacobian of f(z), and PZ(z) be the augmented encoded data distribution. Let λi(z)
be eigenvalues of JTf (z)Jf (z). Let G(z) be the latent space metric, and H(x) = I.

Recall that the isometry f needs to satisfy JTf (z)Jf (z) = G(z) for all z in the support

of PZ , whereas the scaled isometry f needs to satisfy JTf (z)Jf (z) = cG(z) for some
c > 0 and all z in the support of PZ . To find a strict isometry, we need to set a scalar
parameter k that determines the latent space metric, i.e., G(z) = kI, in advance,
whereas, to find a scaled isometry, we just need to set G(z) = I as done in the
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thesis.
To find the isometry, we add the following distortion measure as a regularization

term:
αEz∼PZ

[
∑
i

(λi(z)− k)2],

where k is the pre-defined parameter and α is the regularization coefficient. We need
to search for the optimal parameter k in this case.

In contrast, we do not need such parameter k to find a scaled isometry. We just
need to add the following relaxed distortion measure as a regularization term:

αEz∼PZ

[∑
i

(
λi(z)

1
mEz∼PZ

[
∑

i λi(z)]
− 1)2

]
,

where α is the regularization coefficient.
Figure C.6 shows the tradeoff curves (lower-the-better) obtained by using (i) the

relaxed distortion measure (for finding a scaled isometry) or (ii) the distortion measure
with a range of user-defined parameters k (for finding a strict isometry). For the strict
isometry learning case, it can be seen that the performance peaks when the value of
k is at an appropriate level that is neither too high nor too low. In this experiment,
the optimal k lies in between 10 and 1000 and can be experimentally found only by
performing a finer grid search. The tradeoff curves obtained by using the relaxed dis-
tortion measure are always located lower than the tradeoff curves obtained by using
the distortion measures. From this experimental result, we conclude that it is better
to find a scaled isometry than strict isometry.

Figure C.6: Tradeoff curves obtained by changing the regularization coefficients α
(lower-the-better).
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C.5.7 Multiple Times Run to compute Averages and Standard Devia-
tions

It is important to judge whether the experimental result is a result of randomness or
not. In this section, we take the same experiments done in Figure 1 and 3 of the
main manuscript with MNIST and CMU data multiple times, and report the averaged
tradeoff curves and standard deviations of the measured metrics.

Figure C.7 shows the results, where the standard deviations computed over multi-
ple experiments with different random seeds are visualized as ellipses. The horizontal
axes lengths of the ellipses represent the standard deviations of the VoR and MCN,
and the vertical axes lengths of the ellipses represent the standard deviations of the
MSE. It is correct to use the standard errors to see the standard deviations of the
sample means, i.e., standard deviations divided by the square root of the number of
experiments, but we use the standard deviations since the standard errors are too small
to visualize. The sizes of the ellipses are rally small, which provides a solid evidence
that IRVAE outperforms FMVAE.

C.5.8 Sensitivity Analysis of the Latent Space Dimension

In general, when training an autoencoder, the most important parameter is the latent
space dimension. Although there have been some works on estimating the intrinsic
dimension of the data distribution [132], given a complex high-dimensional data, the
intrinsic dimension estimation problem is very challenging; in practice, an appropriate
value is often found, empirically. Throughout literature, there are some frequently-used
choices for well-known standard image datasets. For relatively simple datasets such the
MNIST and FMNIST, latent space dimensions 2 ∼ 32 are often used, and for more
complex and higher dimensional datasets such as the CIFAR10 and CELEBA, latent
dimensions 64 ∼ 512 are often used.

In this section, using the MNIST image data with the fully connected network
described in C.4.1 (trained for 100 epochs), we provide an analysis of the isometric
regularization in autoencoders with multiple latent space dimensions. Table C.2 shows
averages and standard deviations of the condition numbers of the pullback metrics
JTf (z)Jf (z) (f is the decoder and Jf is the Jacobian of f) computed with the test

data. Both the averages and standard deviations should be small if JTf (z)Jf (z) = cI
for some c > 0 for all encoded test data z.

In the case of VAE, it can be seen that both the average and standard deviation of
the condition number sharply increase as the latent dimension increases. On the other
hand, IRVAE appears to be able to effectively find an isometric representation even
if the dimension of the latent space increases. In the case of 16-dimensional latent
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Figure C.7: Averaged tradeoff curves and standard deviations represented as ellipses for
MNIST and CMU experiments in Figure 1 and 3 of the main manuscript (20 times
run). We wanted to draw ellipses by using the standard errors, but they were too small
to visualize. Even standard deviations are really small.

space, the condition number of IRVAE is about 32 which is not small enough, and
this result may imply that the true intrinsic dimension of the MNIST data manifold
is lower than 16.

In summary, our isometric regularization can effectively find more isometric repre-
sentations than vanilla autoencoders regardless of the latent space dimensions. When
the dimension of the latent space is too large, it may not be possible to obtain a suf-
ficiently isometric representation space. This This seems because the dimension of the
ground true manifold is much smaller than the selected latent space dimension.

C.6 Detailed Results for Single Attribute Retrieval

Table C.3 shows the detailed retrieval results (P@10 of the single attribute retrieval).
Our algorithms (IRVAE and IRVAE + FM) have much higher performance than FM-
VAE and VAE, and even show performance close to the supervised method (BR).
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Table C.2: Averages and standard deviations of the condition numbers of the pullback
metrics for VAE and IRVAE with respect to the latent space dimension. The lower the
average and standard deviations are, the more isometric the latent is.

Latent Space Dimension VAE IRVAE
2 5.39 ± 4.72 1.41 ± 0.55
8 85.55 ± 85.69 1.87 ± 0.25
16 1635018.88 ± 1789834.25 37.28 ± 42.12

Table C.3: Single attribute retrieval results of Precision at 10, P@10 (for total 40 at-
tributes). The best results among unsupervised methods are colored red, and the best
results among all six methods are marked bold.

Attributes VAE FMVAE
IRVAE IRVAE + FM Pre-trained Supervised
(ours) (ours) (ResNet-50) (BR)

Young 0.8 1 0.7 0.8 0.7 1
Wearing Necktie 0.4 0.7 0.6 0.7 0.1 0.5
Wearing Necklace 0.2 0.1 0.3 0.2 0.1 0.1
Wearing Lipstick 1 0.9 1 1 0.4 1
Wearing Hat 0.4 0.7 0.8 0.9 0 1

Wearing Earrings 0.5 0.5 0.7 0.6 0.4 1
Wavy Hair 0.8 0.9 0.9 0.9 0.3 0.9

Straight Hair 0.9 0.2 0.7 0.7 0.2 0.5
Smiling 1 1 1 1 0.7 1

Sideburns 0.4 0.7 1 0.9 0.2 0.6
Rosy Cheeks 0.6 0.5 0.8 0.7 0 1

Receding Hairline 0.3 0.8 0.6 0.5 0 0.8
Pointy Nose 0.5 0.6 0.4 0.8 0.2 0.8
Pale Skin 0.3 0.8 0.7 0.7 0.1 0.8
Oval Face 0.5 0.6 0.5 0.4 0.5 0.6
No Beard 0.8 1 1 1 0.7 1

Narrow Eyes 0.5 0.1 0.3 0.5 0.1 0.7
Mustache 0.2 0.3 0.3 0.4 0.1 0.3

Mouth Slightly Open 1 1 1 1 0.6 1
Male 1 1 1 1 0.4 1

High Cheekbones 1 1 0.9 1 0.4 1
Heavy Makeup 1 0.8 1 1 0.3 1

Gray Hair 0.5 0.7 0.7 0.8 0 0.7
Goatee 0.5 0.6 0.7 0.9 0 0.7

Eyeglasses 1 0.9 1 1 0.1 1
Double Chin 0.4 0.3 0.6 0.8 0.1 1

Chubby 0.3 0.1 0.3 0.4 0 0.9
Bushy Eyebrows 0.6 0.5 1 1 0.3 0.9

Brown Hair 0.5 0.3 0.8 0.6 0.2 0.8
Blurry 0 0.1 0.2 0.1 0.1 0.4

Blond Hair 1 1 1 1 0.1 0.9
Black Hair 0.4 0.9 0.9 1 0.2 0.8
Big Nose 0.4 0.6 0.5 0.5 0.1 0.6
Big Lips 0.4 0.6 0.2 0.5 0.3 0.3
Bangs 1 0.8 1 1 0 1
Bald 0.3 0.4 0.6 0.8 0 0.9

Bags Under Eyes 0.5 0.4 0.6 0.7 0.4 0.7
Attractive 1 1 0.9 0.9 0.5 1

Arched Eyebrows 0.8 0.7 0.7 0.8 0.2 0.9
5 o’clock Shadow 0.7 0.5 0.7 0.6 0.3 1
Number of REDS 14 15 18 25 - -
Number of BOLDS 12 15 15 19 0 28
Average Precision 61.0 64.0 71.5 75.3 23.5 80.3
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D
Appendix: A StatisticalManifold
Framework for Point CloudData

D.1 Existing Geometric/Statistical Methods for Point Cloud
Data

D.1.1 Geometric Methods

The Hausdorff distance measures the distance between two non-empty subsets of a
metric space [66, 133]. Given two point clouds X = {x1, ..., xn | xi ∈ RD} and Y =
{y1, ..., yn | yi ∈ RD} and metric ∥x − y∥2 in RD, the Hausdorff distance can be
computed as follows:

max(max
x∈X

(min
y∈Y

∥x− y∥2),max
y∈Y

(min
x∈X

∥x− y∥2)).

The Hausdorff distance is susceptible to outliers; hence, in practice, the average
Hausdorff distance is used more often:

1

|X|
∑
x∈X

min
y∈Y

∥x− y∥2 + 1

|Y|
∑
y∈Y

min
x∈X

∥x− y∥2,

where |X| denotes the number of elements in the set X. A slightly modified version
of this is often referred to as the Chamfer distance [93]. The popular point cloud
registration algorithm ICP relies on these classes of metrics [134].

Another popular similarity measure between two point cloud data is the Earth
Mover’s Distance (EMD) [67]:∑

x∈X
min

ϕ:X→Y
∥x− ϕ(x)∥2,
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where ϕ is a bijective mapping. Although the EMD is computationally more expensive
than the above Hausdorff distances, comparing point clouds with optimal matching in
EMD provides a more robust and well-behaved similarity measure.

The Chamfer distance and EMD are often used to measure the distances between
two point clouds, but they are typically computationally expensive. Recently, the sliced
Wasserstein distance and its variants have been proposed to more efficiently measure
distances [135]. In another study, each point cloud data is represented as a matrix of
pairwise Euclidean distances between all points, and the Frobenius norm of the differ-
ence between the two matrices is used as the distance between two point clouds [136].

D.1.2 Statistical Methods

Interpreting the point cloud data as a set of samples from some underlying probabil-
ity distribution is very intuitive and natural, and has been adopted in many previous
works [70, 71, 72, 73, 74, 75, 76]. Commonly, a mixture model is used to describe
the point cloud, written as follows:

p(x;w, θ) :=
k∑
i=1

wiϕ(x|θi),

where the wi are weights and ϕ(x|θi) are primitive density functions with parameter
θi (e.g., ϕ(x|θi) can be a standard Gaussian with mean θi). Given a point cloud X :=
{x1, . . . , xn|xi ∈ RD}, the parameters w, θ are either fit with data or specified by the
user, then the mixture model is used as a statistical representation of the point cloud
data. Besides the most popular choice for ϕ, the Gaussian [70], other choices such
as the t-distribution [74] or hybrid model [75] have been explored. The main purpose
behind using statistical representations in existing works are to use the well-known
information-theoretic divergence measures such as the KL-divergence to compute the
similarity between point clouds.

However, all these methods focus on distance metrics that measure just one aspect
of point cloud data, yet effective mathematical concepts and tools for defining and
measuring other important geometric aspects of point cloud are still lacking.

D.2 Proof of the Propositions

D.2.1 Proof of Proposition 6.2.2

Proof. Start with the proof of Proposition D.2.1 which is an easier version of the
original proposition.
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Proposition D.2.1. Assume that all point cloud data in X consists of exactly n dis-
tinct points in RD. If the set of functions {K(Σ− 1

2 (x−xi))}xi∈F are linearly indepen-
dent1 for any arbitrary finite subset F ⊂ RD with |F| ≤ 2n, the mapping h : X → S
is 1-1.

Proof. Let’s consider two point clouds {yi}ni=1 and {zi}ni=1. To show that the mapping
h : X → S is 1-1 (especially injective), we have to prove the following statement:

p(x; {yi}ni=1) = p(x; {zi}ni=1) =⇒ {yi}ni=1 = {zi}ni=1. (D.2.1)

The conditional statement can be rewritten as follows:

n∑
i=1

K(Σ− 1
2 (x− yi)) =

n∑
i=1

K(Σ− 1
2 (x− zi)). (D.2.2)

Let denote B = {yi}ni=1 ∩ {zi}ni=1 and |B| = m, and assume that m < n. Then the
above equation is reduced to∑

y∈{yi}ni=1−B

K(Σ− 1
2 (x− y))−

∑
z∈{zi}ni=1−B

K(Σ− 1
2 (x− z)) = 0. (D.2.3)

Since the sets {yi}ni=1 − B and {zi}ni=1 − B are disjoint and each set has n − m
elements, the LHS has 2(n − m) ≤ 2n terms and the terms are different to each
other. Then, by the assumption, the above 2(n −m) terms are linearly independent,
and so the above equation cannot hold. There is a contradiction and the assumption
m < n must be wrong. Therefore, m = n, so {yi}ni=1 = {zi}ni=1.

With the above proposition, any kernel function that satisfies the linear indepen-
dence condition is sufficient to ensure the existence of a 1-1 mapping h. Indeed, the
strict positive definiteness of the kernel function, satisfied by various kernel functions
such as normal (Gaussian) or Laplacian function, implies the linear independence con-
dition as stated below:

Proposition D.2.2 (Corollary of Proposition 4.3. in [137]). Let Ψ : RD × RD →
R be a positive function and F = {x1, ..., xn} be a finite set of mutually distinct
points. Then the set {Ψ(·, xi)}xi∈F is linearly independent if and only if the matrix
(Ψ(xi, xj))i,j=1,...,n is positive definite.

1The linear independence of a set of functions implies that only a trivial linear combination of
the functions equals the zero function.
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From Propositions D.2.1 and D.2.2, Proposition 6.2.2 can be easily proved. From
the assumption that a function Ψ : RD × RD → R defined by

Ψ(x, y) = K(Σ− 1
2 (x− y)) (D.2.4)

is strictly positive definite, the matrix (Ψ(xi, xj))i,j=1,...,n is always positive definite
for any finite set of mutually distinct points F = {x1, ..., xn}, so the set of functions

{K(Σ− 1
2 (x − xi)}xi∈F = {Ψ(x, xi)}xi∈F is always linearly independent by Proposi-

tion D.2.2. Then, directly from Proposition D.2.1, the mapping h : X → S is 1-1.

D.2.2 Proof of Proposition 6.2.3

Proof. Since ∂log p(x;X)
∂Xij = 1

p(x;X)
∂p(x;X)
∂Xij , the Riemannian metric Hijkl in equation

(6.2.7) is ∫
p(x;X)

1

p2(x;X)

∂p(x;X)

∂Xij

∂p(x;X)

∂Xkl
dx.

By plugging p(x;X) in equation (6.2.6) in ∂p(x;X))
∂Xij , we get the following expression:

n
√

|Σ| ∂p(x;X)

∂Xij
=

∂

∂Xij

n∑
a=1

K(Σ−1/2(x− xa))

=
∂

∂Xij
K(Σ−1/2(x− xi))

= JK(Σ−1/2(x− xi))Σ
−1/2 ∂

∂Xij
(x− xi)

= JK(Σ−1/2(x− xi))Σ
−1/2 ∂

∂Xij
(x− xi)

= −[JK(Σ−1/2(x− xi))Σ
−1/2]j ,

JK : RD → RD is the Jacobian of the kernel function K. This consequently leads to

Hijkl(X) :=

∫
p(x;X)

(JK
∣∣
h(x,xi)

Σ− 1
2 )j(JK

∣∣
h(x,xk)

Σ− 1
2 )l

(
∑n

m=1K(h(x, xm)))2
dx,

where h(x, xi) = Σ− 1
2 (x− xi).

If K is the standard normal kernel function, then we get JK(x) = −K(x)xT . By
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plugging this in the above equation with Σ = σ2I, we get the following:

Hijkl(X) =

∫
p(x;X)

(JK
∣∣
h(x,xi)

Σ− 1
2 )j(JK

∣∣
h(x,xk)

Σ− 1
2 )l

(
∑n

m=1K(h(x, xm)))2
dx

=

∫
p(x;X)

K(h(x, xi))K(h(x, xk))

(
∑n

m=1K(h(x, xm)))2

[(x− xi)(x− xk)
T

σ4

]
jl
dx.

D.3 Implementation Details for the Experiments

D.3.1 Synthetic 3D Basic Shape Dataset Generation

For synthetic 3D basic shape dataset, we define 5 shape classes that consist of cylin-
der, cone, elliptic cone, ellipsoid, and box. Figure D.1 shows the representative shape
of each class and the shape parameters used to define the shape class. We sample
512 points from the surface mesh of the shapes using a greedy sample elimination al-
gorithm, and each point cloud is then normalized so that the two farthest points are
a unit distance apart.

Figure D.1: Representative shape to each class and the shape parameters required to
define it. There are 5 shape classes including cylinder, cone, elliptic cone, ellipsoid,
and box.

In Section 6.4.1.1, we use a dataset consisting of cones, cylinders, and ellipsoids,
which are split into training/validation/test sets of size 3196/800/804. The detail ranges
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of the exact value of the shape parameters are shown in Table D.1.

Table D.1: The ranges of the shape parameters of the dataset

SHAPE param min max param min max param min max
Cylinder r 0.01 0.12 h 0.05 0.45
Cone r 0.02 0.15 h 0.02 0.45

Ellipsoid w 0.03 0.12 d 0.03 0.12 h 0.03 0.12

In Section 6.4.1.2, we use a dataset consisting of boxes, cones, and ellipsoids di-
vided into training/validation/test sets of size 720/240/240. The detail ranges of the
aspect ratios of the shape parameters are shown in Table D.2.

Table D.2: The ranges of the shape parameters of the dataset

SHAPE param min max param min max
Elliptic cone d/w 0.33 3 h/w 0.33 3
Ellipsoid d/w 0.33 3 h/w 0.125 0.33
Box d/w 0.33 3 h/w 0.33 3

D.3.2 Details for Experiments on Synthetic 3D Basic Shape Dataset

We used an encoder with a structure similar to the classification network used in
DGCNN [98]. The input point cloud with dimension 3×512 passes through five Edge-
Conv layers with point-wise latent space dimensions (64, 64, 128, 256) and a max
pooling layer (we do not use a batch normalization layer unlike the original DGCNN
classification network, but other settings are the same, e.g., k = 20, leaky relu activa-
tion), then we can obtain a 1024-dimensional feature vector. Then this feature vector
again passes through three fully-connected neural networks with dimensions (512, 256,
2) with leaky relu activation functions and linear output activation function; the la-
tent space is two-dimensional. For the decoder model, we simply use a fully-connected
neural network as the decoder. The two-dimensional vector on the latent space passes
through three fully-connected neural networks with dimensions (256, 512, 3×512) with
relu activation functions and linear output activation function; the output is a 3D point
cloud with the number of points 512.

Section 6.4.1.1: To train the networks, we use ADAM with a learning rate of
0.001 and batch size of 16; the total number of the epochs is 500. The mean value
of MEDs of the dataset is 0.0339, and we use the bandwidth value k to 0.5. We use
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Chamfer distance as the reconstruction loss; for regularization figures, the regulariza-
tion term with the version of Equation (6.3.12) is multiplied by a coefficient λ = 107

with the info-Riemannian metric and by a coefficient λ = 1 with the Euclidean metric
and added to the reconstruction loss term for each metric case. The value of η is set
to be 0.0. For geodesic computation, we parametrize the curve z(t) by a cubic spline
with fixed boundary points z1, z2 and 10 control points. The control points are first
initialized with equally spaced linear interpolants between z1 and z2. Then, for each
iteration of optimization, we randomly sample 40 points on ti ∼ U(0, 1), i = 1, ..., 40
and calculate an expectation 1

40

∑40
i=1 ż(ti)

TG(z(ti))ż(ti) over the sampled points as
the approximation of the objective function. We use ADAM with a learning rate of
0.001 and the total number of the iterations is 5000.

Section 6.4.1.2: To train the networks, we use ADAM with a learning rate of
0.001 and batch size of 16; the total number of the epochs is 3000. The mean value
of MEDs of the dataset is 0.0341, and we use the bandwidth value k to 0.5. We
use Chamfer distance as the reconstruction loss, and the regularization term with the
version of Equation (6.3.12) is multiplied by a coefficient λ = 107 and added to the
reconstruction loss term. The value of η is set to be 0.0.

To quantitatively evaluate how much the regularization approach improves class
separability, more diverse synthetic datasets are made and experiments are conducted.
We use datasets consisting of boxes, elliptic cones, and ellipsoids. In details, we gen-
erate short, normal, and tall shapes for each shape class, and the aspect ratios of
the shape parameters are shown in Table D.3. We conduct a total of 27 experiments
with 33 combinations. Each dataset is divided into training/validation/test sets of size
720/240/240. Training configurations are the same with the above experiment, except
that the mean values of MEDs are different to each other (but we consistently use
the bandwidth value k to 0.5) and the total number of epochs is 500.

Table D.3: The ranges of the shape parameters of the dataset used in quantitative
analysis on synthetic dataset

SHAPE param min max param min max
Elliptic cone short d/w 0.33 3 h/w 0.125 0.33
Elliptic cone normal d/w 0.33 3 h/w 0.33 3
Elliptic cone tall d/w 0.33 3 h/w 3 8
Ellipsoid short d/w 0.33 3 h/w 0.125 0.33
Ellipsoid normal d/w 0.33 3 h/w 0.33 3
Ellipsoid tall d/w 0.33 3 h/w 3 8
Box short d/w 0.33 3 h/w 0.125 0.33
Box normal d/w 0.33 3 h/w 0.33 3
Box tall d/w 0.33 3 h/w 3 8
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In the obtained representation spaces, after fitting the Gaussian mixture model by
using the training and validation data, the clustering scores are measured with the test
data.

Color assigning method: To visually indicate which class generated point clouds
belong to, we color these according to the ratio of the Chamfer distances to the near-
est point cloud for each class. In detail, the smallest value (distance to nearest point
cloud) is found by comparing the distance between the given point cloud and all point
clouds of each class in the dataset. Since we are using 3 shape classes in both exam-
ples, we call the nearest distance to each class d1, d2, and d3. After that, the vector
d = (d1, d2, d3) is normalized with 2-norm so that the 2-norm of the vector to be
1. Finally, the value 0.2 × Softmax(1/d1, 1/d2, 1/d3) is regarded as the ratio of the
distances and a color is assigned to a given point cloud according to this ratio (i.e.,
linear weighted sum in the RGB coordinate).

D.3.3 Details for Experiments on Standard Benchmark Dataset

We use four different point cloud autoencoders: FcNet, FoldingNet, PointCapsNet,
and DGCNN-FcNet; the latent space is 512-dimensional. For FcNet and FoldingNet,
we use the exactly same point cloud autoencoder structures both adopted from [93].
For PointCapsNet, we also use the exactly same point cloud autoencoder structure
adopted from [99]; we use 16 × 32 capsules to restrict the latent space to a reason-
able size of 512. For DGCNN-FcNet, we use DGCNN classification network as encoder
(i.e., the same encoder architecture used in experiments on synthetic 3D basic shape
dataset, see Appendix D.3.2), and the same decoder structure from FcNet as decoder
(i.e., three fully-connected neural networks with dimension (1024, 2048, 3×2048) with
relu activation function and linear output activation function). To train the networks,
we use ADAM with a learning rate of 0.0001, betas of [0.9, 0.999], and weight decay
of 0.000001 and batch size of 16; the total number of the epochs is 500. The mean
value of MEDs of the dataset is 0.0356, and we use the bandwidth value k to 0.8.
We use Chamfer distance as the reconstruction loss and regularization term with the
version of Equation (6.3.13) with the value of η to be 0.2. The regularization term
is multiplied by various coefficients, where the values of the regularization coefficients
are summarized in Appendix D.3.

D.3.4 Details for Experiments on Standard Benchmark Dataset with Noise

We use the exactly same point cloud autoencoder structures adopted from [93], FcNet,
where the latent space is 512-dimensional. We add noise to each point x in point cloud
of the dataset (ShapeNet, ModelNet10, and ModelNet40) according to x 7→ x+mv,
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where v is uniformly sampled on the unit sphere and m is sampled from the Gaussian
distribution with zero mean and different levels of standard deviation (1%, 5%, 10%,
and 20% of the diagonal length of the point cloud bounding box) as done in [138].
The training configuration is the same with the case of Appendix D.3.3 except the
followings. The regularization term is multiplied by λ = 8000. The mean values of
MEDs of the dataset are 0.0320, 0.0364, 0.0442, and 0.579 for the cases of the noise
levels 1%, 5%, 10%, and 20%, respectively, and we use the bandwidth value k to 0.8.

D.3.5 Details for Experiments on Standard Benchmark Dataset (Semi-
Supervised Classification)

We train FcNet whose latent space is 512-dimensional with and without regularization.
The training configuration is the same with the case of Appendix D.3.3 except the
following: the regularization term of the regularized autoencoder (i.e., FcNet + I) is
multiplied by λ = 8000. In this case, when we training linear SVM classifier, we use
the different numbers of training data (1%, 5%, 10%, and 50% of the overall training
data).

D.4 Additional Experimental Results

D.4.1 Synthetic Dataset

D.4.1.1 Qualitative Results of Table 6.1 in Section 6.4.1.2.

More examples related to the experiment in Section 6.4.1.2 are shown in Figure D.2.
The trend of the experimental results is similar to the experimental results in Section
6.4.1.2. For all five results, the gray ellipses are aligned well with the decision boundary
in the vanilla autoencoder (we show the decision boundary in Figure D.2 while it is not
included in the main manuscript due to lack of space). In the regularized autoencoder,
these gray ellipses (or Riemannian metrics) try to become isotropic, so the gaps on
the decision boundaries get widened. As a result, different class clusters become farther
away from each other.

D.4.1.2 Linear Interpolations using Regularized Autoencoders (related to Fig-
ure 6.5 in Section 6.4.1.1)

The generated point clouds from the representative intra-class linear interpolants be-
tween two cylinders and two cones with the regularized autoencoders under the Eu-
clidean metric and info-Riemannian metric are drawn in Figure D.3.
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D.4.2 Standard Benchmark Dataset

D.4.2.1 Performance Analysis with Varying Regularization Coefficients

Figure D.4 shows graphs of the classification accuracy versus reconstruction error for
the trained AEs measured on ModelNet datasets, for a range of regularization coef-
ficients. The reconstruction error is measured by the modified Chamfer distance as
in [93]. Compared to vanilla autoencoders (red), regularized autoencoders under the
info-Riemannian metric (blue) show overall higher classification accuracy regardless of
the regularization coefficients. At the same time, they do not significantly increase the
reconstruction error. On the other hand, when comparing the performance of regular-
ized autoencoders under the Euclidean metric (green), most of these are clearly inferior
to the vanilla autoencoder; the others perform even worse. Overall, regularization un-
der the info-Riemannian metric is much more robust to the choice of regularization
coefficients compared to using the Euclidean metric.

The linear SVM classification accuracy and reconstruction error (modified Chamfer
distance) according to regularization coefficient are shown in Table D.4 and Table D.5.
The tables are also arranged according to autoencoder models (FcNet vs. Foldingnet
vs. PointCapsNet vs. DGCNN-FcNet) and regularization types (Vanilla vs. Euclidean
vs. info-Riemannian).

D.4.2.2 Learning Curves for Noisy Point Cloud Data

Figure D.5 shows how the linear SVM classification accuracy and reconstruction er-
ror (modified Chamfer distance) evolve as the training proceeds, where datasets are
ModelNet10 and ModelNet40 and noise levels are 1%, 5%, 10%, and 20% (details
about noise are in Appendix D.3.4). Compared to vanilla autoencoders (light colored
lines), regularized autoencoders under Info-Riemannian metrc (dark colored lines) show
overall higher classification accuracy, while they show similar levels of reconstruction
errors. The increase in classification accuracy becomes more pronounced as the noise
level increases. Especially, when the noise level is 10% and 20%, the classification ac-
curacy of the vanilla autoencoder and regularized autoencoder under Euclidean metric
gradually decreases as the learning progresses (as the epoch increases). However, such
phenomenons do not appear in the regularized autoencoders under the Info-Rimennian
metric. This result implies that our method is very advantageous in situations where
there is noise in the data.
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D.4.2.3 Learning Curves for Semi-Supervised Classification

Regularized autoencoders (i.e., FcNet + I) show overall higher classification accuracy
compared to vanilla autoencoders (i.e., FcNet), while their reconstruction errors are
not significantly different to vanilla autoencoders’. Moreover, the increase in classifi-
cation accuracy becomes more pronounced as the label rate decreases. In other words,
our performance is more effective as the number of labels decreases. Figure D.6 shows
how the linear SVM classification accuracy and reconstruction error evolve as the train-
ing proceeds, where label rate levels are 1%, 5%, 10%, and 50%. Also, similarly, when
the label rate is 1%, the classification accuracy of the vanilla autoencoder gradually
decreases as the learning progresses (as the epoch increases), but such phenomenons
do not appear in the regularized autoencoders. This result implies that our method is
also very advantageous in semi-supervised settings.
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Table D.4: Classification accuracy and reconstruction error according to regularization
coefficient. The table is also arranged according to model (FcNet vs. FoldingNet) and
regularization type (Vanilla vs. Euclidean vs. info-Riemannian). For Riemannian metric
cases, the regularization coefficients used in the actual experiments are σ2 times λ
shown in the table.

MODEL METRIC λ MD40 acc MD40 recon MD10 acc MD10 recon
FcNet Euclidean 0.0001 89.343598 0.029069 92.951542 0.029527
FcNet Euclidean 0.0010 88.330632 0.030464 93.612335 0.030684
FcNet Euclidean 0.0100 88.249595 0.029877 93.722467 0.030054
FcNet Euclidean 0.1000 86.993517 0.029878 92.841410 0.030900
FcNet Euclidean 1.0000 87.115073 0.031966 92.951542 0.034272
FcNet Euclidean 10.0000 86.709887 0.031523 92.400881 0.032318
FcNet Euclidean 100.0000 85.696921 0.031841 92.511013 0.035172
FcNet Euclidean 1000.0000 85.899514 0.035089 92.400881 0.036145
FcNet Euclidean 10000.0000 86.345219 0.034149 92.400881 0.034811
FcNet Riemannian 100.0000 89.586710 0.029032 94.052863 0.029435
FcNet Riemannian 500.0000 89.829822 0.028944 94.273128 0.029928
FcNet Riemannian 1000.0000 89.951378 0.028864 93.722467 0.029430
FcNet Riemannian 2000.0000 90.194489 0.029165 94.052863 0.029606
FcNet Riemannian 8000.0000 90.397083 0.028869 93.722467 0.028944
FcNet Riemannian 10000.0000 89.991896 0.029603 94.162996 0.030278
FcNet Riemannian 20000.0000 89.748784 0.028980 93.832599 0.029412
FcNet Riemannian 50000.0000 89.667747 0.029161 93.392070 0.028894
FcNet Riemannian 100000.0000 89.748784 0.028961 93.942731 0.030085
FcNet Vanilla 0.0000 88.330632 0.028938 93.502203 0.029895
FoldingNet Euclidean 0.0001 88.897893 0.030540 94.162996 0.029130
FoldingNet Euclidean 0.0010 87.844408 0.031623 94.273128 0.031726
FoldingNet Euclidean 0.0100 87.520259 0.029126 93.612335 0.032219
FoldingNet Euclidean 0.1000 87.641815 0.029391 93.722467 0.030318
FoldingNet Euclidean 1.0000 88.128039 0.030564 93.171806 0.031435
FoldingNet Euclidean 10.0000 88.290113 0.032129 93.171806 0.032975
FoldingNet Euclidean 100.0000 88.087520 0.032728 94.383260 0.032885
FoldingNet Euclidean 1000.0000 87.722853 0.033305 92.951542 0.036244
FoldingNet Euclidean 10000.0000 87.844408 0.033546 93.502203 0.036820
FoldingNet Riemannian 100.0000 89.667747 0.029467 94.052863 0.030789
FoldingNet Riemannian 500.0000 90.113452 0.029916 94.052863 0.029346
FoldingNet Riemannian 1000.0000 89.870340 0.030090 94.493392 0.029996
FoldingNet Riemannian 2000.0000 89.546191 0.030471 94.273128 0.031142
FoldingNet Riemannian 8000.0000 89.627229 0.028949 94.162996 0.029745
FoldingNet Riemannian 10000.0000 89.505673 0.029926 94.052863 0.033548
FoldingNet Riemannian 20000.0000 89.384117 0.032798 94.162996 0.029463
FoldingNet Riemannian 50000.0000 89.708266 0.029262 94.273128 0.030002
FoldingNet Riemannian 100000.0000 89.262561 0.029511 94.162996 0.030355
FoldingNet Vanilla 0.0000 89.343598 0.029599 93.722467 0.030528
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Table D.5: Classification accuracy and reconstruction error according to regularization
coefficient. The table is also arranged according to model (PointCapsNet vs. DGCNN-
FcNet) and regularization type (Vanilla vs. Euclidean vs. info-Riemannian). For Rie-
mannian metric cases, the regularization coefficients used in the actual experiments
are σ2 times λ shown in the table.

MODEL METRIC λ MD40 acc MD40 recon MD10 acc MD10 recon
PointCapsNet Euclidean 0.0001 88.087520 0.039522 93.722467 0.043112
PointCapsNet Euclidean 0.0010 87.601297 0.046227 93.171806 0.047749
PointCapsNet Euclidean 0.0100 87.155592 0.058326 92.621145 0.060827
PointCapsNet Euclidean 0.1000 86.628849 0.070735 91.519824 0.072615
PointCapsNet Euclidean 1.0000 85.858995 0.087722 91.299559 0.087930
PointCapsNet Euclidean 10.0000 83.954619 0.110708 90.638767 0.107402
PointCapsNet Euclidean 100.0000 79.659643 0.124266 88.215859 0.115549
PointCapsNet Euclidean 1000.0000 76.823339 0.128694 88.546256 0.121284
PointCapsNet Euclidean 10000.0000 75.567261 0.130566 88.325991 0.121398
PointCapsNet Riemannian 100.0000 88.492707 0.035034 93.942731 0.042224
PointCapsNet Riemannian 1000.0000 88.168558 0.035816 93.942731 0.039131
PointCapsNet Riemannian 2000.0000 87.884927 0.036824 93.392070 0.040169
PointCapsNet Riemannian 5000.0000 87.884927 0.035990 93.832599 0.039729
PointCapsNet Riemannian 8000.0000 87.641815 0.037986 93.392070 0.040947
PointCapsNet Riemannian 10000.0000 87.763371 0.037507 93.722467 0.040428
PointCapsNet Riemannian 20000.0000 87.763371 0.038454 93.281938 0.048909
PointCapsNet Riemannian 50000.0000 87.641815 0.042233 93.281938 0.044333
PointCapsNet Riemannian 100000.0000 87.317666 0.046607 93.171806 0.051187
PointCapsNet Vanilla 0.0000 87.155592 0.033936 93.612335 0.037172
DGCNN-FcNet Euclidean 0.0001 89.910859 0.028852 94.052863 0.029049
DGCNN-FcNet Euclidean 0.0010 89.546191 0.029489 94.383260 0.029480
DGCNN-FcNet Euclidean 0.0100 88.492707 0.030448 93.061674 0.030531
DGCNN-FcNet Euclidean 0.1000 87.884927 0.030046 93.392070 0.030966
DGCNN-FcNet Euclidean 1.0000 87.520259 0.030605 93.502203 0.034671
DGCNN-FcNet Euclidean 10.0000 87.196110 0.032174 92.841410 0.032151
DGCNN-FcNet Euclidean 100.0000 87.277147 0.032385 93.171806 0.033750
DGCNN-FcNet Euclidean 1000.0000 87.682334 0.033359 93.171806 0.033906
DGCNN-FcNet Euclidean 10000.0000 86.385737 0.034471 92.621145 0.036056
DGCNN-FcNet Riemannian 100.0000 90.397083 0.028761 94.493392 0.028591
DGCNN-FcNet Riemannian 1000.0000 90.964344 0.028278 94.493392 0.028806
DGCNN-FcNet Riemannian 2000.0000 90.680713 0.028299 94.493392 0.028832
DGCNN-FcNet Riemannian 5000.0000 90.883306 0.028520 94.493392 0.029128
DGCNN-FcNet Riemannian 8000.0000 90.802269 0.028727 95.154185 0.028971
DGCNN-FcNet Riemannian 10000.0000 90.680713 0.028583 94.383260 0.028820
DGCNN-FcNet Riemannian 20000.0000 90.559157 0.028677 94.713656 0.029067
DGCNN-FcNet Riemannian 50000.0000 90.761750 0.029794 94.713656 0.029695
DGCNN-FcNet Riemannian 100000.0000 90.235008 0.028934 94.052863 0.031275
DGCNN-FcNet Vanilla 0.0000 90.275527 0.028867 94.493392 0.029454
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Figure D.2: The representative five examples of the regularization experiments on the
synthetic dataset. From left to right: latent spaces, decision boundary according to the
color assigning method introduced in Appendix D.3.2, latent spaces with equidistant
ellipse ({z|(z−z∗)TG(z∗)(z−z∗) = 1} for center z∗) centered on some selected points
and sampled points from interspaces, Gaussian Mixture Model (GMM) fitting results,
and the heat map of the pairwise Euclidean distances in the latent space of all test
data. For each experiment, the upper figure is a vanilla autoencoder trained without
regularization, while the lower figure is trained with regularization.
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Figure D.4: Graphs of classification accuracy versus reconstruction error measured on
ModelNet datasets. More transparent markers have larger coefficients λ; detailed val-
ues are in Table D.4 and Table D.5.
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Figure D.5: Learning curves of classification accuracy and reconstruction error mea-
sured on ModelNet datasets (ModelNet40 and ModelNet10) according to the noise
levels (1%, 5%, 10%, and 20%). In each plot, the light colored lines are the result
of the non-regularized autoencoders (i.e., FcNet), and the dark colored lines are the
result of the regularized autoencoders (i.e., FcNet + E and FcNet + I).
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Figure D.6: Learning curves of classification accuracy and reconstruction error mea-
sured on ModelNet datasets (ModelNet40 and ModelNet10) according to the label
rates (50%, 10%, 5%, and 1%). In each plot, the light colored lines are the result
of the non-regularized autoencoders (i.e., FcNet), and the dark colored lines are the
result of the regularized autoencoders (i.e., FcNet + I).
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oretic shape matching. IEEE transactions on pattern analysis and machine in-
telligence, 36(12):2436–2451, 2014.

[74] Zhiyong Zhou, Jian Zheng, Yakang Dai, Zhe Zhou, and Shi Chen. Robust
non-rigid point set registration using student’s-t mixture model. PloS one,
9(3):e91381, 2014.

[75] Zhe Min, Jiaole Wang, and Max Q-H Meng. Robust generalized point cloud
registration using hybrid mixture model. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 4812–4818. IEEE, 2018.

[76] Feiran Li, Kent Fujiwara, and Yasuyuki Matsushita. Toward a unified framework
for point set registration. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 12981–12987. IEEE, 2021.

[77] Faisal Zaman, Ya Ping Wong, and Boon Yian Ng. Density-based denoising of
point cloud. In 9th International Conference on Robotic, Vision, Signal Process-
ing and Power Applications, pages 287–295. Springer, 2017.

[78] Shitong Luo and Wei Hu. Score-based point cloud denoising. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 4583–4592,
2021.

[79] Yonghyeon Lee, Sangwoong Yoon, Minjun Son, and Frank Park. Regularized
autoencoders for isometric representation learning. International Conference on
Learning Representation, 2022.



180 BIBLIOGRAPHY

[80] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[81] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1912–1920, 2015.

[82] Bradley Efron and David V Hinkley. Assessing the accuracy of the maximum
likelihood estimator: Observed versus expected fisher information. Biometrika,
65(3):457–483, 1978.

[83] Jorma J Rissanen. Fisher information and stochastic complexity. IEEE transac-
tions on information theory, 42(1):40–47, 1996.

[84] Emanuel Parzen. On estimation of a probability density function and mode. The
annals of mathematical statistics, 33(3):1065–1076, 1962.

[85] Richard A Davis, Keh-Shin Lii, and Dimitris N Politis. Remarks on some non-
parametric estimates of a density function. In Selected Works of Murray Rosen-
blatt, pages 95–100. Springer, 2011.

[86] Ben Knudsen. Configuration spaces in algebraic topology. arXiv preprint
arXiv:1803.11165, 2018.

[87] Bharath K Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard
Schölkopf, and Gert RG Lanckriet. Hilbert space embeddings and met-
rics on probability measures. The Journal of Machine Learning Research,
11:1517–1561, 2010.

[88] Hang Shao, Abhishek Kumar, and P Thomas Fletcher. The riemannian geometry
of deep generative models. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 315–323, 2018.

[89] Tao Yang, Georgios Arvanitidis, Dongmei Fu, Xiaogang Li, and Søren Hauberg.
Geodesic clustering in deep generative models. arXiv preprint arXiv:1809.04747,
2018.

[90] Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and
Patrick Smagt. Metrics for deep generative models. In International Conference
on Artificial Intelligence and Statistics, pages 1540–1550. PMLR, 2018.



BIBLIOGRAPHY 181

[91] Dimitris Kalatzis, David Eklund, Georgios Arvanitidis, and Søren Hauberg. Vari-
ational autoencoders with riemannian brownian motion priors. In Proceedings of
the 37th International Conference on Machine Learning (ICML), 2020.

[92] Georgios Arvanitidis, Søren Hauberg, and Bernhard Schölkopf. Geometrically
enriched latent spaces. arXiv preprint arXiv:2008.00565, 2020.

[93] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud
auto-encoder via deep grid deformation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 206–215, 2018.

[94] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Math-
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국문초록

실세계 문제에서 우리가 관측하는 데이터들은 대부분 고차원이며, 이러한 고차원 데이

터에 기계학습 알고리즘을 바로 적용하기는 매우 어렵다. 다양체 가정에서는 고차원의

데이터가 실제로는 더 작은 차원의 다양체 위에 놓여 있다고 가정한다. 즉, 초기에 데

이터를 표현하는 변수의 수보다 훨씬 적은 수의 변수로 데이터의 표현이 가능하다는

것이다. 데이터가 놓여있는 저차원의 다양체 구조와 그것의 표현을 알아내는 것, 즉

다양체 표현 학습은 기계 학습에서 중요한 문제 중 하나이다.

오토인코더는 고차원의 데이터를 저차원의 표현 공간으로 보내주는 인코더와, 저

차원의 인코딩된 값을 다시 고차원의 데이터 공간으로 보내주는 디코더로 이루어져

있으며, 저차원의 다양체 구조와 표현을 학습하는 데 널리 사용되고 있다. 본 학위논문

에서는, 이러한 오토인코더의 두 가지 문제점을 발견하고 해결한다. 첫 번째 문제점은

오토인코더가 노이즈에 과적합 된 다양체를 학습하거나 잘못된 기하학적 연결 관계

를 가지는 다양체를 학습하는 것이고, 둘째는 오토인코더가 데이터 간의 거리와 각도

관계를 보존하지 못하는 기하학적으로 왜곡된 표현공간을 학습하는 문제이다.

학습하고자 하는 다양체는 보통 곡률이 있기 때문에, 기저의 기하학적 특성을 고

려하여 좌표계에 의존하지 않는 알고리즘을 설계하는 것이 매우 중요하다. 기존의 오

토인코더 방법들은 대부분 인코더에 의해 완전히 결정되는 표현공간에 집중했으며,

디코더에는 거의 관심을 가지지 않았고, 특히 데이터의 기저에 있는 기하학적인 특성

을 반영하고 있지 않다. 본 학위논문은 이러한 단점들을 해결하는 새로운 오토인코더

기반 다양체 학습 알고리즘들을 제안한다. 본 논문에서의 흥미로운 발견 중의 하나는,

오토인코더 기반 다양체 학습에서, 디코더가 인코더와 동등하게 혹은 때때로 더 중요

한 역할을 한다는 점이다.

제안된 기하학적 방법들은 사전에 만들어진 이웃 그래프 혹은 리마니안 메트릭을

활용하여 정확한 다양체와 기하를 보존하는 표현을 학습하기 위한 새로운 손실 함수들

을 제안하였다. 특히, 리만 기하학을 활용한 방법에서는, 정규화 항이 좌표계 불변성을

만족하도록 설계하여 기하학적으로 유의미한 값을 측정하도록 하였다. 다양한 사진, 모

션 캡처, 점 구름 데이터를 이용한 실험을 통해, 기존에 존재하는 최신의 오토인코더

방법 대비, 우리의 방법이 다양체를 더 정확하게 더 적은 왜곡으로 학습함을 보였다.
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또한, 사진 검색, 군집화, 분류 등의 다양한 다운스트림 작업의 성능이 향상됨을 보

였다.

주요어: 다양체 학습, 오토인코더, 리만 기하학, 아이소메트릭 표현

학번: 2018-20161


	1. Introduction
	1.1 Manifold Hypothesis and Coordinates Learning
	1.2 Simultaneous Manifold and Coordinates Learning
	1.3 Motivation and Research Problems
	1.4 Statistical Interpretations
	1.5 Outline & Contributions

	2. Mathematical Preliminaries
	2.1 Riemannian Manifold
	2.2 Information Geometry

	3. Neighborhood Reconstructing Autoencoders
	3.1 Introduction
	3.2 Neighborhood Reconstructing Autoencoder
	3.3 Related Work: Regularization of Autoencoders
	3.4 Experiments
	3.5 Conclusion

	4. Minimum Curvature Manifold Learning
	4.1 Introduction
	4.2 Geometric Preliminaries
	4.3 Minimum Curvature Autoencoders
	4.4 Experiments
	4.5 Conclusion

	5. Regularized Autoencoders for Isometric Representation Learning
	5.1 Introduction
	5.2 A Hierarchy of Geometry-Preserving Mappings
	5.3 A Coordinate-Invariant Relaxed Distortion Measure
	5.4 Isometric Representation Learning
	5.5 Experiments
	5.6 Conclusion

	6. A Statistical Manifold Framework for Point Cloud Data
	6.1 Introduction
	6.2 Statistical Manifold Framework for Point Cloud Data
	6.3 Applications to Point Cloud Autoencoders
	6.4 Experimental Results
	6.5 Discussion and Conclusion

	7 Conclusion
	7.1 Summary and Discussion
	7.2 Limitations and Future Directions
	7.3 Concluding Remark

	A Appendix: Neighborhood Reconstructing Autoencoders
	B Appendix: Minimum Curvature Manifold Learning
	C Appendix: Regularized Autoencoders for Isometric Representation Learning
	D Appendix: A Statistical Manifold Framework for Point Cloud Data
	Bibliography
	Abstract


<startpage>28
1. Introduction 1
 1.1 Manifold Hypothesis and Coordinates Learning 1
 1.2 Simultaneous Manifold and Coordinates Learning 3
 1.3 Motivation and Research Problems 7
 1.4 Statistical Interpretations 16
 1.5 Outline & Contributions 18
2. Mathematical Preliminaries 21
 2.1 Riemannian Manifold 21
 2.2 Information Geometry 34
3. Neighborhood Reconstructing Autoencoders 39
 3.1 Introduction 39
 3.2 Neighborhood Reconstructing Autoencoder 41
 3.3 Related Work: Regularization of Autoencoders 44
 3.4 Experiments 45
 3.5 Conclusion 51
4. Minimum Curvature Manifold Learning 53
 4.1 Introduction 53
 4.2 Geometric Preliminaries 55
 4.3 Minimum Curvature Autoencoders 57
 4.4 Experiments 59
 4.5 Conclusion 67
5. Regularized Autoencoders for Isometric Representation Learning 69
 5.1 Introduction 69
 5.2 A Hierarchy of Geometry-Preserving Mappings 71
 5.3 A Coordinate-Invariant Relaxed Distortion Measure 72
 5.4 Isometric Representation Learning 75
 5.5 Experiments 77
 5.6 Conclusion 82
6. A Statistical Manifold Framework for Point Cloud Data 85
 6.1 Introduction 85
 6.2 Statistical Manifold Framework for Point Cloud Data 87
 6.3 Applications to Point Cloud Autoencoders 91
 6.4 Experimental Results 93
 6.5 Discussion and Conclusion 100
7 Conclusion 103
 7.1 Summary and Discussion 103
 7.2 Limitations and Future Directions 105
 7.3 Concluding Remark 109
A Appendix: Neighborhood Reconstructing Autoencoders 111
B Appendix: Minimum Curvature Manifold Learning 125
C Appendix: Regularized Autoencoders for Isometric Representation Learning 137
D Appendix: A Statistical Manifold Framework for Point Cloud Data 155
Bibliography 173
Abstract 186
</body>

