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Numerical analysis on the collapse of

wall-attached cavitation bubble

Oh Hyejeong
Department of Mechanical Engineering

Seoul National University
Abstract

In the present study, we numerically investigate the spherical and ellipsoidal bubbles
in the situation where the bubble is attached to walls. The simulations are conducted
with an incompressible two-phase flow solver. We adopt a geometrical volume of fluid
method to accurately track bubble interfaces in rapid changes during cavitation and
calculate the liquid and vapor phase using a transport equation model with cavitation
model. We validate this model by solving Rayleigh bubble collapse problem and the
results are consistent with the analytical solution. Subsequently, the wall-attached cav-
itation bubble is simulated for a fixed wall distance condition. For the spherical bubble,
the numerical results are in well agreement with the experimental results, and the bub-
ble collapses into a torus shape as the jet impact on the wall spreads radially outward
from the center of the wall. For the ellipsoidal bubble, parametric study is conducted
about the initial aspect ratio. In the collapse of the ellipsoidal bubble, two different
jets occur, and the initial aspect ratio determines the relative behavior between them.

The faster one dominates the collapse pattern, and the ellipsoidal bubble collapses into



two pieces, forming a lung-like shape. The jet impact on the wall spreads from the
center of the wall in the direction of the major axis of the bubble. On the other hand,
in the case of ellipsoidal bubbles with a nearly spherical aspect ratio, the magnitude
of the dominant jet is relatively small and its position changes with time, resulting
in an asymmetrical torus shape. From these results, we conclude that collapse pattern
of the bubble significantly depends on the position and the relative magnitude of the
dominant jet which are determined by the aspect ratio, and present the detailed flow

characteristics numerically.

keywords: numerical simulation, two-phase flow, cavitation, bubble collapse

student number: 2021-29710
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Chapter 1

Introduction

Cavitation is a phenomenon that vapor bubbles occurs when the local pressure in a
liquid flow falls below the vapor pressure. The collapse of the vapor bubble can cause
erosion on the walls of technical devices. During the collapse, a dominant jet devel-
ops, and this pattern depends on the geometric conditions between the bubble and walls
(Lauterborn and Bolle, 1975; Philipp and Lauterborn, 1998; Zhang et al., 2017). Re-
cently, cavitation bubbles are intentionally generated by laser technologies to utilize
these characteristics for biomedical or microfluidic operations (Le Gac et al., 2007;
Pozar et al., 2021).

The analysis of bubble collapse is a challenging topic because it is difficult to mea-
sure physical properties experimentally. The difficulties are caused by the extremely
small temporal and spatial scale of the bubble collapse. From these reasons, many
numerical simulations have conducted on the cavitation bubble collapse to provide de-
tail flow configurations which are difficult to obtain by experiments. Trummler et al.
(2021) studied the generic configurations of cavitation bubble with different stand-off

distances. Nguyen et al. (2022) analyzed the water jet and impact pressure for the bub-



ble collapse near an oblique wall and free surface with comparing to the experiments of
Zhang et al. (2017). Rodriguez et al. (2022) examined the dependence of the dynamics
on the initial bubble position between two parallel and rigid walls.

Previous studies generally have assumed the initially spherical bubble and exam-
ined the effect of the bubble-wall structure. However, the numerical study on the effect
of the bubble shape have not yet been fully investigated, although the cavitation bubble
is most likely to extend horizontally or vertically in the real applications and may be
elliptical for laser-induced bubbles (Lim et al., 2010; Sagar and el Moctar, 2020). Few
studies have reported the effect of the bubble shape on the collapse. Lauer et al. (2012)
analyzed wall pressures for the horizontally elongated ellipsoidal bubble attached to
the wall and Aganin et al. (2016) presented the interface velocity for the ellipsoidal
bubble which places on the wall. In these studies, they have only considered simple
situations that the re-entrant jet, also called a dominant jet, flows parallel to the axis.
However, we can expect different bubble collapse patterns from the past results be-
cause the orientation of the dominant jet varies depending on the geometric condition
between the bubble and the wall.

Therefore, the objective of this study is to investigate the effect of non-spherical
shape of the wall-attached bubble on collapse patterns under the condition in which
the dominant jet is not parallel to the axis. For a numerical model, we employ a ge-
ometric volume of fluid (VOF) method (Nguyen and Park, 2016, 2017) and transport
equation model (TEM) (Schnerr and Sauer, 2001) based on an incompressible and
isothermal two-phase flow solver. The geometric VOF method is used to calculate two-
phase interfaces by considering the geometrical reconstruction of the interface and its
flux based on a liquid volume fraction at every time step. This ensures a sharp inter-

face and mass conservation without any artificial terms and mass corrections. In the



TEM, a transport equation is solved with the source term considering a phase change.
By considering the phase change at interfaces, it makes possible to mimic the cavita-
tion process in the incompressible and isothermal two-phase flow solver. All simula-
tion models are based on the interPhaseChangeFoam in the open source C++package
OpenFOAM (Weller et al., 1998). To validate the numerical model, Rayleigh bub-
ble collapse test is conducted (Franc and Michel, 2006). To study the effect of non-
spherical shape on the bubble collapse, parametric study is performed about the aspect
ratio when the bubble is attached to the wall. From the results, we present the col-
lapse pattern by analyzing the position and the relative magnitude of dominant jet and

discuss the significance of the effect of the bubble shape on the bubble collapse.



Chapter 2

Methodology

2.1 Governing equations

In the present simulation, continuity and momentum equations are solved for the mix-
ture of liquid and vapor under the assumption that each liquid and vapor phases are
incompressible and isothermal. In addition, a transport equation is solved to track the
liquid-vapor interfaces. This ensures the mass conservation without any treatments
(Nguyen and Park, 2016). These equations are solved based on the liquid-vapor mix-
ture. Each liquid and vapor phase is considered incompressible, but the mixture density
depends on the change in the liquid volume fraction by cavitation in this study. Thus,

the continuity equation is given by

V-u=(———)m, 2.1
" (pl pv)m ( )

where p; is the liquid density and p,, is the vapor density, and 77 is phase change rate.
The momentum equation is given by

0
% + V- (puu) = —=Vp+ V- [u(Vu+ VuT)], 2.2)



where u is the velocity vector, p is pressure, p is the mixture density, and p is the
mixture viscosity. Here, we ignore the surface tension due to the large pressure differ-
ence between the vapor and liquid. It can be derived from the following collapse rate

equation,

3 3 2
dR __ J28p (Ro ) 20 By () R 2.3)
dt 3 p \R3 pRy R3 R3

where the pressure difference Ap is about 10°Pa, the initial bubble radius Rq is
0.001m, and the surface tension o is 0.072N/m in the this study. Based on this con-
dition, the effect of surface tension is neglected because the coefficient of the first term
is much larger than that of the second term (Franc and Michel, 2006).

From the above two governing equations, the velocity and pressure field is solved,

and the following transport equation is solved.

Ja m

where the liquid volume fraction o means the amount of liquid present in a computa-
tional cell relatively, and the phase change rate 72 is included on the right-hand side of
the equation. The liquid volume fraction will be discussed in relation to the volume of
fluid method in section 2.2. To close the equations (2.1), (2.4), the phase change rate

m should be determined, and it will be presented in section 2.3.



2.2 VOF-PLIC method

In the volume of fluid (VOF) method, as shown in section 2.1, the liquid volume frac-
tion « defines the phase state and mixture properties of each computational cell and
the transport equation (Eq. (2.4)) is solved to calculate the liquid volume fraction « in

each time step. The phase state is defined by the liquid volume fraction « as follows,

(

1 liquid
afz,t) =1 > 0,< 1 interface 2.5)
0 vVapor.

Based on the liquid volume fraction, the mixture properties, e.g. density and dynamic

viscosity, are expressed as

p = ppa+p(l —a), (2.6)

w= pya+ (1l —a). 2.7

By using the following distribution function about the liquid volume fraction, bub-

ble interfaces can be expressed by finite values in each cell.

a(r)=1-— % [1 — tanh <T(;AJZO>} (2.8)

Eq. 2.8 presents the hyperbolic tangent function, and the constant C' determines the
width of the interface. In the Eq. 2.8, Ry is the initial bubble radius, r is the radial
distance from the bubble center O, and Ax is the computational cell size. Fig. 2.1
shows the distribution of the liquid volume fraction according to the function. Several
cells within the interface region have liquid volume fraction greater than 0 and less than
1, and the contour line corresponding to the liquid volume fraction of 0.5 indicates a

bubble interface.



o

Figure 2.1: A bubble interface (white solid line) and distribution of liquid volume

fraction near the interface

To track the interface accurately, a piecewise linear interface calculation (PLIC)
method is employed. PLIC method geometrically reconstructs the liquid-vapor inter-
face based on the distribution of the liquid volume fraction. Fig. 2.2 shows the actual
and PLIC reconstructed liquid-vapor interfaces and the fluxes in x direction during the
time step At. In this method, a planar surface function y = F'(z), the reconstructed
interface, is defined based on liquid volume fraction information of neighboring cells
of the cell of interest. We use Youngs method to calculate this function in this study
(Youngs, 1982). Based on this function, the flux of liquid volume fraction during the
time step, flux;, is calculated by the following equation.

Ax
fluxit = / F(x)dz (2.9)
Az—uAt
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Figure 2.2: Actual and PLIC reconstructed interfaces (blue solid line) in 2D plane and

fluxes in x direction during the time step.

2.3 Cavitation model

Cavitation model defines the phase change rates which are correlated to the single bub-
ble dynamics. In the present study, the Schnerr-Sauer model (Schnerr and Sauer, 2001)
is adopted. The Schnerr-Sauer model assumes that the vapor consist of spherical bub-
bles, and therefore the volume of the vapor depends on the number and radius of these
bubbles. The behavior, e.g. growth rate, of each bubble is explained by the Rayleigh-
Plesset equation. From this equation, both the condensation ni. and vaporization ni,
rates are derived based on the fluid properties. The expressions are represented as fol-

lows:

m = me + My,

. 3p1pv 2
me = Coa(l — o max(p — py,0),
c c( )PRB 3pl|p*pv| (p Do )
3 2
my = Cya(l + any — a) PiPv

min(p — Py, 0), (2.10)
pRE \| 3pi[p — pol ( )

where p,, is a vapor pressure at which the phase change is assumed to happen and the

user defined parameters C, C, controls the rate of the phase changes. an and Rp



are the volume fraction of bubble nuclei in the liquid and generic radius, respectively.

These can be obtained from the following equations,

TnodNuc’
1 + M
6
3 1l4+ay—«
Rp = §/4MO . (2.12)

where ng and d are user defined parameters. They correspond to the number of nu-
clei per cubic meter and the nucleation site diameter, respectively. In this study, fluid

properties and user parameters are set as shown in Table 2.1 and Table 2.2.

Table 2.1: Fluid properties

pilkgm ™3] 1000
polkgm ™3] 0.0231
wm?/s]  9.793%10-7

puo[m?/s]  4.273%10-4

Table 2.2: User parameters for phase change rate

C. 1000

C, 1000
ng 108
dy 1074



Chapter 3
Rayleigh bubble collapse

The Rayleigh bubble collapse test is conducted as a validation for the present numeri-
cal model. In this test, the bubble is supposed to be in equilibrium and immersed in an
infinite incompressible fluid at the first phase. From the instant ¢ = 0, the high pres-
sure po, applied to the liquid drives the collapse of the bubble at a characteristic time
7 called the Rayleigh time.

The analytic solution is derived from the Rayleigh-Plesset equation for this prob-

lem (Franc and Michel, 2006). The bubble collapse rate and the liquid pressure evolu-

2A 5
i __JEEe () (3.1)
dt 3 p \R3

Do — Po 3r 3rd | R3

tion are given by

2 (3.2)

respectively. In the above equations, 7 is the radial distance from the center of the

bubble, R is the initial bubble radius, and the Ap is the difference between the liquid

and vapor pressures.



3.1 Setup

We initialize the vapor bubble with radius Ry = 1mm and pressure p,, = 2300 Pa. The
initial liquid pressure near the bubble has the distribution derived from the equation
(3.2), i.e. p*forR = Ry. The pressure converges to the pressure p,, = 10°Pa at the
far field boundary. The computational domain has the size L, = L, = L, = 100R,.
The cells per bubble radius (CPBR) is set to be 100. A fixed condition is used for
pressure and a Neumann condition is used for liquid volume fraction and velocity at

the far field boundary.

U, a : Neumann

— 1 : Fixed value, P,

Vapor bubble

Figure 3.1: Computational domain, boundary conditions, and initial conditions

11 | |_I



3.2 Results and discussion

The numerical result is compared with the analytical solution about the evolution of

bubble radius and liquid pressure distribution.

1
0.9
0.8
0.7
0.6
0.5

r/Rg

0.4
0.3

02 r —— Analytic

0.1 o Simulation

0 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

t/t

Figure 3.2: Evolution of the bubble radius

The evolution of bubble radius is shown in Figure 3.2. In this figure, the bubble
radius is nondimensionalized by the initial radius Ry and the time is nondimensional-
ized by Rayleigh collapse time 7. Here, the bubble radius corresponds to the 0.5 value
of the liquid volume fraction. The rate of change in the radius increases over time and
becomes infinite at the end of the collapse. Also, the Figure 3.3. shows the bubble in-
terfaces at three different normalized times ¢/7 of 0.6482, 0.8642 and 0.9722 which
are corresponding to non-dimensional radius /Ry of 0.8, 0.57 and 0.3, respectively.
From the Fig. (2) and Fig. (3), it is shown that the numerical results are in good agree-

ment with the analytic solution and the bubble interfaces maintain the circular shape

12 | = H
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Analytic t*=0.6482
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0g L Analytic_t*=0.8642

07 - -----Analytic_t*=0.9722

0.6 | Simulation t*=0.6482
§ 05 —— Simulation_t*=0.8642
~

0.4 Simulation_t*=0.9722

0.3

0.2

0.1

0 1 1 Lh 1 1 1 1 1 1 J

0 01 02 03 04 05 06 07 08 09 1
T'/RO

Figure 3.3: Evolution of the bubble interface

without wiggles during collapse. In Figure 3.4., the evolution of liquid pressure dis-
tribution in the radial direction is plotted. In this plot, five different normalized times
t/7 of 0.6482, 0.7562, 0.8642, 0.9182 and 0.9722 are chosen which are correspond-
ing to non-dimensional radius /Ry of 0.8, 0.7, 0.57, 0.47 and 0.3, respectively. The
maximum liquid pressure occurs the right outside of bubble interface and the pres-
sure converges to infinite liquid pressure po, as r approaches to the far field boundary.
This pressure wave is mainly caused by the effect of inertial forces. The maximum
pressure value increases significantly as the bubble collapses while the vapor pressure
remains constant. The numerical results follow the analytic solution of the pressure

wave distribution

- |i F
13 | = 1]



—— Analytic t*=0.6482 Analytic t*=0.7562
Analytic_t*=0.8642 Analytic_t*=0.9182
—— Analytic t*=0.9722 o Simulation_t*=0.6482
o Simulation t*=0.7562 o Simulation_t*=0.8642
o Simulation_t*=0.9182 o Simulation_t*=0.9722

Figure 3.4: Evolution of liquid pressure distribution in radial direction
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Chapter 4

Wall-attached bubble collapse

In this section, we investigate the collapse of a wall-attached bubble. In the wall-
attached bubble collapse, unlike bubble collapse in the free field, the delay effect of
the wall can be observed by the interaction with the wall. In this study, the numerical
results of the spherical bubble will first be compared with the corresponding experi-
mental results (Philipp and Lauterborn, 1998). Next, we present the numerical results
of ellipsoidal bubbles, and discuss the effect of aspect ratio on the collapse of wall-

attached bubbles.

4.1 Setup

We initialize the bubble with radius Ry = 1.5mm and pressure p, = 1000Pa. The
initial liquid pressure near the bubble has the distribution derived from the equation
(3.2),i.e. p*forR = Ry. The pressure converges to the pressure p,, = 10°Pa at the
far field boundary. The computational domain has the size L, = L, = 10Rg, L, =

6Ro. The cells per bubble radius (CPBR) is set to be 100. The relative wall distance

15 i i



D/Ry is 0.3. No slip condition is applied for the bottom boundary and Neumann
condition is used for all far field boundaries. The simulated cases of ellipsoidal bubble

correspond to the aspect ratios (AR) of 1.1, 1.2, 1.4, 1.7, and 2.0.

\k\JjU , o, P: Neumann

Vapor bubble

Figure 4.1: Computational domain, boundary conditions, and initial conditions

4.2 Results and discussion

4.2.1 Spherical bubble

This section presents the spherical bubble with AR=1.0. Fig. 4.2 shows the collapse
pattern of a wall-attached spherical bubble compared with the experimental results.
Fig. 4.3 shows the position of the maximum jet and the interface of the bubble in
yz cross-section, and Fig. 4.4 plots the maximum jet speed over time. In the velocity
plot, the time is nondimensionalized by the collapse time 7, which is the time when the
bubble completely collapses, and the velocity is nondimensionalized by the magnitude

of the maximum jet tip velocity V *

T a Which is defined by the velocity at the moment

16 | -I_'- i!



when the jet hit the lower wall of the bubble.

0] () (©) 4 ®)

Figure 4.2: Collapse pattern of a wall-attached spherical bubble (1st row - photograph:
experimental results, white dot line: numerical results in 2D; 2nd row - numerical

results in 3D)

Vmax y
- L.
g ™
P
d N \

10
S T, )

% / /\:/ﬁ\ \\§\435>

Figure 4.3: Interfaces of spherical bubble (black solid line) and position of the maxi-

mum jet (red arrow) in yz cross-section

In general, the numerical simulations are in good agreement with the experimental

results. The collapse pattern follows the following sequences. The bubbles initially

; B



form a dome shape, and the upper wall of the bubbles is sequentially flattened and
curved toward the wall. Next, the jet from the top hits the wall with reaching the value
of the maximum jet tip velocity and then penetrates the bubble. After penetrating,
the jet develops radially outwards along the wall and becomes a ring vortex while
turning the bubble into a torus shape. In the final stage, the jet velocity reaches the
maximum value while making the torus completely collapses from the inner side. From
this collapse pattern, the impact on the wall spreads radially outward from the center

of the wall as shown in Fig 4.5.

1.4

12 ¢ - Vmax/Vmax*
1k

08 r
06 r

V/Vmax*

04
02 r

O T 1
0 01 02 03 04 05 06 07 08 09 1

t/t
Figure 4.4: Maximum jet speed for spherical bubbles

l6.0e+7

p(Pa)

a,

Figure 4.5: Jet impact on the wall for spherical bubbles
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From the results, collapse mechanism of wall-attached bubbles can be summarized
as shown in Fig. 4.6. The jet basically flows in a radial direction of the bubble. The
side of the bubble close to the wall collapses more slowly than the rest due to the effect
of the wall, and the top of the bubble collapses much faster than the rest because it has
a maximum extension from the wall. Here, this maximum jet from the top, called a

dominant jet, dominates the collapse of the bubble.

3. Dominant jet
from maximum
extension

1. Radial jet

2. Delay effect
Vwall = 0
Vmax
tl
0]
' /
wall O

Figure 4.6: Collapse mechanism of wall-attached bubble
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4.2.2 Ellipsoidal bubble

This section presents the ellipsoidal bubble with AR=2.0 to clearly figure out the dif-
ference from the spherical case in collapse patterns. Fig. 4.7 shows the position of the
maximum jet Vi,,qz, the y-axis jet V;,, and the interface of the bubble in both yz and
xy cross-section. Fig. 4.8 shows the maximum jet speed and the y-axis parallel jet over
time. The time and velocity are nondimensionalized by the collapse time 7 and the

maximum jet tip velocity V*

. Of the spherical case.

N
\

Figure 4.7: Interfaces of ellipsoidal bubble (black solid line) and position of the maxi-

mum jet (red arrow) and y-axis jet (black arrow) in yz and Xy cross-section

In the case of the ellipsoidal bubble, two different jets should be considered due to
the asymmetric shape. One is the jet from the top of the bubble, and the other is the
jet from the maximum extension point of the bubble. The maximum extension is the

point at which the z-axis passing through the center of the bubble meets the bubble

20 | -._'- 1]
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Figure 4.8: Maximum and y-axis jet speeds for ellipsoidal bubble

interface. From this point, the dominant jet develops in the radial direction.

In the early stage, the two jets have the similar magnitude of velocity, and the
bubble forms a dome-shape due to the delay effect of the wall with the grooved sides
by the dominant jet. As the dominant jet velocity grows much higher than the y-axis
parallel jet, the z-axis side of the bubble becomes very curved in the radial direction
and the lower side of bubble is penetrated first. At the same time, as shown in the
Xy cross-section, the jet from the top of the bubble makes the upper wall of bubble
flat and then curved because the top of the bubble is a relatively extended point in
the xy cross-section. In this situation, the bubble forms a lung-shape where the thin
bridge connects the two small bubbles. As the jet develops, the bubble separates into
the two pieces, and the maximum jet tip velocity occurs right before the separation.
After the separation, the jet develops radially outwards along the wall and makes the
bubble completely collapses while reaching the maximum velocity. From this collapse

pattern, the jet impacts the wall in an asymmetric way, and the impact spreads from

21 E



the center of the wall in the direction of the major axis of the bubble as shown in Fig.

4.9.

Figure 4.9: Jet impact on the wall for ellipsoidal bubbles

4.2.3 Effect of aspect ratio

As presented in the section 4.2.2, the ellipsoidal bubble collapses in a significantly
different way due to the two different jets. In this case, the bubble shape has the high
aspect ratio, and it makes the dominant jet from the z-axis parallel maximum extension
point highly dominates the bubble collapse. From this result, we could expect that the
aspect ratio differs the difference of the magnitude of the two jets and the collapse
patterns consequently. Hence, we simulated the cases of ellipsoidal bubble correspond
to AR=1.1, 1.2, 1.4, 1.7, and 2.0 to investigate the effect of the aspect ratio.

Fig. 4.10 shows the collapse pattern of wall-attached bubbles for all AR cases. The
ellipsoidal bubble with small AR tends to collapse into torus shape in the similar way
of the spherical bubble case, and the ellipsoidal bubble with large AR tends to collapse
into two pieces. This tendency can be explained by the variation of the position and
magnitude of the maximum jet and y-axis jet.

Fig. 4.11 plots the magnitude difference between the maximum jet V,,,4, and the y-
axis jet Vi, for all AR cases over time. The difference between the two jets gradually

increases with the development of the maximum jet, and decreases because the phase

. 5 4 &)
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Figure 4.10: Collapse pattern of wall-mounted bubbles for all AR cases
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Figure 4.11: Magnitude difference between maximum jet and y-axis jet for all AR

cases

difference of the two jets is extremely small just before collapse.

Here, the difference converges to zero at certain times for AR=1.1, 1.2, and the
smaller the AR, the faster the difference becomes zero. The convergence to zero im-
plies that the y-axis jet becomes the maximum jet. To figure out this situation, we plot
the position of the maximum jet (red arrow), the y-axis jet (black arrow) and the inter-
face of the bubble in both yz cross-section in Fig. 4.12 and Fig. 4.13. In these cases,
the position of the maximum jet moves from the point of initial maximum extension
to the top of the bubble, and eventually the two jets coincide. Thereafter, the collapse
pattern follows the spherical case. The bubble consequently has an asymmetric torus
shape due to the change in the maximum jet position. These results show that when
AR is close to 1, the relative magnitude of the initial dominant jet at the z-axis side of

the bubble is not large enough to maintain the collapse pattern of ellipsoidal bubbles.
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Figure 4.13: Interfaces of ellipsoidal bubble (black solid line) and position of the max-

imum jet (red arrow) and y-axis jet (black arrow) in yz cross-section (AR=1.2)
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Chapter 5

Conclusion

In this study, a single cavitation bubble collapse in the free field is first simulated for
validation and the significance of initial bubble shape has been investigated by com-
paring spherical and ellipsoidal cavitation bubbles in the situation where the bubble is
attached to the wall. In the wall-attached bubble collapse, a delay effect by the wall
basically occurs along with the radial direction jet. From this effect, the bubble forms
a dome-shape in the early stage. In addition, the maximum jet, called the dominant
jet, is developed at the initial maximum extension point, dominating the bubble col-
lapse. For the spherical bubble, the dominant jet from the top of the bubble governs
the collapse and the bubble collapses into a torus shape. From this collapse pattern,
the impact on the wall spreads radially outward from the center of the wall. For the
ellipsoidal bubble, different two jets governs the collapse. Among these, the relative
magnitude of the dominant jet of them increases with the aspect ratio and the bubble
collapses into two pieces, forming a lung-shape. From this collapse pattern, the jet
impacts the wall in an asymmetric way, and the impact spreads from the center of the

wall in the direction of the major axis of the bubble. On the other hand, if the aspect
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ratio of the ellipsoidal bubble is close to 1.0, the position of the dominant jet moves
from the side to the top of the bubble, and the bubble collapses into an asymmetric
torus shape. This is because the relative magnitude of the dominant jet is too small to
overcome the effect of the wall. From the results, it can be concluded that the collapse
pattern of the bubble significantly depends on the position and the relative magnitude

of the dominant jet determined by the aspect ratio.
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