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Abstract

In the present study, we numerically investigate the spherical and ellipsoidal bubbles

in the situation where the bubble is attached to walls. The simulations are conducted

with an incompressible two-phase flow solver. We adopt a geometrical volume of fluid

method to accurately track bubble interfaces in rapid changes during cavitation and

calculate the liquid and vapor phase using a transport equation model with cavitation

model. We validate this model by solving Rayleigh bubble collapse problem and the

results are consistent with the analytical solution. Subsequently, the wall-attached cav-

itation bubble is simulated for a fixed wall distance condition. For the spherical bubble,

the numerical results are in well agreement with the experimental results, and the bub-

ble collapses into a torus shape as the jet impact on the wall spreads radially outward

from the center of the wall. For the ellipsoidal bubble, parametric study is conducted

about the initial aspect ratio. In the collapse of the ellipsoidal bubble, two different

jets occur, and the initial aspect ratio determines the relative behavior between them.

The faster one dominates the collapse pattern, and the ellipsoidal bubble collapses into
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two pieces, forming a lung-like shape. The jet impact on the wall spreads from the

center of the wall in the direction of the major axis of the bubble. On the other hand,

in the case of ellipsoidal bubbles with a nearly spherical aspect ratio, the magnitude

of the dominant jet is relatively small and its position changes with time, resulting

in an asymmetrical torus shape. From these results, we conclude that collapse pattern

of the bubble significantly depends on the position and the relative magnitude of the

dominant jet which are determined by the aspect ratio, and present the detailed flow

characteristics numerically.

keywords: numerical simulation, two-phase flow, cavitation, bubble collapse

student number: 2021-29710
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Chapter 1

Introduction

Cavitation is a phenomenon that vapor bubbles occurs when the local pressure in a

liquid flow falls below the vapor pressure. The collapse of the vapor bubble can cause

erosion on the walls of technical devices. During the collapse, a dominant jet devel-

ops, and this pattern depends on the geometric conditions between the bubble and walls

(Lauterborn and Bolle, 1975; Philipp and Lauterborn, 1998; Zhang et al., 2017). Re-

cently, cavitation bubbles are intentionally generated by laser technologies to utilize

these characteristics for biomedical or microfluidic operations (Le Gac et al., 2007;

Požar et al., 2021).

The analysis of bubble collapse is a challenging topic because it is difficult to mea-

sure physical properties experimentally. The difficulties are caused by the extremely

small temporal and spatial scale of the bubble collapse. From these reasons, many

numerical simulations have conducted on the cavitation bubble collapse to provide de-

tail flow configurations which are difficult to obtain by experiments. Trummler et al.

(2021) studied the generic configurations of cavitation bubble with different stand-off

distances. Nguyen et al. (2022) analyzed the water jet and impact pressure for the bub-
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ble collapse near an oblique wall and free surface with comparing to the experiments of

Zhang et al. (2017). Rodriguez et al. (2022) examined the dependence of the dynamics

on the initial bubble position between two parallel and rigid walls.

Previous studies generally have assumed the initially spherical bubble and exam-

ined the effect of the bubble-wall structure. However, the numerical study on the effect

of the bubble shape have not yet been fully investigated, although the cavitation bubble

is most likely to extend horizontally or vertically in the real applications and may be

elliptical for laser-induced bubbles (Lim et al., 2010; Sagar and el Moctar, 2020). Few

studies have reported the effect of the bubble shape on the collapse. Lauer et al. (2012)

analyzed wall pressures for the horizontally elongated ellipsoidal bubble attached to

the wall and Aganin et al. (2016) presented the interface velocity for the ellipsoidal

bubble which places on the wall. In these studies, they have only considered simple

situations that the re-entrant jet, also called a dominant jet, flows parallel to the axis.

However, we can expect different bubble collapse patterns from the past results be-

cause the orientation of the dominant jet varies depending on the geometric condition

between the bubble and the wall.

Therefore, the objective of this study is to investigate the effect of non-spherical

shape of the wall-attached bubble on collapse patterns under the condition in which

the dominant jet is not parallel to the axis. For a numerical model, we employ a ge-

ometric volume of fluid (VOF) method (Nguyen and Park, 2016, 2017) and transport

equation model (TEM) (Schnerr and Sauer, 2001) based on an incompressible and

isothermal two-phase flow solver. The geometric VOF method is used to calculate two-

phase interfaces by considering the geometrical reconstruction of the interface and its

flux based on a liquid volume fraction at every time step. This ensures a sharp inter-

face and mass conservation without any artificial terms and mass corrections. In the

2



TEM, a transport equation is solved with the source term considering a phase change.

By considering the phase change at interfaces, it makes possible to mimic the cavita-

tion process in the incompressible and isothermal two-phase flow solver. All simula-

tion models are based on the interPhaseChangeFoam in the open source C++package

OpenFOAM (Weller et al., 1998). To validate the numerical model, Rayleigh bub-

ble collapse test is conducted (Franc and Michel, 2006). To study the effect of non-

spherical shape on the bubble collapse, parametric study is performed about the aspect

ratio when the bubble is attached to the wall. From the results, we present the col-

lapse pattern by analyzing the position and the relative magnitude of dominant jet and

discuss the significance of the effect of the bubble shape on the bubble collapse.

3



Chapter 2

Methodology

2.1 Governing equations

In the present simulation, continuity and momentum equations are solved for the mix-

ture of liquid and vapor under the assumption that each liquid and vapor phases are

incompressible and isothermal. In addition, a transport equation is solved to track the

liquid-vapor interfaces. This ensures the mass conservation without any treatments

(Nguyen and Park, 2016). These equations are solved based on the liquid-vapor mix-

ture. Each liquid and vapor phase is considered incompressible, but the mixture density

depends on the change in the liquid volume fraction by cavitation in this study. Thus,

the continuity equation is given by

∇ · u = (
1

ρl
− 1

ρv
)ṁ, (2.1)

where ρl is the liquid density and ρv is the vapor density, and ṁ is phase change rate.

The momentum equation is given by

∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ · [µ(∇u+∇u⊺)], (2.2)
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where u is the velocity vector, p is pressure, ρ is the mixture density, and µ is the

mixture viscosity. Here, we ignore the surface tension due to the large pressure differ-

ence between the vapor and liquid. It can be derived from the following collapse rate

equation,

dR

dt
= −

√
2

3

∆p

ρ

(
R3

0

R3
− 1

)
+

2σ

ρR0

R3
0

R3

(
1− R2

R2
0

)
, (2.3)

where the pressure difference ∆p is about 105Pa, the initial bubble radius R0 is

0.001m, and the surface tension σ is 0.072N/m in the this study. Based on this con-

dition, the effect of surface tension is neglected because the coefficient of the first term

is much larger than that of the second term (Franc and Michel, 2006).

From the above two governing equations, the velocity and pressure field is solved,

and the following transport equation is solved.

∂α

∂t
+∇ · (uα) = ṁ

ρl
, (2.4)

where the liquid volume fraction α means the amount of liquid present in a computa-

tional cell relatively, and the phase change rate ṁ is included on the right-hand side of

the equation. The liquid volume fraction will be discussed in relation to the volume of

fluid method in section 2.2. To close the equations (2.1), (2.4), the phase change rate

ṁ should be determined, and it will be presented in section 2.3.
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2.2 VOF-PLIC method

In the volume of fluid (VOF) method, as shown in section 2.1, the liquid volume frac-

tion α defines the phase state and mixture properties of each computational cell and

the transport equation (Eq. (2.4)) is solved to calculate the liquid volume fraction α in

each time step. The phase state is defined by the liquid volume fraction α as follows,

α(x, t) =



1 liquid

> 0, < 1 interface

0 vapor.

(2.5)

Based on the liquid volume fraction, the mixture properties, e.g. density and dynamic

viscosity, are expressed as

ρ = ρvα+ ρl(1− α), (2.6)

µ = µvα+ µl(1− α). (2.7)

By using the following distribution function about the liquid volume fraction, bub-

ble interfaces can be expressed by finite values in each cell.

α(r) = 1− 1

2

[
1− tanh

(
r −R0

C∆x

)]
(2.8)

Eq. 2.8 presents the hyperbolic tangent function, and the constant C determines the

width of the interface. In the Eq. 2.8, R0 is the initial bubble radius, r is the radial

distance from the bubble center O, and ∆x is the computational cell size. Fig. 2.1

shows the distribution of the liquid volume fraction according to the function. Several

cells within the interface region have liquid volume fraction greater than 0 and less than

1, and the contour line corresponding to the liquid volume fraction of 0.5 indicates a

bubble interface.
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
1

0

0.5

Figure 2.1: A bubble interface (white solid line) and distribution of liquid volume

fraction near the interface

To track the interface accurately, a piecewise linear interface calculation (PLIC)

method is employed. PLIC method geometrically reconstructs the liquid-vapor inter-

face based on the distribution of the liquid volume fraction. Fig. 2.2 shows the actual

and PLIC reconstructed liquid-vapor interfaces and the fluxes in x direction during the

time step ∆t. In this method, a planar surface function y = F (x), the reconstructed

interface, is defined based on liquid volume fraction information of neighboring cells

of the cell of interest. We use Youngs method to calculate this function in this study

(Youngs, 1982). Based on this function, the flux of liquid volume fraction during the

time step, fluxi, is calculated by the following equation.

fluxi+1 =

∫ ∆x

∆x−u∆t
F (x)dx (2.9)
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Actual interfaces Reconstructed interfaces

iflux
vapor

liquid

Figure 2.2: Actual and PLIC reconstructed interfaces (blue solid line) in 2D plane and

fluxes in x direction during the time step.

2.3 Cavitation model

Cavitation model defines the phase change rates which are correlated to the single bub-

ble dynamics. In the present study, the Schnerr-Sauer model (Schnerr and Sauer, 2001)

is adopted. The Schnerr-Sauer model assumes that the vapor consist of spherical bub-

bles, and therefore the volume of the vapor depends on the number and radius of these

bubbles. The behavior, e.g. growth rate, of each bubble is explained by the Rayleigh-

Plesset equation. From this equation, both the condensation ṁc and vaporization ṁv

rates are derived based on the fluid properties. The expressions are represented as fol-

lows:

ṁ = ṁc + ṁv,

ṁc = Ccα(1− α)
3ρlρv
ρRB

√
2

3ρl |p− pv|
max(p− pv, 0),

ṁv = Cvα(1 + αN − α)
3ρlρv
ρRB

√
2

3ρl |p− pv|
min(p− pv, 0), (2.10)

where pv is a vapor pressure at which the phase change is assumed to happen and the

user defined parameters Cc, Cv controls the rate of the phase changes. αN and RB
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are the volume fraction of bubble nuclei in the liquid and generic radius, respectively.

These can be obtained from the following equations,

αN =

πn0dNuc3

6

1 +
πn0d

3
N

6

(2.11)

RB = 3

√
3

4πn0

1 + αN − α

α
. (2.12)

where n0 and dN are user defined parameters. They correspond to the number of nu-

clei per cubic meter and the nucleation site diameter, respectively. In this study, fluid

properties and user parameters are set as shown in Table 2.1 and Table 2.2.

Table 2.1: Fluid properties

ρl[kgm
−3] 1000

ρv[kgm
−3] 0.0231

µl[m
2/s] 9.793*10-7

µv[m
2/s] 4.273*10-4

Table 2.2: User parameters for phase change rate

Cc 1000

Cv 1000

n0 108

dN 10−4
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Chapter 3

Rayleigh bubble collapse

The Rayleigh bubble collapse test is conducted as a validation for the present numeri-

cal model. In this test, the bubble is supposed to be in equilibrium and immersed in an

infinite incompressible fluid at the first phase. From the instant t = 0, the high pres-

sure p∞ applied to the liquid drives the collapse of the bubble at a characteristic time

τ called the Rayleigh time.

The analytic solution is derived from the Rayleigh-Plesset equation for this prob-

lem (Franc and Michel, 2006). The bubble collapse rate and the liquid pressure evolu-

tion are given by

dR

dt
= −

√
2

3

∆p

ρ

(
R3

0

R3
− 1

)
, (3.1)

p∗ =
p(r)− p∞
p∞ − pv

=
R

3r

[
R3

0

R3
− 4

]
− R4

3r4

[
R3

0

R3
− 1

]
, (3.2)

respectively. In the above equations, r is the radial distance from the center of the

bubble, R0 is the initial bubble radius, and the ∆p is the difference between the liquid

and vapor pressures.
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3.1 Setup

We initialize the vapor bubble with radius R0 = 1mm and pressure pv = 2300Pa. The

initial liquid pressure near the bubble has the distribution derived from the equation

(3.2), i.e. p∗forR = R0. The pressure converges to the pressure p∞ = 105Pa at the

far field boundary. The computational domain has the size Lx = Ly = Lz = 100R0.

The cells per bubble radius (CPBR) is set to be 100. A fixed condition is used for

pressure and a Neumann condition is used for liquid volume fraction and velocity at

the far field boundary.

zL

yL

𝑈, 𝛼 : Neumann 
𝑃 : Fixed value, 𝑃ஶ

Symmetric 0u0R
vP

xL

Vapor bubble x
z

y

Figure 3.1: Computational domain, boundary conditions, and initial conditions
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3.2 Results and discussion

The numerical result is compared with the analytical solution about the evolution of

bubble radius and liquid pressure distribution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Analytic

Simulation

𝑟
𝑅
଴

⁄

𝑡 𝜏⁄

Figure 3.2: Evolution of the bubble radius

The evolution of bubble radius is shown in Figure 3.2. In this figure, the bubble

radius is nondimensionalized by the initial radius R0 and the time is nondimensional-

ized by Rayleigh collapse time τ . Here, the bubble radius corresponds to the 0.5 value

of the liquid volume fraction. The rate of change in the radius increases over time and

becomes infinite at the end of the collapse. Also, the Figure 3.3. shows the bubble in-

terfaces at three different normalized times t/τ of 0.6482, 0.8642 and 0.9722 which

are corresponding to non-dimensional radius r/R0 of 0.8, 0.57 and 0.3, respectively.

From the Fig. (2) and Fig. (3), it is shown that the numerical results are in good agree-

ment with the analytic solution and the bubble interfaces maintain the circular shape
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0.6

0.7
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0.9
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.3: Evolution of the bubble interface

without wiggles during collapse. In Figure 3.4., the evolution of liquid pressure dis-

tribution in the radial direction is plotted. In this plot, five different normalized times

t/τ of 0.6482, 0.7562, 0.8642, 0.9182 and 0.9722 are chosen which are correspond-

ing to non-dimensional radius r/R0 of 0.8, 0.7, 0.57, 0.47 and 0.3, respectively. The

maximum liquid pressure occurs the right outside of bubble interface and the pres-

sure converges to infinite liquid pressure p∞ as r approaches to the far field boundary.

This pressure wave is mainly caused by the effect of inertial forces. The maximum

pressure value increases significantly as the bubble collapses while the vapor pressure

remains constant. The numerical results follow the analytic solution of the pressure

wave distribution
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Figure 3.4: Evolution of liquid pressure distribution in radial direction
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Chapter 4

Wall-attached bubble collapse

In this section, we investigate the collapse of a wall-attached bubble. In the wall-

attached bubble collapse, unlike bubble collapse in the free field, the delay effect of

the wall can be observed by the interaction with the wall. In this study, the numerical

results of the spherical bubble will first be compared with the corresponding experi-

mental results (Philipp and Lauterborn, 1998). Next, we present the numerical results

of ellipsoidal bubbles, and discuss the effect of aspect ratio on the collapse of wall-

attached bubbles.

4.1 Setup

We initialize the bubble with radius R0 = 1.5mm and pressure pv = 1000Pa. The

initial liquid pressure near the bubble has the distribution derived from the equation

(3.2), i.e. p∗forR = R0. The pressure converges to the pressure p∞ = 105Pa at the

far field boundary. The computational domain has the size Lx = Lz = 10R0, Ly =

6R0. The cells per bubble radius (CPBR) is set to be 100. The relative wall distance

15



D/R0 is 0.3. No slip condition is applied for the bottom boundary and Neumann

condition is used for all far field boundaries. The simulated cases of ellipsoidal bubble

correspond to the aspect ratios (AR) of 1.1, 1.2, 1.4, 1.7, and 2.0.

zL

yL

𝑈, 𝛼, 𝑃: Neumann 

0u0R
vP

xL

Vapor bubble

x
z

y

No slip wall

Figure 4.1: Computational domain, boundary conditions, and initial conditions

4.2 Results and discussion

4.2.1 Spherical bubble

This section presents the spherical bubble with AR=1.0. Fig. 4.2 shows the collapse

pattern of a wall-attached spherical bubble compared with the experimental results.

Fig. 4.3 shows the position of the maximum jet and the interface of the bubble in

yz cross-section, and Fig. 4.4 plots the maximum jet speed over time. In the velocity

plot, the time is nondimensionalized by the collapse time τ , which is the time when the

bubble completely collapses, and the velocity is nondimensionalized by the magnitude

of the maximum jet tip velocity V ∗
max which is defined by the velocity at the moment

16



when the jet hit the lower wall of the bubble.

(1) (2) (3) (4) (5)

Figure 4.2: Collapse pattern of a wall-attached spherical bubble (1st row - photograph:

experimental results, white dot line: numerical results in 2D; 2nd row - numerical

results in 3D)

z

ymaxV

(4)
(3)

(2)

(5)

(1)

Figure 4.3: Interfaces of spherical bubble (black solid line) and position of the maxi-

mum jet (red arrow) in yz cross-section

In general, the numerical simulations are in good agreement with the experimental

results. The collapse pattern follows the following sequences. The bubbles initially
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form a dome shape, and the upper wall of the bubbles is sequentially flattened and

curved toward the wall. Next, the jet from the top hits the wall with reaching the value

of the maximum jet tip velocity and then penetrates the bubble. After penetrating,

the jet develops radially outwards along the wall and becomes a ring vortex while

turning the bubble into a torus shape. In the final stage, the jet velocity reaches the

maximum value while making the torus completely collapses from the inner side. From

this collapse pattern, the impact on the wall spreads radially outward from the center

of the wall as shown in Fig 4.5.
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Figure 4.4: Maximum jet speed for spherical bubbles

~ 0.96t  ~ 0.98t 

( )p Pa

6.0 7e 

0

~ 0.96t  ~ 0.98t 

( )p Pa

6.0 7e 

0

Figure 4.5: Jet impact on the wall for spherical bubbles

18



From the results, collapse mechanism of wall-attached bubbles can be summarized

as shown in Fig. 4.6. The jet basically flows in a radial direction of the bubble. The

side of the bubble close to the wall collapses more slowly than the rest due to the effect

of the wall, and the top of the bubble collapses much faster than the rest because it has

a maximum extension from the wall. Here, this maximum jet from the top, called a

dominant jet, dominates the collapse of the bubble.

Z

1. Radial jet

Wall

3. Dominant jet 
from maximum
extension

2. Delay effect

0t

O

O

1t
O

Wall O

0wallV 

maxV

Figure 4.6: Collapse mechanism of wall-attached bubble
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4.2.2 Ellipsoidal bubble

This section presents the ellipsoidal bubble with AR=2.0 to clearly figure out the dif-

ference from the spherical case in collapse patterns. Fig. 4.7 shows the position of the

maximum jet Vmax, the y-axis jet Vtop and the interface of the bubble in both yz and

xy cross-section. Fig. 4.8 shows the maximum jet speed and the y-axis parallel jet over

time. The time and velocity are nondimensionalized by the collapse time τ and the

maximum jet tip velocity V ∗
max of the spherical case.

(1) (2)
(3)
(4)

z

y

maxV

topV

(5)

x

y

(1)(2)
(3)
(4)
(5)
(6)

Figure 4.7: Interfaces of ellipsoidal bubble (black solid line) and position of the maxi-

mum jet (red arrow) and y-axis jet (black arrow) in yz and xy cross-section

In the case of the ellipsoidal bubble, two different jets should be considered due to

the asymmetric shape. One is the jet from the top of the bubble, and the other is the

jet from the maximum extension point of the bubble. The maximum extension is the

point at which the z-axis passing through the center of the bubble meets the bubble
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Figure 4.8: Maximum and y-axis jet speeds for ellipsoidal bubble

interface. From this point, the dominant jet develops in the radial direction.

In the early stage, the two jets have the similar magnitude of velocity, and the

bubble forms a dome-shape due to the delay effect of the wall with the grooved sides

by the dominant jet. As the dominant jet velocity grows much higher than the y-axis

parallel jet, the z-axis side of the bubble becomes very curved in the radial direction

and the lower side of bubble is penetrated first. At the same time, as shown in the

xy cross-section, the jet from the top of the bubble makes the upper wall of bubble

flat and then curved because the top of the bubble is a relatively extended point in

the xy cross-section. In this situation, the bubble forms a lung-shape where the thin

bridge connects the two small bubbles. As the jet develops, the bubble separates into

the two pieces, and the maximum jet tip velocity occurs right before the separation.

After the separation, the jet develops radially outwards along the wall and makes the

bubble completely collapses while reaching the maximum velocity. From this collapse

pattern, the jet impacts the wall in an asymmetric way, and the impact spreads from
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the center of the wall in the direction of the major axis of the bubble as shown in Fig.

4.9.
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Figure 4.9: Jet impact on the wall for ellipsoidal bubbles

4.2.3 Effect of aspect ratio

As presented in the section 4.2.2, the ellipsoidal bubble collapses in a significantly

different way due to the two different jets. In this case, the bubble shape has the high

aspect ratio, and it makes the dominant jet from the z-axis parallel maximum extension

point highly dominates the bubble collapse. From this result, we could expect that the

aspect ratio differs the difference of the magnitude of the two jets and the collapse

patterns consequently. Hence, we simulated the cases of ellipsoidal bubble correspond

to AR=1.1, 1.2, 1.4, 1.7, and 2.0 to investigate the effect of the aspect ratio.

Fig. 4.10 shows the collapse pattern of wall-attached bubbles for all AR cases. The

ellipsoidal bubble with small AR tends to collapse into torus shape in the similar way

of the spherical bubble case, and the ellipsoidal bubble with large AR tends to collapse

into two pieces. This tendency can be explained by the variation of the position and

magnitude of the maximum jet and y-axis jet.

Fig. 4.11 plots the magnitude difference between the maximum jet Vmax and the y-

axis jet Vtop for all AR cases over time. The difference between the two jets gradually

increases with the development of the maximum jet, and decreases because the phase
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Figure 4.10: Collapse pattern of wall-mounted bubbles for all AR cases
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Figure 4.11: Magnitude difference between maximum jet and y-axis jet for all AR

cases

difference of the two jets is extremely small just before collapse.

Here, the difference converges to zero at certain times for AR=1.1, 1.2, and the

smaller the AR, the faster the difference becomes zero. The convergence to zero im-

plies that the y-axis jet becomes the maximum jet. To figure out this situation, we plot

the position of the maximum jet (red arrow), the y-axis jet (black arrow) and the inter-

face of the bubble in both yz cross-section in Fig. 4.12 and Fig. 4.13. In these cases,

the position of the maximum jet moves from the point of initial maximum extension

to the top of the bubble, and eventually the two jets coincide. Thereafter, the collapse

pattern follows the spherical case. The bubble consequently has an asymmetric torus

shape due to the change in the maximum jet position. These results show that when

AR is close to 1, the relative magnitude of the initial dominant jet at the z-axis side of

the bubble is not large enough to maintain the collapse pattern of ellipsoidal bubbles.
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yFigure 4.12: Interfaces of ellipsoidal bubble (black solid line) and position of the max-

imum jet (red arrow) and y-axis jet (black arrow) in yz cross-section (AR=1.1)
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Figure 4.13: Interfaces of ellipsoidal bubble (black solid line) and position of the max-

imum jet (red arrow) and y-axis jet (black arrow) in yz cross-section (AR=1.2)
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Chapter 5

Conclusion

In this study, a single cavitation bubble collapse in the free field is first simulated for

validation and the significance of initial bubble shape has been investigated by com-

paring spherical and ellipsoidal cavitation bubbles in the situation where the bubble is

attached to the wall. In the wall-attached bubble collapse, a delay effect by the wall

basically occurs along with the radial direction jet. From this effect, the bubble forms

a dome-shape in the early stage. In addition, the maximum jet, called the dominant

jet, is developed at the initial maximum extension point, dominating the bubble col-

lapse. For the spherical bubble, the dominant jet from the top of the bubble governs

the collapse and the bubble collapses into a torus shape. From this collapse pattern,

the impact on the wall spreads radially outward from the center of the wall. For the

ellipsoidal bubble, different two jets governs the collapse. Among these, the relative

magnitude of the dominant jet of them increases with the aspect ratio and the bubble

collapses into two pieces, forming a lung-shape. From this collapse pattern, the jet

impacts the wall in an asymmetric way, and the impact spreads from the center of the

wall in the direction of the major axis of the bubble. On the other hand, if the aspect
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ratio of the ellipsoidal bubble is close to 1.0, the position of the dominant jet moves

from the side to the top of the bubble, and the bubble collapses into an asymmetric

torus shape. This is because the relative magnitude of the dominant jet is too small to

overcome the effect of the wall. From the results, it can be concluded that the collapse

pattern of the bubble significantly depends on the position and the relative magnitude

of the dominant jet determined by the aspect ratio.
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벽부착캐비테이션기포의붕괴에관한

수치해석

본논문에서는기포가벽에부착된상황에서의구형및타원형기포를수치적으

로조사하였다.시뮬레이션은비압축성 2상유동솔버로수행되었으며,캐비테이션

기포붕괴과정의급격한변화에있어서기포계면을정확하게추적하기위하여유

체의기하학적부피방법에기반하여캐비테이션모델을포함한운송방정식모델

을사용하였다.수치모델은 Rayleigh버블붕괴문제로검증되며결과는해석해와

잘일치하였다.이어서,벽에부착된캐비테이션기포는고정된벽거리조건에대해

시뮬레이션을수행하였다.구형기포의경우수치결과가실험결과와잘일치하며

기포가 원환면 형태를 띄며 붕괴되면서 벽에 대한 제트 충격이 벽의 중심에서 반

지름 바깥 방향으로 확산되는 경향을 보였다. 반면 타원형 기포의 경우 종횡비에

관한 변수 연구가 수행되었다. 타원형 기포 붕괴에서는 두 개의 서로 다른 제트가

발생하며, 초기 기포의 종횡비는 이들 사이의 상대적 거동에 크게 영향을 주었다.

두제트중상대적으로높은속도를지니는지배제트가붕괴패턴을주도하게되며,

이에따라타원형기포는구형기포와달리폐와같은모양을형성하며두조각으로

분리되는 경향을 보였다. 이 때 벽에 대한 제트 충격은 벽의 중심으로부터 기포의

장축 방향으로 확산되었다. 반면 구형에 가까운 종횡비를 지니는 타원형 기포의

경우,지배제트의크기가상대적으로작고그위치가시간에따라변화하여비대칭

적인원환면형태를띄며붕괴되는경향을보였다.이러한결과로부터,거품의붕괴

패턴이 종횡비에 의해 결정되는 지배적인 제트의 위치와 상대적인 크기에 상당히

좌우되는현상을결론지었고그자세한유동특성을수치적으로제시하였다.

주요어:수치해석,다상유동,캐비테이션,기포붕괴

학번: 2021-29710
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