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Abstract 
 

 

 As the semiconductor manufacturing process complexifies 

and shrinks in size, metrology and inspection is growing to 

prominence. The main difficulty is that surface properties are biased 

and contour geometries are deteriorated due to the innate noise in 

CD-SEM images. In order to eliminate the noise, multiple frames are 

averaged or traditional denoising methods are applied. However, 

since these solutions damage the specimen or show unsatisfying 

results, recent researches have utilized the power of deep learning 

in SEM image denoising. Despite the fact that deep learning-based 

methods show superior performance, they still require simulator or 

abundant ground truth clean images which are costly or even 

inaccessible in most real-world cases. Lately, few attempts have 

been made to devise self-supervised methods which does not 

require clean images however, they still lack in quality. In this 

research, SEM noise is analyzed in the ‘grain size’ point of view 

to demonstrate the failure of previous methods. Moreover, we 

propose a novel self-supervised image denoising method that shows 

superior performance in SEM datasets. This method will be further 

modified and combined with iterative training procedure for enhanced 

automation. 

 

Keyword : Self-supervised, Denoising, SEM, Metrology, Inspection 

Student Number : 2021-27823 
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Chapter 1. Introduction 

 

1.1. Semiconductor Metrology & Inspection 

 

With the rapid increase of the demand of high-resolution 

integrated chips, semiconductor manufacturing has gained attention 

more than ever. However, since semiconductor manufacturing 

consists of hundreds of steps and each requires a nano-scale degree 

of precision, quality control is the utmost challenge. Metrology and 

Inspection is the key to maintaining quality throughout the whole 

process and appropriate utilization of these techniques can ensure a 

certain yield to be maintained and detect anomalies to avoid wasting 

time and resources on the subsequent steps. 

The main challenge of metrology is to measure the surface 

properties of lithographic line space patterns which includes critical 

dimension (CD), line edge roughness (LER) and line width roughness 

(LWR). CD is the width of the line space patterns and LER/LWR are 

the variations of CD values and they can be directly exploited as 

metrology criteria. [1] For instance, it is known that when LER/LWR 

values go over a certain limit, circuit performance and production 

yield decrease. [2] On the other hand, the main challenge of 

inspection is to characterize defects in patterns. To successfully 

locate and classify defects, with the emergence of design-based 

metrology (DBM) [3], extracting accurate CD contour geometry is 
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indispensable. [4] It is also known that contour extraction is crucial 

in quality control and device characterization. [5] 

 Metrology and Inspection is mostly performed based on top-

down CD-SEM images of the line space pattern to be evaluated. 

However, CD-SEM images inherit stochastic noise and this noise 

increases LER/LWR and hinders the accurate extraction of contour 

geometry. [6] In order to prevent these consequences, traditional 

methods remove the noise by averaging multiple frames of images 

for the same pattern. However as averaged frame numbers increase, 

the damage to the patterns increase due to the EB irradiation. [7] 

 

1.2. Image Denoising 

 

Image Denoising is a process of restoring an unknown clean 

image by removing noise from an observed noisy image. Image noise 

is a random variation of pixel values that resides in a high frequency 

component of an image and differentiating this from other high 

frequency structural information is the central objective of image 

denoising. Since this target is an ill-posed problem, various 

approaches have been devised to obtain a good estimation. Broadly, 

these approaches can be categorized into three methods: spatial 

domain filtering, variational denoising and transform domain filtering. 

[8] 

Spatial domain filtering is one of the elementary denoising 

methods which applies certain neighborhood operations that acts as 
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a low-pass filter. This filtering can be subdivided into linear and 

non-linear operation. Linear filtering includes mean filtering and 

gaussian filtering. [9] On the other hand, non-linear filtering includes 

median filtering [10] and bilateral filtering. [11] Variational denoising 

is another denoising method that functions in the spatial domain. This 

method removes the noise by optimizing certain energy function 

based on the assumption that prior knowledge of the clean image is 

known. For instance, total variational (TV) denoising [12] assumes 

that clean image has low image gradient and non-local means (NLM) 

denoising [13] utilizes the fact that similar patches exist extensively 

in an image. Contrastively, transform domain filtering applies certain 

denoising procedure after transforming an image into another domain. 

Transformations are mostly Fourier transform, however algorithms 

like Block matching and 3D filtering (BM3D) [14] that utilize wavelet 

transform [15] are showing the most superior results. 

Although traditional methods have achieved promising results, 

they suffer from some serious shortcomings. They require 

overlapped optimization process for the test phase, manual tuning of 

parameters and excessive amount of computation time. [16] Recently, 

these issues have been alleviated with the emergence of deep 

learning in image denoising. Deep learning is a subclass of machine 

learning that brought a paradigm shift from traditional model-based 

approach towards data-based approach using the power of neural 

networks. Many network architectures were proposed since [17] 

first introduced deep learning in the field of image denoising. DnCNN 

[18] utilized residual learning and batch normalization, NBNet [19] 
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adopted a non-local subspace attention module and FFDNet [20] 

made an additional use of noise level map to outperform traditional 

methods. 

Evaluation of image denoising can be performed both 

qualitatively and quantitatively. For quantitative evaluation, peak 

signal to noise ratio (PSNR) and structural similarity index measure 

(SSIM) are most widely used. [21] PSNR measures the L2 distance 

between clean and corrupted images and offers a simple and clear 

meanings, however cannot guarantee a perceptual quality. SSIM has 

been developed to mitigate this problem by adopting the concept of 

structure, luminance and contrast. 

1.3. Self-supervised Image Denoising 

 

 Supervised deep learning methods show extraordinary 

performance while consuming small amount of computation time 

however, they come with a serious drawback. They require perfectly 

clean ground truth images which are very costly or even impossible 

to achieve in most of the real-world cases. To address this issue, 

numerous researches have proposed self-supervised image 

denoising techniques which only stand in need for corrupted images 

itself. Noise2Noise [22] first came up with this concept and showed 

that based on L2 loss statistics, pairs of noisy images are enough. 

Here, these noisy pairs each are different corrupted version of the 

same unknown clean image.  
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Gathering noisy image pairs are also highly demanding 

therefore, methods using only single noisy images are developed. 

Most widely used idea is the blind-spot concept. [23]–[27] 

Noise2Void (N2V) [23] utilizes the blind-spot network which has a 

receptive field masked at the center while Noise2Self (N2S) [24] 

randomly masks a noisy image to generate blind-spot image. Both 

methods work based on the assumption that signal component in the 

masked pixel contain statistical dependencies with nearby signal 

values whereas noise component in the masked pixel is conditionally 

independent from the nearby pixels. Another group of methods split 

a noisy image into two sub-images in order to provide fake 

supervision to the model. Neighbor2Neighbor (Ne2Ne) [28] 

introduces a random neighbor sub-sampling while Noise2Fast (N2F) 

further simplifies the sub-sampling to propose checkerboard down-

sampling. These methods assume the conditional independence 

between two sub-sampled images which is equal to the assumptions 

of blind-spot methods. Some other methods achieve the fake 

supervision via using the true noise distribution. Noisier2Noise 

(Nr2N) [29] generates a fake noise from the true noise distribution 

and adds them to noisy images to create noisier images. Then the 

noisy & noisier image pairs work as a training set for a model to be 

trained in a supervised manner. Similarly, Recorrupted2Recorrupted 

(R2R) [30] constructs a pair of noisy images from a single noisy 

image via matrix transformation. While Nr2N and R2R require the 

noise distribution to be known, GAN2GAN [31] directly learns the 

distribution with the help of wGAN. [32] 
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1.4. SEM Image Denoising 

 

For precise metrology and inspection, proper image denoising 

should be performed in prior. Traditionally, noisy filters such as 

gaussian filter [33], [34] or  median filter  have been applied. Also, 

some developed an image simulation method [35], [36] to obtain 

clean images and others used model-based approach [6], [37]–[40] 

to directly estimate unbiased LER, LWR values. Recently, [7], [41] 

utilized power spectral density (PSD) to remove noise components 

in the high frequency region. Although these methods showed valid 

results, it is shown that noise filters have big impact on LER, LWR 

values [7] and PSD fails in some images. [42] 

 In order to alleviate these issues, deep learning has also been 

adopted in SEM image denoising. [43] introduced SEMNet & 

EdgeNet and [44] utilized conditional GAN to estimate unbiased LER, 

LWR accurately. However, these methods depend upon a simulator 

to generate fake samples. Since such simulators are costly and 

inaccessible most of the times, various methods are exploiting the 

virtue of self-supervised learning. Noise2Void has been adopted in 

few researches [5], [45] however still doesn’t show sufficient 

image quality. [46] combined Noise2Noise with a simulation to 

propose uMLIQUE framework, however it still need a supervision 

from a simulator. [47] designed Denoise2Next, Denoise2Best 

training, yet require images of multiple frames which can damage the 

SEM patterns. 
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1.5. Noise Modeling and Generation 

 

 For image denoising purposes, extensive researches have 

been conducted on modeling noise, estimating the noise parameters 

and generating fake noise samples that mimic the real noise 

distribution. Conventionally, these processes have been conducted by 

using wavelet transform [48], [49], contourlet transform [50], MLE 

[51], PCA [52], [53] and variational bayes [54]. Recently, deep 

learning-based methods are surpassing these methods and showing 

remarkable progress in performance and efficiency. These advances 

include, MLP [55], GAN [56], conditional GAN [57], Dual 

Adversarial Network [58], Camera Encoding Network [59], 

Contrastive learning and so on. Despite their performance, the need 

of clean ground truth images hinders them from real-world 

applications. FBI-Denoiser [60] overcame this difficulty by 

combining Poisson-gaussian estimation network (PGE-Net) and 

generalized Anscombe transformation (GAT). PGE-Net first 

estimates the parameters of Poisson-gaussian noise and then using 

these estimated parameters, GAT transforms the noisy image into a 

unit gaussian noisy image. Since unit gaussian noisy images can be 

easily denoised with pretrained models, denoising can be performed 

without any clean images. In spite of the merit, FBI-Denoiser still 

suffers from high computation of GAT.  

 Abundant studies have been conducted on noise modeling and 

generation however, there have been limited research on SEM noise 
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modeling and generation. SEM noise is mostly approximated as 

Poisson-gaussian noise [61] while some research [62] modeled 

SEM noise as a cascade of five steps. 
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Chapter 2. Motivation 

 

2.1. Self-supervised Image Denoising revisited 

 

Clean images are expensive and sometimes inaccessible in 

many real-world situations. To overcome this complication, various 

self-supervised methods have been proposed. Here, these deep 

learning based self-supervised methods will be briefly compared 

with traditional ones. In details, supervised method (N2C), N2S, 

Ne2Ne, and Nr2N will represent deep learning methods while NLM, 

TV and BM3D will cover for traditional ones. They will be evaluated 

on both synthetic and real-world datasets to show the motivation of 

this research. 

 

2.2. Public Dataset 

 

 For comparison, well known denoising benchmarks, BSD100, 

Kodak and Set12 will be used. Each of the dataset will be corrupted 

with gaussian or poisson noise with two level of intensities. These 

corrupted versions will be denoised by various methods and be 

compared with clean images to calculate PSNR and SSIM values.  

 Table 1, 2 and Figure 1 show the result of the experiment. 

In all of the cases, the baseline, N2C shows the best performance. 

Among the gaussian noise cases, self-supervised methods 

outperform traditional ones and N2S even shows comparable result 



 

 １０ 

to the baseline. However, in the poisson noise cases, N2S and 

Ne2Ne show very poor performance while Nr2N is even 

inapplicable since they require clean images to define the noise 

model. This phenomenon can be explained with the assumptions 

made by N2S, Ne2Ne, and Nr2N. N2S and Ne2Ne works only for 

noise that are independent from the clean image structures while 

Nr2N expects the noise to be additive. Since these conditions only 

apply to gaussian noise, self-supervised methods fail in poisson 

noise. 

 

2.3. SEM Dataset 

 

 Here, SEM image denoising will be evaluated on three 

different datasets, SEM1, SEM2 and SEM3. Each is comprised of 1-

frame/16-frame image pairs, where 16-frame images are acquired 

by averaging 16 1-frame images for the same pattern. 16-frame 

images will work as ground truth clean images to calculate PSNR 

values. SSIM values will not be compared since the structure of the 

image degrades while averaging which can lead to misleading 

numbers.  

 As it can be seen in Table 3 and Figure 2-4, the results are 

similar to the poisson noise case in public datasets. N2S and Ne2Ne 

cannot remove the noise successfully while Nr2N cannot be applied 

since the noise model is unknown.    
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2.4. SEM Noise Analysis 

 

 Let’s assume a simple line-space model as in Figure 5. The 

image can be divided into three parts and each part roughly is a flat 

space with a uniform pixel value corrupted with SEM noise which can 

be simply modeled as poisson-gaussian. However, with the virtue of 

Equation 1, the poisson noise component for each part can be 

approximated as gaussian with different standard deviation. Since the 

combination of two gaussian distributions becomes a single gaussian, 

SEM noise can be simplified as gaussian with different standard 

deviations in different flat regions. 

 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)  ~  𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 𝜆, 𝜎2 = 𝜆)              (1) 

 

 If the SEM noise can be seen as gaussian, why do N2S or 

Ne2Ne fail contrary to the cases in public dataset? This can be 

elucidated with the ‘Grain size’ concept. Grain size is the average 

diameter of particles and it is fixed to 1 in synthetic noise like 

gaussian or poisson noise whereas bigger than 1 in real SEM noise 

as it can be seen in Figure 6. When the grain size of the noise is 

bigger than 1, the principles of N2S or Ne2Ne fail to work. 

 As briefly mentioned in Chapter 1, N2S randomly masks few 

pixels and trains the model to estimate the hidden pixel values by 

looking at the pixels nearby. The trained model can successfully 

estimate the clean target by utilizing the fact that image structure 
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information is shared between neighboring region while noise 

components are fully independent pixel by pixel. However, as the 

grain size grows bigger than 1, noise components between adjacent 

pixels tend to share higher dependencies. Similarly, Ne2Ne partitions 

an image into two to generate fake supervision. This method can also 

be seen as masking in N2S and can be explained in the same way. 

 To summarize, SEM noise can be seen as coarse gaussian 

noise with multiple standard deviation. The coarse condition is 

violated by N2S and Ne2Ne however, is unaffected by Nr2N and R2R. 

The ‘additive noise’ assumption works no matter how big the 

grain size is, while the only problem is that the noise model should 

be established. In chapter 3, a modified Nr2N will be proposed which 

does not require the understanding of the noise model. 
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          Clean                  Noisy                   N2C 

     

          BM3D                  NLM                    TV 

     

          N2S                  Ne2Ne                   Nr2N 

 

Figure 1. Qualitative evaluation on BSD100 dataset. Clean image is 

corrupted with gaussian noise (𝜎=25).  
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        16-Frame              1-Frame                  N2C 

     

          BM3D                  NLM                    TV 

     

          N2S                  Ne2Ne                   Nr2N 

 

Figure 2. Qualitative evaluation on SEM1 dataset.  
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        16-Frame              1-Frame                  N2C 

     

          BM3D                  NLM                    TV 

     

          N2S                  Ne2Ne                   Nr2N 

 

Figure 3. Qualitative evaluation on SEM2 dataset.  
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        16-Frame              1-Frame                  N2C 

     

          BM3D                  NLM                    TV 

     

          N2S                  Ne2Ne                   Nr2N 

 

Figure 4. Qualitative evaluation on SEM3 dataset.  
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Figure 5. Simple line-space pattern and its diagram 
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  SEM noise.            Gaussian noise            Poisson noise 

 

Figure 6. Various noise with same mean pixel value. 
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Method BSD100 Kodak Set12 

Gaussian (std=25) 

N2C [18] 28.03/0.801 29.14/0.804 29.39/0.847 

NLM [13] 26.33/0.727 27.46/0.737 27.61/0.792 

TV [12] 26.16/0.726 27.20/0.743 27.24/0.790 

BM3D [14] 27.48/0.775 28.64/0.776 29.08/0.820 

N2S [24] 27.75/0.790 28.94/0.798 29.09/0.843 

Ne2Ne [28] 27.63/0.783 28.57/0.779 28.90/0.822 

Nr2N [29] 25.90/0.702 26.91/0.707 27.01/0.766 

Gaussian (std=50) 

N2C [18] 25.27/0.684 26.42/0.703 26.45/0.765 

NLM [13] 23.23/0.566 24.19/0.569 24.01/0.635 

TV [12] 23.31/0.591 24.36/0.609 24.06/0.663 

BM3D [14] 24.03/0.610 25.13/0.610 25.29/0.678 

N2S [24] 25.09/0.670 26.25/0.695 26.26/0.758 

Ne2Ne [28] 24.97/0.662 25.96/0.673 25.96/0.732 

Nr2N [29] 23.32/0.553 24.24/0.565 23.92/0.619 

 

Table 1. Quantitative comparison (PSNR(dB)/SSIM) for Gaussian 

noise. The highest values are marked bold while the second highest 

are underlined. N2C, which is trained with clean images, is 

excluded. 
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Method BSD100 Kodak Set12 

Poisson (peak=25) 

N2C [18] 26.78/0.760 27.93/0.769 28.01/0.813 

NLM [13] 24.49/0.645 25.57/0.659 25.56/0.701 

TV [12] 25.04/0.690 25.83/0.679 25.80/0.706 

BM3D [14] 25.52/0.698 26.69/0.706 26.90/0.729 

N2S [24] 18.84/0.474 20.19/0.440 21.39/0.471 

Ne2Ne [28] 19.09/0.456 19.62/0.398 19.84/0.418 

Nr2N [29] x x x 

Poisson (peak=50) 

N2C [18] 28.28/0.817 29.38/0.819 29.49/0.852 

NLM [13] 25.87/0.701 27.01/0.717 27.24/0.771 

TV [12] 26.09/0.730 27.00/0.732 27.11/0.777 

BM3D [14] 27.17/0.767 28.35/0.771 28.41/0.774 

N2S [24] 22.23/0.594 23.37/0.569 24.38/0.599 

Ne2Ne [28] 21.67/0.578 22.19/0.511 22.59/0.525 

Nr2N [29] x x x 

 

Table 2. Quantitative comparison (PSNR(dB)/SSIM) for Poisson 

noise. The highest values are marked bold while the second highest 

are underlined. N2C, which is trained with clean images, is 

excluded. 
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Method SEM1 SEM2 SEM3 

NLM [13] 17.93 27.02 17.41 

TV [12] 18.00 26.77 17.42 

BM3D [14] 18.00 27.03 17.42 

N2S [24] 15.69 24.13 15.48 

Ne2Ne [28] 15.89 24.23 15.61 

Nr2N [29] x x x 

 

Table 3. Quantitative comparison (PSNR(dB)) for SEM datasets. For each 

dataset, the highest values are marked bold while the second highest are 

underlined.  
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Chapter 3. Proposed Method 

 

3.1. Noisier2Noise revisited 

 

 We consider a situation where a deep neural network has to 

be trained to perform image denoising with only noisy images 

available. Let 𝜒, 𝐴 be the distribution of unknown clean images and 

noise. Then noisy image can be formulated as 𝑌 ≡ 𝑋 + 𝑁 where 𝑋~χ 

and 𝑁~𝐴 . Since the noise distribution 𝐴  is known, additional 

synthetic noise 𝑀~𝐴 can be extracted.  

 In order to imitate supervised training strategy, Nr2N first 

generates noisier image 𝑍 ≡ 𝑌 + 𝑀 = 𝑋 + 𝑁 + 𝑀 for each noisy image. 

Then the neural network will be trained to predict 𝑌 given 𝑍 using 

pixel-wise 𝐿2 loss function. This training is an optimization process 

for the parameter 𝜃  of the network 𝑓  and can be formulated as 

follows: 

 

min
θ

𝐸𝑍[||𝑓(𝑍; 𝜃) − 𝑌||2]                       (2) 

 

 Due to the statistical nature of 𝐿2 loss function, the optimal 

prediction in equation 2 would be the conditional mean of 𝑌 given 𝑍, 

𝐸[𝑌|𝑍]. This value can be further decomposed as in equation 3 using 

the fact that 𝑌 ≡ 𝑋 + 𝑁 and 𝐸[𝑀|𝑍] = 𝐸[𝑁|𝑍]. The second term can be 
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justified since 𝑀 and 𝑁 are independent while originating from the 

same distribution.  

 

2𝐸[𝑌|𝑍] = 2(𝐸[𝑋|𝑍] + 𝐸[𝑁|𝑍]) 

           = 𝐸[𝑋|𝑍] + (𝐸[𝑋|𝑍] + 𝐸[𝑁|𝑍] + 𝐸[𝑀|𝑍])   

= 𝐸[𝑋|𝑍] + 𝐸[𝑋 + 𝑁 + 𝑀|𝑍] 

= 𝐸[𝑋|𝑍] + 𝑍                               (3) 

 

 Equation 3, in other words, can be interpreted as 𝐸[𝑋|𝑍] =

2𝐸[𝑌|𝑍] − 𝑍. This tells us that doubling the output of noisier2noise 

model and subtracting noisier value would be equivalent to the output 

of a model trained with clean & noisier image pairs. 

 

3.2. Patch-based Noisier2Noise Framework 

 

 Nr2N enables the training without clean images when the 

noise distribution is given. However, since the noise distribution of 

SEM images is inaccessible, Nr2N cannot be applied in SEM image 

denoising. 

 One distinct characteristic of SEM images is that most of the 

areas are flat. Being flat in other words, can be interpreted as having 

uniform image structure component. Thus, when the flat area is 

subtracted with its mean value, only pure noise component will exist. 

Therefore, by extracting the noise component in the flat region, noise 

distribution of SEM image dataset can be approximated. By virtue of 

this discovery, a modified Nr2N which we call ‘Patch-based Nr2N’ 



 

 ２４ 

will be proposed. As illustrated in Figure 6, our method can be divided 

into three steps. 

 For data pre-processing, pure noise patches will be gathered 

from the dataset. We utilize the smooth patch extraction method in 

GAN2GAN which is based on the 2D discrete wavelet transform 

(DWT). This extraction involves a single parameter 𝜆  which 

determines the purity of extracted patches. Bigger 𝜆 indicates that 

extracted patches will contain larger quantity of image structure 

components. Since the size of extracted patches are smaller than the 

size of SEM images, extracted patches will be tiled to match the size. 

Finally, tiled patches will be subtracted by its mean to comprise 

approximated noise distribution. 

 In the training stage, a pure noise patch will be randomly 

chosen from the distribution and added to a noisy image to form a 

noisier version of its own. Prepared noisier, noisy image pairs will be 

then used to train the deep neural network in a supervised manner. 

 For inference, as mentioned in equation 3, output of the 

network will be doubled and then subtracted with noisier to form 

prediction. Moreover, the inference trick in R2R will be adopted to 

boost the performance further. The trick is to generate multiple 

noisier input for a single noisy image by adding different noise 

patches. With the multiple inputs, multiple inferences can be made 

which then can be averaged to further reduce the variance of the 

leftover noise. As it can be seen in Table 4, this inference trick 

remarkably improves the denoising performance. Furthermore, when 



 

 ２５ 

the trick is combined with the power of batch-wise training, the 

computation burden from multiple inferences can be alleviated.  

 

3.3. SEM dataset revisited 

 

 Our methods were evaluated and compared both 

quantitatively and qualitatively. In case of SEM3 dataset, out methods 

were inapplicable since most of the images were densely filled with 

patterns and sufficient number of noise patches couldn’t be 

extracted. 

 As in table 4, simple Nr2N shows comparable performance to 

BM3D while other self-supervised methods fail to remove the noise. 

Moreover, Nr2N with the inference trick almost shows same 

performance to BM3D. However, when it comes to the visual quality 

as illustrated in Figure 7 and 8, our method shows outstanding results, 

removing noise almost perfectly while BM3D still consisting of 

unneglectable level of noise. 

 The disagreement between quantitative and qualitative 

evaluation is due to the incorrect establishment of the ground truth 

for PSNR calculation. For the calculation, 16-frame images are 

assumed as the ground truth. However, since 16-frame images still 

carry certain level of noise, the calculated PSNR cannot fully 

represent the denoising performance. Thus, additional metrics will be 

adopted in the following chapter. 

 



 

 ２６ 

 

 

Figure 7. A diagram of Patch-based Noisier2Noise process. 
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Figure 8. Qualitative comparison on SEM1 dataset 
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Figure 9. Qualitative comparison on SEM2 dataset 
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Method SEM1 SEM2 SEM3 

BM3D [14] 18.00 27.03 17.42 

N2S [24] 15.69 24.13 15.48 

Nr2N [29] 17.55 26.60 x 

Nr2N + R2R (5) 17.96 26.85 x 

 

Table 4. Quantitative comparison (PSNR(dB)) for SEM datasets. 

For each dataset, the highest values are marked bold while the 

second highest are underlined. ‘+R2R’ means that inference 

trick has been added while the number inside the parenthesis 

corresponds to the number of averaged inferences. 
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Chapter 4. Improvements 

 

4.1. Modeling-based Noisier2Noise 

 

 Despite the high performance of patch-based Nr2N, this 

method still cannot be utilized in real-world due to the patch 

extraction step. This step consumes extra time and cannot be applied 

in some datasets as mentioned in part 3.3. Furthermore, this step 

hinders the automation of the whole process since it requires 

troublesome manual tuning of parameter 𝜆. As in Table 5, small shift 

of the parameter leads to drastic performance change which 

increases the necessity for precise control of the parameter for each 

dataset. 

 In order to deal with these circumstances, we propose 

‘Modeling-based Nr2N’. Instead of extracting noise patches to 

approximate the true noise distribution, a certain noise model will 

represent the distribution. Then the parameters of the noise model 

will be estimated via a pretrained network named ‘Noise Parameter 

Estimation Network’ or NPE-Net. With the predefined noise model 

and the estimated noise parameters, synthetic noise can be generated 

for the Nr2N training procedure. 

 In order to train a network like NPE-Net that can estimate 

noise parameters, ground truth clean images or computationally 

heavy process like GAT [63] is required as seen in previous studies 

[59], [60], [64]. However, these constraints can be omitted by 
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directly utilizing the flat regions in SEM images for noise parameter 

estimation. Since these flat regions have uniform pixel value, the 

ground truth clean images for training NPE-Net can be replaced with 

simple uniform images. Thus, dataset for training NPE-Net will be 

prepared as follows. First flat images with random intensity will be 

generated. Then the images will be corrupted with the predefined 

noise model and randomly generated noise parameter vectors. Finally, 

these images and their corresponding noise parameter vectors will 

be paired to form the training dataset.  

 Table 6 shows the result of a simple experiment. For each 

dataset, large number of noise patches have been extracted and put 

into pretrained NPE-Net to estimate the noise parameters. The 

distribution of the parameter in each dataset was highly homogeneous 

having small value of standard deviation. To the extreme degree, this 

implies that a single noise patch can represent the whole dataset for 

noise parameter estimation. Thus, with the help of pretrained NPE-

Net, modeling-based Nr2N can mimic the process of patch-based 

Nr2N without the burdensome patch extraction step. 

 

4.2. Iterative Noisier2Noise Training 

 

 Modeling-based Nr2N greatly simplifies the process of 

patch-based Nr2N, however falls behind in performance. This is due 

to the imprecise modeling of SEM noise, since gaussian noise or 

poisson noise is insufficient as describe in chapter 2.4. This can be 
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solved by incorporating the concept of ‘Iterative training’ [31] in 

our modeling-based Nr2N to form ‘Iterative Nr2N’ method. 

 As illustrated in Figure 9, Iterative Nr2N follows the concept 

of the modeling-based Nr2N concept. The main difference is that the 

noise patch and the training images will also be denoised as the test 

images. These denoised patch and training dataset will be reused as 

the dataset for the training and inference in the subsequent iteration.  

 The qualitative evaluation of iterative Nr2N method is 

illustrated in figure 10-12. The first iteration, which is equal to the 

simple modeling based Nr2N, shows superior image quality over 

BM3D, yet fails to reach the quality of patch-based Nr2N. However, 

from the second iteration, the prediction shows comparable image 

quality to the prediction of patch-based Nr2N. Moreover, in the 

quantitative comparison as in table 7, as the iteration continues, the 

PSNR of iterative Nr2N converges to the PSNR of patch-based 

method.  

 

4.3. Further Evaluation 

 

 Since image quality and PSNR are insufficient for thorough 

evaluation, additional evaluation will be conducted. In figure 13-15, 

two 1-frame samples are denoised with iterative Nr2N method and 

each pair are compared with their 2D profiles. In table 8, LER and 

LWR values of 1-frame, 16-frame and images denoised by BM3D 

and iterative Nr2N are compared. 1-frame image shows the highest 
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values while image denoised with iterative Nr2N shows the lowest 

values.  Since LER and LWR are the variance of profile variations, 

iterative Nr2N showing the lowest values supports the superiority of 

iterative Nr2N. Furthermore, the 2D profiles show us that iterative 

Nr2N removes the unwanted variations in the profile while 

maintaining the main structure.  
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Figure 10. A diagram of the whole ‘Iterative Nr2N’ process. 
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Figure 11. Qualitative comparison on SEM1 dataset. 
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Figure 12. Qualitative comparison on SEM2 dataset 
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Figure 13. Qualitative comparison on SEM3 dataset 
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Figure 14. Noisy image, Denoised image and 2D profile comparison 

on SEM1 dataset 
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Figure 15. Noisy image, Denoised image and 2D profile comparison 

on SEM2 dataset 
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Figure 16. Noisy image, Denoised image and 2D profile comparison 

on SEM3 dataset 
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Parameter 𝝀 SEM1 

Single 13.25 

0.19 17.82 

0.23 17.92 

0.28 16.79 

 

Parameter 𝝀 SEM2 

Single 22.22 

0.20 26.83 

0.30 24.51 

0.60 20.31 

 

Table 5. Denoising performance (PSNR(dB)) for SEM datasets with 

different parameter values. Single corresponds to an extreme case 

where only one patch is extracted. 
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 Gaussian (std) Poisson (peak) 

 mean std mean std 

SEM1 0.2128 0.0078 0.0314 0.0032 

SEM2 0.0770 0.0050 0.2590 0.0439 

SEM3 0.2613 0.0030 0.0277 0.0008 

 

Table 6. Mean and standard deviation of the estimated noise 

parameters from SEM datasets. Gaussian noise model case and 

Poisson noise model case are considered. 
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Method SEM1 SEM2 SEM3 

BM3D [14] 18.00 27.03 17.42 

Patch-based Nr2N 17.96 26.85 x 

Modeling-based Nr2N 16.96 25.62 16.16 

Iterative Nr2N 18.00 26.37 17.28 

 

Table 7. Quantitative comparison (PSNR(dB)) for SEM datasets.  
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 LER LWR 

1-Frame 5.122 7.220 

16-Frame 2.310 3.232 

BM3D 2.229 3.044 

Iterative Nr2N 1.865 2.585 

 

Table 8. LER, LWR comparison on SEM1 dataset 
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Chapter 5. Experimental Details 

 

5.1. Training and Evaluation 

 

 In the case of public datasets, training have been conducted 

with 1000 grayscale ImageNet images cropped with the size of 256 

while evaluation have been performed on grayscale BSD100, Kodak 

and Set12 cropped with the size of 256. For the traditional methods, 

hyper-parameters with the highest PSNR values have been chosen 

for comparison. For deep learning-based methods, hyper-

parameters and experimental details were chosen based on the 

papers and official codes for each method.  

 Two neural networks have been used for training and 

evaluation. DnCNN have been used for the main denoising network. 

For the noise parameter estimation network, the last layer of the 

PGE-Net in FBI-Denoiser have been replaced with global average 

pooling layer in order to output the estimated parameters directly.  

 

5.2. Extra Results 

 

 In the following pages, extra results are displayed. First, 

extra qualitative results on both public datasets and SEM datasets 

are shown. Then contour extraction results on SEM datasets are 

shown. The extraction is conducted with canny algorithm with the 

optimal parameter chosen experimentally. 
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Figure 17. Qualitative evaluation on Kodak dataset. Clean image is 

corrupted by gaussian noise (𝜎=25).  
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Figure 18. Qualitative evaluation on Set12 dataset. Clean image is 

corrupted by gaussian noise (𝜎=25).  
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Figure 19. Qualitative evaluation on BSD100 dataset. Clean image is 

corrupted by gaussian noise (𝜎=50).  
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Figure 20. Qualitative evaluation on Kodak dataset. Clean image is 

corrupted by gaussian noise (𝜎=50).  
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Figure 21. Qualitative evaluation on Set12 dataset. Clean image is 

corrupted by gaussian noise (𝜎=50).  
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Figure 22. Qualitative evaluation on BSD100 dataset. Clean image is 

corrupted by poisson noise (𝛼=25).  
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Figure 23. Qualitative evaluation on Kodak dataset. Clean image is 

corrupted by poisson noise (𝛼=25).  
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Figure 24. Qualitative evaluation on Set12 dataset. Clean image is 

corrupted by poisson noise (𝛼=25).  
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Figure 25. Qualitative evaluation on BSD100 dataset. Clean image is 

corrupted by poisson noise (𝛼=50).  
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Figure 26. Qualitative evaluation on Kodak dataset. Clean image is 

corrupted by poisson noise (𝛼=50).  
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Figure 27. Qualitative evaluation on Set12 dataset. Clean image is 

corrupted by poisson noise (𝛼=50).  
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Figure 28. Qualitative evaluation on SEM1 dataset. 
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Figure 29. Qualitative evaluation on SEM2 dataset. 

  



 

 ５９ 

   
16Frame             1Frame               BM3D 

   

Patch-based        Modeling-based         Iterative 

 

Figure 30. Qualitative evaluation on SEM3 dataset. 
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Figure 31. Contour extraction on SEM dataset with Canny. 
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Chapter 6. Conclusion 
 

 We propose patch-based Noisier2Noise which is specifically 

designed to denoise SEM images without any ground truth clean 

image. Our method successfully removes the noise by combining 

patch extraction, self-supervised training and inference trick. The 

success of our method is further justified with the analysis of SEM 

noise with the grain size concept. Moreover, we propose modeling-

based Noisier2Noise which enables the automation process by 

utilizing noise parameter network. Furthermore, the performance 

degradation is alleviated with the help of iterative training framework. 

Quantitatively, our methods show comparable performance to the 

traditional methods in PSNR and improved LER, LWR values while 

showing much faster computation. Qualitatively, our methods show 

enhanced visual quality and contour extraction results while 

preserving the image structure. 
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Abstract in Korean 

  

 반도체 공정의 품질 관리를 위해서는 단계 별 정확한 계측 및 

검사가 필수적이다. 이러한 과정들은 반도체 패턴의 SEM 이미지를 

분석하여 진행되는데, 이미지에 내재되어 있는 노이즈로 인해서 

정밀도가 하락하는 문제가 존재한다. 노이즈를 제거하기 위한 다양한 

방법 중 딥러닝 기반의 방법들이 가장 좋은 성능을 보이고 있는데, 

산업에서는 노이즈가 없는 깨끗한 정답 이미지가 없기 때문에 적용할 수 

없다는 한계점이 존재한다. 따라서 정답 이미지 없이 딥러닝 학습을 

진행하는 자기지도학습 기반 방식들이 고안되었으나 SEM 이미지에서는 

좋은 성능을 보이지 못한다. 따라서 본 논문에서는 먼저 기존의 

자기지도학습 기반의 방법들이 실패한 원인을 SEM 노이즈의 

입자크기를 통해 설명하고 SEM 이미지의 노이즈를 성공적으로 제거할 

수 있는 ‘Patch-based Noisier2Noise’를 제안한다. 또한 이 방법이 

갖는 한계점인 효율성을 개선한 ‘Modeling-based Noisier2Noise’를 

고안하고 ‘Iterative training’을 접목하여 성능 또한 끌어올렸다. 

제안한 방식은 전통적인 방식에 비해서 최대 50배 단축된 시간을 

보여주면서 대등한 PSNR과 개선된 LER, LWR 수치를 보여준다. 또한 

이미지의 시각적 품질과 2D 단면 윤곽선 측면에서 기존의 방식들에 

비해 이미지 구조를 파괴하지 않으면서 더 효과적으로 노이즈를 

제거함을 확인할 수 있다.  
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