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Abstract 

 
 With the advancement of technology in the aerospace field, high-performance 

materials are in increasing demand and application. Hence, beyond the original 

performance of a single material, a composite material composed of two or more 

materials is utilized in many fields. Especially, due to the mass production advantage 

in the compression molding process, sheet molding compound (SMC) composites 

have gained increasing attention in the automotive industry. However, due to the high 

spatial inhomogeneity of SMC composites, local properties differ within the SMC 

plate, which leads that the SMC composite is difficult to predict mechanical behavior. 

The dissertation proposes novel multi-scale modeling to construct a mesostructure 

of SMC composite using micro-CT characterization and a stochastic reconstruction 

algorithm. It predicts the elastic properties and strength of SMC composites through 

computational simulation. 

 Before dealing with SMC composites, multi-scale analysis is introduced using a 

homogenization technique. Homogenization refers to the process of deriving the 

effective properties of a microstructure composed of two or more materials. This 

method is generally applied to larger-scale structures in order to evaluate their 

material and structural behaviors. For example, it can be classified into a direct 

numerical simulation (DNS) employing the finite element method and mean-field 

homogenization (MFH) based on the Eshelby tensor to express the shape of the 

reinforcement of composite materials. It is presented two types of homogenization 

techniques for the multi-scale analysis of composite materials, along with their 

characteristics. 
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 Next, a reconstruction algorithm based on statistical distributions is presented to 

construct the mesostructure of SMC composite materials. Design variables are 

determined by the intrinsic characteristics of SMC composite materials. The 

direction and dispersion, as well as the shape of the fiber bundles constituting the 

SMC plate, are reflected in a mesostructure reconstruction model. A finite element 

analysis of the static linear behavior is conducted and verified with the experimental 

results. Finally, the proposed model examines the change in the behaviors based on 

the deformation measurement method. For damage and failure analysis, the failure 

mechanisms of SMC composites are investigated and adapted to material 

constitutive models. Simulating progressive damage allows us to observe failure 

mechanisms that are not detectable in linear analysis. Numerous attempts have been 

made to simulate composite damage because of their complex fracture patterns. This 

study introduces different methods for determining the failure criteria of composite 

materials. With the material constitutive models, the tensile modulus and strength 

are determined through FE simulation, and failure patterns are examined based on 

the direction and dispersion of fibers. The proposed simulation model can explicitly 

observe the local deformation of composite materials and is compared with 

experimental results to demonstrate its validity. 

 Finally, the analytical homogenization technique for the efficient way is utilized 

for SMC composites. Miro-meso-macroscale homogenization is performed step-by-

step. It considers the overlap of fiber bundles caused by the high volume fraction of 

fibers in the mesostructure. Moreover, it proposes the modeling technique for fiber 

waviness which takes place in the manufacturing process. With a simple calculation, 

the proposed model has proven its validity based on experimental verification and 

has reduced the computational cost for nonlinear analysis. 
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Chapter 1. Introduction 
 

1.1 Background 

 Materials have been emerging as a core of future industry competitiveness 

according to the global standardization of assembly and production capacity of 

complete products. To enhance the quality, cost, and delivery (QCD) 

competitiveness of the materials and parts, it is required to establish a research and 

development (R&D) platform that integrates material properties, manufacturing 

processes, and characterization technology. Since the announcement of the Materials 

Genome Initiative (MGI) by the US administration in 2011, novel materials have 

been developed by applying a cutting-edge research methodology that systematically 

combines computational materials science, creative experiments (process design), 

and material information (digital data). Attempts to achieve shorter development 

time and cost reduction are being actively pursued around the world. Thanks to the 

rapid development of computer technology, the evolution of modeling techniques, 

and the expansion of material databases, computational materials science and 

process technology have become indispensable R&D tools in material development 

beyond theory and experimentation. Especially, computational materials science, 

which is led exclusively by a few advanced technological countries, requires long-

term investment due to its technical merits. Open innovation that pursues knowledge 

broadly through interdisciplinary cooperation is required, and it is expected that this 

will result in a significant shift in the conventional material R&D culture. 
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Furthermore, it is imperative to develop methods for analyzing the interrelationships 

between properties and microstructures on a multiscale basis in order to break away 

from the traditional work that relies on empirical evaluation and trial and error. An 

advanced R&D network that links process-modeling-analysis/characteristic 

evaluation should be established by changing the R&D paradigm. Based on this idea, 

starting with the Accelerated Insertion of Materials (AIM) research strategy of the 

U.S. Defense Advanced Research Projects Agency (DARPA) in 1999, the integrated 

computational materials engineering (ICME) strategy from the National Materials 

Advisory Board (NMBD) in 2008 is being applied as a core technology to achieve a 

weight reduction of structural materials. 

 In this atmosphere, composite materials are attracting attention in many advanced 

industrial fields. The development of technology in recent years has led to the 

discovery of new materials such as graphene and carbon nanotubes (CNT). It shows 

inhomogeneous and consists of dissimilar constituents (or phases) that are 

distinguishable at some (small) length scale. Each constituent shows different 

material properties and/or material orientations and may itself be inhomogeneous. 

The use of materials in the engineering field results in demands on consideration of 

the heterogeneous microscopic (small-scale) characteristics. Since determining the 

macroscopic (large-scale) behavior of composite material is challenging for 

heterogeneous microstructure, it is necessary to develop a multi-scale analysis to 

connect their length scales. From a large-scale perspective, the behavior of the 

material is considered homogeneous. Composite materials exhibit heterogeneous 
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structures at a small-scale. The different types of microstructures using a scanning 

electron microscope (SEM) are summarized in Figure 1.1. 

 

  

(a) Laminate composite (b) Needle-punched composite 

  

(c) Woven composite (d) Particulate composite 

Figure 1.1. Scanning electron microscope (SEM) images of composite materials 

[1-5] 

 

 Composite materials exhibit very complex material behavior given the spatial 

arrangement of size, shape, orientation, distribution, and constituents' properties [6-

8]. It is noted that these factors represent a variety of physical phenomena at different 
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time and length scales that influence macroscopic material behavior. Depending on 

the purpose, composite materials can be investigated at a variety of scales, ranging 

from the atomic scale to continuum mechanical principles. Throughout this study, 

the causes of how the component derives its overall behavior are identified, including 

the material stiffness, thermal conductivity, and electric characteristics. The most 

important key role is that physical and mechanical features are connected from small 

to large-scale to reflect microscopic information into macroscopic behavior, which 

is known by the name of a multiscale method [9]. The concept image of multiscale 

analysis is depicted in Figure 1.2. 

 

Figure 1.2. The scheme of multiscale analysis for composite materials 
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1.2 Sheet Molding Compound (SMC) Composites 

 Among many types of composite materials, sheet molding compound (SMC) is 

one of the most widely used composite materials in the automotive and aerospace 

industry. SMC shows similarity with bulk molding compound (BMC), and there are 

several components to this material, including thermosetting polyester resins (or 

vinyl esters), thermoplastic additives, and fillers. The reinforcement fibers are 

typically woven strands or swirl mats of 25 to 50 mm in length, and continuous fibers 

and woven fabrics may also be used for structural integrity. There is a typical 

reinforcement percentage of 40% by weight, but it can vary between 25% and 65%. 

Among different types of SMC, chopped bundles with short fiber-reinforced 

composites are gaining increasing attention owing to their enormous potential [10-

12]. SMC composites with high mechanical performance are produced by increasing 

bundles made of short fibers. The compression molding process is suitable for SMC 

composites balancing mechanical performance, formability, and manufacturing 

costs. For these reasons, SMC has an advantage in the mass-production industry. An 

initial charge comprised of fiber bundles with short fibers and resin matrix is 

prepared as a preform and compressed into a mold. The compression molding 

process is illustrated in Figure 1.3. 
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Figure 1.3. The manufacturing process for SMC composite 

 

1.3 Literature Review 

 Despite the great performance and lightweight structure of SMC composite, due 

to the complex flow pattern during the compression molding process, the final 

molded parts feature a spatially varying distribution of fiber bundles. Therefore, 

considerable inhomogeneity and anisotropy are commonly observed and pose a 

tremendous challenge to predicting SMC composites' behavior in simulations. As a 

result, repeated experiments were conducted to determine the behavior of the initial 

SMC composites. However, with the advancement of modeling techniques, 

numerous studies have been conducted on developing multiscale modeling 

approaches for SMC composites to account for these inherent features. The critical 

importance herein is developing a homogenization method to estimate the effective 

properties of micro and mesoscopic models. There are many ways for modeling 

SMC composite in the literature review. The first is the analytical homogenization 

method which is also described as the micromechanics method. It has been exploited 

based on Eshelby’s theory which is the basis of the self-consistent and Mori-Tanaka 

(MT) methods [7, 13-15]. Inclusions are modeled as the distinct phase in the matrix-

surrounded region, and the strain fields are characterized and expressed as strain 



 

 

 

 

 

 

7 

concentration tensors. By employing an orientation averaging process, this method 

can also be applied to predicting the properties of random fiber composites.  

 SMC modeling is first implemented based on the randomly oriented 

discontinuous fiber composites using the micromechanics-based scheme [16, 17]. 

They endeavored to represent a theoretically complex interaction between the short 

fibers and the surrounding matrix, both globally and locally. The proposed 

micromechanics model predicted the point-wise stresses in the fiber and the matrix 

including the stress state at fiber ends. A comparison of the predicted stiffness 

properties with experimental data demonstrated its validity. Next, Fitoussi developed 

a statistical micro-macro relationship with the help of the model of MT [18-20]. In 

the case of an SMC composite with a 32% fiber volume fraction, debonding at the 

fiber/matrix interfaces is predominant in a micro-damage mechanism. They 

introduced a statistical local damage criterion and the concept of the equivalent 

damaged inclusion in the micro-macro relationship of Mori and Tanaka. Based on 

this approach, there are various attempts to predict the mechanical properties of SMC 

composites. Anagnostou et al. adopted the Mori-Tanaka scheme through a two-step 

homogenization [21]. They first homogenized effective properties from the 

microstructure of the fiber bundle. After that, the macroscopic behavior of SMC 

composites was calculated through the second homogenization from the 

mesostructure. This approach evaluated the effective viscoelastic behavior of fiber 

bundles and SMC plates by accounting for the time dependence. Furthermore, 

Görthofer et al. investigated the influence of the microstructural parameters through 

a sensitivity analysis [22]. They evaluated the effective elastic properties of SMC 
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composites through the Mori-Tanaka method by changing microstructural input 

parameters such as the elastic moduli, the volume fraction of the constituents, and 

the orientation of fiber. They presented influential parameters in predicting the 

overall mechanical behavior. Recently, Tamboura et al. presented the multiscale 

approach to predict the stiffness reduction of SMC composites subjected to low cycle 

fatigue loading [23]. By considering the local cyclic normal and shear stress at the 

interface, the fiber-matrix interface damage criterion was introduced in the Mori-

Tanaka method to predict the loss of stiffness.  

Like the micromechanics approach, the classical laminated plate theory (CLPT) 

was also applied to the SMC composite by representing inclusion as a parallel layer 

of in-plane randomly oriented fibers [24, 25]. When using the CLPT method to 

analyze laminate composite structures, they have the advantage of minimizing 

computational resources. However, although proven successful in predicting 

macroscale behavior through numerous studies, the micromechanics-based method 

and CLPT still have a limitation in capturing local phenomena. Thus, it cannot 

account for spatial variation and uncertainty in the micro/mesostructure in SMC 

composites, which is inferred neither of the methods can accurately predict the 

nonlinear material properties. 

 To resolve this problem, the finite element (FE)-based computational method 

defining the representative volume element (RVE) have been developed. With the 

advancement of computing power, it is possible to implement complex 

microstructures using FE modeling. It can accurately predict composites’ local 

behavior as well as overall elastic behavior. Especially, a micro-computed 
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tomography (CT) images-based high-fidelity RVE generation in FE modeling is the 

most advanced way of reflecting microstructural morphologies accurately [26-28]. 

However, unlike simple micro or mesostructure such as cross-ply laminate or 

particulate composites, SMC composites have a complex mesostructure from the 

compression molding process. Despite the fact that incorporating microstructure and 

mesostructure into the model improves its predictive capabilities, significant 

computational costs are inevitable [27]. Moreover, the deviation caused by random 

fiber bundle locations should be considered in the RVE modeling. Therefore, a cost-

efficient multiscale modeling method is needed for predicting the mechanical 

behaviors of chopped carbon fiber SMC. Micro/mesostructure reconstruction is a 

key component of the multiscale modeling of SMC composite materials. The goal is 

to generate in-silico digital structural models. As a result, many efforts have been 

attempted to create a stochastic RVE that is statistically equivalent to the real-life 

microstructural information of the composite. 

 Initial SMC studies based on a Voronoi diagram were conducted [29]. Each 

Voronoi cell models have a fiber bundle region with a distinct orientation [30]. It was 

able to represent a mesostructure of SMC composite by assigning representative 

orientation to partitioned Voronoi cells. Because it has factitious morphology with 

the Voronoi diagram, it was not amenable to observe the local behavior of 

constituents. Therefore, only macroscopic elastic behavior was evaluated in their 

study. However, it was a valuable approach for SMC composites in that the statistical 

information of fiber orientation is utilized in the stochastic reconstruction of SMC 

composites. Further study is conducted on a CT-image-based SMC model [31]. The 
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most widely used method is based on an algorithm of random sequential adsorption 

(RSA). It sequentially put the inclusions on the target domain while they do not 

overlap with previously adsorbed inclusions. It is proceeding until the prepared 

number of inclusions is totally consumed. RSA has been widely employed to 

construct RVE for particulate and short-fiber composites [32]. Although RSA is an 

efficient way to construct the microstructure of composite materials, a limitation to 

reaching a high volume fraction happens. Likewise, other kinds of reconstruction 

algorithms, such as the Monte Carlo method and series expansion have the same 

problem in terms of high volume fraction. Chen et al. developed a reconstruction 

algorithm to construct SMC plates based on the modified RSA [33]. They 

sequentially packed the SMC fiber bundles and accounted for overlap through a rise 

and sink methodology. This study broke down the limitation of volume fraction in 

RSA and presented an effective modeling technique by successfully generating an 

SMC mesostructure that is statistically equivalent to the orientation tensor. In this 

study, they extracted specimens from the reconstructed SMC plate. Depending on 

the locations on the plate, elastic modulus showed different results because of fiber 

bundles’ distribution which is characterized during the compression molding process. 

 Based on the SMC modeling techniques, damage modelings have been conducted 

based on the major failure modes of SMC composites. Four major failure modes are 

observed in SMC composites: matrix cracking, bundle splitting/breakage, and 

bundle-matrix interface failures. Following the constituents’ failure patterns, 

nonlinear models are employed to represent the damage manifestation of the SMC 

composite under external loadings. Chen et al. [34] first developed material 
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constituents in the SMC mesostructure to capture their mechanical behavior. With 

the proposed study, SMC damage analysis was performed using explicit analysis. 

The failure process observed in experiments was well captured using computational 

simulation. Moreover, Tang et al. proposed failure criteria for bulk SMC composites 

using computational simulations [35]. Depending on the fiber orientation, modified 

failure criteria were created. However, the characterized envelope can not guarantee 

in the case of the other type of composite (different types of constituents and 

mesostructure geometry of SMC composites). Above all, the presented studies can 

not capture the deviation of output (modulus and strength). These SMC studies 

mainly focused on the averaged mechanical properties rather than their scattering 

because the orientation-based SMC RVE modeling yields relatively consistent 

results of modulus and strength. In particular, the strength of SMC composites shows 

a more significant scattering than the modulus because of the random dispersion (i.e., 

the local volume fraction of fiber bundles) effect [36]. Therefore, the next study 

should cover the statistical investigation of the SMC composite to reflect real-life 

SMC composites’ features and guarantee its performance. 

 Based on the review of SMC composite using computational work, it is important 

to develop accurate and efficient SMC modeling and analysis for predicting 

performance and extending its capability to the design area. In this dissertation, 

statistical modeling and analysis using computational simulation will be presented 

by representing not only the average value but also the deviation of output [37, 38]. 

In the literature, the SMC mesostructured was generated considering only the 

orientation tensor of the fiber bundles by an orientation averaging scheme of Advani 
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and Tucker [39]. Based on the orientation from commercial compression moldings 

analysis software, such as Moldflow, Moldex3D, and PAM-COMPOSITES, the 

SMC RVE was generated with a statistically matching orientation tensor [30, 33, 40]. 

In this study, the dispersion of the fiber bundle in the SMC plate will be taken into 

account in the reconstructional modeling. This idea was highly inspired by Kim and 

Yun’s work, which demonstrated the variation in mechanical properties according to 

the dispersion of inclusion in particle-reinforced composites through principal 

component analysis (PCA) [1]. 

 

1.4 Aims and Scope 

 In the dissertation, multiscale modeling and analysis for SMC composite are 

presented using finite element (FE) and micromechanics-based modeling. First, 

SMC modeling is realized with a stochastic reconstruction algorithm. As a 

manufacturing-based parameter that can be a result of the compression molding 

process, orientation and dispersion of the fiber bundles in the SMC plate are used as 

statistical indicators in the reconstruction modeling. To represent complex 

distribution in terms of statistical indicators, averaging tensors are replaced for the 

direct probabilistic distribution functions (PDF). Moreover, during the packing 

process in the reconstruction algorithm, overlapping between the fiber bundles is 

implemented to construct high-volume fraction composites and represent undulation 

of the fiber bundle which can determine through the thickness geometry of the SMC 
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plate. Based on the reconstructed modeling linear analysis and nonlinear analysis are 

conducted to predict the modulus and strength of SMC composites. 

 Second, micromechanics-based modeling is employed to predict the properties of 

SMC composites more efficiently. Three homogenization steps are sequentially 

conducted. Wavy fibers are investigated in the modeling. The chopped carbon fiber 

reinforced composites show wavy fibers, which is a type of manufacturing defect 

commonly found in composite material parts. It is important to understand how the 

presence of waviness affects the performance of SMC composites [41, 42]. 

 The novel contribution of the dissertation can be summarized as follows. 

 

i. Three-dimensional (3D) reconstruction modeling is proposed to 

construct SMC mesostructured. 

ii. Strength prediction in linear finite element (FE) analysis is evaluated 

using the averaging scheme in the matrix domain. 

iii. Damage patterns on SMC composites are characterized and applied in 

the FE model as constituents models to demonstrate the damage 

manifestation in the simulation. 

iv. The influence of orientation and dispersion of the fiber bundles in the 

SMC plate is investigated in terms of overall mechanical performance. 

v. The effect of fiber bundles’ waviness is considered through the 

micromechanics model. 

vi. Both direct-FE simulation and micromechanics model show good 

agreement with the experimental result. 
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1.5 Outline of Dissertation 

 To provide an outline of this dissertation, the contents of the chapters are presented 

as follows. 

 

 In Chapter 2, the basic theory of multiscale analysis is introduced: FE-based direct 

numerical simulation (DNS) and micromechanics-based Mori-Tanaka method. This 

chapter discusses each feature of homogenization methods and results. 

 

 In Chapter 3, a microstructure modeling of sheet molding compound (SMC) 

composites is presented using manufacturing parameters. A stochastic reconstruction 

algorithm is developed for microstructure. Based on the orientation and dispersion 

of fiber bundles, the mesostructure is constructed for FE analysis. The linear 

behavior of composites is evaluated and compared with the experimental outcome. 

  

 In Chapter 4, damage assessment is quantified using material constitutive 

modeling in mesoscale. Damage mechanisms are considered in constituents as 

materials constitutive models. Progressive damage analysis is performed through 

nonlinear FE analysis. The damage patterns of SMC composites are characterized 

depending on the fiber bundles’ orientation and dispersion. Finally, its validity is 

further demonstrated by experimental comparison. 
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 In Chapter 5, to reduce computational cost and time, micromechanics modeling 

for SMC composites is presented. There are three steps for homogenization in terms 

of a fiber bundle, SMC layer, and SMC composite. The wavy fiber is implemented 

using a polynomial mathematical expression. The overlapping between the fiber 

bundles is also considered through multi-site (MS) Mori-Tanaka (MT) modeling. 

Finally, Validation is conducted with results from the literature.  
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Chapter 2. Multiscale Analysis for Composite 

Materials 
 

2.1 Study Background 

 The multi-scale method originated in the field of micromechanics, where an 

analytical homogenization method was first proposed [43]. It has the disadvantage 

of only being applicable to linear materials, small deformations, simple 

morphological structures, and simple material models. It is therefore limited in 

explaining complex microstructures and/or nonlinear hysteresis-dependent 

configurational behavior. In recent decades, in order to compensate for the 

shortcomings of analytical methods, computational methods have been developed 

[44]. It allowed for the analysis of very complex microstructures and provided access 

to more microscopic phenomena. Due to the increase in computing power, they have 

been the subject of strong scientific interest. It is especially useful in many fields 

because it allows digital design and optimization of microstructures of composite 

materials [45]. This avoids numerous design and prototype manufacturing through 

trial and error testing. By using multiple combinations of model parameters, it is 

easier and faster to perform digital complex tests by taking into account shape, 

mechanical properties, size, and topology. 

 The computational multi-scale method is characterized by the consideration of 

multiple successive points on the large-scale domain and the definition of a 

representative volume element (RVE) of microstructure [46, 47]. RVE composed of 

two or more components can be discretely separated and be considered to have 
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continuous deformation [48]. Large-scale variables are produced in low-scale 

calculations by defining and successively solving stress- or strain-based boundary 

value problems (BVP) for representative volume elements [49-52]. Homogenization 

is a technique used to calculate equivalent material behavior based on RVE on a 

small scale. This term is derived from the concept that the behavior of an 

inhomogeneous material can be predicted by replacing it with an equivalent 

homogeneous continuum, as shown in Figure 2.1.  

 

 

Figure 2.1. A concept of homogenization 

 

Defining the RVE is the most significant step in evaluating the equivalent behavior 

through homogenization. By specifying the RVE more precisely or making it larger, 

it is possible to obtain a simulation result similar to the actual value, but it needs 

tremendous calculation cost. Therefore, it is necessary to define the RVE that is 

capable of representing the distinct features of the microstructure. 
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 Homogenization methods are based on the volume averaging schemes of field 

variables calculated by solving a boundary value problem (BVP) of heterogeneous 

microstructures [53]. It can be seamlessly integrated within the multilevel finite 

element (FE2) multiscale analysis framework. This approach can solve 

microstructure problems at every integration point in the macroscale model 

concurrently [54]. Its advantage is that it intuitively illustrates the microstructure's 

deformation. However, the FE2 multiscale approach is computationally expensive 

especially when the model has material or geometric nonlinearities. On the other 

hand, there are analytical homogenization models for two-phase composites. The 

methods can comprise Voigt and Reuss approximations (rule of mixers) [55], 

Hashin-Shtrikman type bounds [56, 57], Mori-Tanaka type models [58], and 

classical self-consistent schemes [59]. Voigt (arithmetic mean) and Reuss (harmonic 

mean) are the most basic boundaries for the elastic modulus of composite materials. 

Hasin and Shtrikman extended boundaries to derive upper and lower bounds for the 

effective elastic modulus of quasi-isotropic and quasi-uniform polyphase materials 

of arbitrary topology. This method gives a reliable estimate of the boundaries for 

elastic modulus if the ratio of phase modulus to each other is not too large. The 

majority of predictions of the macroscopic properties of two-phase composites have 

focused on showing boundaries for various moduli of elasticity [60]. Such 

boundaries depend only on the relative volumes of each constituent and do not reflect 

any geometry, except when fibers are constantly aligned. Mean-field 

homogenization (MFH) method which is based on Eshelby’s theory [13] provides a 

relatively accurate solution to the elastic problem [61]. In particular, the defining 
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interaction of the inclusion enables the consideration of the shape design of the 

microstructure. It includes Mori-Tanaka (MT) and self-consistent schemes. The 

MFH methods are semi-analytical, computationally efficient, and suitable for 

multiscale simulations. Among them, the MT micromechanics model has been 

constantly increasing attraction from the composites community since it was 

originally developed. Each Numerical and mean-field homogenization is 

summarized in Figure 2.2. 

 

 

Figure 2.2. Comparison between computational and analytical homogenization 

 

 This chapter will cover the computational homogenization method using finite 

elements and the Mori-Tanaka method using MFH. It is the goal of both methods to 

achieve equivalent properties and equivalent behavior of SMC composites. In 
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Chapters 3-5, the equivalent properties of SMC composites are calculated using 

these methods. 

 

2.2 FE-based Homogenization Method 

 Here, this section describes the procedure of evaluating effective properties and 

equivalent behaviors by defining the microscale problem using the finite element 

method (FEM). Since the microstructure of composite materials is directly solved, 

this method is known as direct numerical simulation (DNS). In Chapters 3 and 4, 

FE-based numerical simulation is conducted to evaluate the effective properties and 

equivalent behaviors of the fiber bundle in SMC composite. The detailed theory and 

equations are detailed below. 

 

2.2.1 Problem at the microscale 

 At the micro-scale problem, we assume that the micro-scale problem is considered 

in domain Θ. In the notation, ( ̃ ) represents microscopic quantities. In this scale, 

The equilibrium equation can be described in the same way as the macro-scale 

problem. 

div�̃�(𝑥) + 𝒇𝐵 = 0 (2.1) 

where �̃�(𝑥) is the Cauchy stress tensor at any point �̅� in the macro-scale structure 

and 𝒇𝑩 is the body force that is neglected in micro-scale problems. Regarding the 

boundary value problem, the heterogeneous composite material on a micro-scale can 

be presumed to be made of the infinite number of periodic arrangements of identical 
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cells such that its behavior can be predicted by analyzing one of the cells. When the 

material is not periodic then it is often possible to define RVE which typifies the 

representative features. To analyze the behavior at the micro-scale, the RVE should 

be conducted with appropriate loading and boundary conditions. The RVE should 

have features such that the neighboring RVE must fit into each other in both 

deformed and un-deformed states. Hence the boundary condition for the RVE should 

be periodic in order to preserve the continuity of displacements, strains, and stresses 

across each RVE. For implementation in FEM, the boundary conditions can be 

expressed as linear constraints and they are implemented as multipoint constraints. 

Various types of boundary conditions will be discussed in the following sections. 

Regarding the constitutive relation, we can prescribe various constitutive matrixes 

for linear or non-linear. The homogenization procedure which provides the 

macroscopic stress as a function of microscopic stresses involves a volume-

averaging relationship and is provided as follows: 

�̅� = ⟨�̃�(�̅�)⟩ =
1

|Θ|
∫ �̃�(�̅�)𝑑Θ
Θ

= �̅�: �̅� (2.2) 

where �̅� , �̅� , and �̅�  are the macroscopic stress, strain, and homogenized linear 

constitutive matrix, respectively.  In case of a nonlinear relationship can be 

described as follows: 

∆�̅� = ⟨�̃�(𝑥)⟩ = 𝑪
t
: ∆�̅� (2.3) 

where 𝑪
t
  is the homogenized tangent constitutive matrix which depends on the 

linear elastic properties of micro-scale constituents. 
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 The linear analysis performs a single analysis at the macroscale, not an iterative 

analysis for convergence in a typical nonlinear analysis. For this reason, the 

constitutive matrix on the microscale can be repeatedly calculated for each 

integration point of the macroscale level, or the constitutive matrix which is 

calculated by performing only one micro-scale problem can be assigned to the entire 

integration point. In the linear problem, both methods produce the same results and 

the latter case can deal with the problem much more efficiently. 

 

2.2.2 Boundary value problem of RVE 

 There are various boundary conditions such as kinematic uniform boundary 

condition (KUBC), static uniform boundary condition (SUBC), and periodic 

boundary condition (PBC), as shown in Table 2.1. Homogeneous fields are produced 

by applying external loads on the surface of a homogeneous body [62]. However, 

fluctuations of the stress and strain fields are obtained in heterogeneous materials 

and have an on influence the macroscopic behavior. SUBC consists in applying on 

the boundary the stress vector field that would occur if the stress were uniform inside 

the RVE. In the same manner, KUBC consists of the displacement field. PBC is 

theoretically related to structures with periodic cells and media that can be defined 

by periodic changes. PBC assumes that strains and stresses are periodic at the cell 

(defined as RVE) level. The periodicity of stress and strain can lead to the specific 

periodic boundary condition for the localization problem of RVE. 
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Table 2.1. Boundary conditions for RVE 

 SUBC PBC KUBC 

Equation 𝑡𝑖(𝛤) = 𝜎𝑖𝑗
0𝑛𝑗 𝑢𝑖 = 휀𝑖𝑗

0 𝑥𝑗 + 𝑢𝑖
∗ 𝑢𝑖(𝛤) = 휀𝑖𝑗

0 𝑥𝑗 

Average �̅� =
1

|Θ|
∫ �̃�𝑑Θ
Θ

 �̅� =
1

|Θ|
∫ �̃�𝑑Θ
Θ

 �̅� =
1

|Θ|
∫ �̃�𝑑Θ
Θ

 

Concept 

   

 

These boundary conditions lead to distinct estimates of the stiffness of a given RVE. 

The behavior is no longer dependent on boundary conditions if the RVE is large 

enough [63]. However, it is computational wasting for constructing large RVE. 

Typically, the effective property is overestimated under KUBC whereas 

underestimated under SUBC as provided by Vogit-Reuss and Hashin-shtrikman 

theoretical bounds [56]. Here, the choice of boundary conditions is restricted by the 

geometry of RVE. In the case of microstructures having pores, there is a limitation 

in implementation because stress vectors must be applied to the pores in SUBC. 

Among them, PBC can describe the phenomenological behavior of the composite 

microstructures and show the best convergence as the RVE size increases [46]. 

Figure 2.3 shows the relationship of the effective property depending on the 

boundary condition for homogeneous and heterogeneous media. 
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(a) 

 

(b) 

 

Figure 2.3. Relationship between boundary conditions: (a) homogeneous media, 

(b) heterogeneous media 

 

In order to implement PBC using ABAQUS, this can be carried out via linear 

constraints and described as explicit form. 

ui
− − ui

+ − ΔLxϵi1 − ΔLyϵi2 − ΔLzϵi3 = 0 (2.4) 

where where u𝑖
− is the displacement of the node on slave region (−) and u𝑖

+ is the 

displacement of the node on the master region (+). 𝑖 is x, y, and z in the Cartesian 

coordinate system. ΔLi  is the relative distance between two nodes. Using the 

following equation, the nodes on the 3D RVE can be grouped by their every location, 

that is, surface nodes, edge nodes, and vertex nodes because their relative distances 

are different depending on the group and this grouping prevents nodes from being 

over-constrained 
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Figure 2.4. Notations for kinematic PBC equation 

 

As shown in Figure Figure 2.4, Eq. (2.5) can be decomposed into regions where 

nodes are located: surfaces, edges, and vertices. 

Nodes of the faces: {

ui
𝐹2 − ui

𝐹1 = 𝐿𝑥휀𝑖1
ui
𝐹2 − ui

𝐹1 = 𝐿𝑥휀𝑖1
ui
𝐹2 − ui

𝐹1 = 𝐿𝑥휀𝑖1

 

Nodes of the edges: 

{
 
 
 

 
 
 
ui
𝐸2 − ui

𝐸4 = 𝐿𝑥휀𝑖1 + 𝐿𝑦휀𝑖2

ui
𝐸1 − ui

𝐸3 = 𝐿𝑥휀𝑖1 − 𝐿𝑦휀𝑖2

ui
𝐸6 − ui

𝐸8 = 𝐿𝑥휀𝑖1 + 𝐿𝑧휀𝑖3
ui
𝐸5 − ui

𝐸7 = 𝐿𝑥휀𝑖1 − 𝐿𝑧휀𝑖3
ui
𝐸11 − ui

𝐸9 = 𝐿𝑦휀𝑖2 + 𝐿𝑧휀𝑖3

ui
𝐸10 − ui

𝐸12 = 𝐿𝑦휀𝑖2 − 𝐿𝑧휀𝑖3

 

(2.5) 
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Nodes of the edges: 

{
 
 

 
 
ui
𝑉3 − ui

𝑉5 = 𝐿𝑥휀𝑖1 + 𝐿𝑦휀𝑖2 + 𝐿𝑧휀𝑖3

ui
𝑉2 − ui

𝑉8 = 𝐿𝑥휀𝑖1 + 𝐿𝑦휀𝑖2 − 𝐿𝑧휀𝑖3

ui
𝑉7 − ui

𝑉1 = −𝐿𝑥휀𝑖1 + 𝐿𝑦휀𝑖2 + 𝐿𝑧휀𝑖3

ui
𝑉4 − ui

𝑉6 = 𝐿𝑥휀𝑖1 − 𝐿𝑦휀𝑖2 + 𝐿𝑧휀𝑖3

 

In the case of well-made mesh, the mesh of each opposite side matches well. 

However, for RVE with non-matching FE meshes on the facing surfaces, edges, and 

vertices, it is obscure to apply the kinematic PBC to FE nodes. To resolve the PBC 

issue in RVE for non-matching meshes, an efficient numerical method is proposed 

herein. Projecting nodes in the slave region onto the master region, all slave nodes 

fall into one of the elements on the master region. Depending on the slave node 

position, displacements of the slave nodes are constrained to weight nodal 

displacements of the element on the master region as 

ui
j−
−∑[𝑊𝑘𝑢𝑖𝑘

𝑗+
]

𝑛

𝑘=1

− ΔLxϵi1 − ΔLyϵi2 − ΔLzϵi3 = 0 (2.6) 

where weighting factors Wk are calculated by the shape functions of the element, 

and n is the number of nodes of the element. These weighting factors are specified 

in multipoint constraints with the associated nodes. To determine the weighting 

factors, the following nonlinear simultaneous equations are solved by the Newton-

Raphson method. 

 

2.2.3 Results of FE-based direct numerical homogenization 

 Using the FE-based direct numerical homogenization (DNS), the effective 

properties of Boron/Aluminum composites are calculated. Cylinder-shaped boron 
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fiber is placed along the x-direction. The boron fiber has a volume fraction of 0.47 

and is bounded perfectly with the aluminum matrix. FE model of boron/aluminum 

composite consists of 1880 hexahedral meshes, and the properties of constituents are 

listed in Table 2.2. 

 

Table 2.2. Material properties of constituents 

 Boron Aluminum 

Element number 1040 840 

Volume fraction 0.47 0.53 

Young’s Modulus 379.3 68.3 

Poisson’s Ratio 0.1 0.3 

 

Figure 2.5 shows the stress contours by applying unit strain in each direction to the 

RVE under PBC. The effective properties of RVE are obtained by the volume 

average of the stresses at gauss points. 
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(a) εxx = 1 (b) εyy = 1 

  

(c) εzz = 1 (d) εxy = 1 

  

(e) εxz = 1 (f) εyz = 1 

Figure 2.5. Stress contours of RVE under PBC 
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 Table 2.3 shows a comparison of effective properties between homogenization 

models and an experiment. It is easy to calculate effective properties using ROM 

based on the volume fraction of each constituent. Although a longitudinal property 

is well predicted where the fibers are aligned, the transverse and shear moduli are 

significantly different from the experimental output. Hasin-Rosen and Halpin-Tsai 

were proposed to supplement the shortcomings of the existing analysis technique. 

Nevertheless, it is hard to predict the effective properties of the composite 

simultaneously in all directions. On the other hand, FE-based DNS under PBC 

provides a good agreement with experimental values for longitudinal, transverse, and 

shear modulus, and enables the implementation of complex microstructures that can 

go beyond the simple microstructure shown in this example. 

 

Table 2.3. The experimental properties and outputs from different homogenization 

models [64] 

 ROM Hashin-Rosen Halpin-Tsai PBC Experiment 

𝐸1 214.3 214.4 214.3 214.8 216 

𝐸2 111.1 111.1 134.5 143.2 140 

𝜈12 0.21 0.20 0.21 0.19 0.29 

𝜈23 0.27 0.27 0.27 0.25 - 

𝐺12 43.70 54.01 61.10 54.27 52 

𝐺23 43.70 43.70 43.70 45.77 - 
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2.3 Micromechanics-based Homogenization Method 

 Here, the basic theory for the Mori-Tanaka method is described. An iterative 

procedure to update the global strain concentration tensor is presented for nonlinear 

analysis. The results of MT for ductile damage behavior are verified with the FE-

based DNS. An MFT-based MT model is employed to calculate the effective 

properties and equivalent behaviors of SMC composites [65]. The detailed theory 

and equations are detailed below. 

 

2.3.1 Kinetmatic integral equation 

 In this section, the basics of the micromechanics model based on the Mori-Tanaka 

scheme are presented to obtain the effective properties of composites. A 

representative volume element 𝛺  of composite material is assumed to obey 

Hooke’s law. Let 𝜮 and 𝑬 be the global strain and stress tensors such that: 

𝜮 = 𝑪𝑒𝑓𝑓: 𝑬 (2.7) 

Here, 𝑪𝑒𝑓𝑓 is the global fourth-order elastic tensor. The operator “:” stands for the 

tensorial contraction over two indices. Hooke’s law is supposed to be valid on the 

local levels and this relationship can be applied for each point, 𝑟  of the 

representative volume element (RVE) as 

𝝈(𝑟) = 𝒄(𝑟): 𝜺(𝑟), (2.8) 

where 𝝈, 𝜺, and 𝒄 are the local stress, strain, and elasticity tensors, respectively. r 

is the position vector in the domain 𝛺. The volume-averaging of the local stress and 

strain gives macroscopic stress and strain, as follows: 
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𝜮 =
1

𝛺
∫ 𝝈(𝑟)𝑑
𝛺

𝛺 

𝑬 =
1

𝛺
∫ 𝜺(𝑟)𝑑
𝛺

𝛺, 

(2.9) 

The macroscopic stress and strain are obtained under homogeneous boundary 

conditions of the Dirichlet and Neumann type in the absence of body force and inertia 

terms. The strain is first localized from the macroscopic strain tensor. This is defined 

in Eq. (2.10),  

𝜺(𝑟) = 𝑨(𝑟): 𝑬. (2.10) 

Here, 𝑨  is the fourth-order global strain concentration tensor and an unknown 

tensor which contains all information about the microstructure. From Eq. (2.7) ~ 

(2.10), the effective properties of the RVE are determined as follows: 

𝑪𝑒𝑓𝑓 =
1

𝛺
∫ 𝒄(𝑟)
𝛺

: 𝑨(𝑟)𝑑𝛺 (2.11) 

For the inhomogeneous domain, the unknown global strain concentration tensor 𝑨 

is determined from a kinematic integral solution with a Green tensor for the infinite 

body with the homogeneous reference properties. Accordingly, the local stiffness 

tensor is decomposed into a homogeneous reference part 𝒄𝑅 and a fluctuation part 

δ𝐜. These are defined in Eq. (2.12), 

𝒄(𝑟) = 𝒄𝑅(𝑟) + 𝛿𝒄(𝑟). (2.12) 

In terms of the stiffness decomposition and strain fields, the kinematic integral 

equation is expressed as 
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𝜺(𝑟) = 𝑬𝑅(𝑟) − ∫ 𝜞(𝑟 − 𝑟′): 𝛿𝒄(𝑟′)𝜺(𝑟′)𝑑𝛺′

𝛺

, (2.13) 

where 𝑬𝑅(𝑟) is the strain field inside the reference infinite medium, 𝜞(𝑟 − 𝑟′) is 

the modified Green tensor, and 𝛿𝒄(𝑟′) is the deviation part of local properties from 

the properties of the reference medium. Vieville et al. presented an iterative 

procedure to update the global strain concentration tensor [66]. 

 

2.3.2 Iterative update of global strain concentration: Mori-Tanaka Model 

 With the assumption that the RVE is composed of 𝑁 types of reinforcements and 

a surrounding matrix which is labeled as a constituent number 0. We admit that the 

geometry of reinforcements can be approached by particulate inclusions. As a 

consequence, the composite is made up of (N+1) constituents. The volume fraction 

of a given I, or family of the same type of inclusions, is denoted by 𝑓𝐼 = 𝛺𝐼/𝛺. It 

is inferred that the properties of each constituent are homogeneous inside the 

constituent. This tensor is obtained based on an iterative procedure. The global strain 

concentration tensor 𝑨𝐼(𝑟) for the 𝐼 −th phase of the RVE is given as 

𝑨𝐼(𝑟) = 𝒂𝐼(𝑟): (�̅�𝐼(𝑟))
−1

 where �̅� =
1

𝛺
∫ 𝒂𝐼(𝑥)𝑑𝛺
𝛺

 

�̅�(𝑟) = 𝑰, 

(2.14) 

where 𝑰 represents the fourth-order symmetric identity tensor and all notations in 

the form of (∙)̅ are the mean-field volume average of (∙). 𝒂𝐼 is the quantity of the 

local strain concentration tensor which relates the macroscopic strain of the reference 

medium with the local strain as follows: 
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𝜺𝐼(𝑟) = 𝒂𝐼(𝑟): 𝑬𝑅 (2.15) 

Taking into account the interaction among different types of phases, the iterative 

equation for the local strain concentration tensor 𝒂𝐼 is expressed as 

𝒂0
𝐼 (𝑟) = 𝑰 

𝒂𝑖+1
𝐼 (𝑟) = [𝑰 + 𝑻𝐼𝐼: (𝒄𝐼(𝑟) − 𝒄𝑅(𝑟))]

−1
: [𝑰 − ∑ 𝑻𝐼𝐽: (𝒄𝐼(𝑟) − 𝒄𝑅(𝑟)):

𝑁

𝐽=0,𝐽≠𝐼

𝒂𝑖
𝐽(𝑟)] 

𝐼 = 0,1,… ,𝑁, 

(2.16) 

where 𝑁 is the number of phases. In Eq. (2.16), 𝒂𝑖
𝐼 represents an approximation 

of the 𝐼th concentration tensor at the i-th iteration. 𝑻𝐼𝐼 and 𝑻𝐼𝐽 are the interaction 

tensors in on-site (OS) and multi-site (MS) versions, respectively. The OS 

approximation considers only interaction between the surrounding matrix and the 

inclusions while the MS approximation considers all interactions between different 

types of inclusion. Their general expression is such that: 

𝑻𝐼𝐽 =
1

𝛺𝐼
∫ ∫ 𝜞(𝑟 − 𝑟′)𝑑𝛺𝑑𝛺′

𝛺𝐽𝛺𝐼

 (2.17) 

This interaction tensor depends on the assumption of the properties of homogeneous 

reference medium such as 𝐜𝑅 and 𝐄. In the case of the Mori-Tanaka theory, 𝒄R =

𝒄0 and 𝑬0 = 𝜺0 are assumed. In this case, the iterative equation for the local strain 

concentration tensor is reduced to Eq. (2.18). 
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𝒂0
𝐼 (𝑟) = 𝑰 

𝒂𝑖+1
𝐼 = [𝑰 + 𝑻𝐼𝐼(𝒄𝑅): (𝒄𝐼 − 𝒄𝑅)]−1: [𝐼 − ∑ 𝑻𝐼𝐽: (𝒄𝐼 − 𝒄𝑅):

𝑁

𝐽=1,𝐽≠𝐼

𝒂𝑖
𝐽
] 

, where 𝐼 = 0,1,… ,𝑁 

(2.18) 

Here, the term corresponding to 𝐽 = 0 is removed owing to Δ𝒄0 = 𝒄0 − 𝒄𝑅 = 0 in 

Eq. (2.13). In the case of the OS version, Eq. (2.18) is not iterative anymore due to 

all the tensors 𝑻𝐼𝐽 = 0 (I≠J), neglecting the interaction between inclusion I and J. 

The interaction tensor 𝑻𝐼𝐼  can be deduced from the Eshelby’s tensor 𝐒  such as 

𝑻𝐼𝐼 = 𝑺: (𝒄𝑅)−1 . The Eshelby tensor for the spherical shape can be followed the 

literature [67] 

 Therefore, the local strain concentration tensor 𝒂𝐼 takes a simplified expression 

as follows: 

𝒂𝐼 = [𝑰 + 𝑺: (𝒄0)−1: (𝒄𝐼 − 𝒄0)]−1 , 𝑤𝑖𝑡ℎ 𝐼 = 0,1,2,… ,𝑁 (2.19) 

As noted in Eq. (2.14), the inverse of the averaged local strain concentration tensor 

(�̅�𝐼(𝑟)) is required, which is obtained through the rule of mixture scheme as follows: 

(�̅�𝐼)−1 = (𝑓0𝑰 +∑𝑓𝐼𝒂𝐼
𝑁

𝐼=1

)

−1

 (2.20) 

Substituting Eq. (2.19) and Eq. (2.20) into (2.14), the global strain concentration 

tensor 𝑨𝐼 is calculated as 

𝑨𝐼 = [𝑰 + 𝑺: (𝒄0)−1: (𝒄𝐼 − 𝒄0)]−1 ∶ (𝑓0𝑰 +∑𝑓𝐼𝒂𝐼
𝑁

𝐼=1

)

−1

. (2.21) 



 

 

 

 

 

 

35 

For nonlinear constituents, the global strain concentration can be iteratively updated 

depending on the updated constituents’ stiffnesses 𝒄I and/or 𝒄0. 

 For a composite material consisting of 𝑁  types of inclusions, the effective 

macroscopic stiffness tensor 𝑪𝑒𝑓𝑓 is given in terms of the local stiffness and the 

global strain concentration tensor as 

𝑪𝑒𝑓𝑓 =
1

𝑉
∫ 𝒄(𝑟): 𝑨(𝑟)𝑑𝑉
𝑉

=∑𝑓𝐼𝒄
𝐼: 𝑨𝐼

𝑁

𝐼=0

. (2.22) 

From Eq. (2.14), 𝑨0 and 𝑨I are expressed as 

𝑨0 = 𝒂0: (𝒂0)−1 = 𝑰: (𝒂0)−1 = (𝒂0)−1 

𝑨I = 𝒂𝐼: 𝑨0. 
(2.23) 

Substituting Eq. (2.23)into Eq. (2.22), the effective stiffness by Mori-Tanaka theory 

can be expressed with known Eshelby tensor and strain concentration tensor, as 

follows: 

𝑪𝑀𝑇 =∑𝑓𝐼: 𝒄
𝐼: 𝑨𝐼

𝑁

𝐼=0

= (𝑓0𝒄
0 +∑𝑓𝐼𝒄

𝐼: 𝒂𝐼
𝑁

𝐼=1

) : 𝑨0 

                                      = (𝑓0𝒄
0 +∑𝑓𝐼𝒄

𝐼: 𝒂𝐼
𝑁

𝐼=1

) : (𝑓0𝒂
0 +∑𝑓𝐼𝒂

𝐼

𝑁

𝐼=1

)

−1

 

(2.24) 

 The ductile damage plasticity constitutive model introduced in Appendix A is 

integrated into the classical Mori-Tanaka model. Figure 2.6 shows the overall 

algorithmic procedures of the Mori-Tanaka homogenization method with ductile 

damage plasticity model for one-site (OS) and multi-site (MS) models. 
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(a) One-site model (𝐼 = 1) (b) Multi-site model (𝐼 = 2~𝑁) 

Figure 2.6. Flowchart of ductile damage plasticity model with Mori-Tanaka 

micromechanics 

 

Depending on the global strain concentration tensor 𝑨𝐼, the local strain increment 

(Δ𝜺) applied differently to the matrix, and inclusion phases are determined as follows: 

∆𝜺𝐼 = 𝑨𝐼: Δ𝑬 

∆𝜺0 =
Δ𝑬 − 𝑓𝐼∆𝛆

I

1 − 𝑓𝐼
 

(2.25) 

The constituents' algorithmic tangent operator (𝑪𝑛
alg
)  and stresses (𝛔𝑛 ) at n-th 

increment state are computed with the local strains. The flow rule judges whether 

constituents are under a plastic regime or not. The Newton iteration converges the 
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internal variables and calculates each constituent's algorithmic tangent operator and 

stresses for nonlinear behavior. The only tangent operators of constituents are 

transferred to the calculation of the local strain concentration tensor (𝒂𝐼). And then, 

it updates the global strain concentration tensor (𝑨new
𝐼  ). When the difference 

between the averaged inclusion strains (𝑇𝑜𝑙 < 𝑨𝐼: Δ𝑬 − Δ𝜺𝐼 ) does not satisfy the 

criterion, the algorithm goes back to the initial step after updating the global strain 

concentration tensor (𝑨old
𝐼 = 𝑨new

𝐼 ). The micromechanics model can be divided into 

OS and MS models depending on the number of inclusions. While the OS model can 

calculate the homogenized effective stiffness at once, the MS model requires an 

iterative calculation for tangent operators and the strain concentration tensors for the 

given number of inclusion types. As a result, the incremental macro stresses of 

composites are calculated through homogenized effective stiffness. 

 

2.3.3 Results and comparisons with FE homogenization 

 In this section, the FE-based direct numerical simulations (DNS) are performed 

to verify the MT model. The present MT model was verified with the DNS in two 

cases: without and with ductile damage of the matrix. For the reference DNS model, 

microscale RVE FE models with single- and multiple-inclusions were developed 

with ABAQUS commercial software. For verifications, two types of RVE FE models 

with 1 × 1 × 1mm size were developed, which have single inclusion and multiple 

inclusions, respectively. The inclusions are spherical. Voxel elements C3D8 (8-node 

linear element) with 0.02 mm size were used to minimize undesirable element 
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distortion and ensure the accuracy of the results. We assumed perfect bonding 

between the matrix and inclusions. The RVE FE models are subjected to strain 

loading expressed by ∆𝐸 = ∆𝐸𝜓  with 𝜓 = 𝑒1⊗𝑒1 − 0.5(𝑒2⊗𝑒2 + 𝑒3⊗𝑒3) .

 Periodic boundary conditions (PBC) were applied to the RVE for reasonable 

effective responses. The assumed properties of the inclusion and matrix are 

summarized in Table 2.4. The models varied the volume fraction (i.e., 0.01, 0.05, 0.1, 

and 0.2) to investigate its effects although only two volume fractions are presented 

due to limited spaces. In all simulation results, 𝝈𝑒 and 𝜺𝑒 from the DNS and MT 

models are the effective stress and strain from the volume-averaged stress and strain 

components. In particular, to overcome the inaccuracy of the MT model in the case 

of high volume fraction, the Incremental Micromechanics Scheme (IMS) and 

isotropization are adopted [68]. 

 

Table 2.4. Material properties of inclusion and matrix 

Classification Parameter Value 

Inclusion Elastic Modulus, 𝐸1 (GPa) 400 

Poisson ratio, 𝜈1 0.2 

Matrix Elastic Modulus, 𝐸0 (GPa) 75 

Poisson ratio, 𝜈0 0.3 

Initial yield stress, 𝜎𝑦0 (MPa) 75 

Hardening parameter, 𝑘 (MPa) 416 

Hardening parameter, 𝑚  0.3895 
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 Nonlinear deformation takes place in the matrix. A material constitutive model is 

implemented by considering both plastic deformation and ductile damage. The 

ductile damage in the matrix phase is modeled by the Lemaitre-Chaboche method. 

Inclusion has significant stiffness properties, the only elastic stat is considered. More 

details about the nonlinear constitutive model and tangent stiffness of MT are 

referred to the Appendix A. 

 

  

(a) Single-inclusion results 

  

(b) Multiple-inclusion results 

Figure 2.7. von Mises stress and effective plastic strain contours from (a) single-
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inclusion and (b) multiple-inclusion DNS 

 

(a) 

 

(b) 

 

Figure 2.8. Comparisons of effective response for MT and FE-based DNS models 

with single inclusion and multiple inclusions of different volume fractions (0.01 

and 0.2): (a) single-inclusion results, (b) multi-inclusion results 
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 Figure 2.7 shows the von Mises stress and equivalent plastic strain on the half-

sectioned plane from the single and multiple-inclusion DNS model, respectively. 

Stresses are concentrated along with the interface due to the mismatch of properties 

between inclusion and matrix. Although the MT model cannot predict such local 

distributions, it can well predict the effective plastic response of the composites as 

shown in Figure 2.8. Higher volume fraction gives rise to a higher reinforcing effect 

on the effective response for composites. Results from the DNS and MT models are 

well matched even at high volume fractions. However, in the case of 𝑓𝐼 = 0.2, the 

FE model slightly overestimate the stress after yielding compared to the MT model. 

It could be postulated that the underestimation by the MT model for the high volume 

fraction could be attributed to the inherent nature of the non-local mean-field 

approaches and uniform plastic strain fields per phase. 

 The MT model with the ductile damage matrix was also verified with DNS results. 

The same single-inclusion DNS models with varying volume fractions and 

properties in  Table 2.4 are used. Perfect interface bonding was assumed. The 

damage evolution model in the MT model is different from the ABAQUS built-in 

damage model, which is defined as follows: 

𝐷 =

1 − exp (−𝛼 (
�̅�𝑝𝑙

�̅�𝑓
𝑝𝑙))

1 − exp (−𝛼)
 

(2.26) 

where �̅�𝑝𝑙  denotes the effective plastic displacement; �̅�𝑓
𝑝𝑙

  is the relative plastic 

displacement at failure, and 𝛼 is the exponent parameter. Therefore, the ABAQUS 

damage parameters (i.e., �̅�𝑓
𝑝𝑙

 and 𝛼) were calibrated with the damage parameters 



 

 

 

 

 

 

42 

(i.e., 𝑆0 and 𝑠) of the MT model through the inverse method in Section 5 referring 

to the p-D curve from the MT model. The material properties and calibrated damage 

parameters are summarized in Table 2.5. The details regarding calibration for 

damage parameters can be referred to the Appendix B. 

 

Table 2.5. Pseudocode for bundle packing reconstruction algorithm 

MT damage properties in matrix 

(reference model) 

ABAQUS damage properties in matrix 

(ID model) 

𝑆0 (MPa) 𝑠 �̅�𝑓
𝑝𝑙
 (mm) 𝛼 

1.00× 10−4 0.5 3.91 × 10−4 1.33 

 

  

(a) von Mises stress (b) damage variable 

Figure 2.9. von Mises stress and damage variable in the DNS model with 𝑓𝐼 =

0.05 
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(a) 𝑓𝐼 = 0.01 (b) 𝑓𝐼 = 0.2 

Figure 2.10. Comparison of MT effective response with DNS model 

 

 Figure 2.9 shows local distributions of von Mises and damage variables in the 

RVE domain. The present MT model is in good agreement with the DNS model as 

shown in Figure 2.10. While softening was observed in the case of volume fraction 

0.01, it was not observed in the case of volume fraction 0.2. In the case of volume 

fraction 0.2, the DNS model slightly overestimates the yield stresses along the 

hardening curve. 

 Using both FE-based numerical homogenization and Mean-field homogenization 

are successfully implemented and compared to each other. These methods are based 

on the following SMC multiscale analysis. FE-based numerical homogenization in 

Chapters 3-4 and mean-field homogenization in Chapter 4 are utilized, respectively. 

 

  



 

 

 

 

 

 

44 

Chapter 3. SMC Reconstruction Modeling using 

Statistical Indicators 
 

This chapter presents micro-CT image processing and a novel bundle-packing 

reconstruction algorithm to construct the geometry of SMC composites. This study 

deals with SMC composites made of T700 carbon and vinyl ester resin. The 

orientation and dispersion of the fibers are characterized through micro-CT image 

processing. A novel bundle packing reconstruction algorithm for a high-fidelity SMC 

model is introduced based on the manufacturing setup and image processing input 

parameters. Multiscale modeling is also presented to bridge mechanical properties 

from microscopic to meso/macroscopic behavior. Finally, the proposed multiscale 

modeling is validated through comparison with the experimental test and discussed 

based on the results thoroughly.  

 

3.1 Manufacturing-based SMC Reconstruction Algorithm 

 During the compression molding process, fiber bundles in the initial charge are 

distributed differently depending on the mold’s pressure, temperature, and speed [69, 

70]. As a result, compression-molded SMC composites have a complex 

mesostructure in which fiber bundles are superimposed on a resin matrix at each 

layer. The arrangement of fiber bundles is an essential statistical characteristic of the 

mesostructure, which strongly influences both elastic and failure behavior. Therefore, 

the characterization of fiber bundles in SMC composites is required to understand 

the behavior of SMC composites accurately. 
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3.1.1 Micro-CT image processing for statistical indicators 

 Using micro-CT scanning and image processing, the placement of the fiber 

bundles is identified, and two statistical indicators in terms of orientation and 

dispersion are then defined with a distribution function. The samples with ∅40mm 

diameter and 3mm thickness are obtained at the center of the SMC plate. Micro-CT 

imaging is performed using Xradia 620 Versa (Carl Zeiss, USA) equipment. A series 

of mesostructure images are taken along through the thickness direction. The micro-

CT imaging procedure is shown in Figure 3.1. MATLAB Image Processing Toolbox 

is employed to characterize the statistical indicators within the samples. Histogram 

equalization and binarization are utilized in the CT images to distinguish between 

the fibers and the matrix. After that, the gradient method and the local volume 

fraction calculation at random preset points are conducted to obtain the distributions 

concerning orientation and dispersion. Since the mechanical properties of SMC 

composites directly correlate with the arrangement of fiber bundles, the dispersion, 

and orientation of fiber bundles are expressed as a distribution function. These are 

utilized as manufacturing-dependent parameters in the SMC reconstruction 

algorithm [71]. The micro-CT image processing is summarized in Figure 3.2. 
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Figure 3.1. Micro-CT scanning procedure: (a) SME plate (b) Extraction of SMC 

samples for micro-CT scanning (c) The results of micro-CT scanning with different 

magnifications 

 

 In this section, the gradient method is utilized to obtain the orientation of fibers 

by calculating the grayscale change in the images [72]. Image processing procedures 

are performed using MATLAB Image Processing Toolbox and consist of three steps. 

First, the histogram equalization is conducted to distinguish the fiber from the matrix 

in the micro-CT image. Through this pre-processing step, the accuracy of the 

gradient method is improved. After that, the gradient method is applied to the pre-
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processed micro-CT image. In this step, a MATLAB built-in function 'imgradient' is 

used. Grayscale values of 3 by 3 pixels around the particular pixel are called from 

the micro-CT image to calculate the magnitude and normal vector at a specific pixel. 

Then, the image gradient (∇𝐼) and the gradient orientation are computed based on 

the change of grayscale values (𝜕𝐼) of 𝑥 and 𝑦-axis for each pixel (𝜕𝑥, 𝜕𝑦). 𝑀 

and 𝐺 represent the magnitude and orientation of the image gradient calculated by 

Eq. (3.1). Through this operation, the magnitude and normal vector value of each 

pixel are computed. Detail procedure of the gradient method is depicted in Figure 

3.2. 

𝛻𝐼 = [𝜕𝐼 𝜕𝑥⁄ 𝜕𝐼 𝜕𝑦⁄ ]T 

𝑀 = √(𝜕𝐼 𝜕𝑥⁄ )2 + (𝜕𝐼 𝜕𝑦⁄ )2,      𝐺 = 𝑡𝑎𝑛−1(
𝜕𝐼 𝜕𝑦⁄

𝜕𝐼 𝜕𝑥⁄
) 

(3.1) 

 

 

Figure 3.2. Procedure for calculating the normal vector using the gradient method 

 

Finally, the orientation vector is calculated through the normal vector value by the 

gradient method. Overall image processing procedures to obtain fiber orientation are 

shown in Figure 3.3. 
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Figure 3.3. Overall image processing procedures: Calculation of the fiber 

orientation 

 

The fiber local volume fraction is defined to evaluate the non-uniform 

distribution of the fibers in the SMC plate. First, the histogram equalization is 

performed as in the gradient method. Next, an image binarization is performed to 

differentiate between fiber and matrix. The grayscale value of the fiber and matrix 

was set to one and zero, respectively. To obtain statistical distribution data of the 

fiber local volume fraction, one thousand local sampling points and areas are 

randomly generated for each 2D micro-CT image. After that, the local fiber volume 

fraction in each sampling area is calculated to generate the distribution. In this case, 

the sampling area was set as a square with a side length of 200 pixels. The image 

processing procedure for calculating the local fiber volume fraction is summarized 

in Figure 3.4. 
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Figure 3.4. Computation procedure of the local volume fraction at randomly preset 

sample points 

 

The results of orientation and local volume fraction distribution are summarized 

in Figure 3.5. Figure 3.5(a) is the orientation distribution in the probability density 

function (PDF). It has uniform probabilities at every angle, indicating that the SMC 

composites have randomly oriented bundles. Figure 3.5(b) exhibits the local volume 

fraction distribution. It has a shape of Gaussian distribution with COV=0.133. The 

fiber volume fraction from the micro-CT image processing is 55%, set as input 

quantity. The distributions of the orientation and local volume fraction are directly 

utilized in the reconstruction algorithm to generate high-fidelity SMC models.  

The effect of the initial charge’s size was investigated in the work of Evans [73]. 

But, the size of the initial charge used in this study was 200mm× 200mm  for 

making the 300mm× 300mm size SMC plate. The large size of the initial charge 

is designed to minimize the variation in the properties of the molded plate. Therefore, 

sampling from the middle of the SMC plate can represent the SMC plate, and since 

the sample contains several fiber bundles in the thickness direction, a sufficient 

amount of information can be obtained. 
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(a) 

 

(b) 

 

Figure 3.5. Statistical distributions from micro-CT image processing: (a) 

Orientation (b) local volume fraction 

 

3.1.2 Bundle packing reconstruction algorithm  

 A novel reconstruction algorithm through bundle packing is developed to generate 

high-fidelity SMC mesostructure models in a voxelated square space. For the 

reconstruction algorithm, manufacturing-dependent parameters are selected as 
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inputs. It includes the sizes of the bundles and the plates, the bundle volume fraction, 

and the targeted statistical distributions of the bundles' orientation and local volume 

fraction. Among the input parameters, the targeted statistical distributions of bundles' 

orientation and local volume fraction in cumulative distribution function (CDF) are 

from micro-CT images. Statistical distribution of the bundle local volume fraction 

within a preset domain is determined from the prescribed random sample points. The 

sample points are prescribed randomly at the beginning of the algorithm. These 

locations of sample points do not change during the reconstruction algorithm. Thus, 

the distribution of the local volume fraction changes depending on the location of 

bundle packing. The input parameters are summarized in Table 3.1 by classifying 

them into two. 

 

Table 3.1. List of the input parameters for the proposed SMC reconstruction 

algorithm 

Classification Symbol 

Initial charge Plate size 𝐿𝑝𝑙𝑎𝑡𝑒 

 Number of layers in the plate 𝑛𝑙𝑎𝑦𝑒𝑟 

 Length of the bundle 𝐿𝑏𝑢𝑛𝑑𝑙𝑒 

 Width of the bundle 𝑊𝑏𝑢𝑛𝑑𝑙𝑒 

 The volume fraction of the bundles 𝑉𝑏𝑢𝑛𝑑𝑙𝑒 

Compression molding Orientation of bundles 𝐹𝑜𝑟𝑖(𝑥) 

 The local volume fraction of bundles 𝐹𝑙𝑜𝑐𝑎𝑙(𝑥) 
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Before bundle packing, pre-processing is performed to build a repository of bundles 

based on the targeted orientation statistical distribution, as shown in Figure 3.6. The 

number of bundles is computed in terms of SMC plate size, bundle sizes, and the 

volume fraction of the bundles. In Eq. (3.2), 𝑁𝐵𝑙𝑎𝑦𝑒𝑟  and 𝑁𝐵𝑝𝑙𝑎𝑡𝑒  denote the 

number of bundles in a layer and plate, respectively.  

𝑁𝐵𝑙𝑎𝑦𝑒𝑟 = [
𝐿𝑝𝑙𝑎𝑡𝑒
2 𝑉𝑏𝑢𝑛𝑑𝑙𝑒

𝑊𝑏𝑢𝑛𝑑𝑙𝑒𝐿𝑏𝑢𝑛𝑑𝑙𝑒
] 

𝑁𝐵𝑝𝑙𝑎𝑡𝑒 = 𝑁𝐵𝑙𝑎𝑦𝑒𝑟 ∙ 𝑛𝑙𝑎𝑦𝑒𝑟 

(3.2) 

Given the manufacturing-dependent parameters, the rectangular-shaped bundles are 

packed into the 3D voxelated square space one by one for a single layer using the 

modified random sequential adsorption (RSA) algorithm [30]. It dynamically moves 

the bundle segment to the upper and lower layers to maximize space utilization. After 

that, 3D SMC modeling is constructed by piling up bundle-packed layers.  

 This algorithm obeys two conditions. The first condition is to check the location 

feasibility of the bundles during the bundle packing process. The algorithm finds 

feasible packing locations during the bundle packing process, allowing one overlap 

between bundles at most. If more amount of overlap is allowed in the modeling, the 

shape of SMC composites could be distorted due to a bias in the bundles’ location. 

The second condition calculates the local volume fraction at the preset points during 

the bundle packing process. The preset points are defined randomly in each layer. It 

is repeatedly checked if it is within the tolerance range by comparing it to the targeted 

statistical distribution. Otherwise, a candidate of the bundle location would be altered 
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and newly checked the conditions from the first condition. If these two conditions 

are satisfied, the bundle packing is conducted on the layer using a repository of fiber 

bundles created to follow the targeted orientation distribution. During the bundle 

packing, a rise and sink process is applied to represent the undulation by raising the 

overlapping parts to the upper layer. On the other hand, the overhanging parts of the 

bundle sink into the current layer. It is noted that this process creates the bent 

geometries of the bundles. As a result, the proposed bundle packing reconstruction 

algorithm reflects physical features accurately. Finally, a computational procedure 

for the bundle packing reconstruction algorithm is summarized as Pseudocodes in 

Table 3.2. The overall flow chart is also depicted in Figure 3.6. 
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Table 3.2. Pseudocode for bundle packing reconstruction algorithm 

Numerical implementation 

 Input: 𝐿𝑝𝑙𝑎𝑡𝑒, 𝐿𝑏𝑢𝑛𝑑𝑙𝑒, 𝑛𝑙𝑎𝑦𝑒𝑟, 𝐹𝑙𝑜𝑐𝑎𝑙(𝑥), 𝐹𝑜𝑟𝑖(𝑥), 𝑉𝑏𝑢𝑛𝑑𝑙𝑒, 𝑊𝑏𝑢𝑛𝑑𝑙𝑒 

 Output: 3D reconstructed model, the local orientations of bundles 

1 for i=1: 𝑛𝑙𝑎𝑦𝑒𝑟 

2  Initialize internal variables and start to pack fiber bundles on the (i)-th 

layer 

3  Define random sample points for the local volume fraction 

4  while |𝑉𝑏𝑢𝑛𝑑𝑙𝑒
𝑡𝑎𝑟𝑔𝑒𝑡

− 𝑉𝑏𝑢𝑛𝑑𝑙𝑒
(𝑖)

| ≤ 𝑡𝑜𝑙 

5   Build fiber bundle repository using Eq. (3.2) and 𝐹𝑜𝑟𝑖(𝑥). 

6   for j=1: 𝑁𝐵𝑙𝑎𝑦𝑒𝑟 

7    Define the bundle location: (𝑥𝑏𝑢𝑛𝑑𝑙𝑒, 𝑦𝑏𝑢𝑛𝑑𝑙𝑒) 

8    if location feasible 

9     overlapped parts: pack on the (i+1)-th layer 

10     overhanging parts: pack on the (i)-th layer 

11    else not feasible 

12     go to line 7 

13    end if 

14    Calculate the local volume fraction distribution of (i)-th layer: 

𝐹𝑙𝑜𝑐𝑎𝑙
(𝑖) (𝑥) 

15    if |𝐹𝑙𝑜𝑐𝑎𝑙
(𝑖)

− 𝐹𝑙𝑜𝑐𝑎𝑙| ≤ 𝑡𝑜𝑙 

16     continue the packing 

17    else 

18     cancel the packing and go to line 7 

19    end if 

20   end for 

21   Calculate the volume fraction on the (i)-th plate: 𝑉𝑏𝑢𝑛𝑑𝑙𝑒
(𝑖)

 

22  end while 

23  Check the orientation distribution with the target 

24 end for 

25 Stacking up the reconstructed layers 
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Figure 3.6. Flowchart of the reconstruction algorithm: (a) Building a repository of 

fiber bundles (b) Two conditions for finding a feasible location (c) rise-sink bundle 

packing methodology. 

 

 The proposed reconstruction algorithm generates more realistic high-fidelity 

SMC models based on the direct statistical distributions of the orientation and local 

volume fraction. It holds apparent advantages over the existing SMC modeling 

which matches only the orientation of the bundle with an averaged orientation tensor. 

The reconstructed single layer is generated based on the manufacturing-dependent 

parameters in Table 3.3, as summarized in Figure 3.7. 
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Table 3.3. The input parameters for the SMC reconstruction algorithm 

Description Value 

Plate size 300 × 300mm2 

Bundle size 25 × 5mm2 

The volume fraction of the bundle 60% 

 

 

Figure 3.7. Reconstructed single layer with different statistical distributions: (a) 

Orientation (b) Local volume fraction (dispersion) 

 

The single individual layer of SMC composites shows different morphology 

depending on the statistical indicators represented as a Gaussian distribution. The 

models in Figure 3.7(a) exhibit distinct orientations of fiber bundles depending on 

the targeted distribution while holding the uniform dispersion. In Figure 3.7(b), voids 

in the SMC layer are formed from an imbalanced arrangement of fiber bundles. This 
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occurrence realizes the resin-rich area that occurs in the compression molding 

process. It crucially happens with clumped dispersion of fiber bundles. 

 By changing the statistical parameters of the proposed reconstruction algorithm, 

multiple layers of the SMC composites are generated. The high-fidelity SMC model 

is composed in the 3D voxelated cuboid space by stacking up the reconstructed 

layers. The voxels in the reconstruction model are converted into a solid element for 

FE simulation. Moreover, since each bundle is aligned at a specified angle, the 

elements corresponding to the bundle have a local orientation. In this study, nodes 

and connectivity of a C3D8 element are created according to Abaqus/Standard input 

format. All the process for FE modeling is depicted in Figure 3.8. 
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(a)  (b) 

 

(c) 

Figure 3.8. FE modeling from reconstruction model: (a) Stack of SMC 

reconstructed models (b) C3D8 FE models with different views (c) Defining the 

local orientation for fiber bundles 

 

3.2 Experimental Setup 

3.2.1 Tensile testing 

 An experimental tensile test is performed to obtain the mechanical properties of 

SMC composites. An initial charge of 200mm× 200mm size is subjected to a 
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compression molding process to fabricate the SMC composite plate with a size of 

300mm× 300mm × 3 mm. The fiber bundles in the SMC plate have a quasi-

isotropic orientation as observed in the micro-CT image processing. Tensile 

specimens are extracted from the molded plate with a 35mm width following the 

ASTM D3039. Considering the size of the fiber bundle, the specimen is designed to 

have a large enough width. Dimensions of the tensile specimen are depicted in Figure 

3.9. Sandpapers are attached to 40mm  long grip regions at both ends of the 

specimens to prevent slipping during the testing. Therefore, the gage length of the 

tensile specimen becomes 170mm. From trimming the boundary of specimens, five 

specimen samples are prepared. The displacement-controlled uniaxial tensile test is 

performed with a 30 kN MTS material test machine with a 2mm/min crosshead rate. 

The tensile specimens' photographs before and after testing are shown in Figure 3.10. 

After failure, as shown in Figure 3.10(b), it is observed that the matrix failure is 

dominant in the SMC specimen because the fiber bundles have their geometry even 

after specimen breakage. This failure pattern was also reported in the SMC 

composites study [74]. 
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Figure 3.9. Dimensions of ASTM3039. 

 

(a) 

 
(b) 

 
Figure 3.10. Experimental tensile specimens: (a) before testing (b) after testing  

 

 The experimental tensile tests are conducted by Seoul National University (SNU) 

and Hyundai Motors Group, with different strain measurement methods. In SNU, 

the strain is measured by dividing the crosshead displacement by the gage length of 

the tensile specimen. On the other hand, the average strain on the specimen surface 

using digital image correlation (DIC) equipment in the Hyundai is measured. It is 

noted that the different strains are estimated depending on the strain measurement 
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techniques [75]. Generally, the crosshead strain is significantly greater than the DIC 

measurement. As a result, the crosshead-based modulus underestimates compared 

with the DIC-based measurement. The stress-strain curves are plotted in Figure 3.11. 

Notably, because of the heterogeneity of the SMC composites, the difference in 

results between the two measurement techniques becomes more salient. Both stress-

strain curves show linear behavior. The nominal stress is computed by dividing the 

force by the cross-sectional area of the tensile specimen. The elastic modulus is 

calculated by the curve's initial slope and measured in the 0.05 to 0.25% strain range. 

Likewise, the strength is measured based on the ultimate maximum strength, which 

is the maximum stress of the stress-strain curve. 
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(a) 

 
(b) 

 
Figure 3.11. Stress-Strain curves from experiments: (a) Crosshead-based strain (b) 

DIC-based strain  

 

 Figure 3.12 shows the stress-strain curves of pure vinyl ester resin from the tensile 

test. The vinyl ester resin is utilized as the matrix in the SMC composites. The 

properties are employed in the simulation. 
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Figure 3.12. Stress-strain curve of pure vinyl ester resin from the tensile 

experimental test 

 

3.2.2 Tensile specimen modeling and measurement 

 Uniaxial tensile simulations are conducted with the reconstructed SMC models. 

The SMC plate and fiber bundle size are designed to have 300mm× 300mm×

3mm and 50.8mm× 20mm, respectively. The fiber volume fraction in the SMC 

plate is 55%, as revealed by micro-CT image processing. Therefore, the fiber bundle 

is assumed to comprise 78% fiber, and a unit layer is assumed to have a 70% fiber 

bundle volume fraction to match 55% fiber volume fraction by 70%×78%=55%. 

 The microstructure of the fiber bundle is shown in Figure 3.13. The computational 

homogenization technique is required to obtain the effective properties of the fiber 

bundle. The microscale RVE with unidirectional fibers is shown in Figure 3.13. The 

constituents are T700 carbon fiber and vinyl ester resin. The mechanical properties 
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of the constituents are from literature and experimental tests. FE-based DNS is 

conducted for the effective properties of the fiber bundle. The mechanical properties 

are summarized in Table 3.4. 

 

 

Figure 3.13. Multiscale modeling of the SMC composites 

 

Table 3.4. Elastic mechanical properties of SMC composites 

 T700 Vinyl ester Fiber bundle 

𝐸1 (MPa) 240000 3480 203292 

𝐸2 (MPa)  14700  11639 

𝐺12 (MPa) 6400  5027 

𝐺23 (MPa) 5400  4206 

𝜈12 0.3 0.3 0.01737 

𝜈23 0.35  0.349 

 

The reconstruction algorithm uses the statistical distributions from micro-CT image 

processing to generate an SMC model with a 70% bundle volume fraction. As a result, 

a series of reconstructed layers are obtained, as shown in Figure 3.14(a). After that, 
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Figure 3.14(b) shows that tensile specimens are extracted from the reconstructed 

SMC models. A total of 15 tensile specimens are prepared from the five 

reconstructed SMC models. A coupling constraint is applied to elements at both ends 

of the specimen with reference points for the tensile simulation. After that, boundary 

and loading conditions are applied to the reference points that correspond with the 

parts of the grip and fixture in the tensile testing system, as shown in Figure 3.14(c). 

 

(a) 

 

(b) 

 

(c) 

 

Figure 3.14. High-fidelity SMC modeling: (a) Reconstructed models for each layer 
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(b) orientation contour and specimen extraction (c) boundary condition for tensile 

test 

 

For strain measurement in the tensile simulation, two different methods are 

performed. The first is to measure the strain based on the crosshead displacement. 

Like the experiment, the strain from the simulation is obtained by dividing 

displacement by the gage length. The calculations of uniaxial strain and stress are 

expressed in Eq. (3.3).  

휀1 =
𝑢∗

𝐿𝑔𝑎𝑔𝑒 
, 𝜎1 =

𝑅𝐹1
𝑤𝑡

 (3.3) 

The second strain measurement method is by the digital image correlation (DIC) 

equipment. The effective strain is calculated by applying the volume-averaging 

scheme in terms of strain fields after tensile simulation. Although DIC is measured 

only on the surface of the specimen, the volume-averaging in simulations can be 

performed over the entire specimen domain. The equation can be expressed as Eq. 

(3.4). 

휀1 =
∫ 휀1̂𝑑𝛺𝛺

∫ 𝑑𝛺
𝛺

, 𝜎1 =
𝑅𝐹1
𝑤𝑡

 (3.4) 

Herein, 𝛺  is the total element domain of the specimen. This domain does not 

include the jig parts, which is also not ROI in the DIC measurement. 휀1̂  is the 

uniaxial strain value at Gaussian points. With different types of strain measurement, 

the comparison of tensile modulus can be achieved with experimental results. 
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3.3 Results and Discussion 

 Static finite element analysis is performed on the reconstructed SMC models 

subjected to tensile loading. Based on the strain measurements described above, the 

modulus of the SMC composites is calculated from the initial slope of the stress-

strain curve. Figure 3.15 shows the modulus change according to the number of 

layers constituting the ASTM 3039 specimen with 3 mm thickness. An increment of 

the SMC modulus is observed in thinner layers in both strain measurement methods, 

as shown in Table 3.5. It is because of the increasing heterogeneity of the SMC 

mesostructure through the thickness. The deformation in the z-direction due to the 

different properties of constituents occurs significantly during the tensile simulation. 

Thus, increasing the number of layers improves the stress transfer between layers in 

the z-direction and makes the SMC specimen stiffer. These investigations have also 

been handled in the literature to ensure the mechanical performance of SMC 

composites [35, 76, 77]. In addition, as the number of layers increases, the quasi-

isotropy seems to increase, which means increasing the uniformity in the local 

volume fraction and orientation leads to reduced sample-to-sample variability in 

effective properties. Despite the same statistical parameters, different-shaped 

mesostructures are obtained. Therefore, simulations make such variability denoted 

by a standard error in the graph.  
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Table 3.5. Mean and COV of elastic modulus with different numbers of layers 

(unit: GPa) 

Layers Mean COV 

 Crosshead DIC Crosshead DIC 

5 20.2 31.6 0.26 0.37 

7 21.2 34.5 0.22 0.25 

10 30.5 48.5 0.16 0.17 

13 33.3 54.7 0.14 0.14 

15 35.6 57.3 0.12 0.13 

 

 

Figure 3.15. Effect of the number of layers on the tensile modulus 

 

 In comparison with the experiments, both crosshead and DIC measurements seem 

to fit well with experimental tests in the case of 5~7 layers. Since carbon fiber tows 

have 200~300 g/m2  fiber areal weight (FAW), they are assumed to have a 
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0.2mm~0.3mm thickness. From the bundle thickness, the ideal lamination in the 

fiber bundles could be 10~15 layers for 3 mm specimen thickness when the resin is 

excluded. However, the number of layers becomes 5.5~8.25 when applied 55% fiber 

volume fraction to the number of the ideal lamination. Therefore, it is validated that 

the prediction with tensile simulation has a good agreement with experimental results. 

Next, a method is introduced for predicting tensile strength through the FE static 

simulation. The tensile strength of SMC composites is mainly dependent on the 

matrix based on the existing reports and inspection of failure patterns in Figure 3.10. 

Therefore, this study proposes that the strength of the SMC composite is predicted 

based on the matrix strength. In the previous section, the vinyl ester resin has a 

strength of 65~80MPa from tensile tests. An assumption is made that failure of SMC 

composites yields when the volume-averaged stress of the matrix region in the 

simulation models reaches the pure vinyl ester's strength from the experimental test. 

The volume-averaged stress of the matrix region is computed as follows. 

𝜎𝑀𝑎𝑡𝑟𝑖𝑥 =
∫ �̂�1𝑑𝛺𝑀𝑎𝑡𝑟𝑖𝑥𝛺𝑀𝑎𝑡𝑟𝑖𝑥

∫ 𝑑𝛺𝑀𝑎𝑡𝑟𝑖𝑥𝛺𝑀𝑎𝑡𝑟𝑖𝑥

 (3.5) 

The volume-averaged stress in the matrix region is calculated when the uniaxial 

stress level of the specimen calculated in Eq. (3.3) reaches 260MPa, the tensile 

strength from the experimental tests. Figure 3.16 shows the volume-averaged stress 

of the matrix for the different number of layers at the moment of reaching the 

experimental strength (260MPa). It is noted that decreasing the matrix volume-

averaged stress with the increasing number of layers implies decreasing load-

carrying by the matrix and increasing load-carrying by the fiber bundles. The higher 
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modulus of the SMC specimen with the increasing number of layers, as shown in 

Figure 3.15, seems to be attributed to this mechanism. The red band in Figure 3.16 

represents the range of pure resin strength from the experimental test. The matrix 

volume-averaged stress from the simulation matches well with the experimental 

strength in the case of 5~7 layers. This match sufficiently supports the proposed 

strength evaluation method using the high-fidelity SMC composite models. In Figure 

3.17, the heterogeneous strain distribution can be identified in the simulation, which 

is also observed in the experiment. It shows the influence of the spatially varying 

distribution of fiber bundles. In conclusion, it is demonstrated that the proposed SMC 

reconstruction algorithm can directly reflect the mesostructure of the actual SMC 

composites, and also, the proposed strength and stiffness evaluation method can 

accurately predict the mechanical properties of actual SMC composites. 

 

 

Figure 3.16. Volume average stress in the matrix region for the number of layers 
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(red band: strength from the experiment) 

 

(a) 

 
(b) 

 
Figure 3.17. Engineering principal strain contours: (a) SMC simulation (b) DIC 

measurement 
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Chapter 4. Damage Characterization for SMC 

Composites 
 

4.1 Study Background 

 Composite materials have a variety of failure modes, making it more difficult to 

predict strength than linear behavior. The strength is inherently dependent on the 

fiber’s orientation. In the case of CFRP laminate composites, for example, the 

longitudinal strength is greater than the transverse strength, and the tensile strength 

and compressive strength are different. Due to the concentration of stresses and 

strains in the matrix around the fibers, transverse tensile strength exhibits the lowest 

value. In early research, multiaxial strength criteria were used to determine the 

failure of composites. The purpose of this approach is to enable designers to quickly 

predict when failures will occur under complex loading conditions. Microscopic 

failure modes such as fiber pullout, fiber breakage, buckling, matrix cracking, and 

delamination are not considered in this semi-empirical study. The failure modes of 

real-world composites are complex, occurring in various combinations and 

sequences. A wide range of multiaxial composite failure criteria has been reported 

from the world-wide failure exercise (WWFE) [78]. The WWFE was a global 

movement in which nineteen leading developers of composite failure theory were 

asked to use their theories to predict failure in sufficient test environments. These 

failure theories are phenomenological and originate in an attempt to express 

experimental observations. These models are preferred since it allows a systematic 

approach to design and reduces the number of experiments. 
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 Many failure criteria for anisotropic composites are based on the plasticity theory 

for isotropic metallic materials. Accordingly, by drawing the failure point in the 

stress domain of the material, a failure envelope can be obtained as with plasticity 

theory. In general, the coordinate axes of the stress space correspond to the principal 

material axes. According to this idea, stress combinations inside the surface do not 

lead to failure, whereas stresses outside the surface cause failure. The maximum 

stress criterion was first introduced to the composite failure model [79]. However, 

this model does not account for possible interactions between the stress components, 

which means that when a particular stress component exceeds its limit value, failure 

occurs independently of all other stress components. It shows a good agreement in 

uniaxial stress but has a large difference in multiaxial stress cases. This analysis 

indicates that the prediction of the maximum stress criterion agrees reasonably well 

with the experiment when it is close to 0° or 90° relative to the composite fiber 

direction, but does not fit well at other angles. In a similar way, Waddoups extended 

the maximum normal strain theory (or Saint Venant's theory) for anisotropic 

materials and proposed a maximum strain criterion for composite materials [80]. 

This criterion predicts failure when the principal material axial strain component 

exceeds an ultimate strength. In the case of an isotropic material, the ultimate values 

in stress and the strain criterion based on the main axes are the same. On the other 

hand, in the case of anisotropic composite materials, they show different values. 

Simulating complex failure mechanisms is also limited by a simple mathematical 

expression, which is why predicted values from a model cannot be experimentally 

verified. 
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 Similarly, the quadratic interaction criteria were developed from the initial failure 

theory for isotropic materials, but they differ from the maximum stress and strain 

criterion in that they can explain the interaction between stresses. The von Mises 

criterion is a quadratic interaction that is widely used to determine the yield point for 

isotropic metals. Furthermore, Hill modified the von Mises criterion for anisotropic 

materials [81]. It allows the Tsai-Hill equation to express the failure criteria of 

materials with different tensile and compressive strengths as quadratic functions [82]. 

The model shows a good result with asymmetric materials, such as thermoplastics 

[83]. Due to the plasticity theory, only shear stress and strain have an influence on 

these models. However, it has been demonstrated that hydrostatic pressure causes 

shear deformation and failure in composite materials [84]. Taking hydrostatic 

pressure into account, Tsai and Wu presented a failure model for composite materials 

[85]. Furthermore, Hasin suggested that each composite failure mode should be 

individually considered using the quadratic interaction [86]. Despite the challenge 

of defining the strength of each component, the model shows excellent agreement in 

predicting the strength of fiber-reinforced composites. 

 In this chapter, failure analysis of SMC composite materials is presented by 

focusing on the failure model of SMC constituents. The direction and distribution of 

fiber bundles in SMC composite material greatly influence failure behavior as well 

as linear behavior. Material constitutive models are implemented to simulate the 

failure behavior in the fiber bundle, matrix, and interfaces. The proposed model 

allows for predicting the effects of the fiber bundles’ orientation and dispersion on 

the modulus and strength. Finally, the simulation results are compared with the 
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experimental tensile test. In this validation, the degree of scattering is also exploited. 

Failure mechanisms are then observed through SEM scanning to verify the local 

damage from simulation models.  

 

4.2 Material Constitutive Modeling for Failure Analysis 

 Based on the four major failure modes of SMC composites, material constitutive 

models of each constituent are discussed and constructed. After that, depending on 

the statistical indicators, a tendency of composites’ behavior is demonstrated. In the 

failure behavior of the SMC composites, there are four major failure modes: matrix 

crack, bundle splitting/breakage, and interface failure between two bundles or the 

bundle and matrix [34]. This observation indicates that tensile failure is initiated by 

matrix failure or interface failure, possibly caused by stress concentration due to the 

mesostructure heterogeneity of the SMC composites. The propagation of the initial 

cracks induces bundle splitting and carbon fiber breakage. Therefore, it is necessary 

to consider these mechanisms within the proposed FE modeling. Three constitutive 

models are introduced as follows. The fiber bundle constitutive material model is 

established using the Hahsin progressive failure criterion [87]. For the matrix region, 

the damage plasticity model is introduced by combining 𝐽2 plasticity and Lemaitre-

Chaboche ductile damage models [88]. The interface between the matrix and bundle 

is modeled using a cohesive element with a traction-separation law [89]. 
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4.2.1 Progressive failure model for fiber bundles 

 Failure criteria are generally used for finding out the onset of damage initiation at 

a material point. Once damage initiation occurs, softening behavior proceeds at 

corresponding material points In this work, a three-dimensional failure criterion is 

formulated by Hashin's theory and integrated with the continuum damage model 

(CDM) for progressive damage behavior. The Hashin’s failure criteria equations 

incorporate the effect for both tension and compression states of matrix and fiber as 

follows: 

Fiber tension failure (𝜎11 > 0) 

𝑒𝑓𝑡 = (
𝜎11
𝐹1𝑡
)
2

+ 𝛼 (
𝜎12 + 𝜎13

𝐹𝑙𝑠
)
2

≥ 1 

Fiber compression failure (𝜎11 < 0) 

𝑒𝑓𝑐 = (
𝜎11
𝐹1𝑐
)
2

≥ 1 

Matrix tension failure (𝜎22 > 0) 

𝑒𝑚𝑡 = (
𝜎22
𝐹2𝑡
)
2

+ (
𝜎12
𝐹𝑙𝑠
)
2

+ (
𝜎23
𝐹𝑡𝑠
)
2

≥ 1 

Matrix compression failure (𝜎22 < 0) 

𝑒𝑚𝑐 = (
𝜎22
2𝐹𝑙𝑠

)
2

+ [(
𝐹2𝑐
2𝐹𝑙𝑠

)
2

− 1]
𝜎22
𝐹2𝑐

+ (
𝜎12
𝐹𝑡𝑠
)
2

≥ 1 

(4.1) 

In the above equations, 𝑒𝑓𝑡 , 𝑒𝑓𝑐 , 𝑒𝑚𝑡 , and 𝑒𝑚𝑐  represents the failure criteria at 

each mode, which depend on the current stress components. Once failure criteria for 

each mode reach the value 'one’, the damage is initiated. The parameters of 𝐹1𝑡, 𝐹1𝐶 

denote tensile and compressive strengths in the axial direction. 𝐹2𝑡 and 𝐹2𝑐 denote 

tensile and compressive strengths in the transverse direction. 𝐹𝑙𝑠 and 𝐹𝑡𝑠 denote 

the longitudinal and transverse shear strengths. This work does not consider the 
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through-the-thickness failure because the effect of through-the-thickness failure for 

the bundle is insignificant in a tensile test. The coefficient 𝛼 (0 ≤ 𝛼 ≤ 1) in Eq. 

(4.1) is employed to determine the contribution of the shear stress on the fiber tensile 

failure. This coefficient was taken as ‘one’ in Hashin's and Hou's failure criteria [90, 

91]. In Guo's and Li's work, the value is specified as ‘zero’ [92, 93]. In this study, the 

coefficient 𝛼=0.06 for a fiber bundle of the same material is adopted by work of 

Zhang et al. [94, 95]. 

 After failure criteria are satisfied, progressive loading results in material stiffness 

degradation. The damage variables control the stiffness degradation, which 

Kachanov first proposed through CDM theory [96]. The damage variables play an 

essential role in representing the softening behavior. The evolution of the damage 

variables is based on the energy dissipated during the damage process. The crack 

band model with characteristic element length is adopted to alleviate the mesh 

dependence [87]. The dissipated energy of the elements is expressed as follows,  

𝐺𝐼 =
1

2
𝜎𝐼,𝑒𝑞
𝑜 휀𝐼,𝑒𝑞

𝑜 𝐿𝑐 , (4.2) 

where 𝐺𝐼 is the dissipated energy of each damage mode; σ𝐼,𝑒𝑞
0  and ε𝐼,𝑒𝑞

0  are the 

equivalent stress and strain after the damage occurs; Subscript “𝐼” is each of four 

failure modes (i.e., I=ft, fc, mt, and mc). Superscript “o” denotes the damage onset. 

𝐿𝑐  is the characteristic length of the element. The damage variables 𝑑𝐼  of each 

mode are expressed in Eq. (4.3). 

𝑑𝐼 =
𝛿𝐼,𝑒𝑞
𝑓
(𝛿𝐼,𝑒𝑞 − 𝛿𝐼,𝑒𝑞

𝑜 )

𝛿𝐼,𝑒𝑞 (𝛿𝐼,𝑒𝑞
𝑓

− 𝛿𝐼,𝑒𝑞
𝑜 )

, (4.3) 
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𝛿𝐼,𝑒𝑞
0 ≤ 𝛿𝐼,𝑒𝑞 ≤ 𝛿𝐼,𝑒𝑞

𝑓
,   𝐼 ∈ {𝑓𝑡, 𝑓𝑐,𝑚𝑡,𝑚𝑐} 

𝛿𝐼,𝑒𝑞
𝑓

=
2𝐺𝐼
𝜎𝐼,𝑒𝑞
𝑜  

Here, the superscript “𝑓” denotes the fully damaged state. As a result, equivalent 

displacement and stress are summarized in Table 4.1. In the table, the operator 〈𝑥〉 

is Macauley bracket, which defined as 〈𝑥〉 =
𝑥+|𝑥|

2
.  

 

Table 4.1. Equivalent displacement and stress with characteristic length 

Failure 

Mode 
𝛿𝑒𝑞 𝜎𝑒𝑞 

Fiber 

tension 

(𝜎11 > 0) 
𝐿𝑐√〈휀11〉

2 + 𝛼(휀12
2 + 휀13

2 ) 
𝐿𝑐(〈𝜎11〉〈휀11〉 + 𝛼(𝜎12휀12 + 𝜎13휀13))

𝛿𝑓𝑡,𝑒𝑞
 

Fiber 

compressio

n 

(𝜎11 < 0) 

𝐿𝑐〈−휀11〉 
𝐿𝑐〈−𝜎11〉〈−휀11〉

𝛿𝑓𝑐,𝑒𝑞
 

Matrix 

tension 

(𝜎22 > 0) 
𝐿𝑐√〈휀22〉

2 + 휀12
2 + 휀23

2  
𝐿𝑐(〈𝜎22〉〈휀22〉 + 𝜎12휀12 + 𝜎23휀23)

𝛿𝑚𝑡,𝑒𝑞
 

Matrix 

compressio

n 

(𝜎22 < 0) 

𝐿𝑐√〈−휀22〉
2 + 휀12

2  
𝐿𝑐(〈−𝜎22〉〈−휀22〉 + 𝜎12휀12)

𝛿𝑚𝑐,𝑒𝑞
 

 

The damage model is adopted following Matzenmiller et al. [97]. to estimate 

stiffness degradation using damage variables. In this model, the relation between 

nominal stress 𝝈 and effective stress �̂� are expressed with the damage operator 𝑴. 
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�̂� = 𝑴:𝝈, where 𝑴 =

[
 
 
 
 
 
 
 
 
 
1

𝑑𝑓
1

𝑑𝑚

1
1

𝑑𝑠
1

𝑑𝑓
1

𝑑𝑚]
 
 
 
 
 
 
 
 
 

 (4.4) 

Here, 𝑑𝑓, 𝑑𝑚, and 𝑑𝑠 are the global damage variables associated with fiber, matrix, 

and shear components. They have a relation with specific modes, which consist of 

tension and compression. 

𝑑𝑓 = (1 − 𝑑𝑓𝑡)(1 − 𝑑𝑓𝑐) 

𝑑𝑚 = (1 − 𝑑𝑚𝑡)(1 − 𝑑𝑚𝑐) 

𝑑𝑠 = (1 − 𝑑𝑓𝑡)(1 − 𝑑𝑓𝑐)(1 − 𝑑𝑚𝑡)(1 − 𝑑𝑚𝑐) 

(4.5) 

In the above equations, the subscript 𝑡  and 𝑐  denotes tension and compression, 

which means there are four kinds of damage variables (e.g., 𝑑𝑓𝑡, 𝑑𝑓𝑐, 𝑑𝑚𝑡, 𝑑𝑚𝑐). 

Using these descriptions, the 3D damaged compliance matrix 𝑆(𝑑𝐼)  has the 

following form. 
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𝑺(𝑑𝐼) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1

𝑑𝑓𝐸11
−
𝜈21
𝐸22

−
𝜈31
𝐸33

−
𝜈12
𝐸11

1

𝑑𝑚𝐸22
−
𝜈32
𝐸33

−
𝜈13
𝐸11

−
𝜈22
𝐸22

1

𝐸33
1

𝑑𝑠𝐺12
1

𝑑𝑓𝐺13
1

𝑑𝑚𝐺23]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.6) 

The viscous regularization method and limiting factor of 0.8 for the damage variables 

are utilized to reduce damage localization and improve convergence. The elastic 

parameters are adopted from our previous study which investigated the mechanical 

properties of fiber bundles through numerical homogenization with microstructure 

[71]. The constants of progressive Hashin’s failure used in the analysis are listed in 

Table 4.2 [40] 
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Table 4.2. Material parameters of a carbon fiber bundle 

Parameters Value 

Longitudinal modulus, 𝐸1 (GPa) 203.29 

Transverse modulus, 𝐸2 (GPa) 11.639 

Shear modulus, 𝐺12 = 𝐺13 (GPa) 5.027 

Shear modulus, 𝐺23 (GPa) 4.206 

Poisson's ratios, 𝜈12 = 𝜈13 0.017 

Poisson's ratios, 𝜈23 0.349 

Longitudinal tensile strength, 𝐹1𝑡 (MPa) 2157 

Longitudinal compressive strength, 𝐹1𝑡 (MPa) 1270 

Transverse tensile strength, 𝐹2𝑡 (MPa) 78 

Transverse compressive strength, 𝐹2𝑐  (MPa) 113 

Longitudinal shear strength, 𝐹𝑙𝑠 (MPa) 109 

Transverse shear strength, 𝐹𝑡𝑠 (MPa) 100 

Fracture energy, 𝐺1𝑡 = 𝐺1𝑐  (kJ/m
2) 12 

Fracture energy, 𝐺2𝑇 = 𝐺2𝑐  (kJ/m
2)  1 

 

4.2.2 Ductile damage plasticity model for vinyl ester resin 

 In this work, the vinyl ester resin for the matrix phase is modeled as an isotropic 

solid. The damage plasticity model is defined by the yield criterion and plastic flow 

rule accounting for the Lemaitre-Chaboche damage behavior in the matrix region 

[88]. The material parameters for the matrix are characterized through inverse 
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identification based on the experiment results [98]. The procedures of inverse 

identification and material constitutive model are provided in Appendix B. The 

characterized material parameters are summarized in Table 4.3. 

 

Table 4.3. Material parameters of matrix 

Parameter Values 

Elastic Modulus, 𝐸 (GPa) 3.158 

Poisson ratio, 𝜈 0.312 

Initial yield stress, 𝜎𝑦0 (MPa) 68.3 

Hardening parameter, 𝑘 (MPa) 447 

Hardening parameter, 𝑚 0.0074 

Damage parameter, 𝑆0 0.235 

Damage parameter, 𝑠 2.189 

 

4.2.3 Traction-separation law for interface 

 A cohesive zone model is employed to simulate delamination initiation and 

propagation at the contact face of adjacent bundles and the interface between bundle 

and matrix. Before the onset of delamination, an elastic traction-relative 

displacement law is specified to hold together the interface of the adjacent elements, 

and an uncoupled traction-relative displacement law is expressed in terms of three 

traction stresses, as follows, 
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{

𝑡𝑛
𝑡𝑠
𝑡𝑡

} = (1 − 𝐷) [

𝐾𝑛𝑛 0 0
0 𝐾𝑠𝑠 0
0 0 𝐾𝑡𝑡

] {

𝑢𝑛
𝑢𝑠
𝑢𝑡
}, (4.7) 

where 𝑡𝑛, 𝑡𝑠 and 𝑡𝑡 represent the normal and two shear traction stress components, 

respectively. 𝑢𝑛 , 𝑢𝑠  and 𝑢𝑡  are the corresponding separations. 𝐾𝑛𝑛 , 𝐾𝑠𝑠  and 

𝐾𝑡𝑡 are the penalty stiffness parameters. 𝐷 denotes the overall damage variable in 

the material. The penalty stiffnesses are set to 5 × 104MPa/mm, which is assumed 

as 𝐾𝑛𝑛 = 𝐾𝑠𝑠 = 𝐾𝑡𝑡. 

 After the onset of delamination, the behavior of the interface is controlled by a 

softening law for delamination propagation. The maximum stress criterion is used 

for damage initiation, as follows, 

𝑀𝑎𝑥 [
〈𝑡𝑛〉

𝑡𝑛
𝑚𝑎𝑥 ,

𝑡𝑠
𝑡𝑠
𝑚𝑎𝑥 ,

𝑡𝑡
𝑡𝑡
𝑚𝑎𝑥  ] = 1, (4.8) 

where 𝑡𝑛
𝑚𝑎𝑥, 𝑡𝑠

𝑚𝑎𝑥, and 𝑡𝑡
𝑚𝑎𝑥 are the maximum stress in the normal direction and 

two shear directions. The tension and shear traction-separation responses are 

considered to be independent of one another. 〈 〉 is a Macaulay bracket, showing 

that no damage occurs under pure compression. In the numerical simulation, the 

cohesive strengths are set to 𝑡𝑛
𝑚𝑎𝑥 = 80MPa, 𝑡𝑠

𝑚𝑎𝑥 = 𝑡𝑡
𝑚𝑎𝑥 = 150MPa. 

 The crack propagation is described as 
𝐺𝐼

𝐺𝐼𝐶
+

𝐺𝐼𝐼

𝐺𝐼𝐼𝐶
+

𝐺𝐼𝐼𝐼

𝐺𝐼𝐼𝐼𝐶
= 1 , linear fracture 

mechanics law. 𝐺𝐼 , 𝐺𝐼𝐼 , and 𝐺𝐼𝐼𝐼  are the energy release rates with respect to 

traction and separation. The critical fracture energy is denoted by subscripted “𝐶”. 

The numerical values for the critical energy release rates are adopted as 𝐺𝐼𝐶 =

1.436kJ/m2 and 𝐺𝐼𝐼𝐶 = 𝐺𝐼𝐼𝐼𝐶 = 2.380kJ/m
2 from previous research [99]. 
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4.3 Results and Discussion 

4.3.1 Effect of fiber bundle orientation 

 First, the mechanical properties’ changes of SMC composites are investigated 

according to fiber bundle orientation. The size of the plate and fiber bundle is set to 

300 × 300 × 3mm3  and 30 × 10mm2,  respectively, to generate a reconstructed 

molded SMC plate. The plate is modeled to have ten layers. Thus each layer has a 

thickness of 0.3mm. Reconstructed molded plates composed of 60% fiber bundle 

volume fraction are generated according to different bundle orientation distributions, 

as depicted in Figure 4.1. 

 

 

Figure 4.1. The SMC RVE samples under the different distribution of orientation 

(σ=30) 

 

 The bundle orientations are expressed based on the Gaussian function, a function 

of a mean value (𝜇) and standard deviation (𝜎). SMC molded plates with different 
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morphologies are created by changing the mean value while the standard deviation 

is fixed at 30. The contour color of fiber bundles varies depending on the orientation 

in the plate. When the bundle is aligned to the x-axis direction (zero-degree), it has 

a blue color. On the other hand, the yellow color appears if it is placed in the y-axis 

direction (ninety-degree). In this simulation, the orientation of the bundle is only 

used as a variable. Thus, uniform bundle dispersion is assumed to be a control 

variable. Therefore, the local volume fractions at the preset points are equal to each 

other. Because the reconstructed SMC plates are only statistically identical, each 

sample inevitably has a different mesoscale structural morphology, which leads to a 

deviation of simulation results at every sample. For this reason, a total of six tensile 

specimens are prepared. Displacement-control loading is applied to the specimen in 

the x-axis direction, and nonlinear simulation is performed with a sufficient number 

of increments. The macroscopic strain and stress are calculated as the elongation 

divided by the gage length and the reaction force divided by the cross-sectional area. 

 Figure 4.2(a) shows the stress-strain curves of the specimens following 

distribution with mean values of zero, forty-five, and ninety degrees. The curves 

show linear dominant behavior, which is one of the characteristics of carbon fiber-

reinforced composites. To evaluate the mechanical properties of SMC composites, 

the modulus and strength are measured by the initial slope within 0.05 to 0.25% 

strain range and the ultimate maximum strength of the stress-strain curve, 

respectively. 
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(a) 

 

(b) 

 

Figure 4.2. Results according to fiber bundle orientation: (a) Stress-strain curves 

(b) Relationship between modulus and strength 

 

The results of specimen samples are plotted in the modulus-strength domain, and 

five groups according to the mean value of the orientation distribution are 

distinguished by different colors, depicted in Figure 4.2(b). Depending on the bundle 
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orientation, the modulus and strength have a positive correlation, expressed through 

a linear equation. Next, while the modulus shows the same level of deviation for 

each orientation group, it is seen that the deviations are large at zero and thirty 

degrees. On the contrary, the specimen with forty-five or more has a low deviation 

in strength, and this tendency of failure of SMC composites is elucidated through the 

damage patterns. Figure 4.3 shows damage contours that occur in the fiber bundle 

and matrix of the specimen with zero and ninety degrees. 

 

 

Figure 4.3. The geometry of specimen and damage occurrence in fiber bundle and 
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matrix. 

 

Figure 4.3(i) shows the geometry in the x-y plane of the specimen composed of 

different colors of individual fiber bundles. Figure 4.3(ii) and (iii) are damage 

contours of the matrix and fiber bundle, respectively. Based on the damage contour 

in specimens with different orientations, the following characteristics are 

summarized. In the case of the ninety-degree specimen subjected to a uniaxial 

loading, the damage is shown equally to the fiber bundle and matrix. However, the 

zero-degree specimen shows the damage concentrated at the interface between 

constituents or the end location of the fiber bundle. Therefore, if the orientation of 

the fiber bundle coincides with the loading direction, unexpected damage is 

experienced due to the emergence of damage at a local location from stress 

concentration. Next, it is observed that the damage is dominant in the matrix region 

in both simulation cases. It is a characteristic of SMC composites subjected to tensile 

loading and confirmed in experiments [100]. Carbon fibers loaded in the longitudinal 

direction show superior resistance to the tensile direction than the compression 

direction, and this feature is extended to the fiber bundle. However, because the 

strength is too high in these two directions, longitudinal damage rarely occurs. In 

addition, since the fiber bundle composed of continuous fibers aligned in the 

longitudinal direction is vulnerable to transverse directional loading, transverse 

damage related to the matrix properties has emerged quickly. As a result, it is 

demonstrated that the failure of SMC composites in terms of macroscopic behavior 

is highly related to the matrix properties. 
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4.3.2 Mechanical properties depending on the dispersion 

 Next, the change of modulus and strength of SMC composite material according 

to the dispersion of fiber bundles is observed. The dispersion of the fiber bundle is 

defined based on the distribution of the local volume fraction calculated at preset 

points in the molded plate. In this modeling, fiber bundles with random orientation 

are packed to follow the target local volume fraction distribution. The statistic of 

bundles’ local volume fraction is also generated through the Gaussian function by 

adjusting the mean value and coefficient of variation (COV). The conditions for 

modeling are the same as in Chapter 3.1. According to the COV, recombined molded 

plates with a fiber bundle volume ratio of 60% are generated and classified into six 

groups. Figure 4.4 shows the 3D view of reconstructed models and a 2D binary 

image on the XY-plane corresponding to each group. 
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Figure 4.4. The SMC RVE samples under the different distribution of local volume 

fraction (dispersion): (a) 0.01 (b) 0.1 (c) 0.2 (d) 0.3 (e) 0.4 (f) 0.5. 

 

The 2D binary images demonstrate that the COV of the local volume fraction 

distribution directly affects the position of the fiber bundle on the plate. A 

reconstructed model produces an imbalanced geometry as the COV increases. The 

voids in the layers can represent the matrix-rich area of natural SMC composites. 

Thus, when a specimen is cut out of a reconstructed plate with a high COV, the fiber 

bundle varies from specimen to specimen, directly related to the tensile behavior. 

For this reason, many specimens for statistical analysis are prepared for each group. 
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(a) 

 

(b) 

 

Figure 4.5. The modulus and strength according to the dispersion 

 

 Figure 4.5 illustrates the results of modulus and strength according to COV using 

fifteen tensile specimens per group. The line and error bar of the graph represents 

the average value and standard error of the results, respectively. Modulus and 

strength are expressed in blue and red, and the range of values is indicated on the left 
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and right axes, respectively. Several changes in the graph are observed as the COV 

changes. First, when measuring a standard error using multiple samples, it is seen 

that it grows with an increase in COV in both modulus and strength. A sizeable 

morphological difference occurs for each sample when the specimen is produced in 

the SMC plate with clumped dispersion of fiber bundle. Furthermore, as the COV 

increases, while the modulus hardly changes, the strength tends to decrease 

remarkably. In particular, it shows a drastic change in the 0.2-0.4 range because the 

morphological imbalance is noticeable in that range, as shown in Figure 4.4. This 

trend is more pronounced when normalized to the average value, as shown in Figure 

4.5(b). Also, it is possible to predict the degradation rate of the SMC composite 

material according to the COV through the normalized trend line. 
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Figure 4.6. The geometry of specimens and damage occurrence in the fiber bundle 

and matrix 

 

Figure 4.6 shows the damage patterns in the specimens with different bundle 

dispersion. The damage pattern is widely distributed in a specimen with a uniform 

bundle distribution of COV=0.01 because the load transmission is uniformly 

performed. Therefore, uniform results are expected for each specimen. In contrast, 

specimens with a clumped dispersion of COV=0.5 have morphological imbalances 

resulting in warped deformation in the tensile direction and deformation in other 

directions. Therefore, in samples with clamp dispersion, deformations other than the 
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tensile direction are prominent. It is explained by Figure 4.7, which shows the z-

direction deformation contour with ten times scaling into the z-direction deformation 

for specimens with different bundle dispersions. The initial elastic behavior is 

consistent because both models consist of fiber bundles with 60% volume fraction 

and random orientation. However, morphological imbalance due to clumped bundle 

dispersion rapidly develops local damage, and it tends to fail faster than in uniform 

bundle dispersion. 

 

 

Figure 4.7. The stress-strain curves of specimens with different dispersion of fiber 

bundles 
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4.4 Experiemental Validation 

4.4.1 Effect of fiber bundle orientation 

 As manufacturing-dependent parameters for the reconstruction algorithm, the 

dimensions of the SMC molded plate and fiber bundle are designed. A series of 

reconstructed layers following the statistical indicators of real-life SMC composites 

are obtained. After that, the realization of an individual specimen produces different 

morphology of mesostructures, allowing the numerical study of a multiscale model. 

Five tensile specimens are prepared as in the experiment. Because carbon fiber tows 

have 200~300 g/m2 fiber areal weight (FAW), which assumes that they have a 

0.2mm~0.3mm thickness, the individual tensile specimens consist of seven layers 

as discussed in our previous study [71]. The reconstructed molded plate and 

specimens are summarized in Figure 4.8. 

 

 

Figure 4.8. A reconstructed molded plate and specimens using characterized 

statistical indicators 
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(a) 

 

(b) 

 

Figure 4.9. Comparison simulation results with experiments 
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Table 4.4. Mechanical properties from experiment and simulation 

Description Mechanical properties  

 #1 #2 #3 #4 #5 Average COV 

Experiment        

Modulus (GPa) 22.21 22.98 25.63 25.40 23.59 23.96 0.062 

Strength (MPa) 208.2 232.5 257.6 243.8 222.6 232.9 0.081 

Simulation        

Modulus (GPa) 25.88 28.69 24.73 26.86 24.52 26.14 0.065 

Strength (MPa) 223.7 267.4 217.2 233.0 231.3 234.5 0.082 

 

The stress-strain curves from the simulation and experiment are co-plotted in Figure 

4.9(a). The experiment and simulation results are expressed in solid black lines and 

red dotted lines, respectively. Figure 15(b) shows quantitative comparisons of 

experimental and simulation results. The deviation of mechanical properties, as well 

as the average value, is successfully compared. The estimated value of each 

specimen is summarized in Table 4.4.  

 

4.4.2 Comparison with failure patterns of SMC composites 

 After validating the proposed reconstruction modeling, failure patterns of SMC 

composites are observed through the EmCrafts Cube-II scanning electron 

microscope (SEM) machine to verify the constitutive material models. As shown in 

Figure 4.10, failure patterns are summarized as matrix failure, fiber breakage, and 



 

 

 

 

 

 

98 

delamination. Figure 4.10(a) shows the matrix failure in the resin-rich area. Because 

the mechanical properties of the matrix are lower than that of the fiber, the failure 

occurs mainly in the resin-rich area. Figure 4.10(b) shows delamination occurring at 

the interface between fiber bundles. It leads to matrix cracking in the fiber bundle. 

As a result, the failure primarily happened in the matrix region. Figure 4.10(c)-(d) 

shows fiber breakage and delamination between fiber and matrix. This fiber 

breakage has the role of load transferring until the breakage of the SMC composite 

material. Thus fiber breakage means complete breakage of the tensile specimen. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.10. Morphological failure patterns: (a) Matrix failure in the resin-rich area 

(b) Matrix cracking from delamination between fiber bundles (c) Fiber breakage 
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(d) Fiber pullout from delamination between fiber and matrix 

 

The observation of SEM scanning shows the microscopic failure patterns which lead 

to mesoscopic failure patterns indicated in Chapter 4.4. It is explicitly considered 

through the constitutive material models in this study. Furthermore, the simulation 

results reveal the evolution of damage accumulation corresponding to each damage 

mechanism, which is understood in-situ according to the loading conditions. 
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Figure 4.11. Damage evolution of individual constituents according to the loading 

history 

 

Figure 4.11 expresses the damage occurring in each material constitutive model 

according to the loading history. No damage occurs in an initial state. However, as 

the loading increases, damage begins to take place in the matrix and interface regions. 
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Although additional loading also causes damage to the fiber bundle, the transverse 

direction failure of the fiber bundle dominates, which means that failure in the matrix 

occurs mainly in simulation. Since this analysis is implicit, the SMC specimen's 

complete failure cannot be observed due to the convergence problem. Therefore, 

there is a limit to observing up to the longitudinal direction failure in the fiber bundle. 

Moreover, because only mesoscopic damage of SMC composites is considered in 

this research, the delamination between fiber and matrix in microstructure is not 

investigated. However, as observed by SEM and experiments, major failure occurs 

in the matrix. These results indicate successful material constitutive modeling and 

the proposed reconstruction algorithm for SMC composites. 
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Chapter 5. Micromechanics model for SMC 

composites 
 

 In this chapter, a novel hierarchical micromechanics model is presented through 

a multi-step homogenization method. There are three steps for homogenization in 

terms of a fiber bundle, SMC layer, and SMC composite. The first homogenization 

is to model the fiber bundles with wavy fibers. The waviness is implemented by a 

polynomial mathematical expression, a curve-fitting result, and the selected points 

from the prescribed normal distribution. Next, the second homogenization is to 

model the fiber bundles with direction on a single layer. A rotational transformation 

is applied to express the rotated fiber bundle. The overlapping between the fiber 

bundles is also considered through multi-site (MS) Mori-Tanaka (MT) modeling. 

Finally, the third homogenization is introduced by the Rule of Mixtures (ROM) and 

bonds the individual layers into solid SMC composites. The integration of 𝐽2 flow 

rule and Lemaitre-Chaboche damage model are achieved to express the nonlinear 

behavior of SMC composites. The effects of fiber waviness and fiber bundles' 

orientation on mechanical performance are evaluated by parametric study. Moreover, 

the validity of the proposed model is demonstrated by comparing it with the result 

of the literature. 

 

5.1 Hierarchical Micromechanics Model for SMC composites 

 A hierarchical micromechanics model using multi-step homogenization is utilized 

for SMC composites. In particular, the overlapping between fiber bundles could 
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significantly influence the mechanical properties of the composites. The multi-step 

homogenization method proposed in this section can realize such real-life 

mesostructure morphology in the MT model with computational efficiency [101]. 

 There are three steps for evaluating the effective behavior of SMC composites. 

The first homogenization step is to model individual fiber bundles. The second 

homogenization step is to model a unit SMC layer comprising the randomly oriented 

fiber bundles and resin. The third homogenization step is performed based on the 

Rule of Mixtures (ROM) to estimate the effective properties of the final SMC 

composite. The schematic flows for multi-step homogenization are depicted in 

Figure 5.1. 
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(a) First homogenization: homogenized fiber bundles 

 

(b) Second homogenization: homogenized SMC individual layers 

 

(c) Third homogenization: homogenized SMC composites 

Figure 5.1. The procedure for the proposed multi-homogenization method  
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5.1.1 First homogenization: Modeling Fiber bundle with wavy fibers 

 The first homogenization models a bundle with wavy fibers by the OS MT method. 

The projection length of fiber on the x-axis is firstly designated to express the wavy 

fibers in the bundles. By generating z-coordinate values for the locations along the 

x-axis, the wavy fiber can take any arbitrary shape on the x-z plane. 

 

  
(a) (b) 

Figure 5.2. (a) Randomly wavy fibers, (b) Probability function of a z-coordinate 

value 

 

In Figure 5.2, three wavy fibers are exhibited by the same fiber projection length 𝐿 

with six points. These are made of equidistant x-coordinate values and arbitrary z-

coordinate values. The arbitrary z-coordinate values are determined by random 

sampling from a preset normal distribution. Therefore, a standard derivation of the 

normal distribution can control the degree of fibers' waviness. As the standard 

derivation increases, the waviness of the fiber becomes more random. For the 

straight fiber, the standard deviation of the normal distribution is set to zero. 
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As shown in Figure 5.3, a fiber is assumed to lie on the x-z plane. 𝐿  and 𝑊 

indicate the length and width of fiber bundles, respectively. The wavy fiber is in a 

polynomial mathematical expression, 𝑧(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 . The 

coefficients are determined by curve-fitting. It is necessary to calculate the gradient 

along the x-axis. An analytical differentiation determines the gradient along with the 

wavy fiber. 

 

 

Figure 5.3. Representation of random fiber waviness 

 

From the global to local coordinates system, the stress and strain tensors are 

converted through a rotational transformation tensor [𝑇𝑖𝑗], as follows: 

[
 
 
 
 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦]

 
 
 
 
 

= [𝑇𝑖𝑗]
−1

[
 
 
 
 
 
𝜎11
𝜎22
𝜎33
𝜏23
𝜏13
𝜏12]
 
 
 
 
 

 and 

[
 
 
 
 
 
휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑥𝑦]

 
 
 
 
 

= [𝑇𝑖𝑗]
−1

[
 
 
 
 
 
휀11
휀22
휀33
𝛾23
𝛾13
𝛾12]

 
 
 
 
 

 (5.1) 

[𝑇𝑖𝑗] is expressed using fiber angle 𝛼, which is expressed as 
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𝑇𝑖𝑗 =

[
 
 
 
 
 
𝑚2 0 𝑛2 0 2𝑚𝑛 0
0 1 0 0 0 0
𝑛2 0 𝑚2 0 −2𝑚𝑛 0
0 0 0 𝑚 0 −𝑛

−𝑚𝑛 0 𝑚𝑛 0 𝑚2 − 𝑛2 0
0 0 0 𝑛 0 𝑚 ]

 
 
 
 
 

 

, where 𝑚 = cos𝛼 and 𝑛 = 𝑠𝑖𝑛 𝛼. 

(5.2) 

As shown in Figure 5.3, the angle 𝛼 is determined by the derivative of 𝑧(𝑥). Using 

the line integral with [𝑇𝑖𝑗] in Eq. (5.2), the stiffness matrix in the global coordinates 

system can be transformed into the local coordinates system as follows: 

𝑪𝑤𝑎𝑣𝑦
𝑏𝑢𝑛𝑑𝑙𝑒 =

1

𝐿
∫ 𝑇𝑖𝑗

−1 𝑪𝑀𝑇𝑇𝑖𝑗𝑑𝑥
𝐿

0

 (5.3) 

Here, 𝑪𝑀𝑇 is the effective stiffness of the fiber bundle with the unidirectional fiber 

from Eq. (2.24), which can also be denoted as 𝑪𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡
𝑏𝑢𝑛𝑑𝑙𝑒 . Finally, the stiffness of a 

single wavy fiber bundle is obtained through the rotational transformation expressed 

in Eq. (5.3). Figure 5.4 illustrates the modeling procedures of the fiber bundle. 𝑓𝑚 

and 𝑓𝑓 are the volume fractions of the matrix and fiber, respectively. 
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Figure 5.4. The micromechanics modeling of a wavy fiber bundle 

 

5.1.2 Second homogenization: Modeling unit SMC layer with directional flow 

and overlapping parts 

 Next, the second MT modeling and homogenization are performed by embedding 

the fiber bundles with the desired orientation into the SMC layer. In the classical 

Mori-Tanaka homogenization, the fiber bundles are aligned to the x-axis direction in 

the global coordinate system. However, in the case of SMC composites 

manufactured by the compression molding process, the fiber bundles could be non-

uniformly oriented. Therefore, each layer of SMC composites comprises non-

uniformly oriented fiber bundles. Effects of such non-uniform orientation on the 

effective properties of the composites are evaluated through an orientation averaging 

tensor, which is initially proposed by Odegard et al. [102]. The stiffness tensor with 

the direction of the SMC layer is expressed in Eq. (5.4).  

𝑪l𝑎𝑦𝑒𝑟 = (𝑓0𝒄
0 +∑𝑓𝐼〈𝒄

𝐼: 𝒂𝐼〉

𝑁

𝐼=1

) : (𝑓0〈𝒂
0〉 +∑𝑓𝐼

𝑁

𝐼=1

〈𝒂𝐼〉)

−1

 (5.4) 

In this equation, the inclusion stiffness (𝒄𝐼 ) is replaced into 𝑪𝑤𝑎𝑣𝑦
𝑐ℎ𝑖𝑝

  in the first 

homogenization step. The fiber bundles are considered inclusions in the second 

homogenization for the SMC layer modeling. The notation 〈 〉  represents the 

orientation-averaging tensor computed by Eq. (5.5), as follows, 

〈𝑋〉𝑖𝑗𝑘𝑙 =
∫ ∫ 𝑋𝑖𝑗𝑘𝑙

′ (𝜙, 𝜃)𝜆(𝜃)𝑠𝑖𝑛𝜃𝑑𝜙
𝜋

−𝜋

𝜋
2
0

𝑑𝜃

∫ ∫ 𝜆(𝜃)𝑠𝑖𝑛𝜃𝑑𝜙
𝜋

−𝜋

𝜋
2
0

𝑑𝜃

, (5.5) 
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where 𝜆(𝜃) is the function of 𝜃. 𝑋𝑖𝑗𝑘𝑙
′  is the transformed tensor from the local to 

global coordinate systems. 𝑋𝑖𝑗𝑘𝑙
′  is defined in Eq. (5.6). 

𝑋𝑖𝑗𝑘𝑙
′ = 𝑡𝑖𝑝𝑡𝑗𝑞𝑡𝑘𝑟𝑡𝑙𝑠𝑋𝑝𝑞𝑟𝑠 

, where 𝒕 = [
cos 𝜃 −sin 𝜃 0

sin𝜃 cos𝜙 cos𝜃 cos𝜙 − sin𝜙
sin𝜃 sin𝜙 cos 𝜃 sin𝜙 cos𝜙

], 

(5.6) 

Here, 𝜙 and 𝜃 are the azimuthal and polar angles denoted in Figure 5.5. 

 

 

Figure 5.5. Defining the angles of fiber bundles' orientation 

 

To express the random orientation of the fiber bundles, 𝜆(𝜃) is assumed to follow 

Eq. (5.7). 

𝜆(𝜃) = 𝑒−𝑘𝜃
2
 (5.7) 

As 𝑘 decreases to zero, the fiber bundles are randomly oriented. On the other hand, 

when the 𝑘 diverges to an infinite value, fiber bundles become aligned in the x-axis 
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direction. Thus, the fiber bundles' orientation changes with 𝜆(𝜃) . The 

manufacturing process naturally makes randomly distributed fiber bundles. 

 The orientation of fiber bundles and the overlapping between fiber bundles occur 

due to the high volume fraction during the compression molding process. Since the 

SMC layer is set to one unit depth, as shown in Figure 5.6, the overlapping parts 

from the lower layer are considered existent inclusions in the current layer. 

 

 

Figure 5.6. Overlapping parts of bundles and mapping to the upper layer 

 

In this paper, the overlapping parts are assumed individual ellipsoidal inclusions. 

Therefore, the shape of overlapping parts is defined by a diameter and aspect ratio. 

As shown in Figure 5.7(a), there are many overlapping parts because of the high 

volume fraction of the SMC composites. Therefore, the realization of an overlapping 
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part, defined as an arbitrary size, is achieved in the micromechanics model. Because 

the shape of the overlapping parts is unpredictable, the aspect ratio is assumed to 

follow the normal distribution, as shown in Figure 5.7(b). The SMC layer modeling 

uses the multi-site (MS) MT model because the overlapping parts are considered 

ellipsoidal inclusions with different sizes. 

  

(a) (b) 

Figure 5.7. (a) The contents of SMC composites (b) the normal distribution in 

terms of aspect ratio (AR) for overlapping parts 

 

A suitable volume fraction of the overlapping phases should be determined for the 

MS MT modeling. The 20 trials with a 10% overlapping volume fraction of the MS-

MT model are computed for the elastic modulus. The 20 trial simulations use the 

parameters in the simulation. The results are then compared with that of Görthofer 

et al. [22]. As shown in Figure 5.8, when the overlapping phases are insufficient, the 

calculated modulus is slightly larger than the value in the literature. Moreover, the 

variance of modulus appears to be gradually converged as the number of overlapping 

phases increases. Given that a large number of phases lead to tremendous 

computational time, the number of overlapping phases is set to five, which satisfies 

both validity and computational efficiency. 
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Figure 5.8. Effect of the number of overlapping phases on the effective elastic 

modulus 

 

5.1.3 Third homogenization: Combining SMC layers using ROM 

 Finally, the effective properties of the SMC composites are obtained through the 

Rule of the mixtures (ROM) with virtual layer-by-layer laminations. The 

homogenized unit SMC layers are laminated into an SMC solid composite. 

Depending on the preset variables, SMC layers have different homogenized 

properties calculated in the second homogenization. The effective stiffness of SMC 

composites is expressed with the homogenized unit layers' stiffnesses, as follows: 

𝑪𝑆𝑀𝐶 = ∑
𝑪𝑖
𝑙𝑎𝑦𝑒𝑟

𝑁𝑙𝑎𝑦𝑒𝑟

𝑁𝑙𝑎𝑦𝑒𝑟

𝑖

 (5.8) 

where 𝑁𝑙𝑎𝑦𝑒𝑟  is the total number of layers. In Eq.(5.8), because the layers 

constituting the SMC composite are assumed to have the same thickness, the volume 



 

 

 

 

 

 

113 

fraction of each layer is 1/𝑁𝑙𝑎𝑦𝑒𝑟. As a result, the average value of layers' effective 

stiffness is the effective stiffness of the SMC composites. 

 The multi-step homogenization for SMC composites is summarized in Figure 5.9. 

The OS and MS models of the MT method are utilized on the fiber bundle and SMC 

layer, respectively. And then, the Rule of Mixtures (ROM) is applied to calculate the 

effective stiffness of SMC composites. This algorithm starts from the strain 

increment of SMC composites. The SMC composites' strain is divided into phases 

of matrix and fiber bundles. Furthermore, the strain of fiber bundles is once more 

separated into the matrix and fiber phases. The first homogenization is conducted 

based on the material properties of fiber and matrix. The effective stiffness and stress 

of the fiber bundle with wavy fibers are transferred to the second homogenization. 

The effective stiffness of the SMC layer is constructed based on the orientation 

averaging tensor owing to non-uniformly distributed fiber bundles. During the 

second homogenization, overlapping parts are simultaneously considered by 

assuming ellipsoidal inclusions. The final step is to obtain the effective stiffness of 

SMC composites through ROM. The simulations at each stage are concurrently 

performed because ductile damage plasticity of the matrix is applied to the matrix 

phase. As an input, the strain increment of SMC composites is entered into this 

algorithm. Through the multi-step homogenization, the stress increment of SMC 

composites is calculated as output. 
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Figure 5.9. Flowchart of multi-step homogenization 

 

5.2 Numerical Simulation Results and Discussion 

5.2.1 Model Validation with the literature 

 The proposed hierarchical micromechanics model is validated based on the results 

from the literature. Görthofer et al. developed a rapid microstructure generator of 

SMC composites through closure approximations for the fiber orientation tensor [22]. 

They utilized E-glass fiber and unsaturated polyester polyurethane hybrid (UPPH) 

resin for fiber bundles. The material properties are summarized in Table 5.1. 
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Table 5.1. Material parameters of fiber bundles [103] 

 E-glass fibers UPPH matrix 

Young’s Modulus (GPa) 72 3.4 

Shear Modulus (GPa) 29.51 1.23 

Poisson ratio 0.22 0.385 

 

 They used numerical full-field homogenization of a representative fiber bundle. 

Fiber bundles consisting of approximately 225 aligned continuous fibers with a 

diameter of approximately 13.5μm  are cut to a 25.4mm length. A fiber volume 

fraction within a fiber bundle is set to 50%. The comparison of elastic properties, 

with "𝐿" standing for longitudinal and "𝑇" for transverse direction, is summarized in 

Table 5.2. 
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Table 5.2. Results comparison of fiber bundles 

 Görthofer [22] MT method 

𝐸𝐿 (GPa) 37.73 38.75 

𝐸𝑇 (GPa) 10.33 10.61 

𝐺𝐿 (GPa) 3.58 4.87 

𝐺𝑇 (GPa) 3.64 4.87 

𝑣𝐿 0.477 0.489 

𝑣𝑇 0.292 0.318 

 

All the material properties reasonably match with results from the literature. And 

then, the elastic properties of SMC composites are evaluated and also compared with 

the literature. Görthofer et al. constructed the SMC model with a fiber bundle [22]. 

The size of fiber bundles is designed 50mm×5mm and distributed in 

250mm×250mm plates with seven layers. The orientation tensor is determined 

through μ-CT (Computed Tomography) scans and image processing. The resulting 

effective orthotropic engineering properties are collected in Table 5.3. 
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Table 5.3. Comparison of effective elastic properties of SMC composites for the 

proposed method and literature (unit: GPa). 

 Görthofer [22] Trauth [36] Kehrer [103] MT model 

𝐸𝑥  9.42 10.96 ± 0.3 10.92 ± 0.6 9.88 ± 0.5 

𝐸𝑦  8.21 9.25 ± 1.0 8.28 ± 0.5 7.46 ± 0.6 

𝐸𝑧  6.19   7.46 ± 0.6 

𝐺𝑦𝑧  1.95   3.02 ± 0.5 

𝐺𝑥𝑧  1.96   3.02 ± 0.5 

𝐺𝑥𝑦  3.11   3.43 ± 0.4 

𝑣𝑦𝑧 0.398   0.398 ± 0.1 

𝑣𝑥𝑧 0.368   0.385 ± 0.1 

𝑣𝑥𝑦 0.342   0.385 ± 0.1 

 

 In the proposed model, for imitating the orientation tensor in the literature, fiber 

bundles are distributed in a matrix with an orientation variable 𝑘=0.32. The number 

of overlapping types is set to five (six types of inclusions, including SMC bundles) 

with a 10% volume ratio in the total fiber volume. With the 50% bundles' volume 

fraction in each layer, the fiber volume fraction of 25% is achieved in this 

comparison. The variance of the material properties is obtained out of ten trials with 

the randomness of the waviness (std=1). The proposed method is compared with 

experiments and the literature with high accuracy, demonstrating the proposed 



 

 

 

 

 

 

118 

method's validity. The slight difference may be attributed to waviness and orientation 

effects that cannot coincide precisely with the experiments and the literature. 

 

5.2.2 Effect of waviness and orientation 

 The manufacturing-dependent fibers' waviness and bundles' orientation greatly 

influence on elastic properties of the SMC composites. In this section, the effect of 

fibers' waviness within bundles is investigated through a case study. For 

micromechanics modeling, the material properties of constituents in Table 5.1 are 

assumed, and a monotonic loading is applied in the longitudinal direction. Wavy 

fibers are set as explained in Chapter 5.1 and classified into three cases. The stress-

strain responses of fiber bundles are summarized in Figure 5.10(a). The results show 

that the existence of waviness reduces mechanical properties. 

 

(a) 
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(b) 

 

Figure 5.10. The stress-strain curves (a) the influence of the waviness on the SMC 

bundle and (b) the influence of the orientation on SMC composites 

 

 Next, with the increment of the orientation variable 𝑘 , the longitudinal and 

transverse stress-strain behavior of the SMC composites are plotted in Figure 5.10(b). 

The anisotropy of SMC composites is expressed by 𝜆(𝜃) that is a function of 𝑘. 

The schematic tendency of anisotropy is depicted in Figure 5.11. The behavior in the 

longitudinal direction becomes stiffer as fiber bundles are aligned to the 

corresponding direction. When fiber bundles are randomly distributed, the elastic 

behavior along the x and y directions becomes similar. The parametric study 

demonstrates that waviness and orientation are critical parameters determining the 

elastic behavior of both fiber bundles and SMC composites. Further study is 

conducted by calculating the nonlinear behavior of SMC composites under cyclic 

loading. 
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Figure 5.11. The change of bundle orientation with an increment of 𝒌 

 

5.2.3 The SMC micromechanics model under cyclic loading 

 In this section, the hierarchical micromechanics model is conducted to obtain the 

nonlinear behavior of the SMC composites under cyclic loading. The cyclic loading 

condition is applied to the x-axis, as shown in Figure 5.12. The strain is cyclic in the 

interval [-0.04, 0.04]. The amplitude of strain is prescribed so that it reaches a plastic 

regime for nonlinear behavior. 

(a) 
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(b) 

 

Figure 5.12. Cyclic loading condition and the response of SMC composites: (a) 

Cyclic loading condition (b) cyclic stress-strain curve 

 

During the OA loading process, the continuous increment of strain causes plasticity 

with ductile damage. Once the strain arrives at the positive maximum loading point 

A, the loading strain begins to decrease until the negative maximum loading point C 

linearly. The response of SMC composites follows the elastic properties until 

reaching the plastic regime. After that, a hardening slope with ductile damage 

appears. As a result, unrecoverable plastic strain is generated in the compressive 

loading. In this simulation, CF/PA6 SMC composites are modeled. The material 

parameters are referred from the literature [104, 105] 
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(a) 

 

(b) 

 

Figure 5.13. Cyclic stress-strain responses (a) waviness (b) orientation distribution 

 

Figure 5.13(a) indicates the effect of waviness on the cyclic stress-strain responses 

of SMC composites. The volume fraction of fiber and orientation variable 𝑘 are 

prescribed as 20% and 0.1, respectively. The fiber bundles with three different kinds 

of waviness are generated through the calculation. Figure 5.13(a) shows that the 
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waviness negatively influences both elastic and damage-plastic regimes. Next, 

Figure 5.13(b) shows that the random distribution with 𝑘=0 decreases the material 

properties not only elastic but also damage-plastic regime. All the models have wavy 

fibers in the fiber bundles with std=2. Since the aligned fibers to the loading direction 

provide enormous elastic and plastic, the randomly distributed fiber bundles lead 

SMC composites to diminish the performance along the loading direction. 
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Chapter 6. Conclusion 

 

6.1 Summary 

 In the dissertation, novel multiscale modeling and analysis were presented to 

understand the mechanical behavior of SMC composites. Mechanical modulus and 

strength are investigated and further validated with the experimental results.  

 First, the homogenization methods for composite materials having heterogeneous 

microstructures were introduced in Chapter 2. Homogenization methods mainly 

dealt with FE-based direct numerical simulation (DNS) and Mori-Tanaka (MT) 

method as mean-field homogenization (MFH). The types and features of boundary 

conditions for DNS were covered. As a result, microstructure representative volume 

element (RVE) under periodic boundary condition (PBC) showed a good agreement 

with the experimental results even in small size RVE. Next, MT homogenization is 

implemented for efficient analysis. The interactive method for global concentration 

tensor was introduced for nonlinear analysis. It allowed the calculation of effective 

properties through the interaction between different inclusions. The shape of 

inclusion was expressed as Eshelby tensor, and isotropization of the tangent modulus 

when calculating Eshelby’s solution was implemented to avoid over-estimating the 

mechanical properties of composite materials. J2 plasticity and Lemaitre-Chaboche 

ductile damage models were combined to predict the ductile damage behavior of the 

epoxy matrix. These highly nonlinear constitutive modeling schemes were integrated 

into an incremental Mori-Tanaka (MT) micromechanics framework. The ductile 
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damage plasticity MT model was reasonably verified by comparing it with the FE-

based DNS model in predicting the effective stress-strain behavior. Both DNS and 

MT models gave rise to higher reinforcing effects on the composite by increasing 

the volume fraction. Salient softening behavior was observed at a relatively lower 

volume fraction. 

Next, a novel multiscale modeling method for SMC composites is proposed using 

micro-CT image processing procedures and a novel bundle packing reconstruction 

algorithm. The dispersion and direction as well as the shape of fiber bundles were 

determined by micro-CT image processing. Linear static finite element analysis was 

conducted based on the reconstructed models. Different strain measurement 

techniques were adopted when predicting the SMC composites' elastic modulus and 

successfully validated the prediction against the experimental results. The effect of 

the number of layers in the predictions of strength and modulus of actual specimens 

was identified, and the comparison was successfully conducted with experimental 

results measured differently: crosshead-based and DIC-based. Furthermore, the 

prediction of SMC composites' strength and modulus through static FE simulations 

was investigated. 

 Based on the reconstructed SMC mesostructure model, a multiscale failure and 

damage analysis methodology was presented. The reconstructed model efficiently 

considered the inherent characteristics of SMC composites. The elastic modulus and 

strength were evaluated depending on the statistical indicators representing the fiber 

bundle's orientation and dispersion. Because the mechanical performance was highly 

related to the orientation indicator, the analytical expression between orientation and 
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mechanical properties was constructed. According to the dispersion of fiber bundles, 

the degree of scattering in modulus and strength is changed simultaneously. 

Although highly clumped dispersion decreased the strength of SMC composites, the 

modulus maintains a consistent value. As a result, it was revealed that the influence 

of dispersion was only related to strength property. The validation for the 

reconstruction SMC RVE was well conducted by comparing the stress-strain curve 

with the tensile experimental result. Moreover, reasonable verification for material 

constitutive models was also achieved by investigating the damage patterns with 

SEM images.  

 Finally, a novel multi-step homogenization method for SMC composites was 

developed by considering manufacturing-induced defects. Mainly, fibers' waviness 

and bundles' orientation were defined in the micromechanics model through a 

statistical formulation. The influence of these parameters on the elastic and nonlinear 

behavior of SMC composites was investigated through the parametric study. 

Moreover, the proposed method was successfully validated against the literature. 

 

6.2 Contributions of the Present Work 

 The major contributions of the present dissertation can be summarized as follows:  

 

i. A novel stochastic reconstruction algorithm is developed to construct 

SMC mesostructure, which employs orientation and local volume 

fraction (dispersion) as statistical indicators. Depending on the 
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statistical indicators, the reconstructed SMC mesostructure shows 

different geometry and different mechanical behavior. Most of all, 

deviations from experiments are realized as a function of statistical 

indicators. Therefore, the mechanical behavior of SMC composites 

including elastic modulus and strength is predictable using the 

computational simulation. 

ii. Because of the high fiber volume fraction and geometric complexity, 

both flexible and rigorous conditions have to be applied in the 

reconstruction algorithm. The solution is to realize the overlapping 

between the fiber bundles which can consider the undulation of the 

bundles laid on the upper side. Moreover, it can allow high-dense 

inclusion in the designed space, which is suitable for SMC composites. 

iii. Micro CT-image processing is presented to characterize the 

microstructure of SMC composite. Fiber orientation and dispersion are 

determined through captured CT images, which are employed as 

statistical indicators in the reconstruction algorithm. Average tensors are 

replaced with the direct probability density function (PDF) to express 

more sophisticated distributions. 

iv. Depending on the number of layers of SMC composites, modulus and 

strength are varied because of the capacity of load transfer between the 

adjacent layers. It implies that the parts with thinner layers can expect 

higher mechanical performance. Moreover, the methodology of 
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strength prediction in linear static analysis is presented by calculating 

the volume-averaging scheme in the matrix region. 

v. A three-dimensional (3D) multiscale analysis is conducted by bridging 

between micro-meso-macroscopic features. Nonlinear analysis for 

SMC composites is conducted to predict both elastic modulus and 

strength. Through this methodology, major failure modes observed in 

tensile testing are also expressed in the computational simulation.  

vi. Because SMC composites can be involved in chopped fiber-reinforced 

composites, this method can extend its ability to other short-fiber 

reinforced composites in terms of considering orientation and 

dispersion. 

vii. Three-step homogenizations are performed to bridge the features in 

each length scale. At the micro-scale, manufacturing-induced defects 

are considered in the RVE models in terms of waviness. It incurs a 

significant decline in the mechanical modulus of the fiber bundle. 

Adopting overlapping when modeling the mesostructure of SMC 

reduces the variance of outcomes, which is led to good agreement with 

the experimental values. Finally, nonlinear analysis is conducted with 

low-computing power. 

 

As a result, the present dissertation successfully suggests multiscale analysis for 

SMC composite materials. SMC modulus and strength are evaluated based on the 

material constitutive models and mesostructure. Nonlinear behavior is also 
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investigated with both FE and MT. Its validity is demonstrated by comparison with 

experimental results. 

6.3 Limitation and Future Work 

 In addition to the present work, there are a few challenging further works as 

follows: 

 

i. Compression molding simulation should be accompanied to determine 

a correlation between molding conditions and the placement of fiber 

bundles. As a purpose of design, manufacturing conditions will be 

changed. 

ii. Mapping features from the mesostructure to the macroscale part with 

complex geometry is required to develop the structural simulation. In 

the automotive industry, SMC composites are applied to front and rear 

panels as well as battery cases. 

iii. For large SMC parts, multiple initial charges are utilized and create 

weld lines during the compression molding process. It is among the 

most detrimental defects. Although many studies have been reported on 

short-fiber composite, bundle-based weld lines are still unclear. 

iv. Process-structure-property relationship can be defined when the above 

future works are addressed. Eventually, an efficient design process can 

be achieved using virtual models. Based on the accumulated data from 
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the simulation, artificial intelligence is also adapted to the design 

problem. 
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Appendix A 

Progressive Damage Model for Mori-Tanaka Method 
 

A.1 Ductile Damage Plasticity Model 

 All state variables such as stress, strain, stiffness, etc. are for the ductile matrix. 

The strain components of the material can be divided into elastic and plastic parts, 

𝜺 = 𝜺𝑒 + 𝜺𝑝, (A.1) 

where 𝜺 denotes the total strain tensor and superscripts “e” and “p” indicate the 

elastic and plastic parts, respectively. Then, by Hooke’s law and Eq. (A.1), the stress-

strain relation is expressed as 

𝝈 = 𝑪: 𝜺𝑒 = 𝑪: (𝜺 − 𝜺𝑝), (A.2) 

where 𝑪 is the fourth-order elasticity tensor. For an isotropic linear elastic material, 

𝑪 is expressed as index notation, 

𝐶𝑖𝑗𝑘𝑙 =
𝐸

2(1 + 𝜈)
(𝛿𝑖𝑙𝛿𝑗𝑘 + 𝛿𝑖𝑘𝛿𝑗𝑙) +

𝜈𝐸

(1 + 𝜈)(1 − 2𝜈)
𝛿𝑖𝑗𝛿𝑘𝑙 , (A.3) 

where 𝛿𝑖𝑗 is the Kronecker delta; and E and ν are Young’s modulus and Poisson 

ratio, respectively. An internal variable 𝐷 represents the damage state in the matrix. 

Any solution variable in a damaged state is denoted by ( ∙ ) as 

( ∙ ) = (1 − 𝐷)( ∙ ̅),where (0 ≤ 𝐷 < 1). (A.4) 

For an elastoplastic material that obeys 𝐽2 flow, the von Mises yield function, 𝜙 is 

represented as 

𝜙(�̅�𝑒 , 𝑅(𝑝)) = �̅�𝑒 − 𝑅(𝑝) − 𝜎𝑦0, (A.5) 
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where 𝜎𝑒  is the effective stress, 𝜎𝑦0  is the initial yield stress, 𝑅(𝑝)  is the 

hardening function, and 𝑝 is the effective plastic strain. They are defined as follows: 

𝜎𝑒 = √
3

2
�̅�: �̅�  , where �̅� = �̅� −

1

3
𝑡𝑟(�̅�) 

𝑅(𝑝) = 𝑘𝑝𝑚  , where 𝑝 =
𝑟

1−𝐷
 

(A.6) 

Here, 𝑘 and 𝑚 are parameters associated with isotropic hardening in the form of 

power laws. 𝒔  is the deviatoric stress. In this paper, isotropic hardening is only 

considered because the primary interest is the expansion and contraction behavior of 

the yield surface during plastic deformation under monotonic loading. If 𝜙 < 0, the 

behavior remains elastic. On the other hand, if 𝜙 > 0, then �̇� is positive. the plastic 

strain tensor increment obeys the normal plastic flow, which is summarized by 

휀̇𝑝 = �̇�𝑵  , where 𝑵 =
𝜕𝜙

𝜕�̅�
=

3

2

�̅�

�̅�𝑒
, �̇� = √

3

2
휀̇𝑝: 휀̇𝑝 (A.7) 

where 𝑵 is the normal vector to the yield surface in the effective stress space. In 

this formulation, the internal variable 𝑝 stands for the accumulated plastic strain. In 

a damaged state, the constitutive relationship is expressed as: 

𝝈 = (1 − 𝐷)𝑪: (𝜺 − 𝜺𝑝). (A.8) 

The evolution of the damage is associated with �̇� in the Lemaitre-Chaboche model. 

�̇� = {

0                        𝑖𝑓 𝑝 ≤ 𝑝𝑐

(
Y

S0
)
𝑠

�̇�                   𝑖𝑓 𝑝 > 𝑝𝑐
 (A.9) 

In this expression, 𝑝𝑐 is a plastic threshold for the evolution of damage prescribed 

as zero in this paper. In other words, the onset of damage occurs when plastic 

deformation is initiated. The damage variables are defined as follows, 
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𝑦 = (
𝑌

𝑆0
)
𝑠

 

𝑌 =
1

2𝐸
(
�̅�𝑒

1 − 𝐷
)
2

𝑅𝑣 

𝑅𝑣 =
2

3
(1 + 𝜈) + 3(1 − 2𝜈) [

�̅�𝐻
�̅�𝑒
]
2

    , �̅�𝐻 =
�̅�𝑘𝑘
3
, 

(A.10) 

where S0 and s are material parameters and �̅�𝐻 is the hydrostatic pressure. This 

section derives an iterative stress update algorithm for the matrix phase used in both 

elastic and plastic regimes. The stress update is related to hardening and ductile 

damage. [98, 106]. 

 

A.2 Algorithm Tangent Operator for Mori-Tanaka Method 

 All variables with subscript “(∙)n+1” are computed at the current time increment. 

The algorithmic tangent operator relates the increments of stress and strain as 

δ�̂�𝑛+1 = �̂�
𝑎𝑙𝑔: 𝛿𝜺𝑛+1 (A.11) 

In the general framework for �̂�𝑎𝑙𝑔, the derivation is proposed by Doghri [107]. In 

this paper, we summarize the important formulations leading to the effective 

algorithmic tangent operator �̂�𝑎𝑙𝑔. This can be expressed as follows: 

�̂�𝑎𝑙𝑔 = 𝑪𝑒𝑙 − (2𝐺)2
∆𝑝

1 + 3 2⁄ 𝑔

𝜕2𝜙

𝜕�̂�𝜕�̂�
−
2

3
�̂�⨂(2𝐺�̂�) + (

2

3

𝑑𝑅

𝑑𝑟
�̂�)⨂

𝒏𝑎𝑙𝑔

ℎ𝑎𝑙𝑔
 (A.12) 

where 𝐺 denotes the material shear modulus and the operator “⨂” designates the 

tensor product. The parameter 𝑔 and tensor 
𝜕2𝜙

𝜕�̂�𝜕�̂�
 are given by: 
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𝑔 =
2𝐺∆𝑝

𝐽2(�̂�)
 

𝜕2𝜙

𝜕�̂�𝜕�̂�
=

1

𝐽2(�̂�)
(
3

2
𝑰𝑑𝑒𝑣 − �̂�⨂�̂�) 

(A.13) 

Here, 𝑰𝑑𝑒𝑣 the deviatoric part of the fourth-order symmetric identity tensor. In Eq. 

(A.12), the tensorial quantity 𝒏𝑎𝑙𝑔 yields: 

𝒏𝑎𝑙𝑔 = [(1 − 𝐷) − 𝑦∆𝑝 + 2𝐺(∆𝑝)2
𝜕𝑦

𝜕�̂�
: �̂�] (2𝐺�̂�) 

−3𝐺(∆𝑝)2 [𝑪𝑒𝑙 − (2𝐺)2
∆𝑝

[1 + (
3
2)𝑔]

𝜕2𝜙

𝜕�̂�𝜕�̂�
] :
𝜕𝑦

𝜕�̂�
 

(A.14) 

The parameter ℎ𝑎𝑙𝑔 is expressed as follows: 

ℎ𝑎𝑙𝑔 = 3𝐺 + [(1 − 𝐷) − 𝑦∆𝑝 + 2𝐺(∆𝑝)2
𝜕𝑦

𝜕�̂�
: �̂�]

𝑑𝑅

𝑑𝑟
 (A.15) 

Differentiation of the damage model y for the effective stress �̂� and deviatoric stress 

�̂� in Eq. (A.14) and (A.15) are given by: 

𝜕𝑦

𝜕�̂�
=
𝜕𝑦

𝜕𝑌
:
𝜕𝑌

𝜕�̂�
 

= (𝑠 (
1

𝑆0
)
𝑠

𝑌𝑠−1) [
1

2𝐸(1 − 𝐷)2
(2(1 + 𝜈𝑚)𝑰

𝑑𝑒𝑣�̂�𝑑𝑒𝑣 +
2

3
𝜎𝐻(1 − 2𝜈𝑚)𝑰

𝑣𝑜𝑙)] 

, where 𝑰𝑣𝑜𝑙 = [1 1 1 0 0 0]𝑇 

𝜕𝑦

𝜕�̂�
=
𝜕𝑦

𝜕�̂�
:
𝜕�̂�

𝜕�̂�
= (𝑠 (

1

𝑆0
)
𝑠

𝑌𝑠−1) [
1

2𝐸(1 − 𝐷)2
(2(1 + 𝜈𝑚)�̂�

𝑑𝑒𝑣)] 

(A.16) 

Taking variation of σ = (1 − D)�̂�, we obtain the relationship 

𝛿𝝈 = (1 − 𝐷)𝛿�̂� − �̂�𝛿𝐷 (A.17) 
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𝛿𝐷 = 𝑦𝛿𝑝 + (Δ𝑝)
𝜕𝑦

𝜕�̂�
: 𝛿�̂� 

After deriving variations of the damage variable D from Eq. (A.17), we can derive 

the algorithmic tangent operator 𝑪alg, such that: 

𝑪𝑎𝑙𝑔 = (1 − 𝐷)�̂�𝑎𝑙𝑔 − �̂�⨂{(∆𝑝)�̂�𝑎𝑙𝑔:
𝜕𝑦

𝜕�̂�
+
2

3
𝑦�̂� −

𝑦

3𝐺

𝑑𝑅

𝑑𝑟

𝒏𝑎𝑙𝑔

ℎ𝑎𝑙𝑔
} (A.18) 

We introduce the mid-point rule at 𝑛 + 𝛼 to alleviate the increment size effect and 

improve the accuracy. The effective consistent(or algorithmic) tangent stiffness is 

newly calculated as  

𝐶𝑛+𝛼
𝑎𝑙𝑔

= (1 − 𝛼)𝐶𝑛
𝑎𝑙𝑔

+ 𝛼𝐶𝑛+1
𝑎𝑙𝑔

 (A.19) 

Explicit and implicit integrations correspond to α = 0  and α > 0 , respectively, 

with special cases: α = 1(backward Euler) and α = 1/2(mid-point rule). The mid-

point rule is utilized for both inclusion and matrix for calculating the algorithmic 

tangent operator. 

 

A.3 Fully implicit update of interval variables 

 The 𝐽2  plasticity model with the Lemaitre-Chaboche damage model includes 

three independent variables (𝑟𝑛+1, 𝐷𝑛+1, �̂�𝑛+1) at tn+1 To solve for the internal 

state variable at tn+1, the fully implicit radial return mapping method is utilized in 

this paper.  

�̂�𝑛+1 = 𝑪
𝑒𝑙: (𝜺𝑛 + ∆𝜺 − 𝜺𝑛

𝑝
− ∆𝜺𝑝) = �̂�𝑛+1 = �̂�𝑛+1

𝑡𝑟𝑖𝑎𝑙 − 𝑪𝑒𝑙: ∆𝜺𝑝 (A.20) 

where �̂�𝑛+1
𝑡𝑟𝑖𝑎𝑙  is the equivalent trial stress. The assumption of the trial stress is 

incorrect when plastic deformation occurs. In this case, we need to find a �̂�𝑛+1 that 
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satisfies 𝜙 = 0. This process is called as a plastic corrector. Due to 𝑇𝑟(∆휀𝑝) = 0, 

Eq. (A.20) is converted to the form 

�̂�𝑛+1 = �̂�𝑛+1
𝑡𝑟𝑖𝑎𝑙 − 2𝐺∆𝜺𝑝 (A.21) 

The main equations for updating the internal variables are summarized as follows. 

�̂�𝑛+1 = �̂�𝑛+1
𝑡𝑟𝑖𝑎𝑙 − 2𝐺∆𝜺𝑝    where ∆𝜺𝑝 = ∆𝑝�̂�  

𝜙 = �̂�𝑒 − 𝑅(𝑝) − 𝜎𝑦0 = 0 

∆𝐷 = 𝑦(�̂�)∆𝑝     where ∆𝑝 =
1

(1−𝐷)
∆𝑟 

(A.22) 

In Eq. (A.22), equations are rearranged to the following system of nonlinear 

equations to be simultaneously solved for three unknowns ∆𝑟, ∆𝐷 and �̂�𝑒. 

𝑓1 ≡ �̂�𝑒 − �̂�𝑒
𝑡𝑟𝑖𝑎𝑙 + 3𝐺

∆𝑟

1 − 𝐷
= 0 

𝑓2 ≡ �̂�𝑒 − 𝑅(𝑟) − 𝜎𝑦0 = 0 

𝑓3 ≡ ∆𝐷 − 𝑦(�̂�)
∆𝑟

1 − 𝐷
= 0 

(A.23) 

It is considerably complicated when damage evolution is coupled with plastic 

deformation because of the increasing number of solution variables. Newton’s 

iterative method is utilized to solve this complex nonlinear system. For each iteration, 

the corrections obey the equations in Eq. (A.23). Note that solving all three equations 

simultaneously with Newton’s method may create a convergence problem. Therefore, 

we solve the first two equations (i.e., 𝑓1 and 𝑓2) that are independent of ∆𝐷 and 

these two equations are solved for ∆r. Once ∆r is found, the remaining unknown 

parameters ∆𝐷 can be calculated. First, a new function 𝑓4 is defined by combining 

𝑓1 with 𝑓2. 



 

 

 

 

 

 

137 

𝑓4 = �̂�𝑒
𝑡𝑟𝑖𝑎𝑙 − 3𝐺

𝛥𝑟

1 − 𝐷
− 𝑅(𝑟) − 𝜎𝑦0 = 0 (A.24) 

Which is a nonlinear function of incremental plastic strain ∆𝑟. Therefore, it is solved 

by Newton’s iterative method. For this purpose, 𝑓4 is expressed in the Taylor series 

up to the first-order term 

𝑓4 +
𝜕𝑓4
𝜕∆𝑟

𝑑∆𝑟 + ⋯ = 

�̂�𝑒
𝑡𝑟𝑖𝑎𝑙 − 3𝐺

𝛥𝑟

1 − 𝐷
− 𝑘𝑟𝑚 − 𝜎𝑦0 + (−3𝐺

1

1 − 𝐷
− 𝑘𝑚𝑟𝑚−1)𝑑∆𝑟 = 0 

(A.25) 

From this formulation, we can obtain ∆r through Newton's iteration until satisfying 

𝜙 = 0 as expressed in Eq. (A.26). 

𝑑∆𝑟 =
�̂�𝑒
𝑡𝑟𝑖𝑎𝑙 − 3𝐺

𝛥𝑟
1 − 𝐷 − 𝑘𝑟

𝑚 − 𝜎𝑦0

−3𝐺
1

1 − 𝐷 − 𝑘𝑚𝑟
𝑚−1

 

∆𝑟(𝑘+1) = ∆𝑟(𝑘) + 𝑑∆𝑟 

(A.26) 

where (𝑘) denotes the number of iterations. After the plastic strain increment, ∆r is 

determined, ∆𝑝 and ∆𝐷 are also determined by the relations in Eq. (A.27). 

∆𝑝 =
∆𝑟

1 − 𝐷
 

∆𝐷 =
𝑦∆𝑟

1 − 𝐷
 

(A.27) 

Therefore, the algorithmic tangent operator in Eq. (A.18) can be calculated using the 

updated internal variables. Finally, we can update stresses, damage, and plasticity-

related variables at the time 𝑡𝑛+1 as follows: 

�̂�𝑛+1 = �̂�𝑛 + 𝛥�̂�
(𝑘+1) 

𝑝𝑛+1 = 𝑝𝑛 + 𝛥𝑝
(𝑘+1) 

(A.28) 
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𝐷𝑛+1 = 𝐷𝑛 + 𝛥𝐷
(𝑘+1)∆𝐷 =

𝑦∆𝑟

1 − 𝐷
 

Finally, a computational procedure for the modified Mori-Tanaka scheme is 

summarized as Pseudocode in Table. A.1. A flow chart for multiscale damage 

simulation implemented in UMAT of ABAQUS is also depicted in Figure A.1. 



 

 

 

 

 

 

139 

Table. A.1. Pseudocode for the modified Mori-Tanaka scheme 

Numerical implementation 

1. Compute the strain increment in the inclusions : ∆𝜺𝐼 = 𝑨𝐼: ∆𝑬 

2. Compute stress and algorithmic moduli of the inclusion: [𝝈𝑛+1, 𝑪𝑛+1
𝑎𝑙𝑔

]
𝐼
 

3. Compute the strain increment in the matrix: ∆𝜺0 =
∆𝑬−𝑓𝐼∆𝜺

𝐼

1−𝑓𝐼
 

4. Compute internal variables in the matrix: [𝑝n+1, 𝑫𝑛+1, 𝝈𝑛+1]
0 

5. Update algorithmic moduli in the matrix: [𝑪𝑛+1
𝑎𝑙𝑔

]
0
 

6. Apply the mid-point rule at the time 𝑡𝑛+𝛼 to the algorithmic moduli of the 

matrix: [𝑪𝑛+𝛼
𝑎𝑙𝑔

]
0
= [(1 − 𝛼)𝑪𝑛

𝑎𝑙𝑔
+ 𝛼𝑪𝑛+1

𝑎𝑙𝑔
]
0
 

7. Compute the global strain concentration tensor: 𝑨𝐼 = 𝒂𝐼: 𝑨0 

8. Check the compatibility of average strain in the inclusions phase by 

computing residual: 

𝑅 = 𝑨𝐼: 𝛥𝑬 − 𝛥𝜺𝐼 

9. If |𝑅| ≤ 𝑇𝑂𝐿, then exit the loop and go to step 11 

10. Else: new iteration (go to step 1) using the computed value of the global strain 

concentration tensor 

11. Compute the homogenized tangent properties: 

𝑪𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
𝑀𝑇 = (𝑓0[𝑪𝑛+𝛼

𝑎𝑙𝑔
]
0

+ 𝑓𝐼[𝑪𝑛+𝛼
𝑎𝑙𝑔

]
𝐼
: 𝒂𝐼) : [𝑓0𝑰 + 𝑓𝐼 (𝑰 + 𝑯

𝐼: [𝑪𝑛+𝛼
𝑎𝑙𝑔

]
𝐼
) : 𝒂𝐼]

−1

 

12. After convergence, compute the macroscopic stress increment: 

∆𝛔 = 𝑪𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑
𝑀𝑇 : ∆𝑬 
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Figure A.1. Flowchart for the modified Mori-Tanaka scheme 
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Appendix B 

Inverse Identification 
 

 For material parameter estimation, we apply the numerical-experimental 

methodology of finite element model updating (FEMU) optimization [108]. Figure 

B.1 shows the overall algorithmic procedure of the FEMU approach. For example, 

the reaction force is obtained through displacement-driven analysis. The obtained 

reaction force data are compared with those from the experimental test. The 

difference of reaction force data between the simulation and experiment is employed 

to construct an objective function to be minimized. Depending on the problem sets, 

other response variables can be used instead of reaction forces. The unconstrained 

optimization problem of FEMU utilizes the objective function in Eq. (B.1) which 

consists of mean average error (𝑀𝐴𝐸), root mean square error (𝑅𝑀𝑆𝐸), correlation 

(𝑅) between the reaction force and displacement of simulations.  

𝑓𝐹𝐸𝑀𝑈(𝑝𝑘: 𝑘 = 1,… ,𝑚) 

=∑
𝑅𝑀𝑆𝐸𝑖(𝑅𝐹

𝑠𝑖𝑚 − 𝑅𝐹𝑒𝑥𝑝) + 𝑀𝐴𝐸𝑖(𝑅𝐹
𝑠𝑖𝑚 − 𝑅𝐹𝑒𝑥𝑝)

𝑅𝑖(𝑅𝐹
𝑠𝑖𝑚 − 𝑅𝐹𝑒𝑥𝑝)

𝑛

𝑖=1

 

(B.1) 

where 𝑝𝑘 is the material property to be identified and 𝑛 is the number of load or 

time steps used to increase sensitivity for the optimization problem. The statistical 

error measures and the correlation used in the objective function are defined as 

follows, 



 

 

 

 

 

 

142 

𝑅(𝐴, 𝐵) =
∑ (𝐴𝑛 − �̅�)(𝐵𝑛 − �̅�)𝑛

√(∑ (𝐴𝑛 − �̅�)
2)(∑ (𝐵𝑛 − �̅�)

2)𝑛𝑛

 

𝑅𝑀𝑆𝐸(𝐴, 𝐵) = √
∑ (𝐴𝑛 − 𝐵𝑛)

2
𝑛

𝑛
 

𝑀𝐴𝐸(𝐴, 𝐵) =
∑ |𝐴𝑛 − 𝐵𝑛|𝑛

𝑛
 

(B.2) 

where 𝐴 and 𝐵 indicate that stress or strain data are from either simulation FE 

analysis or experiment.  

 

 

Figure B.1. Algorithm procedure of inverse analysis 

 

The CFA (Chaotic Firefly Algorithm)  is selected to search for the optimal material 

properties since it is efficient in searching for a global optimizer. CFA is one of the 
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metaheuristic optimization algorithms that mimic the social behavior of fireflies 

[109]. 
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 항공우주 및 자동차 분야 등에서 진보된 기술을 바탕으로 고성능 

재료의 필요 및 적용사례가 많아지고 있다. 따라서, 기존 단일재료 

본연이 가지고 있는 성능을 넘어, 두개 이상의 재료를 혼합하여 만든 

복합재료의 사용이 증가하고 있다. 특히, 압축제조공정으로 생산되는 

SMC 복합재료는 대량생산의 장점으로 자동차산업 분야에서 적극적으로 

활용되고 있다. SMC 복합재료는 미소구조단계에서 높은 공간적 

불균질성으로 SMC 판내 국부적 물성이 서로다른 문제를 가지고 있다. 

이는 SMC 복합재료 성능 예측을 어렵게 만든다. 이를 해결하기 위해, 

본 학위논문에서는 Micro-CT 이미지 특성화 및 확률적 재구성 

알고리즘을 이용해 멀티스케일 해석을 수행하여 SMC 복합재료의 

거동을 파악한다. 
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 SMC 복합재료 연구를 시작하기 앞서, 복합재료 멀티스케일 해석을 

위한 균질화기법에 대해 소개한다. 균질화는 두개 이상의 재료로 구성된 

미소구조의 등가물성을 도출하여 단일재료의 거동처럼 평가하는 

방법이다. 이 방법을 통해 계산된 등가물성은 일반적으로 상위 스케일 

구조물에 적용되어 재료 및 구조해석을 수행하게 된다. 대표적으로 

유한요소법을 사용하는 직접수치균질화법(DNS: Direct Numerical 

Simulation)과 복합재료의 강화재의 형태를 Eshelby 텐서로 표현하여 

사용하는 평균장균질화 기법(MFH: Mean-field homogenization)이 

있다. 복합재료 멀티스케일 해석을 위해 두 종류의 균질화 기법에 대해 

소개하고 각각의 특징에 대해 토의해 본다. 

 다음으로, SMC 복합재료의 미소구조를 구성하기 위해 확률분포를 

이용한 재구성 알고리즘을 소개한다. SMC 복합재료를 제작하는 

공정으로부터 고유의 특징을 설계변수로 사용한다. SMC 판을 구성하고 

있는 섬유 번들의 형태뿐만 아니라 방향 및 분산정도를 반영하여 

미소구조 재구성 모델을 생성한다. 유한요소 정적선형해석을 수행하여 

실험과의 검증을 수행하며, 변형량 측정방법에 따른 SMC 복합재료의 

거동 변화에 대해 토의하고자 한다. 마지막으로 단순한 선형해석을 

바탕으로 파손시점을 예측할 수 있는 방법을 이용하여 계산 비용의 

절감을 제시한다. 더 나아가, SMC 복합재료의 파손기작을 분석하여 

재료모델을 수행한다. 점전적 손상해석을 통해 기존 선형해석에서 

관찰할 수 없는 파손기작을 시뮬레이션으로 관찰할 수 있다. 복합재료가 

가지는 복잡한 파손형태 때문에 이를 해석을 통해 모사하기 위한 다양한 

시도를 수행해 왔다. 본 연구에서 복합재료의 파손기준을 결정하는 

다양한 기법에 대해 소개한다. 재료모델을 바탕으로 섬유의 방향 및 

분산정도에 따라 변하는 인장계수 및 인장강도 계산할 뿐만 아니라 파손 

패턴을 분석한다. 본 시뮬레이션 모델은 국부적으로 관찰되는 SMC 
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복합재료의 특성을 명시적으로 관찰하며 실험결과의 비교를 통해 제안된 

방법의 검증을 수행한다. 

 마지막으로, 보다 효율적인 접근을 위해 해석적 균질화 기법을 이용한 

SMC 복합재료 해석을 수행한다. Miro-Meso-Macroscale 의 구조를 

반영하여 단계적 균질화를 수행한다. 특히 Mesostructure 에서 높은 

섬유의 부피분율에 의해 발생하는 섬유 번들의 겹침을 고려하며, 제조 

공정에서 발생하는 섬유의 굴곡을 모사할 수 있는 방법을 제시한다. 

다양한 문헌을 통한 결과 값을 바탕으로 검증을 수행하며, 간단한 

계산으로 비선형해석에 필요한 전산적 비용의 절감을 기대할 수 있다. 

 

주요어 : 멀티스케일 해석, 복합재료, 시트몰딩컴파운드, 균질화, 

미세구조, 특성화, 마이크로 컴퓨터단층촬영 
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