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Abstract

Airline Dynamic Pricing with Patient
Customers Using Deep Exploration-Based

Reinforcement Learning

Sungbae Jo

Department of Industrial Engineering

The Graduate School

Seoul National University

This thesis considers an airline dynamic pricing problem in the presence of patient

customers. Nowadays, customers behave strategically to pay lower than their willing-

ness to pay because they know airlines are implementing dynamic pricing strategies.

To capture the non-myopic characteristic, we propose a Markov decision process

(MDP) including a history of offered prices as a state variable. In contrast to pre-

vious studies, distributions of customers’ properties are assumed to be unknown in

advance. Deep reinforcement learning (DRL) algorithms are utilized to solve it, and

the results of numerical experiments are presented to show that their performance

can be improved with the proposed formulation. Comparisons between algorithms

are also made to determine which can construct appropriate pricing structures for

the patient and non-stationary demand. The structures of pricing policies generated

from the bootstrapped deep Q-network algorithm imply that airlines should offer

high and low prices alternately from the beginning of the sales period rather than
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increasing prices as time goes on. We also ascertain that more frequent consecutive

high-priced periods can increase airlines’ revenue in environments with higher cus-

tomer patience levels.

Keywords: Airline revenue management, Dynamic pricing, Reinforcement learn-

ing, Deep Q-network, Bootstrapped deep Q-network, Patient customer

Student Number: 2021-23948
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Chapter 1

Introduction

Dynamic pricing is a set of pricing strategies that adjust a price for the same

product to get the optimized revenue from heterogeneity and intertemporal shift

of customers’ willingness to pay (WTP). It can be utilized in industries with two

characteristics as follows: perishability of goods and low cost for changing a price.

The airline or fashion retailing industry can be good examples of the former because

tickets for planes that have already left or obsolete fashion items will not gener-

ate additional revenue after a specific sales horizon ends. The latter case includes

the e-commerce industry, where a large amount of cost is not frequently incurred

from changing a price. In 2008, Spanish fashion retailer Zara increased its clearance

revenue with the markdown pricing process proposed by [9]. Representative interna-

tional e-commerce platform Amazon is also known to achieve a remarkable increase

in revenue through real-time dynamic pricing policies derived from competitors’

prices. Therefore, many firms are encouraged to implement dynamic pricing strate-

gies.

The airline industry is where revenue management has been implemented system-

atically since its deregulation in the 1970s. The standard mechanism of traditional

airline revenue management can be decomposed into two sequential processes: pric-

1



ing and seat allocation [34]. In the pricing phase, once prices for each fare class

are determined, they do not change before the flight departs. In the seat allocation

phase, seats for each fare class are opened for customers according to the pre-defined

schedule. Recently, airlines have been breaking away from static pricing mechanisms.

Technical developments such as new distribution capability (NDC) enabled dynamic

adjustment of prices for each fare class. Some new pricing mechanisms even allow

airlines to eliminate the fare classes and select a price of an itinerary product from

an unrestricted set of prices.

The International Air Transport Association (IATA) classifies concepts of those

dynamic revenue management mechanisms into two aspects: the way of determining

airline products and the way of adjusting their prices. In product determination,

most products of current airlines are static, meaning pre-defined fare products do not

change over time. A mechanism with a dynamic determination of product bundles

can be proposed, but we do not consider it in this thesis. The extent of dynamic

pricing strategies under static fare products can be explained as follows. In basic

dynamic pricing, airlines usually do not change pre-defined prices of fare products

before the departure. A pre-defined price is selected at each decision point and

offered to customers. As a result, the customers observe dynamically changing prices

as time passes. In addition, adjustments of prices from the pre-defined prices can

be allowed. Airlines can adjust each price of fare products according to the market

information they are observing in real-time. Because this thesis does not consider

observations such as personal information or competitors’ prices, the basic dynamic

pricing framework is utilized. More specifically, a set of finite prices are defined

before the departure, and an airline selects a price from the set for each period.
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Individual offers for customers are not allowed. Therefore, customers arriving at the

same time observe the same prices. We assume that there is a single-fare product

for the simplicity of the problem.

Customer behavior in the airline industry is getting more complex. Because

many customers recognize that airlines implement dynamic pricing strategies, they

do not behave myopically. Even if the ticket price is higher than their willingness to

pay, they do not leave the market immediately and keep observing the ticket price

in the hope that it will fall. Some customers even try to predict pricing patterns

and purchase at the lowest price they expect. Furthermore, some search engines for

flight tickets, such as Skyscanner, alert customers when the price of the flight ticket

changes or provide their expectations of prices for each departure date to support

the strategic behavior of customers. In these industrial situations, airlines might

be able to increase their revenue by considering non-myopic customer behavior for

constructing their pricing policies.

To capture the characteristics of customers described above, many studies de-

fined customer models in two representative ways: strategic customers and patient

customers. Strategic customers try to figure out sellers’ pricing policies [2, 11]. They

are ready to delay their purchase up to their willingness to wait. They anticipate

the trajectory of price changes and purchase at the time when their utilization is

expected to be maximized. The strategic customer model is appropriate for the mar-

kets where customers can learn the pricing policy from the frequent experience of

purchasing the same product. [10] assumed that all customers are strategic, arrive

at the beginning of the selling horizon, and have a willingness to wait that is greater

than the length of the selling horizon. Under these assumptions, they investigated
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how problem factors such as the number of price changing by the seller or scarcity

of the inventory affect the seller’s revenue. [6] relaxed the extreme assumptions of

[10] and considered more generalized properties of customers. They showed that

finding an optimal pricing policy with few assumptions for customers is tractable

when arrivals of customers are stationary and how the computational cost for find-

ing an optimal policy increases under non-stationary environments. Branching off

from constructing optimal pricing policies, [15] estimated the proportion of strategic

customers across leisure and business markets in the airline industry. They observed

that the fraction of strategic customers increases at the beginning and end of the

booking period except for popular leisure destinations.

In contrast to strategic customers, patient customers do not try to learn the

pricing policies of sellers. They wait in the market for a specific number of time

periods, which is designated as the willingness to wait. When the observed price is

lower than their willingness to pay, they immediately purchase the product. [8], [17],

[18], and [36] considered the patient customer model under various problem settings.

[17] proved the existence of an optimal pricing policy with decreasing cycles under

an infinite selling horizon and a fixed proportion of homogeneous patient customers.

From numerical experiments, they showed that finding optimal decreasing cyclic

policies can be a good heuristic approach for problems with heterogeneous patience

levels. Relaxing the assumption that patient customers have the same patience levels,

[18] proposed a polynomial-time algorithm that can compute an optimal pricing

policy for a finite selling horizon. Although [17] and [18] did not restrict customer

valuation and patience level distributions to specific probability distributions, both

assumed that those distributions are known to the seller a priori. In contrast, [36]

4



considered the situation where customer valuation and patience level distributions

are not known to the seller in advance. Instead of calculating an optimal policy, [36]

proposed an online learning and optimization algorithm to find the best decreasing

cyclic or threshold-regulated policy for finite-horizon dynamic pricing problems in

the presence of patient customers. They found that as the selling horizon increase,

the revenue gap between the policy calculated from the proposed algorithm and

the optimal policy decreases. Compared with the naive upper confidence bound

algorithm [1], they also recalled the importance of considering the existence of patient

customers when constructing pricing policies.

Because airlines try to implement more complex dynamic pricing strategies, it

gets difficult for customers to predict the price sequence of the flight ticket, and

the strategic customer model is inappropriate for the airline industry. Therefore, we

focus on the patient customer model. Previous studies considering patient customers

assumed that inventory is infinite, demand is stationary, and distributions for cus-

tomer valuation and patience level are known in advance. To propose a suitable

pricing algorithm for the airline industry, we relax those assumptions: inventory is

finite, demand is non-stationary, and distributions for customer valuation and pa-

tience level are not known in advance. For a single flight, the number of seats is

insufficient to serve all customers who want to buy a seat for the itinerary. Hence,

we need to construct pricing policies considering the number of remaining seats. It

is known that demand is non-stationary in the airline industry. One of the most no-

table characteristics of the airline industry can be explained by leisure and business

customers. Leisure customers are less willing to pay and arrive from the beginning

of the selling horizon. In contrast, business customers are more willing to pay and
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arrive later than leisure customers. Considering the different behaviors of leisure and

business customers, we relax the assumption that the arriving pattern of customers

is stationary. Because the demand of the airline industry is affected by many ex-

ternal factors that airlines can not control, parametric estimation of distributions

may not be correct. This implies that a pricing algorithm can result in inconsistent

revenue when it is constructed based on known or estimated distributions. For this

reason, we use model-free algorithms (i.e., reinforcement learning) that do not need

any assumptions for demand [25, 19, 27, 35].

Many revenue management problems can be formulated as sequential decision-

making problems (e.g., dynamic pricing, capacity allocation). Reinforcement learn-

ing (RL) is one of the solution methods for revenue management problems. It can

be applied to various industries because it does not assume a specific model struc-

ture [16]. [25] tested the Q-learning algorithm and Q(λ) algorithm for dynamic

pricing problems with finite inventory, finite selling horizon, and non-stationary de-

mand. Compared to the parametric learning algorithm, both RL algorithms gave

consistent revenue whether demand distributions were estimated correctly or not.

[24] formulated dynamic pricing of express lanes as a partially observable Markov

decision process. They utilized policy-based and actor-critic methods due to their

continuous action space. Compared to other heuristic algorithms, RL algorithms

gave higher revenue even though the heuristic algorithms assumed full observability

and RL algorithms did not. [35] simulated three scenarios of pricing fresh products

using RL: naive pricing, quality-based pricing without information disclosure, and

quality-based pricing with information disclosure. They adopted RL because it does

not need any properties of demand to construct pricing policies. Furthermore, their
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three pricing scenarios could be solved by the same RL algorithm with a simple

redefinition of state variables.

RL can be widely utilized for revenue management problems in the airline indus-

try. [13] might be the first study that used RL to solve airline revenue management

problems. They considered seat allocation and overbooking simultaneously. RL is

adopted to accommodate complex environments with random customer arrival and

cancellations dependent on multiple fare classes. In every sample problem, the rev-

enue generated from RL was higher than the nested version of expected marginal seat

revenue (EMSR), one of the widely used heuristic algorithms in the airline industry.

[14] proposed a bounded actor-critic algorithm for the seat allocation problem. The

proposed algorithm improved the computational overflow of the classical actor-critic

algorithm and outperformed the EMSR-b heuristic in large-scale problems. In con-

trast to the studies considering seat allocation, [7] considered the dynamic pricing

problem in the airline industry. Because current airlines estimate the parametric de-

mand model first and optimize their revenue based on the model, dealing with the

defects of the parametric estimation can increase their revenue, as mentioned in [25].

In this perspective, [7] applied deep Q-network (DQN), one of the most well-known

RL algorithms. It does not need an estimated demand model to construct pricing

policies but too many interactions with the environment are required. To overcome

this complexity, they combined the parametric estimation of the demand model and

DQN. They showed that initialization of the Q-network from the estimated demand

model enabled DQN to learn pricing policy close to the optimal using less data.

Contributions of this study compared to previous studies can be presented as

follows. First, we determine which information should be considered to construct
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pricing policies under non-stationary and patient demand. As mentioned above, we

assume the customers’ characteristics can not be known or estimated in advance. In

reality, the available information can be obtained only by the airlines’ observations.

We show that a history of prices offered in the past can be the information and

propose a new sequential decision-making problem based on the history of prices.

Second, we test some RL algorithms and present the most appropriate one for the

airline industry among them. Furthermore, we show that the selected RL algorithm

outperforms the benchmark algorithm proposed by [36]. Third, we analyze pricing

policy structures suitable for the airline industry. Differences between the policy

structures when airlines consider patient customers or not are presented, and these

can give some managerial insights to airlines that want to increase their revenue by

considering patient customers.

The rest of this thesis is organized as follows. Chapter 2 provides the dynamics

of the seller and patient customers in our dynamic pricing problem. The problem is

formulated as a Markov decision process (MDP), and its elements are defined in this

chapter. Backgrounds of used RL algorithms and modifications of the benchmark

algorithm are presented in Chapter 3. The results of the numerical experiments are

discussed in Chapter 4, and concluding remarks are presented in Chapter 5.
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Chapter 2

Problem description

We consider a finite-horizon dynamic pricing problem where a seller is a mo-

nopolist. To maximize the revenue, the seller selects the prices of a product for each

period from the finite set of pre-defined prices. Without loss of generality, we assume

that the product’s marginal cost is zero. There is no replenishment, and the seller

terminates the system without any penalty if the inventory is out of stock. This prob-

lem statement is assumed to represent a situation in which an airline implements

the dynamic pricing strategy for a single fare product.

2.1 Dynamics of patient customers

As explained before, customers in our system are patient and have three char-

acteristics that determine how they make decisions in the system: time of arrival,

reservation price and patience level. The reservation price indicates customers’ max-

imum willingness to pay. If a sale price presented by the seller is lower than or equal

to a customer’s reservation price, the customer buys the product. The patience level

means the customers’ maximum willingness to wait. Customers with patience level

k have up to k+1 opportunities for purchasing. Specifically, when a customer visits

the system in period t, one compares a sale price with one’s reservation price from
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period t to period t + k. Within those periods, if one observes that the sale price

is lower than or equal to one’s reservation price, one immediately makes a purchase

and leaves the system. Otherwise, one’s patience level decreases by one every period

one does not make a purchase. If one’s patience level becomes negative, one leaves

the system without purchasing. We present these dynamics of patient customers as

a flow chart shown in Figure 2.1a.

Join the system

Is the sale price 

is larger than 


my reservation price?

Leave the system

Make a purchase

Is my patience level 

smaller than 0?

Wait for a

next sale price

No


Yes


Leave the system

No


Yes


(a) Customer

Selling period starts

No

Is the inventory
available?

Offers a sale price

Get a revenue

from sales

Exit the system

Is it time to

 departure?

Exit the system

Yes


Yes


No


(b) Seller

Figure 2.1: Flow chart of decision-making for a customer and a seller

For a customer who visited in period t, an initial patience level is a random vari-

able defined in Gt, which is a finite set of non-negative integers with the maximum

value W . The reservation price for a customer who arrives in period t with patience

level k follows a probability distribution with the cumulative density function F t
k(·).

And the probability density function of the number of customers arriving in period
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t with patience level k is dtk(·). We assume that Gt, F
t
k(·) and dtk(·) are independent

of the inventory and the price offered by the seller in each period.

2.2 Markov decision process

MDP is one of the frameworks for discrete sequential decision-making problems

[29]. The key elements of MDPs are states, actions, rewards, and transition proba-

bilities. States capture situations where the formalized system is in. In contrast to

previous studies that separate observations of the decision-maker from the states

[24, 28, 4], we define the states as fully observable information of the system for the

decision-maker. When the decision-maker takes an action and gets a reward, the

system transits to the next state depending on transition probabilities. If each tran-

sition probability does not depend on the immediately preceding state and action

only, the decision process does not satisfy the Markov property. Because most meth-

ods of finding optimal policies for sequential decision making problems start from

solving the Bellman optimality equation and assume the Markov property [29], the

violation of the Markov property can degrade the quality of solutions. We present

how state variables in our dynamic pricing problem can satisfy the Markov property

in the following section.

2.3 Airline dynamic pricing

To formulate the airline dynamic pricing problem described at the beginning of

Chapter 2 as an MDP with finite states and actions, we consider an airline as a

decision-maker. The action space contains possible prices that the airline can offer

to customers. Because the objective of the airline in this thesis is to maximize the

11



total revenue over the finite selling periods, we set the revenue gained in each period

as a reward. In this study, we define the discount factor of the MDP to be one.

Before defining our state variables, we define some notations:

• qt: number of remaining seats in period t

• lt: remaining time to departure in period t

• W : maximum patience level that customers can have

• st: state of the system in period t

• at: price offered by the decision-maker in period t

• S: finite set of states

• A: finite set of actions

• Gt
k: group of customers who arrive in period t with patience level k

To show that the last W actions have to be contained in st to satisfy the Markov

property, we present the procedure of calculating the state transition probability

from st to st+1 when the state variables are qt and lt only, which are commonly used

state variables in the airline revenue management literature [13, 14, 7, 23].

We first calculate the probability that the number of seats sold in period t is i.

For t′ ≤ t ≤ t′ + k, a customer in Gt′
k does not make a purchase until period t if the

customer’s reservation price is lower than every price in {at′ , at′+1, . . . , at−1}. And

if the reservation price is larger than or equal to the offered price in period t which

is the lowest price in {at′ , at′+1, . . . , at}, the customer makes a purchase in period

t. From these facts, we can derive the probability that a customer in Gt′
k makes a

purchase in period t where t′ ≤ t ≤ t′ + k as follows:

pt
′,t
k =

(
F t′
k (min{at′ , . . . , at−1})− F t′

k (at)
)+

, (2.1)
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where x+ = max{x, 0}. This is consistent with the result of [18]. If the number

of customers arriving in period t′ with patience level k is nt′
k , the probability that

it
′
k seats are sold in period t by customers in Gt′

k is
(nt′

k

it
′
k

) (
pt

′,t
k

)it′k (
1− pt

′,t
k

)nt′
k −it

′
k
. In

order to calculate the probability that totally i seats are sold in period t for the given

Ht = {at−W , · · · , at−1} with these results, we introduce additional mathematical

notation:

• P̄ t
i : probability that i seats are sold in period t for the givenHt = {at−W , · · · , at−1}

• Xt′,t
k : binomial random variable with parameters nt′

k and pt
′,t
k

• nt: vector containing the numbers of customers in Gt′
k for t − W≤ t′≤ t and

t− t′≤ k≤ W

• it: vector containing the numbers of seats sold by customers in Gt′
k for t −

W≤ t′≤ t and t− t′≤ k≤ W

• Nw
i : set of vectors which have w non-negative integer elements and the sum

of the elements is i

Because customers who arrive in periods t−W, . . . , t can make a purchase in period

t, the probability that i seats are sold in period t is calculated as follows:

P̄ t
i =

∑
nt≥it

[(
W∏
l=0

l∏
u=0

dtk

(
nt−W+l
W−u

))( ∑
it∈NŴ

i

W∏
l=0

l∏
u=0

P
(
Xt−W+l,t

W−u = it−W+l
W−u

))]
,

(2.2)

where Ŵ = (W+1)(W+2)
2 and the first summation is the summation over nt.

As a result of Equations (2.1) and (2.2), P̄ t
i depends on {at−W , · · · , at−1} which

denote the prices the decision-maker selected in periods t−W, · · · , t− 1. It implies

that if the decision-maker does not consider the actions selected in the last W

periods, the expectation for how many seats will be sold in the next period can be
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completely wrong when customers in the system are patient. Note that we defined

st with qt and lt only. In this case, the inconsistency of P̄ t
i for the same st and at

makes the system not satisfy the Markov property because the transition probability

P (st+1 | st, at) can not be calculated without P̄ t
i where st+1 = (qt − i, lt − 1). One

simple way to solve this problem is by adding {at−W , · · · , at−1} in st. The transition

probability is still calculated with P̄ t
i , but invariability of P̄ t

i for the same st and at

is guaranteed by fixed {at−W , · · · , at−1} in st.

Now, all the components in the MDP formulation for the dynamic pricing prob-

lems with patient customers are defined. The action space A contains all pre-defined

prices the decision-maker can offer customers, and the reward r(s, a) is the revenue

the decision-maker gains when one takes action a in state s. The state space S is the

set of states containing the amount of inventory, the number of remaining periods to

the departure, and the last W prices that the decision-maker offered before. Hence,

the transition probabilities can be calculated with Equation (2.2). The purpose of

our problem is to find the optimal pricing policy that maximizes the expected total

revenue over a finite selling horizon T :

max
π

Eπ

[
T−1∑
t=0

r(st, at)

]
(2.3)
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Chapter 3

Solution methods

In this Chapter, we explain why we use model-free RL to solve the airline dy-

namic pricing problem in the presence of patient customers and describe model-free

RL algorithms we used in numerical experiments. As mentioned in Chapter1, the

studies considering patient customers assume that customer arrival rates and dis-

tributions of reservation prices and patience levels are known to the decision-maker

or are unknown but stationary. We relax them because pricing algorithms based on

those assumptions can result in serious revenue loss under unpredictable and non-

stationary demand [29, 25, 35]. Model-free RL is a simulation-based approach that

can give reasonable pricing policies without any of those assumptions. An agent in

model-free RL can learn how to select actions in each state from interactions with

an unknown environment.

Another advantage of model-free RL is its adaptability to problems with high

dimensional state space and complex transition probabilities [13]. Because state st

consists of qt, lt, and (at−W , · · · , at−1), the dimension of the state space is W + 2.

As many real-world customers in the airline industry know that prices of tickets can

fluctuate, the maximum patience level of the customers can be large, which increases

the dimension of the state space. Moreover, as we can see in Equation (2.2), tran-
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sition probabilities are affected by the properties of customers arriving in multiple

periods. In a non-stationary environment, heterogeneity of probability distributions

for demand properties in each period can make the calculation and storage of the

transition probabilities more complex. Model-free RL can be an effective methodol-

ogy in this situation because it does not require calculating and storing any transition

probabilities. In addition, approximation of the value functions or policy functions

with non-linear approximators such as neural networks enables the agent to learn

policies for challenging real-world problems [13, 35].

Model-free RL can be divided into value-based and policy-based algorithms.

Because the Q-function that satisfies the Bellman optimality equation presented in

Equation (3.1) is the optimal Q-function, the value-based RL algorithms try to solve

Equation (3.1) with iterative updates of the Q-function.

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)max
a′∈A

Q∗(s′, a) (3.1)

One of the most well-known value-based algorithms is the Q-learning proposed by

[33]. In order to update the Q-function, it uses transition pairs gained from in-

teractions with the environment. Equation (3.2) represents the k th update of the

Q-function with a transition pair (s, a, r, s′) and the learning rate α in Q-learning:

Qk+1(s, a) = (1− α)Qk(s, a) + α

[
r(s, a) + γmax

a′∈A
Qk(s

′, a′)

]
(3.2)

Under certain conditions, Qk(s, a) for s ∈ S and a ∈ A solve the Equation (3.1)

when k → ∞. However, the convergence to the optimal Q-function requires too high

number of iterations in large-scale environments for real-world problems.
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3.1 Deep Q-network

To solve large-scale problems, parameterized Q-function has been utilized in the

value-based RL literature. Instead of tracking Q-values for all state-action pairs,

Q-function is estimated by fewer parameters than state-action pairs. Then they are

repeatedly updated to approximate the optimal Q-function. The most popular value-

based algorithm using parameterized Q-function is deep Q-network (DQN) proposed

by [20]. They used convolutional neural networks to approximate Q-functions for

learning optimistic control policies for some Atari 2600 environments. They also uti-

lized an experience replay mechanism, which is effective for breaking the correlation

between consecutive samples.

More specifically, the procedure of the DQN algorithm can be explained as fol-

lows. Q-function is approximated by Q-network, which is parameterized with ϕ.

Updating ϕ is done by the stochastic gradient descent (SGD) method, whose goal

is to find ϕ minimizing the mean squared error between parameterized Q-function

Qϕ and optimal Q-function Q∗. Because Q∗ is not known unlike in situations of

supervised learning, gradients of the mean squared error are calculated with the es-

timated target value, which is r+γmaxa′∈AQϕk
(s, a′) in the kth update. Therefore,

updating the network parameters in batch can be done by Equation (3.3):

ϕk+1 = ϕk − α
∑
j∈M

[(
Qϕk

(sj , aj)−
(
rj + γmax

a′∈A
Qϕk

(s′j , a
′)

))
∇ϕk

Qϕk
(sj , aj)

]
(3.3)

M denotes a minibatch selected from the replay memory D which stores samples

that the agent gained from previous interactions with the environment. Due to the

moving target in Equation (3.3), the stability of the SGD method can be degraded.
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To alleviate this problem, [21] used an additional target Q-network denoted by Qϕ−
k
.

Qϕk
of the target value in Equation (3.3) is substituted with the target network

Qϕ−
k
, and it copies the original Q-network every C updates. We utilized the DQN

algorithm of [21] for numerical experiments and presented the procedure of the

algorithm for our dynamic pricing problem as follows:

Algorithm 1 DQN algorithm for airline dynamic pricing

Initialize replay memory D
Initialize parameters ϕ for Q-network
Set ϕ− = ϕ
for episode = 1, . . . , C do

Initialize state s0
Set t = 0
while st is not the terminal state do

Select a random action at with probability ϵ, otherwise at =a Qϕ(st, a)
Implement action at and get reward rt and next state st+1

Store transition data (st, at, rt, st+1) in replay memory D
Randomly select a minibatch of transitions (sj , aj , rj , sj+1) from D

Set target yj =

{
rj if sj+1 is the terminal state

rj +maxa′ Qϕ−(sj+1, a
′) otherwise

Update ϕ using the SGD method according to Equation (3.3) on yj
Set t = t+ 1

end
Set ϕ− = ϕ every E episodes

end

3.2 Bootstrapped DQN

Some advanced RL algorithms based on DQN have been studied to achieve

practical improvements for more challenging environments [30, 26, 32]. One of the

difficulties that those challenging problems have is the exploration issue. When com-

paratively small rewards are given at the states close to the initial state in an episodic
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environment, RL agents can easily get stuck to those states even if larger rewards

can be given at the other states. In this situation, many episodes are needed to

learn the optimal policy when RL agents use ineffective exploration methods such

as the ϵ-greedy policy. The airline dynamic pricing problem in this study has the

same exploration issue. Because the fraction of customers with higher reservation

prices increases as time passes and the number of seats is limited, an RL agent learns

sub-optimally if it concentrates on maximizing rewards from customers who arrive

earlier with lower reservation prices. Therefore, RL algorithms with more effective

exploration methods would be required to solve the airline dynamic pricing problem.

Bootstrapped DQN (BDQN) proposed by [22] is one of the RL algorithms known

to be effective for episodic exploration to solve challenging problems. Rather than

using ϵ-greedy policy, it utilizes multiple Q-networks for exploration. One of the net-

works is randomly selected to make steps in a training episode, and the transition

pairs are stored in the shared replay memory. Then, a minibatch of transitions is

randomly selected from the replay memory as in DQN. Some Q-networks use it to

update their weights, and some do not. The randomness in selecting and updating

multiple Q-networks leads an agent to try consecutive sub-optimal actions for mul-

tiple time steps. Numerical experiments by [22] showed that the BDQN agent could

get out from sub-optimal policies in significantly fewer training episodes than the

DQN agent. In the next Chapter, we provide results of numerical experiments that

imply that BDQN is also more effective for the airline dynamic pricing environment.

[22] proposed a shared network architecture where multiple Q-networks share

a network directly connected to input data. It learns a feature representation of

the input data to reduce computational costs. However, we do not adopt the archi-
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tecture because our input data is not a two-dimensional image frame. Each of the

Q-networks is individually constructed in the same way as the DQN architecture we

used. Therefore, none of them shares hidden layers in this thesis. Figure 3.1a shows

the network architecture of DQN, and Figure 3.1b shows the architecture of BDQN

which consists of multiple networks whose structures are the same as those shown

in Figure 3.1a. We also present the procedure of BDQN in Algorithm 2.

Algorithm 2 BDQN algorithm for airline dynamic pricing

Initialize replay memory D
for i = 1 to N do

Initialize parameters ϕi for Q-network i
Set ϕ−

i = ϕi

end
for episode= 1, . . . , C do

Select k ∼ Uniform{1, . . . , N}
Initialize state s0
Set t = 0
while st is not the terminal state do

Set at =a Qϕk
(st, a)

Implement action at and get reward rt and next state st+1

for i = 1 to N do
Generate a bootstrap mask ui ∼ Bernoulli(12) for Q-network i

end
Set vector of bootstrap masks ût = (u1, . . . , uN )
Store transition data (st, at, rt, st+1, ût) in replay memory D
Randomly select a minibatch of transitions (sj , aj , rj , sj+1, ûj) from D
for i = 1 to N do

Set target yj =

{
rj if sj+1 is the terminal state

rj +maxa′ Qϕ−
i
(sj+1, a

′) otherwise

Update ϕi using the SGD method if ith element of ûj is equal to 1,
otherwise do not update

end
Set t = t+ 1

end
Update target networks every E episodes

end
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Figure 3.1: Architecture of DQN and BDQN for airline dynamic pricing

3.3 Optimistic learning for decreasing cyclic policies

We use a variant of the optimistic learning for decreasing cyclic policies (OLD)

algorithm proposed by [36] to evaluate RL algorithms for our problem. To the best of

our knowledge, [36] is a unique study that does not assume that the joint distribution

of reservation price and patience level is known to the seller in advance. However, the
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original OLD algorithm is designed based on the idea that a decreasing cyclic policy

is near-optimal when the selling horizon is very large and demand is stationary.

Therefore, we modified the original OLD algorithm for a comparatively short selling

horizon and non-stationary demand in the airline dynamic pricing environment.

First, we reconstructed a recursive equation that calculates the optimal decreas-

ing cyclic policy with given expected revenue under specific conditions. Those spe-

cific conditions can be satisfied on stationary demand only. Therefore, we must relax

them for non-stationary demand even though it increases the computational cost.

The second part of the modification is on the condition for the recalculation of de-

creasing cyclic policy. We found that the original recalculation condition could not

be frequently satisfied in our environment. As a result, the performance of decreas-

ing cyclic policy is not improved as the number of training episodes increases. To

deal with this problem, the modified OLD algorithm reconstructs the policy once it

is used.
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Chapter 4

Numerical experiments

In this chapter, we present the results of numerical experiments. The first section

demonstrates the effectiveness of the proposed MDP formulation in the presence of

patient customers. In the second section, we compare the performance of algorithms

for the environments where demand is non-stationary and inventory is insufficient.

In the last section, we analyze the structures of pricing policies.

In implementing RL algorithms, we fix the value of ϵ as one and do not update

network parameters for the initial 1,000 episodes, which is common practice in the

RL community. After the 1,000 initialization episodes, we linearly decrease ϵ to 0.1.

The terminal state mentioned in Algorithms 1 and 2 means the situation in which

there are no remaining seats, or in which time until departure is zero in our problem.

The size of the replay memory and each minibatch is set to be 300,000 and 512,

respectively. For the SGD method, the learning rate is 0.001, and the error between

current Q-values and target Q-values is calculated by Huber loss. Target networks

are updated by copying the corresponding policy networks every 15 episodes, and

the parameters of policy networks are updated every five episodes for computational

efficiency. The remaining time to departure in the state is one-hot encoded for RL

algorithms. All experiments are conducted using a Python 3 with an Intel Core
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i5-9400F and 16GB of RAM.

4.1 Comparison between MDP formulations in the pres-

ence of patient customers

We construct two different MDP formulations in this section. The only difference

between them is the state st. We call an MDP that contains a history of actions

(at−W , · · · , at−1) in its state st as MDP with action history. Otherwise, if a state of an

MDP contains only qt and lt, we define it as MDP without action history. Therefore,

MDP without action history does not satisfy the Markov property when patient

customers exist in the system. The convergence or performance improvement of DQN

and BDQN can not be theoretically guaranteed even when the Markov property

is satisfied. However, we identified revenue improvement in the MDP with action

history compared to the one without action history from the results of numerical

experiments.

We set A = {0.1, 0.3, 0.5, 0.7, 0.9}, T ∈ {20, 40} and W = 11. Note that we

are now concentrating on evaluating the effectiveness of using action history in the

presence of patient customers, regardless of the characteristics of the airline industry.

Therefore, we assume a deterministic and stationary arrival process of customers

and sufficient inventory to serve all customers in this section. To be more specific,

initial patience levels for customers arriving in period t are uniformly distributed

over Gt = {0, 1, · · · ,W}. For every k ∈ Gt and t ∈ {1, · · · , T}, reservation prices

for customers in the group Gt
k are generated from the standard uniform distribution,

and the number of customers in group Gt
k is set to be one. The total inventory is

300 when T = 20 and 500 when T = 40.
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(a) DQN, T = 20
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(b) BDQN, T = 20
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(c) DQN, T = 40
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(d) BDQN, T = 40

Figure 4.1: Average revenue of recent 100 episodes over five random seeds in training
episodes

Figure 4.1 represents the average revenue over the recent 100 episodes for each

training episode. The bold line is the mean of the average revenue over five random

seeds, and the shaded area shows the interval between the minimum and maximum

value of average revenue over the same five seeds. The dotted red line represents an

upper bound calculated by the same algorithm as [18] proposed. As mentioned in

Section 1, he constructed a dynamic program when the arrival of patient customers

is stationary and inventory is infinite. If the distributions related to customers are
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Table 4.1: Average revenue of evaluation episodes according to MDP formulation

Case Customer type T Algorithm Average revenue

1 Patient 20 DQN (66.31, 71.24)
2 Patient 20 BDQN (65.66, 72.68)
3 Patient 40 DQN (129.82, 141.32)
4 Patient 40 BDQN (131.07, 144.45)
5 Myopic 40 DQN (119.69, 119.13)
6 Myopic 40 BDQN (119.94, 120.04)

known in advance, the algorithm can derive the optimal policy and corresponding

revenue in a polynomial time. Therefore, it can provide the upper bound for the

expected total revenue per episode in our problem.

The results in Figure 4.1 imply that using action history can generate revenue

closer to the upper bound regardless of which RL algorithms are used. In other

words, the seller can improve the revenue by constructing the pricing policies de-

pending on the prices offered recently. In Figures 4.1a and 4.1c, it is likely that

DQN fails to construct policies close to the optimal. However, DQN encourages the

agent to explore non-optimal policies in the training episodes. If the agent excludes

the exploration and selects the optimal actions with probability 1 in the evaluation

episodes, the gap between the revenue of DQN and the upper bound can decrease.

Table 4.1 provides the results of DQN and BDQN in evaluation episodes. The

first value in the last column indicates the mean of the average revenue with action

history over five random seeds, and the second value is for entities without action

history. Each of Cases 1, 2, 3, and 4 correspond to each experiment in Figure 4.1.

As in the training episodes, when the action history is included in the state, the

average revenue in the evaluation episodes increases regardless of RL algorithms. In

addition, policies calculated from DQN and BDQN generate revenue close to the
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upper bounds (the optimal expected revenues with infinite inventory in Cases 2 and

4 are 74.45 and 149.8, respectively). These numerical results imply that without

perfect information for dynamic pricing environments, the DRL algorithms can find

policies close to the optimal policy.

To verify that the improvement of performance on the RL algorithms truly comes

from using action history, we additionally examine its effectiveness when there are

no patient customers at all. Cases 5 and 6 represent the system where all customers

are myopic (i.e., the patience levels of all customers are zero). When there are no

patient customers, both MDP formulations with and without the action history sat-

isfy the Markov property. Therefore, if the average revenue increases from using

action history in Cases 5 and 6, we can not say that the satisfaction of the Markov

property can improve the performances of the RL algorithms in our dynamic pricing

problem. However, as Table 4.1 shows, there is no difference in the average revenue

between the two MDP formulations. From this result, we can more obviously con-

clude that using action history improve the performance of RL algorithms when

patient customers exist in the system.

4.2 Comparison between pricing algorithms for non-stationary

demand and insufficient inventory

In this section, we demonstrate the pricing algorithms with the MDP with action

history when demand is non-stationary and the inventory is insufficient. We divide

customers into leisure and business customers, one of the most commonly used cus-

tomer segmentation methods in the airline industry [15, 7, 31]. All elements that

make up the MDP formulation are defined identically in the previous section. Both
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leisure and business customers are assumed to arrive in the Poisson process. The

arrival rate of leisure customers decreases linearly as time passes, and vice versa for

business customers. Reservation prices for both types of customers are generated

from uniform distributions, but business customers have higher average reservation

prices than leisure customers. The expected number of customers arriving in the

system is set to be twice the number of seats I. To verify which algorithm is appro-

priate for this situation, we compare the performances of each algorithm for some

instances. Figure 4.2 shows the learning curves of each algorithm where all elements

in the figure are the same as in Figure 4.1. When T = 100, the modified OLD algo-

rithm takes too much time to terminate 50,000 training episodes. Therefore, we do

not present the learning curves of it in Figures 4.2c and 4.2d.

Figures 4.2a and 4.2b show that both RL algorithms outperform the modified

OLD algorithm. Structures of the policies generated from the modified OLD al-

gorithm no longer change after about 20.000 training episodes. Furthermore, the

number of decision points in each episode must be less than those in RL algorithms

because the modified OLD algorithm can not make a new decision before the gen-

erated pricing policy ends. This might make the algorithm incapable of responding

to stochastic and non-stationary demand in our problem. As a result, the revenue

from the modified OLD algorithm is stable over episodes but remarkably lower than

in RL algorithms. In contrast to the modified OLD algorithm, the performance of

RL algorithms rapidly improved at the initial learning interval, where exploration

for the optimal pricing policy is encouraged. After that, they kept updating their

Q-networks to get more stable and improved revenue. We can ascertain this from

Figures 4.2b and 4.2d where the shaded area between the best and worst learning
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(a) T = 50, W = 11, I = 300
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(b) T = 50, W = 29, I = 750
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(c) T = 100, W = 11, I = 600

0 10000 20000 30000 40000 50000
Number of training episodes

200

300

400

500

600

700

800
Av

er
ag

e 
re

ve
nu

e

DQN
Bootstrapped DQN

(d) T = 100, W = 29, I = 1500

Figure 4.2: Average revenue when the demand is non-stationary and the number of
seats is limited

curves decreases as the number of training episodes increases.

As explained in the previous section, even though the average revenue of BDQN

is higher than DQN in training episodes, we can not conclude that BDQN performs

better than DQN owing to the difference between the exploration methods of the

two RL algorithms. The DQN algorithm selects non-optimal actions with probability

ϵ, and BDQN does not in training episodes. Therefore, we ran 1,000 evaluation

episodes with trained agents to compare the performance of the RL algorithms.
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In the evaluation episodes, the DQN agent selects the optimal actions generated

from the trained Q-network with probability 1. Note that the BDQN algorithm

uses multiple Q-networks and randomly selects one of them to construct a training

episode. In contrast, it selects actions based on ensemble policy with every trained

Q-network in evaluation episodes. The results are presented in Table 4.2 and Figure

4.3. Unlike in the training episodes, there is no difference between DQN and BDQN

when W = 11. But when W = 29, the gap between the mean of average revenue

from two RL algorithms becomes larger. This implies that BDQN might give higher

revenue than DQN when the size of the problem (i.e., the maximum patience level,

the number of total customers and the initial inventory) becomes larger.

Table 4.2: Average revenue of evaluation episodes over five ran-
dom seeds

T W Algorithm Mean Maximum Minimum SDa

50 11 DQN 164.60 164.95 164.12 0.30

BDQN 164.38 165.54 162.30 1.14

Modified OLD 110.69 110.81 109.10 0.63

50 29 DQN 409.39 424.38 387.88 13.32

BDQN 427.36 428.52 425.72 0.93

Modified OLD 281.38 285.55 277.78 2.95

100 11 DQN 332.17 333.86 330.29 1.57

BDQN 332.50 335.17 330.23 1.67

100 29 DQN 753.17 812.97 690.15 41.90

BDQN 856.09 863.52 847.53 6.35

1 SD: Standard deviation

Furthermore, we can figure out that BDQN gives more consistent revenue over

multiple learning for the same problem compared to DQN from Figure 4.4. It shows

distributions of total revenue per evaluation episode over five random seeds when

W = 29. In Figure 4.4a, total revenue from seeds 1,2 and 4 have similar shapes of
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Figure 4.3: Mean of the average revenue in evaluation episodes over five random
seeds

distributions but seed 3 and 5 show different shapes. In Figure 4.4c, all the distri-

butions are significantly different from each other. This implies that airlines could

be suffering from unexpected revenue loss for the same itinerary product when they

construct pricing policies based on the DQN algorithm even though they considered

the purchase behavior of patient customers. In contrast to DQN, BDQN can give

consistent revenue for the same environments as shown in Figures 4.4b and 4.4d.

When T = 50, all distributions have almost the same mean and variance. They be-

come slightly different when T increases, but have sufficiently consistent structures

compared to DQN. In addition, we compared the ratio of standard deviations with

F-value to verify that the variance of the average revenue from DQN is higher than

BDQN. When W = 11, there was no difference between the variances of DQN and
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BDQN. However, when W = 29, we could observe that the variance of the average

revenue from DQN is significantly higher than BDQN. Therefore, we can conclude

that the BDQN algorithm might give the highest and stable revenue among the

three pricing algorithms in the presence of patient and non-stationary customers

with limited inventory.
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Figure 4.4: Distributions of the total revenue in evaluation episodes over five random
seeds
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4.3 Structure of pricing policies from the BDQN algo-

rithm

In this section, we analyze the structures of pricing policies calculated using

the BDQN algorithm. We set T = 50 and W ∈ {11, 29}. The number of seats

is 100, and the expected number of customers arriving to buy tickets is set to be

200. As in Section 4.2, customers are segmented by leisure and business groups.

Figure 4.5 shows trajectories of prices under non-stationary demand. In Figures

4.5a and 4.5b, 10,000 evaluation episodes are simulated to calculate average actions

in each period, and from Figures 4.5c to 4.5f are examples randomly selected between

those evaluation episodes. The first MDP formulation in Section 4.1 is used for the

situation in which airlines construct pricing policies considering the effectiveness of

patient customers, and the second MDP formulation in Section 4.1 is used to capture

characteristics of policies when the airlines do not consider patient customers at all.

In addition, Figure 4.6 shows how many seats remain and when selling periods are

terminated according to each policy structure in Figures 4.5a and 4.5b.

From Figures 4.5a, 4.5b, 4.5e and 4.5f, we can figure out that if airlines do not

consider the effectiveness of patient customers in relation to their revenue, low prices

are offered in initial periods, and prices become higher as the departure date ap-

proaches. However, if airlines are aware of patient customers, high and low prices are

alternately offered throughout the entire selling horizon as presented in Figures 4.5a

and 4.5b. In the end, comparatively lower prices are offered to maximize revenue by

minimizing unsold seats at the departure time. Under this pattern of pricing poli-

cies, fractions of episodes where they are terminated at the time of departure and

terminated with non-zero remaining seats are larger than the increasing price struc-
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tures as shown in Figure 4.6. However, because higher average revenue is observed

under the structure of green lines in Figure 4.5, we can conclude that it is a more

appropriate structure for the non-stationary system with patient customers.

From comparing the green lines in Figures 4.5a and 4.5b, we know that the

average gap between higher and lower prices increases as the maximum patience

level of customers increases. And the number of consecutive periods in which the

highest price is offered also increases. These trends can be interpreted as follows.

Airlines are trying to generate more revenue from customers with extremely high

reservation prices by offering the highest price more frequently. Because the fraction

of customers with higher patience levels becomes larger, revenue loss from selling

their seats at lower prices than customers’ willingness to pay can grow significantly.

Furthermore, additional revenue in a low-priced period might be larger than when

W = 11. As a result, they provide low prices infrequently and increase the fraction

of periods in which higher prices are offered.

4.4 Non-stationary test for the distributions of reserva-

tion prices

In Sections 4.2 and 4.3, we set the arrival rates of the leisure and business cus-

tomers to be changed as time passes. However, the distributions for reservation

prices of the leisure and business customers are assumed not to be changed. We

expect that the shift in the ratio of the two customer segments will make the distri-

butions for reservation prices of all customers change as time passes. In this section,

we present the results of statistical tests to verify that the average reservation prices

of customers in Sections 4.2 and 4.3 are non-stationary. For each demand setting gen-
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Table 4.3: Number of episodes with stationary demand

Section 4.2 Section 4.3

T W Total New Total New

50 11 1 20 3,997 5,548
50 29 1 1 5,837 5,420
100 11 0 1
100 29 33 0

erated in those sections, we simulated 10,000 episodes with random policies. Then,

we count the number of episodes in which the distributions of reservation prices

turned out to be stationary using the Augmented Dickey-Fuller (ADF) test [12].

Table 4.3 shows the number of episodes that turned out to have stationary dis-

tributions of reservation prices among the 10,000 episodes at a significance level of

0.01. The first columns in each section indicate the number of episodes with sta-

tionary demand in terms of average reservation price for all existing customers in

the system. The second columns are for the average reservation price for arriving

customers in each period.

As shown in the first section in Table 4.3, most of the episodes have non-

stationary distributions of reservation prices in experiments of Section 4.2. Because

the experiments of Section 4.2 are designed to find out which algorithm is appropri-

ate for highly non-stationary demand, these are consistent with our expectations.

In experiments of Section 4.3, about half of episodes have stationary demand. They

are designed to figure out the reasonable structure of policies in a realistic scale

and variation of the demand in the airline industry. Therefore, we can say that the

proportion of non-stationary demand is appropriate.
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Figure 4.5: Structures of pricing policies
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Chapter 5

Conclusions

Patterns of purchasing behavior in the airline industry are becoming more com-

plex. Customers do not leave the market immediately, even if they recognize that the

current price is more expensive than their willingness to pay. They keep observing

price changes and try to buy tickets at an acceptable price. Airlines get additional

revenue if they consider these patterns in their pricing policies. The patient cus-

tomer model is one of the models that capture the strategic behavior of demand.

Some studies proposed algorithms to calculate the optimal policy in the presence

of patient customers. Nevertheless, they assumed that sellers knew the distributions

for reservation prices and patience levels of customers in advance. To the best of

our knowledge, this thesis is the first who examine the dynamic pricing framework

with limited inventory under non-stationary demand and unknown distributions for

properties of patient customers.

The MDP framework was designed to formulate the single-fare dynamic pricing

problem in the airline industry. We included the history of prices in state variables to

satisfy the Markov property when customers are patient. Due to the high dimensional

state space and complexity of transition probabilities, we used DQN and BDQN

algorithms. In contrast to algorithms proposed by previous studies, they can solve
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the problem without any assumptions on customer arrival rate and distributions of

reservation prices and patience levels.

Comparisons between the MDP formulations with and without the action his-

tory were conducted, and we showed that using action history can improve the per-

formance of the DRL algorithms. This implies that airlines should construct their

pricing policies based on the prices offered in the past when the existence of pa-

tient customers is expected. Furthermore, we identified a small gap between revenue

from the model-free DRL algorithms and the upper bound calculated with perfect

information.

This study also compared two DRL algorithms with the modified OLD algorithm.

Both DRL algorithms outperformed the modified OLD algorithm in terms of average

revenue. The mean of the average revenue over five random seeds from each DRL

algorithm was higher than the modified OLD algorithm. However, the variance of

DQN significantly increased in large-scale problems, whereas BDQN did not. This

difference might come from the approach of exploration, which means that DQN

failed to learn appropriate policies for the airline industry where most customers

with a higher willingness to pay come at the end of the sales period.

The structural characteristics of pricing policies were analyzed in the last part

of the numerical experiments. Airlines constructed increasing pricing policies when

they did not consider patient customers. In contrast, they offered high and low

prices alternately if they considered the effectiveness of patient customers to their

revenue. We identified that this price structure results in higher revenue than the

increasing structure. Therefore, airlines should accommodate the alternating price

structure when the existence of patient customers is expected. Furthermore, we
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found that airlines should increase the number of consecutive high-priced periods

and infrequently offer lower prices when the patience levels of customers are expected

to be large.

The dynamic pricing framework we proposed in this thesis has some limita-

tions. First, we did not consider a situation in which the size of the possible price

set becomes large. In that situation, DQN or BDQN, value-based DRL algorithms,

would not make good pricing policies. To handle this problem, policy-based DRL

algorithms that are developed for continuous action spaces can be utilized. Second,

many factors that airlines consider in the real-world were not considered. Factors

such as holidays, weather, or competitors’ prices should be considered in airline pric-

ing algorithms. In the MDP framework, by adding those factors to state variables,

their effectiveness and patient customers can be simultaneously reflected in dynamic

pricing environments. In addition, we assumed that the arrival rates of business and

leisure customers increase or decrease linearly. Therefore, we cannot say that the

current settings of the deep reinforcement learning algorithms will calculate rea-

sonable pricing policies for a more complicated structure of demand. However, as

mentioned before, model-free reinforcement algorithms can be utilized without any

assumptions of specific demand structures. We can extend the framework for various

types of demand by changing parameters or structures of Q-networks.

40



Bibliography

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer, Finite-time analysis of the

multiarmed bandit problem, Machine Learning, 47 (2002), pp. 235–256.

[2] Y. Aviv and A. Pazgal, Optimal pricing of seasonal products in the presence

of forward-looking consumers, Manufacturing & Service Operations Manage-

ment, 10 (2008), pp. 339–359.
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국문초록

본 연구에서는 전략적 소비자가 존재하는 시장에서 항공사 동적 가격 결정 문제를 다

루었다. 최근 소비자들은 항공사에서 동적 가격 정책을 시행하는 것을 인지하고 있기

때문에, 그들의 지불 용의보다 낮은 가격을 지불하기 위해 전략적으로 행동한다. 이러

한 소비자 특성을 고려하여, 본 연구에서는 과거에 제시된 가격 기록을 상태 변수로

포함하는 마르코프 의사결정 과정 모델을 제안하였다. 이 때 고객 특성에 대한 확률

분포들은 사전에 알려져 있지 않다고 가정하였다. 문제 해결을 위해 심층 강화학습 방

법론이 활용되었으며, 알고리즘 별 비교를 통해 전략적이고 동적인 수요 하에서 가장

적절한 가격 구조를 도출하는 알고리즘을 제시하였다. 또한 해당 가격 구조를 분석하

여 전략적 수요로부터 추가적인 수익을 발생시키기 위한 경영적 통찰력을 제공하고자

하였다.

주요어: 항공사 수익관리, 동적 가격 정책, 강화학습, 심층 Q-신경망, 부트스트랩 기반

심층 Q-신경망, 전략적 소비자

학번: 2021-23948
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