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Abstract

An Interval-Based Two-Stage Stochastic
Optimization Model for the Unit

Commitment Problem Under Demand
Uncertainty

HOJIN JUNG

Department of Industrial Engineering

The Graduate School

Seoul National University

The unit commitment problem aims to find a minimum-cost on/off status and

amount of generation for each generator while satisfying the electricity demand and

operational requirements. To efficiently deal with demand uncertainty, the two-stage

stochastic optimization models have been widely used in the literature, where the

on/off status is decided in the first stage and the amount of generation is in the

second stage. However, they often suffer from excessive computational burden as

the number of demand scenarios increases. In this thesis, we propose an interval-

based two-stage stochastic optimization model to mitigate the drawback under the

period-wise independent demand assumption. In the model, an interval of a gen-

erator, which is a range of the amount of generation, is determined along with its

on/off status for each period. It enables the second-stage problem to be decomposed

in a period-wise manner, which reduces the need for a large number of scenarios.
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We also propose a compact Benders reformulation by exploiting the property of the

subproblem. Lastly, we show that the bounds on the expected costs can be obtained

for the proposed model. Computational experiments were conducted to show the

effectiveness and efficiency of the proposed model.

Keywords: Unit Commitment, Demand Uncertainty, Two-stage Stochastic Opti-

mization Model, Interval, Benders Reformulation, Bounding Method

Student Number: 2021-23873
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Chapter 1

Introduction

1.1 Background

Unit Commitment (UC) is one of the most important optimization problems in

power system operation. It is solved not only by the independent system operators

(ISO) to establish an efficient and reliable plan but also by the generation companies

(GENCO) to make the optimal bidding strategies. In South Korea, Korea Power

Exchange (KPX), taking a role as a wholesaler, receives the capacity of GENCOs in

the day-ahead market and determines the system marginal price (SMP) by solving

a price-setting unit commitment problem [1]. When the system marginal price is

determined, KPX announces to GENCOs how much they should generate. On the

trading day, the real-time dispatch to balance the supply and demand is performed

in KPX. In other words, even though the price-setting unit commitment problem

determines the specific amount of generation for entering generators, it is controlled

by KPX which monitors the customer demand and plans a feasible transmission

plan in real-time. After the dispatch, uplifting payment is incurred for the excess

generation. This is a unique market structure called the cost-based pool market.

Figure 1.1 illustrates the electricity market trading process in South Korea.

To stabilize the price and supply of electricity in the market, ISO should forecast
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Figure 1.1: Cost-based Pool Market in South Korea

the demand of the customers and plan how to satisfy it. But the increasing penetra-

tion of renewable energy is becoming a challenging issue to achieve the goal. Since

the amount of renewable generation significantly depends on uncontrollable factors

such as solar irradiance and weather conditions, it magnifies the difficulty in fore-

casting the exact amount of generation the power plants need to produce, which is

called the net demand, in the power system. For the case in South Korea, it may re-

sult in a high level of discrepancy between the planned amount of generation and the

actual dispatch level, and eventually an excessive burden of uplift payment by KPX.

Despite the efforts on increasing the accuracy of renewable generation forecasting

[2], the forecasting models usually do not assure a consistent level of accuracy, and

selecting or customizing the appropriate one might be a complicated and tedious

task. Therefore, under the fundamental limitation in net demand forecasting, the

unit commitment models to deal with demand uncertainty have attracted increasing

attention.
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1.2 Problem Description

In the unit commitment problem (UCP), a generation schedule for each genera-

tor, which indicates the on/off status and its amount of generation is decided for

each time period during the planning horizon as shown in Figure 1.2. Typically, the

planning horizon is 24 hours divided into periods of 1 hour. First, we illustrate the

generator’s operational requirements. They consist of the minimum up/down time

limit, minimum/maximum power limit, and ramping limit. The minimum and maxi-

mum power limits bound the amount of generation when the generator is turned on.

For example, suppose that the minimum and maximum power limits for a generator

are 5 MW and 30 MW, respectively (see Figure 1.2). Then the amount of generation

is no less than 5 MW and no more than 30 MW every time the generator is turned

on.

• Minimum power: 5 MW

• Maximum power: 30 MW

• Minimum up/down time: 3 hours

• Ramping limits: 15 MW/hour

1 2 3 4 5 6 7 8 9 10

5

15

20

30

15
Min

Max

on-time on-timeoff-time

ramp-down

ramp-up

Periods (hour)

Generation
(MW)

Figure 1.2: Operational Requirements in UC
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Minimum up/down time refers to the number of minimum periods for which

the generator must keep the on/off status once it is turned on after the off-status

(start-up), or turned off after the on-status (shut-down). For example, suppose that

the minimum up time and minimum down time of a generator is both 3 periods. If

it starts up at period 1 and shuts down at period 5, then it must be turned on from

period 1 to 3 and turned off from period 5 to 7.

Ramping limit is the limit on the difference in the amount of generation between

two adjacent periods. If the ramping-up limit is 15 MW and its amount of generation

in period 8 is 5 MW, its amount of generation in period 9 must not be larger than

20 MW.

A generation schedule has information on the on/off status and the amount of

generation for each period. When the generator is turned on, a certain amount of

fixed cost is incurred. In addition, there is an extra cost incurred for a generator

that starts up called start-up cost. In terms of the amount of generation, it is well-

known that the generation function of thermal generators is quadratic in general

[3], but in this thesis, it is assumed that generation cost is linear with the amount

of generation for ease of analysis. Because of the operational constraints described

before, the total amount of generation may not satisfy the electricity demand for

each period. We introduced the conventional supposition in the unit commitment

models that the amount of unsatisfied demand is lost and a substantial penalty cost

called load-shedding cost is incurred in order to ensure the feasibility of the model.

In addition, we assume that all the generators are turned off for long enough periods

before the beginning of the planning horizon so that they are available in the first

period, and the ramping constraints in the first period are not considered.

4



In practice, the power system operators have to solve the UCP before the real-

ization of the real-time demand. They usually forecast the electricity demand in the

near future to get the nominal demand, but the inherent error in the demand fore-

casting model may cause an unexpected mismatch between the demand and supply.

Hence, the proper consideration of the demand uncertainty in UCP is essential for

both reliable and cost-efficient electricity supply in the power system. Furthermore,

the increasing penetration of renewable energy in the power system makes it difficult

to accurately capture the net demand. In other words, renewable generation is one

of the most noteworthy uncertain elements in UC, and the UC models that consider

the demand uncertainty can incorporate it.

In this thesis, we consider the UCP with stochastic demand, which follows the

period-wise independent probability distribution. In general, the available informa-

tion on the demand distribution that the demand forecasting model provides is the

nominal demand and the forecasting error for each period, not the joint distribu-

tion of all the demands [4]. Therefore, the period-wise independence setting in the

stochastic unit commitment (SUC) problem is not a too restrictive assumption. Un-

der these constraints, the objective is to find an optimal generation schedule over

the planning horizon that minimizes the expectation of the total operational cost,

which consists of the start-up cost, fixed cost, generation cost, and load-shedding

cost.

5



1.3 Literature Review

1.3.1 Unit Commitment Problem

UCP described in Chapter 1.2 is an integer optimization problem. Even for the

single-period case, it is NP-hard [5], and recently it was proven to be strongly NP-

hard in general [6]. In the 1980s-90s, dynamic programming and branch-and-bound

technique were used as an exact method, whereas priority listing, tabu search, and

simulated annealing were devised as a heuristic algorithm that gives a good-quality

solution in a relatively short time [7]. Later, combined with the rapid enhancement

of computing power and the development of the MIP solver, the polyhedral studies

on the unit commitment problem to enhance the efficiency of LP relaxation-based

branch-and-bound have been increased in the literature. They try to approximate or

characterize the convex hull of the feasible region of the unit commitment problem

by adding some facet-defining inequalities, or valid inequalities [8, 9, 10].

1.3.2 Unit Commitment Models Under Uncertainty

To deal with the demand uncertainty in unit commitment models, stochastic op-

timization models and robust optimization models have been commonly used in

the literature. Stochastic optimization models assume that the uncertain parame-

ter follows a given probability distribution. Among them, the chance-constrained

model is often used which guarantees the solution to satisfy the constraints with

a pre-specified probability [11]. Robust optimization models focus on the decision

with minimum worst-case cost under the assumption that the uncertain parameter

is contained in the so-called uncertainty set [12].

On the other hand, variants of these traditional optimization models under de-
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mand uncertainty have been proposed to overcome the disadvantage of the stochastic

or robust optimization models or to reflect the context of the power system opera-

tion more suitably. The interval unit commitment (IUC) model, where the nominal

demand is mainly used for planning as in the deterministic case, and the minimum

and maximum generation level among the given scenarios in each period are used to

consider the ramping limits in the worst-case [13]. It both avoids the computational

burden of the SUC model and the inner optimization problem in the formulation of

the RUC model. However, it only takes the ramp-feasibility for the artificial bound

scenarios into consideration. Focusing on the actual operation in the given scenarios,

the improved version of the IUC model where the worst-case ramping for each pair

of two consecutive periods is considered is proposed in [14]. Since the basic SUC

or RUC models do not fully describe the dynamics in the real power system opera-

tion, the UC models that consider the real-time adaptation of the generation under

inter-temporal constraints have also been presented. In [15], the optimal amount of

generation follows the affine decision rule based on the affine function of the real-

ized value of demands for each node, and a similar approach in the distributionally

robust optimization framework is also proposed in [16]. In order to guarantee that

the planned generation schedule is always feasible in the real-world situation where

the demand is sequentially realized, a modified range of generation is introduced in

the first stage of the RUC model [17]. It is achieved by having the inner problem in

the RUC model free of inter-temporal constraints.

7



1.3.3 Solution Approaches for the Stochastic Unit Commitment

Model

Decomposition Methods

The SUC model, which we cover in this thesis, has an inherent difficulty that the

mixed-integer stochastic programming models share. The expectation in the objec-

tive function makes it impossible to apply the algorithms developed for the integer

programming models. To handle this problem, the traditional approach is to use

sample average approximation (SAA). In SAA, the expectation is approximated by

the average of the objective value under the samples, or so-called scenarios, from the

distribution of the uncertain parameters to ease the problem. However, to guarantee

convergence, a large enough number of scenarios should be considered [18], which

increases the computational burden in solving the model. Hence, several kinds of

decomposition techniques have been studied to reduce the computational burden.

First, the Lagrangian relaxation approach has been used to decompose the problem

for each scenario, or each generator. In the former case, the constraints that enforce

for the on/off decision to be equal for each scenario are relaxed so that the original

problem is decomposed for each scenario [19, 20]. In the latter case, the demand

constraints are relaxed and the model is decomposed into a single-generator unit

commitment problem [21, 22]. Another well-known method for the SUC model is

the Benders decomposition. In the Benders decomposition method, the Benders cut

is added only when it is turned out to be necessary by iteratively solving the sub-

problem. It exploits the fact that the subproblem is relatively easy when the decision

in the previous stage is fixed. The application of the Benders decomposition to solve

the SUC model showed its efficiency in various problem contexts [23, 24].

8



Bounds on the Expectations

Although SAA is widely used to deal with stochastic programming models, there

have been some indirect approaches to handle the expectation, based on its bound

that is relatively easy to be computed. Jensen inequality and Edmundson-Madansky

inequality are the representative inequalities that give lower and upper bound on

the expectation of a convex function of a random variable [25, 26]. These inequali-

ties were strengthened by refining the given range of the random variable [27]. The

bounds can serve as stopping criteria in the L-shaped method [28], and the inner

linearization algorithm can also be developed based on the specific family of upper

bound [29]. This bounding technique has been applied to deal with several kinds

of stochastic programming models such as network interdiction problems [30] and

appointment scheduling problems [31]. Recently, novel bounds and their usage in

the algorithms have been devised in the context of the multi-stage stochastic pro-

gramming models with a finite number of scenarios [32, 33, 34, 35].

9



1.4 Motivation and Contributions

Despite the efforts in the literature, the SUC models still suffer from handling a large

number of scenarios. In the worse case where we do not know the demand distribution

in advance but only the nominal value, we may consider three possible observations

for each period: the low level; the medium level, which equals the nominal demand;

and the high level. Then the number of whole possible demand scenarios with T

periods is 3T , which is highly unmanageable to consider in real operation. In addition,

the conventional SUC models need extra consideration of ramping limits in the phase

of real-time dispatch. The alternative models for the SUC model were proposed

by [13] and [14] to alleviate this issue; however, they only consider the ramping

constraints based on the scenarios, not the cost-efficient recourse actions for each

scenario.

Therefore, we propose a novel optimization model, which we call the interval-

based two-stage stochastic unit commitment (ITSUC) model based on the concept of

an interval, which stands for the lower and upper generation limits of each generator

in a period. By deciding the intervals of a generator along with its on/off status in the

first stage, the amount of generation can be decided independently for each period

in the second stage. This period-wise decomposition property of the ITSUC model

makes it possible that demand samples can be considered independently for each

period rather than considering a demand scenario over the whole planning horizon

(the combination of samples for all periods), which significantly reduces the size

of the optimization model compared to the conventional two-stage stochastic unit

commitment model. The idea of an interval is similar to the concept of a box for

the two-stage robust unit commitment model proposed in [17], and we utilize the

10



concept to enhance the modeling capacity and to reduce the computational burden

in the stochastic setting

By utilizing the period-wise decomposition property of the ITSUC model, we

show that the tight upper and lower bounds for the ITSUC model under a given

probability distribution of uncertain demand can be efficiently obtained, based on

the results in [27]. The result gives one possible approach to deal with the ITSUC

model not relying on approximating the objective function using a finite number of

samples. To the best of our knowledge, the application of the bounds on the expected

cost in UCP has rarely been investigated in the existing literature.

Since the ramping constraints do not need to be directly considered, the opti-

mization problem corresponding to the second stage becomes easier to be solved

than the conventional two-stage stochastic unit commitment model. In addition, we

show that its dual problem has a polynomial number of possible optimal solutions. It

leads to a compact Benders reformulation, which may further enhance the solvability

of the proposed ITSUC model.

Through computational experiments, we investigated the effectiveness of the

proposed ITSUC model and the efficiency of the proposed solution approaches. The

proposed model was compared with the conventional TSUC model. The efficiency of

the proposed Benders reformulation and the bounding method was also investigated.

In addition, we tested several choices of predetermined interval candidates to give

an insight for selecting them in practice.

11



1.5 Organization of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we briefly describe

the unit commitment problem and provide the formulation for the conventional

TSUC model. In Chapter 3, we propose the ITSUC model and analyze the interval

design method. Solution approaches for the proposed model are presented in Chapter

4. The computational results for the model and the solution approaches are discussed

in Chapter 5. In Chapter 6, concluding remarks with some future research directions

are given.
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Chapter 2

Two-stage Stochastic Unit Commitment Model

In this chapter, we briefly discuss the conventional TSUC model before we go into

the key idea of the proposed model. Its modeling framework and assumption are

described in Chapter 2.1, and its mathematical formulation is given in Chapter 2.2.

2.1 Modeling Framework

A representative unit commitment model in the literature dealing with demand un-

certainty is the two-stage stochastic unit commitment (TSUC) model. In the model,

the expected operation cost under a given probability distribution of uncertain de-

mand is minimized while assuming the two-stage decision framework which is il-

lustrated in Figure 2.1. The on/off decisions over the whole time horizon are made

before the realization of the demand, and the generation amount of each generator is

decided corresponding to the demand realization. This assumption is rationalized by

Commitment

1. On/off Decision 3. Generation Decision

Generation

2. Demand
Realization

First stage Second stage

Figure 2.1: Two-stage Decision Framework for TSUC
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the fact that the on/off status is harder to be changed each time the demand is real-

ized. Because of the precedence relationship between decisions, the stage where the

on/off decisions are made is called the first stage, and the stage where the amount

of generation is determined is called the second stage.

2.2 Model Formulation

Under the modeling framework in 2.1, there are two modeling choices corresponding

to the type of demand distribution. If the demand follows a continuous probability

distribution, the corresponding TSUC model is called the distribution-based model.

On the other hand, if the demand follows a discrete probability distribution, i.e. the

number of the possible demand realizations is finite, then the corresponding TSUC

model is called the scenario-based model since each of them is called the demand

scenario. In this case, the expected cost becomes a weighted average of the cost

corresponding to the probability of each scenario.

The notation for the formulation of the TSUC model is presented in Table 2.1.

The vectors are represented by the associated letters with bold fonts for the remain-

ing parts.

14



Table 2.1: Notation for TSUC Model

Sets and
Indices

H Set of periods, t ∈ H = {1, . . . , T}
G Set of generators, g ∈ G = {1, . . . , G}
S Set of scenarios, s ∈ S = {1, . . . , S}

Parameters

SUCg Start-up cost of generator g
FCg Fixed cost of generator g
V Cg Variable cost coefficient of generator g
V oLL Value of lost load
RUPg Ramp-up limit of generator g
RDNg Ramp-down limit of generator g
Pmin
g Minimum power limit for generator g

Pmax
g Maximum power limit for generator g

MUTg Minimum up time of generator g
MDTg Minimum down time of generator g
dt (d

s
t ) Demand in period t (under scenario s)

Decision
Variables

xgt 1 if generator g is turned on in period t, 0 otherwise
ugt 1 if generator g starts up in time period t, 0 otherwise
vgt 1 if generator g shuts down in time period t, 0 otherwise

pgt (p
s
gt) Power generation of generator g in time period t (under scenario s)

lst (ls
s
t ) Load shedding in time period t (under scenario s)

Based on this notation, we can formulate the TSUC models. For the sake of

clarity, we first provide the formulation of the distribution-based model as follows:

(TSUCD)

min
∑
g∈G

∑
t∈H

(SUCgugt + FCgxgt) + Ed[C(x,d)] (2.1)

s.t. ugt − vgt = xgt − xg(t−1), ∀g ∈ G, t ∈ H \ {1}, (2.2)

ug1 = xg1, ∀g ∈ G, (2.3)

t∑
t′=(t−MUTg+1)+

ugt′ ≤ xgt, ∀g ∈ G, t ∈ H, (2.4)

t∑
t′=(t−MDTg+1)+

vgt′ ≤ 1− xgt, ∀g ∈ G, t ∈ H, (2.5)

ugt, vgt, xgt ∈ {0, 1}, ∀g ∈ G, t ∈ H, (2.6)
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, where

C(x,d) := min
∑
g∈G

∑
t∈H

V Cg · pgt +
∑
t∈H

V oLL · lst (2.7)

∑
g∈G

pgt + lst ≥ dt, ∀t ∈ H, (2.8)

Pmin
g xgt ≤ pgt ≤ Pmax

g xgt, ∀g ∈ G, t ∈ H, (2.9)

pgt − pg(t−1) ≤ RUPg, ∀g ∈ G, t ∈ H \ {1} (2.10)

pg(t−1) − pgt ≤ RDNg, ∀g ∈ G, t ∈ H \ {1} (2.11)

pgt ≥ 0, ∀g ∈ G, t ∈ H, (2.12)

lst ≥ 0, ∀t ∈ H (2.13)

The formulation (TSUCD) comprises two parts. The outer part (2.1)-(2.6) cor-

responds to finding an optimal first-stage decision while the inner part (2.7)-(2.13)

corresponds to finding an optimal second-stage decision. The inner minimization

problem (2.7)-(2.13) is called the second-stage problem, and its optimal objective

value is called second-stage cost, which is denoted by C(x,d) in the above formula-

tion to represent its dependency on the first-stage decision x and demand realization

d. Now we describe the model in more detail. The objective function (2.1) consists of

start-up cost, fixed cost, and the expected second-stage cost. Constraints (2.2)-(2.3)

describe the logical relationship between start-up and shut-down decisions and con-

straints (2.4)-(2.5) represent the minimum up/down time constraints, respectively.

(2.7) is the objective function for the inner part, which consists of variable genera-

tion cost and load shedding cost. Constraints (2.8) are the demand constraints that

enforce that either the sum of the amount of generation exceeds the demand in the

period, or the unsatisfied demand is regarded as load shedding amount. Constraints
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(2.9) restrict the amount of the generation by generator-specific power limits. Con-

straints (2.10)-(2.11) represent the ramping constraints between period t − 1 and

period t. Constraints (2.6) are the binary conditions for variables that indicates

start-up and shut-down, whereas constraints (2.12)-(2.13) represent the nonnegativ-

ity conditions for the amount of generation and load shedding.

Similarly, the scenario-based TSUC model can be derived as follows:

(TSUCS)

min
∑
g∈G

∑
t∈H

(SUCgugt + FCgxgt) +
1

|S|
∑
s∈S

C(x,ds) (2.14)

s.t. (2.2)− (2.6)∑
g∈G

psgt + lsst ≥ dst , ∀t ∈ H, s ∈ S, (2.15)

Pmin
g xgt ≤ psgt ≤ Pmax

g xgt, ∀g ∈ G, t ∈ H, s ∈ S, (2.16)

psgt − psg(t−1) ≤ RUPg, ∀g ∈ G, t ∈ H \ {1}, s ∈ S, (2.17)

psg(t−1) − psgt ≤ RDNg, ∀g ∈ G, t ∈ H \ {1}, s ∈ S, (2.18)

pgt ≥ 0, ∀g ∈ G, t ∈ H, (2.19)

lst ≥ 0, ∀t ∈ H (2.20)

The objective function (2.14) represents the average cost over the given demand

scenarios. Constraints (2.15)-(2.20) correspond to the constraint (2.8)-(2.13) in the

(TSUCD), but they are imposed for each scenario.
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Chapter 3

Interval-based Two-stage Stochastic Unit
Commitment Model

In this chapter, we propose the ITSUC model and discuss its properties. The key

idea of the model and the detailed description of its modeling framework are given in

Chapter 3.1. The mathematical formulation of the model and a comparative analysis

of the models are provided in Chapter 3.2.

3.1 Modeling Framework

In the ITSUC model, the range of the generation, called interval, is decided in

the first stage in addition to the on/off decision of each generator. In the second

stage, the amount of generation for the generators to be turned on must lie in the

interval chosen in the first stage. This is different from the TSUC model described in

Chapter 2.1 where the on/off decision in the first stage is the only restriction that is

imposed in the second stage. Based on the number of possible intervals that can be

selected in each period, we propose two interval design methods for the first-stage

interval decision, finite interval design and infinite interval design. Each interval

design method will be further discussed in Chapter 3.1.1 and Chapter 3.1.2.

The main purpose of the interval is to consider the ramping constraints in the first
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Figure 3.1: Two-stage Decision Framework for ITSUC

stage. If the intervals are carefully selected, the change of generation in the second

stage cannot exceed the ramping limit. For example, if the amount of generation for

the generator with 30 MW ramping limits is controlled by the interval [20, 40] at

the period t − 1 and [30, 50] at the period t, the maximum amount of ramp-up is

50− 20 = 30 MW and maximum amount of ramp-down is 40− 30 = 10 MW. Since

these are not greater than the ramping limit of the generator, the ramping constraint

in the second period for this generator is obviously satisfied. In other words, the

ramping constraints in the second-stage problem can be taken out of consideration

once the choice of intervals already implies the ramping limit. When any amount

of generation in an interval I ′ in the next period does not violate the ramping

constraint for the current interval I, we call I ′ is reachable from I. For example, in

the case described above, [30,50] is reachable from [20,40] for the generator g. The

more concise definitions related with the concept of the interval will be described in

the following subchapter.

The reachability of the intervals determined in the first stage gives a distinctive

property to the ITSUC model. Figure 3.3 and Figure 3.4 show the difference in the

structure of the second-stage problem between TSUC and ITSUC. In Figure 3.3,

the amount of generation is not only restricted between the minimum and maximum

power limit but also the minimum and maximum generation level determined by the
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Figure 3.2: Example of Reachable Intervals

ramping limits. Therefore, the decision on the amount of generation in the TSUC

model depends on that in the adjacent periods. However, in the case of the ITSUC

model, the consideration of this inter-temporal dependency is no longer needed. As

illustrated in Figure 3.4, the range of generation is further restricted due to the

reachability constraints in the first stage. Since any adjacent selected intervals are

reachable, the inter-temporal relationship of the amount of generation caused by the

ramping constraints breaks down. Hence, the amount of generation can be decided

separately in each period, which we call the period-wise decomposition property.

3.1.1 Finite Interval Design

In the finite interval design, the candidates for the interval decision should be pre-

determined for each generator. In practice, a decision maker who tries to apply the

ITSUC model with finite interval design should decide how many and which intervals

to introduce in the model. Setting the set of intervals properly is an important task

for the model since it affects the performance and computation time of the model.
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Furthermore, the set of intervals chosen carelessly may be impossible to be used

if one of them does not have any reachable interval nor can it shut down. In this

subchapter, we will provide the mathematical definition of the concept of reachability

and derive the condition for the set of intervals to be proper. In addition, we will

suggest a simple and intuitive method to construct a proper set of intervals.

To establish the condition for the given set of intervals of a generator being able

to yield a generation schedule that satisfies the ramping constraints, we here present

the formal definition of reachability.

Definition 3.1. (Reachable interval) Let Ig = [Ig,Īg] and I ′g = [I′g, Ī
′
g] be two

intervals of a generator g ∈ G. Then, we call that I ′g is reachable from Ig if

Ī ′g − Ig ≤ RUPg and Īg − I′g ≤ RDNg.

According to the Definition 3.1, if I ′g is reachable from Ig for g ∈ G, it implies

that the maximum difference in the amount of generation between two intervals

cannot exceed the ramping limits, RDNg or RUPg.

Proposition 3.2. (Reachability implies ramping limits) Suppose that interval I ′g

is reachable from interval I for generator g ∈ G. For any p ∈ Ig and p′ ∈ I ′g,

p′ − p ≤ RUPg and p− p′ ≤ RDNg.

Proof. p′ − p ≤ Ī ′g − Ig ≤ RUPg and p− p′ ≤ Īg − I ′g ≤ RDNg.

By Proposition 3.2, given a set of intervals, there might exist an interval that

does not have any reachable interval. In this case, that interval may be excluded

from the set of intervals. Also, to consider all the possible amounts of generation

between the minimum and maximum power limit, the intervals should cover the
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range of generation. If a set of intervals satisfies these two conditions, we call it a

proper set of intervals.

Definition 3.3. (Proper set of intervals) A set of intervals Ig is proper if

1.
⋃

Ig∈Ig
Ig = [Pmin

g , Pmax
g ]

2. For every Ig ∈ Ig, there exists an interval I∗g ∈ Ig reachable from Ig.

The definition above is not a necessary condition to be used as a set of intervals

in the ITSUC model. Instead, it indicates that the set of intervals satisfying the

conditions above is a reasonable choice in that they do not excessively limit the range

of generation. For example, if there exists no reachable interval for any interval in

Ig, then the only feasible generation schedule for generator g is to turn off until the

end of the horizon. This may be too conservative and restrictive a modeling choice

for the power system operator and may even cause a large amount of load-shedding

cost which might have been avoided.

Next, we present a generic method for constructing a proper set of intervals,

which we call overlapping uniform interval design method. The method has two

control parameters, δ, and ℓ, and allows overlapping of intervals. The former indicates

a difference between the minimum power limit of two consecutive intervals, and the

latter indicates a size of an interval, which is the difference between the minimum

and maximum power limits of each interval.

Definition 3.4. Let δ, ℓ be positive real number such that δ ≤ ℓ ≤ min{RUPg, RDNg}.
From Pmin

g , constant step size δ and size of intervals ℓ corresponds to the following

proper set of intervals,

Ig =

{
k = 1, . . . ,

⌈Pmax
g − Pmin

g − ℓ

δ

⌉
+ 1 : [Pmin

g + (k − 1) · δ, min{Pmax
g , Pmin

g + (k − 1) · δ + ℓ}]
}

.
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Figure 3.5: Example of Overlapping Intervals

Figure 3.6: Illustration of Overlapping Uniform Interval Design

Then, Ig is called overlapping uniform interval design.

Figure 3.5 and Figure 3.6 illustrate how interval candidates are determined under

the overlapping uniform interval design. In Figure 3.5, there are two overlapping

intervals with the same length ℓ, the gap of which is δ. The set of interval candidates

under the overlapping uniform design with parameters δ, ℓ is given in Figure 3.6.

A specific example of the design is given in Table 3.1. Suppose that the ramping

limits are half of the difference between the minimum and maximum power limits,

i.e. RUPg = RDNg = 0.5 · (Pmax
g − Pmin

g ). If δ = βs ·RUPg and ℓ = βl ·RUPg, the

set of intervals can be designed differently according to the choice of βs and βl as

shown in Table 3.1.

The parameters δ and ℓ play an important role in tuning the level of restriction

of power generation. Their impact on the computation time and the planning cost

is shown in Chapter 5.3.5 by controlling these parameters.
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Table 3.1: Examples of Overlapping Uniform Interval Design

γ βs βl Design

0.5 0.5 0.5

0.5 0.25 0.5

0.5 0.25 0.25

Figure 3.7: Example of Interval in Infinite Interval Design

3.1.2 Infinite Interval Design

In the finite interval design, we assumed that the number of intervals that can be

selected in the first stage is finite. However, there might be a better choice of interval

which is not included in the candidates. If we do not limit them to a finite set of

intervals, a more efficient on/off decision may become possible. In an extreme case,

every interval within the unit-specific power limit may be available, as illustrated in

Figure 3.7. We call this infinite interval design since there are infinite numbers of

intervals that can be possibly selected, as illustrated in Figure 3.8. It is in line with

the RUC model proposed in [17] where the lower and upper limits of the interval

can be decided in the first stage.
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Figure 3.8: Illustration of Infinite Interval Design

Table 3.2: Notation for ITSUC Model

Sets and
Indices

Ig Set of intervals for generator g ∈ G
Kg Set of indices for set of intervals Ig

RIg(k) Set of reachable intervals for generator g ∈ G from kth interval

Parameters
Pmin
gk Minimum power limit of interval Igk for generator g

Pmax
gk Maximum power limit of interval Igk for generator g

Decision
Variables

bgtk 1 if generator g is in interval Ik in period t, 0 otherwise.
pmin
gt the minimum generation of generator g in period t

pmax
gt the maximum generation of generator g in period t

3.2 Model Formulation

3.2.1 Finite Interval Design

The ITSUC model with finite interval design will be represented as finite-interval-

based two-stage stochastic unit commitment (FITSUC) model in the rest of the

thesis. Before we provide the formulation of the FITSUC model, we additionally

introduce some notations regarding intervals as summarized in Table 3.2. For each

generator g ∈ G, the kth interval (for k ∈ Kg) Igk has two parameters, Pmin
gk and

Pmax
gk , each of which indicates the minimum and maximum generation amount that

an interval k is selected. Then, Ig := {Igk : k ∈ Kg} denotes the set of intervals

and RIg(k) denotes the set of reachable intervals from k ∈ Kg. Note that the

singleton {0} (= [0, 0]) indicates the off status of the generator and Ig0 = {0}, i.e.

Pmin
g0 = Pmax

g0 = 0, ∀g ∈ G. Then, the formulation of the distribution-based FITSUC
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model can be derived as follows:

(FITSUCD)

min
∑
g∈G

∑
t∈H

(SUCgugt + FCgxgt)+
∑
t∈H

Edt [C
F
t (b, dt)] (3.1)

s.t. ugt − vgt = bg(t−1)0 − bgt0, ∀g ∈ G, t ∈ H \ {1}, (3.2)

ug1 = 1− bg10, ∀g ∈ G, (3.3)

t∑
t′=(t−MUTg+1)+

ugt′ ≤ 1− bgt0,∀g ∈ G, t ∈ H, (3.4)

t∑
t′=(t−MDTg+1)+

vgt′ ≤ bgt0, ∀g ∈ G, t ∈ H, (3.5)

∑
k∈Kg

bgtk = 1, ∀g ∈ G, t ∈ H, (3.6)

∑
k′∈RIg(k)

bgtk′ ≥ bg(t−1)k, ∀g ∈ G, t ∈ H \ {1}, k ∈ Kg, (3.7)

ugt, vgt, xgt ∈ {0, 1}, ∀g ∈ G, t ∈ H, (3.8)

bgtk ∈ {0, 1}, ∀g ∈ G, t ∈ H, k ∈ Kg, (3.9)

, where

CF
t (b, dt) := min

∑
g∈G

V Cg · pgt + V oLL · lst (3.10)

s.t.
∑
g∈G

pgt + lst ≥ dt, (3.11)

∑
k∈Kg

Pmin
gk bgtk ≤ pgt ≤

∑
k∈Kg

Pmax
gk bgtk,∀g ∈ G, (3.12)

pgt ≥ 0, ∀g ∈ G, (3.13)

lst ≥ 0 (3.14)
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The objective function (3.1) consists of the start-up cost, fixed cost, and the

expected second-stage cost, which is decomposed for each period into CF
t (b,d).

It could be done due to the period-wise decomposition property of the ITSUC

model illustrated in Chapter 3.1. Constraints (3.2)-(3.5) correspond to the con-

straints (2.2)-(2.5) in (TSUCD) where the variable xgt is eliminated by the equation

xgt = 1− bgt0, ∀g ∈ G, t ∈ H. Constraints (3.6) indicate that exactly one of the in-

tervals (including {0}) should be selected for each generator and period. Constraints

(3.7) represent that only the reachable intervals from the interval chosen before are

available. Constraints (3.8) are the binary conditions for the variables that indicate

start-up and shut-down and constraints (3.9) are those for the variables that indicate

the interval decision.

In the second-stage problem, the objective function (3.10) corresponds to (2.7),

and constraints (3.11)-(3.14) correspond to (2.7)-(2.9), (2.12)-(2.13), respectively,

except that the period is fixed by t and the amount of generation is restricted in the

interval by constraints (3.12). The ramping constraints (2.10)-(2.11) are not included

here explicitly since they are indirectly considered by the reachability constraints

(3.7) in the first stage.

Similarly, the scenario-based FITSUC model can be derived as follows:

(FITSUCS)

min
∑
g∈G

∑
t∈H

(SUCgugt + FCgxgt) (3.15)

+
∑
t∈H

1

|S|
∑
s∈S

(∑
g∈G

V Cg · psgt + V oLL · lsst
)

(3.16)

s.t. (3.2)− (3.9)
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∑
g∈G

psgt + lsst ≥ dst , ∀t ∈ H, s ∈ S, (3.17)

∑
k∈Kg

Pmin
gk bgtk ≤ psgt ≤

∑
k∈Kg

Pmax
gk bgtk, ∀g ∈ G, t ∈ H, s ∈ S, (3.18)

psgt ≥ 0, ∀g ∈ G, t ∈ H, s ∈ S (3.19)

lsst ≥ 0, ∀t ∈ H, s ∈ S (3.20)

The objective function (3.16) represents the average cost over the given demand

scenarios. Constraints (3.17)-(3.20) corresponds to the constraints (3.11)-(3.14) in

the (FITSUCD), but they are imposed for each scenario.

3.2.2 Infinite Interval Design

The ITSUCmodel with infinite interval design will be represented as infinite-interval-

based two-stage stochastic unit commitment (IITSUC) model in the rest of the thesis.

As an additional notation, we introduce new decision variables pmin
gt and pmax

gt which

indicates the minimum and maximum power limits of the interval for generator g ∈ G

in period t ∈ H. Then, the formulation of the distribution-based IITSUC model can

be presented as follows:

(IITSUCD)

min
∑
g∈G

∑
t∈H

(SUCgugt + FCgxgt) +
∑
t∈H

Edt [C
I
t (b, dt)] (3.21)

s.t. (2.2)− (2.6), (3.8)

pmax
gt − pmin

g(t−1) ≤ RUPg, ∀g ∈ G, t ∈ H \ {1}, (3.22)

pmax
g(t−1) − pmin

gt ≤ RDNg, ∀g ∈ G, t ∈ H \ {1}, (3.23)
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Pmin
g xgt ≤ pmin

gt ≤ pmax
gt ≤ Pmax

g xgt, ∀g ∈ G, t ∈ H, (3.24)

pmin
gt , pmax

gt ≥ 0, ∀g ∈ G, t ∈ H, (3.25)

, where

CI
t (b,d) := min (3.10)

s.t. (3.11), (3.13)− (3.14)

pmin
gt ≤ pgt ≤ pmax

gt , ∀g ∈ G, t ∈ H (3.26)

Most of the elements in the above formulation are same as those in (TSUCD) or

(FITSUCD). To avoid redundancies, we focus on the remaining part. Constraints

(3.22)-(3.23) indicate that the gap between the minimum power limit and max-

imum power limit imposed by the interval should not exceed the ramping limit.

(3.24) restricts the limits of the interval within the unit-specific power limit and set

the amount of generation to zero if the generator is turned off. Constraints (3.25)

represents the nonnegativity conditions for the variables that indicate limits of the

interval. In the period-wise second-stage problem of the IITSUC model, whose cost

function is denoted by CI
t (b,d), the only difference from that of the FITSUC model

is the constraint (3.26) that enforces the amount of generation to be within the

interval determined in the first stage.

Similarly, the scenario-based IITSUC model can be derived as follows:

(IITSUCS)

min (3.16)

s.t. (2.2)− (2.6), (3.17), (3.19)− (3.20),(3.22)− (3.25)
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pmin
gt ≤ psgt ≤ pmax

gt , ∀g ∈ G, t ∈ H, s ∈ S, (3.27)

Constraints (3.27) represents that the amount of generation should be within

the interval. Similarly to the (TSUCS) and (FITSUCS), all the constraints in the

second-stage problem are imposed for each scenario.

3.3 Comparison of the Objective Values

Compared with the conventional TSUCmodel formulated in Chapter 2.2, the infinite-

interval-based model can be considered as a restriction of it, in that it has a more

restrictive range of the amount of generation than the TSUC model. Hence, the

optimal cost of (IITSUCS) is less than or equal to that of (TSUCS) since every

feasible solution for (IITSUCS) is a feasible solution for (TSUCS). Similarly, the

optimal cost of (FITSUCS) is not less than that of (IITSUCS). Proposition 3.5

summarizes the comparison result of the TSUC and ITSUC models.

Proposition 3.5. (Comparison of the optimal cost between FITSUCS, IITSUCS,

and TSUCS)

Let zC be the optimal objective value for an instance C, and FI(U) and II(U)

denote the FITSUCS instance and IITSUCS instance corresponding to a TSUCS

instance U , respectively. Then, the following statement holds.

zFI(U) ≥ zII(U) ≥ zU
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Proof.

(i) zFI(U) ≥ zII(U)

Let QFI(U) and QII(U) denote the set of feasible solutions of FI(U) and II(U),

respectively. It suffices to show that for any (x,b,u,v,p, ls) ∈ QFI(U), there ex-

ists (x,u,v,pmin,pmax,p, ls) ∈ QII(U) with the same objective value. Consider

(b,u,v,p, ls) ∈ QFI(U). We construct (x̃, ũ, ṽ, p̃, l̃s) ∈ QII(U) as follows:

x̃gt = 1− bgt0, ∀g ∈ G, t ∈ H,

ũgt = ugt, ∀g ∈ G, t ∈ H,

ṽgt = vgt, ∀g ∈ G, t ∈ H,

p̃min
gt =

∑
k∈Kg

Pmin
gk bgtk, ∀g ∈ G, t ∈ H,

p̃max
gt =

∑
k∈Kg

Pmax
gk bgtk, ∀g ∈ G, t ∈ H,

p̃sgt = psgt, ∀g ∈ G, t ∈ H, s ∈ S,

l̃s
s
t = lsst , ∀g ∈ G, t ∈ H, s ∈ S

Constraints (3.6) and (3.9) indicate that there exists a unique k ∈ Kg such that

bgtk = 1 for all g ∈ G and t ∈ H. Let k(g, t) denote such k. Then, p̃min
gt = Pmin

gk(g,t) and

p̃max
gt = Pmax

gk(g,t) for all g ∈ G and t ∈ H. In addition, the constraints (3.7) indicate

that k(g, t) ∈ RIg(k(g, t− 1)),∀t ∈ H \ {1}. Therefore,

p̃max
gt − p̃min

g(t−1) = Pmax
gk(g,t) − Pmin

gk(g,t−1) ≤ RUPg, ∀g ∈ G, t ∈ H \ {1}

p̃max
g(t−1) − p̃min

gt = Pmax
gk(g,t−1) − Pmin

gk(g,t) ≤ RDNg, ∀g ∈ G, t ∈ H \ {1}

32



and the constraints (3.22), (3.23) in II(U) are satisfied. Besides,

p̃sgt ≥
∑
k∈Kg

Pmin
gk bgtk = p̃min

gt

p̃sgt ≤
∑
k∈Kg

Pmax
gk bgtk = p̃max

gt

Hence the constraints (3.27) in II(U) are satisfied. Similarly, the other constraints

in II(U) are satisfied by construction, and so (x̃, ũ, ṽ, p̃, l̃s) ∈ QII(U). Since the

objective of FI(U) and II(U) are identical, we have zFI(U) ≥ zII(U).

(ii) zII(U) ≥ zU

Let QU denote the set of feasible solutions of II(U). It suffices to show that

for any (x,u,v,p,pmin,pmax, ls) ∈ QII(U), (x,u,v,p, ls) ∈ QU and both have the

same objective value. The constraints (3.24) and (3.27) imply that

Pmin
g xgt ≤ pmin

gt ≤ psgt ≤ pmax
gt ≤ Pmax

g xgt, ∀g ∈ G, t ∈ H, s ∈ S

and the constraints (2.16) are satisfied. Besides,

psgt − psg(t−1) ≤ pmax
gt − pmin

g(t−1) ≤ RUPg, ∀g ∈ G, t ∈ H \ {1}

psg(t−1) − psgt ≤ pmax
g(t−1) − pmin

gt ≤ RDNg, ∀g ∈ G, t ∈ H \ {1}

Hence, the ramping constraints (2.17)-(2.18) in U are satisfied. Similarly, the other

constraints are satisfied by construction, and so (x,u,v,p, ls) ∈ QU . Since the ob-

jective of II(U) and U are identical, we have zII(U) ≥ zU .
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Chapter 4

Solution Approaches

As mentioned in Chapter 1.4, there is still a limitation on efficiently solving the

TSUCmodel. In this chapter, we give two solution approaches for the ITSUCmodels,

one for the distribution-based model, and the other for the scenario-based model.

The former is the bounding method described in Chapter 4.1, and the latter is the

Benders reformulation presented in Chapter 4.2.

4.1 Bounding Method

As shown in the formulation of the distribution-based ITSUC models in Chapter 3.2,

the expectation of the second-stage cost function can be decomposed into several

period-wise cost terms. If we know the lower and upper bounds of the demand,

i.e. dt ∈ [at, bt], ∀t ∈ H, then we can apply the tightened lower and upper bound

derived from the Jensen inequality and the Edmundson-Madansky inequality [27].

The Jensen inequality is a well-known inequality that holds for any convex function,

which demonstrates that the function value at the mean of a random variable is

less than or equal to the expectation of the function. Since the second-stage cost

function in the ITSUC model is a convex function by LP duality, applying Jensen

inequality gives an optimization problem whose optimal objective value is a valid
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lower bound of the original problem. Similarly, the Edmundson-Madansky inequality,

an inequality that holds for the convex function of the bounded random variable, is

applicable to the ITSUC model in order to obtain a valid upper bound [26]. However,

even though the gap between the lower and upper bound is a useful indicator of the

solution quality, it may be too large to be used as an alternative to the traditional

SAA method. To overcome this limitation, we used the enhanced bound proposed

in [27]. They devised a method to obtain tighter bounds by sequentially applying

these classic Jensen and Edmundson-Madansky bounds.

We suppose that there exists a lower and upper bound. To introduce its appli-

cation to the ITSUC model, we suppose that there exists a lower and upper bound

of demand in each period t, i.e. at ≤ dt ≤ bt, ∀t ∈ H since Edmundson-Madansky

inequality makes sense only if the random variable is bounded. Let ft(·), Ft(·) repre-

sents the density function and distribution function of dt, respectively, and Ct(b, dt)

denote either CF
t (b, dt) or C

I
t (b, dt). Then, the following proposition holds.

Proposition 4.1. (Bounds on the expectation of second-stage cost) Let at = dt0 <

dt1 < · · · < dtm = bt be arbitrary points in [at, bt].

T∑
t=1

m∑
i=1

αtiCt(b,mti) ≤
T∑
t=1

Ed[Ct(b, dt)] ≤
T∑
t=1

m∑
i=0

βtiCt(b, dti)

, where

αti := Ft(dti)− Ft(dt(i−1)), ∀i ∈ {1, . . . ,m}, αt0 = αt(m+1) = 0,

mti := E
[
dt|dt ∈ [dt(i−1), dti]

]
, ∀i ∈ {1, . . . ,m},

βti := αti ·
(mti − dt(i−1)

dti − dt(i−1)

)
+ αt(i+1) ·

(dt(i+1) −mt(i+1)

dt(i+1) − dti

)
, ∀i ∈ {0, . . . ,m}
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Proof. Since Ct(b, dt) in a convex function in dt [36], the statement immediately

follows from Theorem 2 and 3 in [27].

In Proposition 4.1, mti, the conditional mean in the interval [dt(i−1), dti], for a

lower bound may not be directly computed because of the difficulty of calculat-

ing the integral. However, if the demand follows the multivariate truncated normal

distribution, denoted as d ∼ N (µ,Σ,a,b), mti can be computed as follows:

mti : = E
[
dt|dt ∈ [dt(i−1), dti]

]
=

∫ dti
dt(i−1)

xft(x)dx∫ dti
dt(i−1)

ft(x)dx
=

∫ dti
dt(i−1)

x · ft(x)
Φ(b)−Φ(a)dx

Φt(dti)−Φt(dt(i−1))

Φ(b)−Φ(a)

=
µt(Φt(dti)− Φt(dt(i−1))) +

∫ dti
dt(i−1)

(x− µt)ϕt(x)dx

Φt(dti)− Φt(dt(i−1))

= µt − σ2
t ·

ϕt(dti)− ϕt(dt(i−1))

Φt(dti)− Φt(dt(i−1))
,∀i ∈ {1, . . . ,m}

, where ϕ(·), Φ(·) denote the density function and distribution function of the normal

distribution N (µt, σ
2
t ), respectively. Replacing the expectation part with the upper

bound represented in Proposition 4.1, the surrogate models that provide lower and

upper bounds for the FITSUC model are as follows:

(FITSUCD
LB)

min
∑
g∈G

∑
t∈H

(SUCgugt + FCg(1− bgt0)) +
∑
t∈H

m∑
i=1

αtiC
F
t (b,mti)

s.t. (3.2)− (3.9)
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(FITSUCD
UB)

min
∑
g∈G

∑
t∈H

(SUCgugt + FCg(1− bgt0)) +
∑
t∈H

m∑
i=0

βtiC
F
t (b, dti)

s.t. (3.2)− (3.9)

According to Proposition 4.1, The optimal objective value of (FITSUCD
LB) is a valid

lower bound for the ITSUC model, while (FITSUCD
UB) gives an upper bound. If

we solve both (FITSUCD
LB) and (FITSUCD

UB), the solution of FITSUCD
UB can be

regarded as the optimal solution of FITSUCD at the certain optimality tolerance

level, which is the gap between the objective values of those two. The same arguments

hold for the IITSUC model and the formulation for the corresponding surrogate

models are as follows:

(IITSUCD
LB)

min
∑
g∈G

∑
t∈H

(SUCgugt + FCg(1− bgt0)) +
∑
t∈H

m∑
i=1

αtiC
I
t (b,mti)

s.t. (2.2)− (2.6), (3.8), (3.22)− (3.25)

(IITSUCD
UB)

min
∑
g∈G

∑
t∈H

(SUCgugt + FCg(1− bgt0)) +
∑
t∈H

m∑
i=0

βtiC
I
t (b, dti)

s.t. (2.2)− (2.6), (3.8), (3.22)− (3.25)
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For the conventional TSUC model, the argument similar to Proposition 4.1 holds

when the demand is period-wise independent, but the bound contains mT cost func-

tion terms which are much more than m × T terms in the ITSUC model. For this

reason, to the best of our knowledge, the application of this method to the TSUC

model has not been reported.

In the objective of the surrogate models, αti and βti can be interpreted as

the weights of each cost function value used for the enhanced Jensen bound and

Edmundson-Madansky bound, respectively. Even more, the sum of those weights

equals to 1, i.e.
m∑
i=1

αti =
m∑
i=0

βti = 1,∀t ∈ H. In this point of view, these two bounds

can be viewed as the results of the SAA method if the arbitrary demand points

dti, i ∈ {1, . . . ,m} or the conditional mean mti were sampled from the demand dis-

tribution. In addition, the gap of the bounds can be closed as much as it is desired by

increasing m, the number of sub-intervals, in the surrogate models. Therefore, the

proposed bounding method can be viewed as a discretization-based approximation

method of the second-stage expected cost. The computational comparison results of

the SAA method and the bounding method are given in Chapter 5.

4.2 Benders Reformulation

The formulation of the ITSUC model presented in Chapter 3 has O(GTS) variables

and O(TS) constraints when the maximum number of demand samples among all

the periods is denoted by S. Since the number of variables and constraints are

both linear with the number of scenarios, the problem may become much harder

to be solved even with a slight increase in demand scenarios. To deal with this

scalability issue, Benders decomposition is widely used [37]. Benders decomposition
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is a general solution approach to linear programming or integer programming which

can exploit the stage-wise decision framework in the stochastic programming model.

In this subchapter, we will obtain the so-called Benders reformulation of the ITSUC

model by characterizing a set of dual feasible solutions with polynomial cardinality

containing the optimal dual solution to the second-stage problem.

Omitting the superscript s, the second-stage problem for period t in the IITSUC

model can be written as follows:

min
∑
g∈G

V Cg · pgt + V oLL · lst dual var.

s.t.
∑
g∈G

pgt + lst ≥ dt, (λt)

pgt ≥ pmin
gt , ∀g ∈ G, (αgt)

pgt ≤ pmax
gt , ∀g ∈ G, (βgt)

lst ≥ 0

(4.1)

According to the LP duality, (4.1) is equivalent to its following dual problem.

max
∑
g∈G

(pmin
gt αgt + pmax

gt βgt) + dtλt

s.t. λt + αgt + βgt = V Cg, ∀g ∈ G,

λt ≤ V oLL,

αgt ≥ 0, βgt ≤ 0, ∀g ∈ G,

λt ≥ 0

(4.2)
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Since the ramping constraints are no longer needed, (4.1) is equivalent to LP re-

laxation of 0-1 knapsack problem. It can be easily solved by sorting the items by

their cost coefficient and taking the largest value possible for each item in ascending

order until the cumulative sum of item weights reached the capacity [38]. Hence, the

optimal solution for (4.1) can be easily obtained by sorting the generators by their

variable cost coefficient V Cg. Using this property, we can find out the whole possible

optimal dual solution of (4.2) as presented in Proposition 4.2.

Proposition 4.2. (Optimal dual solution of second-stage problem) Suppose that

V oLL > V Cg ≥ 0,∀g ∈ G. Then, set D := D1 ∪ D2 ∪ D3 contains an optimal solu-

tion of dual problem (4.2) for every realization of dt.

D1 := {((VC− V Cg · 1)+, (VC− V Cg · 1)−, V Cg) : g ∈ G}

D2 := {(VC,0, 0)}

D3 := {(0,VC− V oLL · 1, V oLL · 1)}

Proof. Let i(g) and g(i) denote the rank of generator g and ith generator, respec-

tively, when sorting all g ∈ G by V Cg in ascending order. We will show that

the optimal amount of generation and load shedding for (4.1) can be found if

the residual demand dt −
∑

g∈G p
min
gt is satisfied by running the generators with

small variable cost coefficient as much as possible according to the sorted order. Let

sj,t :=
∑
g∈G

pmin
gt +

j∑
i=1

(pmax
g(i)t − pmin

g(i)t), ∀j ∈ {1, . . . , |G|} and s0,t :=
∑
g∈G

pmin
gt . Since

sj1,t ≥ sj2,t ≥ 0, ∀j1 > j2 ≥ 0, exactly one of the following statements is true.
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(i) ∃g∗ ∈ G such that si(g∗)−1,t ≤ dt < si(g∗),t (ii) dt ≥
∑
g∈G

pmax
gt (iii) dt ≤

∑
g∈G

pmin
gt .

Case 1. ∃g∗ ∈ G such that si(g∗)−1,t ≤ dt < si(g∗),t.

Let

p∗g(i)t =



pmax
gt

(
i > i(g∗)

)
dt − si(g∗)−1,t

(
i = i(g∗)

)
pmin
gt

(
i < i(g∗)

)
ls∗t = 0

α∗
gt = (V Cg − V Cg∗)

+

β∗
gt = (V Cg − V Cg∗)

−

λ∗
t = V C∗

g

for every g ∈ G. Then,∑
g∈G

V Cgp
∗
gt + V oLL · ls∗t

=

i(g∗)−1∑
i=1

V Cg(i) · pmax
g(i)t + V Cg∗ · (dt −

i(g∗)−1∑
i=1

pmax
g(i)t −

|G|∑
i=i(g∗)+1

pmin
g(i)t)

+

|G|∑
i=i(g∗)+1

V Cg(i) · pmin
g(i)t

=
∑
g∈G

pmin
gt (V Cg − V Cg∗)

+ + pmax
gt (V Cg − V Cg∗)

− + dtV Cg∗

=
∑
g∈G

pmin
gt α∗

gt + pmax
gt β∗

gt + dtλ
∗
t

(4.3)
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Case 2. dt ≥
∑
g∈G

pmax
gt .

Let

p∗g(i)t = pmax
gt

ls∗t = dt −
∑
g∈G

pmax
gt

α∗
gt = 0

β∗
gt = V Cg − V oLL

λ∗
t = V oLL

for every g ∈ G. Then,∑
g∈G

V Cgp
max
gt + V oLL · (dt −

∑
g∈G

pmax
gt )

=
∑
g∈G

(V Cg − V oLL)pmax
gt + dt · V oLL

=
∑
g∈G

pmin
gt α∗

gt + pmax
gt β∗

gt + dtλ
∗
t

(4.4)

Case 3. dt ≤
∑
g∈G

pmin
gt .

Let

p∗g(i)t = pmin
gt

ls∗t = 0

α∗
gt = V Cg

β∗
gt = 0

λ∗
t = 0

for every g ∈ G. Then,

∑
g∈G

V Cgp
min
gt =

∑
g∈G

pmin
gt α∗

gt + pmax
gt β∗

gt + dtλ
∗
t , ∀g ∈ G, t ∈ H (4.5)

For all cases, (p∗, ls∗) is a primal feasible solution for (4.1), (α∗, β∗, λ∗) is a

dual feasible solution for (4.2). Since the primal and dual objective values for these

solutions coincide, the former is an optimal solution for (4.1), and the latter is for

(4.2) by the duality of linear programming [36].
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Let ηts denote the optimal cost of (4.2). Then according to Proposition 4.2,

ηts = min
(α,β,λ)∈Y

∑
g∈G

(pmin
gt αgt+pmax

gt βgt)+dtλt = min
(α,β,λ)∈D

∑
g∈G

(pmin
gt αgt+pmax

gt βgt)+dtλt

(4.6)

, where Y denotes the feasible region of (4.2).

Hence, the Benders reformulation of the scenario-based IITSUC model can be

simplified as follows:

(IITSUCS
BR)

min
∑
g∈G

∑
t∈H

(SUCgugt + FCgxgt) +
∑
s∈S

ps
∑
t∈H

ηts

s.t. (2.2)− (2.6)

ηts ≥
∑
g′∈G

(
pmin
g′t (V Cg′ − V Cg)

+ + pmax
g′t (V Cg′ − V Cg)

−
)

+ dst · V Cg, ∀g ∈ G, t ∈ H, s ∈ S,

(4.7)

ηts ≥
∑
g′∈G

pmin
g′t · V Cg′ , ∀t ∈ H, s ∈ S, (4.8)

ηts ≥
∑
g′∈G

(
pmax
g′t · (V Cg′ − V oLL)

)
+ dst · V oLL, ∀t ∈ H, s ∈ S

(4.9)

In a similar way, the Benders reformulation for the FITSUC model can be derived

by putting pmin
gt :=

∑
k∈Kg\{0}

Pmin
gk bgtk and pmax

gt :=
∑

k∈Kg\{0}
Pmax
gk bgtk.
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(FITSUCS
BR)

min
∑
g∈G

∑
t∈H

(SUCgugt + FCgxgt) +
∑
s∈S

ps
∑
t∈H

ηts

s.t. (2.2)− (2.6)

ηts ≥
∑

g′∈G,k∈Kg′\{0}

(
Pmin
g′k (V Cg′ − V Cg)

+ + Pmax
g′k (V Cg′ − V Cg)

−
)
bg′tk

+ dst · V Cg, ∀g ∈ G, t ∈ H, s ∈ S, (4.10)

ηts ≥
∑

g′∈G,k∈Kg′\{0}

Pmin
g′k V Cg′ · bg′tk, ∀t ∈ H, s ∈ S, (4.11)

ηts ≥
∑

g′∈G,k∈Kg′\{0}

(
Pmax
g′k · (V Cg′ − V oLL)

)
+ dst · V oLL, ∀t ∈ H, s ∈ S

(4.12)

The constraints (4.7)-(4.9), or the constraints (4.10)-(4.12) each correspond to

the Benders cut obtained from D1, D2, and D3. The size of the set D in Propo-

sition 4.2 is |G| + 2, which is polynomial to the input size of the problem. Hence,

(FITSUCS
BR) and (IITSUCS

BR) are the compact Benders formulation of the IT-

SUC model. In general, it can be hardly obtained since the traditional form of the

Benders reformulation itself has constraints at least as much as the number of ex-

treme points in the dual feasible set. However, in this case, since we know that there

exists a dual optimal solution in the set D according to the Proposition 4.2, the

other extreme points do not need to be considered and the formulation can be much

more simplified. The computational comparison results of the original formulation

and the Benders reformulation are presented in Chapter 5.
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Chapter 5

Computational Experiments

We have proposed the ITSUC model and analyzed its useful properties such as

period-wise decomposition, compact Benders reformulation, and the applicability

of the bounding method. The computational experiment results for the model and

their efficiency is discussed in this chapter. The instance and control parameters we

used for the experiments are described in Chapter 5.1. In Chapter 5.2, the evaluation

method for the models is presented, and in Chapter 5.3, the computational results

for the ITSUC model and solution approaches are illustrated.

5.1 Experiment Setting

We conducted all the experiments based on the 10-generator daily UC instance

with 24 time periods from [39]. In terms of demand, we used the values multiplied

by 75% from those in the instance, to avoid the load-shedding cost dominating

the overall cost. The value of lost load (V oLL) was fixed by $1,000. The ramping

limits of the instance were controlled by the parameter γ for the analysis of its

impact on the performance of the model. For each generator g, its ramping limits are

determined by its length of generation range (Pmax
g −Pmin

g ) multiplied by γ ∈ [0, 1],

i.e. RUPg = RDNg = γ · (Pmax
g − Pmin

g ). For the FITSUC model, the overlapping
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uniform interval design introduced in Chapter 3.1.1 was used. Since the validity of

interval design and the number of reachable intervals are closely related with the

ramping limits, we set the step size δ and the size of intervals ℓ to be proportional to

RUPg with coefficient βd ∈ [0, 1] and βl ∈ [0, 1], i.e. δ = βd ·RUPg and ℓ = βl ·RUPg.

βd and βl denote the control parameters for the overlapping uniform interval design.

Since we used the deterministic instance, the nominal demand was regarded as

the mean of the demand, and the standard deviation of the demand was controlled

by the coefficient of variation, CV for short. If the nominal demand for period t

is denoted by d̄t, the demand for each period was sampled independently from the

truncated normal distribution dt
i.i.d∼ N(d̄t, σ

2
t , (d̄t − 4σt)

+, d̄t + 4σt), where σt =

CV · d̄t, ∀t ∈ H based on the inverse transform sampling. Each combination of

the demand samples over the time horizon became a demand scenario in S. We

conducted the experiment for |S| ∈ {10, 50, 100, 500, 1,000} and |S| = 500 was set

as the default value.

The ramping limits were controlled by γ ∈ {0.25, 0.5, 0.75} and γ = 0.5 was

set as the default value. Three types of overlapping uniform interval designs with

(βd, βl) ∈ {(0.25, 0.25), (0.25, 0, 5), (0.5, 0.5)} were used in the experiments. The set

of interval candidates for γ = 0.5 is illustrated in Figure 3.6. (βd, βl) = (0.5, 0.5) was

set as the default values among them. All the models and methods were implemented

with Xpress 8.14 and tested with Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz. The

time limits were set by 1,200 seconds. For the results where the time limit was

reached, we regarded the computation time as equal to the time limit.
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5.2 Evaluation Method

We evaluated the TSUC and ITSUC models in the context of real power system

operation. Since the demand scenarios considered in the models may not be realized

in the real world, it is not the amount of generation for those scenarios but the

on/off status or interval that should be evaluated. Here we briefly illustrate the

evaluation process for the case of the ITSUC model. First, we solve the model and

fix the interval solution. Next, for each period starting t from 1 to T , the demand

is realized and the optimal amount of generation for each generator is determined

inside the interval. It can be easily found by the method demonstrated in Chapter

4.2. A similar evaluation procedure was performed for the TSUC model, where only

the first-stage solution was changed from interval to on/off status. For each model,

this procedure was repeated for 10, 000 test scenarios, which were sampled separately

from the scenarios sampled for solving the models.

5.3 Experiment Results

5.3.1 Performance Comparison of the Models

We conducted a comparative analysis between the proposed ITSUC model and the

conventional TSUC model. Figures 5.1 and 5.3 show the comparison results accord-

ing to the number of scenarios when CV = 0.1. We omitted the result for the case of

1,000 scenarios because the ITSUC model could not be solved within the time limit.

Figures 5.1 and 5.2 show the results in terms of the operation costs. AvgCost and

StdCost denote the average and standard deviation, respectively, of the total oper-

ation cost incurred in the repeated simulation of the real power system operation
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Figure 5.3: Computation Time Comparison Between TSUC and ITSUC

described in Chapter 5.2. Except for the case of 10 scenarios, the ITSUC models

showed lower average operation costs than the TSUC model. In addition, the ITSUC

model showed a less standard deviation of the operation costs than the TSUC model.

It suggests that the proposed model might be a better choice than the conventional

TSUC model for the purpose of efficient and reliable operation. Compared with the

infinite interval design, the finite interval design performed better with 10 scenar-

ios. It may be because demand uncertainty in the test phase cannot be considered

properly with a small number of scenarios, which is more or less alleviated by the

robust solution from the FITSUC model. SolveT ime in Figure 5.3 stands for the

time for the MIP solver to solve the model. As the number of scenarios increases, the

computation time to solve the model showed a tendency to increase. The FITSUC

model showed a rapid increase in the computation because it introduces extra binary
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Figure 5.4: Operation Cost Under the Various Demand Distributions

variables for the interval decision. The IITSUC model showed computational benefit

over the TSUC model when the number of scenarios become large. This tendency

might be because the IITSUC model has a smaller feasible region than the TSUC

model so the heuristic algorithm in the MIP solver worked more efficiently for the

former than the latter. To conclude, the infinite interval design showed the most

gentle increase in the computation time among the three models.

5.3.2 Robustness Test on the Different Demand Distributions

When operating the power system based on the solution from the UC model, the

demand may not follow the probability distribution in the planning phase. In this

case, the demand might not be completely satisfied in spite of the full utilization

of the generators planned to be operated; hence, the total operation cost and the

load-shedding cost may be significantly increased. To examine how well the schedule

from each model can react to the unexpected demand realization, we controlled the
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Figure 5.5: Load-shedding Cost Under the Various Demand Distributions

standard deviation by CV , and the type of demand distribution. Specifically, we

used the demand scenarios sampling from the truncated normal distribution with

CV = 0.1 (TN, 0.1) when solving the model, and tested on the different demand

distributions such as the truncated normal distribution with CV = 0.2 (TN, 0.2),

or the uniform distribution with CV = 0.1 (Unif, 0.1). Figures 5.4 and 5.5 show the

average total operation cost and load-shedding cost, respectively, under the three

types of distribution. One is the distribution that was expected when solving the

model, while the other two are not. Both the operation cost and the load-shedding

cost naturally turned out to be larger in the latter case than in the former case.

In terms of the cost under the unexpected demand distribution, the ITSUC model

could perform better than the TSUC model. In addition, the IITSUC model showed

less operation and load-shedding cost than the FITSUC model. The performance

comparison based on the rate of increase of the cost yields the same hierarchy of the

models.
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5.3.3 Efficiency of the Bounding Method

In Chapter 4.1, we introduced the bounding method for the ITSUC model and ob-

served that the gap between the optimal objective value of the surrogate models

can be closed as the number of sub-intervals increases. Here we report the efficiency

of the bounding method compared with the SAA method. For a fair comparison,

we evaluated the expected cost, denoted by ObjV alD, corresponding to the interval

solution obtained from the SAA method. It could be easily computed by applying

the bounding method for the fixed interval solution since the resulting surrogate

models are both linear programs. To construct the sub-intervals, we equally subdi-

vided the range of generation. We controlled the number of sub-intervals m just as

we did for the number of scenarios |S|. Figures 5.6 and 5.7 show the cost and time

comparison results between the SAA method and the bounding method. In Figure

5.6, the bounding method could obtain an optimal interval solution for FITSUCD

within 0.1% optimality gap with only 50 sub-intervals. In contrast, the SAA method

could reach that gap only with at least 500 scenarios. It suggests that the system-

atic method of tightening the expectation can be more effective than the random

sampling from the demand distribution. In terms of the time to solve the models,

both the scenario-based model from the SAA method and the surrogate model from

the bounding method showed a similar trend in computation time as the scenarios,

or the demand samples, increased. The reason for this trend is that the |S| and m

have nearly the same effect on the size of the optimization problem.
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Table 5.1: Computation Time (sec) of Extensive Formulation

FITSUCS

IITSUCS

(βs, βl)

|S| (0.25, 0.25) (0.25, 0.5) (0.5, 0.5) ∞

10 48.06 80.39 61.03 3.31
50 23.73 57.34 45.69 6.38
100 16.82 27.85 25.54 12.61
500 61.97 127.03 171.92 98.51
1000 278.70 504.78* 679.48* 219.00

*: Time limit was reached for CV = 0.1

Table 5.2: Computation Time (sec) of Benders Reformulation

FITSUCS
BR IITSUCS

BR
(βs, βl)

|S| (0.25, 0.25) (0.25, 0.5) (0.5, 0.5) ∞

10 102.25 423.86 95.90 4.10
50 27.67 79.53 38.05 6.31
100 29.92 25.77 32.05 11.91
500 86.76 98.68 128.17 60.35
1000 254.43 398.58 535.67** 104.38

**: Out of memory for CV = 0.1

5.3.4 Efficiency of the Benders Reformulation

We presented a compact Benders reformulation in Chapter 4.2. To investigate its

potential computational gain, we compared between the extensive formulation and

the Benders reformulation. The comparison results of computation time between the

extensive formulation and the Benders reformulation are shown in Tables 5.1 and 5.2.

Each number represents the average computation time for CV ∈ {0.1, 0.2, 0.3}. Even
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though neither of the two formulations could completely dominate the others under

the finite interval design, (FITSUCS
BR) showed its efficiency with a relatively large

number of scenarios. For the IITSUC model, the computation time of (IITSUCS
BR)

increased more gently than (IITSUCS) as |S| increases. It can be concluded that

the impact of the choice between the two formulations on the computation time is

more significant in the IITSUC model than in the FITSUC model.

5.3.5 Comparative Analysis of Various Interval Design Methods

In Chapter 3.1.1, we mentioned that the choice of the appropriate interval design is

important for the FITSUC model. Here we present the experiment results for the

various interval designs to test their effects on the performance of the model. We

controlled the parameters βs and βl to specify the step size δ and the length ℓ in

the overlapping uniform interval design. In addition, several levels of γ, the ramping

limits control parameter, were used to test the impact of the ramping limits on the

performance of the interval design. Figure 5.8 shows the average operation cost and

the computation time, respectively, based on the interval decision with different val-

ues of βl and βs for the case of |S| = 500. Among the tested finite interval designs,

(βs, βl) = (0.25, 0.25) was outperformed by the other two, both in terms of the oper-

ation cost and the computation time. It can be explained by the extensive restriction

on the generation due to the numerous intervals, and consequently a large number of

additional binary variables. For the other two designs, (βs, βl) = (0.25, 0.5) showed

slightly better cost than (βs, βl) = (0.5, 0.5). It may be because the former allows

the overlapping of the intervals, whereas the latter does not. Even more, the com-

putation time of (βs, βl) = (0.25, 0.5) was less than that of the (βs, βl) = (0.5, 0.5).
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This tendency was consistent regardless of the ramping limits. In conclusion, the

interval design with (βs, βl) = (0.25, 0.5) is discovered to be the best choice in the

above experiment settings.
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Chapter 6

Conclusion

In this thesis, we have proposed the ITSUC model to mitigate the drawbacks of the

conventional TSUC model. In the model, an interval is chosen along with on/off de-

cisions in the first stage. We suggested two interval selection schemes for the ITSUC

model and their corresponding mathematical formulations. Since the interval deci-

sion already considers the ramping constraints in the ITSUC model, the second-stage

problem can be decomposed for each period. We discovered that the bounds on the

expected second-stage cost can be efficiently used to solve the ITSUC model. In ad-

dition, we used the period-wise decomposition property to derive a compact Benders

reformulation in the ITSUC model. Through the computational experiments, the ro-

bustness of the solutions of the proposed model and the efficiency of the proposed

solution approach are evaluated. The effect of interval design on computational per-

formance is also analyzed. The applicability of our model can be further investigated

in more practical settings. For example, the network structure of the power system

can be additionally considered in the model when the transmission line has a certain

level of flow limit. Also, our model focuses on the unit commitment problem with

thermal generators, but other types of generators such as hydro generators or water

pump generators, and their own operational constraints can be considered in the
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model. Lastly, the model will describe the real-world cost structure more precisely if

the piece-wise linear or quadratic generation cost function is assumed in the model.

In an algorithmic view, the efficient Benders decomposition algorithm in the branch-

and-bound framework can be applied and compared with the proposed model. In

addition, valid inequalities related with the interval decision can be developed to

strengthen the linear programming relaxation bound. In terms of the application

of our model, a hybrid model where the interval decision can be different for each

group of scenarios could be devised.
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[32] B. Sandıkçı, N. Kong, and A. J. Schaefer, “A hierarchy of bounds for stochastic

mixed-integer programs,” Mathematical Programming, vol. 138, no. 1, pp. 253–

272, 2013.

[33] F. Maggioni, E. Allevi, and M. Bertocchi, “Monotonic bounds in multistage

mixed-integer stochastic programming,” Computational Management Science,

vol. 13, no. 3, pp. 423–457, 2016.
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국문초록

발전계획 문제는 전력 수요와 운영상의 제약을 만족하면서 전체 운영 비용을 최소로

하는 발전기별 운전상태를 찾는 것을 목표로 한다.수요의 불확실성에 효율적으로 대처

하기위해, 1단계에서운전상태를결정하고 2단계에서발전량을결정하는 2단계추계적

최적화 모형이 문헌에서 널리 사용되어 왔으나, 수요 시나리오의 수가 증가함에 따라

과도한 계산 부담을 겪는 경우가 많다. 본 논문에서는 이러한 단점을 보완하기 위해

수요가 시점별로 독립이라는 가정 하에서 발전구간 기반 2단계 추계적 최적화 모형을

제안한다. 해당 모형에서는 각 시점별로 발전기의 운전 여부뿐만 아니라 발전구간, 즉

발전량의 범위 또한 함께 결정된다. 이는 2단계 문제가 시점별로 분해될 수 있도록 하

고, 많은 수의 시나리오가 필요하지 않게끔 해준다. 또한, 부문제의 성질을 이용하여

압축된 벤더스 모형을 제안한다. 마지막으로, 제안한 모형에 대해 기대비용의 한계치

를 구할 수 있음을 보인다. 수치적 실험을 수행하여 제안한 모형의 효과성과 효율성을

입증하였다.

주요어: 발전계획, 수요의 불확실성, 2단계 추계적 최적화 모형, 발전구간, 벤더스 모형,

기대비용의 상·하한

학번: 2021-23873
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