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Abstract

An Interval-Based Two-Stage Stochastic
Optimization Model for the Unit
Commitment Problem Under Demand
Uncertainty

HOJIN JUNG
Department of Industrial Engineering
The Graduate School

Seoul National University

The unit commitment problem aims to find a minimum-cost on/off status and
amount of generation for each generator while satisfying the electricity demand and
operational requirements. To efficiently deal with demand uncertainty, the two-stage
stochastic optimization models have been widely used in the literature, where the
on/off status is decided in the first stage and the amount of generation is in the
second stage. However, they often suffer from excessive computational burden as
the number of demand scenarios increases. In this thesis, we propose an interval-
based two-stage stochastic optimization model to mitigate the drawback under the
period-wise independent demand assumption. In the model, an interval of a gen-
erator, which is a range of the amount of generation, is determined along with its
on/off status for each period. It enables the second-stage problem to be decomposed

in a period-wise manner, which reduces the need for a large number of scenarios.



We also propose a compact Benders reformulation by exploiting the property of the
subproblem. Lastly, we show that the bounds on the expected costs can be obtained
for the proposed model. Computational experiments were conducted to show the

effectiveness and efficiency of the proposed model.

Keywords: Unit Commitment, Demand Uncertainty, T'wo-stage Stochastic Opti-
mization Model, Interval, Benders Reformulation, Bounding Method
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Chapter 1

Introduction

1.1 Background

Unit Commitment (UC) is one of the most important optimization problems in
power system operation. It is solved not only by the independent system operators
(ISO) to establish an efficient and reliable plan but also by the generation companies
(GENCO) to make the optimal bidding strategies. In South Korea, Korea Power
Exchange (KPX), taking a role as a wholesaler, receives the capacity of GENCOs in
the day-ahead market and determines the system marginal price (SMP) by solving
a price-setting unit commitment problem [I]. When the system marginal price is
determined, KPX announces to GENCOs how much they should generate. On the
trading day, the real-time dispatch to balance the supply and demand is performed
in KPX. In other words, even though the price-setting unit commitment problem
determines the specific amount of generation for entering generators, it is controlled
by KPX which monitors the customer demand and plans a feasible transmission
plan in real-time. After the dispatch, uplifting payment is incurred for the excess
generation. This is a unique market structure called the cost-based pool market.
Figure illustrates the electricity market trading process in South Korea.

To stabilize the price and supply of electricity in the market, ISO should forecast



Price-setting |SMP | Determining the Generators Real-time Settlement
KPX C to be Dispatched Dispatch &
V] o be Dispatche p Payment
Offer Generation Dispatch
Schedule Order
Available Preparation for Generation
GENCO Capacity Generator Operation Control

Figure 1.1: Cost-based Pool Market in South Korea

the demand of the customers and plan how to satisfy it. But the increasing penetra-
tion of renewable energy is becoming a challenging issue to achieve the goal. Since
the amount of renewable generation significantly depends on uncontrollable factors
such as solar irradiance and weather conditions, it magnifies the difficulty in fore-
casting the exact amount of generation the power plants need to produce, which is
called the net demand, in the power system. For the case in South Korea, it may re-
sult in a high level of discrepancy between the planned amount of generation and the
actual dispatch level, and eventually an excessive burden of uplift payment by KPX.
Despite the efforts on increasing the accuracy of renewable generation forecasting
[2], the forecasting models usually do not assure a consistent level of accuracy, and
selecting or customizing the appropriate one might be a complicated and tedious
task. Therefore, under the fundamental limitation in net demand forecasting, the
unit commitment models to deal with demand uncertainty have attracted increasing

attention.



1.2 Problem Description

In the unit commitment problem (UCP), a generation schedule for each genera-

tor, which indicates the on/off status and its amount of generation is decided for

each time period during the planning horizon as shown in Figure Typically, the

planning horizon is 24 hours divided into periods of 1 hour. First, we illustrate the

generator’s operational requirements. They consist of the minimum up/down time

limit, minimum /maximum power limit, and ramping limit. The minimum and maxi-

mum power limits bound the amount of generation when the generator is turned on.

For example, suppose that the minimum and maximum power limits for a generator

are 5 MW and 30 MW, respectively (see Figure . Then the amount of generation

is no less than 5 MW and no more than 30 MW every time the generator is turned

on.

e Minimum power: 5 MW

e Maximum power: 30 MW

e Minimum up/down time: 3 hours

e Ramping limits: 15 MW /hour

Generation
(Mw)
30 {---- e — Max
: : ramp-down :
20 | Loy ’ ;
15 i 2 :
| | ramp-up
5 [ ontime ~ 1 off-fime on-time,  Min

Periods (hour)

Figure 1.2: Operational Requirements in UC



Minimum up/down time refers to the number of minimum periods for which
the generator must keep the on/off status once it is turned on after the off-status
(start-up), or turned off after the on-status (shut-down). For example, suppose that
the minimum up time and minimum down time of a generator is both 3 periods. If
it starts up at period 1 and shuts down at period 5, then it must be turned on from
period 1 to 3 and turned off from period 5 to 7.

Ramping limit is the limit on the difference in the amount of generation between
two adjacent periods. If the ramping-up limit is 15 MW and its amount of generation
in period 8 is 5 MW, its amount of generation in period 9 must not be larger than
20 MW.

A generation schedule has information on the on/off status and the amount of
generation for each period. When the generator is turned on, a certain amount of
fixed cost is incurred. In addition, there is an extra cost incurred for a generator
that starts up called start-up cost. In terms of the amount of generation, it is well-
known that the generation function of thermal generators is quadratic in general
[3], but in this thesis, it is assumed that generation cost is linear with the amount
of generation for ease of analysis. Because of the operational constraints described
before, the total amount of generation may not satisfy the electricity demand for
each period. We introduced the conventional supposition in the unit commitment
models that the amount of unsatisfied demand is lost and a substantial penalty cost
called load-shedding cost is incurred in order to ensure the feasibility of the model.
In addition, we assume that all the generators are turned off for long enough periods
before the beginning of the planning horizon so that they are available in the first

period, and the ramping constraints in the first period are not considered.



In practice, the power system operators have to solve the UCP before the real-
ization of the real-time demand. They usually forecast the electricity demand in the
near future to get the nominal demand, but the inherent error in the demand fore-
casting model may cause an unexpected mismatch between the demand and supply.
Hence, the proper consideration of the demand uncertainty in UCP is essential for
both reliable and cost-efficient electricity supply in the power system. Furthermore,
the increasing penetration of renewable energy in the power system makes it difficult
to accurately capture the net demand. In other words, renewable generation is one
of the most noteworthy uncertain elements in UC, and the UC models that consider
the demand uncertainty can incorporate it.

In this thesis, we consider the UCP with stochastic demand, which follows the
period-wise independent probability distribution. In general, the available informa-
tion on the demand distribution that the demand forecasting model provides is the
nominal demand and the forecasting error for each period, not the joint distribu-
tion of all the demands [4]. Therefore, the period-wise independence setting in the
stochastic unit commitment (SUC) problem is not a too restrictive assumption. Un-
der these constraints, the objective is to find an optimal generation schedule over
the planning horizon that minimizes the expectation of the total operational cost,
which consists of the start-up cost, fixed cost, generation cost, and load-shedding

cost.



1.3 Literature Review
1.3.1 Unit Commitment Problem

UCP described in Chapter is an integer optimization problem. Even for the
single-period case, it is NP-hard [5], and recently it was proven to be strongly NP-
hard in general [6]. In the 1980s-90s, dynamic programming and branch-and-bound
technique were used as an exact method, whereas priority listing, tabu search, and
simulated annealing were devised as a heuristic algorithm that gives a good-quality
solution in a relatively short time [7]. Later, combined with the rapid enhancement
of computing power and the development of the MIP solver, the polyhedral studies
on the unit commitment problem to enhance the efficiency of LP relaxation-based
branch-and-bound have been increased in the literature. They try to approximate or
characterize the convex hull of the feasible region of the unit commitment problem

by adding some facet-defining inequalities, or valid inequalities [8] 9] [10].

1.3.2 Unit Commitment Models Under Uncertainty

To deal with the demand uncertainty in unit commitment models, stochastic op-
timization models and robust optimization models have been commonly used in
the literature. Stochastic optimization models assume that the uncertain parame-
ter follows a given probability distribution. Among them, the chance-constrained
model is often used which guarantees the solution to satisfy the constraints with
a pre-specified probability [11]. Robust optimization models focus on the decision
with minimum worst-case cost under the assumption that the uncertain parameter
is contained in the so-called uncertainty set [12].

On the other hand, variants of these traditional optimization models under de-



mand uncertainty have been proposed to overcome the disadvantage of the stochastic
or robust optimization models or to reflect the context of the power system opera-
tion more suitably. The interval unit commitment (IUC) model, where the nominal
demand is mainly used for planning as in the deterministic case, and the minimum
and maximum generation level among the given scenarios in each period are used to
consider the ramping limits in the worst-case [13]. It both avoids the computational
burden of the SUC model and the inner optimization problem in the formulation of
the RUC model. However, it only takes the ramp-feasibility for the artificial bound
scenarios into consideration. Focusing on the actual operation in the given scenarios,
the improved version of the IUC model where the worst-case ramping for each pair
of two consecutive periods is considered is proposed in [14]. Since the basic SUC
or RUC models do not fully describe the dynamics in the real power system opera-
tion, the UC models that consider the real-time adaptation of the generation under
inter-temporal constraints have also been presented. In [15], the optimal amount of
generation follows the affine decision rule based on the affine function of the real-
ized value of demands for each node, and a similar approach in the distributionally
robust optimization framework is also proposed in [I6]. In order to guarantee that
the planned generation schedule is always feasible in the real-world situation where
the demand is sequentially realized, a modified range of generation is introduced in
the first stage of the RUC model [I7]. It is achieved by having the inner problem in

the RUC model free of inter-temporal constraints.



1.3.3 Solution Approaches for the Stochastic Unit Commitment
Model

Decomposition Methods

The SUC model, which we cover in this thesis, has an inherent difficulty that the
mixed-integer stochastic programming models share. The expectation in the objec-
tive function makes it impossible to apply the algorithms developed for the integer
programming models. To handle this problem, the traditional approach is to use
sample average approximation (SAA). In SAA, the expectation is approximated by
the average of the objective value under the samples, or so-called scenarios, from the
distribution of the uncertain parameters to ease the problem. However, to guarantee
convergence, a large enough number of scenarios should be considered [18], which
increases the computational burden in solving the model. Hence, several kinds of
decomposition techniques have been studied to reduce the computational burden.
First, the Lagrangian relaxation approach has been used to decompose the problem
for each scenario, or each generator. In the former case, the constraints that enforce
for the on/off decision to be equal for each scenario are relaxed so that the original
problem is decomposed for each scenario [19, 20]. In the latter case, the demand
constraints are relaxed and the model is decomposed into a single-generator unit
commitment problem [2I) 22]. Another well-known method for the SUC model is
the Benders decomposition. In the Benders decomposition method, the Benders cut
is added only when it is turned out to be necessary by iteratively solving the sub-
problem. It exploits the fact that the subproblem is relatively easy when the decision
in the previous stage is fixed. The application of the Benders decomposition to solve

the SUC model showed its efficiency in various problem contexts [23] 24].



Bounds on the Expectations

Although SAA is widely used to deal with stochastic programming models, there
have been some indirect approaches to handle the expectation, based on its bound
that is relatively easy to be computed. Jensen inequality and Edmundson-Madansky
inequality are the representative inequalities that give lower and upper bound on
the expectation of a convex function of a random variable [25] 26]. These inequali-
ties were strengthened by refining the given range of the random variable [27]. The
bounds can serve as stopping criteria in the L-shaped method [28], and the inner
linearization algorithm can also be developed based on the specific family of upper
bound [29]. This bounding technique has been applied to deal with several kinds
of stochastic programming models such as network interdiction problems [30] and
appointment scheduling problems [31]. Recently, novel bounds and their usage in
the algorithms have been devised in the context of the multi-stage stochastic pro-

gramming models with a finite number of scenarios [32], 33, [34] 35].



1.4 Motivation and Contributions

Despite the efforts in the literature, the SUC models still suffer from handling a large
number of scenarios. In the worse case where we do not know the demand distribution
in advance but only the nominal value, we may consider three possible observations
for each period: the low level; the medium level, which equals the nominal demand;
and the high level. Then the number of whole possible demand scenarios with T
periods is 37, which is highly unmanageable to consider in real operation. In addition,
the conventional SUC models need extra consideration of ramping limits in the phase
of real-time dispatch. The alternative models for the SUC model were proposed
by [13] and [I4] to alleviate this issue; however, they only consider the ramping
constraints based on the scenarios, not the cost-efficient recourse actions for each
scenario.

Therefore, we propose a novel optimization model, which we call the interval-
based two-stage stochastic unit commitment (ITSUC) model based on the concept of
an interval, which stands for the lower and upper generation limits of each generator
in a period. By deciding the intervals of a generator along with its on/off status in the
first stage, the amount of generation can be decided independently for each period
in the second stage. This period-wise decomposition property of the ITSUC model
makes it possible that demand samples can be considered independently for each
period rather than considering a demand scenario over the whole planning horizon
(the combination of samples for all periods), which significantly reduces the size
of the optimization model compared to the conventional two-stage stochastic unit
commitment model. The idea of an interval is similar to the concept of a box for

the two-stage robust unit commitment model proposed in [I7], and we utilize the

10 :



concept to enhance the modeling capacity and to reduce the computational burden
in the stochastic setting

By utilizing the period-wise decomposition property of the ITSUC model, we
show that the tight upper and lower bounds for the I'TSUC model under a given
probability distribution of uncertain demand can be efficiently obtained, based on
the results in [27]. The result gives one possible approach to deal with the ITSUC
model not relying on approximating the objective function using a finite number of
samples. To the best of our knowledge, the application of the bounds on the expected
cost in UCP has rarely been investigated in the existing literature.

Since the ramping constraints do not need to be directly considered, the opti-
mization problem corresponding to the second stage becomes easier to be solved
than the conventional two-stage stochastic unit commitment model. In addition, we
show that its dual problem has a polynomial number of possible optimal solutions. It
leads to a compact Benders reformulation, which may further enhance the solvability
of the proposed ITSUC model.

Through computational experiments, we investigated the effectiveness of the
proposed ITSUC model and the efficiency of the proposed solution approaches. The
proposed model was compared with the conventional TSUC model. The efficiency of
the proposed Benders reformulation and the bounding method was also investigated.
In addition, we tested several choices of predetermined interval candidates to give

an insight for selecting them in practice.

11



1.5 Organization of the Thesis

The remainder of this thesis is organized as follows. In Chapter [2| we briefly describe
the unit commitment problem and provide the formulation for the conventional
TSUC model. In Chapter [3| we propose the ITSUC model and analyze the interval
design method. Solution approaches for the proposed model are presented in Chapter
[l The computational results for the model and the solution approaches are discussed
in Chapter 5] In Chapter [6] concluding remarks with some future research directions

are given.
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Chapter 2

Two-stage Stochastic Unit Commitment Model

In this chapter, we briefly discuss the conventional TSUC model before we go into
the key idea of the proposed model. Its modeling framework and assumption are

described in Chapter 2.1} and its mathematical formulation is given in Chapter [2.2]

2.1 Modeling Framework

A representative unit commitment model in the literature dealing with demand un-
certainty is the two-stage stochastic unit commitment (TSUC) model. In the model,
the expected operation cost under a given probability distribution of uncertain de-
mand is minimized while assuming the two-stage decision framework which is il-
lustrated in Figure The on/off decisions over the whole time horizon are made
before the realization of the demand, and the generation amount of each generator is

decided corresponding to the demand realization. This assumption is rationalized by

- First stage -------- ‘ S Second stage -- - -
'2. Demand |

; - 'Realization ' : 1
| \ |
|

1. On/off Decision 3 . 3. Generation Decision !

Figure 2.1: Two-stage Decision Framework for TSUC

13



the fact that the on/off status is harder to be changed each time the demand is real-
ized. Because of the precedence relationship between decisions, the stage where the
on/off decisions are made is called the first stage, and the stage where the amount

of generation is determined is called the second stage.

2.2 Model Formulation

Under the modeling framework in there are two modeling choices corresponding
to the type of demand distribution. If the demand follows a continuous probability
distribution, the corresponding TSUC model is called the distribution-based model.
On the other hand, if the demand follows a discrete probability distribution, i.e. the
number of the possible demand realizations is finite, then the corresponding TSUC
model is called the scenario-based model since each of them is called the demand
scenario. In this case, the expected cost becomes a weighted average of the cost
corresponding to the probability of each scenario.

The notation for the formulation of the TSUC model is presented in Table
The vectors are represented by the associated letters with bold fonts for the remain-

ing parts.

14



Table 2.1: Notation for TSUC Model

Sets and H Set of periods, t € H ={1,...,T}
Indices g Set of generators, g € G = {1,...,G}
S Set of scenarios, s € S ={1,...,5}
SUC, | Start-up cost of generator g
FCy Fixed cost of generator g
VvV, Variable cost coeflicient of generator g
VoLL | Value of lost load
RUP, | Ramp-up limit of generator g
Parameters | RDN, | Ramp-down limit of generator g
P Minimum power limit for generator g
pret Maximum power limit for generator g
MUT, | Minimum up time of generator g
MDT, | Minimum down time of generator g
d; (df) | Demand in period ¢ (under scenario s)
Tgt 1 if generator g is turned on in period ¢, 0 otherwise
Decision Ugt 1 %f generator g starts up in Atim.e perioq t, 0 otherwise.
Variables Vgt 1 if generator g shuts down in time period ¢, 0 otherwise
Pyt (Py:) | Power generation of generator g in time period ¢ (under scenario s)
Is; (Is3) | Load shedding in time period ¢ (under scenario s)

Based on this notation, we can formulate the TSUC models. For the sake of

clarity, we first provide the formulation of the distribution-based model as follows:

min Y Y (SUCqug + FCyagr) + Ea[C(x, d)]

— Ugt = Tgt — Tg(t—1)s

(TSucP)
geGteH
s.t. Ugt
Ugl = Tg1,
t

D

Vg e G, t e H\ {1},

¥ =(t— MUT,+1)+

t

D

t'=(t—M DT, +1)+

Ugt, Vgt Tgt € {07 1}7

Vg €3,
Ugy < Xgt, VYgeg,teH,
Vg <1 — 2z, Vge g,teH,
Ygeg,teH,

15

(2.1)

(2.2)

(2.3)

(2.4)



, where

C(x,d) := min Z Z VCy - pgt + Z VoLL - s, (2.7)

geG teH teM

Zpgt +lsy > dy, vVt € H, (2.8)
9€g

P;ninxgt < pgt < P x g, Vgeg,teH, (2.9)
Pgt — Pg(t—-1) < RUFy, Vgeg,teH\{1} (2.10)
Pg(t—1) — Pgt < RDNy, Vge g, te H\ {1} (2.11)
pgt = 0, VgeG,teH, (2.12)
Is; >0, Vi e H (2.13)

The formulation (T'SUCP) comprises two parts. The outer part — cor-
responds to finding an optimal first-stage decision while the inner part —
corresponds to finding an optimal second-stage decision. The inner minimization
problem — is called the second-stage problem, and its optimal objective
value is called second-stage cost, which is denoted by C(x,d) in the above formula-
tion to represent its dependency on the first-stage decision x and demand realization
d. Now we describe the model in more detail. The objective function consists of
start-up cost, fixed cost, and the expected second-stage cost. Constraints —
describe the logical relationship between start-up and shut-down decisions and con-
straints — represent the minimum up/down time constraints, respectively.
is the objective function for the inner part, which consists of variable genera-
tion cost and load shedding cost. Constraints are the demand constraints that
enforce that either the sum of the amount of generation exceeds the demand in the

period, or the unsatisfied demand is regarded as load shedding amount. Constraints

16
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(2.9) restrict the amount of the generation by generator-specific power limits. Con-

straints (2.10)-(2.11)) represent the ramping constraints between period ¢ — 1 and

period t. Constraints (2.6) are the binary conditions for variables that indicates

start-up and shut-down, whereas constraints (2.12))-(2.13|) represent the nonnegativ-

ity conditions for the amount of generation and load shedding.

Similarly, the scenario-based TSUC model can be derived as follows:

(TSUC®)
. 1 .

min Z Z(SUCQUW + FCyzgt) + E ZC(Xa d?)
geGteH seS

st (2.2) — (2.6)
> pf+1s) > di, VteH, s €S,
geg
Py < pfy < Pl ag, Vge G teH,seS,
Pot — Pye—1) < RUFy, Vge G, te H\{l},s €S,

Py(i—1) — Pgr < RDNy, VgeG.teH\{1},s€S,
pgt = 0, Vgeg,teH,

lsy > 0, VteH

(2.14)

(2.15)

(2.16)
(2.17)
(2.18)
(2.19)

(2.20)

The objective function (2.14)) represents the average cost over the given demand

scenarios. Constraints (2.15))-(2.20) correspond to the constraint (2.8)-(2.13) in the

(TSUCP), but they are imposed for each scenario.
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Chapter 3

Interval-based Two-stage Stochastic Unit
Commitment Model

In this chapter, we propose the ITSUC model and discuss its properties. The key
idea of the model and the detailed description of its modeling framework are given in
Chapter[3.1] The mathematical formulation of the model and a comparative analysis

of the models are provided in Chapter

3.1 Modeling Framework

In the ITSUC model, the range of the generation, called interval, is decided in
the first stage in addition to the on/off decision of each generator. In the second
stage, the amount of generation for the generators to be turned on must lie in the
interval chosen in the first stage. This is different from the TSUC model described in
Chapter where the on/off decision in the first stage is the only restriction that is
imposed in the second stage. Based on the number of possible intervals that can be
selected in each period, we propose two interval design methods for the first-stage
interval decision, finite interval design and infinite interval design. Each interval
design method will be further discussed in Chapter and Chapter

The main purpose of the interval is to consider the ramping constraints in the first
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Figure 3.1: Two-stage Decision Framework for ITSUC

stage. If the intervals are carefully selected, the change of generation in the second
stage cannot exceed the ramping limit. For example, if the amount of generation for
the generator with 30 MW ramping limits is controlled by the interval [20, 40] at
the period ¢ — 1 and [30, 50] at the period ¢, the maximum amount of ramp-up is
50 — 20 = 30 MW and maximum amount of ramp-down is 40 — 30 = 10 MW. Since
these are not greater than the ramping limit of the generator, the ramping constraint
in the second period for this generator is obviously satisfied. In other words, the
ramping constraints in the second-stage problem can be taken out of consideration
once the choice of intervals already implies the ramping limit. When any amount
of generation in an interval I’ in the next period does not violate the ramping
constraint for the current interval I, we call I’ is reachable from I. For example, in
the case described above, [30,50] is reachable from [20,40] for the generator g. The
more concise definitions related with the concept of the interval will be described in
the following subchapter.

The reachability of the intervals determined in the first stage gives a distinctive
property to the ITSUC model. Figure [3.3] and Figure show the difference in the
structure of the second-stage problem between TSUC and ITSUC. In Figure [3.3
the amount of generation is not only restricted between the minimum and maximum

power limit but also the minimum and maximum generation level determined by the
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Figure 3.2: Example of Reachable Intervals

ramping limits. Therefore, the decision on the amount of generation in the TSUC
model depends on that in the adjacent periods. However, in the case of the ITSUC
model, the consideration of this inter-temporal dependency is no longer needed. As
illustrated in Figure the range of generation is further restricted due to the
reachability constraints in the first stage. Since any adjacent selected intervals are
reachable, the inter-temporal relationship of the amount of generation caused by the
ramping constraints breaks down. Hence, the amount of generation can be decided

separately in each period, which we call the period-wise decomposition property.

3.1.1 Finite Interval Design

In the finite interval design, the candidates for the interval decision should be pre-
determined for each generator. In practice, a decision maker who tries to apply the
ITSUC model with finite interval design should decide how many and which intervals
to introduce in the model. Setting the set of intervals properly is an important task

for the model since it affects the performance and computation time of the model.
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Furthermore, the set of intervals chosen carelessly may be impossible to be used
if one of them does not have any reachable interval nor can it shut down. In this
subchapter, we will provide the mathematical definition of the concept of reachability
and derive the condition for the set of intervals to be proper. In addition, we will
suggest a simple and intuitive method to construct a proper set of intervals.

To establish the condition for the given set of intervals of a generator being able
to yield a generation schedule that satisfies the ramping constraints, we here present

the formal definition of reachability.

Definition 3.1. (Reachable interval) Let I, = [I 1] and I}, = [I,I}] be two
intervals of a generator g € G. Then, we call that I; is reachable from 1, if

I — 1, < RUPy and I, — I, < RDN,.

According to the Definition if I ; is reachable from I, for g € G, it implies
that the maximum difference in the amount of generation between two intervals

cannot exceed the ramping limits, RDN, or RUPF,.

Proposition 3.2. (Reachability implies ramping limits) Suppose that interval I;
is reachable from interval I for generator g € G. For any p € I, and p' € I;,

P —p < RUP; andp—p < RDN,.
Proof. p' —p < I — I, < RUPj and p —p' < I, — I}, < RDN,. O

By Proposition given a set of intervals, there might exist an interval that
does not have any reachable interval. In this case, that interval may be excluded
from the set of intervals. Also, to consider all the possible amounts of generation

between the minimum and maximum power limit, the intervals should cover the
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range of generation. If a set of intervals satisfies these two conditions, we call it a

proper set of intervals.
Definition 3.3. (Proper set of intervals) A set of intervals I, is proper if

1. U I, =[Py, pnoer]
I4€T,

2. For every I, € 1, there exists an interval I; € I, reachable from 1.

The definition above is not a necessary condition to be used as a set of intervals
in the ITSUC model. Instead, it indicates that the set of intervals satisfying the
conditions above is a reasonable choice in that they do not excessively limit the range
of generation. For example, if there exists no reachable interval for any interval in
1,4, then the only feasible generation schedule for generator g is to turn off until the
end of the horizon. This may be too conservative and restrictive a modeling choice
for the power system operator and may even cause a large amount of load-shedding
cost which might have been avoided.

Next, we present a generic method for constructing a proper set of intervals,
which we call overlapping uniform interval design method. The method has two
control parameters, d, and ¢, and allows overlapping of intervals. The former indicates
a difference between the minimum power limit of two consecutive intervals, and the
latter indicates a size of an interval, which is the difference between the minimum

and maximum power limits of each interval.

Definition 3.4. Let §, ¢ be positive real number such that § < ¢ < min{ RUP,;, RDN,}.

From Pgmm, constant step size § and size of intervals £ corresponds to the following

proper set of intervals,
é

Pmax_Pmin_g ) )
Ig={k:1,...,[gg} F1: [P (k—1) -5, min{P;”az,P;m"+(k1)-6+£}]}.
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Figure 3.5: Example of Overlapping Intervals
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Figure 3.6: Illustration of Overlapping Uniform Interval Design

Then, L, is called overlapping uniform interval design.

Figure[3.5]and Figure [3.6]illustrate how interval candidates are determined under
the overlapping uniform interval design. In Figure [3.5] there are two overlapping
intervals with the same length ¢, the gap of which is §. The set of interval candidates
under the overlapping uniform design with parameters 9, ¢ is given in Figure [3.6
A specific example of the design is given in Table Suppose that the ramping
limits are half of the difference between the minimum and maximum power limits,
i.e. RUPy = RDNy = 0.5 (Py"** — P/") If § = 3, - RUP, and £ = f3 - RUP,, the
set of intervals can be designed differently according to the choice of 5 and §; as
shown in Table B.11

The parameters § and ¢ play an important role in tuning the level of restriction
of power generation. Their impact on the computation time and the planning cost

is shown in Chapter by controlling these parameters.

N ks kT



Table 3.1: Examples of Overlapping Uniform Interval Design

vl Bs | B Design
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Figure 3.7: Example of Interval in Infinite Interval Design

3.1.2 Infinite Interval Design

In the finite interval design, we assumed that the number of intervals that can be

selected in the first stage is finite. However, there might be a better choice of interval

which is not included in the candidates. If we do not limit them to a finite set of

intervals, a more efficient on/off decision may become possible. In an extreme case,

every interval within the unit-specific power limit may be available, as illustrated in

Figure 3.7 We call this infinite interval design since there are infinite numbers of

intervals that can be possibly selected, as illustrated in Figure [3.8] It is in line with

the RUC model proposed in [I7] where the lower and upper limits of the interval

can be decided in the first stage.
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Figure 3.8: Illustration of Infinite Interval Design

Table 3.2: Notation for ITSUC Model

Sets and 1, Set of %nte.rvals for gene.rator geg
Indices Kqg Set of indices for set of intervals Z,
RZ,4(k) | Set of reachable intervals for generator g € G from kth interval
Parameters ﬁgng ﬁ:}l{lll;ﬂnllllnnll power lli.mi.tt offi.ntterval1 Ing ffor generattor g
o power limit of interval I, for generator g
Decision bytk 1if g«a.nfzrator g is in ipterval I, in perio%i t, 0 .otherwise.
Variables Py the minimum generation of generator ¢ in period ¢
pg” | the maximum generation of generator g in period ¢

3.2 Model Formulation

3.2.1 Finite Interval Design

The ITSUC model with finite interval design will be represented as finite-interval-
based two-stage stochastic unit commitment (FITSUC) model in the rest of the
thesis. Before we provide the formulation of the FITSUC model, we additionally
introduce some notations regarding intervals as summarized in Table For each
generator g € G, the kth interval (for k € KCy) Iy, has two parameters, P;k”” and
P;Z‘“", each of which indicates the minimum and maximum generation amount that
an interval k is selected. Then, Z, := {Iy : k € K4} denotes the set of intervals
and RZ,4(k) denotes the set of reachable intervals from k € ;. Note that the
singleton {0} (= [0,0]) indicates the off status of the generator and I,o = {0}, i.e.

;6”” = Py =0, Vg € G. Then, the formulation of the distribution-based FITSUC
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model can be derived as follows:

(FITSUCP)
min Y > (SUCyug + FCyug)+ Y Eq,[CF (b, dy)]
geG teH teH

st. g — Vgt = bge—1)0 — Dgto, Vge g, t e H\ {1},

Ugl = 1-— b9107 v'g < g’
t
Z Ugt! < 1-— bgto,Vg € g,t € H’
V=1t—MUTy+1)*t
t
Z Vgt < bgth Vg € g,teH,
t'=(t—MDTy+1)*

D b =1, Vgeg,teH,
ke,
> bgw = by, Vg EGteH\ {1}k €Ky,

K €RZ (k)

Ugt, Vgt, Tgt € {0,1}, Vge G,teH,

bgtr € {0,1}, Vge G,teH, ke,

, where
Cf(b,d;) :=min > VCy-pg + VoLL-Is,
geg
s.t. Zpgt + sy > dy,

geg
> PRt by <pu <Y PR b Vg € G,
ke, keky
Pgt = 0, Vg e g,
lSt 2 0
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The objective function consists of the start-up cost, fixed cost, and the
expected second-stage cost, which is decomposed for each period into Cf'(b,d).
It could be done due to the period-wise decomposition property of the ITSUC
model illustrated in Chapter Constraints — correspond to the con-
straints — in (TSUCP) where the variable x4 is eliminated by the equation
gt = 1—bgo, Vg€ G,te€ H. Constraints indicate that exactly one of the in-
tervals (including {0}) should be selected for each generator and period. Constraints
represent that only the reachable intervals from the interval chosen before are
available. Constraints are the binary conditions for the variables that indicate
start-up and shut-down and constraints are those for the variables that indicate
the interval decision.

In the second-stage problem, the objective function corresponds to ,

and constraints (3.11)-(3.14)) correspond to (2.7)-(2.9), (2.12))-(2.13), respectively,

except that the period is fixed by ¢ and the amount of generation is restricted in the

interval by constraints (3.12]). The ramping constraints ([2.10])-(2.11)) are not included

here explicitly since they are indirectly considered by the reachability constraints

(3.7) in the first stage.

Similarly, the scenario-based FITSUC model can be derived as follows:

(FITSUC?)

min Y > (SUCqug + FCyrg) (3.15)

geGteH

s é’ S (SoVC,y-ply + VoLL - s;) (3.16)

teH s€S geg

st. (3 - E9)
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> ph+lsi > dy, VteH,seES, (3.17)

9€g

S PRy < pl < Y PRy, VgeGiteH,seS,  (3.18)
kEK, kEK,
Pt > 0, VgeG,teH,seS (3.19)
Is; >0, Vte H,seS (3.20)

The objective function (3.16)) represents the average cost over the given demand

scenarios. Constraints (3.17))-(3.20) corresponds to the constraints (3.11))-(3.14}) in
the (FITSUCP), but they are imposed for each scenario.

3.2.2 Infinite Interval Design

The ITSUC model with infinite interval design will be represented as infinite-interval-
based two-stage stochastic unit commitment (IITSUC) model in the rest of the thesis.

min

As an additional notation, we introduce new decision variables Pyt

and pg;** which
indicates the minimum and maximum power limits of the interval for generator g € G
in period t € H. Then, the formulation of the distribution-based IITSUC model can

be presented as follows:

(IITSUCP)

min Y > (SUCqug + FCyag) + Y Eq,[C/ (b, dy)] (3.21)
geG teH teH

s.t. - (2.6),
Py — pyi 1y < RUP,, Vgeg,teH\ {1}, (3.22)
Pyt — P < RDN,, Vge G, teH\{1}, (3.23)

29

M E ) 8k o
¥ — I o



Pingg < it < pmet < PP, Vgeg.teH, (3.24)

P, ot > 0, Vg e G,teH, (3.25)

, where
C{(b,d) := min (B10)

st @11), B13) — @.14)

P < pgr S P, VgeGteH (3.26)

Most of the elements in the above formulation are same as those in (T'SUCP) or
(FITSUCP). To avoid redundancies, we focus on the remaining part. Constraints
— indicate that the gap between the minimum power limit and max-
imum power limit imposed by the interval should not exceed the ramping limit.
(13.24)) restricts the limits of the interval within the unit-specific power limit and set
the amount of generation to zero if the generator is turned off. Constraints
represents the nonnegativity conditions for the variables that indicate limits of the
interval. In the period-wise second-stage problem of the IITSUC model, whose cost
function is denoted by C/ (b, d), the only difference from that of the FITSUC model
is the constraint that enforces the amount of generation to be within the
interval determined in the first stage.

Similarly, the scenario-based II'TSUC model can be derived as follows:

(IITSUC?)
min
s.t. — (2:6), 3-17), (3-19) — (3-20),(3-22) — (3-25)
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pﬁm < Pyt < Pyt Vgeg,teH,s €S, (3.27)

Constraints (3.27)) represents that the amount of generation should be within
the interval. Similarly to the (T'SUC®) and (FITSUC®), all the constraints in the

second-stage problem are imposed for each scenario.

3.3 Comparison of the Objective Values

Compared with the conventional TSUC model formulated in Chapter[2.2] the infinite-
interval-based model can be considered as a restriction of it, in that it has a more
restrictive range of the amount of generation than the TSUC model. Hence, the
optimal cost of (ITTSUC?) is less than or equal to that of (T'SUC®) since every
feasible solution for (IITSUC?) is a feasible solution for (T'SUC?). Similarly, the
optimal cost of (FITSUC?) is not less than that of (IITSUC®). Proposition

summarizes the comparison result of the TSUC and I'TSUC models.

Proposition 3.5. (Comparison of the optimal cost between FITSUCS, IITSUC?,
and TSUC®)

Let z¢ be the optimal objective value for an instance C, and FL(U) and TZ(U)
denote the FITSUC? instance and IITSUC® instance corresponding to a TSUC®

instance U, respectively. Then, the following statement holds.

ZFTWU) 2 2TT(U) = AU
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Proof.
(1) 2rz@) = 227010)

Let Q72 and QTT™) denote the set of feasible solutions of FZ(U) and TZ(U),
respectively. It suffices to show that for any (x,b,u,v,p,ls) € Q77U there ex-

ists (x,u,v,p™, pma* p1s) € QT2 with the same objective value. Consider

(b,u,v,p,ls) € Q7T We construct (x,u,V,p, 1~s) € QTIM) a5 follows:

Zgt =1 — bgio, Vgeg,teH,

Ugt = Ugt, VgeG,teH,

Vgt = Vgt, Yge g, teH,

P =Y Primbyy, Vg€ G,teH,
ke,

Py = Py, Vg e G,teH,
ke,

Dot = Dt VgeG,teH,seS,

Is; = s, VgeG,teH,seS

Constraints (3.6)) and (3.9 indicate that there exists a unique k € K4 such that
byt = 1 for all g € G and t € H. Let k(g,t) denote such k. Then, ﬁg}m = Pg"lgé’g‘ " and
e = P;lz‘(l; " for all g € G and t € H. In addition, the constraints 1) indicate

that k(g,t) € RZ4(k(g,t —1)),Vt € H \ {1}. Therefore,

Pyt — 15%711) = Porlgn) ~ P&”&Z,t_n < RUPFy;, VgegG,teH\{l}
Pytesny = Pt = Fiige-n) = Fiii(gy < RDNg, Vg € Gt € H\ {1}
32
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and the constraints (3.22)), (3.23)) in ZZ(U/) are satisfied. Besides,

min _ =min
Pyt = Z ke bgtl = Dgi
keky

ax _ ~max
Pgr < Z ok gt = Pt
keky

Hence the constraints in ZZ(U) are satisfied. Similarly, the other constraints
in ZZ(U) are satisfied by construction, and so (x,u,V,p, ~) e Q*TU)_ Since the
objective of FZ(U) and ZZ(U) are identical, we have zrzy) > zz7(11)-
(i) 2zz) = 2u

Let Q“ denote the set of feasible solutions of ZZ(U). It suffices to show that
for any (x,u,v,p, p™?, p™* 1s) € QI (x,u,v,p,1s) € QY and both have the

same objective value. The constraints (3.24) and (3.27)) imply that

P;mnxgt < pgt n< pgt < pm‘m < P;mmivgt, VgeG,teH,seS

and the constraints (2.16|) are satisfied. Besides,

Pyt — D1y S P — o1y < RUPy, Vg eG,te\ {1}

Pye—1) — Por < Py(it1y — pgi " < RDNg, Vg€ Gt e H\ {1}

Hence, the ramping constraints (2.17)-(2.18]) in U/ are satisfied. Similarly, the other
constraints are satisfied by construction, and so (x,u,v,p,ls) € QY. Since the ob-

jective of ZZ(U) and U are identical, we have 2IT(U) 2 AU O
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Chapter 4

Solution Approaches

As mentioned in Chapter there is still a limitation on efficiently solving the
TSUC model. In this chapter, we give two solution approaches for the ITSUC models,
one for the distribution-based model, and the other for the scenario-based model.
The former is the bounding method described in Chapter [£.1] and the latter is the

Benders reformulation presented in Chapter [£.2]

4.1 Bounding Method

As shown in the formulation of the distribution-based ITSUC models in Chapter
the expectation of the second-stage cost function can be decomposed into several
period-wise cost terms. If we know the lower and upper bounds of the demand,
ie. d; € [a, by, YVt € H, then we can apply the tightened lower and upper bound
derived from the Jensen inequality and the Edmundson-Madansky inequality [27].
The Jensen inequality is a well-known inequality that holds for any convex function,
which demonstrates that the function value at the mean of a random variable is
less than or equal to the expectation of the function. Since the second-stage cost
function in the I'TSUC model is a convex function by LP duality, applying Jensen

inequality gives an optimization problem whose optimal objective value is a valid
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lower bound of the original problem. Similarly, the Edmundson-Madansky inequality,
an inequality that holds for the convex function of the bounded random variable, is
applicable to the ITSUC model in order to obtain a valid upper bound [26]. However,
even though the gap between the lower and upper bound is a useful indicator of the
solution quality, it may be too large to be used as an alternative to the traditional
SAA method. To overcome this limitation, we used the enhanced bound proposed
n [27]. They devised a method to obtain tighter bounds by sequentially applying
these classic Jensen and Edmundson-Madansky bounds.

We suppose that there exists a lower and upper bound. To introduce its appli-
cation to the ITSUC model, we suppose that there exists a lower and upper bound
of demand in each period t, i.e. a; < d; < by, Vi € H since Edmundson-Madansky
inequality makes sense only if the random variable is bounded. Let f;(-), Fi(-) repre-
sents the density function and distribution function of d;, respectively, and Cy(b, d)

denote either Cf' (b, d;) or C{(b,d;). Then, the following proposition holds.

Proposition 4.1. (Bounds on the expectation of second-stage cost) Let a; = dyy <

dy < -+ < dyy = by be arbitrary points in [ag, by].

T m T T m
Zzatict(bamtz Z a[Ci(b,d;)] < ZZ/Btth (b, dy;)

t=1 i=1 t=1 i=0

, where

oy = Fy(dyi) — Fi(dyi—1y), Vi € {1,...,m}, aw = ayome1) =0,

myi =B [di|dy € [dyi1), du]], Vi€ {1,...,m},

dt(i+1) = My(i41)
diiv1) — dti

i — dyi
Bii = oy - (mt L)

e G Vi€ {0,....m
dii — dy(i—1) ) ¢ )

) + iz - (
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Proof. Since Cy(b,d;) in a convex function in d; [36], the statement immediately

follows from Theorem 2 and 3 in [27]. O

In Proposition my;, the conditional mean in the interval [dy;_1), d], for a
lower bound may not be directly computed because of the difficulty of calculat-
ing the integral. However, if the demand follows the multivariate truncated normal

distribution, denoted as d ~ N (i, X, a,b), my can be computed as follows:

fd :cft(x)d:n j“ EIOEI0) 1@ g

R 11 — t(i—1) t(i— (b)—2(a)

me; © = E[dt‘dt € [dt(i—1)7dtlH - fd“ - ‘Pt(dm) q:'t(dt(z 1))
dyi— 1) O(b)—(a)

pe(Pe(dyi) — Pe(dygi1)) +fdt( 1) — pt)de(z)dx
Dy (dyi) — ‘I)t(dt(zq))

o2 b1(dei) — Pe(dei-1y)
/’Lt t q)t(dtz) - q)t(dt(i—l))

Vie{l,...,m}

, where ¢(+), ®(+) denote the density function and distribution function of the normal
distribution N (u, 0?), respectively. Replacing the expectation part with the upper
bound represented in Proposition [£.1], the surrogate models that provide lower and

upper bounds for the FITSUC model are as follows:

(FITSUCE,)
min Y > (SUCqug + FCy(1 — byio)) —i—ZZam (b, my;)
geGteH teM i=1

st 6D - 6D
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(FITSUCER)

min Y > (SUCug + FCy(1 = bgo)) + > > BuCY (b, dy;)

geGteH teH i=0

st. (63— E9)

According to Proposition The optimal objective value of (FITSUCP) is a valid
lower bound for the ITSUC model, while (FITSUCEy) gives an upper bound. If
we solve both (FITSUCP,) and (FITSUCEy), the solution of FITSUCEy can be
regarded as the optimal solution of FITSUCP at the certain optimality tolerance
level, which is the gap between the objective values of those two. The same arguments
hold for the IITSUC model and the formulation for the corresponding surrogate

models are as follows:

(ITTSUCER)

min Y > (SUCqug + FCy(1 —bgro)) + > Y e Cf (b, my;)

geGteH teH i=1

(IITSUCER)
min ZZ (SUCyugs + FCy(1 — bgio) +ZZﬁtz (b, d;)
gegtet teH i=0

E2 - €9. 63). 622 - 62
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For the conventional TSUC model, the argument similar to Proposition [£.1] holds

T cost func-

when the demand is period-wise independent, but the bound contains m
tion terms which are much more than m x T terms in the ITSUC model. For this
reason, to the best of our knowledge, the application of this method to the TSUC
model has not been reported.

In the objective of the surrogate models, ay; and [ can be interpreted as
the weights of each cost function value used for the enhanced Jensen bound and

Edmundson-Madansky bound, respectively. Even more, the sum of those weights

m m
equals to 1, 1.e. > ay; = Y. P = 1,Vt € H. In this point of view, these two bounds

=1 =0
can be viewed as the results of the SAA method if the arbitrary demand points

dii,i € {1,...,m} or the conditional mean m;; were sampled from the demand dis-
tribution. In addition, the gap of the bounds can be closed as much as it is desired by
increasing m, the number of sub-intervals, in the surrogate models. Therefore, the
proposed bounding method can be viewed as a discretization-based approximation
method of the second-stage expected cost. The computational comparison results of

the SAA method and the bounding method are given in Chapter [5]

4.2 Benders Reformulation

The formulation of the ITSUC model presented in Chapter [3| has O(GT'S) variables
and O(T'S) constraints when the maximum number of demand samples among all
the periods is denoted by S. Since the number of variables and constraints are
both linear with the number of scenarios, the problem may become much harder
to be solved even with a slight increase in demand scenarios. To deal with this

scalability issue, Benders decomposition is widely used [37]. Benders decomposition
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is a general solution approach to linear programming or integer programming which
can exploit the stage-wise decision framework in the stochastic programming model.
In this subchapter, we will obtain the so-called Benders reformulation of the ITSUC
model by characterizing a set of dual feasible solutions with polynomial cardinality
containing the optimal dual solution to the second-stage problem.

Omitting the superscript s, the second-stage problem for period ¢ in the IITSUC

model can be written as follows:

min Z VCy-pgt +VoLL - s dual var.
9eg
s.t. Zpgt + lSt > dt, ()\t)
9eg
‘ (4.1)
pgt 2 pgzlflna Vg S g7 (agt)
pgt < Py, Vg € G, (Bgt)
lSt Z 0

According to the LP duality, (4.1) is equivalent to its following dual problem.

max Y (Pt g+ D Byr) + diy

9€§g
st. M+ ag+ B =VCy, Vg € G,
A < VoLL, (4.2)
age > 0,84 <0, Vg €,
At >0
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Since the ramping constraints are no longer needed, is equivalent to LP re-
laxation of 0-1 knapsack problem. It can be easily solved by sorting the items by
their cost coefficient and taking the largest value possible for each item in ascending
order until the cumulative sum of item weights reached the capacity [38]. Hence, the
optimal solution for can be easily obtained by sorting the generators by their
variable cost coefficient V' C,. Using this property, we can find out the whole possible

optimal dual solution of (4.2)) as presented in Proposition

Proposition 4.2. (Optimal dual solution of second-stage problem) Suppose that
VoLL > VCy > 0,Vg € G. Then, set D := Dy U Dy U D3 contains an optimal solu-

tion of dual problem for every realization of d;.

Dy :={((VC-VC, - 1)*,(VC-VCy-1)",VC,): g € G}
Dy = {(VC,0,0)}

D3 :={(0,VC —VoLL-1,VoLL-1)}

Proof. Let i(g) and g(i) denote the rank of generator g and ith generator, respec-
tively, when sorting all ¢ € G by VC, in ascending order. We will show that
the optimal amount of generation and load shedding for can be found if
the residual demand d; — deg pg;ém is satisfied by running the generators with

small variable cost coefficient as much as possible according to the sorted order. Let

; J . )

it = 2 Pgi + 2Pyt — Pygiye)> Vi € {1,...,1G]} and sos := 3 pg;™. Since
g€y =1 g€y

Sjit = Sja,t = 0, Vi1 > jo > 0, exactly one of the following statements is true.
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(i) dg* € G such that Si(gr)—1,¢ < dit < Si(g)t (ii) d¢ > ng;’%‘” (iii) dy < ng;’}m.
ge ge

Case 1. Jgx € G such that s;g)_1; < di < Sj(ga) 1

Let

Pg(iye = \ di — Si(gr)—1,t (i =i(g"))
Bgt = (VCy —VCys)™

prin (i < i(g")) N Ve
Is; =0
for every g € G. Then,
> VCypi+ VoLL - Is]
geg
i(gx)—1 i(g*)—1 G|
= 3 VO B VO e 3 s 3
i=i(gx)+1
G|
+ Z ch(i) pgzslt (4.3)
1=i(g*)+1

= PV Oy — VCy) T + pia®(VCy — VCga)™ + dyV Oy

geg

= Z pg;ma;t + Pt By + diAf
g€y
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Case 2. d; > ) pp®.

9g€g
Let
Dy(iye = Pyt
ﬂ;t =VCy—VoLL
ls; =di — Zp;’%m

geg Af =VoLL
for every g € G. Then,

> VCoplp™* + VoLL- (d — » | pji™)

Y Y

=> (VCy = VoLL)pjp™* +dy - VoLL (4.4)
geg

= Z pgimoz;t + Pyt By + de Ay
geg

Case 3. d; < Y pmin.

IS4 9
Let
oy =V
__min
Patie = Pet Bl =0
o = N =0

for every g € G. Then,

D VCupm = ppital, + ppt By + dif, VgeGteM (4.5)
9€g 9€g

For all cases, (p*, 1s*) is a primal feasible solution for (4.1), (o, 5%, \*) is a
dual feasible solution for (4.2]). Since the primal and dual objective values for these
solutions coincide, the former is an optimal solution for (4.1]), and the latter is for

(4.2) by the duality of linear programming [36]. O
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Let 1.5 denote the optimal cost of (4.2)). Then according to Proposition

Nts = (@ mi\l)ley (pgzmagt +P$azﬂgt) +dih = (@ glil)leD Z (p;)%inagt +P$azﬁgt) +di M
[1=g) geg [1=g) geg
(4.6)
, where ) denotes the feasible region of (4.2)).

Hence, the Benders reformulation of the scenario-based IITSUC model can be

simplified as follows:

(IITSUCSR)
SN (SUCug + FCoug) + 1% > s
geGteH s€S teH

s.t. — (2.6)
ms = > (PN(VCy = VO + = (VCy — VCy)T)
g'€g (4.7)
+di-VCy, VgegG,teH,seS,
Ms > Y Pt VCy, WtEH,sES, (4.8)
g'€eg
ms > Y (pIe* - (VCy — VoLL))
g'eg (4.9)
+dj-VoLL, VteH,seS

In a similar way, the Benders reformulation for the FITSUC model can be derived

by putting pmm = > ngm bgtr and pi®® = > PRA% by
kekg\{0} kekg\{0}
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(FITSUCSR)

min Y Y (SUCyug + FCqzg) + > p° D ths

geGteH SES  teEH

st @ - E9

MNis = Z ( yé"(VCg/ - VCQ)+ + P}”‘é‘x(VCg/ - VCg)i)bg’tk
9'€G,kEK ,\ {0}

+d5-VC,, VgeG,tet,seS, (4.10)

Ms> > PGy by, VteEM,sES, (4.11)
9'€G,keK ;\{0}

Nes > > (PJ - (VCy — VoLL))
9'€G,kek ,\{0} (4.12)

+dj-VoLL, VteH,s€S

The constraints (4.7)-(4.9), or the constraints (4.10))-(4.12)) each correspond to

the Benders cut obtained from D;, Ds, and D3. The size of the set D in Propo-
sition is |G| + 2, which is polynomial to the input size of the problem. Hence,
(FITSUC3R) and (IITSUCSS) are the compact Benders formulation of the IT-
SUC model. In general, it can be hardly obtained since the traditional form of the
Benders reformulation itself has constraints at least as much as the number of ex-
treme points in the dual feasible set. However, in this case, since we know that there
exists a dual optimal solution in the set D according to the Proposition the
other extreme points do not need to be considered and the formulation can be much
more simplified. The computational comparison results of the original formulation

and the Benders reformulation are presented in Chapter
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Chapter 5

Computational Experiments

We have proposed the ITSUC model and analyzed its useful properties such as
period-wise decomposition, compact Benders reformulation, and the applicability
of the bounding method. The computational experiment results for the model and
their efficiency is discussed in this chapter. The instance and control parameters we
used for the experiments are described in Chapter[5.1} In Chapter [5.2] the evaluation
method for the models is presented, and in Chapter [5.3] the computational results

for the ITSUC model and solution approaches are illustrated.

5.1 Experiment Setting

We conducted all the experiments based on the 10-generator daily UC instance
with 24 time periods from [39]. In terms of demand, we used the values multiplied
by 75% from those in the instance, to avoid the load-shedding cost dominating
the overall cost. The value of lost load (VoLL) was fixed by $1,000. The ramping
limits of the instance were controlled by the parameter + for the analysis of its
impact on the performance of the model. For each generator g, its ramping limits are
determined by its length of generation range (P;"** — P;"m) multiplied by v € [0, 1],

i.e. RUP; = RDN, =~y - (P" — P;m”). For the FITSUC model, the overlapping
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uniform interval design introduced in Chapter [3.1.1| was used. Since the validity of
interval design and the number of reachable intervals are closely related with the
ramping limits, we set the step size  and the size of intervals £ to be proportional to
RU P, with coefficient 84 € [0,1] and §; € [0,1], i.e. 0 = Bq- RUP, and £ = ;- RUP,.
B4 and B; denote the control parameters for the overlapping uniform interval design.

Since we used the deterministic instance, the nominal demand was regarded as
the mean of the demand, and the standard deviation of the demand was controlled
by the coeflicient of variation, C'V for short. If the nominal demand for period ¢
is denoted by d;, the demand for each period was sampled independently from the
truncated normal distribution d; id N (dy, 0, (dy — 404)t, dy + 40y), where oy =
CV -d;, Vt € H based on the inverse transform sampling. Each combination of
the demand samples over the time horizon became a demand scenario in S. We
conducted the experiment for |S| € {10,50, 100, 500,1,000} and |S| = 500 was set
as the default value.

The ramping limits were controlled by v € {0.25,0.5,0.75} and v = 0.5 was
set as the default value. Three types of overlapping uniform interval designs with
(B4, B1) € {(0.25,0.25), (0.25,0,5), (0.5,0.5)} were used in the experiments. The set
of interval candidates for v = 0.5 is illustrated in Figure (Ba, B1) = (0.5,0.5) was
set as the default values among them. All the models and methods were implemented
with Xpress 8.14 and tested with Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz. The
time limits were set by 1,200 seconds. For the results where the time limit was

reached, we regarded the computation time as equal to the time limit.
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5.2 Evaluation Method

We evaluated the TSUC and ITSUC models in the context of real power system
operation. Since the demand scenarios considered in the models may not be realized
in the real world, it is not the amount of generation for those scenarios but the
on/off status or interval that should be evaluated. Here we briefly illustrate the
evaluation process for the case of the ITSUC model. First, we solve the model and
fix the interval solution. Next, for each period starting ¢ from 1 to 7', the demand
is realized and the optimal amount of generation for each generator is determined
inside the interval. It can be easily found by the method demonstrated in Chapter
[4:2] A similar evaluation procedure was performed for the TSUC model, where only
the first-stage solution was changed from interval to on/off status. For each model,
this procedure was repeated for 10, 000 test scenarios, which were sampled separately

from the scenarios sampled for solving the models.

5.3 Experiment Results
5.3.1 Performance Comparison of the Models

We conducted a comparative analysis between the proposed ITSUC model and the
conventional TSUC model. Figures [5.1] and show the comparison results accord-
ing to the number of scenarios when C'V = 0.1. We omitted the result for the case of
1,000 scenarios because the ITSUC model could not be solved within the time limit.
Figures and show the results in terms of the operation costs. AvgCost and
StdCost denote the average and standard deviation, respectively, of the total oper-

ation cost incurred in the repeated simulation of the real power system operation
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Figure 5.1: Operation Cost Comparison Between TSUC and ITSUC
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Figure 5.3: Computation Time Comparison Between TSUC and ITSUC

described in Chapter Except for the case of 10 scenarios, the ITSUC models
showed lower average operation costs than the TSUC model. In addition, the ITSUC
model showed a less standard deviation of the operation costs than the TSUC model.
It suggests that the proposed model might be a better choice than the conventional
TSUC model for the purpose of efficient and reliable operation. Compared with the
infinite interval design, the finite interval design performed better with 10 scenar-
ios. It may be because demand uncertainty in the test phase cannot be considered
properly with a small number of scenarios, which is more or less alleviated by the
robust solution from the FITSUC model. SolveTime in Figure [5.3] stands for the
time for the MIP solver to solve the model. As the number of scenarios increases, the
computation time to solve the model showed a tendency to increase. The FITSUC

model showed a rapid increase in the computation because it introduces extra binary
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Figure 5.4: Operation Cost Under the Various Demand Distributions

variables for the interval decision. The ITTSUC model showed computational benefit
over the TSUC model when the number of scenarios become large. This tendency
might be because the IITSUC model has a smaller feasible region than the TSUC
model so the heuristic algorithm in the MIP solver worked more efficiently for the
former than the latter. To conclude, the infinite interval design showed the most

gentle increase in the computation time among the three models.

5.3.2 Robustness Test on the Different Demand Distributions

When operating the power system based on the solution from the UC model, the
demand may not follow the probability distribution in the planning phase. In this
case, the demand might not be completely satisfied in spite of the full utilization
of the generators planned to be operated; hence, the total operation cost and the
load-shedding cost may be significantly increased. To examine how well the schedule

from each model can react to the unexpected demand realization, we controlled the
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standard deviation by CV, and the type of demand distribution. Specifically, we
used the demand scenarios sampling from the truncated normal distribution with
CV = 0.1 (TN, 0.1) when solving the model, and tested on the different demand
distributions such as the truncated normal distribution with CV = 0.2 (TN, 0.2),
or the uniform distribution with CV = 0.1 (Unif, 0.1). Figures [5.4 and 5.5 show the
average total operation cost and load-shedding cost, respectively, under the three
types of distribution. One is the distribution that was expected when solving the
model, while the other two are not. Both the operation cost and the load-shedding
cost naturally turned out to be larger in the latter case than in the former case.
In terms of the cost under the unexpected demand distribution, the ITSUC model
could perform better than the TSUC model. In addition, the IITSUC model showed
less operation and load-shedding cost than the FITSUC model. The performance
comparison based on the rate of increase of the cost yields the same hierarchy of the

models.
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5.3.3 Efficiency of the Bounding Method

In Chapter we introduced the bounding method for the ITSUC model and ob-
served that the gap between the optimal objective value of the surrogate models
can be closed as the number of sub-intervals increases. Here we report the efficiency
of the bounding method compared with the SAA method. For a fair comparison,
we evaluated the expected cost, denoted by ObjVal?, corresponding to the interval
solution obtained from the SAA method. It could be easily computed by applying
the bounding method for the fixed interval solution since the resulting surrogate
models are both linear programs. To construct the sub-intervals, we equally subdi-
vided the range of generation. We controlled the number of sub-intervals m just as
we did for the number of scenarios |S|. Figures and show the cost and time
comparison results between the SAA method and the bounding method. In Figure
the bounding method could obtain an optimal interval solution for FITSUCP
within 0.1% optimality gap with only 50 sub-intervals. In contrast, the SAA method
could reach that gap only with at least 500 scenarios. It suggests that the system-
atic method of tightening the expectation can be more effective than the random
sampling from the demand distribution. In terms of the time to solve the models,
both the scenario-based model from the SAA method and the surrogate model from
the bounding method showed a similar trend in computation time as the scenarios,
or the demand samples, increased. The reason for this trend is that the |S| and m

have nearly the same effect on the size of the optimization problem.

52



49

48

ObjValP
(%)

47

46

45

SAA (FITSUC®)

—+ Lower Bound (FITSUCPy)
—+—Upper Bound (FITSUCE)

e

»

| | | | |
10 50 100 500 1,000
|S1(m)

Figure 5.6: Expected Cost Comparison Between SAA and Bounding Method

160

140

120

100

80

SolveTime
(sec)

60

40

20

SAA (FITSUCY)
—+ Lower Bound (FITSUCPy)
—+—Upper Bound (FITSUCEy)

10

|
50 100

|S1(m)

|
500

Figure 5.7: Computation Time Comparison Between SAA and Bounding Method

93



Table 5.1: Computation Time (sec) of Extensive Formulation

S
FITSUC IITSUCS
(/887 /Bl)

|S|  (0.25,0.25) (0.25, 0.5) (0.5, 0.5) 00
10 48.06 80.39 61.03 3.31
50 23.73 57.34 45.69 6.38
100 16.82 27.85 25.54 12.61
500 61.97 127.03 171.92 98.51
1000 278.70 504.78%* 679.48* 219.00

*: Time limit was reached for CV = 0.1
Table 5.2: Computation Time (sec) of Benders Reformulation
S
FITSUCER IITSUCS
(687 /Bl)

|S|  (0.25,0.25) (0.25,0.5) (0.5, 0.5) 00

10 102.25 423.86 95.90 4.10

50 27.67 79.53 38.05 6.31
100 29.92 25.77 32.05 11.91
500 86.76 98.68 128.17 60.35
1000 254.43 398.58 535.67** 104.38

**: Out of memory for CV = 0.1

5.3.4 Efficiency of the Benders Reformulation

We presented a compact Benders reformulation in Chapter To investigate its
potential computational gain, we compared between the extensive formulation and
the Benders reformulation. The comparison results of computation time between the
extensive formulation and the Benders reformulation are shown in Tables and

Each number represents the average computation time for CV € {0.1,0.2,0.3}. Even
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though neither of the two formulations could completely dominate the others under
the finite interval design, (FITSU C’g ) showed its efficiency with a relatively large
number of scenarios. For the IITSUC model, the computation time of (IITSUC%R)
increased more gently than (IITSUC?) as |S| increases. It can be concluded that
the impact of the choice between the two formulations on the computation time is

more significant in the IITSUC model than in the FITSUC model.

5.3.5 Comparative Analysis of Various Interval Design Methods

In Chapter [3.1.1] we mentioned that the choice of the appropriate interval design is
important for the FITSUC model. Here we present the experiment results for the
various interval designs to test their effects on the performance of the model. We
controlled the parameters 8s; and §; to specify the step size  and the length ¢ in
the overlapping uniform interval design. In addition, several levels of 7, the ramping
limits control parameter, were used to test the impact of the ramping limits on the
performance of the interval design. Figure shows the average operation cost and
the computation time, respectively, based on the interval decision with different val-
ues of B and [ for the case of |S| = 500. Among the tested finite interval designs,
(Bs, B1) = (0.25,0.25) was outperformed by the other two, both in terms of the oper-
ation cost and the computation time. It can be explained by the extensive restriction
on the generation due to the numerous intervals, and consequently a large number of
additional binary variables. For the other two designs, (8s, 5;) = (0.25,0.5) showed
slightly better cost than (S, 8;) = (0.5,0.5). It may be because the former allows
the overlapping of the intervals, whereas the latter does not. Even more, the com-

putation time of (s, ;) = (0.25,0.5) was less than that of the (8s, 5;) = (0.5,0.5).
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This tendency was consistent regardless of the ramping limits. In conclusion, the
interval design with (5, 8;) = (0.25,0.5) is discovered to be the best choice in the

above experiment settings.
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Chapter 6

Conclusion

In this thesis, we have proposed the ITSUC model to mitigate the drawbacks of the
conventional TSUC model. In the model, an interval is chosen along with on/off de-
cisions in the first stage. We suggested two interval selection schemes for the ITSUC
model and their corresponding mathematical formulations. Since the interval deci-
sion already considers the ramping constraints in the ITSUC model, the second-stage
problem can be decomposed for each period. We discovered that the bounds on the
expected second-stage cost can be efficiently used to solve the ITSUC model. In ad-
dition, we used the period-wise decomposition property to derive a compact Benders
reformulation in the ITSUC model. Through the computational experiments, the ro-
bustness of the solutions of the proposed model and the efficiency of the proposed
solution approach are evaluated. The effect of interval design on computational per-
formance is also analyzed. The applicability of our model can be further investigated
in more practical settings. For example, the network structure of the power system
can be additionally considered in the model when the transmission line has a certain
level of flow limit. Also, our model focuses on the unit commitment problem with
thermal generators, but other types of generators such as hydro generators or water

pump generators, and their own operational constraints can be considered in the
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model. Lastly, the model will describe the real-world cost structure more precisely if
the piece-wise linear or quadratic generation cost function is assumed in the model.
In an algorithmic view, the efficient Benders decomposition algorithm in the branch-
and-bound framework can be applied and compared with the proposed model. In
addition, valid inequalities related with the interval decision can be developed to
strengthen the linear programming relaxation bound. In terms of the application
of our model, a hybrid model where the interval decision can be different for each

group of scenarios could be devised.
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