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Abstract

Automatic Music Lead Sheet Transcription
and Melody Similarity Assessment Using

Deep Neural Networks

Jonggwon Park

Department of Industrial Engineering

The Graduate School

Seoul National University

Since the composition, arrangement, and distribution of music became convenient

thanks to the digitization of the music industry, the number of newly supplied music

recordings is increasing. Recently, due to platform environments being established

whereby anyone can become a creator, user-created music such as their songs, cover

songs, and remixes is being distributed through YouTube and TikTok. With such

a large volume of musical recordings, the demand to transcribe music into sheet

music has always existed for musicians. However, it requires musical knowledge and

is time-consuming.

This thesis studies automatic lead sheet transcription using deep neural networks.

The development of transcription artificial intelligence (AI) can greatly reduce the

time and cost for people in the music industry to find or transcribe sheet music.

In addition, since the conversion from music sources to the form of digital music
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is possible, the applications could be expanded, such as music plagiarism detection

and music composition AI.

The thesis first proposes a model recognizing chords from audio signals. Chord

recognition is an important task in music information retrieval since chords are

highly abstract and descriptive features of music. We utilize a self-attention mecha-

nism for chord recognition to focus on certain regions of chords. Through an attention

map analysis, we visualize how attention is performed. It turns out that the model

is able to divide segments of chords by utilizing the adaptive receptive field of the

attention mechanism.

This thesis proposes a note-level singing melody transcription model using sequence-

to-sequence transformers. Overlapping decoding is introduced to solve the problem

of the context between segments being broken. Applying pitch augmentation and

adding a noisy dataset with data cleansing turns out to be effective in preventing

overfitting and generalizing the model performance. Ablation studies demonstrate

the effects of the proposed techniques in note-level singing melody transcription, both

quantitatively and qualitatively. The proposed model outperforms other models in

note-level singing melody transcription performance for all the metrics considered.

Finally, subjective human evaluation demonstrates that the results of the proposed

models are perceived as more accurate than the results of a previous study.

Utilizing the above research results, we introduce the entire process of an au-

tomatic music lead sheet transcription. By combining various music information

recognized from audio signals, we show that it is possible to transcribe lead sheets

that express the core of popular music. Furthermore, we compare the results with

lead sheets transcribed by musicians.
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Finally, we propose a melody similarity assessment method based on self-supervised

learning by applying the automatic lead sheet transcription. We present convolu-

tional neural networks that express the melody of lead sheet transcription results in

embedding space. To apply self-supervised learning, we introduce methods of gen-

erating training data by musical data augmentation techniques. Furthermore, a loss

function is presented to utilize the training data. Experimental results demonstrate

that the proposed model is able to detect similar melodies of popular music from

plagiarism and cover song cases.

Keywords: Music Information Retrieval, Automatic Music Transcription, Chord

Recognition, Singing Melody Transcription, Melody Similarity Assessment, Music

Plagiarism Detection, Self-supervised Learning, Deep Neural Networks

Student Number: 2018-20381
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Chapter 1

Introduction

1.1 Background and Motivation

Music is the most familiar cultural content to the public. Thanks to the recent

development of the streaming industry, anyone can listen to whatever music they

want anywhere. Since the composition, arrangement, and distribution of music has

become convenient thanks to the music industry’s digitalization, the number of newly

made music recordings is continually increasing. Recently, thanks to the growth

of video content, music has become more frequently present on platforms such as

YouTube and TikTok. In addition, since everyone can become a creator, user-created

music such as their own songs, covers, and remixes are being distributed through

YouTube and SoundCloud.

The demand to transcribe music as diverse versions of newly released music

has always existed people in the music industry and hobbyist players. However, not

anyone can transcribe music scores because it requires musical knowledge and senses;

it also has issues such as time and financial expenses. Since new music contents keep

flowing, such as new songs and cover songs, it is gradually becoming impossible for

people to write scores for all music content. In addition, recent issues have arisen

regarding music plagiarism. Analyses of plagiarism, rather than relying simply on

1



the similarity of sounds, requires analysis of music transcriptions for the evaluation

of similarity on fundamental chords and melodies.

Meanwhile, alongside the adoption of deep learning technology, thanks to the

development of various techniques such as transformers [2,3] that use sequence data,

big developments have been made in diverse sectors such as translation [2], language

generation [4], and voice synthesis [5]. As deep learning is used to apply music audio

signals, which is a type of sequence data, there have been noteworthy achievements

in various sectors, such as source separation [6], music audio synthesis [7], and music

similarity measurement [8].

Various attempts have been made in the field of automatic music transcription

(AMT). Attempts to transcribe chords, which are a key element of music, have

been made over a long period [9]. Deep learning has enabled many recent develop-

ments [10, 11]. In addition, traditional fundamental frequency analysis [1] has been

frequently employed to recognize melodies. Recently, melody recognition at the note

level has been attempted [12]. Further, studies have been conducted to transcribe

various musical instruments, such as pianos, guitars, and drums [13]. An audio-to-

score study [14] has been conducted to convert music audio into sheet music, and a

study on lead sheet transcription [15] is in progress.

There is no general rule defining plagiarism, which states that at least a few notes

or beats must exist simultaneously in music to be considered to be infringing on mu-

sic copyright [16]. When courts deal with music plagiarism cases, independent music

experts evaluate the similarities between the two songs to make a determination [17].

There are many kinds of music plagiarism, but these can largely be divided into sam-

ple plagiarism, melody plagiarism, and rhythm plagiarism [17]. Among these, melody
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is one of the most important elements of popular music, which makes it the most

studied area of plagiarism research [18–20]. There have been studies on the explo-

ration of plagiarism on audio signals [17, 21], but it is difficult to apply to actual

cases of popular music plagiarism, which involve various musical instruments and

modifications.

This thesis started with the motivation that if a high level of music transcription

is possible through deep learning technology, various demands will be satisfied and

additional development of the application will be possible. The study will provide

assistance to those who lack musical knowledge with an analysis of music while it will

reduce the time and cost for experts who have the ability to transcribe. Furthermore,

the analysis of music core elements using the music transcription technology will

enable applications such as the development of musical elements’ similarity-based

search and recommendation system.
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1.2 Objectives

This thesis aims to propose a lead sheet transcription technique using deep neural

network-based analysis of music audio signals. Lead sheet is a musical notation

that specifies the essential elements of a popular song; it consists of musical key,

chords, and melody. To express audio signals in the form of a lead sheet, we suggest

chord recognition and singing melody transcription models. Furthermore, based on

the result, this thesis defines the post-processing procedure of converting it into a

lead sheet. In addition, by applying the lead sheet transcription result, this thesis

proposes an melody similarity assessment technique for automatic music plagiarism

detection and cover song detection. This study is divided into four parts as follows.

First, we study the chord recognition technique from music audio signals. Chords

refer to a set of two or more pitches, and alongside the melody, they are a basic

element of music composition. Chord recognition is difficult for several reasons; not

all notes of the current chords are always played simultaneously and there are many

chords with similar meanings. Furthermore, it can be difficult to determine the point

at which the chord changes. Therefore, for the analysis of music audio signals, the

study uses the attention technique that creates representation values for each point.

This study proposes the attention-based model and learning techniques to improve

performance.1 In addition, the study visualizes and analyzes the attention values of

the chord division method of the chord recognition model.

Second, the thesis proposes a note-level singing melody transcription Transformer

to recognize the monophonic singing melody from polyphonic audio signals.2 Mono-

1The work in Chapter 4 was published as Park et al. [22].
2The work in Chapter 5 was published as Park et al. [23].
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phonic note event tokens are defined to express a monophonic melody as a sequence

of event tokens. Furthermore, we propose three techniques to enhance the tran-

scription performance, namely overlapping decoding to resolve a context breakage

between segments in decoding, pitch augmentation to enlarge the training dataset,

and adding noisy dataset with data cleansing. The experimental results imply that

combining the proposed methods significantly improves the performance. The pro-

posed model outperforms other models in note-level singing melody transcription

regarding note-level evaluation metrics. Through the analysis of F0 estimation eval-

uation metrics, we show that the voice detection performance of the proposed model

is comparable to that of a previous study. Finally, the visualization of the results

and subjective listening test demonstrate that the proposed methods are effective

in achieving better transcriptions.

Third, using the recognized chords and melody, this thesis suggests methods

for conversion into the form of a lead sheet. To express music in the form of lead

sheet, aside from chords and melody, musical key information and beat tracking

are required for conversion into note units. For this, the study utilizes previously

published research results. As a result, the study identifies that it is possible to

transcribe lead sheets from audio signals.

Finally, the thesis suggests melody similarity assessment method by applying lead

sheet transcription. This study proposes methods to evaluate similarity based on rec-

ognized melodies. For this, the study adopts the self-supervised learning technique

to learn the similarities between unlabeled melodies. Through data augmentation

using musical theory, the study utilizes the data by transforming it adequately. Fur-

ther, by applying this into actual plagiarism detection and cover song identification,

5



the study examines the detection performance of proposed models.

1.3 Thesis Outline

The thesis comprises eight chapters, and the remaining chapters are organized as

follows. Chapter 2 examines the previous research on automatic music transcription

models and music plagiarism detection. Chapter 3 describes the problem definition

used in the thesis. In Chapter 4, a bi-directional Transformer for musical chord

recognition is proposed. Chapter 5 introduces note-level singing melody transcription

method with Transformers. Combining the results of Chapters 4 and 5, automatic

music lead sheet transcription method is proposed in Chapter 6. Applying the results

of Chapter 6, melody similarity assessment with self-supervised covolutional neural

network is suggested in Chapter 7. Finally, the conclusion of this thesis and future

research directions are presented in Chapter 8.
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Chapter 2

Literature Review

2.1 Attention Mechanism and Transformers

2.1.1 Attention-based Models

The attention mechanism, first introduced by [24], can be described as computing an

output vector when query, key and value vectors are given. In sequence modelling

tasks such as machine translation, query and key correspond to certain elements

of the target sequence and the source sequence respectively. Each key has its own

value. The output is computed as a weighted sum of the values where the weights

are computed from the query and key. Self-attention refers to the case when query,

key and value are computed from the same input.

As depicted in Figure 2.1, Transformer [2] is an attention-based network that re-

lies on attention mechanism only and does not include recurrent or convolutional ar-

chitecture. Utilizing multi-head attention together with position-wise fully-connected

feed-forward network, it showed significantly faster training speed and achieved bet-

ter performance than recurrent or convolutional networks for translation tasks.

Transformer used scaled dot-product as an attention function:

Attention(Q,K, V ) = softmax(
QKT

√
dK

)V (2.1)
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Figure 2.1: Model architecture of Transformer [2], a self-attention-based sequenceto-
sequence model

where Q, K and V are matrices of query, key and value vectors respectively, and dK

is the dimension of key.

2.1.2 Transformers with Musical Event Sequence

Transformer [2], which demonstrated outstanding performance in various tasks deal-

ing with sequence data, was also often used in the field of MIR. Music Trans-

former [25] generates piano music as a sequence of note onset, note offset, set velocity,

and time-shift event tokens. The time-shift tokens express relative time, indicating
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that the next event occurs after a certain amount of time follwing the preceding

event. Choi et al. [26] investigated chord conditioned melody generation by sym-

bolizing a monophonic melody as a sequence of pitch onset, hold, and rest tokens,

where each token in sequence is defined to be the length of a 16th-note.

The sequence-to-sequence Transformer has achieved state-of-the-art performance

in the task of piano transcription [27]. Despite the different lengths of audio feature

and musical event token sequences, the authors proposed to use audio features as the

encoder input and train the decoder to predict the output tokens autoregressively.

A polyphonic piano performance was represented as a sequence of tokens where the

token set consists of absolute time, note, velocity, and end of sequence (EOS). The

results of the experiment comparing relative time-shift and absolute time tokens

demonstrated that the latter performed better in piano transcription, due to the

prevention of error accumulation. Following the results, we also adopted absolute

time tokens for data representation.

In [13], a multi-task AMT Transformer was proposed, confirming that tran-

scription of arbitrary combinations of instruments is possible by training various

note-level instrument datasets simultaneously. The musical event sequence used in

the decoder consists of instrument, note, on/off, time, drum, end tie section, and

EOS. The instrument tokens enable distinguishing notes of different instruments.

Moreover, the authors introduced an end tie section token as a method of convey-

ing information about notes that were not turned off in the previous segment. The

multi-task AMT Transformer obtained high-quality transcription results on various

instrument datasets, but the task of singing transcription was not covered.

In this paper, referring to [27] and [13], a sequence-to-sequence Transformer is
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applied to note-level singing transcription. While [27] focused on polyphonic piano

transcription, this paper approaches the problem of monophonic singing melody

transcription.
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2.2 Chord Recognition

In the past, most automatic chord recognition systems were divided into three parts:

feature extraction, pattern matching and chord sequence decoding. After applying

transformation such as short-time Fourier transform or constant-q transform (CQT)

to an input audio signal, features are extracted from the resulting time-frequency

domain. Some examples of such hand-crafted features include chroma vectors and the

”Tonnetz” [28] representation. For pattern matching and chord sequence decoding,

Gaussian mixture models with feature smoothing [29, 30] and HMMs [9, 31] have

been the most popular choices, respectively.

With the recent wide acceptance of deep learning in research communities, there

have been many studies applying it to chord recognition task in various ways. The

very first deep-learning-based chord recognition system was proposed by [32] where

they trained a CNN for major-minor chord classification. Attempts to apply deep

learning to feature extraction include [33] and [34], where the former employed a

CNN to extract Tonnetz features from audio data and the latter adopted a deep

neural network (DNN) to compute chroma features. CNN and HMM were combined

for chord recognition in [35] and [36].

In addition to CNN, another popular network architecture for chord recognition

is RNN. [37] and [38] explored an RNN as chord sequence decoding method, relying

on deep belief network and a DNN, respectively. Another branch of RNN-based chord

recognition systems utilize a language model which predicts only the sequence of

chords without considering their durations. This might be helpful when the number

of chord labels is large. A large-scale study of language models for chord prediction

was conducted in [39]. Without audio data, the authors trained just a language
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model with the chord progression data only and showed that RNNs outperformed N-

gram models. In their succeeding work [10], they combined the RNN-based harmonic

language model with a chord duration model to complete the chord recognition task.

Another RNN-based approach is presented in [11] which trained a CNN feature

extractor with large MIDI (Musical Instrument Digital Interface) data and combined

BLSTM (Bi-directional Long-Short Term Memory) with CRF for sequence decoder.

This BLSTM-CRF model achieved good performance but has a drawback that its

training procedure involves complex MIDI pre-training. The model that we propose,

on the other hand, is much simpler to train.
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2.3 Note-level Singing Melody Transcription

For note-level singing transcription, it is essential to recognize the pitch, onset, and

offset of each note. Tony [40] enabled interactive annotation of melodies from mono-

phonic audio recordings. It supported note-level transcription by first performing

pitch tracking using pYIN [41] and then converting the F0 results into note-level an-

notation with hidden Markov model [42]. Furthermore, consecutive notes of similar

pitch were segmented by applying the amplitude-based onset segmentation heuristic.

Omnizart [43] provided various AMT functions based on deep learning, such as

vocal transcription, chord recognition, drum transcription, and beat tracking. Its

vocal transcription module for polyphonic music adopted a hybrid network compris-

ing frame-level pitch extraction and note segmentation models. The authors used

pretrained Patch-CNN [44] for pitch tracking and improved the previously proposed

note segmentation model using Pyramid-Net with ShakeDrop regularization [45] and

virtual adversarial training [46].

The downside of various note-level singing transcription datasets is that the

amount of data is small or the annotations are inaccurate. Wang et al. [12] proposed

a large-scale dataset for singing transcription consisting of 500 pop songs (MIR-

ST500) by setting some labeling criteria and obtaining annotations from non-experts.

With the proposed dataset, they proposed a singing transcription model that rec-

ognizes onset, silence, pitch, and octave for each time frame using EfficientNet-b0.

EfficientNet-b0 [47] is a convolutional neural network model that showed state-of-

the-art performance on image classification , while keeping the model size small com-

pared to other models. The proposed model in this work was also trained and eval-

uated with MIR-ST500. Furthermore, although Wang et al. [12] stated that DALI
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has inevitable errors, we make use of the dataset as an additional noisy dataset.

Kum et al. [48] proposed a semi-supervised learning method to solve the problem

of insufficient note-level labeled data in singing transcription from polyphonic music.

The authors generated pseudo-labels by applying pitch and rhythm quantizations

to the results of a vocal pitch estimation model. The proposed singing transcription

model was trained with unlabeled audio data and the pseudo-labels. Furthermore,

the repeatedly applied self-training using the teacher-student framework [49] led to

additional performance improvement. They showed that the use of unlabeled data

in addition to labeled data can improve the performance of the singing transcription

model.

Donahue et al. [15] designed a system that produces lead sheets from music audio.

The authors claimed that using the audio feature of Jukebox [7] as input instead

of spectrogram features led to significant performance improvement when training

a Transformer [2] for melody transcription. However, only the performance for note

onset was reported; the specific training technique was not disclosed. This paper

proposes a note-level singing transcription Transformer and analyzes its performance

using various metrics.

14



2.4 Musical Key Estimation

The musical key is a group of pitches that form the basis of music. The most general

key categorization method is expressing it as one of 24 types by dividing it into 12

pitches, major and minor. Studies to recognize the musical key from audio signals

have largely been conducted in the field of music information retrieval with the

development of digital signal processing technology. The early-stage key prediction

models [50–52] follow similar methods. First, audio signals are represented in the

form of time-frequency, which is converted into a chroma vector. Next, the resultant

chroma vector is compared with template vector for each key to predict to which

key it is the most similar. Such methods rely on hand-crafted features and therefore

have limitations such as low generalization performance.

Thanks to the introduction of deep learning on audio signal processing, many

studies have investigated key estimation. For example, [53] utilized convolutional

neural network to propose an end-to-end system for musical key estimation; this

data-driven model showed improved performance compared to relying on existing

hand-crafted features. Meanwhile, [54] proposed a model to overcome the issue of

large disparity of performance of key estimation models depending on the genre.

Likewise, convolutional neural network was used to propose the key estimation model

that is genre-agnostic through changes of model structures and a learning process.

There has also been research analyzing the impact on the key estimation model

depending on the convolutional neural network’s filter type [55]. In the case of key,

spectral characteristics—as opposed to temporal—were more important and it is

effective to use a suitable filter for this.

Recently, since chords and keys share musical characteristics, methods have been
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suggested that can predict them simultaneously through multi-task learning [56].

Aside from the classification model, a method to give a regularization effect by

utilizing variational auto-encoder and language model structure together has been

suggested. Multi-task learning for chord and key prediction has improved the per-

formance of key estimation.

In this thesis, key information is predicted using [54] for automatic lead sheet

transcription.
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2.5 Beat Tracking

In music, the beat is a feature that represents the rhythmical characteristics. Beat

tracking is a matter of guessing when each beat exists in an audio signal. Among

beats, a strong beat at the beginning of a measure is called a downbeat. Since a

downbeat can distinguish each bar, it can be used to analyze a song’s structure.

In the early stages, the following methods were often used for beat tracking

[57]. Features are extracted from audio signals and the periodicity—represented as

tempo—within this is discovered. And through phase detection, the position of the

beat was estimated. These methods mostly required feature engineering and post-

processing.

Thanks to the introduction of deep learning, many studies have attempted data-

driven methods of learning the beat tracking model. At [58], bi-directional Long

Short-term Memory [59], which is a recurrent neural network, was applied to beat

tracking. Instead of the existing complicated feature engineering work, audio signals’

spectral features were used and the beat activation function was created directly

through the neural network. Further, the position of each beat could be predicted

through peak detection. In [60], researchers suggested models to predict the beat

and downbeat together as they are both directly involved. Applying the recurrent

neural network directly into the magnitude spectrogram provided the output fea-

tures. Then, using a dynamic Bayesian network, the method to predict the beat and

downbeat positions could be suggested. the study identified good performance in

diverse genre and styles. Meanwhile, [61] suggested a multi-task method to predict

the tempo and beat that are closely related. Predicting tempo and beat at once had

the effect of improving the performances of tempo estimation and beat tracking.
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In [62], a temporal convolutional network beyond the existing recurrent approach

was suggested; the performance was best on existing beat-tracking datasets and the

training and computation was efficient.

For real-time beat tracking, [63] suggested methods of using predominant local

pulse information. Meanwhile, [64] suggested using a recurrent neural network and

enhanced particle filtering to perform online beat tracking method. This suggested

method improved the performance of online beat tracking, thereby showing a similar

level of results as offline methods.

This thesis used the model studied in [60] as it requires beat information to

represent melodies and chords as a lead sheet.
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2.6 Music Plagiarism Detection and Cover Song Identifi-
cation

Music plagiarism detection techniques are largely divided into audio and symbolic

based methods. In Dittmar et al. [17], since automatic music transcription tech-

nology has not been sufficiently developed, one limitation was proposing an idea

of monitoring melody plagiarism using pitch vector similarity and sequence align-

ment. Sie et al. [21] proposed a method in which the fundamental frequency was

extracted from audio signals to find plagiarized parts using path finding. However,

this was heavily reliant on the fundamental frequency recognition performance and

is difficult to use, other than for songs with only human voices or humming, such

as in general popular music, since their melodies are typically polyphonic. Borkar

et al. [65] proposed a music plagiarism detection method using audio fingerprinting

and sequence matching technology. However, there is an issue in the characteristics

of audio fingerprinting, namely that the performance becomes greatly reduced when

facing even a small transformation. It is appropriate for sample plagiarism detection

but difficult to operate for detection on melodies when sung by a completely different

singer.

Prisco et al. [18] proposed a music plagiarism detection method based on fuzzy

vector similarity by expressing symbolic melody rhythm and pitch as vectors. He

et al. [19] introduced a music plagiarism detection technique that could deal with

issues of shift, transposition, and tempo-variance problems using of bipartite graph

matching. Through this, locally similar sections can be found even among two songs

that have overall low similarity. Park et al. [20] represented a symbolic melody

as an image of piano roll forms and suggested a Siamese CNN-based plagiarism
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detection technique. However, symbolic melody-based detection techniques have low

applicability due to the limitation that they cannot be used for music audio signals.

The cover song identification task is a matter of identifying the same song sung

by different people. It is not the same as general plagiarism detection but can be

seen as similar in that it finds cases where a similar melody is newly recorded. [66]

approached the cover song identification matter using convolutional neural network.

First, the model is trained through classification using labels and then the model is

used to extract the representation from audio signals, which was used in the cover

song identification. [67] also studied cover song identification by partly transforming

the ResNet [68] structure. It suggested a structure to learn triplet loss and classi-

fication loss simultaneously. Through this, it was learned to extract the invariant

feature on key, tempo, timbre, genre while preserving the information on the type

of the song. Arcos [69] suggested the method of finger printing based on chord and

melody for cover song detection of western classical music. This method was used

for cover song detection by utilizing the chord and melody results extracted from

the audio signal as features.

This thesis deals with singing melody plagiarism detection and cover song de-

tection through melody similarity assessment.
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2.7 Deep Metric Learning and Triplet Loss

Deep metric learning maps input into feature vectors using the deep neural networks.

The distance between the feature vectors of different inputs in this manifold space

can thereby be calculated. Deep neural network, which maps the input into feature

vector is usually learned through stochastic gradient descent, for which the loss

function needs to be defined. It should be learned that the feature vectors of the

same label’s data need to be close, while the feature vectors of different label’s data

need to be far away in manifold space.

The most frequently used loss function of deep metric learning is triplet loss [70],

which calculates the loss using a pair of dataset consist of anchor, positive sample,

and negative sample. An anchor is the standard input data, while a positive sample

is data that is either same or similar to the anchor. A negative sample is data not

relevant to the anchor. Therefore, it should be represented on the manifold that the

anchor and positive sample are close while anchor and negative sample is far. This

can be expressed visually, as in Figure 2.2.

Anchor

Positive

Negative

Learning

Anchor

Positive

Negative

Figure 2.2: Minimizing triplet loss makes the distance between anchor and positive
sample (which have the same label) close while making the distance between anchor
and negative sample far, which have different labels.
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The triplet loss function is as shown in Equation 2.2.

Triplet(a, p, n, α) =

N∑
i

[
‖f(xai )− f(xpi )‖

2
2 − ‖f(xai )− f(xni )‖22 + α

]
+

(2.2)

a, p and n are anchor, positive sample, and negative sample, respectively, while f

is embedding function consisting of deep neural network. α is the margin, and N

refers to the total number of data pairs. Deep neural network is learned to minimize

this loss.

This thesis uses triplet loss to represent the similar melodies as close in manifold

space for music plagiarism detection.
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Chapter 3

Problem Definition

3.1 Lead Sheet Transcription

Popular music audio signal

Lead sheet

Chord
Key

Time signature Singing melody

Chord 

recognition

Singing melody 

transcription

Musical key 

estimation
Beat tracking

Post-processing

Figure 3.1: The whole process of automatic lead sheet transcription.

Popular songs consist of diverse musical instruments, sound, and singing. A lead

sheet is a form of notes to briefly indicate melody, lyrics, and chords, which are the

essential elements of popular songs. Lead sheet transcription is a matter of converting

the popular song’s music audio signals into a lead sheet. The entire process can be
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expressed visually, as in Figure 3.1. For this, chord, singing melody, key, and beat

need to be recognized and the results need to be combined to be finally converted into

lead sheet through post-processing. This thesis does not include lyric recognition.

Existing research outcomes are used for key and beat recognition while this thesis

focuses on chord and melody recognition.

3.1.1 Chord Recognition

Chords are highly abstract and descriptive features of music that can be used for a

variety of musical purposes, including automatic lead-sheet creation for musicians,

cover song identification, key classification and music structure analysis [71–73].

Since manual chord annotation is labor intensive, time consuming and requires ex-

pert knowledge, automatic chord recognition system has been an active research area

within the music information retrieval community. Automatic chord recognition is

challenging due to the fact that 1) not all the notes played are necessarily related

to the chord of the moment and 2) simple one-hot encoding of chord labels cannot

represent the inherent relationship between different chords.

?

Audio signal

(Input)

Recognition results

(Output)

Context Information

G G G G A A A Bm Bm Bm A A A A G G G G

Figure 3.2: Problem definition of chord recognition.
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The goal of chord recognition task is to output a sequence of time-synchronized

chord labels when a raw audio recording of music is given as input. The chord

recognition can be expressed visually, as shown in Figure 3.2. It is a matter of

guessing which chord is in each section by dividing into time frames within the audio

signal. The final chord recognition results are represented into sequence consisting

of start time, end time, and chord symbol, as seen in Figure 3.3.

Start time End time Chord

0.00 10.00 N

10.00 11.94 G#

11.94 16.67 D#

16.67 17.41 N

17.41 19.17 F#

19.17 20.65 B

20.65 22.22 F#

…

Figure 3.3: An example of chord recognition result.

3.1.2 Singing Melody Transcription

Automatic music transcription, which refers to converting an audio signal into the

form of a symbolic score, is one of the most important research topics in the field of

music information retrieval. Among the symbolic score forms, expressing notes with

onset and offset time and pitch is referred to as note-level representation. Many at-

tempts have been made to transcribe a singing melody into note-level representation,

but this remains a difficult task. In vocal melodies, the onset and offset are often not

apparent. Contrary to the exact pitch of instruments such as a piano, pitch vibrato
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appears in various patterns depending on the style of the vocalist. Moreover, for a

vocal melody in polyphonic audio with accompaniment, it is necessary to distinguish

vocal timbres from mixed pitch patterns.

Audio signal

(Input)

E3

G3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Piano roll (Note-level)

Recognition results

(Output)

Figure 3.4: Problem definition of singing melody transcription.

The purpose of singing melody transcription is the recognize the monophonic

vocal melody at note-level from popular music audio signals. It can be expressed

visually, as in Figure 3.4. A single note consists of start tame, end time, and pitch,

while pitch is recognized as MIDI pitch at the semitone level. The final singing

melody transcription result is as seen in Figure 3.5.

3.1.3 Post-processing for Lead Sheet Representation

Since the results of the chord recognition and melody transcription are the time

unit, in order to represent these as notes in lead sheet, additional information is

required. Further, in order to convert each chord and melody into the notes used

in sheet music, beat tracking is required. When using the beat tracking results, the
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Start time End time MIDI pitch

6.29 6.49 58

6.49 7.19 60

8.95 9.27 58

9.27 10.23 58

11.83 12.19 56

12.19 12.35 60

12.35 12.97 60

…

Figure 3.5: An example of singing melody transcription result.

time for each beat can be identified; thereby, chord and melody of time unit can be

expressed into note of sheet music. Additionally, lead sheet needs to express musical

key information, which requires key estimation from audio signals. Post-processing

is a process of expressing the combined results of chord, melody, key, and beat

recognition for representation in the lead sheet. Through this, music audio signals

are converted into the final lead sheet form.
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3.2 Melody Similarity Assessment

The purpose of the melody similarity assessment is to find the most similar section

by evaluating the similarity of a popular music audio signal with the melody of other

audio signals. This can be expressed visually, as shown in Figure 3.6. For melody

similarity assessment, it is important to discover similarities of specific sections as

opposed to the entire song. Therefore, it is a matter of finding sections that can be

considered similar with respect to each section of the input song by comparing the

melody of all the songs within the set to be compared. This problem setting can be

used for melody plagiarism detection and cover song detection.

Query

(Audio signal)
Database

(Audio signal)

Query section 

(sec)
Searched song Section (sec) Distance

10 ~ 20 (s)
Artist A –

Song a
25 ~ 36 0.04

120 ~129 (s)
Artist B -

Song b
161 ~ 169 0.07

78 ~ 85 (s)
Artist C -

Song c
15 ~ 23 0.10

…

Figure 3.6: Problem definition of melody similarity assessment.
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Chapter 4

A Bi-directional Transformer for Musical Chord
Recognition

4.1 Methodology

4.1.1 Model Architecture

Making use of appropriate surrounding frames is essential for successful chord recog-

nition [30, 74]. This context-dependent characteristic of the task is the motivation

for applying the self-attention mechanism. With some modification to the original

Transformer architecture, we present a bi-directional Transformer for chord recog-

nition (BTC).1

1https://github.com/jayg996/BTC-ISMIR19
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× N
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Dropout

Figure 4.1: Structure of BTC. (a) shows the overall network architecture and (b)
describes the bi-directional self-attention layer in detail. Dotted boxes indicate self-
attention blocks.
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The structure of BTC is shown in Figure 4.1. The model consists of bi-directional

multi-head self-attentions, position-wise convolutional blocks, a positional encoding,

layer normalization [75], dropout [76] and fully-connected layers. The model takes a

CQT feature of 10 second audio signal (Section 4.2.2) as input. The results of adding

positional encoding are given as input to two self-attention blocks with different

masking directions, indicated as dotted boxes in Figure 4.1(b). The outputs are

concatenated and are fed into a fully-connected layer so that the output size is the

same as the original input. A stack of N bi-directional self-attention layers is followed

by another fully-connected layer that outputs logit values. The size of the logit values

is the same as the number of chord labels. These logits are used to predict the chord

and calculate the loss.

The loss function is a negative log-likelihood and all the model parameters are

trained to minimize the loss given by the following equation (4.1).

L = −
T∑
t=1

∑
c∈V

yc(t)log(ŷc(t)) (4.1)

T is the number of total time frames and V is the chord label set. yc(t) is 1 if

the reference label at time t is c and 0 otherwise. ŷc(t) is the output of the model,

representing the probability of the chord at time t being c.

Bi-directional Multi-head Self-attention

BTC employs multi-head self-attention as in the original Transformer. For each time

frame, the input features are split into nh pieces and provided as input to the multi-

head self-attention with the number of heads, nh. Given I as an input matrix, the

multi-head self-attention can be computed as (4.2):
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Multihead = Concat(head1, ..., headnh
)WO (4.2)

Qj = (IWQ)j ,Kj = (IWK)j and Vj = (IWV )j are given as input to the atten-

tion function (2.1) to produce headj for j = 1, ..., nh. WQ,WK and WV are fully-

connected layers that project the input to the dimension of Q,K and V , respectively.

WO is also a fully-connected layer that projects the concatenated output of dimen-

sion (nh×dVj ) to the dimension of the final output. Dropout is applied to the softmax

output weights when computing each headj .

In BTC, self-attention can be interpreted as determining how much attention to

apply to the value of the key time frame when inferring the chord of the query time

frame. To prevent the loss of information due to the attention being performed to the

entire input at once, we employed bi-directional masking. The forward / backward

direction refers to masking all the preceding / succeeding time frames. The same

masked multi-head attention module as the Transformer decoder was adopted. The

bi-directional structure enables BTC to fully utilize the context before and after the

target time frame.

Since the multi-head attention is performed on every time frame in the sequence,

information about the order of the sequence is lost. We employed the same solution

proposed by Transformer to address this issue: adding positional encoding results

to the input, which are obtained by applying sinusoidal functions to each position.

Since relative positions between two frames can be expressed as a linear function

of the encodings, positional encoding helps the model learn to apply attention via

relative positions.
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Position-wise Convolutional Block

To utilize the adjacent feature information in a time frame, we replaced the position-

wise fully-connected feed-forward network from the original Transformer architecture

with a position-wise convolutional block. The position-wise convolutional block con-

sists of a 1D convolution layer, a ReLU (Rectified Linear Unit) activation function

and a dropout layer, where the whole sequence of layers is repeated nC times. Input

and output channel size were identical to keep the feature size and sequence length

constant. With the position-wise convolutional block, we anticipate to search the

boundary and smooth the chord sequence by exploring adjacent information at each

time frame.

4.1.2 Self-attention in Chord Recognition

For chord recognition, it is important to utilize not only the information from the

target time frame but also from other related frames, which we call the context. The

network architectures such as convolutional neural networks (CNNs) [77] or recurrent

neural networks (RNNs) [78] can also explore the context, but self-attention is more

suitable for the task because of the following reasons.

First, self-attention has selective usage of attention. In other words, the receptive

field can be adaptive unlike CNNs where the kernel size is fixed. For example, assume

that the labels for 16 frames are Cs for the first four frames, Gs and Fs for the next

eight frames and Cs for the last four frames (see Figure 4.2). Consider the situation of

recognizing Gs in frames 5 to 8. As for a CNN with kernel size of 3, when recognizing

the chord of frame 7, the receptive field (frame 6 to 8) would be informative enough

since all the frames contain the same chord. However, when inferring frame 5, the
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C C C C G G G G F F F F C C C C

1 4 5 6 7 8 12 13 16

Figure 4.2: Chord sequence example

receptive field of frame 4 to 6 contains not only G but also C. With self-attention, on

the other hand, the model can pay attention to the section of frame 5 to 8 regardless

of the target frame’s position.

Another advantage of attention mechanism is its ability to capture long-term

dependency effectively. RNNs can also utilize distant information but direct access

is not possible. For CNNs, there are two ways to access distant frames: by stacking

layers in depth or by increasing the kernel size. The former has the same drawback

as RNNs and the latter has the disadvantage that the weight sharing becomes less

effective. Unlike these, self-attention has direct access to other frames no matter

how far they are. Specifically, when recognizing the chord of frame 13, performing

attention to first four frames would be helpful since they all contain C. With RNNs

or deep CNNs, information that the first four frames were C would inevitably be

diluted while passing through frames 5 to 12.
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4.2 Experiments

4.2.1 Datasets

BTC and other baseline models were evaluated on the following datasets. A subset

of 221 songs from Isophonics2: 171 songs by the Beatles, 12 songs by Carole King, 20

songs by Queen and 18 songs by Zweieck; Robbie Williams [79]: 65 songs by Robbie

Williams; and a subset of 185 songs from UsPop20023. These datasets consist of label

files that specify the start time, end time and type of the chord. Due to copyright

issue, these datasets do not include audio files. The audio files used in this work were

collected from online music service providers (e.g. Melon4), which do not always

provide the same audio files corresponding to the songs in the datasets. Since it was

not possible to get exactly the same audio files, there were subtle differences in the

chord start time of the label file and audio file. Accordingly we manually matched

the labels to the audio file by shifting the whole label file back and forth, which

resulted in no more than adding or deleting some “No chord” labels.

4.2.2 Preprocessing

Each 10-second-long audio signal (consecutive signals overlapping 5 seconds) was

processed at the sampling rate of 22,050Hz using CQT with 6 octaves starting from

C1, 24 bins per octave, and the hop size of 2048 [11]. The CQT features were

transformed to log amplitude with Slog = ln(S + ε) where S represents the CQT

feature and ε is an extremely small number. After that, global z-normalization was

applied with mean, variance from the training data.

2http://isophonics.net/datasets
3https://github.com/tmc323/Chord-Annotations
4http://www.melon.com
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Pitch augmentation was also employed to the audio file with pyrubberband5

package and labels were changed with pitch variation. Pitch augmentation between

-5 ∼ +6 semitones were applied to all the training data.

Two different label types were used: maj-min and large vocabulary. The maj-min

label type consists of 25 chords (12 semitones × {maj, min} and “No chord”) [80].

The large vocabulary label type consists of 170 chords (12 semitones × {maj, min,

dim, aug, min6, maj6, min7, minmaj7, maj7, 7, dim7, hdim7, sus2, sus4} and “X

chord : the unknown chord”, “No chord”) [81]. From the label files, we extracted

the chord that matches the time frame of input feature and transformed it to the

appropriate label type.

4.2.3 Evaluation Metrics

The evaluation metric was weighted chord symbol recall (WCSR) score and 5-fold

cross validation was applied to the entire data. When separating the evaluation data

from the training data, there was no song included in both. The WCSR score can

be computed as (4.3), where tc is the duration of correctly classified chord segments

and ta is the duration of the entire chord segments.

WCSR =
tc
ta
× 100(%) (4.3)

Scores were computed with mir eval [82]. Root and Maj-min scores were used

for the maj-min label type. Root, Thirds, Triads, Sevenths, Tetrads, Maj-min and

MIREX scores were used for the large vocabulary label type. To calculate the score

with mir eval, the chord recognition results were converted into label files.

5https://github.com/bmcfee/pyrubberband
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4.2.4 Training

Bi-directional
self-attention

layer

layer repetition (N) {1, 2, 4, 8, 12}
self-attention heads (nh) {1, 2, 4}
dimension of Q, K, V
and all the hidden layers

{64, 128, 256}

Position-wise
convolutional

block

block repetition (nC) 2

kernel size 3

stride 1

padding size 1

Dropout dropout probability {0.2, 0.3, 0.5}

Table 4.1: Hyperparameters of BTC. Hyperparameters with the best validation per-
formance are shown in bold.

Specific hyperparameters of BTC are summarized in Table 4.1. The hyperparam-

eters with the best validation performance were obtained empirically after applying

in 5-fold cross validation. Adam optimizer [83] was used with initial learning rate

of 10−4. Learning rate was decayed with rate 0.95 when validation accuracy did not

increase. Training was stopped if the validation accuracy did not improve for over

10 epochs.
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4.3 Results

4.3.1 Quantitative Evaluation

Since existing studies of chord recognition were evaluated on different datasets, it

is difficult to say that a particular model is the state-of-the-art. Among the models

that were trainable with our datasets, we chose three baseline models with good

performance: CNN, CNN+CRF and CRNN. CNN is a VGG [84]-style CNN and

CNN+CRF has an additional CRF decoder [80]. CRNN is a combination of CNN

and gated recurrent unit [85], named ”CR2” in [81]. The input was preprocessed as

mentioned in Section 4.2.2 for BTC and CRNN. For CNN+CRF and CNN, a single

label was estimated with a patch of 15 time frames, in a similar way to [80].

Table 4.2 shows the performance comparison results of the baseline models and

BTC for two label types. The best value for each metric is represented in bold.

Among the models without a CRF decoder, BTC showed the best performance for all

metrics. Including models with a CRF decoder, CNN+CRF obtained the best result

in most of the metrics. Still, BTC shows comparable performance to CNN+CRF,

performing better in Sevenths and Maj-min metrics for the large vocabulary label

type.

The main purpose of training a CRF decoder is to smooth the predicted chord se-

quences that are often fragmented. The performances of CRNN+CRF and BTC+CRF

are also presented in Table 4.2 for comparison. Performance improvements due to

the introduction of CRFs are evident in CNN but not in BTC and CRNN. This

indicates that outputs of CNN were fragmented and an additional decoder training

is necessary for better performance. On the other hand, BTC and CRNN can be

trained with only CQT features and chord labels. That is, BTC requires only a single
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training phase while achieving the performance comparable to that of CNN+CRF.
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4.3.2 Attention Map Analysis
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Figure 4.3: The figures represent the probability values of the attention of self-
attention layers 1, 3, 5 and 8 respectively. The layers that best represent the different
characteristics were chosen. The input audio is the song ”Just A Girl” (0m30s ∼
0m40s) by No Doubt from UsPop2002, which was in evaluation data.
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Attention maps demonstrate that each self-attention layer has different char-

acteristics. Figure 4.3 shows the attention map of self-attention layers 1, 3, 5 and

8, trained with the maj-min label type. The lower / upper triangle of each atten-

tion map represents the attention probability of the forward / backward direction

self-attention layer. The labels of the vertical axis and the horizontal axis are the

reference chord and the chord recognition result of the target time frame, respec-

tively. The cell of i-th row and j-th column represents the attention probability to

the j-th time frame when inferring the chord of the i-th time frame.

At the first self-attention layer, only neighboring frames are used to construct

the representation of the target frame. For the third layer, the attention is widely

spread over all time frames, yet still with higher probabilities for nearby frames than

distant frames. At the fifth layer, several adjacent time frames form a group, which

appears in a rectangular region in the attention map. This means that the model

divides the whole input into some sections, which is possible due to the adaptive

receptive field. The network focuses only on a few important sections to identify

the target frame, regardless of the distance between section and the frame. Unlike

the fifth layer, attention is more dense in certain regions at the eighth layer. In

particular, the boundary of the high probability region matches that of the final

recognition result.

Specifically, at the fifth layer in Figure 4.3(c), the reference chord for region

② is B:min. Region ① shares the same reference chord B:min and the network

assigns high attention probabilities to region ① for time frames in region ②. This

phenomenon is similar in layer 8 between ①′ and ②′(Figure 4.3(d)), which results

in the correct final chord recognition of B:min. In contrast, for region ③ where the
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reference chord is G, the attention probability is high at layer 5 but not for region

③′ at layer 8. This can be attributed to G and B:min sharing two notes in common,

since G and B:min consist of (G,B,D) and (B,D,F#) respectively. In other words,

attention at layer 5 can be seen as attention to partial features of chords sharing the

same notes. None the less, the final recognition result after the last layer is not G

but B:min. This is possible because of the multi-head attention structure: the other

heads might lower the attention probability even if the attention to a wrong chord

is active, leading to the correct result.

On the other hand, there are cases where the recognition results are wrong in

a similar situation. The reference chord for regions ⑥ and ⑥′ is A. At layer 5, the

attention mechanism seems to work well with high attention probabilities to region

④,⑤,⑦ and ⑧, where the reference chords are all As. However, the attention to

those regions cannot be seen at the last layer, and the final recognition result is not

A but F#:min. This recognition failure can be regarded as a result of two notes of

F#:min (F#,A,C#) overlapping with A (A,C#,E).

To summarize, for each target frame in the input audio, the model uses only

neighboring frames at first. At the middle layers, the model gradually broadens the

receptive field and selectively focuses on time frames with characteristics similar to

that of the target frame. Finally, at the last layer, the attention is performed on only

essential information for chord recognition.
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Chapter 5

Note-level Singing Melody Transcription

5.1 Methodology

We propose a sequence-to-sequence note-level singing melody transcription Trans-

former and some techniques to improve the performance.1 In Section 5.1.1, a novel

note event token set is defined to express a monophonic melody as a token sequence.

Section 5.1.2 describes audio features which are given as input to the model. Sec-

tion 5.1.3 introduces the overall model structure with its difference from the original

Transformer, while Section 5.1.4 describes the inference and masking strategy to en-

force the output sequence to be monophonic. Section 5.1.5 to Section 5.1.7 introduce

three techniques for effective singing melody transcription respectively, namely over-

lapping decoding, pitch augmentation, and adding noisy dataset with data cleansing.

5.1.1 Monophonic Note Event Sequence

In this paper, a monophonic melody is represented as a sequence of musical event

tokens. Each token in the event token set belongs to one of the following types: time,

pitch, start of sequence (SOS), EOS, or padding (PAD).

By fixing the length and time resolution of an audio segment at N seconds and

10 ms, respectively, the number of time frames in the segment is T = 100×N + 1,

1https://github.com/jayg996/IDA-Singing-Melody-Transcription
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Figure 5.1: An example of a monophonic note event sequence. Time tokens indicate
the absolute positions of the events in the audio segment. A pitch token represents
either an onset event of one of the 128 MIDI pitch numbers or an offset event.

which equals to the number of different absolute time tokens. As in [27], 128 pitch

onset tokens are used, each symbolizing the onset of a MIDI pitch from 0 to 127.

The difference is that a single offset token represents the offset of all 128 MIDI

pitches, thereby enforcing the melody to be monophonic. If the onset of a note

occurs immediately after the offset of the previous note, the offset event precedes

the onset event. Finally, SOS and EOS tokens are added to the beginning and the

end of the sequence, respectively. PAD token is used after EOS token to equalize the

length of the sequences in a mini-batch. An example of the monophonic note event

sequence is depicted in Figure 5.1.

5.1.2 Audio Features

The magnitude values of STFT were utilized as the input audio representation. The

audio sample rate was 16 kHz, and the window size and the hop length of STFT were

2,048 and 160, respectively. The length of the unit time frame was 10 ms. The STFT

parameters previously used in singing melody F0 estimation [1] were referenced.

In training phase, the audio signal is randomly cropped into sections of N sec-
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onds. A single time frame can correspond to various time tokens through random

cropping, so it is possible to provide various training data.

5.1.3 Model Architecture

Figure 5.2: Overall structure of the proposed note-level melody transcription model.
Transformer encoder and decoder are similar to those of the original Transformer [2].

The structure of the proposed note-level singing melody transcription model

is depicted in Figure 5.2. While [27] adopted T5 [86] as the network architecture,

our model resembles the original Transformer [2] with some modifications to the

embedding layers.

Since the input of the encoder is STFT, layer normalization [87] is first applied to

normalize STFT magnitude values. After adding sinusoidal positional encoding, an-

other layer normalization is applied given that the warm-up stage can be omitted by

pre-normalization [88]. Figure 5.3 shows the resulting embedding layer architectures

of encoder and decoder.
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Figure 5.3: Detailed structures of (a) encoder and (b) decoder embedding layers. In
the encoder, layer normalization is first applied to normalize the STFT magnitude
values. Both encoder and decoder embedding layers apply layer normalization after
adding the positional encoding.

5.1.4 Autoregressive Decoding and Monophonic Masking

At the inference phase, the event tokens are decoded autoregressively. The encoder

receives an audio signal of N seconds as input, and the decoder autoregressively

predicts the next token, starting from SOS until EOS.

Several maskings are applied when computing the subsequent token probabilities,

to ensure that the recognition result is a monophonic melody. Time and pitch tokens

are forced to be decoded alternately by masking one type after another. When time

tokens are to be predicted, tokens that indicate the previous time are masked. For

the prediction sequence to end within a limited length, the last token of the decoder

output is forced to be EOS.

5.1.5 Overlapping Decoding

In [27], non-overlapping audio segments were recognized separately and the results

were combined to transcribe longer audio signals. Such non-overlapping decoding
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Figure 5.4: Illustration of the difference between overlapping and non-overlapping
decoding. N , M , and L are the input length of the model, the hop size, and the
length to be omitted, respectively.

has a problem in that the context of the previous segment is lost. For example, if

a segment is truncated after a note onset but before its offset, decoding should be

performed in the next segment without the note’s onset information.

We propose overlapping decoding in this paper to overcome the limitation. With

overlapping decoding, successive segments overlap for a certain length of time. This

prevents the context from being disconnected by transferring some of the results

recognized in the previous segment to the next segment. Among the notes recognized

in the previous segment, notes that overlap with the next segment are replicated to

the next segment by modifying the time tokens to match the absolute time within

the next segment. These notes act as a prior sequence when autoregressively inferring

the next segment’s notes. And to avoid discontinuity in the transcription results, a

certain length of time in the end of the overlapping region is discarded and inferred

again in the next segment.

As depicted in Figure 5.4, the hop size between segments is M seconds, where

48



M ≤ N/2. The events recognized in the last L seconds are discarded where L < M ,

and the window of length N moves on to the next overlapping segment. The first

M seconds of the prediction sequence is stored for the entire sequence, and the

succeeding N − (M +L) seconds is used as the prime sequence for the next segment.

Accordingly, it is possible to transcribe the audio signal using the context of the

previous segment.

5.1.6 Pitch Augmentation

As training a deep learning model requires a large amount of data, data augmen-

tation is one of the most common attempts to improve performance [89]. Various

augmentations such as pitch shifting and time stretching has been widely adopted

in previous studies in the field of MIR [90]. Especially in AMT, since acquiring the

pair of music audio and high-quality label data is very costly and time consuming,

data augmentation is one attractive option to enlarge training data.

To be more specific, pitch augmentation refers to shifting the entire pitch of

an audio clip several semitones up or down. Through pitch augmentation, various

pitch tokens can be uniformly exposed during the training process. This prevents the

output probability distribution of pitch tokens from being biased to some common

tokens, resulting in less overfitting and generalization of the model.

In this work, a Python library designed to apply effects to the audio signal,

pysndfx 2, is used to augment pitch of audio. Pitch augmentation is randomly applied

only during training, from -6 to +6 semitones, to both the audio and label data.

2https://github.com/carlthome/python-audio-effects
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5.1.7 Adding Noisy Dataset with Data Cleansing

A large amount of training data is required to develop a model with robust perfor-

mance, but obtaining high-quality labeled data is laborious. Although DALI [91] is

a noisy dataset with incorrect labels, some of the songs are labeled correctly, and it

would be a more valuable dataset if one could distinguish between the correct and

incorrect songs. When examining the DALI dataset, it turned out that the most

common label errors were octave error and time shift. Therefore, we manipulated

the label in terms of octave and time shift and compared it with the F0 estima-

tion [1] result, and classified it as data that can be used for training if it exceeds a

threshold.

Specifically, data cleansing was performed by shifting the annotation in both

pitch and time axes and comparing with the recognition result of F0 estimation [1].

The sliding window sizes were 1 octave and 10 ms for pitch and time, respectively,

in the ranges of -2 ∼ +2 octaves and -5 ∼ +5 seconds. For a song, if the maximum

raw pitch accuracy of F0 estimation among the shifted candidates was lower than

0.6, the song was discarded.
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5.2 Experiments

5.2.1 Dataset

In this paper, two public datasets were used: MIR-ST500 [12] and DALI [91]. MIR-

ST500 is a dataset with note-level annotations of vocal melodies for polyphonic

audio signals. It consists of 500 songs, and only 474 songs were available at the time

of the experiments. The dataset was split into three sets: songs numbered from 1

to 350, 351 to 400, and 401 to 500, which were used for training, validation, and

testing of the experiments, respectively. To enable direct comparison with previous

studies [12,48], we used the same data split as the publication of the dataset. As for

the test data split, all 100 songs were available without missing data, and was used

for the ablation study and comparison with other models.

DALI is another note-level singing melody annotation dataset for polyphonic

audio signals. It is the largest public singing transcription dataset currently available.

A total of 4,927 songs were available, but the dataset has many incorrect labels

because it was annotated automatically [12,92]. Therefore, data cleansing described

in Section 5.1.7 was applied. Consequently, 858 songs were left, which were used

only for training to verify the effect of the additional noisy dataset.

MedleyDB [93], an F0 dataset which differs from a note-level dataset, was also

evaluated for performance evaluation and comparison. The test data split of [94]

was adopted, and only 12 songs were used as in [1,49]. The F0 annotations of vocal

melody in polyphonic audio were used as labels.
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5.2.2 Experiment Configurations

Specific hyperparameters of Transformer are summarized in Table 5.1 and other con-

figurations used in the experiment are as follows. The model was trained with cross

entropy loss function. The Adam optimizer was adopted, with an initial learning rate

of 0.0001 and a batch size of 12. The learning rate was decayed with a factor of 0.5 if

the validation loss did not decrease for more than 3 epochs, and the experiment was

terminated if the loss did not decrease for 10 epochs. The number of time tokens was

1,025, enabling representation of 0 to 10.24 seconds with a time resolution of 10 ms.

Adding 128 pitch onset tokens and offset, SOS, EOS, and PAD tokens to the token

set results in a total of 1,157 tokens. The duration of the audio input N was fixed

to 5.12 seconds during training and inference. In overlapping decoding, the hop size

M and the length of the last part to be discarded L were 2.56 and 1.28 seconds,

respectively.

Table 5.1: Hyperparameters of Transformer.

Transformer
encoder

number of layers 8
embedding dimension 512
self-attention heads 8
dimension of query, key, value 512
hidden size of feed-forward networks 1024
dropout probability 0.1

Transformer
decoder

number of layers 8
embedding dimension 512
self-attention heads 8
dimension of query, key, value 512
hidden size of feed-forward networks 1024
dropout probability 0.1
maximum length 512
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5.2.3 Evaluation Metrics

The transcription metrics of mir eval [82] were used for the evaluation of note-level

singing melody transcription. Four types of metrics were selected: onset time, offset

time, onset with pitch, and note-level which considers all of the onset, offset, and

pitch. A threshold was set according to each criterion to evaluate the transcription

results, and is considered correct if the difference between the predicted value and

the groundtruth is less than the threshold. In this paper, the thresholds for onset

time, offset time, and pitch were 50 ms, max(50 ms, 0.2∗note duration), and 50 cents

(= 0.5 semitone), respectively. For each metric with different criteria, the recall (R),

precision (P), and F1 score (F) were all evaluated.

Additionally, F0 estimation evaluation metrics were used to evaluate the voice

detection and pitch-only transcription performance. The melody metrics of mir eval

were used as the evaluation metrics for F0 estimation. Note-level labels and pre-

dictions were converted into F0 sequences with the time resolution of 0.01 seconds.

For time frames not included in any note, the frequency was set to 0 Hz (unvoiced).

Voicing recall rate (VR) and voicing false alarm rate (VFA) were used as metrics

to evaluate voice detection. Raw pitch accuracy (RPA) and raw chroma accuracy

(RCA) were used as metrics to evaluate pitch tracking. Overall accuracy (OA) was

used as a metric to evaluate the performance of voice detection and pitch track-

ing simultaneously. The threshold to judge the correctness of the pitch was set at

50 cents. Equations (5.1)-(5.5) are defined to compute each metric. The number of

voiced frames and the total number of frames in the reference are denoted by v and

t, respectively. v̂c, p̂c, and ĉc are the number of correctly predicted frames for voice

detection, pitch, and chroma, respectively. v̂ic is the number of frames incorrectly
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predicted as voiced frames and t̂c is the number of all frames correctly predicted.

V R =
v̂c
v

(5.1)

V FA =
v̂ic
t− v

(5.2)

RPA =
p̂c
v

(5.3)

RCA =
ĉc
v

(5.4)

OA =
t̂c
t

(5.5)

5.2.4 Comparison Models

EfficientNet-b0 [12] was chosen as a comparative model to train and test on MIR-

ST500 dataset. The metrics were computed from the public prediction results of the

test dataset released by the authors. JDCnote [48] is a model trained with the labeled

MIR-ST500 and additional unlabeled datasets through self-training. The experiment

results reported for the test set of MIR-ST500 were compared directly.

Tony [40] and Omnizart [43], which are public note-level singing transcription

models, were also selected as comparative models. The transcription result of Tony, a

public software, was analyzed by exporting the result to MIDI. Vocal audio separated

using Spleeter [6] was given as an input to Tony because the performance of singing

transcription dropped significantly for polyphonic audio. The singing transcription

result of Omnizart was obtained using a public source code library.

For the comparison model of vocal melody F0 estimation, JDC [1] was chosen. It

can recognize a vocal melody from polyphonic audio with its voice detection module.

The pre-trained model shared by the authors was used for performance evaluation.
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5.2.5 Human Evaluation

In order to analyze whether our proposed model achieved significant performance

improvement, we asked people to evaluate the results. The transcription result was

converted into a MIDI piano sound source and was played along with the original

audio. In addition, the piano roll was provided as an image so that the results of

transcription could be visually evaluated.

A total of three transcription results were evaluated: ground truth, EfficientNet-

b0 [12], and the propsed model. Since ground truth is the most accurate transcription

result, it was used as a criterion for accurate transcription when people listened to

it and evaluated it. EfficientNet-b0 was selected as a comparison model because

it showed the highest note-level F1 score among comparison models. In the test

dataset of MIR-ST500, 140-160 seconds of 10 songs (410.mp3, 420.mp3, ..., 490.mp3,

500.mp3) were used. For the same section of 10 songs, the results of three models were

provided in random order so that people could listen and evaluate the performance.

The criteria for evaluating performance were evaluated in terms of note onset,

offset, pitch, and overall. The transcription performance was scored on a 5-point

scale ranging from 1 (poor) to 5 (good) for each criterion. Experimental subjects

were recruited from Amazon Mechanical Turk [95], and only the results of those

who evaluated the ground truth as the highest overall average score were collected

for the reliability of the experiment. As a result, the results evaluated by 32 people

were collected.
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5.3 Results

5.3.1 Ablation Study

The experimental results of note-level singing transcription are summarized in Table

5.2. Ablation studies were conducted to confirm the effects of overlapping decoding

(OD), pitch augmentation (PA), and adding noisy dataset with data cleansing (AD).

First, the F1 score of note-level is improved by 0.013 by introducing OD. The

performance improvement in the offset F1 score is more noticeable than onset, which

is plausible because the onset of the previous segment is no longer lost. For non-

overlapping decoding, determining an offset event is problematic because it is not

possible to know whether the pitch onset event has occurred in the previous segment.

Adding PA led to a significant improvement in note-level F1-score by 0.09. PA

increases the amount of training data due to exposure to pitch classes that do not ap-

pear frequently, preventing overfitting. Figure 5.5 (a) implies the relevance between

PA and overfitting. The validation loss increases after 25 epochs for the vanilla

Transformer, implying overfitting. In contrast, although the training loss decreased

slowly with PA, the validation loss continued to decrease without overfitting.

One of the notable results is that by including DALI dataset in the training

data, the performance of the note-level F1 score improved by 0.01. Even though

training and testing on only DALI resulted in poor performance, AD demonstrated

a performance improvement. The effect of DALI dataset can also be found in Figure

5.5. Figure 5.5 (b) demonstrates the training loss decreasing more slowly with AD.

Moreover, as illustrated in Figure 5.5 (a), the validation loss continuously decreased

along with the training loss. AD is beneficial because it prevents the model from

memorizing the training data and generalizes the model performance.

56



Although the label data of MIR-ST500 are accurate, adding PA and AD were

effective in performance improvement. Since PA and AD have the effects of increasing

the training data, we expect that the performance can be further improved with

larger datasets.

(a) (b)

Figure 5.5: (a) Change in loss according to the epoch for each data split in each
experiment. (b) Training loss according to the number of steps. Red indicates Trans-
former (baseline), green indicates + pitch augmentation, and blue indicates +noisy
training dataset (proposed).
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5.3.2 Note-level Transcription Model Comparison

The results of comparing different state-of-the-art note-level singing transcription

models with MIR-ST500 test dataset are also reported in Table 5.2. The proposed

model outperformed the comparison models for all the metrics considered. There was

a significant performance improvement in which the note-level F1 score increased by

0.1 or more compared with other models. This can be attributed to the performance

improvement in the sequence-to-sequence model structure and the methods special-

ized for note-level singing transcription. Tony and Omnizart achieved poor perfor-

mance because they were not trained with MIR-ST500. Compared with EfficientNet-

b0, vanilla Transformer achieved a higher offset F1 score. Consequently, predicting

the musical note sequence in the decoder is more advantageous than predicting for

every time frame because the offset of the vocal melody is often ambiguous.

5.3.3 Transcription Performance Distribution Analysis

Figure 5.6: Box plots representing the distribution of the proposed model perfor-
mance on MIR-ST500 test dataset. The y-axis indicates the F1 score.

The proposed model’s evaluation results on MIR-ST500 test data are visualized

in Figure 5.6 as box plots. The onset prediction achieved a higher F1 score than the
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offset prediction, supporting the assumption that offset in vocal melody is ambigu-

ous. Compared with predicting only the onset, adding pitch prediction resulted in a

lower F1 score, which is predictable. The difference between the two is insignificant,

implying that the pitch prediction can be considered accurate if the onset prediction

is successful. In contrast, the note-level F1 score was noticeably low because note-

level prediction requires accurate prediction of onset, offset, and pitch for a single

note. Moreover, the transcription performance varies significantly depending on the

song. Regarding note-level prediction, the proposed model successfully transcribed

one song with the highest F1 score of 0.8 while reporting the worst performance of

0.21 for another. Some of the plausible reasons why the results vary widely depending

on the song are discussed in detail in Section 5.4.2.

5.3.4 Fundamental Frequency (F0) Metric Evaluation

Table 5.3: F0 evaluation results of the proposed model and JDC [1]

Dataset Model VR VFA RPA RCA OA

MIR-ST500
Proposed 0.907 0.144 0.848 0.849 0.851

JDC 0.780 0.110 0.586 0.590 0.708

MedleyDB
Proposed 0.800 0.128 0.493 0.493 0.696

JDC 0.774 0.117 0.719 0.726 0.818

Table 5.3 presents the results evaluated by F0 metrics. For metrics related to

voice detection, the proposed model performed better in VR, and JDC performed

better in VFA. This result can be interpreted as caused by training the proposed

model to achieve a high recall rate, increasing false alarm rate. However, the dif-

ference in VFA between the proposed model and JDC is subtle, implying that the

voice detection of the proposed model is comparable to JDC.

For pitch-related metrics, namely RPA and RCA, and the overall performance
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metric OA, the results were contradictory depending on the dataset. With MIR-

ST500, the proposed model outperformed JDC, whereas with MedleyDB, JDC

achieved superior results likely caused by the difference between the annotation

and prediction method. For example, the results of note-level and F0 annotations

may exhibit significant differences in vibrato notes or note transitions with dragging

pitch. A vibrato note is covered over several semitones with F0 annotation, but in

note-level, it is annotated as a single pitch level. For note transitions with dragging

pitch, F0 annotation expresses each pitch change in detail, whereas only two notes

are remained at note-level. In such cases, the evaluation results are likely superior

when the annotation and prediction coincide. Furthermore, whereas RPA and RCA

differ by more than 0.4% for JDC, the proposed model exhibits almost no difference,

suggesting that the proposed model commits fewer octave errors.
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5.4 Qualitative Analysis

5.4.1 Visualization of Ablation Study

Through qualitative ablation studies, we analyzed the effects of introducing OD,

PA, and AD to vanilla Transformer. Figure 5.7 is a visualization of the transcription

results for a test song in the MIR-ST500 dataset. While Figure 5.7 (a) represents the

ground truth label of singing melody transcription, (b), (c), (d), and (e) are images

expressing the ground truth label and the recognition results together.

Figure 5.7 (b) and (c) are the transcription results of the same model but different

decoding strategy. The former is the result using non-overlapping decoding, while

the latter is the result of applying OD. The biggest difference between the two is the

offset of notes. In Figure 5.7 (b), regarding the two notes at 143 and 149 seconds,

respectively, the notes do not end and continue until the onset of the next note.

On the other hand, in Figure 5.7 (c), the offset of the corresponding notes were

predicted after few time frames, resulting in a relatively accurate transcription. The

reason for missing the note offset in non-overlapping decoding is that the presence

of a note onset in the previous segment is unknown due to the context loss problem.

Through the proposed OD, the context loss problem was mitigated and note offsets

were captured.

Figure 5.7 (d) is the transcription result of the model with PA added. Compared

to Figure 5.7 (c), the timing of the onset in the notes around 140 seconds is slightly

more accurate. And for the note at 156 seconds, pitch transcription with PA was

correct whereas the model without PA predicted the wrong pitch. These visible

differences explain the significant improvement of the evaluation metrics in Table

5.2.
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Figure 5.7 (e) is our proposed model applying OD, PA, and AD altogether. The

notes at 144, 148, and 153 seconds, which were all incorrect notes in Figure 5.7

(d), were recognized correctly. Most of the recognition results match the ground

truth label, and there are no well-marked blue colored notes except the note at 149

seconds. The example shows that the proposed methods are effective in improving

transcription performance, in accordance with the quantitative results in Section

5.3.1.
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(a) Ground truth

(b) Vanilla Transformer

(c) Transformer + OD

(d) Transformer + OD + PA

(e) Transformer + OD + PA + AD (Proposed)

Figure 5.7: Visualization of the transcription results of ”460.mp3” in the MIR-ST500
test dataset. The onset is indicated in dark color for each note. In (b), (c), (d), and
(e), the ground truth label, prediction, and the shared part are shown in red, blue,
and orange, respectively.
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Figure 5.8: Visualizations of note-level singing melody transcription results for test
examples from MIR-ST500 dataset. The STFT representation is expressed as a
spectrogram. The annotated labels and prediction results are depicted as solid blue
lines and dotted cyan lines, respectively, according to the pitch and time of the notes.
In (a), most of the prediction results and correct annotations are consistent, and in
(b) and (c), they are not.

5.4.2 Spectrogram Analysis

In analyzing the results in more detail, some examples of spectrograms of test songs

along with the annotated labels and prediction results are visualized in Figure 5.8.

Figure 5.8 (a) illustrates the spectrogram of the best transcription results with an F1

score of 0.8. Most notes were accurately predicted with respect to onset, offset, and

pitch, except the offset of the last note. The result is explainable through several

aspects of the music audio: the vocal voice is audibly clear, the accompaniment
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sound is relatively calm, and there are few chorus voices.

In contrast, Figures 5.8 (b) and (c) are examples of poor performance. In Figure

5.8 (b), most of the notes’ onsets and offsets are inaccurate, with some notes even

missing. The low F1 score of 0.33 can be explained as caused by the vocal’s whisper-

like singing style, obscuring the onsets and offsets of the singing notes.

Some specific pitch prediction errors are examined in Figure 5.8 (c), in which the

F1 score was 0.35. One of the most common prediction errors was the octave error.

For example, for the notes at 97 and 101 seconds, the model predicted the pitch as

D#4 and F4, whereas the ground truth pitch labels were D#5 and F3. Moreover,

the prediction result of the G4 note at 96 seconds was C5: the pitch class itself was

incorrect. One reasonable explanation is that because the chorus vocal is heavily

inserted in the song, the loud chorus was the predominant cause of pitch inaccuracy.

At 98 seconds, there were some non-existent notes in the prediction results, likely

because the model detected instrument sound as the vocal melody.

Based on analyzing the examples of the prediction results, the results are more

accurate when the singer’s voice is clear and the chorus and instrument sounds are

quiet. In contrast, because the proposed model is a monophonic singing melody

transcription model, the performance was poor for multi-vocal audio.

66



5.4.3 Human Evaluation

Table 5.4: The average scores evaluated by humans for the results of each model.
Numbers next to the scores denote the standard deviations.

Model Onset Offset Pitch Overall

Ground truth 3.90 ±0.53 3.95 ±0.67 4.08 ±0.52 4.19 ±0.47

Proposed 3.89 ±0.56 3.80 ±0.67 4.00 ±0.59 3.86 ±0.53

EfficientNet-b0 [12] 3.79 ±0.68 3.78 ±0.67 3.99 ±0.62 3.82 ±0.51

The results of human evaluation of singing melody transcription can be seen in

Table 5.4. The score of ground truth, which is an accurate transcribed answer, is

the highest in all aspects. Our proposed model showed the second best performance

in all aspects, following ground truth. In particular, the proposed model regarding

onset received a score of 3.89, close to the ground truth’s 3.90, which is significantly

ahead of EfficientNet-b0. For offset, pitch, and overall scores, the proposed model

achieved slightly higher scores than EfficientNet-b0.

In terms of overall scores, a notable gap still remains between ground truth and

AMT models. In order to be recognized as perfect transcription by humans, perfor-

mance improvement through additional research and data collection is required.
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Chapter 6

Automatic Music Lead Sheet Transcription

6.1 Post-processing for Lead Sheet Representation

Chapter 4, 5’s research results are utilized for chord recognition and singing melody

trancription. [54] is used for musical key estimation model. It is a model of recogniz-

ing key with respect to the music audio signals using deep convolutional network.

The estimated key is classified into 24 types, major and minor, for 12 musical scales,

and one key representing the entire song is recognized. [60] is applied for a beat

tracking model, which uses recurrent neural network and deep bayesian network

model. Time signature can be estimated to 3/4 and 4/4 and it recognizes at what

seconds the beat within each bar exists. Downbeat by each bar is represented as 1

and it repeats as many as the number of beats within in order.

Chord and melody are time units and to convert this into the length of note

represented in transcription, beat needs to be utilized. The thesis set the minimum

unit of chord notation as a quarter note while the minimum unit of melody notation

is sixteenth note. In the case of chords, chord symbol, which is most frequent time

within the length of quarter note is determined as the chord for the beat. As for the

melody, each quarter note is exactly divided into four to make semiquaver, moved to

the closest beat time at the start and end of note, and was represented in note. As
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for the melody, each quarter note is divided into four to make sixteenth notes, and

the start and end times of each note are moved to the nearest beat time. This can

be expressed visually, as shown in Figure 6.1. Through post-processing, the music

audio signals are finally converted into lead sheet.
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Melody

Beat

Beat 

quantization

E Maj C MajChord

Key C Major

E Maj C Maj

Time signature 4/4

CMEM

Visualize

lead sheet

1 2 3 1 2 3

Figure 6.1: It is a process of transcribing using the key, chord, beat and melody
information recognized from audio signals. The red line is four quarter notes while
the red dotted line is semiquaver notes.
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6.2 Lead Sheet Transcription Results

There is no metric to evaluate the results of converting the music audio signals into

lead sheet. Since there are labels for the chord, key, beat, and melody recognition,

it is possible to extract the numerical performance in the middle stage. However,

it is vague to set a metric to evaluate after combining all the recognition results

and converting it into lead sheet through post-processing. In addition, there is an

issue with difficulty of identifying if a wrong part in the final lead sheet form is

from the error of which recognition model. Therefore, we intend to use the actual

case of lead sheets transcribed from audio signals and lead sheets transcribed by

experts to compare. Thereby, the thesis aims to conduct a qualitative evaluation of

the performance of automatic lead sheet transcription and identify which area needs

complementation.

The first case of analysis is shown in Figure 6.2. (a) is the result of automatic lead

sheet transcription while (b) is the lead sheet transcribed by an expert. Since the

methods of visualizing transcriptions are different, the number of bars within a single

stave is different. Although the thesis does not transcribe lyrics, generally as shown

in (b), lead sheet usually contains lyric information. First, we can identify that for

key signature, both are represented as the same (Ab Major). Time signature is also

expressed with the same as 4/4. In the case of chord sequence, we can identify the

repletion of Fm-Ab-Eb-Db as identical. However, from the 7th bar of (a), the beat

of chord is different from the downbeat. This can be seen as the difference between

the recognition of the timing of the beat and the timing of the chord change. As for

the melody, (a) and (b) are very different. Generally, what appears to be the most

different is the rhythm of the melody. In (a), it shows that there are a lot of rests
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between consecutive melody notes, but compared to (b), it can be seen that this was

misrecognized. They were recognized as rests since the distances among the notes

were long enough among during the beat quantization process at post-processing.

This is due to the accuracy of predicting the note’s onset and offset times. As for

the order of the melody’s pitch, aside from the beat, most of them seems correct.

(a)

(b)

Figure 6.2: (a) is a transcription result of automatic music lead sheet transcription,
while (b) is a transcription by a music expert.
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The second case of analysis is shown in Figure 6.3. Key signature is expressed

the same, as D major. Time signature is also represented the same as four-four

time. However, looking at the timing of chord and measure change, (a) seems to

recognize bpm (beats per minute) twice as fast as (b). Such an error is referred to

as an octave error. It indicates that one actual beat was recognized as split in half.

Because of this, while (b) shows two chords for each bar, (a) has one chord per bar in

general. Some details seem different for the chord recognition results. (b) represented

a chord as Em while (a) recognized it as Em7. In addition, while the second bar of

(a) recognizes the two chords of G and Em7, the last two beats of the first bar in

(b) are represented with a single G chord. It appears that the chord recognition

model recognized the chords in more detail. As for the melody, due to the result of

the beat tracking, (a) seems to have about twice the long notes as (b). In addition,

the rhythms are overall different since notes are recognized as being divided and the

length of the rests are largely different. As for the pitch of melody, the overall flow

is consistent but the note’s rhythm is condensed, ignoring the details of the pitch.

As the recognition performance for the onset, offset, and pitch of each melody note

improves, it can be accurately transcribed.
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(a)

(b)

Figure 6.3: (a) is a transcription result of automatic music lead sheet transcription,
while (b) is a transcription by a music expert.
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The third case of analysis is shown in Figure 6.4. Since the key signature ex-

pressed in (a) and (b) are different, the overall transcriptions are represented en-

tirely differently. For instance, while (a) recognizes the key signature as F# Major,

(b) displays it as Gb Major. The two keys are entirely identical in the perspectives

of pitch; therefore, it should be regarded as a different in representation. As for

the chord recognition results, there is not only the difference in representation, but

the actually recognized chords are also different. The first bar in (a) is recognized

as A#m while (b) represented it as GbM7. As for the rest of the chords, most of

them are displayed differently due to the difference between sharp and flat. As for

the melody, similar to the previous two cases, overall flow of the pitch is similar

between (a) and (b). However, as the notes’ rhythms differ, there were differences

such as notes that should have been divided being combined or unnecessary rests

being included. In particular, when looking at the last three notes in the first bar in

(b), it is expressed as triplet. However, the last three notes in the first bar of (a) is

entirely different. This can be seen as a result of the failure to express triplet since

during the post-processing process, the minimum beat unit was set as 16th note.

The thesis conducted an overall comparison between the lead sheet by an expert

and lead sheet transcribed using our method. In most cases, key and chord did

not have much difference. However, the part with the biggest difference from the

actual transcriptions was the pitch and rhythm of the melody. In order to improve

this, the performance of the singing transcription model recognizing melody’s onset,

offset, and pitch should be improved. Further, the accuracy of the beats used when

converting it into transcriptions should also be improved. In addition, the post-

processing also requires delicacy to represent special cases such as triplets.
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(a)

(b)

Figure 6.4: (a) is a transcription result of automatic music lead sheet transcription,
while (b) is a transcription by a music expert.
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Chapter 7

Melody Similarity Assessment with
Self-supervised Convolutional Neural Networks

7.1 Methodology

7.1.1 Input Data Representation

Using the results of Chapter 6, in order to address the problem of melody similarity

assessment, chord and key are excluded and only melody is used. The minimum beat

unit of the melody is sixteenth note, and pitch is MIDI pitch, expressed from 0 to

127. In order to express the melody as an image, it is converted into the form of

piano roll with x-axis being the time axis of sixteenth note unit while y-axis is the

pitch axis of semitone unit. The piano roll expresses the value as 1 if the pitch is

played at a certain time and as 0 if it is not played. In the piano roll, when the note

of the same pitch continues, the note’s breakpoint cannot be identified. Therefore,

the onset roll is also used as the data representation, with the onset time of starting

point of the note expressed as 1 while the rest is expressed as 0. In order to use both

piano roll and onset roll, it is expressed to overlap with different channels on the

image.

Since melody similarity assessment needs to take place by section, the evaluation

of the similarity on specific section should be possible. Therefore, instead of using

the melody for the entire song at once, the sections are divided by a certain length.
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Although the standard for similar melody is not certain in plagiarism case [16], we

presume that if four bars are very similar, it can be considered as similar melody.

In the pre-processing procedure, based on the starting point of each bar, four bars

are cut and used as sections. As a result, the shape of each data input is 64 (time)

x 128 (pitch) x 2 (channel). When representing this as a image, it is as shown in

Figure 7.1.

Further, simple filtering methods are used to remove the meaninglessly similar

cases. First, when the number of notes is less than four in four bars, the part is

not used. In addition, if there is an empty bar among the four bars, the section is

excluded. Through filtering, similar cases due to lack of melody can be excluded.

7.1.2 Data Augmentation

Since we do not have as labels whether the melodies are similar, it is necessary to

create a positive sample with some transformation. In order to provide the data

of similar melody, data augmentation is used. Each augmentation method can be

expressed visually, as shown in Figure 7.2. First, the key shift is augmentation moving

pitches of all notes within the four bars simultaneously from -7 to +7 semitones. Since

the entire melody moves together, it can be seen as an identical melody.

As for the augmentation to be applied for each note, six augmentation methods

are applied: add note, delete note, merge note, note pitch shift, change note duration,

and note split. As for the add note, one of the pitches of the note is selected and

a part among the rest section is selected to add note. Delete note is a method of

randomly selecting a note and deleting it. The merge note is a method of modifying

into playing as the pitch of the note selected, such as from the starting point of the

note prior to the selected note to the ending point of the selected note. The note
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pitch shift is a method of modifying the pitch of the selected note into the pitch of

other notes within the four bars that is randomly selected. Regarding the change

note duration, it is a method of randomly adjusting the duration of the selected note

to the extent that it does not affect other notes. Note split is a method of randomly

dividing the entire duration of the selected note into two notes and pitches are

selected one among different notes’ pitches.
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Figure 7.1: In order to distinguish the starting frame and continuing frame of notes,
input representation was made with two channels, piano roll and onset roll. In the
image, onset is displayed in black, while the frame which is not an onset but where
the note continues is displayed in grey.
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Original

Key shiftPitch shift

Merge

Delete Change note duration

Note split

Add note

Figure 7.2: This is the result of applying each data augmentation on original input
data. We can identify that there are parts similar to the given melody and that some
are modified.
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For training data, anchor, key-shifted anchor, positive sample, and negative sam-

ple are prepared. The anchor is a melody of four bars from a song. The key-shifted

anchor is the result of changing only the key in the anchor. The positive sample

is created through the augmentation method defined above. First, anchor or key-

shifted anchor is randomly selected. Then, among the entire number of notes, notes

to which an augmentation method is applied are selected at a ratio from the mini-

mum r to the maximum R. One of the methods among the six note augmentation

methods is randomly selected to be applied on each of the notes for augmentation.

The result of this is a positive sample. As for a negative sample, it is a melody of

four bars that come from a song completely unrelated to the anchor.

7.1.3 Model Architecture

In order to map the input image on embedding space, ResNet [68] structure is

used. The detailed structure of the model is seen as Figure 7.3. The model utilizes

convolutional layer, batch normalization, ReLU activation, and residual connection

repeatedly, reducing and summarizing the size of the entire image. Lastly, channel,

width, and height axes are all flattened out to apply fully connected layer moving

toward 256 dimension’s embedding space. In addition, in order to restrict the size

of the embedding space, normalization is used to make the size of the embedding

vector 1.
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Figure 7.3: ResNet like Network structure. K: kernel size, C: channel number, S:
stride, P: padding. Padding is omitted for layers with 1x1 padding. The output
dimension is 256, which is used as an embedding vector for the input.
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7.1.4 Loss Function

Similar to [96], since it is leaning only using musical augmentation on the given

data without label information, it can be considered self-supervised learning. For

model training, triplet loss [70] is used. At Section 7.1.2, anchor, key-shifted anchor,

positive sample, and negative sample are prepared in the data preparation process.

Since just changing key is not considered to change the melody, anchor and key-

shifted anchor need to be represented the closest. Further, as for the positive sample

with changes in a few notes, it should be represented to be farther than the key-

shifted anchor but closer than the negative sample. Since the negative sample is a

melody irrelevant from anchor, it should be represented the furthest.

For this, triplet loss is separately used for each case. First, key-shifted anchor

is set as positive sample while positive sample is set as negative sample, making

positive sample further than key-shifted anchor. Here, margin is set at α. Next,

positive sample is used as positive sample, while negative sample is used as negative

sample with margin set at β. Finally, key-shifted anchor is set as positive sample,

while negative sample is set as negative sample with margin set at γ. In order to

express the sequential relationship for the four types of data in the loss, the margin

values are set to α + β = γ. The entire loss is the sum of all three losses and, this

can be expressed as Equation 7.1.

Loss = Loss1 + Loss2 + Loss3 (7.1)

Loss1 = Triplet(a, k, p, α) (7.2)

Loss2 = Triplet(a, p, n, β) (7.3)
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Loss3 = Triplet(a, k, n, γ) (7.4)

a is anchor, k is key-shifted anchor, p is positive sample, n is negative sample, and α,

β, γ are margin values. The triplet loss function is Equation 2.2. This is represented

visually, as shown in Figure 7.4.

Anchor

Key shifted 
anchor 𝑓( )

Positive 
sample

Negative 
sample

𝑓′( 𝑜𝑟 )
𝛼

𝛽

𝛾

Figure 7.4: An overview of our self-supervised learning approach. We construct train-
ing data by transforming anchor with randomized augmentation functions.

7.1.5 Definition of Distance between Songs

For plagiarism detection and cover song detection, the distance-based searching

method is as follows. First, with respect to the query song, data pre-processing

method in Section 7.1.1 is applied identically to create all the image of melody of

four bars unit. Next, with respect to the search object songs, the data pre-processing

is applied the same to create an image of four bars unit. All images are mapped to

embedding vectors using the model. With respect to all embeddings of a query song,

compare all the embeddings of search objects and measure the distance. Define the

distance between the pair with the shortest distance between the query song and

search object song.

85



Distance(X,Y ) = min
i,j
‖fmodel(xi)− fmodel(yj)‖22 (7.5)

X and Y are songs while fmodel is the deep learning model. The search result of

query song is created by arranging search object songs in the order of closeness.
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7.2 Experiments

7.2.1 Dataset

For model training, a custom dataset of 14,669 songs was used. Each song is a

popular song with singing melody and other instruments. Applying the result of

Chapter 6, each song was converted into the lead sheet form. The entire dataset was

divided into the train: validation: test with the ratio of 0.8:0.1:0.1.

To evaluate the performance of trained model’s performance, Plagiarism dataset

and Cover song dataset were established. After collecting all of the audio files, ap-

plying the result of Chapter 6, each song was converted into the lead sheet form.

First, Plagiarism dataset was made into a total 10 pairs of plagiarism songs. The

dataset was established with cases where the melody was plagiarized, including cases

that went to court disputes and cases that stopped at the warning from the original

author. In the case of melody plagiarism, as opposed to the entire melody being

similar, there were many cases where the melody of certain sections was similar.

Cover song dataset was established using 10 pairs of original song of popular

songs and cover songs sung by other people. As for the cover song, since each singer is

different, the key of the song is different or slight melody modifications are included.

Plagiarism and Cover song datasets each contain 20 songs. Basically, it is an

experiment to search pair song by comparing one query song with the remaining 19

songs. In order to verify whether it is possible to find pair song in the experiment,

81 songs at the test split of the custom dataset were randomly selected to be used

additionally. In other words, except for the one song (i.e., the query object), 81 songs

were additionally added to 19 songs to establish a setting of searching within 100

songs. The datasets consisting of the total of 101 songs are called Plagiarism 100
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and Cover song 100, respectively.

7.2.2 Training

Model parameters were trained with Adam optimizer [83]. Learning rate was 0.0001,

and if there was no improvement of validation loss during the 3 epoch, learning rate

was reduced in half. If there was no performance improvement during 10 epochs,

early stopping was applied to end training. Further, by selecting the epoch model

with the best validation performance, it was utilized in the test. The batch size was

32.

7.2.3 Evaluation Metrics

For evaluation, metrics that are mainly used in cover song indentification were used.

The metrics, such as, mean average precision (MAP), precision at 10 (P@10), and

the mean rank of first correctly identified song (MR1) are metrics used in Mirex

Audio Cover Song Identification contest1. Additionally, it was evaluated through

the accuracy (Acc) which measures whether the pair song was searched first, and

the median rank of first correctly identified song (MDR1).

1https://www.music-ir.org/mirex/wiki/2021:Audio Cover Song Identification
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7.3 Results

7.3.1 Quantitative Evaluation

Since we use self-supervised learning without a label, in order to evaluate the learned

model, the performance on Plagiarism dataset and Cover song dataset was evaluated.

And to analyze the factors that affect the model performance, we experimented by

changing four factors with model structure, augmentation ratio, loss function, and

definition of minimum distance between songs.

Model Structure

The experiment was conducted by changing the three model structures in turn.

Melody is meaningful sequence data as an axis of time; therefore a model using

LSTM [97], a recurrent neural network, was additionally utilized. Performance was

evaluated using three LSTM alone, ResNet-based CNN, and ResNet-based CNN

+ LSTM. Table 7.1 shows the result of the performance by model structure from

Plagiarism dataset. On the Plagiarism dataset, ResNet model showed the best per-

formance, whereas when searching within Plagiarism 100, ResNet + LSTM’s per-

formance was better at MAP and Acc metric. However, when looking at the perfor-

mance of P@10, MR1, and MDR1, ResNet model’s performance was stable.

Table 7.2 shows the result of performance by model structure in the Cover song

dataset. For all metrics, ResNet model’s performance was the best. Overall, it seems

that ResNet, which recognizes input as an image, is more appropriate than LSTM,

which utilizes sequence information. Therefore,, in all other experiments, ResNet

model was used.

Further, when comparing the performance between the Plagiarism dataset and
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Cover song dataset, the latter showed a much better performance. In the case of

plagiarism detection, even if the melody is slightly different, if people who hear it

consider it similar, it can be plagiarism. Meanwhile, as for cover song identification,

since it is a case where the same melody is sung by different people, it is a little

easier to find.
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Augmentation Ratio

The experiment was conducted using the value of minimum r and maximum R at the

rate of augmentation used when creating a positive sample. By extracting a value

randomly between r and R, notes were selected to fit the ratio and transformed

the notes. The higher the augmentation ratio, the more positive samples with more

changes from anchors are created. The change of performance is as seen in Table 7.3

and Table 7.4.

On plagiarism detection, aside from the Plagiarism 100’s Acc, the performance

is optimal when the augmentation ratio is set between 0.3 and 0.4. On cover song

identification, the small scale dataset showed a slightly good performance when the

augmentation ratio was applied between 0.2 and 0.3. However, on Cover song 100

where the number of songs is large, the performance was superb when the augmenta-

tion ratio was applied between 0.3 and 0.4. When designing the loss function, positive

sample was set to be farther than anchor and key-shifted anchor. It seems that the

ratio to provide modification accordingly to the margin value was between 0.3 and

0.4. In order to remove the factors influencing the performance, other experiments

used the min ratio at 0.2 and max ratio at 0.3.

92



T
a
b

le
7
.3

:
P

er
fo

rm
a
n

ce
o
n

P
la

g
ia

ri
sm

an
d

P
la

gi
ar

is
m

10
0

d
at

as
et

s
ac

co
rd

in
g

to
au

gm
en

ta
ti

on
ra

ti
o.

R
es

u
lt

s
on

P
la

gi
ar

is
m

R
es

u
lt

s
on

P
la

gi
ar

is
m

10
0

m
in

ra
ti

o
(r

)
M

ax
ra

ti
o

(R
)

M
A

P
P

@
1
0

M
R

1
M

D
R

1
A

cc
M

A
P

P
@

10
M

R
1

M
D

R
1

A
cc

0.
1

0.
2

0.
38

4
0.

07
6.

9
5.

5
0.

25
0.

15
8

0.
04

34
27

.5
0.

1
0
.2

0.
3

0
.4

8
0.

08
5

5
3

0.
3

0
.2

2
5

0
.0

5
23

.1
5

1
0
.5

0
.1

5
0
.3

0.
4

0
.5

3
9

0
.0

9
4
.4

2
0
.4

0.
22

4
0
.0

5
2
1
.4

1
0
.5

0.
1

T
ab

le
7.

4:
P

er
fo

rm
an

ce
on

C
ov

er
so

n
g

an
d

C
ov

er
so

n
g

10
0

d
at

as
et

s
ac

co
rd

in
g

to
au

gm
en

ta
ti

on
ra

ti
o.

R
es

u
lt

s
on

C
ov

er
so

n
g

R
es

u
lt

s
on

C
ov

er
so

n
g

10
0

m
in

ra
ti

o
(r

)
M

a
x

ra
ti

o
(R

)
M

A
P

P
@

10
M

R
1

M
D

R
1

A
cc

M
A

P
P

@
10

M
R

1
M

D
R

1
A

cc

0.
1

0
.2

0
.5

23
0.

07
5

5.
95

2
0.

4
0.

40
5

0.
06

22
.9

5
5

0.
3

0
.2

0
.3

0
.7

8
4

0
.0

9
3
.3

1
0
.7

5
0.

56
0
.0

8
1
4
.4

5
2

0.
45

0
.3

0
.4

0
.7

66
0
.8

5
3.

6
1

0.
7

0
.6

8
7

0
.0

8
1
4
.4

5
1

0
.6

93



Loss Function

In order to express the relations between key-shifted anchor and positive sample

that are created using augmentation for self-supervised learning, the triplet loss

function was applied to each of the three pairs. These loss functions are as shown

in Equation 7.2, 7.3 and 7.4. In order to identify what impact each loss has on the

model performance, evaluation was conducted on the performance depending on

the use of three loss functions. The results are shown in Table 7.5 and Table 7.6.

By default, the margin values α, β and γ are set to 0.5, 1.0, and 1.5, respectively.

When only using one out of the three loss functions, margin was adjusted to 1.0 for

training.

First, comparing the case of using only one loss, the model trained with Loss1

has the poorest performance. Since the case training with only Loss1 does not uti-

lize completely different negative samples, a positive sample with slight changes is

recognized to be farther away. In such a case, it becomes impossible to distinguish

between what is slightly different and completely different. When Loss2 and Loss3

were used independently, the performance overall seemed similar. Loss2’s positive

sample is a case with some modification at the anchor, as it includes key shift while

negative sample is completely different; therefore, the model training was conducted

somewhat normally. As for Loss 3, it is learned in the perspective that key-shifted

anchor is a similar sample, while negative sample is completely different. As for

plagiarism detection and cover song identification, in the perspective that we can

detect as long as we can distinguish what is the same melody and not, training with

Loss3 alone can produce adequate model performance.

In the case using two loss functions, the performance of the model that trained
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with Loss1 and Loss3 showed the poorest in both plagiarism detection and cover

song identification. Due to the absence of Loss2, which directly uses the relation

between the positive sample and negative sample, it seems that distinguishing what

is similar and what is not became difficult. As for the rest, the superiority of the

performance changed depending on the dataset. The model which learned using

all three loss functions showed the best performance at Plagiarism 100 dataset with

P@10 and MDR1 metrics. As for Acc, although it is not the highest at Plagiarism 100

dataset, plagiarism detection seems to be somewhat stable. As for loss function, the

procedure to find the optimum loss function through additional structure designing

and hyperparameter adjustment is necessary. In other experiments, all three loss

functions were applied.
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Definition of Minimum Distance Between Songs

By measuring the distance of all the pairs of query song and search object songs, the

shortest distance was defined as the distance between the two songs. However, since

this only considers the distance among the four bars, it does not take into account

cases where the similar part continues longer than four bars. Such characteristic is

more noticeable in cover song identification than plagiarism detection. While similar

melody occurs in only certain parts for plagiarism, the cover song, on the other

hand, has continued similar melodies. Therefore, it can be defined that the shorter

the average distance of the continuing pair within each song, it is more similar. This

can be expressed as below.

Distance(X,Y ) = min
i,j

K−1∑
k=0

‖fmodel(xi+k)− fmodel(yj+k)‖22 (7.6)

X and Y are songs, while fmodel is the deep learning model. K is the number of

input considered together in order.

Table 7.7 organizes the performance by the change of K value. By the standards

of MAP with large deviation, on plagiarism 100, the best performance was shown

when K was 7. If K becomes larger or smaller than that, performance drops. We

can identify that finding similarity in somewhat continuing sections is helpful. The

percentage of finding a plagiarized song accurately among the 100 songs is 40 percent.

When looking at P@10, 50 percent found plagiarism songs in the top 10.

For Cover song 100, the performance was at best when K was 18. We can iden-

tify the tendency that as K increases, the value of MAP increases and when K is

18, MAP and Acc values are the highest. The search performance in cover song

identification improves when considered long in the order.
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7.3.2 Qualitative Evaluation

Plagiarism cases

As for plagiarism pairs, there were both cases where the search was successful and

it failed. In order to analyze the reason, we analyzed the search results. First, we

intend to analyze the cases where the search of plagiarized song within 100 songs

was successful as it showed as the first outcome. It is a case where a plagiarized song

Bandido-Vamos Amigos2 was found when searching query for the song Lee Jung

Hyun-Wa3. It can be identified in Figure 7.5.

Figure 7.5: (a) is 54.1∼60.91 seconds of Lee Jung Hyun-Wa. (b) is 95.87∼102.69
seconds of Bandido-Vamos Amigos.

While some sections differ, the melody is very similar in general. In this case, the

distance between the two sections was 0.17, being the closest section among the 100

songs. When expressing the distance of all the sections with respect to the two songs

2https://www.youtube.com/watch?v=e2HYsbUiwLk
3https://www.youtube.com/watch?v=ZblHv1Lpyfk
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in similarity matrix, it is as Figure 7.6. The similar sections are expressed in dark

color and you can identify a dark diagonal line. You can identify the similar sections

continuing in the plagiarism case. In Section 7.3.1, when expressing the minimum

distance between the songs as the sum of the continuing sections, we can identify

why the detection performance improves. It can be seen that there are many cases

of plagiarism when consecutive sections are similar.

Figure 7.6: Lee Jung Hyun-Wa and Bandido-Vamos Amigos’s all sections pairs’
distances are calculated and expressed in similarity matrix.
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We intend to analyze the second case where the search of plagiarism song was

successful. It is a case of finding a plagiarized song called Seiell-Scenne Nenne4 when

searching the song BTS-Fake Love5 in query. It is seen in Figure 7.7.

Figure 7.7: (a) is 62.89∼69.09 seconds of BTS-Fake Love. (b) is 97.43∼103.61 seconds
of Seiell-Scenne Nenne.

The distance between the two sections was 0.13, searched as the closest section

among the 100 songs. While the melody of (a) and (b) sections is very similar,

key shift appeared very large. Despite, the two melodies are expressed similar in

embedding space since the self-supervised learning utilizing the key-shifted anchor

worked effectively.

Figure 7.8 shows the expression of the distance of all sections with respect to the

two songs. The dark diagonal lines are seen in many places. Since the section that

is plagiarism is repeated, there are many diagonal lines.

4https://www.youtube.com/watch?v=Akob0Smf9Ag
5https://www.youtube.com/watch?v=NT8ePWlgx Y
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Figure 7.8: BTS-Fake Love and Seiell-Scenne Nenne’s all sections pairs’ distances
are calculated and expressed in similarity matrix.

The failed search case involved being unable to discover Ed Sheeran-Shape of

You6 when searching TLC-No Scrubs7 in the query. The minimum distance between

the two songs was the low at being 0.12. However, since many other songs with lower

distance were found, the song was searched as the 11th closet song among the 100

songs. Figure 7.9 represents the pair target and failure case.

6https://www.youtube.com/watch?v=JGwWNGJdvx8
7https://www.youtube.com/watch?v=FrLequ6dUdM
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Figure 7.9: (a) is 55.41∼65.74 seconds of TLC-No Scrubs. (b) is 41.13∼51.13 seconds
of Ed Sheeran – Shape of You. (c) is 52.83∼63.16 seconds of TLC-No Scrubs. (d) is
a section of an unrelated song on the test.
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While (a) and (b) are not very similar in terms of the image, they contain sections

about plagiarism. The distance between the two sections is 0.12. (c) and (d) are

completely unrelated songs and can be seen completely different in image. However,

the distance between the two sections is mapped as very close, distance at 0.08.

This shows the limitations of self-supervised learning where an unrelated melody

was learned to be similar. In order to address this issue, the quality of generating

training data using augmentation should be improved, and adequate loss function

and model structure should be supported.

When looking at the failed cases of plagiarism detection, the issues are narrowed

down to two. There are cases where the similar melody is recorded to be different due

to the insufficient performance of melody transcription. In addition, as seen above,

there are cases where completely different melodies are considered similar. This is a

problem which occurs because music plagiarism detection is conducted in 2 phases,

requiring improvement of performance respectively.
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Additional Similarity Matrix

Figure 7.10: Distance for all sections of a song of test data is calculated and expressed
in self-similarity matrix.

First, when drawing the self-similarity matrix on a song, it is as seen in Figure

7.10. This song has the characteristic that similar melodies repeat. This can be

identified in the figure as many diagonal lines are seen aside from the diagonal line

in the center. This indicates same melody sections repeat. Through this, we can

also predict the repeating structure of the song. Through the analysis of similarity

matrix, it seems possible to somewhat analyze the repeating structure of songs.
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Figure 7.11: Distance for all sections of the original and cover song is calculated and
expressed in similarity matrix.

The similarity matrix between the original song and cover song used in the cover

song identification is shown in Figure 7.11. The section that is recognized to be

similar is displayed as very long. A cover song is a song in which the same melody

is sung in different voice over a long period of time. Therefore, while in the case

of plagiarism songs, certain sections that are similar appear short, while over songs

display the similar sections as long.
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Chapter 8

Conclusion

8.1 Summary and Contributions

This thesis sought to transcribe automatic lead sheet from music audio signals and

to study its application. For this, the research for the recognition of each of chord

and melody were conducted and we proposed the lead sheet transcription methods

by combing these. Further, by focusing on the melody among the recognized lead

sheet, the thesis explored melody similarity assessment.

First, we presented bi-directional Transformer for chord recognition (BTC). The

self-attention mechanism was appropriate for the task that attempts to capture long-

term dependency by effectively exploring relevant sections. BTC has an advantage

in that its training procedure is simple and it showed results competitive to other

models in most of the evaluation metrics. Through the attention map analysis, it

turned out that each self-attention layer had different characteristics and that the

attention mechanism was effective in identifying sections of chords that were crucial

for chord recognition.

We also proposed a monophonic note-level singing transcription model using a

sequence-to-sequence Transformer that advances state-of-the-art singing transcrip-

tion on MIR-ST500 dataset. Accordingly, we introduced a method of representing
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monophonic melodies as musical event sequences and approached singing melody

transcription through sequence-to-sequence task. The overlapping decoding turned

out to be effective for note offset prediction by preserving sequential context in-

formation. The transcription performance was also improved by introducing pitch

augmentation and adding noisy dataset with data cleansing, having effects in pre-

venting overfitting and training a robust model. Visualization of the transcription

results enabled qualitative analyses to investigate the effect of each of the proposed

techniques. Subjective human evaluation showed that the results of our proposed

model were perceived as more accurate than those of a previous study.

By combining the two preceding research results, this thesis proposed an au-

tomatic lead sheet transcription method. It utilized the previously researched key

estimation and beat tracking to suggest a method to combine various information

extracted from audio. The process for automatic lead sheet transcription consist-

ing of various steps was introduced. And we analyzed transcription performance by

comparing it with the expert’s transcription.

The thesis explored melody similarity assessment as one of the methods of ap-

plying the lead sheet transcription technology. By focusing on the cases of melody,

we suggested a ResNet model that converts melodies into embeddings. In order to

train the model, self-supervised learning method utilizing musical data augmenta-

tion was also proposed. In addition, we introduced loss function that reflects the

characteristics of melody similarity. The results of the experiment demonstrated the

possibility of music plagiarism detection and cover song detection. And we identified

further application potentials, such as finding repeated structure within a song.

Automatic music lead sheet transcription technology can offer great assistance to
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various people in the music industry and instrument players. Through this, the time

and cost consumed for transcription could be reduced. Combining and organizing

the complicated lead sheet transcription process is the biggest contribution of the

paper. Further, identifying the possibility of plagiarism detection at the level of sound

sources is an important result. As far as we know, no research has yet shown proper

plagiarism detection at the level of actual popular song sources. If such plagiarism

detection becomes popular, it can have a good effect on composers in reducing cases

of unintentional plagiarism.
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8.2 Limitations and Future Research

It is a great merit that the automatic lead sheet transcription is possible at the actual

sources of sound. However, there are many instances where singing melody and chord

transcriptions alone are insufficient. Therefore, if there is a technology that allows

the dissection and transcription of the sound of various musical instruments, it will

benefit people even more. In addition, when it comes to singing melody transcription,

polyphonic melody or chorus cannot be recognized. If this could also be perfectly

recognized, the applicability will greatly increase. Through this, studies on source

separation by vocals could be possible. Additionally, the fundamental solution to

improve the performance of automatic music transcription is to collect sufficient

training data. In the future, more automatic sheet music alignment studies need to

be conducted to provide additional annotation data.

In the case of plagiarism, it has limitations that it can be utilized only for singing

melody plagiarism. Aside from singing melody, there are diverse types of plagiarism

such as instrument melody and sample plagiarism. For the study of instrument

melody plagiarism, instrument melody transcription technique is essential, while for

sample plagiarism, technology to apply right away at the level of audio signals is

needed. Although this thesis introduced music plagiarism detection based on tran-

scription, it is also possible to directly embed the audio signal and compare the

distance. Applying an audio-based similarity evaluation model for music plagiarism

detection is left for future work.
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국문초록

음악 산업의 디지털화를 통해 음악의 작곡, 편곡 및 유통이 편리해졌기 때문에 새롭게

공급되는 음원의 수가 증가하고 있다. 최근에는 누구나 크리에이터가 될 수 있는 플랫

폼 환경이 구축되어, 사용자가 만든 자작곡, 커버곡, 리믹스 등이 유튜브, 틱톡을 통해

유통되고 있다. 이렇게 많은 양의 음악에 대해, 음악을 악보로 채보하고자 하는 수요는

음악가들에게 항상 존재했다. 그러나 악보 채보에는 음악적 지식이 필요하고, 시간과

비용이 많이 소요된다는 문제점이 있다.

본 논문에서는 심층 신경망을 활용하여 음악 리드 시트 악보 자동 채보 기법을 연

구한다. 채보 인공지능의 개발은 음악 종사자 및 연주자들이 악보를 구하거나 만들기

위해 소모하는 시간과 비용을 크게 줄여 줄 수 있다. 또한 음원에서 디지털 악보 형

태로 변환이 가능해지므로, 자동 표절 탐지, 작곡 인공지능 학습 등 다양하게 활용이

가능하다.

리드 시트 채보를 위해, 먼저 오디오 신호로부터 코드를 인식하는 모델을 제안한

다. 음악에서 코드는 함축적이고 표현적인 음악의 중요한 특징이므로 이를 인식하는

것은 매우 중요하다. 코드 구간 인식을 위해, 어텐션 매커니즘을 이용하는 트랜스포머

기반 모델을 제시한다. 어텐션 지도 분석을 통해, 어텐션이 실제로 어떻게 적용되는지

시각화하고, 모델이 코드의 구간을 나누고 인식하는 과정을 살펴본다.

그리고 시퀀스 투 시퀀스 트랜스포머를 이용한 음표 수준의 가창 멜로디 채보 모델

을 제안한다. 디코딩 과정에서 각 구간 사이의 문맥 정보가 단절되는 문제를 해결하기

위해 중첩 디코딩을 도입한다. 데이터 변형 기법으로 음높이 변형을 적용하는 방법과

데이터 클렌징을 통해 학습 데이터를 추가하는 방법을 소개한다. 정량 및 정성적인

비교를 통해 제안한 기법들이 성능 개선에 도움이 되는 것을 확인하였고, 제안모델이
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MIR-ST500 데이터 셋에 대한 음표 수준의 가창 멜로디 채보 성능에서 가장 우수한 성

능을보였다.추가로주관적인사람의평가에서제안모델의채보결과가이전모델보다

저 정확하다고 인식됨을 확인하였다.

앞의 연구의 결과를 활용하여, 음악 리드 시트 자동 채보의 전체 과정을 제시한다.

오디오 신호로부터 인식한 다양한 음악 정보를 종합하여, 대중 음악 오디오 신호의 핵

심을 표현하는 리드 시트 악보 채보가 가능함을 보인다. 그리고 이를 전문가가 제작한

리드시트와 비교하여 분석한다.

마지막으로리드시트악보자동채보기법을응용하여,자기지도학습기반멜로디

유사도 평가 방법을 제안한다. 리드 시트 채보 결과의 멜로디를 임베딩 공간에 표현하

는 합성곱 신경망 모델을 제시한다. 자기지도 학습 방법론을 적용하기 위해, 음악적

데이터 변형 기법을 적용하여 학습 데이터를 생성하는 방법을 제안한다.그리고 준비된

학습 데이터를 활용하는 심층 거리 학습 손실함수를 설계한다. 실험 결과 분석을 통해,

제안모델이표절및커버송케이스에서대중음악의유사한멜로디를탐지할수있음을

확인한다.

주요어: 음악 정보 검색, 음악 자동 채보, 화음 인식, 가창 멜로디 인식, 멜로디 유사도

평가, 음악 표절 탐지, 자기지도 학습, 심층신경망

학번: 2018-20381
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