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Abstract

Automatic Music Lead Sheet Transcription
and Melody Similarity Assessment Using
Deep Neural Networks

Jonggwon Park
Department of Industrial Engineering

The Graduate School

Seoul National University

Since the composition, arrangement, and distribution of music became convenient
thanks to the digitization of the music industry, the number of newly supplied music
recordings is increasing. Recently, due to platform environments being established
whereby anyone can become a creator, user-created music such as their songs, cover
songs, and remixes is being distributed through YouTube and TikTok. With such
a large volume of musical recordings, the demand to transcribe music into sheet
music has always existed for musicians. However, it requires musical knowledge and
is time-consuming.

This thesis studies automatic lead sheet transcription using deep neural networks.
The development of transcription artificial intelligence (AI) can greatly reduce the
time and cost for people in the music industry to find or transcribe sheet music.

In addition, since the conversion from music sources to the form of digital music



is possible, the applications could be expanded, such as music plagiarism detection

and music composition Al.

The thesis first proposes a model recognizing chords from audio signals. Chord
recognition is an important task in music information retrieval since chords are
highly abstract and descriptive features of music. We utilize a self-attention mecha-
nism for chord recognition to focus on certain regions of chords. Through an attention
map analysis, we visualize how attention is performed. It turns out that the model
is able to divide segments of chords by utilizing the adaptive receptive field of the

attention mechanism.

This thesis proposes a note-level singing melody transcription model using sequence-
to-sequence transformers. Overlapping decoding is introduced to solve the problem
of the context between segments being broken. Applying pitch augmentation and
adding a noisy dataset with data cleansing turns out to be effective in preventing
overfitting and generalizing the model performance. Ablation studies demonstrate
the effects of the proposed techniques in note-level singing melody transcription, both
quantitatively and qualitatively. The proposed model outperforms other models in
note-level singing melody transcription performance for all the metrics considered.
Finally, subjective human evaluation demonstrates that the results of the proposed

models are perceived as more accurate than the results of a previous study.

Utilizing the above research results, we introduce the entire process of an au-
tomatic music lead sheet transcription. By combining various music information
recognized from audio signals, we show that it is possible to transcribe lead sheets
that express the core of popular music. Furthermore, we compare the results with

lead sheets transcribed by musicians.

ii



Finally, we propose a melody similarity assessment method based on self-supervised
learning by applying the automatic lead sheet transcription. We present convolu-
tional neural networks that express the melody of lead sheet transcription results in
embedding space. To apply self-supervised learning, we introduce methods of gen-
erating training data by musical data augmentation techniques. Furthermore, a loss
function is presented to utilize the training data. Experimental results demonstrate
that the proposed model is able to detect similar melodies of popular music from

plagiarism and cover song cases.

Keywords: Music Information Retrieval, Automatic Music Transcription, Chord
Recognition, Singing Melody Transcription, Melody Similarity Assessment, Music
Plagiarism Detection, Self-supervised Learning, Deep Neural Networks

Student Number: 2018-20381
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Chapter 1

Introduction

1.1 Background and Motivation

Music is the most familiar cultural content to the public. Thanks to the recent
development of the streaming industry, anyone can listen to whatever music they
want anywhere. Since the composition, arrangement, and distribution of music has
become convenient thanks to the music industry’s digitalization, the number of newly
made music recordings is continually increasing. Recently, thanks to the growth
of video content, music has become more frequently present on platforms such as
YouTube and TikTok. In addition, since everyone can become a creator, user-created
music such as their own songs, covers, and remixes are being distributed through
YouTube and SoundCloud.

The demand to transcribe music as diverse versions of newly released music
has always existed people in the music industry and hobbyist players. However, not
anyone can transcribe music scores because it requires musical knowledge and senses;
it also has issues such as time and financial expenses. Since new music contents keep
flowing, such as new songs and cover songs, it is gradually becoming impossible for
people to write scores for all music content. In addition, recent issues have arisen

regarding music plagiarism. Analyses of plagiarism, rather than relying simply on



the similarity of sounds, requires analysis of music transcriptions for the evaluation

of similarity on fundamental chords and melodies.

Meanwhile, alongside the adoption of deep learning technology, thanks to the
development of various techniques such as transformers |2}3] that use sequence data,
big developments have been made in diverse sectors such as translation 2], language
generation [4], and voice synthesis [5]. As deep learning is used to apply music audio
signals, which is a type of sequence data, there have been noteworthy achievements
in various sectors, such as source separation [6], music audio synthesis [7], and music

similarity measurement [8].

Various attempts have been made in the field of automatic music transcription
(AMT). Attempts to transcribe chords, which are a key element of music, have
been made over a long period [9]. Deep learning has enabled many recent develop-
ments [10,/11]. In addition, traditional fundamental frequency analysis |1] has been
frequently employed to recognize melodies. Recently, melody recognition at the note
level has been attempted [12]. Further, studies have been conducted to transcribe
various musical instruments, such as pianos, guitars, and drums [13]. An audio-to-
score study [14] has been conducted to convert music audio into sheet music, and a

study on lead sheet transcription [15] is in progress.

There is no general rule defining plagiarism, which states that at least a few notes
or beats must exist simultaneously in music to be considered to be infringing on mu-
sic copyright [16]. When courts deal with music plagiarism cases, independent music
experts evaluate the similarities between the two songs to make a determination [17].
There are many kinds of music plagiarism, but these can largely be divided into sam-

ple plagiarism, melody plagiarism, and rhythm plagiarism [17]. Among these, melody



is one of the most important elements of popular music, which makes it the most
studied area of plagiarism research [18-20]. There have been studies on the explo-
ration of plagiarism on audio signals [17,21], but it is difficult to apply to actual
cases of popular music plagiarism, which involve various musical instruments and
modifications.

This thesis started with the motivation that if a high level of music transcription
is possible through deep learning technology, various demands will be satisfied and
additional development of the application will be possible. The study will provide
assistance to those who lack musical knowledge with an analysis of music while it will
reduce the time and cost for experts who have the ability to transcribe. Furthermore,
the analysis of music core elements using the music transcription technology will
enable applications such as the development of musical elements’ similarity-based

search and recommendation system.



1.2 Objectives

This thesis aims to propose a lead sheet transcription technique using deep neural
network-based analysis of music audio signals. Lead sheet is a musical notation
that specifies the essential elements of a popular song; it consists of musical key,
chords, and melody. To express audio signals in the form of a lead sheet, we suggest
chord recognition and singing melody transcription models. Furthermore, based on
the result, this thesis defines the post-processing procedure of converting it into a
lead sheet. In addition, by applying the lead sheet transcription result, this thesis
proposes an melody similarity assessment technique for automatic music plagiarism

detection and cover song detection. This study is divided into four parts as follows.

First, we study the chord recognition technique from music audio signals. Chords
refer to a set of two or more pitches, and alongside the melody, they are a basic
element of music composition. Chord recognition is difficult for several reasons; not
all notes of the current chords are always played simultaneously and there are many
chords with similar meanings. Furthermore, it can be difficult to determine the point
at which the chord changes. Therefore, for the analysis of music audio signals, the
study uses the attention technique that creates representation values for each point.
This study proposes the attention-based model and learning techniques to improve
performanceﬂ In addition, the study visualizes and analyzes the attention values of

the chord division method of the chord recognition model.

Second, the thesis proposes a note-level singing melody transcription Transformer

to recognize the monophonic singing melody from polyphonic audio signalsﬂ Mono-

!The work in Chapter [4| was published as Park et al. [22].
2The work in Chapter [5| was published as Park et al. [23].



phonic note event tokens are defined to express a monophonic melody as a sequence
of event tokens. Furthermore, we propose three techniques to enhance the tran-
scription performance, namely overlapping decoding to resolve a context breakage
between segments in decoding, pitch augmentation to enlarge the training dataset,
and adding noisy dataset with data cleansing. The experimental results imply that
combining the proposed methods significantly improves the performance. The pro-
posed model outperforms other models in note-level singing melody transcription
regarding note-level evaluation metrics. Through the analysis of FO estimation eval-
uation metrics, we show that the voice detection performance of the proposed model
is comparable to that of a previous study. Finally, the visualization of the results
and subjective listening test demonstrate that the proposed methods are effective

in achieving better transcriptions.

Third, using the recognized chords and melody, this thesis suggests methods
for conversion into the form of a lead sheet. To express music in the form of lead
sheet, aside from chords and melody, musical key information and beat tracking
are required for conversion into note units. For this, the study utilizes previously
published research results. As a result, the study identifies that it is possible to

transcribe lead sheets from audio signals.

Finally, the thesis suggests melody similarity assessment method by applying lead
sheet transcription. This study proposes methods to evaluate similarity based on rec-
ognized melodies. For this, the study adopts the self-supervised learning technique
to learn the similarities between unlabeled melodies. Through data augmentation
using musical theory, the study utilizes the data by transforming it adequately. Fur-

ther, by applying this into actual plagiarism detection and cover song identification,



the study examines the detection performance of proposed models.

1.3 Thesis Outline

The thesis comprises eight chapters, and the remaining chapters are organized as
follows. Chapter [2] examines the previous research on automatic music transcription
models and music plagiarism detection. Chapter [3| describes the problem definition
used in the thesis. In Chapter {4}, a bi-directional Transformer for musical chord
recognition is proposed. Chapter [f|introduces note-level singing melody transcription
method with Transformers. Combining the results of Chapters 4] and [5| automatic
music lead sheet transcription method is proposed in Chapter[6} Applying the results
of Chapter [0, melody similarity assessment with self-supervised covolutional neural
network is suggested in Chapter [7] Finally, the conclusion of this thesis and future

research directions are presented in Chapter



Chapter 2

Literature Review

2.1 Attention Mechanism and Transformers

2.1.1 Attention-based Models

The attention mechanism, first introduced by [24], can be described as computing an
output vector when query, key and value vectors are given. In sequence modelling
tasks such as machine translation, query and key correspond to certain elements
of the target sequence and the source sequence respectively. Each key has its own
value. The output is computed as a weighted sum of the values where the weights
are computed from the query and key. Self-attention refers to the case when query,
key and value are computed from the same input.

As depicted in Figure Transformer [2] is an attention-based network that re-
lies on attention mechanism only and does not include recurrent or convolutional ar-
chitecture. Utilizing multi-head attention together with position-wise fully-connected
feed-forward network, it showed significantly faster training speed and achieved bet-

ter performance than recurrent or convolutional networks for translation tasks.
Transformer used scaled dot-product as an attention function:

QK™

Attention(Q, K, V) = softmax( % (2.1)
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Figure 2.1: Model architecture of Transformer [2], a self-attention-based sequenceto-
sequence model

where @, K and V are matrices of query, key and value vectors respectively, and dg

is the dimension of key.

2.1.2 Transformers with Musical Event Sequence

Transformer [2], which demonstrated outstanding performance in various tasks deal-
ing with sequence data, was also often used in the field of MIR. Music Trans-
former [25] generates piano music as a sequence of note onset, note offset, set velocity,

and time-shift event tokens. The time-shift tokens express relative time, indicating



that the next event occurs after a certain amount of time follwing the preceding
event. Choi et al. [26] investigated chord conditioned melody generation by sym-
bolizing a monophonic melody as a sequence of pitch onset, hold, and rest tokens,

where each token in sequence is defined to be the length of a 16th-note.

The sequence-to-sequence Transformer has achieved state-of-the-art performance
in the task of piano transcription [27]. Despite the different lengths of audio feature
and musical event token sequences, the authors proposed to use audio features as the
encoder input and train the decoder to predict the output tokens autoregressively.
A polyphonic piano performance was represented as a sequence of tokens where the
token set consists of absolute time, note, velocity, and end of sequence (EOS). The
results of the experiment comparing relative time-shift and absolute time tokens
demonstrated that the latter performed better in piano transcription, due to the
prevention of error accumulation. Following the results, we also adopted absolute

time tokens for data representation.

In [13], a multi-task AMT Transformer was proposed, confirming that tran-
scription of arbitrary combinations of instruments is possible by training various
note-level instrument datasets simultaneously. The musical event sequence used in
the decoder consists of instrument, note, on/off, time, drum, end tie section, and
EOS. The instrument tokens enable distinguishing notes of different instruments.
Moreover, the authors introduced an end tie section token as a method of convey-
ing information about notes that were not turned off in the previous segment. The
multi-task AMT Transformer obtained high-quality transcription results on various

instrument datasets, but the task of singing transcription was not covered.

In this paper, referring to [27] and [13], a sequence-to-sequence Transformer is



applied to note-level singing transcription. While focused on polyphonic piano
transcription, this paper approaches the problem of monophonic singing melody

transcription.
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2.2 Chord Recognition

In the past, most automatic chord recognition systems were divided into three parts:
feature extraction, pattern matching and chord sequence decoding. After applying
transformation such as short-time Fourier transform or constant-q transform (CQT)
to an input audio signal, features are extracted from the resulting time-frequency
domain. Some examples of such hand-crafted features include chroma vectors and the
"Tonnetz” [28] representation. For pattern matching and chord sequence decoding,
Gaussian mixture models with feature smoothing [29,30] and HMMs [9,31] have
been the most popular choices, respectively.

With the recent wide acceptance of deep learning in research communities, there
have been many studies applying it to chord recognition task in various ways. The
very first deep-learning-based chord recognition system was proposed by [32] where
they trained a CNN for major-minor chord classification. Attempts to apply deep
learning to feature extraction include [33] and [34], where the former employed a
CNN to extract Tonnetz features from audio data and the latter adopted a deep
neural network (DNN) to compute chroma features. CNN and HMM were combined
for chord recognition in [35] and [36].

In addition to CNN, another popular network architecture for chord recognition
is RNN. [37] and [38] explored an RNN as chord sequence decoding method, relying
on deep belief network and a DNN, respectively. Another branch of RNN-based chord
recognition systems utilize a language model which predicts only the sequence of
chords without considering their durations. This might be helpful when the number
of chord labels is large. A large-scale study of language models for chord prediction

was conducted in [39]. Without audio data, the authors trained just a language
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model with the chord progression data only and showed that RNNs outperformed N-
gram models. In their succeeding work [10], they combined the RNN-based harmonic
language model with a chord duration model to complete the chord recognition task.

Another RNN-based approach is presented in [11] which trained a CNN feature
extractor with large MIDI (Musical Instrument Digital Interface) data and combined
BLSTM (Bi-directional Long-Short Term Memory) with CRF for sequence decoder.
This BLSTM-CRF model achieved good performance but has a drawback that its
training procedure involves complex MIDI pre-training. The model that we propose,

on the other hand, is much simpler to train.
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2.3 Note-level Singing Melody Transcription

For note-level singing transcription, it is essential to recognize the pitch, onset, and
offset of each note. Tony [40] enabled interactive annotation of melodies from mono-
phonic audio recordings. It supported note-level transcription by first performing
pitch tracking using pYIN [41] and then converting the FO results into note-level an-
notation with hidden Markov model [42]. Furthermore, consecutive notes of similar
pitch were segmented by applying the amplitude-based onset segmentation heuristic.

Omnizart [43] provided various AMT functions based on deep learning, such as
vocal transcription, chord recognition, drum transcription, and beat tracking. Its
vocal transcription module for polyphonic music adopted a hybrid network compris-
ing frame-level pitch extraction and note segmentation models. The authors used
pretrained Patch-CNN [44] for pitch tracking and improved the previously proposed
note segmentation model using Pyramid-Net with ShakeDrop regularization [45] and
virtual adversarial training [46].

The downside of various note-level singing transcription datasets is that the
amount of data is small or the annotations are inaccurate. Wang et al. [12] proposed
a large-scale dataset for singing transcription consisting of 500 pop songs (MIR-
ST500) by setting some labeling criteria and obtaining annotations from non-experts.
With the proposed dataset, they proposed a singing transcription model that rec-
ognizes onset, silence, pitch, and octave for each time frame using EfficientNet-b0.
EfficientNet-b0 [47] is a convolutional neural network model that showed state-of-
the-art performance on image classification , while keeping the model size small com-
pared to other models. The proposed model in this work was also trained and eval-

uated with MIR-ST500. Furthermore, although Wang et al. [12] stated that DALI
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has inevitable errors, we make use of the dataset as an additional noisy dataset.

Kum et al. [48] proposed a semi-supervised learning method to solve the problem
of insufficient note-level labeled data in singing transcription from polyphonic music.
The authors generated pseudo-labels by applying pitch and rhythm quantizations
to the results of a vocal pitch estimation model. The proposed singing transcription
model was trained with unlabeled audio data and the pseudo-labels. Furthermore,
the repeatedly applied self-training using the teacher-student framework [49] led to
additional performance improvement. They showed that the use of unlabeled data
in addition to labeled data can improve the performance of the singing transcription
model.

Donahue et al. [15] designed a system that produces lead sheets from music audio.
The authors claimed that using the audio feature of Jukebox [7] as input instead
of spectrogram features led to significant performance improvement when training
a Transformer [2] for melody transcription. However, only the performance for note
onset was reported; the specific training technique was not disclosed. This paper
proposes a note-level singing transcription Transformer and analyzes its performance

using various metrics.
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2.4 Musical Key Estimation

The musical key is a group of pitches that form the basis of music. The most general
key categorization method is expressing it as one of 24 types by dividing it into 12
pitches, major and minor. Studies to recognize the musical key from audio signals
have largely been conducted in the field of music information retrieval with the
development of digital signal processing technology. The early-stage key prediction
models [50-52] follow similar methods. First, audio signals are represented in the
form of time-frequency, which is converted into a chroma vector. Next, the resultant
chroma vector is compared with template vector for each key to predict to which
key it is the most similar. Such methods rely on hand-crafted features and therefore
have limitations such as low generalization performance.

Thanks to the introduction of deep learning on audio signal processing, many
studies have investigated key estimation. For example, [53| utilized convolutional
neural network to propose an end-to-end system for musical key estimation; this
data-driven model showed improved performance compared to relying on existing
hand-crafted features. Meanwhile, [54] proposed a model to overcome the issue of
large disparity of performance of key estimation models depending on the genre.
Likewise, convolutional neural network was used to propose the key estimation model
that is genre-agnostic through changes of model structures and a learning process.
There has also been research analyzing the impact on the key estimation model
depending on the convolutional neural network’s filter type [55]. In the case of key,
spectral characteristics—as opposed to temporal—were more important and it is
effective to use a suitable filter for this.

Recently, since chords and keys share musical characteristics, methods have been
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suggested that can predict them simultaneously through multi-task learning .
Aside from the classification model, a method to give a regularization effect by
utilizing variational auto-encoder and language model structure together has been
suggested. Multi-task learning for chord and key prediction has improved the per-
formance of key estimation.

In this thesis, key information is predicted using for automatic lead sheet

transcription.

16 : !;,‘ﬂ :Tr ]_” =



2.5 Beat Tracking

In music, the beat is a feature that represents the rhythmical characteristics. Beat
tracking is a matter of guessing when each beat exists in an audio signal. Among
beats, a strong beat at the beginning of a measure is called a downbeat. Since a
downbeat can distinguish each bar, it can be used to analyze a song’s structure.

In the early stages, the following methods were often used for beat tracking
[57]. Features are extracted from audio signals and the periodicity—represented as
tempo—within this is discovered. And through phase detection, the position of the
beat was estimated. These methods mostly required feature engineering and post-
processing.

Thanks to the introduction of deep learning, many studies have attempted data-
driven methods of learning the beat tracking model. At [58|, bi-directional Long
Short-term Memory [59], which is a recurrent neural network, was applied to beat
tracking. Instead of the existing complicated feature engineering work, audio signals’
spectral features were used and the beat activation function was created directly
through the neural network. Further, the position of each beat could be predicted
through peak detection. In [60], researchers suggested models to predict the beat
and downbeat together as they are both directly involved. Applying the recurrent
neural network directly into the magnitude spectrogram provided the output fea-
tures. Then, using a dynamic Bayesian network, the method to predict the beat and
downbeat positions could be suggested. the study identified good performance in
diverse genre and styles. Meanwhile, [61] suggested a multi-task method to predict
the tempo and beat that are closely related. Predicting tempo and beat at once had

the effect of improving the performances of tempo estimation and beat tracking.
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In [62], a temporal convolutional network beyond the existing recurrent approach
was suggested; the performance was best on existing beat-tracking datasets and the
training and computation was efficient.

For real-time beat tracking, [63] suggested methods of using predominant local
pulse information. Meanwhile, [64] suggested using a recurrent neural network and
enhanced particle filtering to perform online beat tracking method. This suggested
method improved the performance of online beat tracking, thereby showing a similar
level of results as offline methods.

This thesis used the model studied in [60] as it requires beat information to

represent melodies and chords as a lead sheet.
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2.6 Music Plagiarism Detection and Cover Song Identifi-
cation

Music plagiarism detection techniques are largely divided into audio and symbolic
based methods. In Dittmar et al. [17], since automatic music transcription tech-
nology has not been sufficiently developed, one limitation was proposing an idea
of monitoring melody plagiarism using pitch vector similarity and sequence align-
ment. Sie et al. [21] proposed a method in which the fundamental frequency was
extracted from audio signals to find plagiarized parts using path finding. However,
this was heavily reliant on the fundamental frequency recognition performance and
is difficult to use, other than for songs with only human voices or humming, such
as in general popular music, since their melodies are typically polyphonic. Borkar
et al. [65] proposed a music plagiarism detection method using audio fingerprinting
and sequence matching technology. However, there is an issue in the characteristics
of audio fingerprinting, namely that the performance becomes greatly reduced when
facing even a small transformation. It is appropriate for sample plagiarism detection
but difficult to operate for detection on melodies when sung by a completely different
singer.

Prisco et al. [18] proposed a music plagiarism detection method based on fuzzy
vector similarity by expressing symbolic melody rhythm and pitch as vectors. He
et al. [19] introduced a music plagiarism detection technique that could deal with
issues of shift, transposition, and tempo-variance problems using of bipartite graph
matching. Through this, locally similar sections can be found even among two songs
that have overall low similarity. Park et al. [20] represented a symbolic melody

as an image of piano roll forms and suggested a Siamese CNN-based plagiarism
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detection technique. However, symbolic melody-based detection techniques have low
applicability due to the limitation that they cannot be used for music audio signals.

The cover song identification task is a matter of identifying the same song sung
by different people. It is not the same as general plagiarism detection but can be
seen as similar in that it finds cases where a similar melody is newly recorded. [66]
approached the cover song identification matter using convolutional neural network.
First, the model is trained through classification using labels and then the model is
used to extract the representation from audio signals, which was used in the cover
song identification. [67] also studied cover song identification by partly transforming
the ResNet [68] structure. It suggested a structure to learn triplet loss and classi-
fication loss simultaneously. Through this, it was learned to extract the invariant
feature on key, tempo, timbre, genre while preserving the information on the type
of the song. Arcos [69] suggested the method of finger printing based on chord and
melody for cover song detection of western classical music. This method was used
for cover song detection by utilizing the chord and melody results extracted from
the audio signal as features.

This thesis deals with singing melody plagiarism detection and cover song de-

tection through melody similarity assessment.
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2.7 Deep Metric Learning and Triplet Loss

Deep metric learning maps input into feature vectors using the deep neural networks.
The distance between the feature vectors of different inputs in this manifold space
can thereby be calculated. Deep neural network, which maps the input into feature
vector is usually learned through stochastic gradient descent, for which the loss
function needs to be defined. It should be learned that the feature vectors of the
same label’s data need to be close, while the feature vectors of different label’s data

need to be far away in manifold space.

The most frequently used loss function of deep metric learning is triplet loss |70,
which calculates the loss using a pair of dataset consist of anchor, positive sample,
and negative sample. An anchor is the standard input data, while a positive sample
is data that is either same or similar to the anchor. A negative sample is data not
relevant to the anchor. Therefore, it should be represented on the manifold that the
anchor and positive sample are close while anchor and negative sample is far. This

can be expressed visually, as in Figure 2.2.

Negative Negative

Learning .

Anchor Anchor

Positive Positive

Figure 2.2: Minimizing triplet loss makes the distance between anchor and positive
sample (which have the same label) close while making the distance between anchor
and negative sample far, which have different labels.
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The triplet loss function is as shown in Equation

N

Triplet(a,p,n,o) = Y [If(af) = @5~ £ @) = F@DI3+a] | (22)

i
a, p and n are anchor, positive sample, and negative sample, respectively, while f
is embedding function consisting of deep neural network. « is the margin, and N
refers to the total number of data pairs. Deep neural network is learned to minimize
this loss.

This thesis uses triplet loss to represent the similar melodies as close in manifold

space for music plagiarism detection.
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Chapter 3

Problem Definition

3.1 Lead Sheet Transcription

Popular music audio signal MWWW

Chord ] Singingmelody];""M[,‘S};:;.'l;(;;,“"; --------------------
recognition transcription | i estimation :

Nemeem e

Lead sheet

Time signature Singing melody

Figure 3.1: The whole process of automatic lead sheet transcription.

Popular songs consist of diverse musical instruments, sound, and singing. A lead
sheet is a form of notes to briefly indicate melody, lyrics, and chords, which are the
essential elements of popular songs. Lead sheet transcription is a matter of converting

the popular song’s music audio signals into a lead sheet. The entire process can be
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expressed visually, as in Figure [3.I} For this, chord, singing melody, key, and beat
need to be recognized and the results need to be combined to be finally converted into
lead sheet through post-processing. This thesis does not include lyric recognition.
Existing research outcomes are used for key and beat recognition while this thesis

focuses on chord and melody recognition.

3.1.1 Chord Recognition

Chords are highly abstract and descriptive features of music that can be used for a
variety of musical purposes, including automatic lead-sheet creation for musicians,
cover song identification, key classification and music structure analysis [71-73].
Since manual chord annotation is labor intensive, time consuming and requires ex-
pert knowledge, automatic chord recognition system has been an active research area
within the music information retrieval community. Automatic chord recognition is
challenging due to the fact that 1) not all the notes played are necessarily related
to the chord of the moment and 2) simple one-hot encoding of chord labels cannot

represent the inherent relationship between different chords.

Aol e -
(Input) ‘ J
Ll PPy

‘ Context Information |

Recognition results s Tc[c[c[a|A]A[em[em[em[a]a]A]A]c]c]|c]0]
(Output)

Figure 3.2: Problem definition of chord recognition.
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The goal of chord recognition task is to output a sequence of time-synchronized
chord labels when a raw audio recording of music is given as input. The chord
recognition can be expressed visually, as shown in Figure It is a matter of
guessing which chord is in each section by dividing into time frames within the audio
signal. The final chord recognition results are represented into sequence consisting

of start time, end time, and chord symbol, as seen in Figure [3.3

Starttime  End time Chord

0.00 10.00 N
10.00 11.94 G#
11.94 16.67 D#
16.67 17.41 N
17.41 19.17 F#
19.17 20.65 B
20.65 22.22 F#

Figure 3.3: An example of chord recognition result.

3.1.2 Singing Melody Transcription

Automatic music transcription, which refers to converting an audio signal into the
form of a symbolic score, is one of the most important research topics in the field of
music information retrieval. Among the symbolic score forms, expressing notes with
onset and offset time and pitch is referred to as note-level representation. Many at-
tempts have been made to transcribe a singing melody into note-level representation,
but this remains a difficult task. In vocal melodies, the onset and offset are often not

apparent. Contrary to the exact pitch of instruments such as a piano, pitch vibrato
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appears in various patterns depending on the style of the vocalist. Moreover, for a
vocal melody in polyphonic audio with accompaniment, it is necessary to distinguish

vocal timbres from mixed pitch patterns.

A ST o i -
(Input) | | ‘
1

Piano roll (Note-level)

Recognition results G3 —

(Output) E3 [

0.10.2 0.30.4050.60.70.80.9

Figure 3.4: Problem definition of singing melody transcription.

The purpose of singing melody transcription is the recognize the monophonic
vocal melody at note-level from popular music audio signals. It can be expressed
visually, as in Figure A single note consists of start tame, end time, and pitch,
while pitch is recognized as MIDI pitch at the semitone level. The final singing

melody transcription result is as seen in Figure
3.1.3 Post-processing for Lead Sheet Representation

Since the results of the chord recognition and melody transcription are the time
unit, in order to represent these as notes in lead sheet, additional information is
required. Further, in order to convert each chord and melody into the notes used

in sheet music, beat tracking is required. When using the beat tracking results, the
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Starttime Endtime MIDI pitch

6.29 6.49 58
6.49 7.19 60
8.95 9.27 58
9.27 10.23 58
11.83 12.19 56
12.19 12.35 60
12.35 12.97 60

Figure 3.5: An example of singing melody transcription result.

time for each beat can be identified; thereby, chord and melody of time unit can be
expressed into note of sheet music. Additionally, lead sheet needs to express musical
key information, which requires key estimation from audio signals. Post-processing
is a process of expressing the combined results of chord, melody, key, and beat
recognition for representation in the lead sheet. Through this, music audio signals

are converted into the final lead sheet form.
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3.2 Melody Similarity Assessment

The purpose of the melody similarity assessment is to find the most similar section
by evaluating the similarity of a popular music audio signal with the melody of other
audio signals. This can be expressed visually, as shown in Figure For melody
similarity assessment, it is important to discover similarities of specific sections as
opposed to the entire song. Therefore, it is a matter of finding sections that can be
considered similar with respect to each section of the input song by comparing the
melody of all the songs within the set to be compared. This problem setting can be

used for melody plagiarism detection and cover song detection.

Fo-Hefo-pie

(?.uety | Database
(Audio signal) (Audio signal)

Query section

(sec) Searched song  Section (sec) Distance
10 ~ 20 () A;;i,tgp; - 25 ~ 36 0.04
120 ~129 () Asrgf];% ] 161 ~ 169 0.07
78 ~ 85 (s) Asrgf]tgi ; 15~ 23 0.10

Figure 3.6: Problem definition of melody similarity assessment.
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Chapter 4

A Bi-directional Transformer for Musical Chord
Recognition

4.1 Methodology
4.1.1 Model Architecture

Making use of appropriate surrounding frames is essential for successful chord recog-
nition [30}74]. This context-dependent characteristic of the task is the motivation
for applying the self-attention mechanism. With some modification to the original
Transformer architecture, we present a bi-directional Transformer for chord recog-

nition (BTC)]T]

"https://github. com/jayg996/BTC- ISMIR19
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Figure 4.1: Structure of BTC. (a) shows the overall network architecture and (b)
describes the bi-directional self-attention layer in detail. Dotted boxes indicate self-
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The structure of BTC is shown in Figure[£.I] The model consists of bi-directional
multi-head self-attentions, position-wise convolutional blocks, a positional encoding,
layer normalization |75], dropout [76] and fully-connected layers. The model takes a
CQT feature of 10 second audio signal (Section as input. The results of adding
positional encoding are given as input to two self-attention blocks with different
masking directions, indicated as dotted boxes in Figure (b) The outputs are
concatenated and are fed into a fully-connected layer so that the output size is the
same as the original input. A stack of IV bi-directional self-attention layers is followed
by another fully-connected layer that outputs logit values. The size of the logit values
is the same as the number of chord labels. These logits are used to predict the chord
and calculate the loss.

The loss function is a negative log-likelihood and all the model parameters are

trained to minimize the loss given by the following equation (4.1)).

T

L==>"> y(t)log(yc(t) (4.1)

t=1 ceV

T is the number of total time frames and V is the chord label set. y.(t) is 1 if
the reference label at time ¢ is ¢ and 0 otherwise. .(t) is the output of the model,

representing the probability of the chord at time ¢ being c.

Bi-directional Multi-head Self-attention

BTC employs multi-head self-attention as in the original Transformer. For each time
frame, the input features are split into ny, pieces and provided as input to the multi-
head self-attention with the number of heads, nj,. Given I as an input matrix, the

multi-head self-attention can be computed as (4.2):
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Multihead = Concat(heady, ..., head,, )Wo (4.2)

Qj = (IWg);,K; = (IWk); and V; = (IWy); are given as input to the atten-
tion function to produce head; for j = 1,...,n,. Wg, Wk and Wy are fully-
connected layers that project the input to the dimension of @), K and V', respectively.
Wo is also a fully-connected layer that projects the concatenated output of dimen-
sion (ny X dy;) to the dimension of the final output. Dropout is applied to the softmax

output weights when computing each head;.

In BTC, self-attention can be interpreted as determining how much attention to
apply to the value of the key time frame when inferring the chord of the query time
frame. To prevent the loss of information due to the attention being performed to the
entire input at once, we employed bi-directional masking. The forward / backward
direction refers to masking all the preceding / succeeding time frames. The same
masked multi-head attention module as the Transformer decoder was adopted. The
bi-directional structure enables BTC to fully utilize the context before and after the

target time frame.

Since the multi-head attention is performed on every time frame in the sequence,
information about the order of the sequence is lost. We employed the same solution
proposed by Transformer to address this issue: adding positional encoding results
to the input, which are obtained by applying sinusoidal functions to each position.
Since relative positions between two frames can be expressed as a linear function
of the encodings, positional encoding helps the model learn to apply attention via

relative positions.
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Position-wise Convolutional Block

To utilize the adjacent feature information in a time frame, we replaced the position-
wise fully-connected feed-forward network from the original Transformer architecture
with a position-wise convolutional block. The position-wise convolutional block con-
sists of a 1D convolution layer, a ReLU (Rectified Linear Unit) activation function
and a dropout layer, where the whole sequence of layers is repeated n¢ times. Input
and output channel size were identical to keep the feature size and sequence length
constant. With the position-wise convolutional block, we anticipate to search the
boundary and smooth the chord sequence by exploring adjacent information at each

time frame.

4.1.2 Self-attention in Chord Recognition

For chord recognition, it is important to utilize not only the information from the
target time frame but also from other related frames, which we call the context. The
network architectures such as convolutional neural networks (CNNs) [77] or recurrent
neural networks (RNNs) [78] can also explore the context, but self-attention is more
suitable for the task because of the following reasons.

First, self-attention has selective usage of attention. In other words, the receptive
field can be adaptive unlike CNNs where the kernel size is fixed. For example, assume
that the labels for 16 frames are Cs for the first four frames, Gs and Fs for the next
eight frames and Cs for the last four frames (see Figure . Consider the situation of
recognizing Gs in frames 5 to 8. As for a CNN with kernel size of 3, when recognizing
the chord of frame 7, the receptive field (frame 6 to 8) would be informative enough

since all the frames contain the same chord. However, when inferring frame 5, the
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1 4 5 6 7 8 12 13 16

Figure 4.2: Chord sequence example

receptive field of frame 4 to 6 contains not only G but also C. With self-attention, on
the other hand, the model can pay attention to the section of frame 5 to 8 regardless
of the target frame’s position.

Another advantage of attention mechanism is its ability to capture long-term
dependency effectively. RNNs can also utilize distant information but direct access
is not possible. For CNNs, there are two ways to access distant frames: by stacking
layers in depth or by increasing the kernel size. The former has the same drawback
as RNNs and the latter has the disadvantage that the weight sharing becomes less
effective. Unlike these, self-attention has direct access to other frames no matter
how far they are. Specifically, when recognizing the chord of frame 13, performing
attention to first four frames would be helpful since they all contain C. With RNNs
or deep CNNs, information that the first four frames were C would inevitably be

diluted while passing through frames 5 to 12.
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4.2 Experiments

4.2.1 Datasets

BTC and other baseline models were evaluated on the following datasets. A subset
of 221 songs from Isophonicﬂ 171 songs by the Beatles, 12 songs by Carole King, 20
songs by Queen and 18 songs by Zweieck; Robbie Williams [79]: 65 songs by Robbie
Williams; and a subset of 185 songs from UsPopQOOQEL These datasets consist of label
files that specify the start time, end time and type of the chord. Due to copyright
issue, these datasets do not include audio files. The audio files used in this work were
collected from online music service providers (e.g. Melorﬁ), which do not always
provide the same audio files corresponding to the songs in the datasets. Since it was
not possible to get exactly the same audio files, there were subtle differences in the
chord start time of the label file and audio file. Accordingly we manually matched
the labels to the audio file by shifting the whole label file back and forth, which

resulted in no more than adding or deleting some “No chord” labels.

4.2.2 Preprocessing

Each 10-second-long audio signal (consecutive signals overlapping 5 seconds) was
processed at the sampling rate of 22,050Hz using CQT with 6 octaves starting from
C1, 24 bins per octave, and the hop size of 2048 [11]. The CQT features were
transformed to log amplitude with Sj,; = In(S + €) where S represents the CQT
feature and € is an extremely small number. After that, global z-normalization was

applied with mean, variance from the training data.

2http://isophonics.net/datasets
3https://github.com/tmc323/Chord-Annotations
“http://www.melon.com
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Pitch augmentation was also employed to the audio file with pyrubberbandﬂ
package and labels were changed with pitch variation. Pitch augmentation between
-5 ~ 46 semitones were applied to all the training data.

Two different label types were used: maj-min and large vocabulary. The maj-min
label type consists of 25 chords (12 semitones x {maj, min} and “No chord”) [80].
The large vocabulary label type consists of 170 chords (12 semitones x {maj, min,
dim, aug, min6, maj6, min7, minmaj7, maj7, 7, dim7, hdim7, sus2, sus4} and “X
chord : the unknown chord”, “No chord”) [81]. From the label files, we extracted
the chord that matches the time frame of input feature and transformed it to the

appropriate label type.

4.2.3 Evaluation Metrics

The evaluation metric was weighted chord symbol recall (WCSR) score and 5-fold
cross validation was applied to the entire data. When separating the evaluation data
from the training data, there was no song included in both. The WCSR score can
be computed as , where t. is the duration of correctly classified chord segments

and t, is the duration of the entire chord segments.

WCSR = % x 100(%) (4.3)

a
Scores were computed with mir_eval [82]. Root and Maj-min scores were used
for the maj-min label type. Root, Thirds, Triads, Sevenths, Tetrads, Maj-min and
MIREX scores were used for the large vocabulary label type. To calculate the score

with mir_eval, the chord recognition results were converted into label files.

Shttps://github.com/bmcfee/pyrubberband
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4.2.4 Training

Bi-directional
self-attention
layer

layer repetition (V)

{1,2, 4, 8,12}

self-attention heads (np)

{1, 2, 4}

dimension of Q, K, V
and all the hidden layers

{64, 128, 256}

Position wise block re.petltlon (ne) 2
. kernel size 3
convolutional -
block stride 1
padding size 1
Dropout dropout probability {0.2, 0.3, 0.5}

Table 4.1: Hyperparameters of BT C. Hyperparameters with the best validation per-
formance are shown in bold.

Specific hyperparameters of BTC are summarized in Table[4.1] The hyperparam-
eters with the best validation performance were obtained empirically after applying
in 5-fold cross validation. Adam optimizer [83] was used with initial learning rate
of 10™%. Learning rate was decayed with rate 0.95 when validation accuracy did not

increase. Training was stopped if the validation accuracy did not improve for over

10 epochs.
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4.3 Results

4.3.1 Quantitative Evaluation

Since existing studies of chord recognition were evaluated on different datasets, it
is difficult to say that a particular model is the state-of-the-art. Among the models
that were trainable with our datasets, we chose three baseline models with good
performance: CNN, CNN+CRF and CRNN. CNN is a VGG [84]-style CNN and
CNN+CRF has an additional CRF decoder [80]. CRNN is a combination of CNN
and gated recurrent unit [85], named ”CR2” in [81]. The input was preprocessed as
mentioned in Section for BTC and CRNN. For CNN+CRF and CNN; a single
label was estimated with a patch of 15 time frames, in a similar way to [80].

Table shows the performance comparison results of the baseline models and
BTC for two label types. The best value for each metric is represented in bold.
Among the models without a CRF decoder, BTC showed the best performance for all
metrics. Including models with a CRF decoder, CNN+CRF obtained the best result
in most of the metrics. Still, BTC shows comparable performance to CNN+CRF,
performing better in Sevenths and Maj-min metrics for the large vocabulary label
type.

The main purpose of training a CRF decoder is to smooth the predicted chord se-
quences that are often fragmented. The performances of CRNN+CRF and BTC+CRF
are also presented in Table for comparison. Performance improvements due to
the introduction of CRFs are evident in CNN but not in BTC and CRNN. This
indicates that outputs of CNN were fragmented and an additional decoder training
is necessary for better performance. On the other hand, BTC and CRNN can be

trained with only CQT features and chord labels. That is, BT'C requires only a single
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training phase while achieving the performance comparable to that of CNN+CRF.
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Model maj-min label type large vocabulary label type

Root Maj-min Root Thirds  Triads Sevenths Tetrads Maj-min MIREX

CNN 83.6x1.3  81.8+x12 | 83.5x14 80.4x12  75.5x06  71.5bx19 652110 81.9x14  79.8x07

CNN+CRF [80] | 84.0+1.3 83.1:14 | 83.7x15 81l.1i1a 76.3:0s 71.3x19 65.7x16 821115 81.8+11
CRNN [81] 83.4+08  82.3+0.9 82.9+11  80.1t10 75.3+07 71.3+19  65.2:109 81.5+13  79.9+0s o
CRNN+CRF 83.3+08  82.3+10 | 82.7+12 79.7+x09 74.8x05 69.5+20 63.9+10 80.7x14  80.2+1.0 =

BTC 83.8+1.0  82.7x10 | 83.5x12 80.8+10 75.9+05 T1.8+17 655109 82.3:112  80.8x09

BTC+CRF 83.9+10 83.1+11 | 83.5+12  80.7+11  75.7+0os5  70.7+20 64.8+11  81.7+14  81.4+09

Table 4.2: WCSR scores averaged over the same 5 folds. Numbers next to the scores denote the standard deviations.



4.3.2 Attention Map Analysis

Recognition Recognition
G A B.min‘ A G F#'mm‘ B:min ‘ A G A G A Bmin A G F#:min‘ B:min | A G A
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(a) Self-attention layer 1 (b) Self-attention layer 3
Recognition Recognition oo
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— 001
[} f]
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= =
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'&’ g —0.00
Q D
14 [vd

(c) Self-attention layer 5 (d) Self-attention layer 8

Figure 4.3: The figures represent the probability values of the attention of self-
attention layers 1, 3, 5 and 8 respectively. The layers that best represent the different
characteristics were chosen. The input audio is the song ”Just A Girl” (0m30s ~
0m40s) by No Doubt from UsPop2002, which was in evaluation data.
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Attention maps demonstrate that each self-attention layer has different char-
acteristics. Figure shows the attention map of self-attention layers 1, 3, 5 and
8, trained with the maj-min label type. The lower / upper triangle of each atten-
tion map represents the attention probability of the forward / backward direction
self-attention layer. The labels of the vertical axis and the horizontal axis are the
reference chord and the chord recognition result of the target time frame, respec-
tively. The cell of i-th row and j-th column represents the attention probability to

the j-th time frame when inferring the chord of the ¢-th time frame.

At the first self-attention layer, only neighboring frames are used to construct
the representation of the target frame. For the third layer, the attention is widely
spread over all time frames, yet still with higher probabilities for nearby frames than
distant frames. At the fifth layer, several adjacent time frames form a group, which
appears in a rectangular region in the attention map. This means that the model
divides the whole input into some sections, which is possible due to the adaptive
receptive field. The network focuses only on a few important sections to identify
the target frame, regardless of the distance between section and the frame. Unlike
the fifth layer, attention is more dense in certain regions at the eighth layer. In
particular, the boundary of the high probability region matches that of the final

recognition result.

Specifically, at the fifth layer in Figure ¢), the reference chord for region
® is B:min. Region @ shares the same reference chord B:min and the network
assigns high attention probabilities to region @ for time frames in region @. This
phenomenon is similar in layer 8 between @' and @' (Figure d)), which results

in the correct final chord recognition of B:min. In contrast, for region @ where the
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reference chord is G, the attention probability is high at layer 5 but not for region
@' at layer 8. This can be attributed to G and B:min sharing two notes in common,
since G and B:min consist of (G,B,D) and (B,D,F#) respectively. In other words,
attention at layer 5 can be seen as attention to partial features of chords sharing the
same notes. None the less, the final recognition result after the last layer is not G
but B:min. This is possible because of the multi-head attention structure: the other
heads might lower the attention probability even if the attention to a wrong chord
is active, leading to the correct result.

On the other hand, there are cases where the recognition results are wrong in
a similar situation. The reference chord for regions ® and ®' is A. At layer 5, the
attention mechanism seems to work well with high attention probabilities to region
@,®,® and @, where the reference chords are all As. However, the attention to
those regions cannot be seen at the last layer, and the final recognition result is not
A but F#:min. This recognition failure can be regarded as a result of two notes of
F#:min (F#,A,C#) overlapping with A (A,C#,E).

To summarize, for each target frame in the input audio, the model uses only
neighboring frames at first. At the middle layers, the model gradually broadens the
receptive field and selectively focuses on time frames with characteristics similar to
that of the target frame. Finally, at the last layer, the attention is performed on only

essential information for chord recognition.
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Chapter 5

Note-level Singing Melody Transcription

5.1 Methodology

We propose a sequence-to-sequence note-level singing melody transcription Trans-
former and some techniques to improve the performanceﬂ In Section a novel
note event token set is defined to express a monophonic melody as a token sequence.
Section describes audio features which are given as input to the model. Sec-
tion introduces the overall model structure with its difference from the original
Transformer, while Section describes the inference and masking strategy to en-
force the output sequence to be monophonic. Section [5.1.5|to Section [5.1.7) introduce
three techniques for effective singing melody transcription respectively, namely over-

lapping decoding, pitch augmentation, and adding noisy dataset with data cleansing.
5.1.1 Monophonic Note Event Sequence

In this paper, a monophonic melody is represented as a sequence of musical event
tokens. Each token in the event token set belongs to one of the following types: time,
pitch, start of sequence (SOS), EOS, or padding (PAD).

By fixing the length and time resolution of an audio segment at N seconds and

10 ms, respectively, the number of time frames in the segment is T'= 100 x N + 1,

"https://github.com/jayg996/IDA-Singing-Melody-Transcription
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Monophonic note

Piano roll
event sequence

<SOS>
<time 0.10> <onset 52>
a3 —— <time 0.40> <offset>
<time 0.40> <onset 52>
> <time 0.60> <offset>
<time 0.70> <onset 55>
<time 0.90> <offset>
<EOS>

E3 I

01 02 03 04 05 0.6 0.7 08 0.9

Figure 5.1: An example of a monophonic note event sequence. Time tokens indicate
the absolute positions of the events in the audio segment. A pitch token represents
either an onset event of one of the 128 MIDI pitch numbers or an offset event.

which equals to the number of different absolute time tokens. As in [27], 128 pitch
onset tokens are used, each symbolizing the onset of a MIDI pitch from 0 to 127.
The difference is that a single offset token represents the offset of all 128 MIDI
pitches, thereby enforcing the melody to be monophonic. If the onset of a note
occurs immediately after the offset of the previous note, the offset event precedes
the onset event. Finally, SOS and EOS tokens are added to the beginning and the
end of the sequence, respectively. PAD token is used after EOS token to equalize the
length of the sequences in a mini-batch. An example of the monophonic note event

sequence is depicted in Figure
5.1.2 Audio Features

The magnitude values of STFT were utilized as the input audio representation. The
audio sample rate was 16 kHz, and the window size and the hop length of STFT were
2,048 and 160, respectively. The length of the unit time frame was 10 ms. The STF'T
parameters previously used in singing melody FO estimation [1] were referenced.

In training phase, the audio signal is randomly cropped into sections of N sec-
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onds. A single time frame can correspond to various time tokens through random

cropping, so it is possible to provide various training data.

5.1.3 Model Architecture

Output Probabilities
[ Transformer Encoder ]7 T
T [ Softmax ]

[ Encoder Embedding ] T

N
[ Linear

i

~
4{ Transformer Decoder
J

STFT T
Representation N
T [ Decoder Embedding
J
Outputs
Audio Waveform (shifted right)

Figure 5.2: Overall structure of the proposed note-level melody transcription model.
Transformer encoder and decoder are similar to those of the original Transformer [2].

The structure of the proposed note-level singing melody transcription model
is depicted in Figure While [27] adopted T5 [86] as the network architecture,
our model resembles the original Transformer [2] with some modifications to the
embedding layers.

Since the input of the encoder is STFT, layer normalization [87] is first applied to
normalize STFT magnitude values. After adding sinusoidal positional encoding, an-
other layer normalization is applied given that the warm-up stage can be omitted by
pre-normalization [88]. Figure shows the resulting embedding layer architectures

of encoder and decoder.
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Encoder Embedding Decoder Embedding

Layer Norm Layer Norm

Sinusoidal Sinusoidal
Positional ——»(D) Add Positional ——>(1) Add

Encoding Encoding
Linear Token
Embedding

Outputs
STFT (shifted right)
Representation
(@) (b)

Figure 5.3: Detailed structures of (a) encoder and (b) decoder embedding layers. In
the encoder, layer normalization is first applied to normalize the STFT magnitude
values. Both encoder and decoder embedding layers apply layer normalization after
adding the positional encoding.

5.1.4 Autoregressive Decoding and Monophonic Masking

At the inference phase, the event tokens are decoded autoregressively. The encoder
receives an audio signal of N seconds as input, and the decoder autoregressively
predicts the next token, starting from SOS until EOS.

Several maskings are applied when computing the subsequent token probabilities,
to ensure that the recognition result is a monophonic melody. Time and pitch tokens
are forced to be decoded alternately by masking one type after another. When time
tokens are to be predicted, tokens that indicate the previous time are masked. For
the prediction sequence to end within a limited length, the last token of the decoder

output is forced to be EOS.

5.1.5 Overlapping Decoding

In [27], non-overlapping audio segments were recognized separately and the results

were combined to transcribe longer audio signals. Such non-overlapping decoding
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Figure 5.4: Hllustration of the difference between overlapping and non-overlapping
decoding. N, M, and L are the input length of the model, the hop size, and the
length to be omitted, respectively.

has a problem in that the context of the previous segment is lost. For example, if
a segment is truncated after a note onset but before its offset, decoding should be

performed in the next segment without the note’s onset information.

We propose overlapping decoding in this paper to overcome the limitation. With
overlapping decoding, successive segments overlap for a certain length of time. This
prevents the context from being disconnected by transferring some of the results
recognized in the previous segment to the next segment. Among the notes recognized
in the previous segment, notes that overlap with the next segment are replicated to
the next segment by modifying the time tokens to match the absolute time within
the next segment. These notes act as a prior sequence when autoregressively inferring
the next segment’s notes. And to avoid discontinuity in the transcription results, a
certain length of time in the end of the overlapping region is discarded and inferred

again in the next segment.

As depicted in Figure the hop size between segments is M seconds, where
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M < N/2. The events recognized in the last L seconds are discarded where L < M,
and the window of length N moves on to the next overlapping segment. The first
M seconds of the prediction sequence is stored for the entire sequence, and the
succeeding N — (M + L) seconds is used as the prime sequence for the next segment.
Accordingly, it is possible to transcribe the audio signal using the context of the

previous segment.

5.1.6 Pitch Augmentation

As training a deep learning model requires a large amount of data, data augmen-
tation is one of the most common attempts to improve performance [89]. Various
augmentations such as pitch shifting and time stretching has been widely adopted
in previous studies in the field of MIR [90]. Especially in AMT, since acquiring the
pair of music audio and high-quality label data is very costly and time consuming,

data augmentation is one attractive option to enlarge training data.

To be more specific, pitch augmentation refers to shifting the entire pitch of
an audio clip several semitones up or down. Through pitch augmentation, various
pitch tokens can be uniformly exposed during the training process. This prevents the
output probability distribution of pitch tokens from being biased to some common

tokens, resulting in less overfitting and generalization of the model.

In this work, a Python library designed to apply effects to the audio signal,
pysndfz EL is used to augment pitch of audio. Pitch augmentation is randomly applied

only during training, from -6 to +6 semitones, to both the audio and label data.

“https://github.com/carlthome/python-audio-effects
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5.1.7 Adding Noisy Dataset with Data Cleansing

A large amount of training data is required to develop a model with robust perfor-
mance, but obtaining high-quality labeled data is laborious. Although DALI [91] is
a noisy dataset with incorrect labels, some of the songs are labeled correctly, and it
would be a more valuable dataset if one could distinguish between the correct and
incorrect songs. When examining the DALI dataset, it turned out that the most
common label errors were octave error and time shift. Therefore, we manipulated
the label in terms of octave and time shift and compared it with the FO estima-
tion [1] result, and classified it as data that can be used for training if it exceeds a
threshold.

Specifically, data cleansing was performed by shifting the annotation in both
pitch and time axes and comparing with the recognition result of FO estimation [1].
The sliding window sizes were 1 octave and 10 ms for pitch and time, respectively,
in the ranges of -2 ~ 42 octaves and -5 ~ +5 seconds. For a song, if the maximum
raw pitch accuracy of FO estimation among the shifted candidates was lower than

0.6, the song was discarded.
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5.2 Experiments

5.2.1 Dataset

In this paper, two public datasets were used: MIR-ST500 [12] and DALI [91]. MIR-
ST500 is a dataset with note-level annotations of vocal melodies for polyphonic
audio signals. It consists of 500 songs, and only 474 songs were available at the time
of the experiments. The dataset was split into three sets: songs numbered from 1
to 350, 351 to 400, and 401 to 500, which were used for training, validation, and
testing of the experiments, respectively. To enable direct comparison with previous
studies [12,48], we used the same data split as the publication of the dataset. As for
the test data split, all 100 songs were available without missing data, and was used

for the ablation study and comparison with other models.

DALI is another note-level singing melody annotation dataset for polyphonic
audio signals. It is the largest public singing transcription dataset currently available.
A total of 4,927 songs were available, but the dataset has many incorrect labels
because it was annotated automatically [12,[92]. Therefore, data cleansing described
in Section [5.1.7] was applied. Consequently, 858 songs were left, which were used

only for training to verify the effect of the additional noisy dataset.

MedleyDB [93], an FO dataset which differs from a note-level dataset, was also
evaluated for performance evaluation and comparison. The test data split of [94]
was adopted, and only 12 songs were used as in [1,|49]. The FO annotations of vocal

melody in polyphonic audio were used as labels.
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5.2.2 Experiment Configurations

Specific hyperparameters of Transformer are summarized in Table and other con-
figurations used in the experiment are as follows. The model was trained with cross
entropy loss function. The Adam optimizer was adopted, with an initial learning rate
of 0.0001 and a batch size of 12. The learning rate was decayed with a factor of 0.5 if
the validation loss did not decrease for more than 3 epochs, and the experiment was
terminated if the loss did not decrease for 10 epochs. The number of time tokens was
1,025, enabling representation of 0 to 10.24 seconds with a time resolution of 10 ms.
Adding 128 pitch onset tokens and offset, SOS, EOS, and PAD tokens to the token
set results in a total of 1,157 tokens. The duration of the audio input N was fixed
to 5.12 seconds during training and inference. In overlapping decoding, the hop size

M and the length of the last part to be discarded L were 2.56 and 1.28 seconds,

respectively.
Table 5.1: Hyperparameters of Transformer.
number of layers 8
embedding dimension 512
Transformer | self-attention heads 8
encoder dimension of query, key, value 512
hidden size of feed-forward networks | 1024
dropout probability 0.1
number of layers 8
embedding dimension 512
self-attention heads 8
Transformer - :
decoder dimension of query, key, value 512
hidden size of feed-forward networks | 1024
dropout probability 0.1
maximum length 512
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5.2.3 Evaluation Metrics

The transcription metrics of mir_eval [82] were used for the evaluation of note-level
singing melody transcription. Four types of metrics were selected: onset time, offset
time, onset with pitch, and note-level which considers all of the onset, offset, and
pitch. A threshold was set according to each criterion to evaluate the transcription
results, and is considered correct if the difference between the predicted value and
the groundtruth is less than the threshold. In this paper, the thresholds for onset
time, offset time, and pitch were 50 ms, maz (50 ms, 0.2xnote duration), and 50 cents
(= 0.5 semitone), respectively. For each metric with different criteria, the recall (R),
precision (P), and F1 score (F) were all evaluated.

Additionally, FO estimation evaluation metrics were used to evaluate the voice
detection and pitch-only transcription performance. The melody metrics of mir_eval
were used as the evaluation metrics for FO estimation. Note-level labels and pre-
dictions were converted into FO sequences with the time resolution of 0.01 seconds.
For time frames not included in any note, the frequency was set to 0 Hz (unvoiced).
Voicing recall rate (VR) and voicing false alarm rate (VFA) were used as metrics
to evaluate voice detection. Raw pitch accuracy (RPA) and raw chroma accuracy
(RCA) were used as metrics to evaluate pitch tracking. Overall accuracy (OA) was
used as a metric to evaluate the performance of voice detection and pitch track-
ing simultaneously. The threshold to judge the correctness of the pitch was set at
50 cents. Equations — are defined to compute each metric. The number of
voiced frames and the total number of frames in the reference are denoted by v and
t, respectively. 0., P, and ¢, are the number of correctly predicted frames for voice

detection, pitch, and chroma, respectively. ¥;. is the number of frames incorrectly
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predicted as voiced frames and £, is the number of all frames correctly predicted.

_ Y 1

VR= (5.1)
@ic

VFA= (5.2)

t—wv

RPA = % (5.3)
Ce

OA = ? (5.5)

5.2.4 Comparison Models

EfficientNet-b0 [12] was chosen as a comparative model to train and test on MIR-
ST500 dataset. The metrics were computed from the public prediction results of the
test dataset released by the authors. JDCy,ote [48] is a model trained with the labeled
MIR-~ST500 and additional unlabeled datasets through self-training. The experiment
results reported for the test set of MIR-ST500 were compared directly.

Tony [40] and Omnizart [43], which are public note-level singing transcription
models, were also selected as comparative models. The transcription result of Tony, a
public software, was analyzed by exporting the result to MIDI. Vocal audio separated
using Spleeter [6] was given as an input to Tony because the performance of singing
transcription dropped significantly for polyphonic audio. The singing transcription
result of Omnizart was obtained using a public source code library.

For the comparison model of vocal melody F0 estimation, JDC [1] was chosen. It
can recognize a vocal melody from polyphonic audio with its voice detection module.

The pre-trained model shared by the authors was used for performance evaluation.
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5.2.5 Human Evaluation

In order to analyze whether our proposed model achieved significant performance
improvement, we asked people to evaluate the results. The transcription result was
converted into a MIDI piano sound source and was played along with the original
audio. In addition, the piano roll was provided as an image so that the results of
transcription could be visually evaluated.

A total of three transcription results were evaluated: ground truth, EfficientNet-
b0 [12], and the propsed model. Since ground truth is the most accurate transcription
result, it was used as a criterion for accurate transcription when people listened to
it and evaluated it. EfficientNet-b0 was selected as a comparison model because
it showed the highest note-level F1 score among comparison models. In the test
dataset of MIR-ST500, 140-160 seconds of 10 songs (410.mp3, 420.mp3, ..., 490.mp3,
500.mp3) were used. For the same section of 10 songs, the results of three models were
provided in random order so that people could listen and evaluate the performance.

The criteria for evaluating performance were evaluated in terms of note onset,
offset, pitch, and overall. The transcription performance was scored on a 5-point
scale ranging from 1 (poor) to 5 (good) for each criterion. Experimental subjects
were recruited from Amazon Mechanical Turk [95], and only the results of those
who evaluated the ground truth as the highest overall average score were collected
for the reliability of the experiment. As a result, the results evaluated by 32 people

were collected.
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5.3 Results
5.3.1 Ablation Study

The experimental results of note-level singing transcription are summarized in Table
Ablation studies were conducted to confirm the effects of overlapping decoding
(OD), pitch augmentation (PA), and adding noisy dataset with data cleansing (AD).

First, the F1 score of note-level is improved by 0.013 by introducing OD. The
performance improvement in the offset F'1 score is more noticeable than onset, which
is plausible because the onset of the previous segment is no longer lost. For non-
overlapping decoding, determining an offset event is problematic because it is not
possible to know whether the pitch onset event has occurred in the previous segment.

Adding PA led to a significant improvement in note-level Fl-score by 0.09. PA
increases the amount of training data due to exposure to pitch classes that do not ap-
pear frequently, preventing overfitting. Figure (a) implies the relevance between
PA and overfitting. The validation loss increases after 25 epochs for the vanilla
Transformer, implying overfitting. In contrast, although the training loss decreased
slowly with PA, the validation loss continued to decrease without overfitting.

One of the notable results is that by including DALI dataset in the training
data, the performance of the note-level F1 score improved by 0.01. Even though
training and testing on only DALI resulted in poor performance, AD demonstrated
a performance improvement. The effect of DALI dataset can also be found in Figure
m Figure (b) demonstrates the training loss decreasing more slowly with AD.
Moreover, as illustrated in Figure (a), the validation loss continuously decreased
along with the training loss. AD is beneficial because it prevents the model from

memorizing the training data and generalizes the model performance.
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Although the label data of MIR-ST500 are accurate, adding PA and AD were

effective in performance improvement. Since PA and AD have the effects of increasing

the training data, we expect that the performance can be further improved with

larger datasets.

Experiments
®  Vanilla Transformer
®  Transformer + PA
®  Transformer + PA + AD
Dataset
Training
» Validation
& Test

204

Training Loss

Experiments

Vanilla Transformer
~—— Transformer + PA
—— Transformer + PA+ AD

0 50000 100000 150000 200000 250000 300000 350000
Step

(b)

Figure 5.5: (a) Change in loss according to the epoch for each data split in each
experiment. (b) Training loss according to the number of steps. Red indicates Trans-
former (baseline), green indicates + pitch augmentation, and blue indicates +noisy

training dataset (proposed).
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Table 5.2: Performance evaluation results of models for MIR-ST500 dataset

Model Onset Offset Onset + Pitch Note-level

P R F P R F P R F P R F
Vanilla Transformer 0.752 0.714 0.730 0.692 0.655 0.670 0.700 0.665 0.679 0.492 0.468 0.478
Transformer + OD 0.737 0.729 0.731 0.688 0.679 0.681 0.690 0.684 0.685 0.494 0.490 0.491
Transformer + OD + PA 0.771 0.779 0.774 0.745 0.752 0.747 0.739 0.748 0.742 0.578 0.585 0.581
Transformer + OD + PA + AD (Proposed) 0.785 0.791 0.787 0.747 0.753 0.749 0.755 0.761 0.757 | 0.589 0.595 0.591
EfficientNet-b0 [12] 0.742 0.778 0.754 0.625 0.655 0.637 0.654 0.686 0.666 0.448 0.472 0.458
JDChote 48] - - 0.762 - - - - - 0.697 - - 0.422
Tony [40] 0.542 0.595 0.564 0.562 0.619 0.587 0.415 0.453 0.431 0.262 0.288 0.273
Omnizart [43] 0.428 0.489 0.454 0.436 0.504 0.464 0.329 0.374 0.348 0.173 0.197 0.183
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5.3.2 Note-level Transcription Model Comparison

The results of comparing different state-of-the-art note-level singing transcription
models with MIR-ST500 test dataset are also reported in Table The proposed
model outperformed the comparison models for all the metrics considered. There was
a significant performance improvement in which the note-level F1 score increased by
0.1 or more compared with other models. This can be attributed to the performance
improvement in the sequence-to-sequence model structure and the methods special-
ized for note-level singing transcription. Tony and Omnizart achieved poor perfor-
mance because they were not trained with MIR-ST500. Compared with EfficientNet-
b0, vanilla Transformer achieved a higher offset F1 score. Consequently, predicting
the musical note sequence in the decoder is more advantageous than predicting for

every time frame because the offset of the vocal melody is often ambiguous.

5.3.3 Transcription Performance Distribution Analysis

0.9 4
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|
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Wil 1

0.3 .

F1 Score

0.2 .
Onset Offset Onset + Pitch  Note-level

Evaluation metric

Figure 5.6: Box plots representing the distribution of the proposed model perfor-
mance on MIR-ST500 test dataset. The y-axis indicates the F1 score.

The proposed model’s evaluation results on MIR-ST500 test data are visualized

in Figure [5.6| as box plots. The onset prediction achieved a higher F1 score than the
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offset prediction, supporting the assumption that offset in vocal melody is ambigu-
ous. Compared with predicting only the onset, adding pitch prediction resulted in a
lower F1 score, which is predictable. The difference between the two is insignificant,
implying that the pitch prediction can be considered accurate if the onset prediction
is successful. In contrast, the note-level F1 score was noticeably low because note-
level prediction requires accurate prediction of onset, offset, and pitch for a single
note. Moreover, the transcription performance varies significantly depending on the
song. Regarding note-level prediction, the proposed model successfully transcribed
one song with the highest F1 score of 0.8 while reporting the worst performance of
0.21 for another. Some of the plausible reasons why the results vary widely depending

on the song are discussed in detail in Section [5.4.2]

5.3.4 Fundamental Frequency (F0) Metric Evaluation

Table 5.3: FO evaluation results of the proposed model and JDC |[1]

Dataset Model VR VFA RPA RCA OA

Proposed | 0.907 0.144 0.848 0.849 0.851
JDC 0.780 0.110 0.586 0.590 0.708

Proposed | 0.800 0.128 0.493 0.493 0.696
JDC 0.774 0.117 0.719 0.726 0.818

MIR-ST500

MedleyDB

Table [5.3] presents the results evaluated by FO metrics. For metrics related to
voice detection, the proposed model performed better in VR, and JDC performed
better in VFA. This result can be interpreted as caused by training the proposed
model to achieve a high recall rate, increasing false alarm rate. However, the dif-
ference in VFA between the proposed model and JDC is subtle, implying that the
voice detection of the proposed model is comparable to JDC.

For pitch-related metrics, namely RPA and RCA, and the overall performance
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metric OA, the results were contradictory depending on the dataset. With MIR-
ST500, the proposed model outperformed JDC, whereas with MedleyDB, JDC
achieved superior results likely caused by the difference between the annotation
and prediction method. For example, the results of note-level and FO annotations
may exhibit significant differences in vibrato notes or note transitions with dragging
pitch. A vibrato note is covered over several semitones with FO annotation, but in
note-level, it is annotated as a single pitch level. For note transitions with dragging
pitch, FO annotation expresses each pitch change in detail, whereas only two notes
are remained at note-level. In such cases, the evaluation results are likely superior
when the annotation and prediction coincide. Furthermore, whereas RPA and RCA
differ by more than 0.4% for JDC, the proposed model exhibits almost no difference,

suggesting that the proposed model commits fewer octave errors.
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5.4 Qualitative Analysis

5.4.1 Visualization of Ablation Study

Through qualitative ablation studies, we analyzed the effects of introducing OD,
PA, and AD to vanilla Transformer. Figure is a visualization of the transcription
results for a test song in the MIR-ST500 dataset. While Figure (a) represents the
ground truth label of singing melody transcription, (b), (c), (d), and (e) are images
expressing the ground truth label and the recognition results together.

Figure[5.7] (b) and (c) are the transcription results of the same model but different
decoding strategy. The former is the result using non-overlapping decoding, while
the latter is the result of applying OD. The biggest difference between the two is the
offset of notes. In Figure (b), regarding the two notes at 143 and 149 seconds,
respectively, the notes do not end and continue until the onset of the next note.
On the other hand, in Figure (c), the offset of the corresponding notes were
predicted after few time frames, resulting in a relatively accurate transcription. The
reason for missing the note offset in non-overlapping decoding is that the presence
of a note onset in the previous segment is unknown due to the context loss problem.
Through the proposed OD, the context loss problem was mitigated and note offsets
were captured.

Figure (d) is the transcription result of the model with PA added. Compared
to Figure (c), the timing of the onset in the notes around 140 seconds is slightly
more accurate. And for the note at 156 seconds, pitch transcription with PA was
correct whereas the model without PA predicted the wrong pitch. These visible
differences explain the significant improvement of the evaluation metrics in Table
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Figure (e) is our proposed model applying OD, PA, and AD altogether. The
notes at 144, 148, and 153 seconds, which were all incorrect notes in Figure
(d), were recognized correctly. Most of the recognition results match the ground
truth label, and there are no well-marked blue colored notes except the note at 149
seconds. The example shows that the proposed methods are effective in improving

transcription performance, in accordance with the quantitative results in Section

B.3.1
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Figure 5.7: Visualization of the transcription results of ”460.mp3” in the MIR-ST500
test dataset. The onset is indicated in dark color for each note. In (b), (c), (d), and
(e), the ground truth label, prediction, and the shared part are shown in red, blue,

and orange, respectively.
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Figure 5.8: Visualizations of note-level singing melody transcription results for test
examples from MIR-ST500 dataset. The STFT representation is expressed as a
spectrogram. The annotated labels and prediction results are depicted as solid blue
lines and dotted cyan lines, respectively, according to the pitch and time of the notes.
In (a), most of the prediction results and correct annotations are consistent, and in
(b) and (c), they are not.

5.4.2 Spectrogram Analysis

In analyzing the results in more detail, some examples of spectrograms of test songs
along with the annotated labels and prediction results are visualized in Figure |5.8
Figure (a) illustrates the spectrogram of the best transcription results with an F1
score of 0.8. Most notes were accurately predicted with respect to onset, offset, and
pitch, except the offset of the last note. The result is explainable through several

aspects of the music audio: the vocal voice is audibly clear, the accompaniment
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sound is relatively calm, and there are few chorus voices.

In contrast, Figures (b) and (c) are examples of poor performance. In Figure
(b), most of the notes’ onsets and offsets are inaccurate, with some notes even
missing. The low F1 score of 0.33 can be explained as caused by the vocal’s whisper-
like singing style, obscuring the onsets and offsets of the singing notes.

Some specific pitch prediction errors are examined in Figure (¢), in which the
F1 score was 0.35. One of the most common prediction errors was the octave error.
For example, for the notes at 97 and 101 seconds, the model predicted the pitch as
D#4 and F4, whereas the ground truth pitch labels were D#5 and F3. Moreover,
the prediction result of the G4 note at 96 seconds was Cb: the pitch class itself was
incorrect. One reasonable explanation is that because the chorus vocal is heavily
inserted in the song, the loud chorus was the predominant cause of pitch inaccuracy.
At 98 seconds, there were some non-existent notes in the prediction results, likely
because the model detected instrument sound as the vocal melody.

Based on analyzing the examples of the prediction results, the results are more
accurate when the singer’s voice is clear and the chorus and instrument sounds are
quiet. In contrast, because the proposed model is a monophonic singing melody

transcription model, the performance was poor for multi-vocal audio.
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5.4.3 Human Evaluation

Table 5.4: The average scores evaluated by humans for the results of each model.
Numbers next to the scores denote the standard deviations.

Model Offset Pitch Overall
Ground truth 3.90 053  3.95 to67 4.08 zo052 4.19 toar
Proposed 3.89 +o56  3.80 +o67 4.00 +o059 3.86 +o.53
EfficientNet-b0 ’12] 3.79 068  3.78 zo67  3.99 +o62 3.82 +os1

The results of human evaluation of singing melody transcription can be seen in

Table The score of ground truth, which is an accurate transcribed answer, is

the highest in all aspects. Our proposed model showed the second best performance

in all aspects, following ground truth. In particular, the proposed model regarding

onset received a score of 3.89, close to the ground truth’s 3.90, which is significantly

ahead of EfficientNet-b0. For offset, pitch, and overall scores, the proposed model

achieved slightly higher scores than EfficientNet-b0.

In terms of overall scores, a notable gap still remains between ground truth and

AMT models. In order to be recognized as perfect transcription by humans, perfor-

mance improvement through additional research and data collection is required.
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Chapter 6

Automatic Music Lead Sheet Transcription

6.1 Post-processing for Lead Sheet Representation

Chapter [4] [f]'s research results are utilized for chord recognition and singing melody
trancription. [54] is used for musical key estimation model. It is a model of recogniz-
ing key with respect to the music audio signals using deep convolutional network.
The estimated key is classified into 24 types, major and minor, for 12 musical scales,
and one key representing the entire song is recognized. [60] is applied for a beat
tracking model, which uses recurrent neural network and deep bayesian network
model. Time signature can be estimated to 3/4 and 4/4 and it recognizes at what
seconds the beat within each bar exists. Downbeat by each bar is represented as 1

and it repeats as many as the number of beats within in order.

Chord and melody are time units and to convert this into the length of note
represented in transcription, beat needs to be utilized. The thesis set the minimum
unit of chord notation as a quarter note while the minimum unit of melody notation
is sixteenth note. In the case of chords, chord symbol, which is most frequent time
within the length of quarter note is determined as the chord for the beat. As for the
melody, each quarter note is exactly divided into four to make semiquaver, moved to

the closest beat time at the start and end of note, and was represented in note. As
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for the melody, each quarter note is divided into four to make sixteenth notes, and
the start and end times of each note are moved to the nearest beat time. This can
be expressed visually, as shown in Figure [6.1] Through post-processing, the music

audio signals are finally converted into lead sheet.
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Figure 6.1: It is a process of transcribing using the key, chord, beat and melody
information recognized from audio signals. The red line is four quarter notes while
the red dotted line is semiquaver notes.
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6.2 Lead Sheet Transcription Results

There is no metric to evaluate the results of converting the music audio signals into
lead sheet. Since there are labels for the chord, key, beat, and melody recognition,
it is possible to extract the numerical performance in the middle stage. However,
it is vague to set a metric to evaluate after combining all the recognition results
and converting it into lead sheet through post-processing. In addition, there is an
issue with difficulty of identifying if a wrong part in the final lead sheet form is
from the error of which recognition model. Therefore, we intend to use the actual
case of lead sheets transcribed from audio signals and lead sheets transcribed by
experts to compare. Thereby, the thesis aims to conduct a qualitative evaluation of
the performance of automatic lead sheet transcription and identify which area needs
complementation.

The first case of analysis is shown in Figure (a) is the result of automatic lead
sheet transcription while (b) is the lead sheet transcribed by an expert. Since the
methods of visualizing transcriptions are different, the number of bars within a single
stave is different. Although the thesis does not transcribe lyrics, generally as shown
in (b), lead sheet usually contains lyric information. First, we can identify that for
key signature, both are represented as the same (Ab Major). Time signature is also
expressed with the same as 4/4. In the case of chord sequence, we can identify the
repletion of Fm-Ab-Eb-Db as identical. However, from the 7th bar of (a), the beat
of chord is different from the downbeat. This can be seen as the difference between
the recognition of the timing of the beat and the timing of the chord change. As for
the melody, (a) and (b) are very different. Generally, what appears to be the most

different is the rhythm of the melody. In (a), it shows that there are a lot of rests
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between consecutive melody notes, but compared to (b), it can be seen that this was

misrecognized. They were recognized as rests since the distances among the notes

were long enough among during the beat quantization process at post-processing.

This is due to the accuracy of predicting the note’s onset and offset times. As for

the order of the melody’s pitch, aside from the beat, most of them seems correct.
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Figure 6.2: (a) is a transcription result of automatic music lead sheet transcription,

while (b) is a transcription by a music expert.
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The second case of analysis is shown in Figure Key signature is expressed
the same, as D major. Time signature is also represented the same as four-four
time. However, looking at the timing of chord and measure change, (a) seems to
recognize bpm (beats per minute) twice as fast as (b). Such an error is referred to
as an octave error. It indicates that one actual beat was recognized as split in half.
Because of this, while (b) shows two chords for each bar, (a) has one chord per bar in
general. Some details seem different for the chord recognition results. (b) represented
a chord as Em while (a) recognized it as Em7. In addition, while the second bar of
(a) recognizes the two chords of G and Em?7, the last two beats of the first bar in
(b) are represented with a single G chord. It appears that the chord recognition
model recognized the chords in more detail. As for the melody, due to the result of
the beat tracking, (a) seems to have about twice the long notes as (b). In addition,
the rhythms are overall different since notes are recognized as being divided and the
length of the rests are largely different. As for the pitch of melody, the overall flow
is consistent but the note’s rhythm is condensed, ignoring the details of the pitch.
As the recognition performance for the onset, offset, and pitch of each melody note

improves, it can be accurately transcribed.
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You've-got- - ahold of me don't- ev - en know your pow - er I -stand- -  ahundredfeet

butI —fallwhenI'm a-round you Show-me- - an o - pendoor thenyou-go and slam it on me-

(b)

Figure 6.3: (a) is a transcription result of automatic music lead sheet transcription,
while (b) is a transcription by a music expert.
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The third case of analysis is shown in Figure [6.4] Since the key signature ex-
pressed in (a) and (b) are different, the overall transcriptions are represented en-
tirely differently. For instance, while (a) recognizes the key signature as F# Major,
(b) displays it as Gb Major. The two keys are entirely identical in the perspectives
of pitch; therefore, it should be regarded as a different in representation. As for
the chord recognition results, there is not only the difference in representation, but
the actually recognized chords are also different. The first bar in (a) is recognized
as A#m while (b) represented it as GbMT7. As for the rest of the chords, most of
them are displayed differently due to the difference between sharp and flat. As for
the melody, similar to the previous two cases, overall flow of the pitch is similar
between (a) and (b). However, as the notes’ rhythms differ, there were differences
such as notes that should have been divided being combined or unnecessary rests
being included. In particular, when looking at the last three notes in the first bar in
(b), it is expressed as triplet. However, the last three notes in the first bar of (a) is
entirely different. This can be seen as a result of the failure to express triplet since
during the post-processing process, the minimum beat unit was set as 16th note.

The thesis conducted an overall comparison between the lead sheet by an expert
and lead sheet transcribed using our method. In most cases, key and chord did
not have much difference. However, the part with the biggest difference from the
actual transcriptions was the pitch and rhythm of the melody. In order to improve
this, the performance of the singing transcription model recognizing melody’s onset,
offset, and pitch should be improved. Further, the accuracy of the beats used when
converting it into transcriptions should also be improved. In addition, the post-

processing also requires delicacy to represent special cases such as triplets.
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Chapter 7

Melody Similarity Assessment with
Self-supervised Convolutional Neural Networks

7.1 Methodology

7.1.1 Input Data Representation

Using the results of Chapter [6] in order to address the problem of melody similarity
assessment, chord and key are excluded and only melody is used. The minimum beat
unit of the melody is sixteenth note, and pitch is MIDI pitch, expressed from 0 to
127. In order to express the melody as an image, it is converted into the form of
piano roll with x-axis being the time axis of sixteenth note unit while y-axis is the
pitch axis of semitone unit. The piano roll expresses the value as 1 if the pitch is
played at a certain time and as 0 if it is not played. In the piano roll, when the note
of the same pitch continues, the note’s breakpoint cannot be identified. Therefore,
the onset roll is also used as the data representation, with the onset time of starting
point of the note expressed as 1 while the rest is expressed as 0. In order to use both
piano roll and onset roll, it is expressed to overlap with different channels on the
image.

Since melody similarity assessment needs to take place by section, the evaluation
of the similarity on specific section should be possible. Therefore, instead of using

the melody for the entire song at once, the sections are divided by a certain length.
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Although the standard for similar melody is not certain in plagiarism case [16], we
presume that if four bars are very similar, it can be considered as similar melody.
In the pre-processing procedure, based on the starting point of each bar, four bars
are cut and used as sections. As a result, the shape of each data input is 64 (time)
x 128 (pitch) x 2 (channel). When representing this as a image, it is as shown in
Figure

Further, simple filtering methods are used to remove the meaninglessly similar
cases. First, when the number of notes is less than four in four bars, the part is
not used. In addition, if there is an empty bar among the four bars, the section is

excluded. Through filtering, similar cases due to lack of melody can be excluded.

7.1.2 Data Augmentation

Since we do not have as labels whether the melodies are similar, it is necessary to
create a positive sample with some transformation. In order to provide the data
of similar melody, data augmentation is used. Each augmentation method can be
expressed visually, as shown in Figure[7.2] First, the key shift is augmentation moving
pitches of all notes within the four bars simultaneously from -7 to +7 semitones. Since
the entire melody moves together, it can be seen as an identical melody.

As for the augmentation to be applied for each note, six augmentation methods
are applied: add note, delete note, merge note, note pitch shift, change note duration,
and note split. As for the add note, one of the pitches of the note is selected and
a part among the rest section is selected to add note. Delete note is a method of
randomly selecting a note and deleting it. The merge note is a method of modifying
into playing as the pitch of the note selected, such as from the starting point of the

note prior to the selected note to the ending point of the selected note. The note
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pitch shift is a method of modifying the pitch of the selected note into the pitch of
other notes within the four bars that is randomly selected. Regarding the change
note duration, it is a method of randomly adjusting the duration of the selected note
to the extent that it does not affect other notes. Note split is a method of randomly
dividing the entire duration of the selected note into two notes and pitches are

selected one among different notes’ pitches.
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For training data, anchor, key-shifted anchor, positive sample, and negative sam-
ple are prepared. The anchor is a melody of four bars from a song. The key-shifted
anchor is the result of changing only the key in the anchor. The positive sample
is created through the augmentation method defined above. First, anchor or key-
shifted anchor is randomly selected. Then, among the entire number of notes, notes
to which an augmentation method is applied are selected at a ratio from the mini-
mum 7 to the maximum R. One of the methods among the six note augmentation
methods is randomly selected to be applied on each of the notes for augmentation.
The result of this is a positive sample. As for a negative sample, it is a melody of

four bars that come from a song completely unrelated to the anchor.

7.1.3 Model Architecture

In order to map the input image on embedding space, ResNet [68] structure is
used. The detailed structure of the model is seen as Figure [7.3] The model utilizes
convolutional layer, batch normalization, ReLLU activation, and residual connection
repeatedly, reducing and summarizing the size of the entire image. Lastly, channel,
width, and height axes are all flattened out to apply fully connected layer moving
toward 256 dimension’s embedding space. In addition, in order to restrict the size
of the embedding space, normalization is used to make the size of the embedding

vector 1.
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7.1.4 Loss Function

Similar to [96], since it is leaning only using musical augmentation on the given
data without label information, it can be considered self-supervised learning. For
model training, triplet loss [70] is used. At Section anchor, key-shifted anchor,

positive sample, and negative sample are prepared in the data preparation process.

Since just changing key is not considered to change the melody, anchor and key-
shifted anchor need to be represented the closest. Further, as for the positive sample
with changes in a few notes, it should be represented to be farther than the key-
shifted anchor but closer than the negative sample. Since the negative sample is a

melody irrelevant from anchor, it should be represented the furthest.

For this, triplet loss is separately used for each case. First, key-shifted anchor
is set as positive sample while positive sample is set as negative sample, making
positive sample further than key-shifted anchor. Here, margin is set at a. Next,
positive sample is used as positive sample, while negative sample is used as negative
sample with margin set at §. Finally, key-shifted anchor is set as positive sample,
while negative sample is set as negative sample with margin set at . In order to
express the sequential relationship for the four types of data in the loss, the margin
values are set to a + 5 = . The entire loss is the sum of all three losses and, this

can be expressed as Equation

Loss = Lossy + Lossy + Lossg (7.1)
Lossy = Triplet(a, k, p, @) (7.2)
Lossg = Triplet(a,p,n, 3) (7.3)
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Losss = Triplet(a, k,n,~y) (7.4)

a is anchor, k is key-shifted anchor, p is positive sample, n is negative sample, and «,
B, v are margin values. The triplet loss function is Equation This is represented

visually, as shown in Figure [7.4]

Anchor ‘

Key shifted .
anchor f( . )

Positive ,
f( . or

sample

Negative
sample ‘

Figure 7.4: An overview of our self-supervised learning approach. We construct train-
ing data by transforming anchor with randomized augmentation functions.

7.1.5 Definition of Distance between Songs

For plagiarism detection and cover song detection, the distance-based searching
method is as follows. First, with respect to the query song, data pre-processing
method in Section [7.1.1] is applied identically to create all the image of melody of
four bars unit. Next, with respect to the search object songs, the data pre-processing
is applied the same to create an image of four bars unit. All images are mapped to
embedding vectors using the model. With respect to all embeddings of a query song,
compare all the embeddings of search objects and measure the distance. Define the
distance between the pair with the shortest distance between the query song and

search object song.
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Distance(X, Y) = n;ujn Hfmodel(fn’i) - fmodel(yj)H; (75)

X and Y are songs while f,,04e 1S the deep learning model. The search result of

query song is created by arranging search object songs in the order of closeness.
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7.2 Experiments

7.2.1 Dataset

For model training, a custom dataset of 14,669 songs was used. Each song is a
popular song with singing melody and other instruments. Applying the result of
Chapter [6] each song was converted into the lead sheet form. The entire dataset was
divided into the train: validation: test with the ratio of 0.8:0.1:0.1.

To evaluate the performance of trained model’s performance, Plagiarism dataset
and Cover song dataset were established. After collecting all of the audio files, ap-
plying the result of Chapter [6] each song was converted into the lead sheet form.
First, Plagiarism dataset was made into a total 10 pairs of plagiarism songs. The
dataset was established with cases where the melody was plagiarized, including cases
that went to court disputes and cases that stopped at the warning from the original
author. In the case of melody plagiarism, as opposed to the entire melody being
similar, there were many cases where the melody of certain sections was similar.

Cover song dataset was established using 10 pairs of original song of popular
songs and cover songs sung by other people. As for the cover song, since each singer is
different, the key of the song is different or slight melody modifications are included.

Plagiarism and Cover song datasets each contain 20 songs. Basically, it is an
experiment to search pair song by comparing one query song with the remaining 19
songs. In order to verify whether it is possible to find pair song in the experiment,
81 songs at the test split of the custom dataset were randomly selected to be used
additionally. In other words, except for the one song (i.e., the query object), 81 songs
were additionally added to 19 songs to establish a setting of searching within 100

songs. The datasets consisting of the total of 101 songs are called Plagiarism 100
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and Cover song 100, respectively.

7.2.2 Training

Model parameters were trained with Adam optimizer [83]. Learning rate was 0.0001,
and if there was no improvement of validation loss during the 3 epoch, learning rate
was reduced in half. If there was no performance improvement during 10 epochs,
early stopping was applied to end training. Further, by selecting the epoch model
with the best validation performance, it was utilized in the test. The batch size was

32.

7.2.3 Evaluation Metrics

For evaluation, metrics that are mainly used in cover song indentification were used.
The metrics, such as, mean average precision (MAP), precision at 10 (P@10), and
the mean rank of first correctly identified song (MR1) are metrics used in Mirex
Audio Cover Song Identification contestﬂ Additionally, it was evaluated through
the accuracy (Acc) which measures whether the pair song was searched first, and

the median rank of first correctly identified song (MDR1).

Thttps://www.music-ir.org/mirex/wiki/2021: Audio_Cover_Song_Identification
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7.3 Results

7.3.1 Quantitative Evaluation

Since we use self-supervised learning without a label, in order to evaluate the learned
model, the performance on Plagiarism dataset and Cover song dataset was evaluated.
And to analyze the factors that affect the model performance, we experimented by
changing four factors with model structure, augmentation ratio, loss function, and

definition of minimum distance between songs.

Model Structure

The experiment was conducted by changing the three model structures in turn.
Melody is meaningful sequence data as an axis of time; therefore a model using
LSTM [97], a recurrent neural network, was additionally utilized. Performance was
evaluated using three LSTM alone, ResNet-based CNN, and ResNet-based CNN
+ LSTM. Table shows the result of the performance by model structure from
Plagiarism dataset. On the Plagiarism dataset, ResNet model showed the best per-
formance, whereas when searching within Plagiarism 100, ResNet + LSTM’s per-
formance was better at MAP and Acc metric. However, when looking at the perfor-
mance of P@10, MR1, and MDR1, ResNet model’s performance was stable.

Table shows the result of performance by model structure in the Cover song
dataset. For all metrics, ResNet model’s performance was the best. Overall, it seems
that ResNet, which recognizes input as an image, is more appropriate than LSTM,
which utilizes sequence information. Therefore,, in all other experiments, ResNet
model was used.

Further, when comparing the performance between the Plagiarism dataset and
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Cover song dataset, the latter showed a much better performance. In the case of
plagiarism detection, even if the melody is slightly different, if people who hear it
consider it similar, it can be plagiarism. Meanwhile, as for cover song identification,
since it is a case where the same melody is sung by different people, it is a little

easier to find.
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Augmentation Ratio

The experiment was conducted using the value of minimum r and maximum R at the
rate of augmentation used when creating a positive sample. By extracting a value
randomly between r and R, notes were selected to fit the ratio and transformed
the notes. The higher the augmentation ratio, the more positive samples with more
changes from anchors are created. The change of performance is as seen in Table
and Table [7.4]

On plagiarism detection, aside from the Plagiarism 100’s Acc, the performance
is optimal when the augmentation ratio is set between 0.3 and 0.4. On cover song
identification, the small scale dataset showed a slightly good performance when the
augmentation ratio was applied between 0.2 and 0.3. However, on Cover song 100
where the number of songs is large, the performance was superb when the augmenta-
tion ratio was applied between 0.3 and 0.4. When designing the loss function, positive
sample was set to be farther than anchor and key-shifted anchor. It seems that the
ratio to provide modification accordingly to the margin value was between 0.3 and
0.4. In order to remove the factors influencing the performance, other experiments

used the min ratio at 0.2 and max ratio at 0.3.
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Loss Function

In order to express the relations between key-shifted anchor and positive sample
that are created using augmentation for self-supervised learning, the triplet loss
function was applied to each of the three pairs. These loss functions are as shown
in Equation and In order to identify what impact each loss has on the
model performance, evaluation was conducted on the performance depending on
the use of three loss functions. The results are shown in Table [Z.5 and Table [7.6l
By default, the margin values «, 5 and ~ are set to 0.5, 1.0, and 1.5, respectively.
When only using one out of the three loss functions, margin was adjusted to 1.0 for
training.

First, comparing the case of using only one loss, the model trained with Lossy
has the poorest performance. Since the case training with only Loss; does not uti-
lize completely different negative samples, a positive sample with slight changes is
recognized to be farther away. In such a case, it becomes impossible to distinguish
between what is slightly different and completely different. When Losss and Losss
were used independently, the performance overall seemed similar. Losss’s positive
sample is a case with some modification at the anchor, as it includes key shift while
negative sample is completely different; therefore, the model training was conducted
somewhat normally. As for Loss 3, it is learned in the perspective that key-shifted
anchor is a similar sample, while negative sample is completely different. As for
plagiarism detection and cover song identification, in the perspective that we can
detect as long as we can distinguish what is the same melody and not, training with
Lossg alone can produce adequate model performance.

In the case using two loss functions, the performance of the model that trained
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with Loss; and Losss showed the poorest in both plagiarism detection and cover
song identification. Due to the absence of Lossy, which directly uses the relation
between the positive sample and negative sample, it seems that distinguishing what
is similar and what is not became difficult. As for the rest, the superiority of the
performance changed depending on the dataset. The model which learned using
all three loss functions showed the best performance at Plagiarism 100 dataset with
P@10 and MDR1 metrics. As for Acc, although it is not the highest at Plagiarism 100
dataset, plagiarism detection seems to be somewhat stable. As for loss function, the
procedure to find the optimum loss function through additional structure designing
and hyperparameter adjustment is necessary. In other experiments, all three loss

functions were applied.
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Table 7.5: Performance on Plagiarism and Plagiarism 100 datasets according to loss function.

Lossy | Losss | Losss Results on Plagiarism Results on Plagiarism 100

MAP P@10 MR1 MDR1 Acc | MAP P@10 MR1 MDR1 Acc

o X X 0.359 0.065 7.35 7 0.25 | 0.122  0.02 38.6 36.5 0.05
X 0 X 0.481 0.085 5.35 4 0.35 | 0.275 0.045  26.35 21 0.2
X X 0 0.507 0.09 4.35 3 0.35 | 0.242 0.045 19.85 12,5 0.15
X 0 0 0.469 0.075 5.95 4.5 0.35 | 0.322 0.04 30.2 22 0.25
0 X 0 0.287  0.06 7.55 7 0.15 | 0.094 0.02 32.7 27 0.05
0 0 X 0.512 0.085 5.4 2 0.35 | 0.19 0.04  26.45 12 0.05
0 0 0 0.48  0.085 ) 3 0.3 | 0.225 0.05 23.15 10.5 0.15

Table 7.6: Performance on Cover song and Cover song 100 datasets according to loss function.
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Loss, | Lossy | Losss Results on Cover song Results on Cover song 100

MAP P@10 MR1 MDR1 Acc | MAP P@10 MR1 MDR1 Acc
0 X X 0.271  0.08 7.1 6 0.1 | 0.114 0.025 3245 22,5 0.05
X 0 X 0.813 0.08 4.05 1 0.8 | 0.803 0.08 14.35 1 0.8
X X o 0.795 0.095 3 1 0.75 | 0.779 0.08 11.8 1 0.75
X 0 0 0.731  0.08 4 1 0.65 | 0.646 0.08 13.1 1 0.6
0 X 0 0.332 0.095 4.95 5 0.1 | 0.163 0.04 19.1 15 0.05
0 0 X 0.82 0.09 3.05 1 0.8 | 078 0.08 10.85 1 0.75
0 0 0 0.784  0.09 3.3 1 0.75 | 0.56 0.08 14.45 2 0.45




Definition of Minimum Distance Between Songs

By measuring the distance of all the pairs of query song and search object songs, the
shortest distance was defined as the distance between the two songs. However, since
this only considers the distance among the four bars, it does not take into account
cases where the similar part continues longer than four bars. Such characteristic is
more noticeable in cover song identification than plagiarism detection. While similar
melody occurs in only certain parts for plagiarism, the cover song, on the other
hand, has continued similar melodies. Therefore, it can be defined that the shorter
the average distance of the continuing pair within each song, it is more similar. This

can be expressed as below.

K-1

Distance(X,Y) =min 3 | frodet (2i4r) = frnoaet (v +4) 11 (7.6)
“ k=0

X and Y are songs, while fi,0der i the deep learning model. K is the number of
input considered together in order.

Table organizes the performance by the change of K value. By the standards
of MAP with large deviation, on plagiarism 100, the best performance was shown
when K was 7. If K becomes larger or smaller than that, performance drops. We
can identify that finding similarity in somewhat continuing sections is helpful. The
percentage of finding a plagiarized song accurately among the 100 songs is 40 percent.
When looking at P@10, 50 percent found plagiarism songs in the top 10.

For Cover song 100, the performance was at best when K was 18. We can iden-
tify the tendency that as K increases, the value of MAP increases and when K is
18, MAP and Acc values are the highest. The search performance in cover song

identification improves when considered long in the order.
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Table 7.7: Performance on Plagiarism 100 and Cover song 100 datasets according to the number of input considered |
together in order (K).

K Results on Plagiarism 100 Results on Cover song 100 e
MAP P@10 MR1 MDR1 Acc | MAP P@10 MR1 MDRI1 Acc
1 (022 0.05 2315 105 0.15| 0.56 0.08 14.45 2 0.45
2 | 0274 0.04 30.1 17 0.2 | 0.627 0.08 14.5 1.5 0.5
3 0.31  0.045 25.65 13 0.25| 0.67 0.08 134 1 0.6
4 1 0351 0.05 24.5 10 0.25 | 0.746 0.08 12.85 1 0.7
5 1 0.387 0.055 25.65 8 0.3 | 0.744 0.08 11.45 1 0.7
6 | 0431 0.05 25.2 8.5 0.35 | 0.742 0.08 9.55 1 0.7
7 10.449 0.05 26.45 11.5 0.4 | 0.744 0.08 9.65 1 0.7
8 | 0446 0.05 26.15 11 0.4 | 0.729 0.08 9.8 1 0.7 %
9 | 0444 0.045 274 12.5 0.4 | 0.707 0.08 9.3 1 0.65
10 | 0.437  0.05 27.4 13 0.4 | 0.702 0.08 10 1 0.65
11 ] 0.392  0.05 27.8 10.5 0.35 | 0.705 0.08 9.8 1 0.65
12| 0.353 0.045  29.1 15.5 0.3 0.7 0.075 8.7 1 0.65
13 | 0.342 0.04 29.15 18 0.3 | 0.73 0.075 8.6 1 0.7
14| 0.336  0.04 29.1 15 0.3 | 0.738 0.075 8.8 1 0.7
15| 0.338 0.045  28.2 13.5 0.3 | 0.739 0.08 9.25 1 0.7
16 | 0.341 0.045  28.1 17 0.3 | 0.737 0.08 9.7 1 0.7
171 0.347  0.045 26.9 14 0.3 | 074 0.08 9.55 1 0.7
18] 0.358  0.05  26.35 10.5 0.3 | 0.773 0.08 9.85 1 0.75
19 ] 0.368  0.05  26.95 11.5 0.3 | 0.748 0.08 10 1 0.7
20 | 0.368 0.045 27.75 15.5 0.3 | 0.738 0.08 10.6 1 0.7




7.3.2 Qualitative Evaluation

Plagiarism cases

As for plagiarism pairs, there were both cases where the search was successful and
it failed. In order to analyze the reason, we analyzed the search results. First, we
intend to analyze the cases where the search of plagiarized song within 100 songs
was successful as it showed as the first outcome. It is a case where a plagiarized song
Bandido-Vamos AmigosE| was found when searching query for the song Lee Jung

Hyun-W4?} It can be identified in Figure

(&) (&)
c a o < a n|
2 —— —— =g — ——
5_ - - a_ —— - -
- — -
[a) - [a) -
=G scG
2 2
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0 8 16 24 32 40 48 56 0 8 16 24 32 40 48 56
Time (16th note) Time (16th note)

(a) (b)

Figure 7.5: (a) is 54.1~60.91 seconds of Lee Jung Hyun-Wa. (b) is 95.87~102.69
seconds of Bandido-Vamos Amigos.

While some sections differ, the melody is very similar in general. In this case, the
distance between the two sections was 0.17, being the closest section among the 100

songs. When expressing the distance of all the sections with respect to the two songs

Zhttps: / /www.youtube.com /watch?v=e2HYsbUiwLk
3https://www.youtube.com/watch?v=ZblHv1Lpyfk
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in similarity matrix, it is as Figure The similar sections are expressed in dark
color and you can identify a dark diagonal line. You can identify the similar sections
continuing in the plagiarism case. In Section when expressing the minimum
distance between the songs as the sum of the continuing sections, we can identify
why the detection performance improves. It can be seen that there are many cases

of plagiarism when consecutive sections are similar.
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Figure 7.6: Lee Jung Hyun-Wa and Bandido-Vamos Amigos’s all sections pairs’
distances are calculated and expressed in similarity matrix.
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We intend to analyze the second case where the search of plagiarism song was
successful. It is a case of finding a plagiarized song called Seiell-Scenne NenneEl when

searching the song BTS-Fake Loveﬂ in query. It is seen in Figure

cs (&)
S o S o
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= = J
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@ @
Cl+ T T T T T T T Cl+ T T T T T T T
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Time (16th note) Time (16th note)

(a) (b)

Figure 7.7: (a) is 62.89~69.09 seconds of BT'S-Fake Love. (b) is 97.43~103.61 seconds
of Seiell-Scenne Nenne.

The distance between the two sections was 0.13, searched as the closest section
among the 100 songs. While the melody of (a) and (b) sections is very similar,
key shift appeared very large. Despite, the two melodies are expressed similar in
embedding space since the self-supervised learning utilizing the key-shifted anchor
worked effectively.

Figure shows the expression of the distance of all sections with respect to the
two songs. The dark diagonal lines are seen in many places. Since the section that

is plagiarism is repeated, there are many diagonal lines.

“https:/ /www.youtube.com /watch?v=Akob0Smf9Ag
Shttps://www.youtube.com/watch?v=NT8ePWlgx_Y’
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BTS-Fake Love

Seiell - Scenne Nenne
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Figure 7.8: BTS-Fake Love and Seiell-Scenne Nenne’s all sections pairs’ distances

are calculated and expressed in similarity matrix.

The failed search case involved being unable to discover Ed Sheeran-Shape of

Ymﬁ when searching TLC-No Scrubsﬂ in the query. The minimum distance between

the two songs was the low at being 0.12. However, since many other songs with lower

distance were found, the song was searched as the 11th closet song among the 100

songs. Figure represents the pair target and failure case.

Shttps://www.youtube.com /watch?v=JGwWNGJdvx8
"https://www.youtube.com/watch?v=FrLequ6dUdM
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Figure 7.9: (a) is 55.41~65.74 seconds of TLC-No Scrubs. (b) is 41.13~51.13 seconds
of Ed Sheeran — Shape of You. (c) is 52.83~63.16 seconds of TLC-No Scrubs. (d) is
a section of an unrelated song on the test.
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While (a) and (b) are not very similar in terms of the image, they contain sections
about plagiarism. The distance between the two sections is 0.12. (c¢) and (d) are
completely unrelated songs and can be seen completely different in image. However,
the distance between the two sections is mapped as very close, distance at 0.08.
This shows the limitations of self-supervised learning where an unrelated melody
was learned to be similar. In order to address this issue, the quality of generating
training data using augmentation should be improved, and adequate loss function
and model structure should be supported.

When looking at the failed cases of plagiarism detection, the issues are narrowed
down to two. There are cases where the similar melody is recorded to be different due
to the insufficient performance of melody transcription. In addition, as seen above,
there are cases where completely different melodies are considered similar. This is a
problem which occurs because music plagiarism detection is conducted in 2 phases,

requiring improvement of performance respectively.
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Additional Similarity Matrix

Self-similarity matrix
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Figure 7.10: Distance for all sections of a song of test data is calculated and expressed
in self-similarity matrix.

First, when drawing the self-similarity matrix on a song, it is as seen in Figure
This song has the characteristic that similar melodies repeat. This can be
identified in the figure as many diagonal lines are seen aside from the diagonal line
in the center. This indicates same melody sections repeat. Through this, we can
also predict the repeating structure of the song. Through the analysis of similarity

matrix, it seems possible to somewhat analyze the repeating structure of songs.
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Similarity matrix
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Figure 7.11: Distance for all sections of the original and cover song is calculated and

expressed in similarity matrix.

The similarity matrix between the original song and cover song used in the cover

song identification is shown in Figure The section that is recognized to be

similar is displayed as very long. A cover song is a song in which the same melody

is sung in different voice over a long period of time. Therefore, while in the case

of plagiarism songs, certain sections that are similar appear short, while over songs

display the similar sections as long.
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Chapter 8

Conclusion

8.1 Summary and Contributions

This thesis sought to transcribe automatic lead sheet from music audio signals and
to study its application. For this, the research for the recognition of each of chord
and melody were conducted and we proposed the lead sheet transcription methods
by combing these. Further, by focusing on the melody among the recognized lead

sheet, the thesis explored melody similarity assessment.

First, we presented bi-directional Transformer for chord recognition (BTC). The
self-attention mechanism was appropriate for the task that attempts to capture long-
term dependency by effectively exploring relevant sections. BTC has an advantage
in that its training procedure is simple and it showed results competitive to other
models in most of the evaluation metrics. Through the attention map analysis, it
turned out that each self-attention layer had different characteristics and that the
attention mechanism was effective in identifying sections of chords that were crucial

for chord recognition.

We also proposed a monophonic note-level singing transcription model using a
sequence-to-sequence Transformer that advances state-of-the-art singing transcrip-

tion on MIR-ST500 dataset. Accordingly, we introduced a method of representing
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monophonic melodies as musical event sequences and approached singing melody
transcription through sequence-to-sequence task. The overlapping decoding turned
out to be effective for note offset prediction by preserving sequential context in-
formation. The transcription performance was also improved by introducing pitch
augmentation and adding noisy dataset with data cleansing, having effects in pre-
venting overfitting and training a robust model. Visualization of the transcription
results enabled qualitative analyses to investigate the effect of each of the proposed
techniques. Subjective human evaluation showed that the results of our proposed

model were perceived as more accurate than those of a previous study.

By combining the two preceding research results, this thesis proposed an au-
tomatic lead sheet transcription method. It utilized the previously researched key
estimation and beat tracking to suggest a method to combine various information
extracted from audio. The process for automatic lead sheet transcription consist-
ing of various steps was introduced. And we analyzed transcription performance by

comparing it with the expert’s transcription.

The thesis explored melody similarity assessment as one of the methods of ap-
plying the lead sheet transcription technology. By focusing on the cases of melody,
we suggested a ResNet model that converts melodies into embeddings. In order to
train the model, self-supervised learning method utilizing musical data augmenta-
tion was also proposed. In addition, we introduced loss function that reflects the
characteristics of melody similarity. The results of the experiment demonstrated the
possibility of music plagiarism detection and cover song detection. And we identified

further application potentials, such as finding repeated structure within a song.

Automatic music lead sheet transcription technology can offer great assistance to
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various people in the music industry and instrument players. Through this, the time
and cost consumed for transcription could be reduced. Combining and organizing
the complicated lead sheet transcription process is the biggest contribution of the
paper. Further, identifying the possibility of plagiarism detection at the level of sound
sources is an important result. As far as we know, no research has yet shown proper
plagiarism detection at the level of actual popular song sources. If such plagiarism
detection becomes popular, it can have a good effect on composers in reducing cases

of unintentional plagiarism.
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8.2 Limitations and Future Research

It is a great merit that the automatic lead sheet transcription is possible at the actual
sources of sound. However, there are many instances where singing melody and chord
transcriptions alone are insufficient. Therefore, if there is a technology that allows
the dissection and transcription of the sound of various musical instruments, it will
benefit people even more. In addition, when it comes to singing melody transcription,
polyphonic melody or chorus cannot be recognized. If this could also be perfectly
recognized, the applicability will greatly increase. Through this, studies on source
separation by vocals could be possible. Additionally, the fundamental solution to
improve the performance of automatic music transcription is to collect sufficient
training data. In the future, more automatic sheet music alignment studies need to
be conducted to provide additional annotation data.

In the case of plagiarism, it has limitations that it can be utilized only for singing
melody plagiarism. Aside from singing melody, there are diverse types of plagiarism
such as instrument melody and sample plagiarism. For the study of instrument
melody plagiarism, instrument melody transcription technique is essential, while for
sample plagiarism, technology to apply right away at the level of audio signals is
needed. Although this thesis introduced music plagiarism detection based on tran-
scription, it is also possible to directly embed the audio signal and compare the
distance. Applying an audio-based similarity evaluation model for music plagiarism

detection is left for future work.
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