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Abstract 

Estimation of joint roughness 

coefficient of rock exposure 

using terrestrial laser scanner 

and artificial neural network 
 

Seungwon Lee 

Department of Energy Systems Engineering 

The Graduate School 

Seoul National University 
 

Joint Roughness Coefficient (JRC) is a parameter representing degree of 

roughness of rock discontinuities in Barton-Bandis joint model. It can be 

measured by visual comparison between roughness profiles acquired from 

target discontinuities and the reference profiles. Although performing this 

method is much convenient than lab or field tests on joint specimens, it can 

be time-consuming and unsafe. In this thesis, a method to estimate JRC 

using Terrestrial Laser Scanner (TLS) is suggested for quick and safe 

assessment of JRC. After obtaining 3D point cloud of rock exposure in 

distance, JRC of discontinuities on it is estimated. 

According to several previous works, measuring small-scale roughness 

using TLS scan data is challenging due to noise existent in it. The strategy 

used in this thesis is to employ an ANN for 3D point clouds. The ANN can 

receive point clouds of discontinuities as input and output their JRC. By 

training the ANN with a number of point clouds containing TLS noise, it was 

expected that the ANN can learn how to estimate their JRC regardless of 

the existence of noise. Since it is not attainable to make a real dataset, point 
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clouds of synthetic rough surfaces are generated using a fractal based 

algorithm instead of real TLS scan data. Each surface is labeled with its JRC, 

and TLS noise is artificially applied on it to imitate actual TLS scan data. 

After being trained with the synthetic training dataset, the ANN is tested on 

joint surfaces on actual TLS scan data. It is shown that the trained ANN can 

estimate JRC of the joint surfaces regardless of noise level of TLS scan data 

while an existing method does not work well on data with larger noise level. 

In addition, methods to deal with scale effect of JRC are also introduced. 

 

 

Keywords: Joint roughness coefficient, Terrestrial laser scanner, Artificial 

neural network, Rock, Point cloud, LiDAR 
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Chapter 1. Introduction 

 

1.1. Motivation 

We need to know shear strength of discontinuities in a rock mass to analyze 

its mechanical stability and there are several ways for it. For example, we 

can perform direct shear tests on rock samples containing the discontinuities. 

But it is sometimes difficult to take the samples because of economic 

reasons or inaccessibility. On the other hand, we can use existing equations 

to predict the shear strength. In this way, we can just measure parameters 

constructing the equation instead of conducting the direct shear test. 

Barton-Bandis shear criterion is the most widely used approach to predict 

shear strength of discontinuities (Tatone and Grasselli, 2010). According to 

the criterion, factors that affect peak shear strength are joint roughness, 

joint wall strength, magnitude of normal stress and residual friction angle. 

In this criterion, joint roughness is quantified with a parameter named Joint 

Roughness Coefficient (JRC) and we can carry out direct shear test, pull 

test, tilt test and visual comparison to measure it. Except for the last one, 

samples containing the discontinuity are required, and those having small 

size and large JRC cannot be determined by pull or tilt test due to the limit 

of normal load (Barton and Choubey, 1977). 

The most convenient and widely used method is visual comparison, which is 

to get JRC only by observing surface morphology of discontinuities on rock 

exposure. Measurers obtain roughness profiles from the surfaces using a 

device called Barton comb (Fig. 1-1) and compare them with ten reference 

profiles provided in Barton and Choubey (1977). Since JRC ranges where 

the reference profiles belong to are suggested in a table, they can assign 
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JRC of each obtained profile by choosing a reference profile which has the 

most similar degree of roughness. 

However, there can be some difficulties of conducting visual comparison. It 

might take much time as measurers have to acquire several profiles for a 

single surface since JRC has deviation within a surface. Also, unreachable 

part of a rock mass cannot be inspected and risks of rockfall exist during 

the measurement. In addition, the assigned JRC values may vary depending 

on the measurer’s consistency. 

To overcome those obstacles, using a remote 3D laser scanner can be 

considered. LiDAR (Light Detection and Ranging) is the popular term 

referring to both the device itself and relevant techniques. The device 

enables obtaining point cloud of surrounding area with high resolution and 

short time by using laser. Terrestrial Laser Scanner (TLS) is a type of 

LiDAR device which is installed on the ground above a tripod to scan the 

whole surrounding area. Surfaces that are several to several hundred meters 

away from the device can be scanned and thus, we can scan rock exposures 

that are inaccessible and get their point cloud quickly using a TLS. These 

advantages drove lots of rock engineers to use it for various purposes 

Figure 1-1. Acquisition of roughness profile using Barton comb (Barton and 

Choubey, 1977). 
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including roughness measurement (Feng and Röshoff, 2015). 

Several works have been done on roughness characterization of rock using 

TLS and their authors said that it is difficult or even not possible to measure 

small-scale roughness due to the existence of noise in TLS scan data 

(Fardin et al., 2004; Kemeny and Turner, 2008; Gigli and Casagli, 2011; 

Bitenc et al., 2019; Marsch et al., 2020). In this context, if we can make a 

noise-independent estimator which can predict JRC of discontinuities on 

TLS scan data with consistent judgement, all the problems mentioned above 

will be resolved reasonably. 

 

1.2. Agendas and overview 

Main objective of this thesis is to develop a JRC estimator for the point cloud 

of rock discontinuities on TLS scan data in order to save time and labors 

consumed for the measurement. To achieve that goal, Artificial Neural 

Network (ANN) is employed to be the estimator that excludes human bias 

and makes consistent judgement regardless of the existence of noise in TLS 

data. 

However, large amount of data is required to train an ANN. In other words, 

a number of rock discontinuities with various characteristics (e.g. roughness, 

rock type) have to be scanned with TLS. In addition, all the data should be 

labeled with consistency for training. Considering the amount of data, it 

would be better to find an automatic way to label them. In this thesis, 

synthetic point clouds of rough surfaces with various characteristics are 

generated using an algorithm instead of real scan data to fill the need of big 

data, and their JRC is computed with a simple mathematical method. 

There is another problem that the synthetic surfaces do not contain noises 
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existing in TLS scan data. Therefore, artificial noises are applied on the 

synthetic data and the ANN is trained with the noise-applied data so that it 

can learn how to deal with the noise. 

In Chapter 2, utility of JRC in Barton-Bandis joint model and methods to 

measure JRC consistently are explained. Also, some issues including 

roughness anisotropy and scale effect are dealt with and the algorithmic way 

to generate and process the training data is illustrated. 

In Chapter 3, basics of TLS and its noise sources are explained, and the 

algorithmic procedure to put artificial noises on the training data are 

introduced. 

In Chapter 4, an ANN named PointNet is trained to estimate JRC with the 

synthetic training dataset and validated with true TLS data. 

In Chapter 5, summary, contributions and limitations of this thesis are 

suggested in conclusion. 
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Chapter 2. Measuring JRC of 3D point clouds 

 

Roughness is an important property of rock discontinuities in hydro-

mechanical perspective, and JRC is the most widely used description of 

roughness (Barton et al., 1985; Tatone and Grasselli, 2010). Barton and 

Choubey (1977) suggested a method to estimate JRC only by using 

geometric features of rock surfaces without conducting any mechanical 

experiments. Since this method largely depends on human determination, it 

is rather subjective (Barton and Bandis, 2017). Thus, more precise and 

consistent ways to calculate JRC have been suggested by many authors. 

Topics of this kind together with the utility of JRC are dealt with in the early 

part of this chapter. 

Fractal models have been employed to imitate rough rock surfaces in 

previous works combined with numerical simulation and 3D printing 

techniques (Brown, 1987; Fereshtenejad et al., 2021). An algorithm 

generating random fractal surfaces is utilized in this thesis to make large 

amount of data needed for training an ANN. Therefore, relevant principles 

and the procedure are shown in the rest part of this chapter. 

 

2.1. Joint roughness coefficient 

Barton and Choubey (1977) suggested an empirical equation to predict peak 

shear strength of unfilled discontinuities, which is, 

 

 







 r

n
10n φ

σ

JCS
JRClogtanστ  (2-1) 
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where τ, nσ , JCS and rφ  are peak shear strength of the discontinuity, 

normal stress, Joint wall Compressive Strength and residual friction angle, 

respectively. Here, the term joint is used to describe all natural 

discontinuities having zero tensile strength, no soft infilling and no previous 

history of displacements (Bandis et al., 1981). From the equation, we can 

infer that the peak shear strength of a discontinuity increases as it gets 

rougher and the asperities get stronger. Also, when the normal stress acting 

on it is high, it is easy to break the asperities so that their contribution on 

shear strength diminishes. 

To use Eq. (2-1) for prediction, each parameter has to be measured. If the 

joint is dry and unweathered, its JCS and residual friction angle are equal to 

the uniaxial compressive strength and basic friction angle, respectively. 

Otherwise, they can be estimated using a Schmidt hammer. In order to get 

JRC, several methods such as direct shear test, pull test, tilt test and visual 

comparison can be performed. In this thesis, only methods for measuring 

JRC are explained, so please refer to Barton and Choubey (1977) for further 

information on the measurement of JCS and residual friction angle. 

By carrying out the direct shear test on a joint specimen under certain 

normal load, peak shear strength of the joint is obtained. Then, its JRC can 

be back-calculated using Eq. (2-2) which is the rearranged form of Eq. 

(2-1). 

 

 

n
10

r
n

σ

JCS
log

φ
σ

τ
arctan

JRC










  (2-2) 
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Alternatively, push or pull test can be performed, which is shear test that 

only uses self-weight of the upper specimen as normal load. Same with 

direct shear test, Eq. (2-2) is used to calculate JRC in this case. 

Tilt test is another way to use only the self-weight. It is a method where 

the joint sample is tilted slowly until the upper part starts to slide. By 

measuring the angle of inclination which corresponds to arctan[τ/ nσ ] in Eq. 

(2-2), we can calculate JRC using the equation. Here, Barton and Choubey 

(1977) used Eq. (2-3) to calculate nσ  in Eq. (2-2) since small joint 

samples tend to have stress concentration due to torque. 

 

 αcosγσ 2
n  h  (2-3) 

 

where γ, h  and α represent density, height of the sample and angle of 

inclination, respectively. Also, small sample tends to be toppled before 

sliding when it has JRC higher than 8. 

The most convenient way to estimate the full range of JRC (0 to 20) of 

discontinuities is to observe their roughness profiles visually. Barton and 

Choubey (1977) conducted direct shear tests on 136 different joint samples 

and back-calculated their JRC. After that, they divided JRC into 10 ranges 

and suggested a profile that is the most representative for each JRC range 

as Fig. 2-1. Using the Barton comb and this figure, measurers can get 

profiles of discontinuities and assign their JRC range by comparing them 

with the reference profiles. 

Parameters in Eq. (2-1) (JRC, JCS, rφ ) can be used to estimate not only 

the peak shear strength of discontinuities, but also shear displacement at 
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peak shear strength (δ(peak)), peak dilation angle ( nd ). Equations for 

those estimations are as follows: 

 

 
0.33

JRC

500
δ(peak) 










L

L
 (Barton, 1982a) (2-4) 

 
n

10n
σ

JCS
JRClog

2

1
d  (Barton and Choubey, 1977) (2-5) 

 

where L  represents length of the joint in meter unit. 

In addition, Barton (1982a) modeled the pre- and post-peak of shear 

strength and dilation by introducing the concept of mobilized JRC (JRCmob). 

This concept is based on the assumption that the degree of mobilized 

roughness is the only variable changing during shear in Eq. (2-1) and (2-

5). By suggesting the realistic coordinates of JRCmob over peak JRC versus 

Figure 2-1. Barton’s reference profiles (Barton and Choubey, 1977). 
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displacement over δ (peak) as shown in Fig. 2-2(a), mobilized shear 

strength ( mobτ ) and dilation can be plotted with respect to displacement 

using following equations: 

 

 







 r

n
10mobnmob φ

σ

JCS
logJRCtanστ  (2-6) 

 
n

10mobmob n,
σ

JCS
logJRC

2

1
d  (2-7) 

 

Examples of the plots are shown in Fig. 2-2(b). Also, please refer to Barton 

(1982a) and Barton et al. (1985) for comprehensive descriptions on utility 

of JRC in Barton-Bandis joint model. 

Figure 2-2. (a) Suggested coordinates of (displacement, JRCmob/JRC) and 

(b) examples of shear strength-displacement and dilation-displacement 

curves plotted using the coordinates with different input parameters (Barton 

and Bandis, 2017). 
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2.2. JRC calculation using digitized data of surface geometry 

1) Statistical parameters 

Many researchers tried to measure JRC of roughness profiles precisely and 

consistently using statistical parameters rather than visual comparison. The 

most widely used parameter is Z2 in Tse and Cruden (1979) (Jang et al., 

2014). The authors plotted the reference profiles of Fig. 2-1 on xy-plane 

and align their shear direction to be the x-axis direction. After that, they 

digitized the profiles by sampling their amplitude (y-coordinates) at equal 

x-intervals as shown in Fig. 2-3 and calculated Z2 of each profile using the 

following equation: 

 

 
 

1/2
1n

1i

2
i1i

2
x

yy1
Z


















 







L
 (2-8) 

 

where L, iy  and x  denote profile length, y-coordinate of i-th sample 

and size of x-interval, respectively. Using the back-calculated JRC of each 

reference profile written in Barton and Choubey (1977) and regression 

Figure 2-3. Digitization of a roughness profile (Kulatilake et al., 1995). 
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analysis, they derived a relationship between Z2 and JRC as follow: 

 

 2Z log 32.4732.2JRC   (2-9) 

 

Similarly, several other statistical parameters have been suggested to 

calculate JRC as follows: 
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 (Tse and Cruden, 1979) (2-10) 
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2
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R  (Maerz et al., 1990) 
(2-11) 

 

2) Fractal dimension 

Otherwise, there is another way of calculating JRC using fractal parameters. 

Fractals are, in short, geometries having constant degree of irregularity at 

all scales (Mandelbrot, 1982). For instance, Fig. 2-4 shows the iteration 

process of a representative fractal geometry called Koch snowflake. In each 

iteration, every side of the geometry is trisected and the middle segment is 

substituted by two other segments of equal length so as to the total length 

becomes 4/3 times the length of previous stage. If this process continues 

infinitely, same degree of irregularity will be observed even though the 

geometry is enlarged. 

Fractals are classified into two types, self-similar fractals and self-affine 

fractals. Self-similar fractals refer to geometries where the degree of 

irregularity holds regardless of enlarging it (e.g. Koch snowflake). On the 



 

 12 

other hand, self-affine fractals must be scaled differently in different 

directions to maintain their degree of irregularity. For example, if a function 

of a self-affine fractal, y=f(x), is scale k times in x-axis direction, it should 

be scaled kH times in y-axis direction to have the same degree of 

irregularity. Here, H is a parameter called Hurst exponent, which is 

expressed as a number between 0 and 1. Thinking of this example, we can 

imagine that a fractal will get rougher as it is enlarged when it has small H. 

There is another fractal parameter called fractal dimension, D, which has 

relationship with H as below (Jacobs et al., 2017; Odling, 1994): 

 

 









surfaces)(for3

curves)(for2

H

H
D  (2-12) 

 

Several researchers have stated that the rock surfaces have characteristics 

of self-affine fractals and calculated their fractal dimensions to quantify 

their roughness. They employed various approaches such as divider method, 

box-counting method, Power Spectral Density (PSD) method and variogram 

method to get fractal dimension of self-affine curves (Carr and Warriner, 

1989; Huang et al., 1992; Kulatilake and Um, 1999; Lee et al., 1990; Odling, 

Figure 2-4. Iteration process of Koch snowflake (Mandelbrot, 1982). 
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1994). Based on the range of fractal dimension of various joint surfaces 

obtained from previous works, some researchers mentioned that rock 

discontinuities usually have the Hurst exponents between 0.5 and 1 (Huang 

et al., 1992; Odling, 1994). In addition, relationships between fractal 

dimension of the roughness profile and JRC have been suggested (Carr and 

Warriner, 1989; Lee et al., 1990). 

 

3) Grasselli parameter 

As another method to quantify joint roughness, Tatone and Grasselli (2009) 

suggested a roughness parameter, 1)/(Cθ*
max  , that can be measured from 

3D data of joint surfaces to characterize their roughness in all directions, 

where variables comprising the parameter had been introduced in Grasselli 

and Egger (2003). 

Grasselli and Egger (2003) assumed that inclination angle of asperities in 

joint surfaces determine contact area during shear so that it affects the 

Figure 2-5. Potential contact area with respect to minimum apparent dip 

angle (Grasselli and Egger, 2003). 
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shear strength. They digitized target surfaces into 3D meshes and calculated 

the area and dip angle in shear direction of each mesh. After that, total area 

of meshes having dip angle larger than certain threshold dip angle was 

calculated and plotted against the threshold dip angle as shown in Fig. 2-5. 

Then, following equation was fit to the plot: 
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where 0A , *θ , *
maxθ , *θA  and C  represent the total area of meshes 

having dip angle larger than 0, threshold dip angle, maximum apparent dip 

angle, area of meshes having dip angle larger than *θ  and dimensionless 

fitting parameter, respectively. 

Tatone and Grasselli (2009) suggested 1)/(Cθ*
max   consisting of the 

parameters in Eq. (2-13) as a roughness parameter for 3D joint surface. 

Using this parameter, they were able to characterize and visualize 

roughness anisotropy of discontinuities. Additionally, Tatone and Grasselli 

(2010) introduced 2D version of the parameter, 2D
*
max 1)/(Cθ  , which is 

applicable on 2D roughness profiles. By calculating the parameter of the 

Barton’s reference profiles, they obtained the relationship between 

2D
*
max 1)/(Cθ   and JRC. 

 

So far, parameters for roughness quantification were shortly explained. In 

this thesis, Z2-JRC relationship will be used for the following reasons: 

① Z2 is easy to calculate and it is one of the most popular parameters for 
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calculating JRC. 

② The process of calculating the fractal dimension has many variables to 

consider and there are different opinions about the optimal values of the 

variables (e.g. the suitable range of dividers in Kulatilake et al., 1997 

and Jang et al., 2014). In addition, curve-fitting procedure is required 

to calculate the parameter in some cases, which makes labeling the large 

amount of data difficult. 

③ Grasselli parameter has an advantage to characterize roughness in all 

directions. But that advantage diminishes when it is used for calculating 

JRC since JRC itself does not contain any directional information. Also, 

curve-fitting procedure is required to get C in Eq. (2-13). 

 

2.3. Issues relevant to JRC 

1) Scale effect 

Bandis et al. (1981) pointed out that the peak shear strength of disconti-

nuities decreases as its size gets larger due to the existence of scale effect 

on JCS and JRC. According to the authors, the shear strength consists of 

three components which are asperity failure component, geometrical com-

ponent and residual frictional component (Fig. 2-6). Among those, only 

residual frictional component remains constant regardless of the size of the 

joint while the effect of the others diminishes as the joint gets larger. 

Conducting lots of experimental results, the authors found out that the 

number of small contact areas during shear increases in small joints than 

large joints while the size of individual contact areas decreases. Based on 

these results, it can be thought that the increased amount of mobilized 

asperities in large joint leads to the inclusion of more defects (e.g. micro- 
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cracks) during shear so that causes the degradation of JCS. Also, it was 

observed that the peak dilation angle decreases as the joint size increases. 

It was interpreted as the base-length of mobilized asperities gets longer as 

the joint gets larger, which leads to decline of JRC. 

By using the residual friction angle and measuring the dilation angle and 

peak shear strength, the authors were able to separate the effect of each 

component in Fig. 2-6. As a result, the authors suggested reduction curves 

with respect to the size of joint for JCS and JRC as shown in Fig. 2-7. Also, 

Barton (1982a) derived equations for the curves as follows: 
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In these equations, 0L  represents the lab-scale joint length (10 cm) and 

Figure 2-6. Scale effect on three main components constructing the shear 

strength of rock joints (Bandis et al., 1981). 
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JCS0 and JRC0 are JCS and JRC of joint having length 0L . In the same way, 

nL  represents the joint length of interest and JCSn and JRCn denote JCS and 

JRC of joint having length nL . By using these equations, we can estimate 

JCS and JRC of joint with different lengths using the measured values of JCS 

and JRC of joint with 10 cm length.  

However, Eq. (2-15) does not work well on joint samples with dissimilar 

roughness on small and large scales (Bandis et al., 1981). That is, a joint 

can be rough on small scale while planar on large scale, or conversely, it can 

be smooth on small scale while quite undulating on large scale (Barton, 

1982b). Therefore, Barton (1982b) suggested an alternative method to 

estimate JRC by measuring the maximum amplitude (a) over a joint length 

(L) using a straight edge as shown in Fig. 2-8 with the below equations: 
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 (2-16) 

 

Figure 2-7. Reduction curves with respect to joint length for JCS and JRC. 

Nomenclatures for the parameters in the axes are described in the text 

(Bandis et al., 1981).  
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Barton (1982b) recommended to utilize the JRC estimating methods con-

currently as many as possible to improve reliability: 

① Tilt tests on joints sampled in drillcore and to use Eq. (2-15). 

② Tilt tests on blocks of natural size. 

③ Roughness profiling at different scales and using Fig. 2-8 or Eq. (2-

16) to scale JRC. 

Given that the Cartesian coordinates of joint surfaces are the only available 

data from TLS scanning, following methods can be considered to be used 

concurrently when we measure JRC using TLS without mechanical tests: 

① Visual comparison using Fig. 2-1 and scaling the JRC with respect to 

the joint size using Eq. (2-15). 

② Roughness profiling at different scales and using Fig. 2-8 or Eq. (2-

Figure 2-8. Illustrations of the a/L method (amplitude-length method) for 

estimating the large-scale JRC (Barton and Bandis, 2017). 
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16). 

 

2) Anisotropy 

Degree of roughness is different with respect to the direction in the joint 

surfaces, which leads to anisotropy of the shear strength. So, it is important 

to measure roughness in the potential shear direction. For instance, shearing 

usually occurs in the dip direction in a single joint and in the case of two 

intersecting joints, the potential shear direction would be parallel to the 

intersection (ISRM, 1978). Otherwise if the direction of sliding is unknown, 

ISRM (1978) said roughness must be sampled in three dimensions instead 

of two. 

 

3) Dependence on sampling interval and resolution of device 

Yu and Vayssade (1991) discussed about a problem that Z2 value of a profile 

varies sensitively as sampling interval, x  in Eq. (2-8), changes. Pointing 

out that Tse and Cruden (1979) had used 0.5 mm as the sampling interval 

to gain relationship between Z2 and JRC (Eq. 2-9), they suggested new Z2-

JRC relationships with three different sampling intervals: 
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Tatone (2009) and Tatone and Grasselli (2010) discussed some issues 

regarding resolution of instrument for roughness measurement. They 

mentioned that when we use the Barton comb to obtain roughness profiles, 
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rough features smaller than a pin diameter of the comb are ignored. As the 

original reference profiles in Fig. 2-1 were obtained with the Barton comb, 

they do not carry any rough features smaller than the pin size. Therefore, 

using sampling interval smaller than the pin size for calculating JRC by Z2 or 

any other parameters will not produce any additional information about 

roughness, leading to the inclusion of step-like features introduced by the 

pin geometry as shown in Fig. 2-9. 

 

2.4. Synthetic surface generation 

One way to calculate fractal dimension of a fractal geometry is using Power 

Spectral Density (PSD) method. PSD is a function which is earned by 

Fourier-transforming a signal’s autocorrelation (Fig. 2-10). In the case 

of self-affine fractals, log-log plot of PSD function has the slope related to 

Hurst exponent as below (Lee et al., 1990; Babadagli and Develi, 2001; 

Jacobs et al., 2017): 

 

Figure 2-9. Erasure of features smaller than a pin diameter (Tatone and 

Grasselli, 2010). 
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Using Eq. (2-12), we can assign the fractal dimension of self-affine fractals. 

In this thesis, training dataset for an Artificial Neural Network (ANN) is 

generated using an algorithm which is from Kanafi (2022). 

This algorithm is a Matlab code that generates random fractal surfaces in 

the form of point cloud. There are five input parameters, which are Hurst 

exponent (H), amplitude standard deviation of surface amplitudes (σ),  

length of the resultant surface in x-axis direction (Lx), number of points in 

x-axis direction (m) and number of points in y-axis direction (n). With the 

input parameters, it first makes discrete isotropic PSD function on 

wavevector domain. By assigning a random phase on each wavevector and 

applying inverse fast Fourier transformation on the scaled root-mean-

square of wavevectors, a point cloud of random fractal surface is generated 

on Cartesian coordinates domain. The generated point cloud is a rough 

Figure 2-10. PSD of a joint profile (Carr and Warriner, 1989). 
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surface having m by n points with regular intervals in x- and y-axes 

directions and the standard deviation of heights, σ. In short, this is the 

inverse process of obtaining fractal dimension of fractal geometries using 

PSD method. 

To make a training dataset, random rough surfaces were generated with 

different input parameters. As mentioned in section 2.2, previous scholars 

noted that H of most rock surfaces lies between 0.5 and 1.0, thus the input 

H was picked to be a random number between 0.5 and 1.0. Also, the σ was 

randomly picked to make JRC of the resultant surfaces to be in the range 

between 0 and 20 considering the pre-determined H value. Since the 

reference profiles in Fig. 2-1 are 10 cm long, Lx, m and n were fixed as 10 

cm, 1,000 and 1,000, respectively. In Fig. 2-11, it is shown that the micro-

scale roughness develops more as H gets smaller as mentioned in section 

2.2. 

Figure 2-11. Synthetic rough surfaces generated by the algorithm. All three 

surfaces have the same JRC of 10 but different H. From the left, H is equal 

to 0.5, 0.7 and 0.9, respectively. 

Figure 2-12. Generated surfaces with roughness anisotropy. 
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Also, to imitate actual rock surfaces having roughness anisotropy, PSD 

function was scaled at different rates depending on the direction. More 

isotropic surfaces were prone to be generated so that the JRC difference 

between two orthogonal directions does not exceed 10. Fig. 2-12 shows 

the most anisotropic surfaces among the generated surfaces. 

 

2.5. Calculating JRC of the generated surfaces 

To use the synthetic point clouds generated in section 2.4, they should be 

labeled with their JRC values. Since the point clouds have 1,000 × 1,000 

points placed with equal interval on 10 × 10 cm2 area, thousand roughness 

profiles of 10 cm length having 0.1 cm sampling interval can be obtained for 

x-axis direction. After obtaining their Z2 and JRC using Eq. (2-8) and (2-

17), thousand JRC values in x-axis direction were averaged into one 

representative JRC value; JRCx. Detailed process is explained below. 

An artificial Barton comb was employed to get the roughness profiles from 

the generated surfaces. When we obtain a profile using a Barton comb, the 

height of a pin is determined to be the height of the highest rough feature 

among the asperities inside the pin as illustrated in Fig. 2-9. Therefore, 

each of the roughness profiles obtained from the generated surface was 

divided by the pin diameter, 0.8 mm (pin diameter of the author’s comb), 

and each interval was set to have the constant height which is the maximum 

height in it (Fig. 2-13). As mentioned in Tatone and Grasselli (2010), it is 

better to choose sampling interval, x , larger than a pin diameter of the 

comb. Thus, x  was set to be 1 mm in Eq. (2-8) and the last equation in 

Eq. (2-17) was used to calculate JRC of each profile obtained by the 

artificial comb. After calculating JRC of the 1,000 profiles in x-axis 

direction, the JRC values were averaged into one JRC (JRCx) to label the 
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corresponding surface. The JRC-labeled point clouds are post-processed 

in the upcoming chapter to be the training dataset for an ANN. 

 

  

Figure 2-13. Rough profile from a generated surface (top) and the same 

profile after applying Barton comb (bottom). Digits in axes are in cm unit. 
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Chapter 3. TLS precision 

 

3D laser scanning is employed in many different fields such as construction, 

manufacturing, autonomous driving and forensic since it can duplicate things 

in real world in the form of 3D point cloud quickly. Since it is being more 

and more popular in rock mechanics and rock engineering, a survey on the 

laser scanning has been written as an additional article in the ISRM orange 

book (Feng and Röshoff, 2015). According to the article, laser scanning can 

be used for site characterization of a rock exposure, quality control of tunnel 

blasting, deformation monitoring, improvement of input data for numerical 

modeling and many other purposes. 

In this chapter, basics of TLS and the reasons why it is important to know 

about the precision are explained first. In addition, algorithms to simulate 

noises in TLS data are introduced and applied on the synthetic rough 

surfaces generated in the previous chapter. 

 

3.1. Basics of TLS 

TLS is usually installed on the ground with a tripod, which looks like Fig. 3-

1(a). As shown in Fig. 3-1(b), laser beam emitted from the laser diode is 

reflected through a mirror and extends outward. TLS uses a rotating mirror 

to scan all the surrounding area in a short time since it is difficult to rotate 

the laser diode due to its weight. Laser stretches out after being reflected 

by the mirror while the mirror and the whole device rotate 360 degrees in 

vertical and horizontal direction, respectively. Once the mirror turns 360 

degrees in vertical direction, the device rotates horizontally with a small 
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angle interval. After the emitted laser reaches a surface, it is reflected and 

some of the scattered light comes back to the device to be detected. There 

is a unit named rangefinder inside the TLS, which calculates the travel 

distance of the laser by catching the difference between the emitted and 

returned light. By emitting the laser discretely, TLS can scan the 

surrounding area and save it as a point cloud quickly. 

The stored data consist of the Cartesian coordinate and intensity of each 

recorded point. Also, each point has color information when the RGB color 

mode is set before scanning. In conjunction with the rangefinder, angle 

encoder is a sensor inside TLS, which records the vertical and horizontal 

angle of the laser; Ф and θ in Fig. 3-2. In this way, point clouds are firstly 

recorded in polar coordinates and then converted into the Cartesian coordi-

nates through a linear transformation. The intensity of each detected laser 

is also measured and recorded in the data. Yet, the stored value of intensity 

is not a raw datum, being often scaled by the manufacturers in unknown 

ways (Schmitz et al., 2019). 

Commercial TLS devices are usually divided into two types: 1) Time-of-

Figure 3-1. (a) TLS outlook (Faro Focus S 350+) and (b) rotating 

direction (horizontal/vertical) of the laser beam (Muralikrishnan, 2021). 
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Flight (TOF) type and 2) Amplitude-Modulated Continuous Wave (AMCW)  

ranging (=Phase-shift) type. Generally, the TOF type TLS can run at a 

distance farther than the AMCW type scanners (e.g. a few km) while AMCW 

type scanners can scan more precisely than the TOF type scanners. Here 

is the brief explanation on both types of the laser scanner: 

1) TOF: Rangefinder in TOF type scanner measures the time difference 

between emitted and returned laser. Distance between the device and 

target is calculated by the equation below: 

 

 
2

ct
R   (3-1) 

 

where R, c and t represent range, speed and travel time of the light, 

respectively. 

2) AMCW: AMCW type scanners emit amplitude-modulated waves and the 

rangefinder calculates the range by using the measured value of the 

Figure 3-2. Polar coordinates of a detected target point. R, Ф and θ denote 

the range, vertical angle and horizontal angle, respectively. 
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phase difference between the emitted and returned laser, φ, caused by 

the round trip. The equation is, 

 

 2π)φ(0φ
4π

λ
R  (3-2) 

 

where λ  is wavelength of the amplitude-modulated wave. In this 

equation, if R exceeds the half of λ, the phase difference is more than 

2π so that the detector will judge the phase-shift to be φ-2nπ, 

where n is an unknown natural number. Therefore, for the AMCW 

scanner to run at long distances, wavelength of the modulated wave 

should be set large. However, if noise occurs in φ term in Eq. (3-2), 

it will be amplified more as λ  gets larger, leading precision of the 

rangefinder to get worse. Accordingly, most AMCW type scanners 

employ two or three waves having different wavelengths. They use the 

shorter wave to measure precise phase-shift, using the longer one to 

calculate the unknown value, n. In this way, they can carry out scanning 

at considerably long distance with high precision (e.g. hundreds of 

meters). 

In this thesis, two AMCW type TLS devices, Faro Focus S 350+ and Faro 

Focus S 350 are employed. Their technical specification is shown in Table 

3-1. The only difference between the devices is the magnitude of range 

noise and Faro Focus S 350+ is more precise. 
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3.2. Factors disturbing TLS precision 

Fig. 3-3 schematically shows the meaning of the terms, accuracy and 

precision. Accuracy is a measure representing how close the measurements 

are to the actual value while precision means how close the measurements 

are to each other (Soudarissanane., 2016). Generally, systematic errors 

determine the accuracy of a device while random errors determine the 

precision. Here, systematic error denotes the consistent error induced by 

miscalibration (e.g. inclination of rotation axis), which can be fixed by 

calibration. Random error, on the other hand, is unpredictable and not a 

subject of calibration, which occurs in the form of Gaussian distribution. 

Since the target of interest of this thesis is a small area of joint surfaces 

having micro-scale rough features, precision is a matter of importance. On 

the other hand, accuracy is less important because point cloud of such joint 

surfaces is arranged in a later section. Therefore, noise sources that disturb 

TLS precision are covered in detail while factors relevant to accuracy are 

Figure 3-3. Difference between accuracy and precision (Soudarissanane, 

2016). 
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not dealt with (Refer to Muralikrishnan, 2021 for knowledge about TLS 

accuracy). In this chapter, factors affecting TLS precision are classified into 

three; 1) range noise, 2) angular noise and 3) mixed-pixel effect. 

 

3.3. Measuring roughness of joint using TLS 

Previously, several attempts have been made to measure roughness of rock 

discontinuities using TLS. Although their purpose was not always to 

calculate JRC, those studies are briefly looked over in this section. 

Fardin et al. (2004) used an old TLS model, LARA of Z+F, to scan a rock 

exposure from 10 m distance and obtain its point cloud for roughness 

characterization. The authors tried to quantify roughness with two 

parameters, fractal dimension and amplitude parameter, measured from the 

point cloud using a method called Roughness-Length method (RL method). 

To observe the scale effect of roughness, those parameters were calculated 

while changing the size of sampling window. As a result, it was confirmed 

that the roughness value converges as the window size increases and it is 

possible to calculate the primary roughness (large-scale roughness) using 

the TLS. However, the authors stated that it is difficult to calculate the 

secondary roughness (small-scale roughness) using the TLS due to 

resolution and noise of the data. 

Kemeny and Turner (2008) presented two different methods for estimating 

roughness using triangulated mesh of joint surfaces constructed from TLS 

scan data. One is to project the orientation of each triangle of the joint onto 

the stereonet. By observing the degree of scattering from the mean 

orientation of the surface, they could get information about the dilatation 

angle of the joint as shown in Fig. 3-4. The other method is to calculate JRC 
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of the roughness profiles obtained from the mesh data. Roughness profiles 

were extracted by cross-sectioning the mesh in the potential shear 

direction and their Z2 and JRC were calculated by using Eq. (2-8) and (2-

9). In this report, the authors said that if the size of triangular mesh is 

smaller than the error level of the scanner, the error would affect the 

roughness measurement. 

Gigli and Casagli (2011) measured roughness of rock joint from TLS scan 

data using searching cubes with different dimension (0.1, 0.2, 0.4, 1, 2 m). 

As the cube moves across the point cloud of the joint, best-fit plane of 

points inside the cube was plotted on stereonet. Same with Kemeny and 

Turner (2008), they tried to quantify roughness by observing the degree of 

scattering from the mean orientation of the joint. They warned that the 

validity of this method depends on the accuracy of the device and in 

particular, measurements can be overestimated due to the noise when 

measuring roughness at a small scale. 

Figure 3-4. Schematic images showing the process of roughness estimation 

by stereonet projection (Kemeny and Turner, 2008). 
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Marsch et al. (2020) compared the applicability of four different 3D 

scanners including TLS (Faro Focus 3D X 330 HDR) in roughness 

estimation for rock surfaces. After scanning rock specimens with various 

roughness using each device, they measured the error level and JRC of point 

clouds of the specimens. Here, JRC was obtained by extracting roughness 

profiles from the triangulated mesh obtained from the point cloud. As a result, 

TLS scan data was revealed to have the highest error level and the most 

inaccurate JRC. Accordingly, the authors said that it is better to avoid 

measuring small-scale roughness using the TLS. 

Bitenc et al. (2019) scanned rock joint samples using a TLS, Riegl VZ400, 

under various scanning configurations. The authors employed wavelet 

decomposition techniques to separate noise from the scan data. Performance 

of the techniques was evaluated by measuring Grasselli parameter of the 

noise-separated data and comparing it with the reference value. As a result, 

it was confirmed that roughness can be measured more accurately through 

wavelet decomposition. However, there is a process to select a threshold 

value needed for the decomposition and the threshold selection method 

should be chosen based on roughness of the target surface. 

According to the previous works introduced above, it is difficult to measure 

roughness in small-scale due to the existence of noise in TLS scan data. In 

this thesis, noise simulation and an ANN are employed to dealt with the 

noise. 

 

3.4. Range and angular noise 

When laser beam is reflected from a planar Lambertian reflector (Fig. 3-7) 

and reaches to a detector in TLS, power of received laser is calculated as 
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below (Soudarissanane et al., 2011): 

 

 atmsys2emittedrecieved ηπγη
ρ

cosα
PP   (3-3) 

 

where recievedP , emittedP , α, ρ, γ, sysη  and atmη  denote received power, 

emitted power, incidence angle between the beam and normal of the 

reflector, range, surface reflectivity, systematic power loss and atmospheric 

power loss, respectively. This amount of received power determines the 

Signal-to-Noise Ratio (SNR) in range measurement. Accordingly, random 

noise is added to the measured value of the range in the direction of the 

laser beam, which is called range noise. 

Being independent to the range noise, another type of random noise existing 

in the angle encoder is called angular noise. In other words, noise in Ф and 

θ in Fig. 3-2 is the angular noise. 

When we repeat TLS scanning, position of scanned points changes slightly 

every time even if the scanning is performed right at the same location. 

Therefore, it is difficult to measure point-wise noise level so that many 

researchers have tried to estimate the noise level by scanning planar objects 

and calculating mean distance between their point cloud and the best-fit 

plane. Furthermore, it is also very hard to decompose the measured noise 

into range and angular noise present in point clouds since they are mixed. 

Given this situation, authors of the following articles tried characterizing 

those TLS noises. 

Soudarissanane et al. (2011) assumed that the level of range noise is 

determined by Eq. (3-3), and measured the range noise acting on planar 
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surfaces in different range and incidence angle. In this way, they could 

validate the effect of range and incidence angle on range noise level and by 

conducting indoor TLS scanning, they found a better position for locating 

TLS that minimizes the noise level. 

Wujanz et al. (2017) also stated that range noise level of TLS is influenced 

by the range, incidence angle and surface characteristics of target. In 

addition, they assumed that the raw intensity values of TLS scan data 

contain most of the information of those variables and range noise level can 

be estimated by using the intensity as the only parameter. They derived the 

empirical equation relating only the intensity to range noise level after 

carrying out some scanning and showed that all the data obtained from 

scanning with different settings always lie on that equation. In this article, 

1D scanning mode or planar surfaces whose normal is semi-perpendicular 

to the laser beam were utilized to exclude the effect of angular noise. 

Agreeing with Wujanz et al. (2017), Schmitz et al. (2019) said that range 

noise level of TLS is predictable by using only the intensity. However, they 

pointed out that most of TLS devices offer scaled value of intensity and their 

manufacturers do not open the scaling method to the public. After carrying 

out a lot of scanning, they revealed that the scaled intensity can also be used 

for predicting range noise level, but in limited circumstances. Additionally, 

they could calculate range and angular noise level from point cloud of 

inclined planar surfaces using variance component estimation. 

In the above articles, factors influencing the noise level of TLS were figured 

out and intensity-based models predicting range noise level have been 

suggested. Yet, not much research has been carried out on angular noise 

and in many works, values specified in the device brochures are generally 

used for estimating the angular noise level (Holst et al., 2014; Wujanz et al., 
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2017). 

 

3.5. Mixed-pixel effect 

Laser emitted from a TLS diverges as it passes through the atmosphere as 

shown in Fig. 3-5(a). Therefore, diameter of beam cross-section gets 

larger as it moves farther and it can be a few to several tens of millimeters 

depending on the range. It makes laser beam to meet with the target in an 

area rather than a dot. Hence, the range value that rangefinder records 

becomes a spatially averaged value for the beam contact area. This pheno-

menon is called mixed-pixel effect. 

Mixed-pixel effect occurs mainly near the edge of a surface since the effect 

becomes severe when there is rapid range difference inside the beam width, 

and is thus also called the edge effect. Fig. 3-5-(c) shows an illustration 

of resultant points (i.e. mixed-pixels) which do not exist in reality but 

appear when the laser beam falls on the edge of a surface as shown in Fig. 

3-5(b). 

Figure 3-5. (a): Divergence of laser beam. (b): Laser beam falling on a 

surface edge. (c): Mixed-pixels in a point cloud. Different types of mixed-

pixels can be made depending on the range difference between foreground 

and background (a, b: Reshetyuk, 2009, c: Wang et al., 2016). 
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In this section, principles of the mixed-pixel effect appearing in AMCW type 

scanners are explained referring to Wang et al. (2016) and Chaudhry et al. 

(2019). Since TLS devices used in this thesis are AMCW type, mixed-pixel 

effect in TOF or other types of TLS will not be addressed. 

In general, after a laser beam is emitted, the width decreases until it reaches 

a position called the beam waist, where it has the smallest diameter. When 

the beam moves further from this position, its radius expands and is 

calculated as below: 
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where w, w0, R and λ denote beam radius, radius of beam waist, range and 

wavelength of the laser. 

Beam diameter of a laser beam is generally defined based on the irradiance 

distribution in the cross-section of a Gaussian beam. As shown in Fig. 3-

Figure 3-6. Irradiance distribution in the cross-section of a Gaussian beam 

(Reshetyuk, 2009). 
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6, Gaussian beam represents that the cross-sectional irradiance of the beam 

is distributed in the form of a Gaussian distribution. In the figure, the beam 

diameter is defined in various ways. For example, beam diameter based on 

1/e2 irradiance (D1/e2) means the distance between the opposite points 

where the irradiance is 1/e2 times the irradiance at the beam center 

(Marshall and Stutz, 2012). Provided that the beam radius based on 1/e2 

irradiance is w, the irradiance at an arbitrary point inside the beam, i, is 

calculated as below: 
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where E0 is the irradiance at the beam center, and iρ  is the distance 

between i and the beam center. Eq. (3-6) is used instead of Eq. (3-5) when 

the beam radius is based on 1/e irradiance. 

 

 















2
i

2
i

0i

ρ
exp

w
EE  (3-6) 

 

For the surface into which a beam enters, let a small area element inside the 

beam width be i and assume its irradiance to be Ei in Eq. (3-5). Since 

irradiance means the power of incident light over unit area, the power of the 

incident laser on i can be calculated by the following equation: 

 

 iiii o, cosαAEP   (3-7) 
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where Ai is the area of i, and iα  is the incidence angle between laser beam 

and the normal direction of i. Total power of the light reflected from i is 

calculated by multiplying the incident power, Po,i, and the reflectance of i, Ri 

(0 ~ 1), as below: 

 

 ii o,i r, RPP   (3-8) 

 

If i is assumed to be the Lambertian reflector, the intensity of scattered 

laser is calculated as following equation: 

 

 cosβ0II   (3-9) 

 

In this equation, β represents the angle between the normal of the reflector 

and an arbitrary direction as shown in Fig. 3-7. Also, Io is the intensity 

where β equals zero. Since intensity represents power per solid angle, 

Figure 3-7. Light reflected from a Lambertian reflector has the same 

radiance regardless of the angle from the normal. Yellow arrows represent 

the intensity magnitude of the reflected light while red and blue arrows 

represent the surface normal and an arbitrary direction, respectively (After 

Photonik and Sandner, 2015). 
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total power of the reflected light, P, can be calculated as below: 

 

 

cosβ
π

πdβsinβcosβdθ

dωcosβdω

2

π

0

2π

0
00

2π

0
0

2π

0

P
I

II

IIP







 



 (3-10) 

 

Here, ω and θ denote the solid angle and the azimuthal angle about the 

surface normal, respectively. In the case of TLS, laser source and detector 

are at the same position (β= iα ). Therefore, the intensity of the reflected 

light toward the detector follows: 

 

 i
ir,

ir, cosα
π

P
I   (3-11) 

 

Also, the amount of power detected at the detector, Pd,i, is calculated by 

multiplying intensity and corresponding solid angle as following equation: 
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A
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where Ad and di denote the area of the detector and distance between i and 

the detector, respectively. In the meanwhile, we can assume that the power 

of the laser being emitted, Pe, is a cosine function of time as below: 
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where P0 is the amplitude, c is the speed of light, λ  is the modulation 

wavelength, and t is time after the emission. Thus, total power of detected 

laser reflected from i can be expressed by a function of time as below: 
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where iφ  represents the phase-shift of the modulated wave. Therefore, 

the total amount of detected power can be calculated by summing up the 

detected power from all the area element as following equation: 
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where Pd and φ denote the amplitude of the function and the phase-shift, 

respectively. Given the equation, the phase-shift can be calculated as below: 
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Finally, the range between the target and TLS is calculated by following 

equation. 

 

 Nd
2

λ
φ

4π

λ
  (3-17) 

 

where N denotes the unknown number of full cycles of the modulated wave. 

As mentioned in section 3.1, TLS employing more than two different 

modulation wavelengths uses shorter modulation wave to calculate the range 

precisely. Thus, λ in Eq. (3-17) denotes the shortest modulation wave-

length and N can be calculated by using a larger modulation wavelength. 

 

3.6. Synthetic noise application 

In this section, TLS errors explained throughout section 3.4 and 3.5 are 

simulated on the surfaces generated in section 2.4. After the mixed-pixel 

effect is simulated first, range and angular noise are also applied on the 

surfaces sequentially. 

Before simulating errors, the range of distance and incidence angle of 

interest have been restricted as below: 

① Distance (= range): Based on section 3.4 and 3.5, error level increases 

as the distance between TLS and target increases. Therefore, if the 
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distance is too long, noise level becomes too large leading the roughness 

characterization unavailable. Furthermore, density of point cloud would 

be too sparse. In contrast, if the distance is too short, the purpose of 

measuring JRC in distance would not be achieved. In addition, if the 

range of noise level is too wide, it would be difficult for an ANN to learn 

about the TLS noises. Considering the above problems, the distance 

between TLS and joint surfaces is restricted to 8 ~ 12 m. 

② Incidence angle: Incidence angle of laser determines density of point 

cloud. If density of point cloud is too sparse, it would be impossible to 

characterize roughness. In this thesis, 2,048 points in 100 cm2 is 

required to utilize an ANN. Provided that step size of Faro Focus S 350+ 

and 350 is 0.009°for both vertical and horizontal directions according 

to Table 3-1, incidence angle has to be smaller than 43°at the 

maximum distance of interest, 12 m. Therefore, the range of incidence 

angle is restricted to 0 ~ 45°. 

 

1) Mixed-pixel effect 

Referring to Table 3-1, both TLSs have beam diameter of 2.12 mm at exit 

and full-angle divergence of 0.3 mrad. Here, these two values are based on 

1/e irradiance. Accordingly, beam diameter, D, with respect to the range, R 

(m), will follow the below equation: 
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Here, R is set as a random number between 8 and 12. Let O be one of a 



 

 44 

million points that make up each surface generated in section 2.4. Incident 

direction of laser beam is denoted by a unit vector, b̂ , and O is set to be the 

intersecting point of the centerline of the beam and the surface as shown in 

Fig. 3-8. In addition, it is assumed that the incident directions of the points 

located inside the same beam are parallel to each other and a boundary is 

set to distinguish the points that affect the degree of mixed-pixel effect. 

Since the beam diameter is based on 1/e (~36%) of the maximum irradiance, 

the distance between the centerline and the boundary is set to D instead of 

D/2 to contain most of the laser. 

Points inside the boundary is a set of n points, P={p1, p2, ⋯, pi, ⋯, pn}, and 

Pd,i in Eq. (3-12) can be expressed in terms of Ei by using Eq. (3-7), Eq. 

(3-8), and Eq. (3-11) as follow: 
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When we approximate pi to i in the equation, all the parameters having i as 

subscript become the corresponding values of pi. Then, assume that all is 

Figure 3-8. Determining the influencing area by setting the boundary. 
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have the same Ri and 2
id  since they are on the same surface and differences 

between id  is so small compared to the distance between the surface and 

the device. By substituting the invariant part of Eq. (3-19) by k, following 

equation is obtained: 

 

 i
2

iii d, αcosAkEP   (3-20) 

 

When all the elements (i) are projected on the xy-plane, they have the same 

x and y intervals. Therefore, it can be assumed that every i has the same 

projection area denoted by A0. Accordingly, the xy-plane projection of Ai 

is equal to A0 and the following equation holds: 
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In the equation, in̂  and ẑ  represent the unit normal vector of Ai and the z 

unit vector in Cartesian coordinate system, respectively. By using b̂  and 

putting Eq. (3-21) in Eq. (3-20), following equation is obtained: 
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By putting this equation in Eq. (3-16), we can get: 
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By expressing phase-shift at O as 0φ , iφ  and φ can be represented as 

below: 
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In this way, Eq. (3-23) can arranged as following equation: 
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Referring to Eq. (3-17), relationship between φ  and d  can be inferred 

as: 
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Following equation is obtained as we arrange Eq. (3-25) in terms of d : 
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We can calculate the range after mixed-pixel effect has been applied by 

adding d  to distance between TLS and O. In this equation, b̂  was set 

randomly to have the incidence angle less than 45 degrees and Ei can be 

obtained by using Eq. (3-6). Thus, in̂  and λ  are all we need to know, 

which are the unit normal vector of i and the shortest modulation wavelength 

of Faro Focus S 350+ and 350. To get in̂ , vertex normal estimation, a 

Figure 3-9. Normal vectors of all the points inside a beam area. Black 

thorns indicate the normal vectors. 
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function from open3d library in python, was employed. This function 

calculates the normal vector of every point by using positional relationship 

with the adjacent points. Fig. 3-9 shows the normal vectors obtained by the 

function for points inside a beam boundary. On the other hand, the shortest 

modulation wavelength is not known to the public since it is a confidential 

information of the manufacturer. Yet, it has once been revealed that the 

former Faro TLS model had the shortest modulation wavelength of 2.4 m 

and there is an article stating that setting the shortest modulation 

wavelength around 1 m is reasonable (Chaudhry et al., 2021; Wang et al., 

2016). When I tried applying the mixed-pixel effect on several synthetic 

rough surfaces, setting the wavelength as 2.4 m and 1 m did not show any 

differences in the resultant point clouds. Therefore, λ was set as 2.4 m in 

this thesis. 

Through the above process, a code was written to simulate the mixed-pixel 

effect on the synthetic surfaces. Fig. 3-10 shows an example of resultant 

surfaces. 

 

Figure 3-10. Point cloud of a rough surface whose JRCx is 19.13 (left). And 

the same surface after adding the mixed-pixel effect (right). TLS 10 m 

away in z-axis direction was assumed in this case. 
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2) Range noise 

On all the points where mixed-pixel effect was applied, noise in Gaussian 

distribution was added in the beam direction. Here, standard deviation of the 

distribution was assigned a random number between 0 and 0.4 mm referring 

to Table 3-1 and considering the target distance of 8 to 12 m. 

 

3) Angular noise 

Since the angular noise is the noise present in angle encoder, it is assumed 

that the angular noise is generated in the form of Gaussian distribution on Ф 

and θ in Fig. 3-2. For each surface where mixed-pixel effect was applied 

on, a plane orthogonal to the beam direction has been assumed. A random 

direction on that plane was set to be the horizontal direction, and its in-

plane orthogonal direction was set to be the vertical direction. Then, 

Gaussian noise was added in each direction. Referring to angular accuracy 

in Table 3-1, the standard deviation for each noise was assigned as below: 

 

 (mm)0.09211σσ verticalhorizontal R  (3-28) 

 

where the unit of R is meter. 

 

3.7. Training data generation 

Following the steps introduced in section 3.6, synthetic surfaces on which 

TLS noises are applied were generated. Considering the step size in Table 

3-1, 2 ~ 4,000 points are contained in 100 cm2 area when it is scanned at 
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8 ~ 12 m distance. Thus, only 2,048 points were selected randomly from 

each synthetic surfaces to imitate surfaces scanned by TLS. 

Finally, total 20,480 noise-applied surfaces having different JRCx, degree 

of anisotropy, fractal dimension, beam direction and range have been created. 

Since each surface has JRCy (JRC in y-axis direction) different from JRCx, 

all the surfaces were reflected over y=x and labeled with corresponding 

JRCx (which is equal to JRCy before reflection) in order to augment the 

amount of training data. In this way, total 40,960 synthetic surfaces were 

obtained and became the training dataset for an ANN. The whole data 

generation process can be summarized as follows: 

① Generate point cloud of rough surfaces using the fractal-based algo-

rithm. 

② Label each surface with its JRCx. 

③ Apply TLS noises (Mixed-pixel effect, range noise and angular noise) 

Figure 3-11. One of the training data. JRCx of this surface is 18.98. 
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on the surfaces. 

④ Pick 2,048 points from each surface. 

⑤ Augment the data by reflecting the surfaces over y=x. 

Fig. 3-11 shows one of the final product. 
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Chapter 4. ANN estimating JRC of TLS data 

 

Artificial Neural Networks can solve problems that were thought to be 

solvable only by humans. Distinguishing facial expressions from human face 

photos is an example of such problems. To solve that problem with 

traditional algorithm is very challenging since the rules to be established are 

too complex and it might not work as the angle or position of the face is 

slightly changed. However, if an ANN is trained with a sufficient amount of 

the photos, it can even classify the unseen photos with high accuracy using 

its ability to generalize. 

In this chapter, assuming that the ANN can learn how to distinguish the noise 

from the TLS scan data, an ANN called PointNet is trained with the synthetic 

training dataset generated at former chapters and validated with real data. 

 

4.1. PointNet 

Point cloud data means a set of points expressed in the form of Cartesian 

coordinates. Therefore, if a point cloud consists of N points, it can be 

represented by an N×3 matrix. Since laser and optical scanners are widely 

used for various purposes these days, methods to handle point cloud data 

are being studied a lot. Among such methods, an ANN called PointNet is 

employed in this thesis. PointNet, which has been developed by Qi et al. 

(2017), is a deep neural network that can directly consume raw point cloud 

and perform classification or segmentation. 

Qi et al. (2017) focused on three characteristics of point cloud to handle it 

with an ANN; 1) Unorderness, 2) interaction between points, and 3) 
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invariance under rigid or affine transformation. First, that a point cloud is 

unordered means its shape and properties are not affected by the order of 

the points constituting it (i.e. changing the order of rows in the N×3 matrix). 

Also, the second one represents that each point of a point cloud does not 

contain any information when viewed separately, and the meaning of a point 

cloud is determined according to the relationship between all the points. 

Finally, the third one means that the shape and type of a point cloud do not 

change when rigid or affine transformation (spatial translation and rotation) 

is applied on it. These characteristics make it challenging for the ANN to 

handle point cloud data. 

ANNs prior to PointNet used to accept pre-processed data such as mesh, 

voxels and converted 2D images rather than the raw point cloud to handle 

the above problems. Given that situation, PointNet became a pioneering 

network that directly receives and processes raw point clouds. The 

strategies used by Qi et al. (2017) to solve the aforementioned problems 

are as follows. First, a symmetric function is utilized to aggregate the 

information of unordered points. Here, a symmetric function means a 

function that produces the same result regardless of the order of input 

values, such as addition and multiplication. PointNet gathers the features of 

each point of a point cloud by using max-pooling as the symmetric function. 

Figure 4-1. PointNet structure (Qi et al., 2017). 
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To solve the second problem, the local and the global characteristics of point 

clouds are combined together by merging the point-wise features and the 

max-pooled features. Finally, a module named T-net which is a 

transformation matrix consisting of trainable variables is utilized. Using the 

T-net, the same result could be achieved regardless of the spatial 

transformation of the point cloud after training the network with point clouds 

having different arrangement. 

Fig. 4-1 shows the structure of PointNet. Dimension of the point-wise 

features is changed through multi-layer perceptron consisting of 1×3 and 

1×1 convolutional layers, and the features of all points are aggregated by 

the max-pooling layer. After passing through the max-pooling layer, fully-

connected layers are placed to conduct classification. In the article, PointNet 

has been evaluated with benchmark point cloud datasets. As a result, it was 

confirmed that PointNet had the state-of-the-art performance at that time. 

 

4.2. Test data acquisition 

To train and validate an ANN model, point clouds of real rock surfaces are 

required. Therefore, point clouds obtained from two different TLSs (Faro 

Focus S 350 and 350+) are used in this thesis. Field scanning was 

conducted on a rock exposure using Faro Focus S 350+, and data of the 

same target from Faro Focus S 350 was obtained from the author of Lee 

(2020). 

The site of interest is a granite outcrop of Gwanak mountain in Seoul, Korea. 

Faro Focus S 350+ was installed about 11 m in front of the outcrop as shown 

in Fig. 4-2(b). Among the joint surfaces in the outcrop, 17 surfaces were 

selected and framed by white papers which had been cut to have square of 
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15×15 cm2 inside. Scanning area was restricted to barely include the rock 

exposure to reduce the scanning time, and thus it took about 15 minutes 

even though the highest precision and resolution mode was set. 

Before the scanning, JRC of the 17 surfaces was measured by hand using a 

Barton comb. Pin diameter of the comb is 0.8 mm, and six profiles were 

acquired for each surface. Among the profiles, three are for one direction 

Figure 4-2. Picture of (a) granite rock exposure and target surfaces framed 

by white papers, and (b) scanning configuration. 
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and the other are for the perpendicular direction, where both directions are 

parallel to each side of the frame. Fig. 4-3 shows the acquired profiles. 

Here, all the profiles were digitized to keep the JRC determination process 

to be compatible with the method introduced in section 2.5. They were 

Figure 4-3. Six roughness profiles acquired from a surface. Index of the 

surfaces are shown in Appendix A, Fig. A-1. 
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scanned into image files and then turned into the numeric data using a 

software, GetData Graph Digitizer. This program automatically recognizes 

graphs and digitizes them into (x, y) coordinates with a regular sampling 

interval ( x  in Eq. 2-8). Since the profiles are 15 cm long while reference 

JRC profiles are 10 cm long, only the middle 10 cm was extracted and used. 

And then, Eq. (2-8) and the third equation of (2-17) were employed to 

calculate their Z2 and JRC. Three JRC values in one direction were averaged 

to be the representative value for that direction, and thus, true JRCx and 

JRCy of 17 surfaces were obtained. 

On the other hand, point cloud from Faro Focus S 350+ was also processed. 

Firstly, the point cloud was moved to personal computer in the form of PTX 

format. The file contains not only the point cloud information (xyz-

coordinates), but also the scanner’s location and intensity measurements 

of each point. To handle the data, an open source software, CloudCompare, 

was utilized. CloudCompare automatically shows the scanner and the point 

Figure 4-4. Point cloud of the outcrop visualized by CloudCompare. 
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cloud which is colored with respect to the intensity values when we open a 

PTX file. Point cloud of the outcrop visualized in CloudCompare is shown in 

Fig. 4-4. It was easy to recognize the paper frames since they have the 

reflectance different from the rock. At the same time, point cloud from Faro 

Focus S 350 was also visualized as shown in Fig. 4-5(a). Here, the point 

cloud is colored by RGB as color mode was set when it was scanned. 

According to Lee (2020), the scanner was located at 10 m in front of the 

rock. As shown in Fig. 4-5, two point clouds from different devices were 

matched by using Iterative Closest Point (ICP) registration algorithm which 

is a plugin tool of CloudCompare. After that, surface inside the frames was 

cut with the segment tool. Here, data from Faro Focus S 350 did not fully 

include one of the 17 surfaces as shown in Fig. 4-5-(d). Therefore, 17 and 

16 surfaces were acquired from Faro Focus S 350+ and 350 data, 

respectively. Sequentially, the surfaces were rotated and translated to lie 

on xy-plane, their sides being parallel to x- or y-axis, and cut to have 

Figure 4-5. Matching two different point clouds of the same object. (a): 

Point cloud from Faro Focus S 350, (b): Point cloud from Faro Focus S 

350+, (c): (a) and (b) after registration using ICP, (d): Remaining point 

clouds after the targets were cropped. 
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10×10 cm2 area by following process: 

① Draw a line parallel to a side of the surface as shown in Fig. 4-6 using 

the built-in function of CloudCompare, polyline. 

② Conduct Principal Component Analysis (PCA) on the surface. 

③ Obtain the rotation matrix which makes the third principal component 

(which is equal to the normal vector of best-fit plane of the surface) to 

match with z-axis direction. 

④ Rotate the surface and the line using the matrix. 

⑤ Obtain another rotation matrix which makes the projection of the line on 

xy-plane to match with x-axis direction. 

⑥ Rotate the surface using the second matrix. 

⑦ Scale the surface in centimeter unit and crop the middle 10×10 cm2 area. 

⑧ Translate the surface in the way that the mean coordinate of the points 

to be [x, y, z] = [5, 5, 0]. 

Figures of all the resultant surfaces are shown in Table A-1, Appendix A. 

By comparing the figures in the table, we can see that the data from Faro 

Focus S 350 have more noise than those from Faro Focus S 350+. 

Figure 4-6. Line drawn to be parallel to a side of the surface. 
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Point clouds in Table A-1 were labeled with JRCx which had been measured 

by hand. Same with the process in section 3.7, data were augmented by 

reflecting the surfaces across y=x and labeling with the corresponding JRCx 

(which used to be JRCy before reflection). Therefore, total 34 and 32 

surfaces of Faro Focus S 350+ and 350 were obtained to be the test dataset. 

Since the surfaces had 3 ~ 4,000 points on average, 2,048 points were 

picked randomly from each surface to make the number of points same with 

the training data. Here, process of picking points were repeated for 2,048 

times to make 2,048 different data from one surface. In this way, model can 

carry out JRC estimation 2,048 times for just one surface so that the 

prediction becomes more reliable by averaging all the estimated values. 

 

Table 4-1. Incidence angle and distance of surfaces from Faro Focus S 

350+. Index of each surface is shown in Fig. A-1, Appendix A. 

Surface 
Incidence 

angle, ° 

Distance, 

m 
Surface 

Incidence 

angle, ° 

Distance, 

m 

1 33.05 9.42 10 59.56 9.73 

2 40.06 9.58 11 29.23 9.46 

3 34.70 9.56 12 27.55 9.48 

4 53.58 9.53 13 48.07 9.51 

5 23.14 9.41 14 49.52 9.56 

6 25.96 9.56 15 40.14 9.68 

7 24.33 9.77 16 21.65 9.80 

8 31.71 9.71 17 31.29 9.52 

9 23.02 9.57    



 

 61 

In the meanwhile, incidence angle and distance of the obtained surfaces have 

to be looked into since they have been restricted to be less than 45°and 

between 8 and 12 m, respectively in section 3.6. Based on the location of 

the device recorded in PTX file from Faro Focus S 350+, incidence angle 

and distance of the surfaces from Faro Focus S 350+ were calculated and 

the results are shown in Table 4-1. Here, we can see that the incidence 

angle of surface 4, 10, 13 and 14 exceeds 45°. Nevertheless, they were 

not excluded since the amount of excess is not that large and they consist 

of more than 2,048 points. Unfortunately, device location is not recorded in 

the data from Faro Focus S 350. However, it is presumed that both devices 

were installed at similar location considering the point density of each 

surface. Therefore, all the obtained surfaces will be used without any 

exception. 

 

4.3. Training procedure 

The original code of PointNet was obtained from a Github page①, which is 

shared by Qi et al. (2017). It was modified to solve a certain problem, to 

estimate JRCx of input point clouds. Here, T-nets in the original structure, 

which are for keeping the invariance under affine transformation, were not 

employed for the following reasons: 

① Position of the surfaces are already aligned. 

② Since joint roughness is usually anisotropic, estimated JRC has to be 

differ as the joint surface rotate. 

The output size of the last fully-connected layer was changed into 1 to print 

                                            
① https://github.com/charlesq34/pointnet 
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out only JRCx, and the size of input data was fixed as 2,048×3. Also, the 

objective function was changed to mean squared error which is appropriate 

for solving regression problems. 

After the modification, PointNet was trained to predict JRCx of the training 

data and training was stopped when the minimum prediction loss on 8 

surfaces arbitrarily selected from the test dataset was achieved. 

 

4.4. Test results and comparative analysis 

1) Test results of existing method and trained ANN 

For a comparative analysis, an existing method to calculate JRC using TLS 

was utilized before testing the trained ANN, which has been introduced in 

section 3.3. Detailed procedure is as follows: 

① Convert the surfaces on TLS scan data into mesh using Delaunay 

triangulation. 

② Obtain roughness profiles parallel to x-axis direction from each surface 

by cross-sectioning the mesh as shown in Fig. 4-7. 

③ Calculate JRC of each profile using Z2-JRC relationship (Eq. 2-8 and 

2-17). 

Figure 4-7. Acquisition of roughness profile from TLS scan data using 

existing method used in Kemeny and Turner (2008) and Marsch et al. 

(2020). 
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④ Get JRCx of each surface by averaging JRC values from its profiles. 

JRCx of the 66 surfaces of test dataset (34 surfaces from Faro Focus S 

350+ and 32 surfaces from Faro Focus S 350) was measured following the 

above process and the results are shown in Fig. 4-8. Here, we can see that 

this method works quite well on the Faro Focus S 350+ data while 

Figure 4-8. Results of the JRCx measurement on test dataset using the 

existing method. Left figure shows the result on surfaces from Faro Focus S 

350+, and right one shows the result on surfaces from Faro Focus S 350. 

Horizontal and vertical axes of each figure represent model’s JRCx 

prediction and hand-measured JRCx, respectively. 

Figure 4-9. Results of the ANN’s JRCx estimation on test dataset. 
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significantly overestimating JRCx of the Faro Focus S 350 data containing 

more noise. 

Trained ANN also carried out estimating JRCx on 66 surfaces of the test 

data. As shown in Fig. 4-9, the model estimated JRCx of point clouds from 

both TLSs with the average error of JRC 2 ~ 3. 

 

2) Discussion 

Based on the test results of existing method shown in Fig. 4-8, it seems 

that it works well on data from Faro Focus S 350+ while significant over-

estimating JRC on data from Faro Focus S 350. Given that the data from 

Faro Focus S 350+ and S 350 are exactly the same surfaces, it appears that 

the significant overestimation on the latter occurs since Faro Focus S 350 

has noise level slightly larger than S 350+. That means the noise existing 

in TLS scan data can seriously affect JRC estimation and the existing method 

is not reliable when it is applied on noisy data. 

Nevertheless, it can be thought that it is enough to use the existing method 

to measure JRC when we use a TLS with less amount of noise such as Faro 

Focus S 350+. But it must be considered that the amount of noise is not a 

fixed value for a device. Referring to Eq. (3-3), many other factors like 

surface reflectivity and atmospheric condition will affect the noise level, 

leading to misestimation of JRC. 

On the other hand, based on the test results shown in Fig. 4-9, it is shown 

that the trained ANN can estimate JRCx of rock joints scanned by two 

different TLS devices, Faro Focus S 350+ and 350, with mean absolute 

error of 2.7. Considering that each of the reference profiles for JRC visual 

comparison covers JRC range of 2 (Fig. 2-1), this amount of error can be 
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seen as tolerable. It is remarkable that the trained ANN can estimate JRC 

regardless of the difference in noise level. 

However, there are some limitations to be mentioned. First, the trained ANN 

was tested only on one granite exposure which has been quite weathered. 

As there are so many other types of discontinuities (e.g. fault, bedding plane) 

having so many different surfaces characteristics (e.g. roughness, weather-

ing), a lot more validation is required to confirm the applicability of the 

trained ANN on JRC estimation. Also, the model used in this thesis is trained 

based on the noise of specific TLS devices, Faro focus S 350+ and 350, so 

the applicability on data from other types of TLS has not been looked into 

at all. 

One may think that the procedure for utilizing the trained ANN is too 

complicated and time-consuming. But there are several steps that will not 

be included when the trained ANN is used only for estimation, not for 

validation. The procedure to use the trained ANN for estimation can be 

summarized as follows: 

① Locate the TLS to be 8 ~ 12 m apart from the target joint and try to 

make the incidence angle of the laser on the target smaller than 45°. 

② Conduct scanning. 

③ Using CloudCompare, crop the joint of interest to be larger than 10×10 

cm2. Here, let one of their sides to be parallel to the probable shear 

direction so that the JRC in shear direction could be estimated. 

④ Align and cut the cropped surface making the shear direction to be x-

axis direction following the procedure introduced in section 4.2. 

⑤ Pick 2,048 points randomly. 

⑥ Input the processed data in the trained ANN. 
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4.5. How to deal with scale effect 

As mentioned in section 2.3, JRC has scale effect and there are two different 

ways available to deal with the scale effect using only TLS scan data; One 

is amplitude-length method (a/L method) and the other is scaling JRC using 

reduction equation (Eq. 2-15). In this section, both methods are tested on 

the point cloud from Faro Focus S 350 which is shown in Fig. 4-5(a). 11 

joints were selected from the point cloud as shown in Fig. B-1 of Appendix 

B and their scaled JRC (JRCn) was measured using following process. 

① Amplitude-length method: Joint surfaces containing the lines in Fig. B-

1 were cropped and meshed using Delaunay triangulation. Large-scale 

roughness profiles of the surfaces were obtained by projecting the lines 

on the meshes in normal direction. After each profiles were aligned so 

that their best-fit line is horizontal, the maximum amplitude (a) and 

joint length (L) were measured. Finally, JRCn of each joint was 

calculated using Eq. (2-16) and weighted averaging. 

② Using reduction equation on JRC estimation of trained ANN (JRCANN): 3 

surfaces of 10×10 cm2 were obtained from each of the 11 joints. After 

they were aligned such that the x-axis direction is parallel to the line 

drawn in Fig. B-1, the trained ANN estimated their JRCx. As a result, 3 

JRC values were obtained and they were scaled with respect to joint 

length using Eq. (2-15). Finally, JRCn was derived by averaging those 

3 values. 

Results of the above process are shown in Table 4-2. In this table, there is 

an additional column representing whether the joint has large-scale 

undulation or not. As mentioned in section 2.3, Eq. (2-15) does not work 

well on joint samples with dissimilar roughness on small and large scales. 

Therefore, joints having large-scale undulation were checked by observing 
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Table 4-2. JRCn estimated with two different methods. 

Joint 
Length,   

m 

Large-

scale 

undulation 

Amplitude / Length (a/L) ANN + Eq. (2-15) 

a/L, % JRCn JRCANN JRCn 

1 0.775 X 1.663 7.3 7.9 5.6 

2 0.528 O 3.437 15.5 9.1 6.5 

3 0.348 X 1.596 6.6 12.7 9.2 

4 0.534 O 3.930 16.7 15.7 9.2 

5 0.399 O 4.627 19.3 12.1 8.7 

6 0.445 X 2.328 9.8 6.3 5.2 

7 0.319 X 2.080 8.6 10.4 8.2 

8 0.326 O 4.681 19.3 11.8 8.9 

9 0.424 X 1.312 5.5 5.0 4.2 

10 0.402 O 6.343 26.4 16.3 10.3 

11 0.481 X 2.754 11.6 13.2 8.7 

their roughness profiles shown in Table B-1, Appendix B. Note that it is 

based on the author’s personal judgement. 

In Table 4-2, it is shown that JRCn values of the two methods are 

comparable when the joint does not have large-scale undulation, whereas 

otherwise, JRCn of a/L method is much larger than that of the ANN. That 

means, large-scale undulations existent in large joints are not detected with 

the small portion of the joints. Therefore, it is recommended to utilize both 

methods concurrently for large joints to gain information on the large-scale 

roughness component (waviness). It is also noteworthy that the joints with 

large-scale undulation are of the same joint set according to Lee (2020). 
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Chapter 5. Conclusion 

 

In this thesis, a method to estimate JRC of rock exposure using TLS and 

ANN was suggested, which enables safe and fast assessment of rock mass 

roughness. TLS can scan rock exposure in distance and convert it into the 

form of point cloud while the ANN, PointNet, can receive point cloud of rock 

surface as input and predict its JRC. 

The original methods to measure JRC and its utility in Barton-Bandis joint 

model were summarized. Focusing on the visual comparison method, ways 

to measure JRC more precisely were reviewed together with issues relevant 

to JRC measurement such as scale effect and anisotropy. 

Purpose of employing the ANN was to deal with noises existing in TLS scan 

data. In many previous works it was mentioned that it is hard to measure 

small-scale roughness using TLS due to the existence of noise. The 

strategy used in this thesis was to make a noise-independent JRC estimator 

by training the ANN with noise-applied dataset. In this way, it was believed 

that the ANN will automatically learn how to deal with the noise in TLS scan 

data. 

Since large amount of point cloud of rock joint is needed to train PointNet, 

a computer code which can generate random rough surfaces were utilized 

instead of real TLS scan data. This code is based on fractal theory which 

used to be employed in rock mechanics. Using the code, synthetic point 

clouds with different characteristics were generated and their JRC values 

were calculated to label them. 

Noise types in TLS scan data that reduce precision were classified into three; 

range noise, angular noise and mixed-pixel effect. Based on their principles, 
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an algorithm to simulate them were developed and applied on the generated 

synthetic rough surfaces. As a result, noise-applied dataset for training 

PointNet has been made. 

Two different TLS devices, Faro Focus S 350+ and Faro Focus S 350, were 

employed to conduct field scanning on a granite outcrop to make test dataset 

for validation of trained ANN. For a comparative analysis, an existing 

method to measure JRC was tested together with the trained ANN. It was 

shown that the existing method works well on Faro Focus S 350+ data while 

significant overestimation of JRC occurs on Faro Focus S 350 data since 

Faro Focus S 350 data contains more noise. From this result, it was found 

that noise in TLS scan data can induce severe misestimation of JRC. On the 

other hand, it was shown that the trained ANN can estimate JRC of the test 

dataset regardless of the noise level with average error of JRC 2 ~ 3. 

Given that JRC has scale effect, two different ways to measure JRC of joints 

larger than the standard size (10 cm) were introduced. One is amplitude-

length method and the other is using reduction equation on the estimation of 

trained ANN. Using those methods, JRC of relatively large-scale (0.3 ~ 1.0 

m) joints were estimated using the TLS scan data. The result showed that 

the estimations from two methods are similar to each other for joints without 

large-scale undulation while there are significant differences on joints with 

large-scale undulation. Therefore, it is recommended to use both methods 

concurrently for large joints. 

Results of validation of the trained ANN indicates that it is possible to 

measure small-scale roughness using TLS in the presence of noise. Yet, 

the validation was done only on one granite exposure and applicability of the 

ANN to large-scale joints has not been validated. In addition, since there 

are various joints having different characteristics (e.g. rock type, 
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roughness), a lot more tests should be done in the future. It should also be 

mentioned that the model used in this thesis has been trained based on the 

noise of specific TLS devices, Faro focus S 350+ and 350, so the 

applicability on data from other types of TLS has not been looked into. 
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Appendix A. Figures of test data 

 

 

Figure A-1. Index of test data. 

 

Table A-1. 3D plot of test data shown in Fig. A-1. First, second and third 

column represent data index, corresponding data scanned by Faro Focus S 

350+ and corresponding data scanned by Faro Focus S 350, respectively. 

Here, point cloud from Faro Focus S 350 did not contain surface #2. Digits 

in the plots are in centimeter unit. 
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Appendix B. Large scale roughness profiles 

 

 
Figure B-1. Index of the profiles. 

 

Table B-1. Plots of roughness profiles in Fig. B-1. First column represents 

the index. Digits in the plots are in meter unit. 
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초    록 

 

절리 거칠기 지수(Joint Roughness Coefficient; JRC)는 Barton-Bandis 

절리 모델에서 암반 불연속면의 거칠기 정도를 나타내는 인자이다. 이는 원하는 

불연속면으로부터 취득한 거칠기 프로파일을 기준 프로파일과 시각적으로 

비교함으로써 측정할 수 있다. 이 방법은 절리 시료를 취득하여 실험실 또는 

현장 시험을 실시하는 것보다는 훨씬 편리하지만 경우에 따라 실시하는 데 

오랜 시간이 필요하거나 위험할 수 있다. 본 논문에서는 이러한 문제를 

해결하기 위하여 지상레이저스캐너 (Terrestrial Laser Scanner; TLS)를 

이용하여 빠르고 안전하게 절리 거칠기 지수를 산정하는 방법을 제시하고자 

한다. 지상레이저스캐너를 이용하여 암반 노출면의 삼차원 점군을 원거리에서 

취득하고 점군 내 불연속면들의 절리 거칠기 지수를 추정할 것이다. 

몇몇의 기존 연구들에 따르면 지상레이저스캐너를 이용하여 작은 규모의 

거칠기를 산정하는 것은 데이터에 존재하는 노이즈 때문에 매우 어렵다고 한다. 

본 논문에서는 이를 해결하기 위한 전략으로 3차원 점군을 위한 인공신경망을 

사용하고자 하였다. 사용된 인공신경망은 불연속면의 점군을 입력받아 그것의 

절리 거칠기 지수를 예측할 수 있다. 해당 인공신경망을 노이즈를 포함하는 

다량의 점군 데이터셋으로 학습시킴으로써 인공신경망이 노이즈의 존재와 

상관없이 점군의 절리 거칠기 지수를 산정하는 방법을 학습하도록 하였다. 

지상레이저스캐너를 이용하여 실제 데이터셋을 구축하는 것이 불가능했기 

때문에 실제 암반 스캔 자료 대신 프랙탈 이론을 기반으로 한 알고리즘을 

사용하여 가상의 거친 표면 점군 데이터셋을 생성하였다. 각 표면을 해당 

표면의 절리 거칠기 지수로 라벨링한 후, 실제 스캔 자료를 모사하기 위하여 

표면들에 지상레이저스캐너의 노이즈를 인공적으로 입혀주었다. 

인공신경망은 가상 학습 데이터셋으로 학습된 후 실제 암반 스캔 자료에 

대하여 검증되었다. 그 결과 학습된 인공신경망은 스캔 데이터 내에 존재하는 

노이즈의 수준과 상관 없이 절리 표면의 절리 거칠기 지수를 산정할 수 있었다. 

반면에 기존에 존재하던 방법으로 같은 데이터에 대하여 절리 거칠기 지수 
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산정을 시도하였을 때에는 노이즈가 클 경우 예측이 크게 잘못됨을 확인하였다. 

추가적으로, 절리 거칠기 지수가 가지는 크기 효과에 대응하는 방법들 또한 

제시되었다. 

 

 

주요어 : 절리 거칠기 지수, 지상레이저스캐너, 인공신경망, 암석, 점군, 

라이다 
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