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Abstract 

 

The capability of the nTRACER direct whole core calculation code coupled with 

the ESCOT pin-level core thermal-hydraulics (T/H) code is extended and stabilized 

for extended applications including the high-fidelity multiphysics analysis of VVER 

cores. First of all, the calculation feature of ESCOT is extended to handle the 

hexagonal geometry cores of VVERs and its performance is assessed by a code-to-

code comparison with COBRA-TF (CTF). The coupling of ESCOT with the 

nTRACER direct whole core calculation code is then enhanced to deal with the 

VVER cores. Secondly, the stability of the nTRACER calculation involving strong 

nonlinear feedback such as xenon and Doppler is stabilized by imposing the 

Anderson Acceleration (AA) to the neutron flux after Fourier analysis of the 

feedback effects. 

 

In ESCOT, the lateral momentum terms, the turbulent mixing coefficient values, 

the fuel conduction solution and the parallelization algorithms are modified for the 

handling of hexagonal geometry. The newly implemented ESCOT features are 

verified by comparing the solution of the single assembly, minicore and full core 

steady-state standalone and coupled problems for the VVER-1000 benchmark X-2 

with the CTF results. ESCOT and CTF results show differences within an acceptable 

range in both standalone and coupled calculations. The computing time superiority 

due to the use of the drift flux model (DFM) of ESCOT over the CTF two-fluid 

model is confirmed with a speed-up factor of 1.35. The use of the DFM together with 

the axial-radial parallelization capability of ESCOT makes ESCOT an ideal 

alternative to replace the simplified built-in T/H solver in nTRACER as the coupled 

simulation results demonstrate. 
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It is shown that the xenon feedback in nTRACER sometimes reveals a non-

convergent oscillatory behavior, particularly in depletion calculations as the fissile 

material becomes scarce. A Fourier analysis is performed to a simplified 1G 1D 

problem with periodic boundary condition and variable cross sections to obtain an 

analytical expression relating the convergence degree of the Power Iteration (PI) that 

yields the smallest spectral radius for different feedback coefficients. Increasing 

problem complexity to a non-homogeneous problem makes it not feasible to obtain 

an analytical expression for realistic problems. Consequently, the AA is retrieved, 

modified and analyzed for multiphysics problems. 

 

By systematically studying the sequential addition of xenon and boron to the 

neutronics-T/H 1G 1D problem, it is demonstrated that if the original fixed-point 

map of the AA applied only to the T/H variables is extended to include other physics 

by applying the AA to neutron flux, the oscillatory behavior is greatly suppressed. It 

turned out that the AA applied on the condensed two-group flux instead of on the 

original 47-group works well so that the increase in memory is trivial. The necessary 

average number of Fixed-Point Iterations (FPI) is reduced from about 15 to less than 

10. The eigenvalue yielded also an error reduction from about 5 pcm to less than 0.5 

pcm and it is highlighted that the AA applied to flux can achieve a convergence 

behavior similar to the quasi-optimal point. 

 

The application of these findings to nTRACER solved the non-convergence 

issues in the depletion calculations for cores such as the APR1400 and the BEAVRS 

benchmark. In addition, the revision of the convergence criterion for the CMFD 

calculation is improved by adding the residual check to the original criterion of the 

residual ratio. This improvement saves the computing time by about an 11.5 % for 

the APR1400 quarter core depletion calculation.  
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Finally, a depletion calculation for the modified X-2 VVER benchmark is 

performed with nTRACER/ESCOT. The result show that the direct whole core 

depletion can be finished in 14 hours, among which only 11 % is spent for the 

ESCOT calculation and only 5 FPIs per depletion step are needed. This calculation 

demonstrates that stable high-fidelity depletion calculation for hexagonal geometry 

cores is possible in a competitive time span. 

 

Keyword: nTRACER, ESCOT, hexagonal geometry core, xenon feedback, 

Fourier analysis, Anderson acceleration 

 

Student Number: 2017-35073 
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Chapter 1. Introduction 
 

High-fidelity simulation of the multiphysics phenomena occurring in nuclear 

reactors is of outmost importance for proper core design and accurate safety analysis. 

Traditionally, the integration of the multiphysics phenomena was done at very coarse 

levels due to the limitation of computing power. With the advent of computing 

technology, numerical solutions with higher resolution and higher fidelity have 

become more feasible in nuclear reactor analyses. Higher fidelity solutions can result 

in higher safety margins by decreasing the conservatism introduced by the higher 

uncertainties of the low fidelity solutions which in turn allows to curb the economic 

penalties during the nuclear power plant operation. 

 

The direct whole core calculation (DWCC) has consequently gained potential in 

the last two decades. A group of high-fidelity neutronics codes based on the transport 

equation such as DeCART [1], nTRACER [2], and MPACT [3] have demonstrated 

their effectiveness. Although the initial T/H solver option implemented in these 

codes was a Computational Fluid Dynamics (CFD) code [4], its high computational 

cost led to its replacement with subchannel codes as they represent a sufficiently 

good alternative. Because of their speed and accuracy performance, many 

subchannel codes were coupled with numerous transport codes [5][6][7] and even 

with Monte Carlo codes [8]. 

 

COBRA-TF (CTF) [9] is currently the most widely used subchannel code. It 

employs the two-phase, three-field model which can cover all the possible flow 

regimes of Light Water Reactors (LWRs). Its well-established coupling interface 

makes its use for coupling with a neutronics code simple. For its part, Korea Atomic 

Energy Research Institute (KAERI) developed MATRA [10], a subchannel code 

which was the first to be coupled with DWCC codes [11] [12]. Its governing 
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equations are based on the Homogeneous Equilibrium Model (HEM) and the 

solution scheme exploits the axially dominant flow characteristics in PWRs so that 

the computing time is substantially shorter than CTF. 

 

Despite having shown an acceptable performance in coupled calculations, the 

two subchannel codes still had room for improvement either on its speed or its 

accuracy, especially in the cases where the multiphysics code is run on massively 

parallel computing platforms. In this regard, Seoul National University Reactor 

Physics Laboratory (SNURPL), which is in a continuous development process of a 

forward-looking series of codes, carried out the development of a new subchannel 

scale T/H code called ESCOT (Efficient Simulator of COre Thermal-hydraulics) as 

an effort to provide efficient core T/H solutions to multiphysics analysis systems 

targeting high-performance parallel computing platforms [13]. 

 

ESCOT employs the Drift Flux Model (DFM) as it produces sufficiently 

accurate solutions for the typical core T/H conditions in pressurized water reactors 

(PWRs) and it is preferred over the two-fluid model in order to achieve high speed 

execution. Thus, the code is based on the four-equation DFM and the SIMPLEC 

(SIMPLE-Consistent) method. It is parallelized by employing both radial and axial 

domain decomposition with the Message Passing Interface (MPI) library. As its final 

aim is its employment as the T/H solver in multiphysics calculations, it has been 

coupled with several codes in the last few years [14][15][16]. 

 

Considering the expanding trend of the Water-Water Energetic Reactors (VVERs) 

worldwide in recent years, the Laboratory of Reactor Physics and Thermal-

Hydraulics (LRT) of the Paul Scherrer Institute (PSI) developed a high-fidelity 

multi-physics code system for hexagonal geometry with sub-pin level resolution. 

Thus, the latest version of nTRACER, capable of VVER-1000 full core simulations 
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[16][18] (also referred as nTRACER-Fast or nTF in other publications), was coupled 

with CTF [19][20]. 

 

CTF had already been verified before for 3D VVER full core calculations on a 

coarse mesh [21]. However, its high-resolution hexagonal analysis had only been 

limited to single assembly calculations [22]. With this background, CTFv4.0 was 

used to build the LRT high-resolution core solver capable of 3D full core calculations 

and was verified with a coupled code system of similar capabilities 

(Serpent/SUBCHANFLOW) for the Hot Full Power (HFP) analysis of a VVER-

1000 (X-2 benchmark) [23]. After the verification of nTRACER/CTF for single 

state-point simulations, the coupled code system was also expanded to full core cycle 

analysis and used to simulate the first cycle of the X-2 benchmark. The outcome of 

the LRT core solver is validated on the coarse mesh with experimental data [24]. The 

high-resolution depletion capabilities of nTRACER/CTF were also demonstrated in 

the cited publication together with the computational requirements of the novel code 

system for the full cycle calculation. 

 

In these systems of coupled codes, the simulation of the various core physics is 

most frequently approached by the exchange of information between the algorithms 

which solve the different phenomena independently. This way to proceed is known 

as the Fixed-Point Iteration (FPI) and it allows an easy coupling of codes, especially 

when the code internals are not accessible. 

 

These physical phenomena show, however, a nonlinear inter-dependency which 

can weaken the robustness of the FPI and definitely deteriorate the computation 

performance due to slow convergence [25]. The feedback mechanism and 

consequently the convergence rate depends on the problem characteristics such as 

its geometry, material composition, power level and the degree of feedback 
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increasing thereby the complexity of finding a straightforward solution to the 

nonlinearity [26][27]. 

 

The feedback-induced oscillations are caused by an excessive convergence of 

the Power Iteration (PI) whose output neutron flux is used to update the other physics. 

A common technique to alleviate this overconvergence and therefore reduce these 

oscillations is the adoption of a relaxation scheme. This scheme can be applied to 

any of the physical phenomena or even to all of them [28]. However, the relaxation 

of the neutronics calculation flux solution is preferred as the other physics (not only 

the T/H variables but also the xenon and critical boron concentrations, the core 

geometry change, etc.) are directly or indirectly dependent on it. In any case, the 

relaxation factor/s cannot be arbitrarily chosen since, as previously mentioned, the 

convergence behavior of the problem depends strongly on its characteristics. The 

factor/s must additionally be chosen to avoid causing excessive under-convergence 

as this will provoke convergence slow-down despite avoiding the oscillations. 

 

A more effective method to resolve this convergence issue of the FPI is the 

Anderson Acceleration (AA). The idea behind the AA method is to determine the 

solution at the present iteration as a linear combination of the previous solution/s 

[29][30]. Therefore, the relaxation of the solution is obtained in a more problem-

adaptative manner. At SNURPL, the AA method application has been the technique 

applied to the functionalization of the T/H variables [15][31]. But a better or more 

evolved technique needs to be defined and adopted for the problems that include the 

xenon and boron concentrations update which can make the problem enter in an 

oscillatory behavior, particularly in depleted cores [32]. 

 

A method recently developed determines the power iteration convergence degree 

as a function of the each individual FPI status and in accordance to the problem 
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characteristics [33][34]. This method approximates more optimally a perfect 

convergence behavior as it minimizes the oscillations (in both amount of oscillations 

and amplitude) and is more unlikely to incur in an excessive under-convergence. 

However, this method, despite being more analytically robust also possesses a 

certain degree of approximation for realistic applications (i.e. 3D problems with non-

periodic boundary conditions). 

 

1.1. Purpose and Scope of the Research 
 

With the background introduced above, the purpose of this research is set to 

extend and optimize the capability of the ESCOT coupled nTRACER code for 

extended applications so that stabilized high-fidelity multiphysics simulation 

becomes possible for various pressurized water reactors (PWRs) including VVERs. 

For the extension of the capabilities of ESCOT for the applications to hexagonal 

geometry cores, various modifications of not only the geometry processor, but also 

some calculation algorithms [35] are necessary. In addition, the fuel conduction 

algorithms in ESCOT needs to be modified to deal with the hollow fuel pins typically 

employed in VVERs. 

 

The algorithm modifications are verified, more specifically the lateral 

momentum equation, the mixing coefficient change including the turbulent mixing 

model and the parallelization scheme. To carry out this verification a code-to-code 

comparison with CTF results is performed. The model used for the verifications is 

based on the VVER-1000 benchmark X-2 [36][37]. 

 

As the second step, and besides the extension geometry, a series of more 

sophisticated models to better capture the effects induced by spacer grids are 

introduced in ESCOT. These effects are incorporated in the models for pressure loss, 
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heat transfer coefficient (HTC) enhancement and the increase of mixing. The models 

are directly adapted from CTF [38] and the correct implementation in ESCOT is 

verified by cross-comparison between the codes. 

 

The third step taken in this work is the coupling of the hexagonal version of 

ESCOT with the neutronics solver capable of handling hexagonal geometry cores in 

the nTRACER DWCC code [39]. ESCOT will then replace the internal simplified 

one-dimensional T/H solver of nTRACER to generate more accurate results. The 

coupled nTRACER/ESCOT code is verified with the nTRACER/CTF system by 

analyzing single assembly, minicore and full core problems. 

 

Prior to the depletion calculation for a problem based on the X-2 benchmark the 

instabilities in the multiphysics calculations are addressed by stabilizing and 

optimizing the convergence behavior in multiphysics at different reactor core states. 

 

The first step consists of the characterization of the effects of the multiphysics-

dependent cross sections on the FPI convergence behavior with the aim at explaining 

which are the aspects that affect the problem convergence the most. Starting from a 

simple one energy group (1G) and one-dimensional (1D) single pin problem with 

periodic boundary conditions, an analytical Fourier analysis [40][41][42] is 

performed to investigate the individual impact of the fuel and moderator temperature 

coefficients (FTC̃  and MTC respectively) on the convergence behavior and the 

definition of the optimal convergence point. 

 

The subsequent step is the study of the feasibility of applying a new technique 

that allows the dynamic setting of the power iteration (PI) convergence degree in 

realistic problems so that the FPI approaches the most optimal convergence. The 

pessimistic output of this analysis led to retrieving the AA but extending its FPI map 
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from the current only T/H variables described in reference [31] to other physics (i.e. 

xenon and boron updates). The extended map of the AA is numerically analyzed for 

the simple problem. 

 

Finally, the optimized extended FPI map is adapted to nTRACER by applying 

the acceleration after the CMFD calculation. The 47-group neutron flux is collapsed 

to 2 groups with memory saving purposes and reconstructed after the AA is 

completed. The changed FPI map usefulness is tested for checkerboard steady state 

and depletion problems. The modified AA method is then applied to the simulation 

of full core depletion problems that show problematic convergence behavior 

(APR1400 and BEAVRS). Ultimately, the first cycle of a fictitious core based on the 

X-2 benchmark is calculated with the improved nTRACER/ESCOT code. 

 

1.2. Outline of the Thesis 
 

In Chapter 2, ESCOT field equations as well as the constitutive relations are 

briefly reviewed together with the solution algorithms and the fuel conduction 

numerical method. Then, the modifications implemented to allow for the calculation 

of hexagonal geometries are presented along with the changes on the radial domain 

decomposition. The geometry and parallelization algorithm changes are verified for 

a series of single assembly, minicore and full core calculations by code-to-code 

comparison with CTF. Finally, the models to introduce the spacer grid effects on the 

T/H variables are described. 

 

The neutronics-T/H coupling strategy of nTRACER/ESCOT for hexagonal 

problems is presented in Chapter 3. A series of single assembly, minicore and full 

core coupled calculations are performed and compared with the nTRACER/CTF 

system of codes with verification purposes. 
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The feasibility study of the extension of the neutronics-T/H calculations to other 

physics is presented in Chapter 4. It is shown that the neutron flux should be the 

target variable to be extrapolated by the AA, not the T/H variables. In Chapter 5, the 

effectiveness of the new stabilization feature in nTRACER is demonstrated with a 

series of Checkerboard and quarter core depletions calculations, including the 

APR1400 and BEAVRS cores, and an nTRACER/ESCOT VVER-1000 depletion 

calculation. Chapter 6 concludes the thesis. 
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Chapter 2. Description of the Pinwise Core 

Thermal-Hydraulics Code ESCOT 
 

A general description of the pin-level nuclear reactor core T/H code ESCOT is 

presented. ESCOT adopts the four-equation DFM for two-phase calculations. The 

DFM simplifies the governing conservation equations by employing the mixture 

velocity in the momentum equation rather than using the gas and liquid velocities 

individually. Additionally, by solving only for the mixture energy and assuming the 

vapor in saturated conditions, the number of equations can further decrease to four 

in contrast to the six or nine equations in the two-fluid, three-field model. The DFM, 

unlike the HEM, allows the separation of the mixture velocity into each phase 

velocity by means of the two drift-flux parameters. The drift-flux parameters are 

determined experimentally, for this reason the DFM is considered a semi-empirical 

method. 

 

The four equations of the DFM are solved applying the Finite Volume Method 

(FVM) and the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)-like 

algorithm in a staggered grid system. The FVM discretization is described with 

special emphasis on the modifications required for the analysis of VVERs. The 

empirical T/H data from VVER-like problems is scarce, therefore ESCOT solutions 

for VVER problems are verified by code-to-code comparison with CTF for steady 

state at normal operating conditions. 

 

ESCOT aims at providing accurate yet fast core T/H solutions targeting 

massively parallel computing platforms. For highly parallelized execution, ESCOT 

is parallelized by a domain decomposition scheme that involves both radial and axial 

directions. This domain decomposition is described for hexagonal geometry 

problems and its effectiveness at speeding up the calculation of the T/H solutions at 
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core-scale level. The momentum and pressure systems are solved by using the Block 

Jacobi preconditioned Bi-Conjugate Gradient with Stabilization (BiCGStab) 

available inside the PETSc library [43]. 

 

2.1. Mixture Properties 
 

The following mixture properties are needed in the DFM to formulate the 

conservation equations and the closure relations 

 

Mixture density 

 (1 )m v l   = + −  (2.1) 
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Flow quality 
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Here 𝛼 is the void fraction and the subindexes m refers to the mixture variables, 

v to the vapor phase variable and l to the liquid one. 
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2.2. Field Equations of the Four-Equation Drift-Flux Model 
 

In this section, the field equations of ESCOT are presented. ESCOT is based on 

four-equation drift-flux by assuming the saturated condition for vapor. The meaning 

of each term in the conservation equations is explained. Standard symbols and 

notations are used throughout the paper and extra definitions are included for those 

that may cause confusion. The detailed derivations of the generalized forms can be 

found in [44][45]. 

 

2.2.1. Mixture mass conservation equation 

 

The mass conservation equation for mixture is given as 

 ( )''( )  m
m m tmu W

t





+  = − 


, (2.7) 

where the term on the Right-Hand Side (RHS) is the mass transfer by turbulent 

mixing and void drift. As ESCOT is conceived to simulate steady state problems 

operating at nominal conditions or mild transients the dominant axial flow allows 

the use of a simple diffusion [46] as turbulent mixing model. This way the turbulent 

mixing is only considered to the lateral direction. The details of turbulent mixing and 

void drift model can be found in section 2.3.4. 

 

2.2.2. Vapor mass conservation equation 

 

The vapor mass conservation equation can be expressed as 
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where the terms on the RHS are the volumetric vapor generation rate, the drift-flux 

parameter related divergence term, the vapor exchange due to turbulent mixing and 
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void drift. 

 

2.2.3. Mixture momentum conservation equation 

 

The mixture momentum conservation equation is formulated as 
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where the terms of the RHS are body force, force by pressure gradient, viscous shear 

stress, momentum transfer by turbulent mixing and void drift, and divergence term 

from the drift-flux model. 

 

2.2.4. Mixture energy conservation equation 

 

The energy conservation equation is written in terms of mixture enthalpy as 
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where the terms on the RHS represent energy transfer rate from heated walls, 

volumetric heat generation in fluid, energy exchange due to turbulent mixing and 

void drift, work caused by pressure and divergence term by the drift-flux model. 

 

2.3. Constitutive Relations for Subchannel-Scale Analysis 
 

The RHS of the four conservation equations require several constitutive relations. 

Particularly, Equal-Volume exchange and Void Drift (EVVD) model, pressure drop 

model for friction and form loss, and vapor generation model are employed to 

simulate key phenomena in subchannel-scale analyses. 

 



 

 26 

2.3.1. Equation of state 

 

The solutions of the four-equation drift-flux model in section 2.2 consists of four 

primary variables: mixture velocity um, void fraction α, pressure P, and liquid 

enthalpy hl. The other fluid variables, or secondary variables, are determined by 

using the Equation of State. In ESCOT, the steam properties are calculated by a set 

of functions and subroutines based on the IAPWS-IF97 steam tables/functions. 

 

This way, the liquid temperature and density are obtained in terms of the pressure 

and the enthalpy as 

 ( , )l l lP h =  (2.11) 

 ( , )l l lT T P h= . (2.12) 

Since the vapor phase is assumed to be saturation condition, the properties of 

vapor are calculated with only the pressure 

 
, ( )v v sat P =  (2.13) 

 
, ( )v v satT T P=  (2.14) 

 
, ( )v v sath h P= . (2.15) 

 

2.3.2. Drift-flux parameters 

 

The drift-flux parameters, namely the distribution parameter C0 and gas drift 

velocity Vgj, are used to predict the gas and liquid velocities from the mixture velocity 

as described in Eqs. (2.26), (2.27) and (2.28). In ESCOT, two correlation models 

to obtain the drift-flux parameters are implemented: the Zuber and Findlay 

correlation [47] and the Chexal-Lellouche correlation [48]. 
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The drift-flux parameters allow to obtain the phasic velocities. If the vapor 

velocity is defined as 

 ( )v vu j u j= + − , (2.16) 

after performing area average after multiplying both side by void fraction, Eq. (2.16) 

becomes 

 ( )v vj j u j = + − , (2.17) 

where the operation 〈∙〉 represents the flow area averaging as 
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Let us define the distribution parameter, C0, and the gas drift velocity Vgj as 
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thus, Eq. (2.16) becomes 

 0v gjj j C V = +  (2.21) 

and 

 
0
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v

v gj
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With the following definition for the volumetric flux 

 ( )1 = + − lvu uj  (2.23) 

and the phasic relative (or slip) velocity 

 
r v lu u u= − , (2.24) 

the relation between the slip velocity and drift flux parameters can be derived from 

Eqs. (2.22), (2.23) and (2.24) 
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From Eq. (2.2) and replacing each phase velocity with Eqs. (2.24) and (2.25), 

the following relations can be derived 
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where from Eqs. (2.23), (2.25) and (2.27) 
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2.3.3. Pressure drop model 

 

The pressure drop models are implemented to incorporate friction and form loss 

as 
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where the subscript k indicates the phase, f is a friction factor, K is a form loss factor, 

and Φ is a two-phase multiplier for pressure drop. Besides, u is a lateral velocity, and 

w is an axial velocity. 

 

First, the friction loss term is applied to the axial direction. It is calculated by a 

function of Reynolds number as follow: 

 Reb

k kf a c= +  (2.30) 

where the parameters depend on the Reynolds number as shown in Table 2-1. 
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Table 2-1. Friction factor parameters at different flow conditions 

Flow condition a b c Range of Re 

Laminar 64 -1 0 Re < 2,300 

Transition 0.316 -0.25 0 2,300≤Re < 30,000 

Turbulent 0.184 -0.20 0 30,000≤Re 

 

The Reynolds number for each phase is defined [1] as below: 

 Re k k k
k

m

u 


= , (2.31) 

where the mixture viscosity is obtained as: 
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The form loss term would influence the flow which moves toward the axial and 

lateral directions. Generally, the axial form loss occurs due to the existence of spacer 

grids while the lateral form loss is caused by the flow passing through two rods. 

 

In order to consider the effect of two-phase flow on pressure drop, the two-phase 

multiplier proposed by Armand [49]. As this work is limited to steady state at normal 

operating conditions Φ = 1. 

 

2.3.4. Turbulent mixing model 

 

With the aim at reducing the computational burden subchannel codes employ a 

diffusion-like turbulent mixing model. The turbulent mixing is a driving force of 

mass, momentum, and energy exchange between neighboring channels in the lateral 

direction, which differs from the crossflow created by pressure gradient. This mixing 

phenomenon consists of two physics: turbulent mixing and void drift whose effects 

on the flow are in competition. 
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In the case of turbulent mixing, the flow gains in the variable (mass, momentum 

or energy) from the neighboring cells that have larger values, or it loses its quantity 

by being taken to neighboring cells that have smaller values. Thus, the turbulent 

mixing contributes to generating an even distribution of physical quantities of flows. 

The void drift, however, works in the opposite way. Small bubbles gather together 

and form larger bubbles so that the non-uniformity of the bubble distribution 

increases. The two phenomena are graphically depicted in Figure 2-1. 

 

Figure 2-1. Simplified sketch of the turbulent mixing and void drift models 

 

There are two models of turbulent mixing. In ESCOT in particular the Equal-

Volume-exchange turbulent mixing and Void Drift (EVVD) model is implemented 

into the governing equations. 

 

Mixture mass exchange: 
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Vapor mass exchange: 
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Momentum exchange: 
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Energy exchange: 
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Here, ε is the eddy diffusivity, zT the turbulent mixing length, Km the scaling 

factor, sij is the gap (or slit) length between rods separating channels i and j, Ai is the 

flow area of channel i, Θ the turbulent mixing two-phase multiplier. The typical value 

of Km is often suggested by 1.4. The mixing coefficient can be reformulated as a 

function of mass flux as 

 
T

ij

G

z

 


=  (2.37) 

The turbulent mixing coefficient β can be calculated by the Rogers&Rosehart 
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correlation [50], but mostly a constant value is assigned by users’ input in subchannel 

codes. In case of the two-phase multiplier Θ, the model proposed by Beus [2] and is 

set to 1 in this work. 

 

2.3.5. Vapor generation model 

 

The vapor generation term 
v
  in Eq.(2.8) consists of two terms 

 
v w iv
   = + , (2.38) 

where 
w
   is volumetric vapor generation rate by heated walls and 

iv
   is 

volumetric vapor exchange rate through an interface of two-phase. Both terms are 

implemented in ESCOT by using the models of RELAP5 [51]. 

 

w
   is calculated following correlations of Lahey [52]. For its part, 

iv
  is 

formulated under the saturated vapor condition and it depends on the interfacial heat 

transfer coefficient of liquid Hil. This depends on the flow regime map, which in 

ESCOT is the vertical volume flow regime map of RELAP5. The flows in steady-

state PWRs are ESCOT target problems and consequently only unstratified and pre-

Critical Heat Flux (CHF) regions are modeled. 

 

2.4. Numerical Solution Method 
 

The governing equations are spatially discretized by the Finite Volume Method 

(FVM) employing a staggered grid structure. The semi-implicit method is applied 

for temporal discretization. The pressure correction equation is derived by the 

SIMPLEC (SIMPLE-Consistent) scheme [53]. 
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2.4.1. Discretization 

 

The staggered grid structure in the radial direction employed in ESCOT is 

depicted in Figure 2-2. The scalar variables such as pressure, enthalpy, and density 

are defined at subchannel-centered scalar cells (Figure 2-2a) while the mixture 

velocity is defined at the gap-centered momentum cells (Figure 2-2b). The drift flux 

parameter 𝑉𝑔𝑗
′  which is a function of C0 and Vgj is also defined at the momentum 

cell because its characteristics are analogous to those of velocity. In the following 

descriptions, the subscripts I and J denote the radial and axial indices of the scalar 

cells, respectively, and the subscripts i and j are those of the momentum cells. 

 

Figure 2-2. Schematic drawing of a scalar cell and momentum cell in staggered grid 

 

The surface values of a control volume are determined by the donor cell scheme 

as 

 
, ,

,

1, ,

0

0

n n

I J i Jn

i J n n

I J i J

if u

if u




 +

 
= 



, (2.39) 

where n is the time step index, and   is an example variable. A weighted average 

is applied when the cell-centered values of surface quantities are necessary. 
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1 , , 1
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J I J J I Jn

I j

J J

z z

z z

 


+ +

+

 + 
=

 + 
. (2.40) 

The temporal discretization is based on the semi-implicit scheme. In this scheme, 

the sonic propagation and interphase exchange such as pressure and interfacial 

temperature are treated implicitly because their physical phenomena occur in a 

relatively short time. On the other hand, the terms related with fluid convection 

which would allow relatively larger time scales are treated explicitly.  

 

By integrating the field equations over the control volume, the discretized forms 

of the conservation equations are derived. The notation in the discretized equations 

is: ‘rnb’ denotes neighbors in radial direction and ‘wnb’ means neighbors in both 

axial and radial directions. The detailed derivations can be found in [44][45]. 

 

Mixture mass continuity equation 

 

( )

 

1

, , , , 1

, ,
,

1

1 1

, , 1
1

=

n n rnb
m I J m I J n n

c I J J m m Jic ic J
ic

rnb
nn n n n

m m c m m c m icI j I j
ic

A z u s z
t

w A w A TM

 


 

+

+

=

+ +

−
=

−
  +  
 

   + −   





. (2.41) 

Vapor mass continuity equation 
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Axial momentum equation 
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Lateral momentum equation 
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Mixture energy equation 
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2.4.2. The pressure correction equation and solution with SIMPLE algorithm 

 

The SIMPLEC algorithm is adopted to establish the pressure correction equation 

over the entire problem domain. The relation between the next time step velocity and 

pressure correction can be formulated in SIMPLEC as follow: 

 ( ) ( )1 * 1 * 1 *

, , , , , , , , 1 , 1

n n n

m I j m I j I j I J I J I J I Jw w d P P P P+ + +

+ +
 = + − − −
 

, (2.46) 

where 

 

,

,

, ,

I j

I j

z P z nb

nb

A
d

a a
=

−
 

and az,P and az,nb are the diagonal and off-diagonal terms of discretized momentum 

equations, respectively. The superscript * denotes the intermediate solution variables. 

The relation in Eq. (2.46) must be coupled with scalar Eqs. (2.7), (2.8) and (2.10) 

to yield the pressure correction equation which would close the governing equations. 

 

First, the secondary variables in scalar equations are linearized in terms of the 

primary variables as 
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The combinations of the previous expressions with the scalar conservation 

equations lead to the following linear system for a certain scalar cell (I,J) 
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By replacing the velocities of the new time step (n+1) in Eq. (2.52) with Eq. 

(2.46) and by inverting the 3x3 matrix on the LHS, the following linear system can 

be derived 
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Note that the linear system is changed to have neighbor coupling only in terms 

of pressure. The extraction of the 3rd row of the previous system yields the septa-

diagonal linear system for the pressure equation 

 
1 1

, 31 n n

nb I J nb nb
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b P b P s+ + 
  + − = 
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The overall calculation procedure of SIMPLEC algorithm is illustrated in Figure 

2-3 and the flowchart of ESCOT is given as well in Figure 2-4. At the beginning of 

a calculation, the flow regime maps in all computing cells are determined to set the 

appropriate correlations. The intermediate velocities are then obtained by solving 

linear systems of lateral and axial momentum equations, which are a penta-diagonal 

and a septa-diagonal matrix, respectively.  

 

Next, the linear system of the pressure equation is solved, and the mixture 

velocity at the new time step is updated by the solution of the pressure equation. 

Although an iterative process might be recommended to achieve the converged 

solutions of velocities and pressure, performing only one outer iteration turned out 

to be enough in most cases as long as the time step size is sufficiently small.  

 

The rest primary variables are determined by solving coupled system of Eq. 

(2.53) and the secondary variables are then updated through the steam table. The 

calculation is terminated when the convergence criteria are met or the simulation 

time reaches the end time.  
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Figure 2-3. Flowchart of SIMPLEC algorithm 
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Figure 2-4. Flowchart of ESCOT based on the SIMPLEC algorithm 
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Four convergence criteria are monitored to determine whether a calculation 

reaches steady-state. The first criterion is the mass balance. It checks if the outlet and 

inlet mass flows are equal. It is defined as the difference between inlet and outlet 

mass flow rate divided by inlet mass flow rate as 

 balance (%) 100inlet outlet

inlet

m m
M

m

−
=  , (2.55) 

where  

 

( )
,

in m cell
cell in

m v A= 
.  

The second parameter is the energy balance. It represents the energy 

conservation by checking output energy via outlet and the input energy via inlet and 

heated rod as 
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where 
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The third parameter is the mass storage. It accounts for the mass stored in the 

system during the time step by comparing the difference between the present and the 

previous time step values of total mass. It is expressed as 

 
mass storage (%) 100

fluid

inlet

M
M

m


 = 

, (2.57) 

where 
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The final parameter is the fluid energy storage. It accounts for energy stored in 

the fluid during the time step. Its expression is 

 
fluid storage 100

fluid

rod fluid

E
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Q Q
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+
, (2.58) 

where 
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2.5. Solution of the Conduction Equation 
 

In the solution of coupled neutronics-T/H calculation, besides the moderator 

density and temperature, the temperature of clad, gap and fuel are necessary to solve 

the problem. For this reason, ESCOT includes the capability for fuel rods 

temperature distribution calculations. 

 

2.5.1. The conduction equation 

 

Departing from the heat balance equation for solids 

 
( )

( )( ) ( )'' '''
,

, ,
e r t

q r t q r t
t

    + =


, (2.59) 

where the energy term is given by the product of three main terms: 

 ( ) ( )( ) ( )( ) ( ), , , , , ,pr t r T r t c r T r t T r te = , (2.60) 

while the convection terms can be substituted with the Fourier’s wall conduction law: 

 ( )( ) ( )( )'' , , ,q k r T r t T r t= −  . (2.61) 

Replacing Eq. (2.60) and (2.61) into Eq. (2.59) and simplifying the notation 

of the density ρ, the heat capacity at constant pressure cp and the thermal conductivity 

k 



 

 42 

 
( )

( )( ) ( )''', ,
p p

p p

c T c T
c T T c k T r t q r t

t t t t

 
 

  
= + + =    +

   
, (2.62) 

together with its boundary conditions 
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and by applying the chain rule for partial derivatives to express the time dependency 

of ρ and cp in temperature: 
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the final equation heat balance equation can be formulated as: 
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In ESCOT the thermal conductivities and heat capacities are obtained from the 

FRAPCON correlations [55] for the fuel and clad materials respectively. The density 

of fuel and clad are considered constant in time 0
t


=


. For the gap conductance, 

however, the correlation employed is the one of BISON [56] 

 

2.5.2. The solution strategy and implementation 

 

ESCOT implements two main conduction solvers for the solution of Eq. (2.65), 

one for steady state and one for transient. Since this work is circumscribed to steady 

state problems only the former is described here. The conduction equation (Eq. 

(2.65)) for steady-state problems is simplified as 

 ( ) '''k T q  =  (2.66) 

with boundary conditions  
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0 0 =

=

fuel

co w

k T

T r T
, (2.67) 

where rco is the outer radius of the fuel rod and Tw the outer surface temperature. 

 

The continuity between fluid and wall has been established according to the 

convection equation 

 ( )''

w bulkq h T T= − , (2.68) 

where the wall heat transfer coefficient h is obtained from an empirical correlation 

which depends on the boiling regime. For the single liquid phase forced convection 

considered in this work ESCOT defines the wall heat transfer coefficient from the 

maximum between the Dittus-Boelter [57] and Sparrow [58] correlations 

 
0.8 0.4max 0.023 Re Pr ,7.86l l
l l

h h

k k
h

D D

 
=  

 
. (2.69) 

The equation has been integrated in the finite volume with the fuel pin 

discretization depicted in Figure 2-5. 

 

Figure 2-5. Radial discretization of the fuel pin for the conduction equation solution 

 

This integration yields the following expression for the fuel pin 

 ( ) ( )
1 1

'''2 2
1 1 0

+ −

+ −− − − +  =
i i

fuel i i fuel i i i ik T T k T T q V , (2.70) 

where the temperature dependent inter-mesh conductivity coefficients in a 

cylindrical geometry are determined as 
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For the gap-clad the following continuity model is applied 

 ( ) ( )2

22
+

+− = −f

f

N

gap fo ci cf l io c Nh T T k T TR  (2.72) 

Since the thermal properties depend on the temperature an iterative process is 

needed to solve the system. Once the solution converges the center line temperature 

is obtained with a simple interpolation. A more detailed explanation is given in 

reference [59]. 

 

2.6. Hexagonal Geometry Extension 
 

The DFM governing equations in hexagonal geometry as well as the solution 

algorithm flow do not vary from the ones in the cartesian case. However, due to the 

geometry change, the equations discretization and the geometry dependent 

coefficients need to be adapted. These modifications are addressed in the following. 

 

2.6.1. Lateral momentum equation modifications 

 

As previously described the lateral momentum balance is defined in the gap-

centered cell. For its discretization the expression is integrated over the gap-centered 

Control Volume (CV) as shown in Eq. (2.73). 
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The integration of the left-hand side (LHS) of the equation yields the following 

discretized expression: 
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where 𝑠𝑖 is the gap (distance between rods) dimension and Δ𝑧𝐽 the height of the 

momentum cell. The subscripts IA,J and IB,J are the momentum control volume cell 

surface indices, which are equivalent to subchannel indices I,J and I+1,J in Figure 

2-2. 

 

Here the first two terms correspond to the radial component which considers the 

effect of the adjacent gap’s radial velocities. The last two terms, analogously, account 

for the impact in the balance of the axial velocities for the CVs in the planes above 

and below of the CV of interest. 

 

Although this balance can be straightforwardly adapted to the hexagonal 

geometry, the radial direction term presents some problems in form of instabilities 

and asymmetries when the adjacent velocities are projected onto the gap normal. As 

the radial velocity is several orders of magnitude smaller than the axial one and the 

contribution of this term is negligible compared to others present in the balance (such 

as the pressure differences), this component is eliminated as recommended in 

reference [54]. In CTF this term is optional and can be activated from the input file. 

In the case of being activated the radial velocities are considered provided they are 
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orthogonal to the gap of interest. In the hexagonal geometry case this only occurs for 

the few edge-to-edge channel connections and therefore this option has not been 

activated in this work. 

 

Note that, in principle, this simplification can be applied provided the problem 

possesses an axial velocity dominance. Since ESCOT was primarily conceived as a 

code to be employed in (pseudo) steady state and mild transient cases, the axial 

velocity preponderance is inherent to the possible problems to be solved. 

 

With the aim at verifying this assumption a cartesian geometry problem is 

simulated with and without the radial component. The results yielded for several 

primary and secondary variables are compared for different percentages of axial 

mass flow. The cartesian geometry problem chosen to carry out this assessment is a 

single assembly based on the APR1400 core geometry. Although ESCOT has the 

radial term activated by default only the velocities orthogonal to the gap of interest 

are considered in the CV momentum balance. Thus, the velocities parallel to the gap 

are neglected (like in CTF). 

 

Figure 2-6 shows how the relative differences for the assessment variables stay 

within reasonable values despite the mass flow reduction, consequently the 

assumption is considered appropriate. 
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Figure 2-6. Impact of the radial term of the lateral momentum equation on the main 

variables for decreasing mass flux 

 

2.6.2. Turbulent mixing coefficient in hexagonal problems 

 

As explained in section 2.3.4, ESCOT applies the Equal-Volume-exchange 

turbulent mixing and Void Drift (EVVD) model. This model results in a set of four 

equations (one per DFM equation) that contain the term named mixing coefficient 

over turbulent length given in Eq. (2.37), which is retrieved here for convenience  

 
 


=

T

ij

G

z
,  

where the turbulent mixing parameter 𝛽 is affected by the change of geometry. In 

ESCOT this coefficient, unlike in other codes, is not updated at every iteration and 

is fixed at a value of 0.05 in every channel for square fuel assembly problems. 
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Nevertheless, ESCOT takes as a reference for the mixing coefficient determination 

the Rogers & Rosehart correlation [50]: 
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Note that in this set of equations the parameter 𝛽 depends on the hydraulic 

diameter (𝐷ℎ). As the relation between hydraulic diameters for square and hexagonal 

geometries in the most typical type of channel in the core (inner channel) is 

approximately 𝐷ℎ
ℎ𝑒𝑥 00.6 𝐷ℎ

𝑠𝑞
 , the recommended mixing coefficient for the 

simulation of VVERs is 𝛽 = 0.03. 

 

In order to verify the mixing model as well as the fixed value for the turbulent 

mixing coefficient a simple model based on a VVER-1000 single assembly geometry 

is employed. With the aim at keeping the symmetry the guide tubes are replaced with 

fuel pins. 

 

In this model a radial gradient of the relative power is imposed. In the simple 

sketch of Figure 2-7 the fuel pins under the blue area have a relative power of 1.5, 

the yellow one of 0.5 and the red one of 1.0. The axial power distribution for its part 

is uniform from top to bottom.  

 

Then the coolant temperature at the indicated subchannels are compared for 

different mixing coefficients with ESCOT and CTF. The mixing coefficients are 

namely no mixing (NM), turbulent mixing coefficient of 0.03 and turbulent mixing 

coefficient obtained with the Rogers & Rosehart correlation (only for CTF). 
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Figure 2-7. Sketch of the simplified VVER-1000 single assembly model indicating the 

relative power radial distribution and the channels observed in the analysis 

 

The results depicted in Figure 2-8 allow to conclude that, due to the small 

difference between ESCOT and CTF values, the mixing model is appropriate and 

properly implemented in ESCOT. On the other hand, the comparison of the 

temperature values yielded by the fixed-value and the ones by the correlation-

dependent coefficient make clear that 0.03 slightly exacerbates the mixing in the 

problem. However, the differences are not excessively large (3-5 °C) given the 

extreme conditions applied in this problem. Thus, the proposed fixed value should 

not induce erroneous results in realistic problems. 
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Figure 2-8. ESCOT and CTF coolant temperature results at different channels and 

elevations for diverse turbulent mixing coefficient values 

 

2.6.3. Fuel conduction in hollow pins 

 

The fuel pins in VVER cores are hollow, this is with a hole at its center. The fuel 

conduction solver needs to be adapted to contemplate this peculiarity. For this the 

solid conduction is solved within the solid excluding the gas in the central hole. 
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Figure 2-9. Radial discretization of the hollow fuel pin for the conduction equation 

solution 

 

Once the fuel temperature has reached convergence the temperature at the inner 

rim is calculated by extrapolation. Then the temperature in the whole, including the 

central line, is assumed to be the same as in the inner hole surface. Figure 2-10 shows 

the fuel temperature radial distribution for a hollow pin obtained numerically and 

analytically, while Figure 2-11 shows the error between both solutions. Since the 

maximum difference is lower than 1 °C, which corresponds to a relative error of 

0.1 %, the solution and the assumptions for the hollow pin are considered valid. 

 

 
Figure 2-10. Fuel rod temperature analytic and numerical solutions radial distribution 

 



 

 52 

 
Figure 2-11. Fuel rod temperature error radial distribution 

 

2.7. Hexagonal Geometry Radial Domain Decomposition 
 

ESCOT applies a bidirectional (axial and radial) domain decomposition in order 

to achieve massive parallelization aiming at multinode and multicore platforms 

employing for it the MPI internode communication tool. Thus, each assembly is 

assigned to a different process. For the case of bordering elements (namely channels 

and gaps) the dominant process is determined from left to right and top to bottom as 

illustrated in Figure 2-12. 
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Figure 2-12. Radial domain elements process assignment 

 

The cell elements at the boundaries of each domain might require the data of 

other domains running in other processes so that their linear systems can be solved. 

To enable this, auxiliary cells (or ghost cells) representing these missing cells are 

defined at the boundaries as shown in Figure 2-13. After each iteration real cells pass 

their data to their equivalent ghost cells in other processes so that they can be 

employed in the next iteration. 

 

 
Figure 2-13. Radial domain ghost cell definition 
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2.8. Code-to-Code ESCOT Hexagonal Verification with CTF 
 

The standalone comparison aims at assessing the modifications implemented in 

ESCOT to compute hexagonal geometry problems by comparing its results with CTF. 

In order to do so three different problems are computed, one consisting of a single 

assembly to inspect the T/H variables accuracy, a second one which is a full core 

problem to evaluate the solution time performance and a third one is a minicore to 

assess the parallelization schemes in ESCOT. 

 

The reactor model employed for the assessment is the VVER-1000 reactor 

benchmark X-2 [36][37]. The operating conditions for the Hot Full Power (HFP) 

state. are a fuel assembly average power of 18.40491 MW, an inlet temperature of 

287 °C, a pressure at the core outlet of 15.7 MPa and a mass flow of 109.8 kg/s.  

 

The absolute differences for the variables results are determined by subtracting 

the ESCOT values from the CTF ones, as for the relative ones the previous result is 

divided by the CTF values. 

 

All the calculations are performed on a 10-node cluster in which each node is 

equipped with two 26 core CPUs of Intel Xeon Gold 6230 R with 2.10 GHz clocks 

and with 540 GB RAM.  

 

2.8.1. Solution accuracy assessment with single assembly problem 

 

The single assembly calculation is performed employing a single core. The 

stopping criteria for both codes is 0.01 for the balance variables and 0.1 for the 

storage ones. The analysis of the T/H variables consists of the comparison of the 

axial distribution of the coolant density, temperature and pressure for two channels 
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at different assembly locations. The two locations are the central channel at the 

assembly edge (edge channel) and at one of the channels surrounding the assembly 

central instrumentation tube (inner channel). 

 

The distributions are shown in Figure 2-14 together with the relative differences 

between CTF and ESCOT results. These differences remain below a maximum of 

0.01 %, obtained for the coolant temperature at the inner channel outlet, which is a 

negligible value given the differences in the governing equations. 

 

 

Figure 2-14. Coolant density, temperature and Pressure axial distributions and 

relative differences for edge (a, c and e) and central (b, d and f) channels 

 

Both CTF and ESCOT give the option of calculating the fuel temperature 

distribution by solving the conduction equation in the pins once the T/H variables 
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reach convergence. For the comparison of the fuel temperature here the fuel pin is 

discretized with 10 concentric rings. 

 

Note that in the case of VVERs the pins have a hole at the center and therefore 

there is an extra central ring for which the temperature is not determined with the 

linear system solution. Thus, the central temperature of the pin needs to be set once 

the linear problem is converged. For the setting of this temperature CTF and ESCOT 

follow the same approach. They determine the inner hole rim temperature by 

adjusting it with a quadratic approximation and the central temperature is assumed 

to have the same magnitude as this rim value as described in section 2.6.3. 

 

Figure 2-15 depicts the radial distribution fuel temperatures at three different 

axial locations (active height bottom, middle and top) for the central fuel pin at the 

assembly edge and at a pin surrounding the central instrumentation tube. CTF output 

gives the temperatures at the clad outer and inner surfaces and fuel pin surface and 

central line. The differences are smaller than 0.1 °C for the almost every point and 

goes up to slightly above 0.1 ºC for the center line temperature for the outer pin at 

top elevation. 
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Figure 2-15. Fuel pin temperature radial distributions and differences at the edge 

central pin (a) and assembly central pin (b) at three different elevations 

 

2.8.2. Drift-flux model time performance assessment with full core problem 

 

The computing time performance of the codes is inspected by simulating the full 

core problem. The objective with these calculations is to demonstrate the superiority 

of the DFM over the two-fluid approach by comparing the momentum equations 

computing time. The comparison is performed applying radial parallelization for 

which one core is assigned to each assembly, what makes a total of 163 computing 

cores. 

 

The main solution steps and the total computing time are summarized in Table 

2-2. The comparison of computing times for CTF and ESCOT employing the same 

parallelization confirms the advantage of the simplified DFM as the solution of the 

momentum and pressure linear systems is faster in ESCOT by a factor of about 1.57 

and 1.76, respectively. The only solution step for which CTF is faster than ESCOT 

is the next time step variables update. This step consists mainly in the use of steam 

tables and this result makes clear the inefficiency of the IAPWS tables implemented 

in ESCOT and it implies and aspect of potential improvement in ESCOT. It turns out 

that ESCOT is 1.35 times faster than CTF to compute the full core problem in terms 
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of the total computing time even though CTF requires a lower number of iterations 

to converge. 

 

Table 2-2. CTF and ESCOT time performance comparison for a full core calculation 

 CTF ESCOT 

Initialization (s) 19.6 16.9 

Momentum eq. solution (s) 96.9 61.7 

Pressure eq. solution (s) 315.1 178.7 

Scalar variables solution (s) 23.1 21.0 

Next time step update (s) 5.2 35.8 

Total time (s) 524.6 389.2 

Number of iterations 274 340 

 

2.8.3. Parallelization assessment with minicore problem 

 

For the assessment of the radial and radial-axial parallelization schemes in 

ESCOT a minicore consisting of nineteen assemblies (see Figure 2-16) is simulated 

with an increasing number of cores. The radial parallelization is carried out by 

assigning one core per assembly, seven in this case. The radial-axial parallelization 

is performed by assigning a number of cores that is multiple of the number of 

assemblies. 

 

Figure 2-16. Minicore radial configuration  
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Table 2-3 contains the computing time for each process and for the entire 

simulation for several number of employed cores as well as the speed-up (in brackets) 

reached at each simulation. The momentum equation process includes the axial and 

radial momenta and set-up and solution. The same applies to the pressure equation. 

 

The radial parallelization in ESCOT for the full core yields a speedup of a factor 

4.5 with respect to the single processor calculation. By only doubling the number of 

processors in a radial-axial parallelization the calculation becomes 7.7 times faster 

than the single processor one. Although the increase of processors beyond this point 

reaches even greater speed-up factors this is hindered by the increasing 

communication time (see Figure 2-17). 

 

Table 2-3. ESCOT processes parallelization time performance and speed-up 

# Cores 1 19 38 76 152 

Initialization (s) 2.2 4.5 4.9 5.9 9.2 

Momentum 

equation (s) 
549.7 

41.4 

(13.3) 

21.6 

(25.4) 

17.1 

(32.2) 

16.2 

(34.0) 

Pressure 

equation (s) 
1439.3 

103.1 

(14.0) 

62.0 

(23.2) 

44.7 

(32.2) 

39.3 

(36.6) 

Scalar variables 

solution (s) 
35.5 

11.2 

(3.2) 

5.4 

(6.5) 

8.0 

(4.5) 

9.6 

(3.7) 

Next time step 

update (s) 
386.4 

24.3 

(15.9) 

13.7 

(28.2) 

7.9 

(48.8) 

6.2 

(62.0) 

Comm. (s) - 19.9 9.4 15.0 19.0 

Total time (s) 2449.7 
192.7 

(12.7) 

115.1 

(21.3) 

90.7 

(27.0) 

88.9 

(27.5) 
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Figure 2-17. ESCOT parallelization time performance with several number of cores 

 

2.9. Spacer Grids Models in ESCOT 
 

Spacer grids are used in nuclear reactors to maintain the structural integrity of 

the fuel assemblies, this is to keep the fuel rods’ position during operation. The 

introduction of spacer grids entails a series of side-effects in the reactor physics, such 

as an increased fluid motion, which in turn enhances cooling effects, or an increased 

axial pressure loss, which needs to be compensated by the main coolant pump at the 

core inlet. 

 

Accounting for the grid-induced effects in the simulation in detail requires 

precise knowledge of their geometry. Depending on the type of grid, the range of 

effects or their intensity may vary. For example, the type of springs that keep the rod 

in place or the presence of mixing vanes and their characteristics. 

 

The scale of these localized effects makes them difficult to place into subchannel 

codes and their predictions are generally better with CFD simulations. Subchannel 
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codes, such as CTF, contain correlations and approximations to account for this 

spacer grid effects [38]. At the present moment, ESCOT only allows for the 

introduction of a fixed form loss value corresponding to Kz in Eq. (2.29) which 

induces an extra axial pressure loss. The objective in this section is introducing a 

more sophisticated model for pressure loss coefficient calculation as well as the 

necessary correlations for HTC and turbulent mixing enhancement due to the 

presence of the grids. 

 

Since detailed parameters of the VVER spacer grids are not available, the newly 

introduced correlations in ESCOT are verified with their counterparts in CTF by 

employing the same parameters in both subchannel codes. Ideally, these parameters 

should be obtained from empirical results, or at least from CFD simulations, if the 

detailed geometry of the grids was known. 

 

2.9.1. Spacer grid form loss coefficient for pressure drop 

 

The current strategy in ESCOT to account for the pressure drop due to the 

presence of spacer grids is via the form loss coefficient as 

 
2

 = −


z
SG m m m

K
P w w

z
, (2.76) 

CTF also offers the possibility of using the user-dependent form loss coefficient 

and therefore it can be compared right away. However, because of the lack of VVER 

spacer grid manufacturer data, a wide range of form loss coefficient values are 

evaluated. The problem model is based on the X-2 VVER single assembly in which 

the guide tubes have been replaced with fuel pins to prevent any asymmetry. The 

power is set uniform radially and axially. Figure 2-18 shows that, despite an 

increased relative error at the spacer grid locations, the error is still very small. 
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Figure 2-18. ESCOT and CTF radially averaged pressure curves for different form 

loss coefficients 
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The pressure loss depends on the area reduction due to the presence of the spacer 

grid itself, its restraint mechanisms such as springs and the mixing vanes. In order to 

make the form loss coefficient depend on this area reduction the following 

expression is employed. 
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Note that Eq. (2.77) also depend on input values. The pressure loss coefficient 

multiplier floss is set within the CTF recommended values (1.0-1.4). As for the area 

blockage ratio ASG,block, it is set to 0.441, following Rehme’s value for honey-comb 

spacer grid [60]. 

 

Figure 2-19 shows the radially averaged pressure curves for the suggested range 

loss coefficient multipliers. As for the fixed-value form loss coefficients the error 

increases at the spacer grid locations but well below 0.1 % which allows to conclude 

that the correlation has been properly implemented in ESCOT. A better alternative 

to the correlation in Eq. (2.77) would be the calculation of the form loss coefficient 

with a higher-resolution code (such a CFD code) employing for it the detail geometry 

of the spacer grid. 
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Figure 2-19. ESCOT and CTF radially averaged pressure curves for different loss 

coefficient multipliers 

 

2.9.2. Spacer grid HTC enhancement 

 

The spacer grids induce a fluid acceleration due to the flow area restriction, 

additionally they cause the destruction of the developed flow and increase the 

turbulence degree of the fluid. These phenomena enhance the heat transfer from the 

fuel rods to the fluid by allowing for a greater thermal gradient across the fluid and 

consequently a greater heat transfer from the rod surface. 

 

The HTC (Eq. (2.69)) can be calculated by multiplying the dimensionless 

Nusselt by the thermal conduction coefficient k and divide it by the hydraulic 

diameter Dh. The Nusselt number is expressed in ESCOT as 
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 ( )0.8 0.4max 0.023Re Pr ,7.86= l lNu , (2.78) 

where the Reynolds is given in Eq. (2.31) which is retrieved here 

 Re k k k
k

m

u 


= ,  

and the Prandtl number, is a measure of the fluid’s momentum diffusion rate 

compared to its energy diffusion rate 

 Pr


=
pC

k
. (2.79) 

As this research is limited to single-phase water coolant at normal operating 

conditions, its variation is not large but it changes enough to have an effect on the 

heat transfer coefficient. 

 

With the aim at considering the effect of the spacer grids on the HTC, CTF 

employs the Yao-Hochreiter-Leech (YHL) model. The YHL formula augments the 

dimensionless Nusselt number as 
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where the subscript 0 on the Nusselt number refers to the bare subchannel geometry. 

Here ASG,block is the blockage ratio and 𝑧
𝐷ℎ

⁄   is a dimensionless downstream 

distance. 

 

The YHL correlation also contains a second term which accounts for the mixing 

vanes. This is achieved by defining A as the projected area of the grid onto the 

subchannel and Φ the mixing vane angle in Eq. (2.81). However, CTF user manual 

indicates that this second term is inappropriate for the prediction of the HTC 

enhancement factor and therefore it is better to avoid including this term and limit 

the expression to Eq. (2.80). 
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Figure 2-20 shows the wall temperature at two fuel rods at two different locations 

in the assembly, one at the assembly edge and one at the center. The results are 

obtained by applying the YHL correlation to the problem proposed in the previous 

subsection, which is based on a modified X-2 benchmark assembly. The results show 

relative differences between ESCOT and CTF much lower than 0.1 %. Consequently, 

the correlation has been properly implemented in ESCOT. 

 

The YHL correlation recommends a series of experimentally set coefficients, 

specifically 5.55 and 0.13. Besides it only represents the HTC changes downstream 

of the spacer grid but not within the grid height or its vicinity. For these reasons, and 

like for the pressure loss case, obtaining the HTC enhancement factor from a CFD 

calculation should increase the accuracy of the simulations. 
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Figure 2-20. Comparison between ESCOT and CTF of the wall temperature at two 

fuel pin locations 
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2.9.3. Spacer grid turbulent mixing enhancement 

 

The turbulent mixing model described in section 2.3.4 is characterized by the 

turbulent mixing coefficient 𝛽. The presence of spacer grids increases the mixing 

rate around the grid location.  

  = bSG are f  (2.82) 

Eq. (2.82) represents the modified mixing coefficient obtained by multiplying 

the base coefficient 𝛽𝑏𝑎𝑟𝑒 (set in this work to 0.03) by the enhancement coefficient 

𝑓. This enhancement coefficient is obtained by interpolating the input values given 

for different angles and elevations. 

 

In order to verify the implementation in ESCOT the problem employed in 

section 2.6.2 is retrieved and the spacer grids are inserted. The angle set for the vanes 

is 10°. Thus, the enhancement coefficient is calculated by interpolating the values 

given in Table 2-4 for the input angle value and the axial momentum cells elevation. 

 

Table 2-4. Mixing coefficient enhancement factor for different angles and axial 

elevations 

 Degree (°)  Degree (°) 

Elevation (m) 0.00 15.00 Elevation (m) 0.00 15.00 

0.000 1.00 1.00 2.288 1.00 2.30 

0.208 1.00 1.00 2.496 1.00 2.20 

0.416 1.00 1.00 2.704 1.00 2.10 

0.624 1.00 1.10 2.912 1.00 2.00 

0.832 1.00 1.30 3.120 1.00 1.90 

1.040 1.00 1.50 3.328 1.00 1.70 

1.248 1.00 1.70 3.536 1.00 1.50 

1.456 1.00 1.90 3.744 1.00 1.30 

1.664 1.00 2.00 3.952 1.00 1.20 

1.872 1.00 2.10 4.160 1.00 1.10 

2.080 1.00 2.20    
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Figure 2-21 shows the results for the problem with and without spacer grids for 

which the bare mixing coefficient is set at 0.03. The results for CTF and ESCOT 

depict a nearly perfect match for the channels analyzed at the different problem 

elevations. Note that the enhancement factors in Table 2-4 are artificial although 

realistic. To better determine these factors, they should be obtained from a CFD 

calculation by simulating the problem with a detailed spacer grid geometry and the 

mixing vane angle obtained from the manufacturer specifications for the grid. 

 

 

Figure 2-21. ESCOT and CTF coolant temperature results at different channels and 

elevations for problems with and without spacer grids 
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Chapter 3. nTRACER/ESCOT Coupled 

Calculations for Hexagonal Geometry 
 

The ultimate objective is to replace the simplified internal T/H solver of the 

neutronics DWCC code nTRACER with a more sophisticated T/H algorithm 

(ESCOT) in hexagonal geometry applications. In the case presented in this research 

the neutronics and T/H algorithms are treated as independent codes and they need to 

follow a coupling strategy. This strategy is described here together with the coupling 

methods defined by PSI developers for nTRACER/CTF systems of codes as it will 

serve as a reference for verification. 

 

The comparison of the standalone versions of ESCOT and CTF was already 

presented in section 2.8 along with their computing time performances and ESCOT’s 

bi-directional parallelization approach. In this chapter, however, the impact due to 

ESCOT and CTF differences on the neutronics are analyzed by performing a series 

of coupled calculations as well as what portion of the calculation is taken by each 

T/H solver. 

 

The reactor model employed for the assessment is the VVER-1000 reactor 

benchmark X-2, whose description and modeling are explained in this section prior 

to the results presentation. All the calculations were performed on the same 10 node 

cluster employed for the standalone verification. 

 

3.1. nTRACER/ESCOT Coupling Strategy 
 

The two sets of governing equations (T/H and neutronics) are nonlinearly 

coupled and their decoupling is obtained by a modification of the Gauss Seidel-Fixed 

Point (or Picard) Iteration scheme for two field variables. The Picard based 



 

 71 

calculation flow of the neutronics and the T/H problems is depicted in Figure 3-1. 

After each neutronics iteration, the T/H module is executed to provide the new 

distributions of coolant density and temperature (ρcool, Tcool) and fuel temperature 

(Tfuel) which are then used to update the cross sections for the next neutronics 

calculation. 

 
Figure 3-1. Gauss-Seidel approach for the neutronics-T/H coupling scheme 

 
ESCOT and nTRACER have different parallelization schemes, bidirectional and 

axial respectively. Consequently, if a direct coupling of the codes is set, this is the 

parent code is nTRACER and ESCOT is used as a library, then the number of cores 

assigned to ESCOT is the same as to nTRACER, namely the number of axial planes 

of the problem. Therefore, the direct coupling limits enormously the time 

performance of ESCOT. 

 

Aiming at obtaining their best performances, a wrapping system was developed. 

The wrapper code (the parent process in this case) uses the MPI capability of 

spawning two child processes and manages the exchange of information between the 

two codes by creating three sub-communicators: two parent-child communicators 

and one child-child inter-communicator, Figure 3-2 schematizes the communication 

system. 
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Figure 3-2. nTRACER/ESCOT wrapping system 

 

First, the parent process initializes nTRACER and ESCOT; then the nTRACER 

code starts its calculation while ESCOT stands by. When the neutronics simulation 

reaches the T/H calculation point, nTRACER sends directly the power and burnup 

to ESCOT through the inter-communicator and waits in standby for the T/H variables. 

With the updated power ESCOT proceeds and calculates the T/H fields; once 

ESCOT has converged, the new distributions of ρcool, Tcool, Tfuel are sent to the 

wrapper which sends them back to nTRACER. 

 

This communication scheme has been inherited from the cartesian geometry case. 

In the cartesian geometry the fuel pin numbering in nTRACER and ESCOT are 

different and, while nTRACER re-orders the fuel pin power (and the Burnup) 

numbering to match the one in ESCOT before communicating it, for the T/H 

variables ESCOT leaves this re-ordering task to the Wrapper. 

 

Thus, although in the hexagonal geometry case the numbering is equivalent in 

both codes, and re-ordering is therefore unnecessary, the same communication 
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scheme is kept. This mapping is depicted in Figure 3-3 along with the channel and 

gap numbering of ESCOT. 

 
Figure 3-3. nTRACER/ESCOT assembly elements numbering 

 

3.1.1. nTRACER/CTF coupling characteristics 

 

Since the nTRACER/CTF system of codes is the reference for verification of 

nTRACER/ESCOT, let us give a few details of the coupling performed by the PSI 

team. The first characteristic of this coupling is that in this case the coupling is direct 

and therefore the number of cores available in CTF is the same as in nTRACER. 

Since CTF, unlike ESCOT, has a radial-only domain decomposition, the fuel 

assemblies need to be evenly lumped in a number of clusters equal to the number of 

axial planes in nTRACER. 

 

The second difference is the assembly computational mesh for full core 

calculations (for single assembly and minicore the mesh matches ESCOT’s). This is 

characterized by the simplification of the corner channels which reduces the total 

number of cells at the expense of degrading the accuracy of the result. Figure 3-4 

shows the computational mesh and numbering in nTRACER/CTF. 
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Figure 3-4. nTRACER/CTF assembly elements numbering 

 

A minor difference but worth describing is that while nTRACER communicates 

the gadolinia fraction present in the burnable absorber containing to ESCOT, in the 

case of the nTRACER/CTF this fraction is not shared. Therefore, CTF cannot take 

it into account to calculate temperature distribution in these pins. 

 

The final discrepancy is the definition of the inter-assembly channels in the full 

core calculation. While in ESCOT a common entity is defined, matching thereby the 

reality more closely, CTF considers two separate channels. Figure 3-5 presents this 

definition difference. 

 

 

Figure 3-5. nTRACER/CTF and nTRACER/ESCOT inter-assembly channels 

definition  
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3.2. X-2 benchmark modeling 
 

The X-2 benchmark was already employed in the previous standalone 

calculations but it is described in more detailed here as it is more relevant for the 

neutronics calculations. The benchmark is based on the operational data of the 

second unit of the VVER-1000 Khmelnitsky Nuclear Power Plant (NPP) located in 

Ukraine. The aim of this benchmark is to develop a VVER-1000 data platform for 

the verification and validation of reactor simulation tools. X-2 consists of three 

stages including Hot Zero Power (HZP) experiments, cycle depletion and several 

transients, which occurred at the unit during the first cycles of operation. 

 

An effort to revise the X-2 benchmark was initiated with an updated and refined 

publication of the HZP experiments. The new specifications include detailed 

geometry models of the active core and the heavy reflector, as well as updated 

material compositions for the critical HZP state and corresponding operational data. 

Figure 3-6 presents the layout for the fresh core and the structure of the heavy 

reflector and Figure 3-7 the fuel axial composition as depicted in the benchmark 

specifications. Other material and geometry relevant information can be found in the 

references. 

 

 

Figure 3-6. Fuel designs and core layout for the X-2 benchmark 
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Figure 3-7. Axial layout of the fuel pin model in the X-2 benchmark 

 

Although there is still no data for other reactor states besides HZP, the team in 

charge of the X-2 benchmark provided the author with the operating conditions for 

the Hot Full Power (HFP) state. This way the operational data used in this work are 

a fuel assembly average power of 18.40491 MW, inlet temperature of 287 °C, 

pressure at the core outlet of 15.7 MPa and a mass flow of 109.8 kg/s. 

 

The X-2 models used in this work are based on the HZP geometry and material 

definitions and the operating conditions are those of the HFP as previously stated. 

This being said, a series of simplifications and approximations need to be assumed 

according to nTRACER modelling limitations. To begin with, although this 

benchmark problem presents a 120° symmetry, the full 360° core is simulated here 

as the current version of nTRACER is not capable of computing this degree of 

symmetry. 

 

In nTRACER, the groove region (Figure 3-6) is modeled as a homogeneous 

mixture of coolant and steel, equivalent to the real geometry at the edge of the core 
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basket, which is cylindrical with horizontal grooves. The spacer grids are modeled 

as an added layer of homogenized steel and water around the fuel cladding (see 

Figure 3-8a), in order to avoid axial nodes of small dimensions (2 cm in this case) 

can cause instabilities. In CTF and ESCOT the effect of spacer grids is neglected. 

 

The reference model of the axial top and bottom reflectors is built with several 

mixtures of homogeneous materials of specific height [178]. The axial reflectors are 

further homogenized in nTRACER, given the small thickness of the layers of the 

reference model. The two segments forming the top reflector are homogenized into 

a single region (see Figure 3-8a). The bottom reflector is divided in two segments. 

The lower segment is built with the material (B2), suggested in the benchmark 

specifications. The top segment consists of a homogeneous mixture of the lower 

plenum, the first homogeneous region of the reference model (B1) and part of the 

second homogeneous region of the reference model (B2) (see Figure 3-8b). The axial 

reflectors are defined in ESCOT and CTF as additional axial layers of the active core 

with zero power. 

 

nTRACER models corner stiffeners semi-explicitly. The latest version of the 

code allows to define an integer number of gap cells, starting from the assembly 

corners, with the corner stiffener material. This means that the length of the corner 

stiffener can only be approximated by a multiplier of the pincell size. Nonetheless, 

there is small difference between the actual length of the corner stiffener and the 

model. Corner stiffeners are not considered in the T/H codes ESCOT and CTF for 

now. 

 

The radius of the central guide tube is reduced in the nTRACER model since it 

exceeds the size of the pincell (flat-to-flat is 1.275 cm). 
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Concerning the heavy reflector, nTRACER reproduces the water holes, the water 

liner between the core basket and barrel, the downcomer and the groove with 

homogeneous pincells of water and steel that map approximately their shape in the 

reflector assemblies (see Figure 3-8d). nTRACER is also capable of reproducing the 

water gap between the active core and the basket explicitly, except the corner cell 

(Figure 3-8c). ESCOT and CTF do not model the heavy reflector. The 3 mm water 

gap surrounding the active core is also neglected from the T/H model. 

 

Although in a real VVER core the coolant flow is not the same in every assembly 

the mass flow is kept steady as there is not available information about the mass flow 

distribution at the core inlet for X-2. 

 

 

Figure 3-8. nTRACER approximations for the X-2 model 
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3.3. ESCOT-CTF coupled case comparison 
 

During a multiphysics calculation, the T/H variables are updated recursively 

during the iterative process as their values are used to update the temperature and 

density dependent macroscopic cross sections. With this background, in this 

subsection the accuracy at coolant and fuel temperatures and coolant density 

determination of CTF and ESCOT in coupled calculations is compared. Besides, as 

the intention is to replace the very fast but rough nTRACER 1D simple T/H, the 

speed of the two subchannel codes and the portion of time they take in the coupled 

calculation is analyzed. For this comparison single assembly, minicore and full core 

problems are considered.  

 

3.3.1. Single assembly calculations 

 

For the single assembly case two types of assemblies are simulated, one not 

containing any burnable absorber (22AU, yellow in Figure 3-6) and the other one 

containing (30AV5, pink in Figure 3-6). Only one computing node is used in the 

single assembly cases, since each node contains 52 cores nTRACER employs in 

some of its algorithms, such as the ray tracing or the subgroup calculation, while 

ESCOT only uses one core. The coupling between neutronics and T/H is performed 

in a direct manner being nTRACER the parent code that calls CTF or ESCOT when 

the T/H update is necessary. 

 

The calculation results are given in Table 3-1 for assembly 22AU. The 

multiplication factor 𝑘𝑒𝑓𝑓 difference is a direct consequence of the relatively high 

difference in fuel temperatures (see Table 3-2). 
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Figure 3-10e shows that CTF yields a slightly lower coolant temperature but the 

difference is negligible. CTF also gives a lower fuel average temperature but as the 

standalone calculations showed the difference is not remarkable and always below 

0.1 % as shown in Table 3-2. 

 

As for the simulation time taken by the T/H solver in the coupled calculation, 

this is considerably smaller in ESCOT case due to the greater simplicity of its 

governing equations as seen in the previous subsection. The calculation time as well 

as the portion of time are given in Table 3-1. Figure 3-9 shows the computing time 

required by each calculation type in the coupled calculations. 

 

Table 3-1. CTF and ESCOT X2 single assembly 22AU performance comparison 

 𝒌𝒆𝒇𝒇 # FPI T/H time (s) % of total time 

CTF 1.24516 6 541.39 44.60 

ESCOT 1.24514 6 146.51 17.20 

 

 

Figure 3-9. CTF and ESCOT coupled calculations computing times for assembly 

22AU 

 

The small differences in fuel and coolant temperature are enough to cause a 𝑘𝑒𝑓𝑓 

value discrepancy (2 pcm), the power distribution, however, is not dramatically 

affected as summarized in Table 3-2 through somewhat different axial distributions 

shown in Figure 3-10. The differences noted in 𝑘𝑒𝑓𝑓  and axial profiles are 

insignificant. 
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Table 3-2. CTF and ESCOT X2 single assembly 22AU radial and axial relative 

differences 

 
Radial 

Power (%) 

Radial  

𝑻𝒇𝒖𝒆𝒍 (%) 
Radial  

𝑻𝒄𝒐𝒐𝒍 (%) 

MAX 0.01 0.02 0.03 

RMS 0.00 0.01 0.01 

 
Axial Power 

(%) 

Axial  

𝑻𝒇𝒖𝒆𝒍 (%) 
Axial  

𝑻𝒄𝒐𝒐𝒍 (%) 

MAX 0.08 0.05 0.02 

RMS 0.04 0.02 0.01 

 

 

Figure 3-10. Axially averaged (a, c and e) and radially averaged (b, d and f) power 

distribution and fuel and coolant temperature relative differences for assembly 22AU 

 



 

 82 

In the case of the gadolinia-containing assembly (30AV5) for which the results 

are given in Table 3-3 and Table 3-4, the general conclusions are quite similar to the 

unpoisoned case. The only difference is noted at the burnable absorber pins. This 

difference is also due to the difference in the fuel temperature calculation scheme 

between ESCOT and CTF. As previously described in section 3.1.1, although CTF 

includes algorithms to compute the fuel conduction coefficients with gadolinia 

content, the gadolinia composition information is not transferred to CTF from 

nTRACER in the current coupling scheme while in the nTRACER/ESCOT coupling 

this information is communicated. Because the pin power and temperature of 

gadolinia pins are low, this difference is also not very significant. 

 

Table 3-3. CTF and ESCOT X2 single assembly 30AV5 performance comparison 

 𝒌𝒆𝒇𝒇 # FPI T/H time (s) % of total time 

CTF 1.20283 7 632.79 45.50 

ESCOT 1.20288 6 150.08 18.16 

 

 

Figure 3-11. CTF and ESCOT coupled calculations computing times for assembly 

30AV5 

 

This magnified difference is clearly observed in the power and fuel temperature 

axially integrated radial distributions in Table 3-4 and Figure 3-12. As for the coolant 

temperature the gadolinia has a minor effect and the corner patterns can still be seen. 
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Table 3-4. CTF and ESCOT X2 single assembly 30AV5 radial and axial relative 

differences 

 
Radial 

Power (%) 

Radial  

𝑻𝒇𝒖𝒆𝒍 (%) 
Radial  

𝑻𝒄𝒐𝒐𝒍 (%) 

MAX 0.02 0.03 0.04 

RMS 0.00 0.02 0.02 

 
Axial Power 

(%) 

Axial  

𝑻𝒇𝒖𝒆𝒍 (%) 
Axial  

𝑻𝒄𝒐𝒐𝒍 (%) 

MAX 0.19 0.09 0.05 

RMS 0.10 0.04 0.03 

 

 

Figure 3-12. Axially averaged (a, c and e) and radially averaged (b, d and f) power 

distribution and fuel and coolant temperature relative differences for assembly 30AV5 
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3.3.2. Minicore calculation 

 

With the aim at observing the differences arising from the distinct coupling 

performed for each T/H code a minicore is simulated. The minicore is formed by a 

central 13AU assembly (green in Figure 3-6) and three 22AU and three 30AV5 

assemblies arranged alternatively at the periphery. The minicore is surrounded by a 

line of reflector assemblies. In order to isolate the aforementioned discrepancies 

effects the calculation is performed in single computational node like in the single 

assembly cases. 

 

The 𝑘𝑒𝑓𝑓  and computing time of the full core calculations are compared in 

Table 3-5. The 𝑘𝑒𝑓𝑓 of the two calculations matches very well while the ESCOT 

computing time is between 1/5 and 1/7 of CTF’s as shown in Table 3-5 and Figure 

3-13. This significant reduction is due to the DFM simplicity. The differences in core 

characteristic parameters shown in Table 3-6 within an acceptable range, being the 

maximum fuel temperature difference somehow larger at the highest power region. 

 

Table 3-5. CTF and ESCOT X2 minicore performance comparison 

 𝒌𝒆𝒇𝒇 # FPI T/H time (s) % of total time 

CTF 0.97931 7 5,080.96 41.81 

ESCOT 0.97934 7 1,726.27 18.81 

 

 

Figure 3-13. CTF and ESCOT coupled calculations computing times for minicore  
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Table 3-6. CTF and ESCOT X2 minicore radial and axial relative differences 

 
Radial 

Power (%) 

Radial  

𝑻𝒇𝒖𝒆𝒍 (%) 
Radial  

𝑻𝒄𝒐𝒐𝒍 (%) 

MAX 0.06 0.75 0.21 

RMS 0.02 0.12 0.04 

 
Axial Power 

(%) 

Axial  

𝑻𝒇𝒖𝒆𝒍 (%) 
Axial  

𝑻𝒄𝒐𝒐𝒍 (%) 

MAX 0.43 0.12 0.02 

RMS 0.20 0.08 0.02 

 

 

 

 

 

Figure 3-14. Axially averaged power distribution relative differences for minicore 
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Figure 3-15. Axially averaged average fuel temperature relative differences for 

minicore 

 

 

 

 

Figure 3-16. Axially averaged coolant temperature relative differences for minicore 
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Figure 3-17. Radially averaged power distribution and fuel and coolant temperature 

relative differences for assembly minicore 
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3.3.3. Full core calculation 

 

For the full core case, and like in the standalone calculation, no symmetry is 

applied. Note that, as explained in section 3.1.1, the parallelization schemes in CTF 

and ESCOT are different. While for CTF nTRACER acts as the parent code and 

consequently the number of computing processes is limited to those of nTRACER 

(25 in this case as the number of planes in nTRACER model of X-2 is 25), in the 

ESCOT case a wrapper code sets up the number of independent processes for 

neutronics and T/H, and this way while nTRACER is given 468 cores (=9 computing 

nodes x 52 cores/computing node), ESCOT is assigned to 326 for a double axial-

radial decomposition (=163 assemblies x 2 axial domain decomposition). 

 

The 𝑘𝑒𝑓𝑓  and computing time of the full core calculations are compared in 

Table 3-7 and Figure 3-18.The 𝑘𝑒𝑓𝑓 of the two calculations is consistent with the 

previous single assembly and minicore calculations. As for the computing time 

ESCOT is about seven times faster than CTF, the time required by the MOC 

calculation, however, is slightly higher in the nTRACER/ESCOT case in about 15 

minutes due to the MPI spawn function that allows the assignment of a different 

number of cores for each code, but that in exchange is slightly detrimental on the 

planar MOC performance. 

 

Table 3-7. CTF and ESCOT X2 full core performance comparison 

 𝒌𝒆𝒇𝒇 # FPI T/H time (s) % of total time 

CTF 1.15692 5 9,429.74 35.05 

ESCOT 1.15696 5 1,478.13 7.07 
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Figure 3-18. CTF and ESCOT coupled calculations computing times for full core 

 

The differences in core characteristic parameters shown in Table 3-8 are of the 

same magnitude as in the minicore case. Therefore, the reasons behind these 

discrepancies are valid also in this case together with the difference in the 

interassemby channels treatment and the difference in the corner channels definition. 

 

Table 3-8. CTF and ESCOT X2 full core radial and axial relative differences 

 
Radial 

Power (%) 

Radial  

𝑻𝒇𝒖𝒆𝒍 (%) 
Radial  

𝑻𝒄𝒐𝒐𝒍 (%) 

MAX 0.08 0.11 0.33 

RMS 0.02 0.02 0.05 

 
Axial Power 

(%) 

Axial  

𝑻𝒇𝒖𝒆𝒍 (%) 
Axial  

𝑻𝒄𝒐𝒐𝒍 (%) 

MAX 0.19 0.07 0.03 

RMS 0.11 0.04 0.02 
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Figure 3-19. Axially averaged power distribution relative differences for full core 
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Figure 3-20. Axially averaged fuel average temperature relative differences for full 

core 
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Figure 3-21. Axially averaged coolant temperature relative differences for full core 
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Figure 3-22. Radially averaged power distribution and fuel and coolant temperature 

relative differences for assembly full core 
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Chapter 4. Study and Optimization of the 

Multiphysics Calculation  
 

The most practical manner to couple a neutronics calculation with other reactor 

physics is the Fixed-Point Iteration (FPI), particularly if these physics are calculated 

in other codes whose internals are not accessible, because it can be done by just 

establishing an interface to exchange the variables of interest among the codes. 

However, its poor convergence and instability has been pointed out. This undesirable 

performance is due to the nonlinear inter-dependency of the physical phenomena 

which causes an oscillatory behavior induced by an excessive convergence of the PI 

whose output flux is used to update the other physics. 

 

Hence, the AA was introduced to mathematically optimize the convergence of 

neutronics-T/H calculations on FPI. The AA improved the coupled calculations, 

especially when the physics are limited to neutronics-T/H. Nonetheless, when the 

physics are extended to incorporate xenon and boron the performance becomes 

poorer, particularly as the fissile material becomes scarce in depletion calculations. 

 

Thus, the work presented in this section focuses first on characterizing the effects 

of the problem multiphysics-dependent cross sections on the FPI convergence. 

Departing from a simple 1G 1D single pin problem a Fourier analysis is performed 

to study the individual impact of 𝐹𝑇𝐶̃ and MTC on the convergence behavior. Then 

the impracticability of analytically finding the optimal PI convergence degree in 

realistic problems is demonstrated. Finally, the AA is retrieved and its FPI map 

extended to include the physics other than the T/H ones. The superiority of this 

extended map is demonstrated numerically by employing the simple 1G 1D problem. 
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4.1. Fourier Analysis of the Multiphysics Problem 
 

In this section a Fourier analysis is performed so that an analytical expression 

that relates the FPI problem spectral radius with the PI convergence degree for 

several combinations of 𝐹𝑇𝐶̃ and MTC values is obtained. This expression would 

allow for a study of the conditions that entail the most challenging convergence 

behavior. For it the 1G 1D homogeneous problem is employed and periodic 

boundary conditions are imposed. 

 

4.1.1. Review of the Fixed-Point Iteration 

 

The FPI is an iterative method to find roots of nonlinear equations. For a single 

nonlinear equation, the following scalar function is defined 

 ( ) 0f x = , (4.1) 

it can be rewritten as 

 ( )x g x= . (4.2) 

In the FPI, the Eq.(4.2) is iteratively solved until the unique point x* is found: 

 
( )1( 1) ( ) *( ) , 0,1,2,
++ = → =

kk kx g x until x x k . (4.3) 

Even though this iterative method is simple to implement, its convergence is 

conditional. The true error for k-th iteration is 

 
( ) ( ) *k ke x x= −  (4.4) 

The relation between the true error at the current and the previous iteration can 

be derived as 
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

k
k k k k

k

k k k k

k k

g x g x
e x x g x g x x x

x x

g x x x x

g e

 (4.5) 

Thus, the error reduction factor of the FPI can be defined as: 

 
( )

( 1)

( 1)
( )

k
k

k

e
g

e
  −

−
= = . (4.6) 

The iteration can convergence only if the absolute error reduction factor is less 

than one. Therefore, the convergence criteria of the FPI can be expressed as 

 
[ , ]

max ( ) 1
x a b

g x


  . (4.7) 

The FPI can be applied to solve a system of nonlinear equations such as 

 ( ) 0=f x , (4.8) 

where  1 2, , ,
T

nf f f=f   is a n-dimensional vector of scalar functions and 

 1 2, , ,
T

nx x x=x  is a n-dimensional solution vector. The equivalent system of 

Eq.(4.8) can be constructed for the FPI as 

 ( )=x g x , (4.9) 

which can be re-expressed as 

 

1 1 1 2

2 2 1 2

1 2

( , , , )

( , , , )

( , , , )

n

n

n n n

x g x x x

x g x x x

x g x x x

=

=

=

. (4.10) 

If the above system is simplified to a system of two nonlinear equations for an 

easier understanding 
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1 1 1 2

2 2 1 2

( , )

( , )

x g x x

x g x x

=

=
 (4.11) 

The above equation can be solved by the FPI 

 
( 1) ( ) ( )

1 1 1 2

( 1) ( ) ( )

2 2 1 2

( , )

( , )

k k k

k m k

x g x x

x g x x

+

+

=

=
 (4.12) 

For the solution of the system in Eq. (4.12) two approaches are applicable 

depending on how the subscript m is treated. If m=k, all depending variables x1and 

x2 in the fixed-point map, g1 and g2, are the ones of the last iteration, so each system 

is decoupled or independent. This method is so-called the Jacobi scheme. Because 

the Jacobi scheme is naturally parallelizable, it has a strength to apply the tandem 

approach in multiphysics where multiple codes are coupled. 

 

On the other hand, when m=k+1, it becomes the Gauss-Seidel (G-S) scheme for 

which the solution of x2 is calculated with the updated variable x1. It is a reasonable 

presumption that the solution of G-S scheme would converge faster than the Jacobi 

one as it uses a more updated solution. Although this statement does not have a 

general character, it was demonstrated in reference [45] that it holds for our purpose 

and consequently this is the default scheme in this work. 

 

4.1.2. Problem description and cross sections change functionalization 

 

The 1G 1D neutronics problem is based on the diffusion equation which is solved 

with the Finite Differences Method (FDM). The cross sections are made dependent 

on the feedback coefficients so that the FPI convergence behavior in terms on the 

feedback mechanism can be investigated. The coefficients are limited here to the 

thermal 𝐹𝑇𝐶̃s and MTCs for practicality, the conclusions, however, can be extended 

also to the xenon and boron feedback mechanisms. With the aim at facilitating the 
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study the following relation is derived to estimate the fission and absorption cross 

section variation for a given feedback coefficient. 

 0

0 0 0

fa a

f f f




  

  
  −

  
. (4.13) 

With the derived relation, the cross sections change (ΔΣ𝑎 , ΔνΣ𝑓) can be readily 

estimated for a given specific reactivity change (𝜕𝜌 ) from the reference stage 

(Σ𝑎0, νΣ𝑓0). Note that the changes only affect the absorption and nu-fission cross 

sections while the diffusion cross section remains constant as it is weakly affected as 

shown in reference [45]. 

 

Now, a set of problems in a broad range of MTC and 𝐹𝑇𝐶̃ values is constructed. 

The calculations are limited to negative 𝐹𝑇𝐶̃s and MTCs corresponding to the LWR 

operating conditions under normal circumstances. The following equidistant 17 

reactivity coefficients for 𝐹𝑇𝐶̃ and MTC are selected as below: 

 

 

 

(pcm/ K) 192, 180, , 12,0 FTC

(pcm/K) 96, 90, , 6,0 MTC






= − − −




= − − −



f

c

for
T

for
T

, (4.14) 

that sufficiently covers the practical range of 𝐹𝑇𝐶̃ and MTC. Thus, 289 (17x17) 

problems with different 𝐹𝑇𝐶̃s and MTCs are configured. 

 

The nested iteration (outer-FPI and inner-PI) algorithm in a discretized form can 

be summarized as in Table 4-1. In it, L and K are the FPI and PI maximum number 

of iterations respectively. N is the number of meshes in which the problem is 

subdivided. Eqs. (4.15) and (4.16) represent the feedback-induced cross section 

changes for which the initial ∆Σ𝑎,𝑛
(0)

 and ∆νΣ𝑓,𝑛
(0)

 are equal to zero and updated at 

each FPI. Eqs. (4.17), (4.18), (4.21) and (4.22) represent the variable coupling 

between FPI and PI, where 𝜙0 is the flux at convergence. 
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Table 4-1. Algorithm of discretized FPI with variable absorption and nu-fission cross 

sections 

do l=1, L  
( 1) ( 1)

, ,0 ,

− − = +l l

a n a a n
 (4.15) 

( 1) ( 1)

, ,0 ,  − −  = +l l

f n f f n
 (4.16) 

( 1,0) ( 1) − −= n

l

n

l
 (4.17) 

( 1,0) ( 1)l l

eff effk k− −=   (4.18) 

do k=1, K 

( )
( 1)

,( 1, ) ( 1, ) ( 1, ) ( 1) ( 1, ) ( 1, 1)

1 1 , ( 1, )2 1
2


    

−

− − − − − − −

− + − −


− − + =+

l

f nl k l k l k l l k l k

n n n a n n nl k

eff

D

h k
 (4.19) 

( 1, ) ( 1

'

, )

' '
( 1, ) ( 1, 1)

( 1, ) ( 1, 1)

1

0

1

'

'

'

0

 



 

  

− −

− − −

−

−

=

−

=

− −





=









l k l k

f n f n
l k l k

eff eff
l k l k

f n

N

n

f n

n

N
k k  (4.20) 

end do 
)

1

' 0

( 1,
( )

0
( 1, )

'








=

−

−
−

=



l K
l

l K

n

n
n N

n

N

  (4.21) 

( ) ( 1, )−=l l K

eff effk k   (4.22) 

end do 

 

From Eq. (4.13) the MTCs and 𝐹𝑇𝐶̃s can be expressed in the following manner: 

 

( )
0

2

00

1
,

f

c c

a a

ff c

MTC
T T T





  
=  −
   

 (4.23) 

 

( )
0

2

00

1
,

fa a

ff f ff

FTC
T T T





  
=  −

  
 (4.24) 
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The cross-section changes are expressed as: 

 ,a a
a f c

cf

T T
TT

 
 =  + 


 (4.25) 

 
f f

f f c

cf

T T
TT

 


   
  =  + 


 (4.26) 

From Eqs. (4.23) and (4.24), and assuming that one of the temperature 

dependent cross-section changes (absorption in this case) is fixed the following 

expressions are obtained. 

 
( )

2

0

0 0

1
,

fc

a

c

ff

a

MTC
T T





    
= + 

     

 (4.27) 

 
( )

2

0

0 0

1ff a

a ff f

FTC
T T





   
 = +
   
 

 (4.28) 

Plugging these expressions into Eq. (4.26) then Eqs. (4.25) and (4.26) can be 

expressed as a function of the Temperature Coefficients as 

 ( ) ( ),0 ,0 ,a a
a f f c c

cf

T T T T
TT

 
 = − + −


 (4.29) 

 

( )
( )

( )

2

0

,0

0 0

,0

0

1

1








   
    = − +

   
 

 
+ − +  

    

f a
f f f

a f f

a
c c

f c

T T FTC
T

T T MTC
T

 (4.30) 

Since the moderator and fuel temperatures depend on the flux the cross-section 

changes can be re-expressed as 

 ,a a
a f c

cf
TT

   
 

 = +


 (4.31) 

 
( )

2

0

0 0 0

1 1
,

f a a
f f c

a f ff c

FTC MTC
TT


    

 

     
    = + + + 

          

 (4.32) 

where αf and αc represent the flux-dependent temperature change. 
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4.1.3. Fourier analysis of the multiphysics homogeneous problem 

 

The Fourier analysis is a useful technique to examine the asymptotic 

convergence rate of iteration scheme involving differential equations. It allows, after 

some algebraic manipulation, the expression of the eigenvalues in terms of the 

Fourier wave number. The largest eigenvalue is the spectral radius of the iterative 

process. This way the study of the PI convergence degree effect (maximum number 

of PI, K here) on the FPI convergence rate for a problem with iteration dependent 

cross sections can be carried out. 

 

The first step of the Fourier analysis consists in the linearization of the problem. 

The following flux and multiplication factor linearizations are introduced in the 

algorithm: 

 ( )( ) ( )

0 0  = +l

nn

l , (4.33) 

 
( )

( )

1 1 1
l

eff

l

k k k


 

 
= + 
 

, (4.34) 

 ( )( , ) ( , )

0 0  = +l k l

nn

k , (4.35) 

 
( , )

( , )

1 1 1
,

 

 
= + 
 

l

eff

k

l kk k k
 (4.36) 

where 𝜖 is a very small number. The multiplication factor at convergence is 𝑘∞ =

𝜈Σ𝑓1 Σ𝑎1⁄ , which expressed with dependence on the temperature coefficients results 

in 

 

,0 0

0 ,0 0 0

0

0

0

0


  

      

 

 
 
 

    
  = +  +

    

   
+  + + + 


 

 

f a
f f

a f

a a a
f

f

ac f c

c cf

k FTC
T

MTC
T TT

 (4.37) 
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The PI diffusion equation and multiplication factor linearization, for which only 

the first order error terms are kept, results in 

 

( )( 1, ) ( 1, ) ( 1, )

1 1
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a f f
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 (4.38) 
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'
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   − − − − −

− −

= =

−+ += l
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 (4.39) 

For its part the FPI-PI coupling expressions are 

 
( 1,0) ( 1) − −=l l

n n  (4.40) 

 
( 1,0) ( 1)l l − −=  (4.41) 

 
)

1

'

( ) ( 1, ) (

'

0

1,  
−

=

− −+ =l l K l K

n n n

N

n

 (4.42) 

 
( ) ( 1, )  −=l l K

 (4.43) 

The second step is the Fourier ansatzes introduction, which are 

 
( )) 2( 1

 
+

= mi n hl

m

l

n ma e , (4.44) 

 
( )1 2( , ) 
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+

= mi n hl k n l

n m mb e , (4.45) 

 
( )

0

ll c = , (4.46) 

 
( )

0

, = k ll k d , (4.47) 
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where 𝑎𝑚 , 𝑏𝑚 , 𝑐  and 𝑑  are the errors at the first iteration, 𝜔𝑚  is the Fourier 

eigenvalue and 𝜆𝑚 the Fourier frequency. 

 

And the equations are re-expressed as 

 

( ) ( ) ( )( )
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 (4.49) 

The coupling expressions result in 

 
0

mmb a=  (4.50) 

 
0d c=  (4.51) 

  = mm m

Ka b  (4.52) 

 0 = Kc d  (4.53) 
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For the fundamental mode, m=0 case (𝜆0 = 0), the equations are simplified as 
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 (4.54) 

 
( 1) ( 1)

0 0

− −+ +=k k k kd b d b  (4.55) 

And the coupling expressions 

 
0

0 0b a=  (4.56) 

 
0d c=  (4.57) 

 0 00 = Ka b  (4.58) 

 0 = Kc d  (4.59) 

By combining the equations above 

 0 0 =  (4.60) 
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As for the other eigenmodes, m>0 
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And the coupling expressions 

 
0

mmb a=  (4.62) 

 
0d c=  (4.63) 

  = mm m

Ka b  (4.64) 

 0 = Kc d  (4.65) 

Inserting Eq. (4.62) into (4.61) and re-expressing the big expressions with A 

and B 

 
( )1 0−

= +
kk

m m mb Ab Bb , (4.66) 

which gives the following recurrent relation 

 
( ) 0

1

1

+ − −
=

−

K

K
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A B A B
b b
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With Eqs. (4.62) and (4.64) 

 
( )1

1


+ − −
=

−
m m m

KA B A B
a a

A
 (4.68) 

Simplifying 

 
( )1

1 1


+ −
= −

− −
m

K
A B B

A
A A

, (4.69) 

with the eigenmodes different from 0 expressed as 

 
2

, 1,..., 1


 = = −m

m
h m N

N
 (4.70) 

and the spectral radius being by definition 

 ( )max m =  (4.71) 

The simple problem for this analytical convergence analysis has a single pin 

configuration with 3.80 m of axial height. The size of each computational mesh is 

15.2 cm, which yields 25 axial meshes. The base cross-section values at Tc = 600 K, 

Tf = 600 K are: 𝐷0 = 1.2605  cm , 𝛴𝑎0 =  0.0216 cm−1 , 𝜈𝛴𝑓0 =  0.0267 cm−1 , 

𝜅𝛴𝑓0 =  0.353 ∙ 10−12 cm−1. 

 

The linear power density is 17.5 kW/m with a constant pressure of 15.513 MPa 

and 0.360 kg/s mass flow rate. The fuel geometry is given by rf = 4.2 mm and rco= 

4.8 mm. The thermal properties assigned are kf = 5.0 W/(m·K), kc = 16.0 W/(m·K) 

and hw = 36,000 W/(m2·K). With these T/H characteristics the flux-temperature 

coefficients are set at αc = 0.5766 K, αf = 3.4192 √𝐾. 

 

For the absorption feedback parameters, 1 pcm/K and 1 pcm/√K  are fixed for 

moderator and fuel respectively. Different 𝐹𝑇𝐶̃ and MTC combinations results are 

represented in Figure 4-1. Along with the analytical values the numerically obtained 

spectral radii are presented. The numerical results are obtained by the flux error 

reduction rate near convergence (𝜌 ≈ ‖𝜙(𝑙) − 𝜙(𝑙−1)‖ ‖𝜙(𝑙−1) − 𝜙(𝑙−2)‖⁄ ). 
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Figure 4-1. Analytical and numerical Power Iteration dependent spectral radius 

results for different combinations of 𝑭𝑻𝑪̃ and MTC 

 

For each 𝐹𝑇𝐶̃ and MTC combination the minimum spectral radius is obtained 

by a different maximum number of PIs, K. Or, in other words, a different degree of 

PI convergence. This number which yields the minimum spectral radius can be 

analytically determined by equating Eq. (4.69) to zero. 

 
( )1

0
1 1

+ −
− =

− −

K
A B B

A
A A

, (4.72) 

and this number results in 

 
( ) ( )

( )

log log 1

log

− + −
=

B A B
K

A
 (4.73) 

This equation yields the optimal number of PIs for different combinations of 

𝐹𝑇𝐶̃ and MTC as shown in Table 4-2. 
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Table 4-2. Number of PI that yields the optimal number of FPI for diverse 

combinations of 𝑭𝑻𝑪̃ and MTC 

𝑭𝑻𝑪̃, MTC K 

-12, -6 217 

-36, -18 151 

-168, -84 71 

-168, -18 74 

-36, -84 136 

 

4.1.4. Fourier analysis of the multiphysics non-homogeneous problem 

 

The analytical expression for the optimal number of PI obtained in the previous 

analysis cannot be directly employed in more complex and realistic problems. This 

is, multi-dimensional and multi-group problems with more realistic boundary 

conditions. And more complex codes, such as nTRACER, which solves a 2D/1D fine 

mesh MOC solution with CMFD acceleration. 

 

Thus, ideally, the Fourier analysis should incorporate all the characteristics of 

the target problem and code (in this case nTRACER). The first intended modification 

on the simplified problem that is implemented is the zero flux boundary conditions. 

While in the problem with periodic boundary conditions the flux at convergence has 

a constant homogeneous shape, in this case the final flux has a sine-like shape and 

therefore the cross sections, which depend on the flux level, also have a non-uniform 

shape. 

 

The discretized flux solution with these new boundary conditions is 
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 (4.74) 
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The introduction of such a complex flux solution in the linearized Eq. (4.38)-

(4.43) makes the Fourier analysis impractical and consequently prevents the 

calculation of the optimal number of PIs. In Figure 4-2 the numerical solution of the 

spectral radius for the zero-flux boundary conditions is shown along with the 

analytical and numerical solutions for periodic boundary conditions. It can be 

observed that the optimal point is shifted enough so that using the homogeneous 

solution in the heterogeneous solution would have an impact negative enough as to 

discard this option. 

 

Figure 4-2. Analytical and numerical Power Iteration dependent spectral radius 

results for different combinations of 𝑭𝑻𝑪̃ and MTC for periodic and zero-flux 

boundary conditions 

 

This being said, the optimal number of PIs could be somehow corrected to get 

closer to the shifted value. However, this estimation would make the method to lose 

part of its efficacy as the correction is not independent from the problem 

characteristics. Additionally, note that the A and B factors in Eq. (4.73) can be 

expressed as 
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which means that to predict the optimal number of PIs one would need to foresee the 

cross-section changes, which also depends on the problem characteristics, and would 

imply that additional calculations are necessary to estimate these changes. 

 

Alternatively, and since it had yielded good results for the neutronics-T/H case, 

the AA method is retrieved and its study extended to improve its potential to stabilize 

and optimize the non-linear iteration to multiphysics problems. 

 

4.2. Numerical Analysis of the Anderson Acceleration for 

Multiphysics Problems 
 

With the previous results, the AA is reconsidered as an option to find a better and 

stable optimal. The AA application to the T/H variables yielded satisfactory results 

for the neutronics-T/H coupling but it has been demonstrated as insufficient when 

other physics are considered (i.e. xenon and boron updates). In this section the AA 

to solve nonlinear equations are briefly reviewed. Then, a numerical analysis 

focusing on how to adapt the AA to better treat the multiphysics FPI is carried out. 

 

4.2.1. Review of the Anderson Acceleration 

 

The AA can be applied to accelerate the convergence rate of the FPI of a system 

of nonlinear equations [61][62]. Thus, for a system of nonlinear equations that 

follows Eq.(4.8) and (4.9) the unconstrained least squares AA algorithm can be 
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written as in Table 4-3. The idea of this method is to determine the solution at (k+1)-

th iteration as a linear combination of solution history g whose coefficients are 

determined by minimizing the norm of the residual vectors f. There is a parameter 

m, the storage depth of the AA, that determines how many histories will be stored. 

The AA with a specific m becomes AAm. 

 

Table 4-3. Algorithm of the unconstrained least squares Anderson Acceleration 

Given x(0) and 1m  . 

Set (1) (0)( )=x g x . 

for k=1, 2, ... do 

Set min[ , ]km m k= . 

Compute ( )( )k
g x and let ( ) ( ) ( ) ( )( )k k k k= −f g x x . 

Compute 
( ) ( 1) ( )+ = −f f f
i i i

 and ( ) ( )( ) ( 1) ( ) , , , 1+ = − = − −g g x g x
i i i

ki k m k  

Set 
( )( ) ( 1), ,kk mk k− − =   F f f  and 

( )( ) ( 1), ,
− − =   G g gkk mk k

 

Determine 
( ) ( ) ( )

0 1[ , , ]
k

k k k T

m  −=γ  which solves 
0 1

( ) ( ) ( )

2[ , , ]
min

T
mk

k k k

  −=
−

γ

f F γ  (4.77) 

Set ( )( 1) ( ) ( ) ( )k k k k+ = −x g x G γ . 

end for 

 

The least-squares problem of Eq. (4.77) can be solved by a QR decomposition. 

The matrix 
( )k

F  , which is a set of differences of residual vectors, can be 

decomposed by the QR factorization as 
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F Q R Q Q
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, (4.78) 

where 
( ) kn mk 
F  , ( )k n nQ  ,

( ) kn mk 
R  , ( )ˆ kn mk 

Q  ,
( )ˆ k km mk 
R  ,  

( )( ) kn n mk  −
Q , and n is the dimension of a solution vector x, mk is the order of the 

AA. Then the least square problem can be rewritten as 
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For simplicity, the notation k for the FPI index is omitted in the equation above. 

In the end, the solution of the least square problem is obtained by solving a mk×mk 

triangular system, ˆˆ T=Rγ Q f  , which can be solved with a thin QR factorization. 

More details about the calculation process can be found in [63]. 

 

4.2.2. The physical model 

 

The physical model employed here is the same as the one in reference [31], for 

this reason only a brief description of the equations employed is offered here. The 

model is a simplified neutronics-T/H coupled system that holds the interdependency 

between neutron flux distribution and temperature distributions of fuel and coolant 

as well as xenon and boron densities. The neutronics is governed by a 1G 1D 

homogenous diffusion equation. For the T/H 1D heat conduction and convection are 

assumed for fuel and coolant temperatures calculation. The xenon is updated by 

means of the xenon equilibrium model and the boron concentration with the problem 

multiplication factor 𝑘𝑒𝑓𝑓. The geometry of the model is a single fuel pin in PWRs. 

All the analyses in this work are performed under the steady state assumption. 

 

Neutron Diffusion Equation  

 

The 1G and 1D diffusion equation expressed in the Finite Difference Method 

(FDM) with N meshes can be written in the following linear system form: 

 ,  =M F  (4.80) 

where M is a tridiagonal matrix, F is a diagonal matrix, 𝜙 = [𝜙1, ⋯ , 𝜙𝑁] is the 

solution vector of neutron flux, and λ (the system fundamental mode eigenvalue) is 

the inverse of the multiplication factor keff. Here, the matrices coefficients (which are 

the diffusion equation cross sections) depend on the temperatures of the fuel (𝑇𝑓) and 
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the coolant (𝑇𝑐 ) and the number densities of xenon (NXe) and boron (NB). This 

dependence can be expressed as 

 ( , , , ), = c Xef BΤ T N NNT  (4.81) 

 ( ),=effk EIG  (4.82) 

if the neutronics NT and the eigenvalue EIG operations are adopted and where Tf, Tc, 

NXe and NB are the solution vector of fuel and coolant temperatures and xenon and 

boron number densities for discretized nodes. 

 

Heat Conduction Equation for Fuel Temperature 

 

The fuel heat conduction is limited to the radial direction and azimuthal and 

centerline symmetries are assumed as well as constant thermal properties of the fuel 

materials. The problem geometry is reduced to a simple fuel pellet surrounded by 

cladding material with no separation between them. For the heat transfer from the 

cladding to the coolant bulk the Newton’s law is employed. With all these 

assumptions and equations, the volumetric average fuel temperature can be derived 

as 

 0
, ,

0

( ) 1 1 1
ln

8 2 2

f

f

r

f co
f avg c bulkr

f c f co w

rT r dr q r
T T

k k r r hrdr 

  
= = + + + 

 
 




, (4.83) 

where rf is the radius of the fuel pellet and rco the cladding outer one, kf and kc for 

their part indicate the thermal conductivity of fuel and cladding respectively and hw 

is the heat transfer coefficient of the wall (cladding outer surface). qʹ
f is the linear 

heat generation rate of the fuel that is calculated from the normalized scalar flux (ϕ) 

and Tfbulk is the coolant bulk temperature. 

 

The above derivation can be re-expressed with the thermal conduction operation, 

FC, as follows: 



 

 114 

 ( , ),FC =fT cT  (4.84) 

which shows the dependency on the neutron flux and coolant temperature. 

 

Heat Convection Equation for Coolant Temperature 

 

The fluid conservation equations are simplified by assuming a constant mass 

flow rate given by the mass continuity equation at steady-state. Besides, the constant 

pressure is assumed over a problem domain, so the momentum equation is not 

considered. Then, by energy conservation, the enthalpy at the n-th node can be 

calculated with the following expressions 

 
, ,

0

,


= +n n
n out n in

q x
h h

m
 (4.85) 

 ( ), ,

1
,

2
= +n n out n inh h h  (4.86) 

where 𝑚̇0 is the mass flow rate, Δ𝑥 is the node length, h is the specific enthalpy 

at the node boundaries (indicated by the in and out subscripts) or at the node center. 

With the specific enthalpy value, hi, and the presumed pressure the temperature of 

the coolant can be calculated employing steam tables. 

 

The thermal-hydraulic operator, TH, which corresponds to the above procedure, 

allows the expression of the coolant temperature calculation as 

 ( )TH =cT . (4.87) 

 

Xenon equilibrium 

 

The Xenon concentration is updated assuming it has reached its equilibrium 

 
( )

,

,


 





+ 
=

+

Xe I f

Xe

Xe a Xe

N  (4.88) 



 

 115 

where 𝛾𝑋𝑒 and 𝛾𝐼 are the Xenon and Iodine yields respectively, Σ𝑓 is the fission 

cross section, 𝜆𝑋𝑒  is the decay constant of Xenon and 𝜎𝑎,𝑋𝑒  the absorption 

microscopic cross section. 

 

This operation can be re-expressed with the Xenon operator XE as 

 ( )=XeN XE  (4.89) 

 

Boron update 

 

The Boron update is performed until the problem eigenvalue 𝜆  reaches the 

value of 1. This is achieved by employing the following linear functionalization 

 ( )
)

( 1
( 1) (

( 1) ()

( ) ( 1

)

)
1 ,

 

−
+

+

+ −
= − +

−

l
l l

l lB B
B l l B

N N
N N  (4.90) 

where l is the outer iteration (or FPI) number. 

 

This operation can be re-expressed with the Boron operator B as 

 ( )=BN effB k  (4.91) 

 

Iterative solution of the coupled system 

 

The physical models can be summarized in the following systems that need to 

be solved: 

 ( , , , ), = f c Xe BΤ T N NNT  (4.92) 

 ( ),=effk EIG  (4.93) 

 ( ),TH =cT  (4.94) 

 ( , ),FC =fT cT  (4.95) 

 ( )=XeN XE , (4.96) 
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 ( )=BN effB k  (4.97) 

with two equations for neutronics and two T/H and one for xenon and boron updates. 

The solution algorithm of the FPI defined by the above nonlinear equations is 

depicted in Table 4-4.  

 

Table 4-4. FPI scheme for 1D simplified coupled system 

Given  
0 , 

0

cT , 
0

fT , 
0

XeN , 
0

BN . 

for l=0, 1, ... do 

 Update 
( ) ( ) ( ) ( )( , , , ) f c Xe BΤ Τ N N
l l l l

. 

 Solve 
( 1) ( ) ( ) ( ) ( )( , , , ) + = f c Xe BΤ Τ N N
l l l l lNT  and 

( 1) ( 1)( )+ +=l l

effk EIG  

 Solve 
( 1) ( 1)( )+ +=cT
l lTH   

 Solve 
( 1) ( 1) ( 1)( , )+ + +=f cT T
l l lFC   

 Solve 
( 1) ( 1)( )+ +=XeN
l lXE   

 Solve 
( 1) ( 1) ( ) ( ) ( 1)( , , , )+ + −=B B BN N N
l l l l l

eff effB k k   

end for 

 

For the 1-D neutronics-T/H coupled system given in Eq. (4.92)-(4.95) with a 

Gauss-Seidel solution scheme, the AA fixed-point map when only the T/H variables 

are considered can be expressed as 
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Nonetheless, when other physics are introduced the previous the previous AA 

fixed-point map must be re-written as 
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As shown in realistic calculations in more complex codes this map is 

inappropriate to obtain a stable and reasonably optimized convergence. 

Consequently, the system in Eq. (4.99) is proposed to be extended to 
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 (4.100) 

This fixed-point map can be, however, very memory demanding and even too 

complex to implement. Alternatively, and since all the other physics depend on the 

flux distribution the map can be transformed into  

    ( )
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, (4.101) 

which is effectively a partial convergence of the PI flux solution, possibly less 

optimal than the analytical convergence point but more sophisticated than the user-

dependent relaxation factors. In the following the performance of this new map is 

compared to the solution without AA and with the AA(TH) currently applied. 

 

4.2.3. Problem specifications 

 

The simple problem for the convergence analyses has a single pin configuration 

with 3.81 m of axial height. The size of each computational mesh is 1 cm, which 

yields 381 axial meshes. The typical geometry and boundary conditions of a PWR 

at Hot Full Power (HFP) are applied: 15.513 MPa outlet pressure, 295 ℃ inlet 

temperature, 0.360 kg/s mass flow rate, 17.5 kW/m linear power density, rf = 4.2 mm, 

and rco= 4.8 mm. The thermal properties assigned are kf = 5.0 W/(m·K), kc = 16.0 

W/(m·K), and hw = 36,000 W/(m2·K). The zero-flux boundary condition is applied 
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for the neutronics system. 

 

The cross sections generation conditions are Tc = 600 K, Tf = 600 K, and 1000 

ppm boron concentration. The base cross section values result: 𝐷0 = 1.2605  cm, 

𝛴𝑎0 =  0.0216 cm−1, νΣ𝑓0 =  0.0267 cm−1, κΣ𝑓0 =  0.353 ∙ 10−12 cm−1. 

 

With the generated cross-sections, the multiphysics calculations are performed. 

The problems are solved by the Gauss-Seidel (G-S) type FPI. The iteration is 

terminated when the following fission source pseudo error and multiplication factor 

convergence criteria are satisfied: 

 

( ) ( 1)
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5 10
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−
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 (4.102) 

and  
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( ) 6

( )
5 10 ,

−

−
−
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l l
l eff eff

eig
l

eff

k k

k
 (4.103) 

where 𝛙  is the fission source vector (𝐅𝜙 ) and the superscript l is the iteration 

number notation of FPI. The neutronics problem solution is obtained with the PI for 

which the same convergence criteria as in Eqs. (4.102) and (4.103) but with values 

of 2 ∙ 10−6 and 1 ∙ 10−6 respectively with a maximum of 1000 of PIs. 

 

4.2.4. Numerical analysis of neutronics-T/H problems 

 

In this section the 1G single pin homogeneous problem is systematically studied 

for the combinations of 𝐹𝑇𝐶̃ and MTC values described in section 4.1.2. At first 

only the T/H variables are considered and the xenon and boron concentrations are 

added sequentially so that the effect of each feedback can be assessed in an isolated 

manner. The AAm() notation refers to Anderson Acceleration with depth (number of 

histories) m and within brackets the variables it is applied to the T/H variables or the 
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neutron flux 𝜙. 

 

Table 4-5 shows the comparison between the solution without AA, the AA(TH), 

which is the currently implemented in nTRACER and AA(𝜙 ) which is the one 

proposed in this research. The comparison consists of the average number of FPIs 

needed to converge all the 𝐹𝑇𝐶̃-MTC problems and the maximum 𝑘𝑒𝑓𝑓 deviation 

from the reference result (the problem without AA application). 

 

Table 4-5. Average number of required FPIs and 𝒌𝒆𝒇𝒇 errors for different AA 

solutions 

 w/o AA AA1 (TH) AA2 (TH) AA1 (𝝓) AA2 (𝝓) 

Average # FPI 9.29 7.56 7.09 7.06 6.80 

keff diff. (pcm) - 0.39 0.34 0.29 0.30 

 

As the comparison shows, the application of AA reduces the number of required 

FPIs. Since the problem only considers the neutronics and T/H variables AA(TH) 

and AA(𝜙) result in a very similar convergence behavior as the fixed-point map is 

equivalent. This can be corroborated in a more visual manner in Figure 4-3, where 

there are certain combinations of 𝐹𝑇𝐶̃  and MTC values more challenging to be 

converged than others if no “relaxation” is applied as shown analytically with the 

Fourier analysis. 
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Figure 4-3. Number of FPIs required for different combinations of 𝑭𝑻𝑪̃ and MTC 

employing diverse AA solutions 

 



 

 121 

In Figure 4-4 the FPI fission source pseudo error (Eq. (4.102)) convergence 

behavior is shown for a various combinations of 𝐹𝑇𝐶̃  and MTC, which cover 

sufficiently the cases depicted in Figure 4-3. These comparisons reinforce the data 

showed in Figure 4-3, this is there is no big changes with the variable switch between 

from T/H to 𝜙. It also demonstrates the effectiveness improvement of applying the 

AA, particularly in strong 𝐹𝑇𝐶̃ scenarios. 

 

  

  

Figure 4-4. Fission source pseudo error convergence behavior for various 𝑭𝑻𝑪̃ and 

MTC combinations 

 

In Figure 4-5 the fission source value at a problem elevation of 110 cm is 

represented. In these plots a clear difference between using AA on 𝜙 instead of on 

the T/H variables is observed. In the strong 𝐹𝑇𝐶̃  figures a smaller oscillation is 

shown in the case of AA(𝜙), this is due to the change that the AA produces in the 
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next FPI initial source. This effect is not tremendously relevant in this case as the PI 

convergence is monitored by the fission source and eigenvalue convergence, but it 

can have a greater impact if the next neutronics solution geometry and energy sweeps 

number is fixed. For example, in nTRACER the MOC sweeps have a fixed number, 

therefore the initial source determines the solution obtained. 

 

  

  

Figure 4-5. Fission source value convergence behavior at a problem elevation of 110 

cm for various 𝑭𝑻𝑪̃ and MTC combinations 

 

By capping the number of maximum PIs for the problem without AA a quasi-

optimal convergence point (lowest number of FPIs required for problem 

convergence) can be obtained. Figure 4-6 shows how a fully converged problem can 

yield a number of FPIs very close to the optimal one provided AA is applied. 

Although, in some cases, AA(𝜙) yields a better behavior than AA(𝑇𝐻), it does not 
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seem to be a very relevant difference. 

 

  

  

Figure 4-6. Number of FPIs required to converge given a fixed number of PIs for 

various 𝑭𝑻𝑪̃ and MTC combinations 

 

Figure 4-7 to Figure 4-10 depict the fission source shapes for the first six 

iterations for the problems without and with AA. It is clear how the oscillatory 

behavior is drastically reduced with the application of AA. Also the effect of AA(𝜙) 

on the next FPI initial source is observed in the strong 𝐹𝑇𝐶̃ cases, especially in 

Figure 4-10. 
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Figure 4-7. Fission source shapes for the six first iterations for 𝑭𝑻𝑪̃ = −𝟑𝟔 𝒑𝒄𝒎/

√𝑲 and MTC = -18 𝒑𝒄𝒎/𝑲 
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Figure 4-8. Fission source shapes for the six first iterations for 𝑭𝑻𝑪̃ = −𝟑𝟔 𝒑𝒄𝒎/

√𝑲 and MTC = -84 𝒑𝒄𝒎/𝑲  
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Figure 4-9. Fission source shapes for the six first iterations for 𝑭𝑻𝑪̃ = −𝟏𝟔𝟖 𝒑𝒄𝒎/

√𝑲 and MTC = -18 𝒑𝒄𝒎/𝑲  
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Figure 4-10. Fission source shapes for the six first iterations for 𝑭𝑻𝑪̃ =

−𝟏𝟔𝟖 𝒑𝒄𝒎/√𝑲 and MTC = -84 𝒑𝒄𝒎/𝑲  
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4.2.5. Numerical analysis of neutronics-T/H-xenon problems 

 

Table 4-6 gathers the results of the comparison between the solution without AA, 

the AA(TH) and AA(𝜙 ) when the xenon density update is added to the thermal 

feedbacks studied in the previous section. Now the comparison makes clear that in 

the presence of the xenon feedback the application of AA to only the T/H variables 

is insufficient and that by applying it to the neutron flux the problems converge on 

average considerably faster. Additionally, the errors in𝑘𝑒𝑓𝑓  are much smaller.  

 

Table 4-6. Average number of required FPIs and 𝒌𝒆𝒇𝒇 errors for different AA 

solutions for problems with xenon update 

 w/o AA AA1 (TH) AA2 (TH) AA1 (𝝓) AA2 (𝝓) 

Average # FPI div. 14.22 14.07 9.22 7.76 

keff diff. (pcm) - 4.33 3.21 0.26 0.21 

 

Figure 4-11 supports this conclusion, this is particularly notable in the feedback 

regions presenting the most challenging conditions. While it is true that AA(TH) 

allows to converge those problems that did not manage to reach convergence without 

the AA application, its performance was far from optimal if compared with the AA(𝜙) 

results. 
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Figure 4-11. Number of FPIs required for different combinations of 𝑭𝑻𝑪̃ and MTC 

and xenon update employing diverse AA solutions 
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The fission source pseudo error and the fission source value at a problem 

elevation of 110 cm for the combinations of 𝐹𝑇𝐶̃ and MTC of interest in Figure 

4-12 shows the superiority of the application of AA to 𝜙 at reducing the oscillations 

and consequently reducing the error at faster rates even in the cases with a weak 

𝐹𝑇𝐶̃. 

 

  

  

Figure 4-12. Fission source pseudo error convergence behavior for various 𝑭𝑻𝑪̃ and 

MTC combinations and xenon update 

 

In Figure 4-13 the fission source value at a problem elevation of 110 cm is 

represented. In these plots not only the advantage of using the AA to increase the 

convergence chances is shown, but also the greater effect of AA(𝜙) at suppressing 

the oscillations and consequently improving the convergence rate. 
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Figure 4-13. Fission source value convergence behavior at a problem elevation of 110 

cm for various 𝑭𝑻𝑪̃ and MTC combinations and xenon update 

 

Figure 4-14 shows the number of FPIs needed to converge for a given fixed 

number of PIs. The application of AA(𝜙) at full convergence gives a similar number 

of FPIs to the optimal minimum. On the other hand, the AA(TH) cannot reach the 

numbers of AA(𝜙) and even becomes chaotic under certain circumstances, such as 

at strong 𝐹𝑇𝐶̃ problems. Thus, since the optimal convergence point is difficult to 

be found analytically, AA(𝜙) can be considered an optimal alternative. 
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Figure 4-14. Number of FPIs required to converge given a fixed number of PIs for 

various 𝑭𝑻𝑪̃ and MTC combinations and xenon update 

 

The oscillatory behavior of the first six iteration fission source from Figure 4-15 

to Figure 4-18 confirms how AA(𝜙 ) suppresses more effectively the feedback-

induced oscillations. 
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Figure 4-15. Fission source shapes for the six first iterations for 𝑭𝑻𝑪̃ =

−𝟑𝟔 𝒑𝒄𝒎/√𝑲 and MTC = -18 𝒑𝒄𝒎/𝑲 and xenon update 
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Figure 4-16. Fission source shapes for the six first iterations for 𝑭𝑻𝑪̃ =

−𝟑𝟔 𝒑𝒄𝒎/√𝑲 and MTC = -84 𝒑𝒄𝒎/𝑲 and xenon update 

  



 

 135 

 

 

 

   

   

Figure 4-17. Fission source shapes for the six first iterations for 𝑭𝑻𝑪̃ =

−𝟏𝟔𝟖 𝒑𝒄𝒎/√𝑲 and MTC = -18 𝒑𝒄𝒎/𝑲 and xenon update 
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Figure 4-18. Fission source shapes for the six first iterations for 𝑭𝑻𝑪̃ =

−𝟏𝟔𝟖 𝒑𝒄𝒎/√𝑲 and MTC = -84 𝒑𝒄𝒎/𝑲 and xenon update 
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4.2.6. Numerical analysis of neutronics-T/H-xenon-boron problems 

 

The critical boron concentration (CBC) update is introduced to the problem 

presented in the previous section. Table 4-7 shows the reduction in the average 

number of FPIs needed to reach convergence when AA(TH) is replaced with AA(𝜙). 

 

Table 4-7. Average number of required FPIs and CBC errors for different AA 

solutions for problems with xenon and boron updates 

 w/o AA AA1 (TH) AA2 (TH) AA1 (𝝓) AA2 (𝝓) 

Average # FPI div. 15.56 15.04 9.90 9.51 

CBC diff. (ppm) - 0.10 0.28 0.10 0.09 

 

Figure 4-19 shows that the area of no convergence when AA is not applied 

becomes larger respect to the previous section problems as the feedback conditions 

become more hostile. In addition, the application of AA(𝜙 ) instead of AA(TH) 

allows for the convergence with single digits FPI numbers when it originally needed 

over twenty FPIs. 
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Figure 4-19. Number of FPIs required for different combinations of 𝑭𝑻𝑪̃ and MTC 

and xenon and boron updates employing diverse AA solutions 

 



 

 139 

The same conclusions are drawn observing Figure 4-20. Here the fission source 

pseudo error is presented in Figure 4-20. And the application of AA(𝜙) allows for a 

greater error reduction rate. 

 

  

  

Figure 4-20. Fission source pseudo error convergence behavior for various 𝑭𝑻𝑪̃ and 

MTC combinations and xenon and boron updates 

 

As for the fission source value at a problem elevation of 110 cm presented Figure 

4-21, the application of AA(𝜙) reduces the oscillations and guarantees the problem 

convergence in every case. 
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Figure 4-21. Fission source value convergence behavior at a problem elevation of 110 

cm for various 𝑭𝑻𝑪̃ and MTC combinations and xenon and boron updates 

 

Analogously to the T/H-xenon case the AA(𝜙 ) at full convergence yields a 

number of FPIs similar to the numerically obtained optimal as shown in Figure 4-22. 

The AA(TH), however, shows a dangerous behavior as it becomes unpredictable at 

a distance from the optimal minimum. 
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Figure 4-22. Number of FPIs required to converge given a fixed number of PIs for 

various 𝑭𝑻𝑪̃ and MTC combinations and xenon update and boron updates  

 

The oscillatory behavior of the first six iteration fission source for the four points 

of interest are presented from Figure 4-23 to Figure 4-26. Compared to the T/H-

xenon case, the oscillations become more aggressive, and only the application of 

AA(𝜙) can get them under an effective control. 
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Figure 4-23. Fission source shapes for the six first iterations for 𝑭𝑻𝑪̃ =

−𝟑𝟔 𝒑𝒄𝒎/√𝑲 and MTC = -18 𝒑𝒄𝒎/𝑲 and xenon and boron updates 
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Figure 4-24. Fission source shapes for the six first iterations for 𝑭𝑻𝑪̃ =

−𝟑𝟔 𝒑𝒄𝒎/√𝑲 and MTC = -84 𝒑𝒄𝒎/𝑲 and xenon and boron updates 
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Figure 4-25. Fission source shapes for the six first iterations for 𝑭𝑻𝑪̃ =

−𝟏𝟔𝟖 𝒑𝒄𝒎/√𝑲 and MTC = -18 𝒑𝒄𝒎/𝑲 and xenon and boron updates 
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Figure 4-26. Fission source shapes for the six first iterations for 𝑭𝑻𝑪̃ =

−𝟏𝟔𝟖 𝒑𝒄𝒎/√𝑲 and MTC = -84 𝒑𝒄𝒎/𝑲 and xenon and boron updates 
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Since the calculation of the CBC does not depend directly on the flux but via the 

problem eigenvalue, it is interesting to check its behavior with the different AA 

solutions. Figure 4-27 shows this behavior for the four T/H feedback points. Here 

the linear increase in early iterations has been suppressed for readability. With AA(𝜙) 

the CBC search shows a less erratic trend avoiding big oscillations and consequently 

reaching the converged value faster. 

 

  

  

Figure 4-27. Critical Boron Concentration evolution for various 𝑭𝑻𝑪̃ and MTC 

combinations and xenon and boron updates 
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Chapter 5. Anderson Acceleration in 

nTRACER 
 

The transference of the conclusions drawn in the previous section cannot be 

performed straightforwardly into nTRACER. The code structure in nTRACER is 

much more complex than the 1G 1D problem, it includes a pin resolved MOC 

neutron solver with a 2D/1D strategy, a pinwise CMFD acceleration, in addition to 

a 47-energy group structure. The code algorithm for a steady state calculation with 

T/H, xenon and boron updates is given in Figure 5-1. With these considerations the 

application of AA(𝜙 ) to nTRACER is studied in this chapter by introducing the 

reactor physics gradually to understand how the AA change affects the calculation 

as it gets more complicated as the number of physics phenomena increases. Thus, 

first only the T/H feedbacks are applied to later introduce the xenon update and 

finally the boron update. The problem to carry out this study is a Checkerboard 

(CB56) consisting of the assemblies B3 and C0 of the APR1400 core. 

 

 

Figure 5-1. Steady state with multiphysics updates algorithm in nTRACER  
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After the introduction of AA(𝜙) to steady state calculations, a series of depletion 

calculations are simulated to test if the new AA can resolve the depletion calculation 

instabilities. These depletion calculations are first limited to the CB56 problem 

before testing it with the depletion of the APR1400 quarter core. 

 

Then the convergence criteria of the PI in nTRACER (CMFD acceleration) is 

studied to optimize it. The AA(𝜙) with the newly optimized PI is tested with the 

APR1400 and BEAVRS benchmark depletion calculations. Finally, the modified X-

2 core depletion is calculated with the nTRACER/ESCOT system of codes and the 

AA(𝜙 ) with the optimized PI to show its competitiveness to perform a VVER 

depletion calculation. 

 

5.1. Checkerboard Calculations 
 

In this section the AA(𝜙) is applied to a CB56 neutronics-T/H (-xenon-boron) 

problem and the results compared with the original AA(TH). The calculations consist 

of a series of steady state and depletion problems. The flux group structure is also 

analyzed to reduce the memory needs for the application and storage of the AA(𝜙). 

 

5.1.1. Checkerboard steady state calculations 

 

Table 5-1 contains the results for Steady State calculations of the CB56 problem 

with only the T/H update, they demonstrate that the AA(TH) and AA(𝜙) yield similar 

results as expected in this case. Note that, as pointed out with the 1G 1D problem, 

the application of AA(𝜙) do not affect only the power with which the T/H variables 

are calculated but also affects the initial source at the next FPI MOC calculation. As 

the MOC sweep is performed for a fixed number of iterations in nTRACER, the flux 

solution after the MOC calculation is also altered. 
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Table 5-1. Average number of required FPIs and 𝒌𝒆𝒇𝒇 errors for different AA 

solutions for the CB56 problem with T/H update 

 w/o AA AA1 (TH) AA2 (TH) AA1 (𝝓) AA2 (𝝓) 

# FPI 7 8 6 6 6 

keff 1.10604 1.10606 1.10605 1.10610 1.10606 

dkeff (pcm) - -2 -1 -6 -2 

 

Table 5-2 shows the number of FPIs required for the CB56 problem to converge 

when both T/H and xenon updates are included. Note that the algorithm structure of 

nTRACER (see Figure 5-1) offers a “natural” protection against flux oscillations in 

these multiphysics problems. Since the xenon equilibrium is applied between the 

MOC and the CMFD solutions, the flux output from the PI (with which the T/H 

calculation is performed) is already soften. This way, the xenon and fuel temperature 

distributions tend to compensate each other. This, nonetheless, is not enough to 

suppress the oscillatory behavior in every case as will be shown later. 

 

Table 5-2. Average number of required FPIs and 𝒌𝒆𝒇𝒇 errors (from the average value) 

for different AA solutions for the CB56 problem with T/H and xenon updates 

 w/o AA AA1 (TH) AA2 (TH) AA1 (𝝓) AA2 (𝝓) 

# FPI div 7 7 7 7 

keff - 1.07405 1.07405 1.07402 1.07406 

dkeff (pcm) - 1.36 1.36 4.36 0.36 

 

In Table 5-3 the results when the CBC search is included in the multiphysics 

problem are given. Although the necessary number of FPIs with AA(𝜙) is inferior to 

the AA(TH) case, the reduction is not remarkable as the xenon-fuel temperature is a 

dominant effect and the code structure together with AA(TH) is enough to offer a 

reasonably good performance. 
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Table 5-3. Average number of required FPIs and CBC errors for different AA 

solutions for the CB56 problem with T/H, xenon and boron updates 

 w/o AA AA1 (TH) AA2 (TH) AA1 (𝝓) AA2 (𝝓) 

# FPI 19 9 10 8 9 

CBC 1815.58 1815.52 1815.56 1815.47 1815.63 

CBC (ppm) - 0.06 0.02 0.11 -0.05 

 

Prior to the tests with depletion calculations the number of energy groups of the 

neutron flux that undergoes the AA needs to be addressed. The 47 energy groups 

structure is reasonable for small problems like a CB but for full core calculations the 

memory requirements are too demanding, especially if the AA depth is greater than 

one. For this reason, a group condensation to 2 groups and 1 group are proposed for 

the AA application. Thus, after the CMFD problem is finished the flux is collapsed 

to a few-group structure. Once the AA( 𝜙 ) is completed, the 47-group flux is 

reconstructed.  

 

Table 5-4, Table 5-5 and Table 5-6 show that the results with the few-groups 

energy structure hold their respective 47-group counterparts of Table 5-1, Table 5-2 

and Table 5-3 with little to no difference in either the number of FPIs or eigenvalue 

(or CBC) results. 

 

This being said, the two-group structure is preferred over the one group as it 

possesses a greater physical meaning. On the one hand, the fast-to-thermal ratio is 

about 3.5 in thermal reactors and, therefore, it makes sense to treat the thermal and 

fast fluxes independently and not in a lumped manner. On the other hand, the impact 

of the feedback physics is greater, generally, in the thermal region. These two 

arguments are backed by the thermal and fast fluxes depicted in Figure 5-2. The two-

group structure is employed from this point on. 
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Table 5-4. Average number of required FPIs and 𝒌𝒆𝒇𝒇 errors for different AA 

solutions applied to a few group fluxes for the CB56 problem with T/H update 

 AA1 (𝝓)-1G AA2 (𝝓)-1G AA1 (𝝓)-2G AA2 (𝝓)-2G 

# FPI 7 (+1) 6 (0) 7 (+1) 6 (0) 

keff 1.1061 1.10605 1.1061 1.10606 

dkeff (pcm) -6 -1 -6 -2 
 

Table 5-5. Average number of required FPIs and 𝒌𝒆𝒇𝒇 errors for different AA 

solutions applied to a few group fluxes for the CB56 problem with T/H and xenon 

updates 

  AA1 (𝝓)-1G AA2 (𝝓)-1G AA1 (𝝓)-2G AA2 (𝝓)-2G 

# FPI 9 (+2) 7 (0) 7 (0) 7 (0) 

keff 1.07408 1.07405 1.07402 1.07406 

dkeff (pcm) -1.64 1.36 4.36 0.36 
 

Table 5-6. Average number of required FPIs and CBC errors for different AA 

solutions applied to a few group fluxes for the CB problem with T/H, xenon and boron 

updates 

  AA1 (𝝓)-1G AA2 (𝝓)-1G AA1 (𝝓)-2G AA2 (𝝓)-2G 

# FPI 8 (0) 8 (-1) 8 (0) 8 (-1) 

CBC 1815.67 1815.53 1815.5 1815.62 

CBC (ppm) -0.09 0.05 0.08 -0.04 
 

   

Figure 5-2. Flux axial distribution after the first five PIs for a thermal (43) and fast (5) 

energy groups in the CB56 multiphysics problem 
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The AA(𝜙) does not show a significant improvement with respect to AA(TH) 

performance for the steady state cases studied so far. The consequent step is the 

comparison for depletion calculations, for which the AA(TH) has been demonstrated 

to not be enough to solve the convergence issues. 

 

5.1.2. Checkerboard depletion calculations 

 

The CB56 problem depletion calculation is performed. At each step (including 

the initial steady state calculation) the CBC search is performed together with the 

T/H and xenon equilibrium updates. The AA(TH) and AA(𝜙 ) are compared for 

depths one and two. 

 

Figure 5-3 and Figure 5-4 show that AA1(TH) and AA2(TH) fail to converge at 

14 MWd/kgHM and 13 MWd/kgHM, respectively. AA(𝜙 ), however, manages to 

converge for both of the AA storage depths studied. This being said a depth of one 

yields a better performance overall. The AA(𝜙) is effectively able to stabilize the 

calculations by guaranteeing the convergence of every burnup step. 

 

Giving a closer look at the power axial behavior at 14 MWd/kgHM burn-up step 

for AA1(TH) and AA1(𝜙), which are given in Figure 5-5, it is corroborated how 

AA1(𝜙) reduces the oscillatory significantly and at a greater rate than AA1(TH). It 

can be seen how the axial power change between iterations four, five and six is 

negligible for AA1(𝜙 ) while it is persistent for AA1(TH). This difference in the 

oscillatory behavior transforms into a faster fission source pseudoerror reduction as 

shown in Figure 5-6. 
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Figure 5-3. Cumulative number of FPIs for the APR1400 based CB56 depletion 

calculation with AA(TH) and AA(𝝓) 

 

 

Figure 5-4. Burn-up stepwise number of FPIs for the APR1400 based CB56 depletion 

calculation with AA(TH) and AA(𝝓) 
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Figure 5-5. Power axial distributions at the first six FPIs for the CB56 problem at the 

burn-up step 14 MWd/kgHM for AA1(TH) and AA1(𝝓) 

 

 

 

Figure 5-6. FPI fission source pseudoerror for the CB56 problem at the burn-Up step 

14 MWd/kgHM for AA(TH) and AA(𝝓) 
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The non-convergence calculation at 14 MWd/kgHM could be avoided by 

reducing the burn-up step size. Thus, Figure 5-7 and Figure 5-8 show the calculation 

between 13 and 14 MWd/kgHM steps with the original 1 MWd/kgHM size and a 

shorter one with 0.1 MWd/kgHM. With the shorter step size every step manages to 

converge, nevertheless the cumulative number of required FPIs makes it prohibitive 

to employ such a short step and consequently the newly proposed AA( 𝜙 ) is 

indispensable. 

 

 

Figure 5-7. Cumulative number of FPIs for the APR1400 based CB56 depletion 

calculation with long and short burn-up step sizes from 13 to 14 MWd/kgHM 
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Figure 5-8. Burn-up stepwise number of FPIs for the APR1400 based CB56 depletion 

calculation with long and short burn-up step sizes from 13 to 14 MWd/kgHM 

 

Figure 5-9 shows a comparative of the fission power axial distributions at 

different burn-up steps. It is obvious that the shape evolution in the short step case is 

much more gradual. This gradualism allows the convergence because the initial and 

final distributions are closer. The convergence, however, should be reached 

independently of the initial distribution.  

 

   

Figure 5-9. Power axial distributions at different burn-up steps with long and short 

burn-up step sizes from 13 to 14 MWd/kgHM 

 

Figure 5-10, for its part, depicts the different power axial distributions reached 

with the two step sizes at 14 MWd/kgHM. The use of coarse step sizes allows a faster 
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calculation at the expense of a poorer accuracy, so I balance between time-accuracy 

is needed. 

 

 

Figure 5-10. Power axial distributions for the CB56 problem at 14 MWd/kgHM for 

calculations with long and short burn-up step sizes from 13 to 14 MWd/kgHM 

 

5.2. Optimization of the Core Depletion 
 

The AA(𝜙) is finally applied to the APR1400 core depletion calculation in this 

section. Besides, intrinsic disadvantage of the convergence criterion set for the PI 

convergence in nTRACER (the residual reduction ratio) is presented and an 

alternative is presented to improve the overall convergence behavior of the 

calculation. 
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5.2.1. Core depletion calculation 

 

Figure 5-11 shows how the new AA(𝜙) manages to avoid the non-convergent 

behavior of the AA(TH). As a matter of fact, it can complete the depletion cycle with 

a fairly constant number for the necessary FPIs per state point, as shown Figure 5-12. 

 

 

Figure 5-11. Cumulative number of FPIs for the APR1400 quarter core depletion 

calculation with AA(TH) and AA(𝝓)  
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Figure 5-12. Burn-Up stepwise number of FPIs for the APR1400 full core depletion 

calculation with AA(TH) and AA(𝝓) 

 

Note that in general terms the AA(TH) does not show a great difference when 

compared to AA(𝜙) in the number of FPIs (in the state points for which AA(TH) 

reaches convergence). This indicates that, for certain core configurations, and given 

the algorithm structure in nTRACER, the use of AA(TH) is quite competent at 

offering a reasonably good convergence. This being said, it is also obvious that 

AA(TH) is not trustworthy in every case and thereby AA(𝜙) must be adopted. 

 

5.2.2. Study of the power iteration convergence criteria in nTRACER 

 

The convergence criterion imposed in nTRACER to monitor the convergence of 

the CMFD acceleration calculation is the reduction of the residual ratio, which is the 

ratio between the residual at the present iteration and the initial residual at the first 

iteration and is expressed as 
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where rk is the residual value at the present iteration, r0 at the initial iteration and 𝜀 

default value in nTRACER is 0.1. 

 

The residual reduction ratio has an intrinsic limitation. While it guarantees a 

rapid convergence at early stages of the calculation when the solution is far from 

convergence, it really complicates the PI escape at late FPIs. In other words, it forces 

the problem sweep for a greater number of PIs when the solution is converged and 

the change between iterations is almost nonexistent and consequently the residual 

reduction ratio barely changes. This implies a greater number of CMFD calculations, 

which in a depletion calculation constitute a good portion of calculation time. 

 

In order to inspect the effect of the convergence criterion employed to monitor 

the PI convergence, the 1G 1D of the previous chapter is retrieved here. In it only 

the T/H feedbacks, 𝐹𝑇𝐶̃ = −168 𝑝𝑐𝑚/√𝐾 and MTC = -84 𝑝𝑐𝑚/𝐾 , are employed 

and no AA is applied. The problem is simulated with different PI convergence criteria, 

namely the residual reduction set at 2 10-6, the residual reduction ratio set at 0.05, 

the fission source pseudoerror reduction defined as 
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set at 2 10-6 and the fission source pseudoerror reduction ratio given 
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set at 0.05. 

 

Figure 5-13a shows the fission source value at an elevation of 110 cm. It can be 

observed how the use of reduction ratios, especially in the case of the residual ratio, 
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reduces the oscillation at early FPIs when the problem is far from convergence. 

Besides, at these early stages the AA does any effect on the result as there is no 

information stored yet. In addition, Figure 5-13b shows that the ratios required less 

iterations at early FPIs while the error and residual reduction required PIs plummet 

at later PI calls. 

 

This behavior is coherent with Figure 5-13c and Figure 5-13e. As previously 

explained, at late iterative steps the ratios have more difficulties to converge because 

the residual and the fission source pseudo error barely change (changes below 10-6 

for most of the calculation), this means that the PI keeps updating the result although 

it is already clearly converged. 

 

Figure 5-13d and Figure 5-13f in contrast show that the ratios yield a very tight 

value at early FPIs but suffer a sharp increase at late FPIs if the residual and the 

pseudoerror are employed as a convergence criterion. 

 

This way a change in the nTRACER CMFD convergence criterion is proposed 

to avoid these late FPIs waste of iterations. With this purpose a combination of the 

residual reduction ratio at early iterations and of the residual at late FPIs is intended. 

Thus, the residual ratio at 0.1 is kept but his is combined with a maximum residual 

value of 10-5. Note that the objective pursued with this change is not the reduction of 

FPIs but the save of unnecessary CMFD iterations. 
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(a)                                (b) 

   

(c)                                (d) 

   

(e)                                (f) 

Figure 5-13. FPI evolution of diverse PI variables for different PI convergence criteria 

for the 1G 1D neutronics-T/H problem w/o AA and 𝑭𝑻𝑪̃ = −𝟏𝟔𝟖 𝒑𝒄𝒎/√𝑲 and MTC 

= -84 𝒑𝒄𝒎/𝑲 
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Before applying the converge criterion change, this is studied with the 1G 1D 

problem for the multiphysics calculations of the previous chapter with the different 

AA applications. The results summarized in Table 5-7 allows to draw a series of 

conclusions for the criterion change. First, for the case without AA application, the 

new convergence criterion yields the best convergence. The same applies for the 

AA(TH) case, particularly as the physics of the problem become more complex. 

 

For AA(𝜙 ), however, no improvement is observed with the new criterion, 

although it does not show a worsening with respect to the original residual criterion 

(equivalent to the fission source pseudoerror as shown in Figure 5-13) either and still 

improves the results of AA(TH). In any case, although the AA(𝜙) does not see its 

results improved, the aim of the change was mainly the reduction of PIs and therefore 

it represents the best option for the PI criterion. 

 

Table 5-7. Average number of required FPIs for different physics and convergence PI 

criteria for the 1G 1D problem 

 T/H T/H-xenon T/H-xenon-boron 

 𝜀𝑟 r 𝜀𝑟+r 𝜀𝑟 r 𝜀𝑟+r 𝜀𝑟 r 𝜀𝑟+r 

w/o AA 11.6 9.3 8.5 38.2 28.1 23.4 39.0 28.8 22.6 

AA1(TH) 8.9 7.6 7.5 17.7 14.2 12.2 18.1 15.6 13.7 

AA2(TH) 8.4 7.1 7.0 16.9 14.1 11.9 17.0 15.0 13.2 

AA1(𝝓) 8.8 7.1 7.3 11.3 9.2 9.0 12.1 9.9 10.0 

AA2(𝝓) 8.3 6.8 7.2 9.5 7.8 7.7 11.1 9.5 9.8 

 

The convergence criterion change is now applied to nTRACER and the 

APR1400 quarter core depletion calculation is performed. Figure 5-14 shows that 

the new criterion manages to reduce the number of total FPIs substantially. Figure 

5-15 reflects how the reduction of FPIs takes place mainly in the late state points. 

Figure 5-16 shows that the total time has decreased, although percentagewise the FPI 

time remains fairly constant while the CMFD time has experienced a reduction from 

24 % to 21 %. 
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Figure 5-14. Cumulative FPIs for the APR1400 full core depletion calculation with 

AA(TH) and AA(𝝓) with the old and the new PI convergence criteria 

 

 

Figure 5-15. Burn-Up stepwise number of FPIs for the APR1400 full core depletion 

calculation with AA(TH) and AA(𝝓) with the old and the new PI convergence criteria 
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Figure 5-16. Computing time required by each calculation process for the old and new 

PI criteria for the AA(𝝓) application to the APR1400 quarter core depletion 

calculation 

 

The new changes are tested with a different problem. For this, the BEAVRS 

benchmark quarter core model is considered. As shown in Figure 5-17 and Figure 

5-18, the AA1(TH) with the old criterion can barely solve beyond the first three burn-

up steps. The AA1(𝜙) with the new criterion can successfully complete the cycle. 

 

 

Figure 5-17. Cumulative number of FPIs for the BEAVRS quarter core depletion 

calculation with the AA(TH) and AA(𝝓) with the new PI convergence criteria  
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Figure 5-18. Burn-Up stepwise number of FPIs for the BEAVRS quarter core 

depletion calculation with the AA(TH) and AA(𝝓) with the new PI convergence 

criteria 

 

5.3. nTRACER/ESCOT VVER Depletion Calculation 
 

The research presented in this work is put together in this section by simulating 

a depletion calculation of a VVER problem which includes the changes in the AA 

together with new the new PI convergence criterion. This depletion is performed 

with the newly developed system of codes nTRACER/ESCOT capable of handling 

hexagonal core geometries. 

 

The problem simulated is based on the X-2 benchmark geometry, however, due 

to computing capacity limitations, the problem is simplified here. Thus, the 

modification and its implications are explained prior to presenting the calculation 

results. 
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5.3.1. Core model simplification 

 

The current computing capabilities at SNURPL does not allow the simulation of 

a full core depletion calculation coupled with the subchannel code ESCOT. Note that 

the single state point in section 3.3.3 required nine nodes for more than five hours. 

This way a minimal typical depletion cycle would need around four days of almost 

full server exclusivity. 

 

With the aim at avoiding this, the core is simplified by applying a 60 degrees 

symmetry which would modify the geometry, more specifically the burnable 

absorbers location in the assembly 30AV5 as highlighted in red in Figure 5-19. This 

small change, however, is not extremely relevant for the objective of this calculation, 

which is demonstrating the capability of the nTRACER/ESCOT system of codes of 

carrying out a depletion calculation of a VVER core. 

 

 

Figure 5-19. X-2 benchmark 30AV5 fuel assembly burnable absorber layout for 

different symmetry options 
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5.3.2. Depletion calculation results 

 

Figure 5-20 shows the cumulative number of FPIs required to complete a 

standard core fuel cycle. It shows the stability of the calculation. Figure 5-21, for its 

part shows the number of FPIs per burn-up step, which is fairly constant, 

demonstrating that the calculation is quite close to the optimal given that it contains 

the search of the CBC together with the T/H and xenon updates. Figure 5-22 gives 

the amount of time required by each of the principal calculation steps in the 

nTRACER/ESCOT system of codes. Note that the time taken by ESCOT is around 

11 %, this portion would be remarkably smaller if the internal simple T/H solver was 

employed, the accuracy and reality representation would also be quite poorer too. 

All in all, it is demonstrated that the system of codes proposed is ready to carry out 

a VVER depletion calculation in a stable and rather optimized manner. 

 

 

Figure 5-20. Cumulative number of FPIs for the X-2 sixth core depletion calculation 

with the AA(𝝓) with the new PI convergence criteria performed with 

nTRACER/ESCOT  
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Figure 5-21. Burn-Up stepwise number of FPIs for the X-2 sixth core depletion 

calculation with the AA(𝝓) with the new PI convergence criteria performed with 

nTRACER/ESCOT 

 

 

 

Figure 5-22. Computing time required by each calculation process for the the X-2 

sixth core depletion calculation with the AA(𝝓) with the new PI convergence criteria 

performed with nTRACER/ESCOT 
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Chapter 6. Summary and Conclusions 
 

The pinwise core T/H analysis subchannel code ESCOT was extended to deal 

with hexagonal geometry cores, in particular the VVER cores. The ESCOT 

preprocessor was updated to produce the channels, gaps and pin relations in 

hexagonal geometry. Its algorithms were adapted to the new geometry type, more 

specifically the radial term of the lateral momentum was eliminated, the turbulent 

mixing coefficient fixed-value was recalculated and the fuel pin conduction solution 

was adapted to compute hollow pins. More sophisticated correlation models were 

implemented to introduce the spacer grid effects on the axial pressure loss, the HTC 

enhancement and the turbulent mixing increase. The bidirectional domain 

decomposition schemes for parallel execution were adapted too: extension of the 

ghost cells definition and the process assignment of the problem elements. ESCOT 

was coupled with the hexagonal solver in the DWCC neutronics code nTRACER. 

Both standalone and coupled results were compared with CTF results. The reference 

results of the coupled calculations were obtained with the PSI developed 

nTRACER/CTF system of codes. 

 

Then, the study of the FPI coupled system with extended physics beyond T/H 

variables, this is xenon and boron updates, was carried out in the 1G 1D simplified 

problem. Due to the impracticality of obtaining an analytical expression for the 

optimal partial convergence of the Power Iteration (PI), it was demonstrated that the 

modification of the AA application from the T/H variables to the neutron flux 

obtained in the PI improved the FPI convergence behavior notably by effectively 

suppressing the excessive oscillatory behavior. The modified AA was transferred to 

nTRACER and its capability to stabilize depletion calculations was demonstrated. 

The PI in nTRACER (CMFD acceleration) convergence criteria was assessed to 

avoid unnecessary CMFD iterations. Lastly, and to compile the research and 
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calculation improvements performed in this work, a VVER depletion calculation 

with the nTRACER/ESCOT system of codes was executed. 

 

In the following the main conclusions of this research are presented. The changes 

implemented in ESCOT were verified. The neglect of the radial term of the lateral 

momentum equation following the philosophy of other subchannel codes such as 

CTF was determined to be correct as it does not cause major differences (< 0.1 %) 

in the problem main variables in a cartesian geometry problem when the axial 

dominance is weakened. The change in the turbulent mixing coefficient was verified 

against the CTF results employing the turbulent mixing correlation with a maximum 

difference below 4 °C in an extreme problem. Finally, the fuel conduction in the 

hollow pins was validated with a maximum error of less than 1 °C if compared with 

the analytical solution. As for the spacer grid correlations, their implementation was 

verified by comparing single assembly results from ESCOT and CTF. 

 

For the single assembly standalone calculations ESCOT showed virtually no 

difference with CTF for coolant density, temperature and pressure and a fuel 

temperature deviation smaller than 0.2 °C at the pin center line. To assess the time 

performance of the DFM compared to the three-field model of CTF a full core VVER 

problem was simulated. The results show that ESCOT is 1.35 faster than CTF due to 

mainly the time reduction in the momentum and pressure equations solution, there 

is, however, room for improvement in the steam table implementation. The 

scalability of the bidirectional domain decomposition was tested with a minicore 

problem consisting of seven assemblies. The radial only decomposition results in a 

speedup of 4.5 with respect to the single node calculation. The radial-axial 

decomposition increased notably the acceleration of the calculation, for example 

with the employment of 56 cores allowed a 11.5 factor speedup with respect to the 

single node calculation. This performance increase is due to mainly the time 
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reduction of the momenta and pressure systems solution while the communication 

time does not experience much increase. 

 

nTRACER/ESCOT coupled calculations were assessed with single assembly 

and minicore calculations for the direct coupling and with the full core for via 

wrapper coupling. No remarkable differences were observed in the fuel or coolant 

temperatures or in the power distribution. As for the time performance, ESCOT is 

around 3.5 faster than CTF in direct coupling calculations running in a single node, 

while the factor increases to about 7 in the full core wrapper-assisted calculation for 

which ESCOT employed 326 cores in contrast with the 25 assigned to CTF. 

 

The instabilities produced by multiphysics (T/H, xenon and boron) problems 

were studied with a Fourier analysis. This analysis showed that the stability and 

optimization depend on the convergence degree of the PI. It also made clear that the 

definition of an analytical expression to define the optimal convergence point for 

realistic problems was not possible and eventually approximations would be 

necessary. Alternatively, the extension of the AA fixed-point map from the original 

T/H variables to include the other physics was proposed. The convenience of this 

extension was studied numerically with the 1G 1D problem and the following 

conclusions were drawn in each multiphysics analysis: 

 

• In the neutronics-T/H problem the average number of FPIs remained almost 

the same. The number of FPIs with the new AA map yielded a slightly lower 

number of FPIs and eigenvalue error, also a small reduction in the 

oscillations was observed. This small change can be explained because the 

next FPI initial source is modified due to the application of AA on the 

neutron flux. More important is the observation that the application of AA 

at full convergence PI yielded a similar number of FPIs as the numerically 
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obtained optimal convergence point. 

• The introduction of xenon allowed to observe the real potential of the 

application of AA to the flux. The average number of FPIs is reduced from 

the original 14 to around 8 and the 𝑘𝑒𝑓𝑓 error is reduced from about 3.5 

pcm to less than 0.3 pcm. The oscillatory behavior is also greatly reduced 

and it is demonstrated that the number of needed FPIs is similar to the 

numerically optimal point while the original AA(TH) enters a chaotic region 

if fully converged PI is imposed. 

• When the boron update is included in the calculation the new AA applied on 

the flux offered similar numbers to the previous calculation. The average 

number of FPIs passed from more than 15 to less than 10. The oscillatory 

behavior also improved drastically and a reduction of the oscillation in the 

CBC calculation observed as well. 

 

The simple problem conclusions were adapted to nTRACER. Although good 

results were already obtained in nTRACER for steady state calculations due to the 

code structure and the application of AA(TH), it showed instabilities in depletion 

calculations that resulted in no convergence. With the new AA applied on the flux 

obtained in the nTRACER’s PI, this is the CMFD acceleration, the stability of 

depletion calculations was guaranteed. With the aim at saving memory, the original 

47 energy groups flux was collapsed to 2 groups before the AA application and 

subsequent reconstruction with memory saving purposes for the calculation of core 

problems. Besides, the convergence criteria of the CMFD calculation was modified 

from the original residual ratio to residual ratio and residual. This small change 

allowed for the save of a relevant number of CMFD iterations that reduced the total 

computing time by an 11.5 % in depletion calculations. 

 

Finally, the nTRACER/ESCOT depletion calculation of modified VVER-1000 
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full core problem based on the X-2 benchmark was performed. This calculation 

demonstrated that stable high-fidelity depletion calculation for hexagonal geometry 

cores is possible in a competitive time span. 

 

For future works the following is proposed. The ESCOT modelling 

sophistication can be increased by introducing the assembly stiffeners, this would 

reduce the interassembly exchange and mixing of coolant at the assembly corners 

and would bring the simulation closer to the reality. The introduction of spacer grids 

in coupled calculations would also have a relevant impact in the results, for this a 

correct characterization of the spacer grids and their models’ factors for pressure loss, 

HTC increase and mixing enhancement would be necessary. As explained in this 

work, this could be performed by CFD calculations. With the regards its validation, 

the scarcity of experimental data complicates this process but it is a pending task. 

For the time being the coupled nTRACER/ESCOT code can be validated with the 

benchmark data once the computational resources are appropriate. 

 

Regarding the neutronics calculations, the 2D/1D MOC should be overcome 

with the aim at removing the nonlinearities that induce instabilities if the definition 

of thin planes is necessary (i.e. spacer grids of less than 3 cm height). The current 

CMFD acceleration also introduces nonlinearities in the calculation and the problem 

might result unstable if fluxes close to zero exist. 
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APPENDIX A. Conservation Equations in 

Discretized Form 

 

In section 2.4.1, the discretized forms of conservation equations are presented 

but the details about the coefficients are omitted, so those are described in this 

appendix. In below equations, ‘rnb’ denotes neighbors in radial direction and ‘wnb’ 

means whole neighbors. 

 

Mixture mass continuity in subchannel form: 
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Vapor mass continuity in subchannel form: 
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where 
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Axial momentum equation in subchannel form: 
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Lateral momentum equation in subchannel form: 
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Mixture energy equation in subchannel form: 
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APPENDIX B. Coupled Linear System of 

Scalar Equations 

 

In section 2.4.2, the pressure equation is derived from coupled linear system of 

scalar equations as below: 
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 .(2.52) 

However, the details related with coefficients are omitted, so those are presented 

in this appendix. 

 

Linearized mixture continuity equation: 
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Linearized vapor continuity equation: 
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Linearized mixture enthalpy equation: 
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초  록 

 

봉단위 노심 열수력 해석 부수로 코드인 ESCOT을 확장하여 육각 

기하 노심 처리능을 탑재하고, 특히 VVER 노심을 해석할 수 있도록 하

였다. ESCOT의 전처리기는 육각 기하구조에서의 부수로-간극-연료봉의 

관계식을 생산할 수 있도록 개선하였. 해당 코드의 알고리즘은 새로운 

기하 구조에 대해 맞게 조정하였다. 구체적으로는 측면 운동량의 반경방

향 항을 제거하고, 난류 혼합 계수의 고정값을 재계산하고, 중공 연료봉 

형태의 계산을 위한 핵연료봉 열전도 풀이법을 조정하였다. 축방향의 압

력 강하, 열전달 계수의 개선, 난류 혼합 증가에 대한 지지격자의 효과

를 고려하기 위한 보다 정교한 상관관계 모델이 적용하였다. 고스트 셀

의 정의와 문제 단위 프로세스 할당으로 병렬 처리를 위한 두 방향의 영

역분할 기법 또한 조정하였다. ESCOT 코드는 전노심 직접해석 코드인 

nTRACER의 육각 기하 솔버와 연계시켰다. 독립 계산과 연계 계산 모

두 CTF 결과와 비교하여검증하였다. 참조해는 PSI에서 개발한 

nTRACER/CTF 코드 연계 시스템으로부터 확보하였다. 독립계산 결과

는 참조해와 비슷한 결과를 보였고, CTF 코드와 비교하여 1.35배 빠른 

것으로 나타났다. 연계 계산 또한 서로잘 일치하는 결과를 보여준다. 전

노심 계산의 경우 wrapper 기반 병렬화를 통한 ESCOT과 연계 시 

CTF 코드 연계와 비교해 7배 가량 더 빠른 결과를 보여주었다. 

 

이후 열수력 궤환 효과와 제논 궤환 효과가 혼합된 연소계산에서 나

타나는 수렴 불안정성을 해결하기 위한 연구를 수행하였다. 먼저 단일군

-일차원으로 단순화된 문제를 통해 열수력 관련 변수들 외에 제논 및 

붕산농도의 궤환효과등의 확장된 물리현상을 고려하는 고정점 반복 연계 

체계에 대해 분석하였다. Power iteration의 최적의 수렴을 위한 인자를 

찾기 위해 해석적인 식을 정의하는 것은 실용적이지 않기 때문에, 기존

의 Anderson 가속법을 수정하여 수렴성을 개선시켰다. 해당 기법을 열
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수력 관련 변수들에 적용하는 대신 중성자속 변수에 적용함으로써 과도

하게 진동하는 수렴거동을 효과적으로 완화할 수 있었고, 결과적으로 고

정점 반복 계산의 수렴거동이 눈에 띄게 개선되는 것을 확인하였다. 고

정점 반복 계산 방법의 변화는 반복 계산의 횟수를 1.5배 가량 줄이는 

효과를 보였다. 수정된 Anderson 가속법은 nTRACER에도 적용시켜 연

소 계산을 안정시키는 성능을 확인했다. nTRACER에서의 power 

iteration 동안의 불필요한 CMFD 반복계산을 피하기 위한 수렴 조건을 

평가하였고, 잔차절대값에대한수렴조건을추가함으로써총 계산 시간을 

11.5 % 가량 줄일 수 있었다. 마지막으로, 연구성과 및 계산성능 개선효

과 등을 보여주기 위해 nTRACER/ESCOT 연계 체계를 통한 VVER 노

심의 연소 계산을 수행하였다. 이 연구에 제시한 방법과 개발한 코드 모

듈을 통해 육각 기하노심에 대한 봉단위 열수력 연계 고신뢰도 직접 전

노심 연소 계산이 현 실적인 시간안에 안정적으로 수행이 가능함을 입증

하였다. 
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