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Abstract

Cameras have become indispensable in everyday life for history recording, social

network services, video meetings, and personal broadcasting. Smartphone manu-

facturers (e.g., Samsung and Apple) adopt more and bigger camera lenses for new

generations, given that camera performance plays a key role in smartphone market

share. In an image pipeline of digital cameras, an image sensor converts light from

an object into a digital signal called a raw image, and an Image Signal Processor

(ISP) transforms the raw image into a human-readable RGB image. An ISP per-

forms a variety of image processing tasks related to restoration and enhancement,

where image restoration aims to restore an original image from its corrupted version

and image enhancement aims to retouch images attractive.

The challenge in ISPs addresses designing and implementing a general model

across all image degradation or all image styles. Specifically, image details are cor-

rupted by many types of degradation such as noise, blur, and compression. A general

model to handle all degradation not only requires a sufficiently large number of model

parameters but also is not optimal for each degradation. Moreover, attractive image

styles are subjective and vary depending on many factors such as personal experi-

ence, atmosphere, and mood. Recent deep enhancement models usually generate a

single image style for an input image which is limited to satisfy user preferences.

This dissertation proposes adaptive deep ISPs for practical applications. Specifi-
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cally, we introduce the three adaptation methods for three applications: (1) adaptive

data synthesis for camera image denoising, (2) adaptive neural architecture search

for controllable image restoration, and (3) adaptive ISP parameter estimation for

controllable image enhancement. First, in camera image denoising, it is difficult to

obtain noisy-clean image pairs for supervised learning. The proposed method gen-

erates RGB noisy-clean image pairs at low-resolution from raw-RGB noisy image

pairs and allows the accurate training of general CNN-based denoisers. Second, con-

trollable image restoration is a new application for unknown degradation that aims

to generate outputs for predetermined restoration tasks and select the desired result

for user preferences. The proposed method automatically finds a neural network

architecture that is efficient for multiple inferences to generate different restoration

outputs. The searched network shares the early layers and adapts the remaining

layers to each task. Third, the proposed method learns style representation that can

generate multiple high-quality image styles to satisfy subjective user preferences.

Users select styles in the latent representation, and a neural network decodes the

style into ISP parameters. Style generation is efficient through a plug-and-play ISP.

The proposed methods improve significant performances in each practical com-

puter vision application, and empirical analyses and ablation studies show the ef-

fectiveness of the proposed methods. We present the improvement of image quality

and model efficiency in benchmarks widely used in each task and real images.

Key words: Image Signal Processor, Image Restoration, Image Enhancement, Deep

Learning, Data Synthesis, Neural Architecture Search, ISP Parameter Estimation

Student number: 2017-27265
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Chapter 1

Introduction

1.1 Digital Camera

Digital cameras, capturing and storing photographs in digital form rather than on

film, have become very popular in recent decades with a number of advantages over

traditional film cameras. For one, they allow viewing the images immediately after

capturing them. This is particularly useful for obtaining better image quality by

taking multiple shots and choosing the best one. Digital cameras also allow shar-

ing images or videos (i.e., multiple consecutive images) easily, either by uploading

them to the internet or transferring them to a computer. Smartphones have built-in

digital cameras that are portable, convenient, and easy to share images for social

network services, video meetings, and personal broadcasting. Camera performances

have been playing a key role in the smartphone market, with many consumers con-

sidering it in their purchasing decision. Smartphone manufacturers (e.g., Samsung

and Apple) have responded by investing heavily in camera technology and offering

advanced features such as multiple lenses, large image sensors, and software-based

image processing.

1
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When the camera takes a picture, light from the scene is focused onto an image

sensor through the lens. The image sensor is a light-sensitive electronic component

that converts light into electrical signals. It is made up of millions (recently, billions)

of tiny photocells, also known as pixels, that are responsible for capturing the light

entering the camera. For capturing color images, a color filter array (e.g., Bayer

pattern) passes a specific color (e.g., red, green, or blue) to each photocell. The

photocells are activated by the incoming light and generate electrical signals in

proportion to the intensity of the light. An image signal processor converts these

electric signals, also called raw data or raw images, into human-readable color images

through a variety of image processing tasks.

1.2 Image Signal Processor (ISP) and Its Challenges

An image signal processor (ISP) converts raw image data from image sensors into us-

able formats for imaging devices. Specialized chips (e.g., Apple A16 Bionic) typically

incorporate ISPs for high-speed and low-power processing. ISPs perform a variety

of image processing tasks including denoising, deblurring, demosaicing, compression

artifact removal, white balancing, tone mapping, and retouching, which fall into two

categories: image restoration and enhancement with their own challenges.

1.2.1 Image Restoration: Unknown Degradation

Image restoration aims to restore the original appearance of a real-world scene that

has been degraded. Various factors occur degradation such as hardware limitations

in image capture and software processing for storage or bandwidth optimization.

There are four main types of degradation: First, the discretization of contin-

uous analog signals (light) into digital signals, where high-resolution images with
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more pixels can better represent realistic textures than low-resolution images. Sec-

ond, image sensors produce noise during light-to-electrical signal conversion, due

to an inconsistent number of photons and random fluctuations in electron counts

indicating light intensity. Third, digital images can be blurred by out-of-focus or

camera/object movement during exposure. Fourth, lossy compression methods re-

duce image file size at the cost of image quality.

Deep neural networks have achieved breakthroughs in image restoration by lever-

aging supervised learning with training datasets of original-degraded image pairs.

However, the degradation of test images is unknown. Models learned from these

datasets fail to restore test images that are degraded differently from the datasets.

Additionally, a model that is capable of restoring all types of degradation requires

a sufficiently large model size and is not optimal for specific types of degradation.

1.2.2 Image Enhancement: Subjective User Preferences

The goal of image enhancement is to improve the visual appeal of an image by

adjusting various factors such as contrast, intensity, colors, and tones. ISPs perform

image enhancement to transform raw images into RGB images, which are visually

similar or more pleasing to the original scene, through the following steps:

First, scaling the pixel values to the appropriate range of the image format.

Second, adjusting the colors with respect to illumination and the RGB spectra of

the color filters. Third, allocating more bits to display low- and high-intensity for

human eye perception and high dynamic range.

Similar to image restoration, deep neural networks have recently made signif-

icant progress in image enhancement through supervised learning. They learn the

image transformation from low-quality images to high-quality images, as defined by
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Style for food Style for low light Style for natureNoise Blur Compression artifact

Figure 1.1: Example images for various degradations and styles.

training datasets, and generate an enhanced image for a given test image. However,

the single image output is limited in satisfying user preferences as each user has

different desired styles and even the same user prefers different styles in different

moods and environments.

1.3 Adaptation in Image Signal Processor

The ISP is responsible for restoring and enhancing digital images, which incorpo-

rate various degradations and have diverse visually appealing styles visualized in

Figure 1.1. A general-purpose ISP with fixed parameters leads to suboptimal results

as it only generates a single output restoration or style for a given test image, given

that an image has multiple possible solutions depending on the degradation applied

and the user preference. Conversely, an ISP that has specialized parameters for each

degradation or style achieves high image quality but requires too many parameters

and computations to generate all possible output restorations or styles.

This dissertation introduces an adaptive ISP to overcome these limitations. The

adaptive ISP adjusts its parameters, features, or architectures based on the specific

degradation or style. This adaptation allows the ISP to efficiently handle a wide

range of degradations and styles with one model. The research process of the adaptive
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(a) Camera Image Denoising

Which noise is applied? Which restoration output is preferred?

Style-1 Style-m⋯

⋯

restoration-task-1 restoration-task-m⋯

⋯

Which style is preferred?

(b) Controllable Image Restoration (c) Controllable Image Enhancement

Figure 1.2: Examples and key questions about practical applications of interest.

ISP involves determining the image processing tasks in an ISP pipeline, analyzing

the nature of the task, and designing the ISP components for adaptation. This

dissertation presents various deep-learning-based approaches for the adaptive ISP

and aims to inspire future research.

1.4 Practical Applications

This dissertation explores three practical applications of image restoration and en-

hancement for adaptive ISPs, each addressing unique image processing tasks with

different degradations or styles. Figure 1.2 presents examples and key questions

about the applications, and this section briefly describes each application.

1.4.1 Camera Image Denoising

Camera image denoising aims to eliminate noise from RGB images. This is a practical

application as all digital images contain camera noise, which is caused by the image

sensor, camera setting, and image styles. Camera manufacturers typically estimate

the noise model of their cameras and develop a denoiser for it. This dissertation

considers a denoiser tailored to the noise in test images as an adaptive ISP for

camera image denoising.
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1.4.2 Controllable Image Restoration

Camera noise can be accurately estimated based on strong noise assumptions (e.g.,

Poisson-Gaussian noise), but most image degradations are hard to model. Instead

of estimating degradations, controllable image restoration has recently gained in-

terest as a practical application for handling various unknown degradations. This

application defines a set of restoration tasks and generates restoration outputs for

each task, allowing users to choose their preferred output. This dissertation regards

a model for controllable image restoration as an adaptive ISP.

1.4.3 Controllable Image Enhancement

Controllable applications are intuitively understandable in image enhancement. The

models in this area generate multiple styles for an input image by adjusting some

control factors, allowing users to select their preferred style. This approach is widely

accepted in image editing tools, as it caters to individual preferences. Recent works

focus on the image quality of output styles, ease of generating high-quality styles, and

model efficiency using deep neural networks. This dissertation proposes a controllable

image enhancement model with an adaptive ISP.

1.5 Outline of the Dissertation

This dissertation introduces three deep-learning-based approaches that facilitate

adaptive ISPs for practical computer vision applications: camera image denois-

ing, controllable image restoration, and controllable image enhancement. Each pro-

posed approach tackles three different current issues associated with adaptive ISPs,

through data synthesis, neural architecture search, and ISP parameter estimation,
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- Chapter 2 -
Adaptive Data Synthesis

for Camera Image Denoising

- Chapter 3 -
Adaptive Neural Architecture Search
for Controllable Image Restoration

- Chapter 4 -
Adaptive ISP parameter Estimation
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Figure 1.3: Overview of the proposed adaptive ISP methods.

to take one step closer to deep neural networks that can promptly produce visually-

pleasing images in mobile devices. Figure 1.3 summarizes the proposed approaches.

In Chapter 2, we aim to train accurate denoising networks for smartphone/digital

cameras from raw-RGB noisy image pairs. Downscaling is commonly used as a prac-

tical denoiser for low-resolution images. Based on this processing, we found that the

pixel variance of natural images is more robust to downscaling than the pixel variance

of camera noise. Intuitively, downscaling removes high-frequency noise more easily

than natural textures. To utilize this property, we can adopt noisy/clean image syn-

thesis at low-resolution to train camera denoisers. On this basis, we propose a new

solution pipeline (NERDS) that estimates camera noise and synthesizes noisy-clean

image pairs from only noisy images. In particular, it first models the noise in raw-

sensor images as Poisson-Gaussian distributions, then estimates noise parameters

using the difference of pixel variances by downscaling. We formulate the noise esti-

mation as a gradient-descent-based optimization problem through a reparametriza-

tion trick. We further introduce a new RAW2RGB conversion estimation method

that enables denoiser training in a human-readable RGB space by transforming the



8 CHAPTER 1. INTRODUCTION

downscaled raw images to the style of a given RGB noisy image. The noise and

RAW2RGB conversion estimations utilize rich augmentation to synthesize image

pairs for denoiser training. Experiments show that NERDS can accurately train

CNN-based denoisers (e.g., DnCNN, ResNet-style network) outperforming previous

noise-synthesis-based and self-supervision-based denoisers in real datasets.

In Chapter 3, we present a novel framework for controllable image restoration

that can effectively restore multiple types and levels of degradation of a corrupted

image. The proposed model, named TASNet, is automatically determined by our

neural architecture search algorithm, which optimizes the efficiency-accuracy trade-

off of the candidate model architectures. Specifically, we allow TASNet to share the

early layers across different restoration tasks and adaptively adjust the remaining

layers with respect to each task. The shared task-agnostic layers greatly improve

the efficiency while the task-specific layers are optimized for restoration quality, and

our search algorithm seeks for the best balance between the two. We also propose a

new data sampling strategy to further improve the overall restoration performance.

As a result, TASNet achieves significantly faster GPU latency and lower FLOPs

compared to the existing state-of-the-art models, while also showing visually more

pleasing outputs.

In Chapter 4, we present a plug-and-play Image Signal Processor (ISP) for image

enhancement to better produce diverse image styles than the previous works. Our

proposed method, ContRollable Image Signal Processor (CRISP), explicitly controls

the parameters of the ISP that determine output image styles. ISP parameters for

high-quality (HQ) image styles are encoded into low-dimensional latent codes, al-

lowing fast and easy style adjustments. We empirically show that CRISP covers a

wide range of image styles with high efficiency. On the MIT-Adobe FiveK dataset,
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CRISP can very closely estimate the reference styles produced by human experts

and achieves better MOS with diverse image styles. Compared with the state-of-

the-art method, our ISP comprises only 19 parameters, allowing CRISP to have 2×

smaller parameters and 100× reduced FLOPs for image output. CRISP outperforms

previous works in PSNR and FLOPs with several scenarios for style adjustments.

This dissertation concludes with a summary and discussions for future research

in Chapter 5.
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Chapter 2

Adaptive Data Synthesis

for Camera Denoiser Training

2.1 Introduction

Image denoising is a conventional machine learning problem restoring original col-

ors and patterns from noisy images. Deep-learning-based approaches have achieved

breakthroughs in recent decades due to the power of neural networks. Early works [127,

84, 101] have successfully removed additive white Gaussian noise (AWGN), which

allows network training under supervision by synthesizing noisy-clean image pairs.

Nevertheless, denoising images captured by smartphone/digital cameras poses

an obstacle, as it is difficult to obtain clean images for noisy images with pixel-level

alignment. Several works [2, 13] constructed datasets with the noisy-clean pairs

for real-world images. Using these pairs (Figure 2.1(a)), many supervised-learning-

based denoisers [121, 63, 122, 47, 25] restore crisp images on benchmarks from the

datasets. However, constructing such datasets requires tightly controlled capturing

environments, complicated post-processing, and massive human labor.

11
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To overcome the drawback of plain supervised learning, two major types of re-

search have been studied. The first line of works synthesizes the realistic noise from

clean images to utilize supervised denoiser training as visualized in Figure 2.1(b).

Several approaches [23, 20, 45, 54] adopt generative models using unpaired noisy-

clean images based on GAN [38], but they achieve limited accuracy on real noises.

Some other works synthesize more realistic noises using existing noisy-clean image

pairs [123, 1] or metadata for real cameras [12, 41], but they are limited in generaliza-

tion for unseen noises. The second category aims to learn denoisers without clean im-

ages. The first work [73] in this category proposed the learning framework using mul-

tiple noisy images. After that, many self-supervised-learning approaches [9, 68, 16]

use single noisy images (Figure 2.1(c)), which enable easy data collection and the

denoiser adaptation to the test noises. However, they are still limited in real-world

applications due to the requirements of custom network architectures and strong

statistical noise assumptions.

To address the above limitations on camera denoiser training, we propose a new

solution pipeline, namely NERDS, to perform noisy-clean image pair synthesis and

accurate denoiser training from single noisy images. The framework composes three

parts–noise estimation, RAW2RGB conversion estimation, and denoiser training. We

found that the pixel variance of natural clean images is robust to the image down-

scaling, which is a widely-used denoiser used for low-resolution images [89]. The noise

estimation adopts a Poisson-Gaussian noise model for the raw images from sensors

and optimizes the noise parameters by the pixel variances of downscaled images.

The downscaled images and the estimated noise parameters enable the synthesis

of noisy-clean image pairs at low-resolution (Figure 2.1(d)). Training denoisers on

human-readable RGB images from real cameras has another issue: the conversion
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Noise Synthesis

Input Target Input Target Input Target

Noise Synthesis
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Downscaling

(a) Traditional (b) Noise Flow (c) Noise2Void (N2V) (d) NERDS (Ours)

Void

Figure 2.1: Different training schemes for CNN-based camera denoisers. (a) Traditionally, training
denoisers requires pairs of noisy and clean images. However, clean target images are difficult to
obtain from smartphone/digital cameras. (b) Noise Flow [1] generates realistic synthetic noise from
clean images by learning the noise distributions using existing pairs of real images. (c) N2V [68]
enables more practical training from single noisy images without clean targets but requires custom
network architectures. (d) Our NERDS synthesizes noisy-clean image pairs at low-resolution by
utilizing image downscaling as a general denoiser and noise estimation through gradient-descent-
based optimization.

from the raw images to the RGB images is a black box. Our RAW2RGB conversion

estimation enables the noise synthesis on the RGB space by learning the RAW2RGB

conversion using the raw-RGB image pairs1. Our denoiser training can utilize rich

data augmentation based on estimated noise parameters and ISPs. Specifically, we

introduce two techniques for this framework. First, a reparametrization trick allows

estimating noise parameters through a gradient-descent-based optimizer. Second, a

technique for style disentanglement from raw-RGB noisy image pairs.

We summarize our contributions as follows:

• To the best of our knowledge, this is the first work to synthesize RGB noisy-

clean image pairs at low-resolution for accurate camera denoiser training from

single noisy images.

• We formulate noise estimation for Poisson-Gaussian noises as an optimization

1Major camera manufacturers (e.g., Samsung, Apple, Xiaomi, Cannon, and Sonny) provide raw
and RGB image pairs on their devices.
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problem, and a novel reparameterization trick allows to estimate accurate noise

parameters through gradient-descent.

• We propose a neural network that estimates the RAW2RGB conversions used

for given raw-RGB noisy image pairs. The RAW2RGB conversion estimation

generates realistic RGB noisy-clean image pairs from raw images.

• Our frameworks can train general CNN-based denoisers (e.g. DnCNN, ResNet-

style network) accurately for given test noisy images by performing noise syn-

thesis using them.

2.2 Related Works

2.2.1 Blind Image Denoising

Traditional methods. Classical methods usually denoise noisy images without

training data using wavelet [32], filtering [14] including BM3D [28], optimization [33,

83, 39], and effective prior [134]. However, they perform limited accuracy compared

to the recent deep-learning-based approaches.

Supervised-learning-based methods. SIDD [2] and NIND [13] captured real

noisy-clean image pairs to enable supervised-learning for real camera denoisers. How-

ever, the capturing procedure is unacceptably expensive and cumbersome. We de-

scribe the literature on realistic noise synthesis methods for the supervised-learning.

DnCNN [127] introduced a neural network to remove additive white Gaussian noise

(AWGN) for the first time. However, Guo et al. [41] demonstrated the limitation of

AWGN denoisers to signal-dependent or spatially-correlated noises, which are known

as the characteristics of real-world images. To alleviate this problem, two lines of
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works have been researched. The first category uses generative models for noise syn-

thesis with stable learning [23], various noise characteristics [54], knowledge distil-

lation [109], self-supervised-learning [20], and conditional adversarial networks [45].

Nevertheless, the scene statistics mismatched between clean and noisy datasets make

it difficult to train accurate denoisers in practice.

The second category investigates camera noise modeling. CBDNet [41] trans-

forms AWGN into realistic noise by using signal-dependent noise parameters and

simulating in-camera ISP functions, such as gamma correction and demosaicing.

UPI [12] converts RGB images to raw images and simulates noises using metadata

of specific cameras. CycleISP [123] trains neural networks for both RAW2RGB and

RGB2RAW conversions on large-scale datasets with specific ISP and noise settings.

Noise Flow [1] synthesizes raw noisy images using normalizing flow and metadata.

The work on [21] proposed a GAN-based framework for noise generation in raw im-

ages which is adaptive to the camera. In [130], the authors claimed that the noise

levels in metadata are inaccurate. Recently, the method in [67] models the RGB

noise distribution using normalizing flow. SCUNet [126] proposed a practical noise

model for a general-purpose denoiser.

However, all the above methods require real noisy-clean image pairs, ISPs, meta-

data, or high-quality clean images which are not always available. More importantly,

the noise synthesis using predetermined training datasets leads to poor denoising

performances on unseen noises. In contrast, the proposed method (NERDS) synthe-

sizes realistic noisy-clean image pairs from only noisy images, which enables accurate

denoiser training specialized in the test images.
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Self-supervised-learning-based methods. Noise2Noise [73] introduced a frame-

work that trains denoisers using noisy images only for the first time. Noise2Void [68],

Noise2Self [9], Noise2Same [111], and Neighbor2Neighbor [50] adopted advanced ap-

proaches which can train denoisers with single images corrupted by the i.i.d noise.

Noisier2Noise [87], NAC [113], and R2R [90] add additive noises to the given noisy

images to make auxiliary training pairs by using prior knowledge (or assumptions)

of the noise distribution. Notably, the blind-spot network (BSN) in [68] has been

improved by efficient architectures with small receptive fields [69] and dilated convo-

lutions [109]. Using the advanced BSNs, FBI-D [16] adopts a denoiser specialized in

Poisson-Gaussian noise for real-world raw image denoising. AP-BSN [72] breaks the

spatially-correlated noise of real-world RGB images by pixel-shuffle downsampling.

Although the above self-supervised-learning methods use practical training datasets

(only noisy images), they require custom network architectures or strong noise as-

sumptions. In contrast, NERDS performs noise synthesis that allows training general

CNN-based denoisers based on the noise modeling for smartphone/digital cameras.

2.2.2 Noise Estimation

Prior knowledge of noise distribution supports accurate restoration in most meth-

ods for image denoising, but it is not generally available in practice. Noise esti-

mation methods alleviate this problem, especially for the additive white Gaussian

noise (AWGN) and the Poisson-Gaussian noise. Principal component analysis (PCA)

based approaches [80, 94, 22] perform accurate AWGN estimation. For the Poisson-

Gaussian noise model, most existing methods [3, 102] including [34, 81] adopt two-

step approaches; estimating the local means and variances, then adopting maxi-

mum likelihood estimation (MLE) to fit the noise model. Foi et al.[34] proposed the
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Poisson-Gaussian noise model for the first time and a noise estimation algorithm

based on wavelet decomposition. Liu et al. [81] adopted iterative patch selection

for the generalized source-dependent noise. Recently, PGE-Net [16] adopted neural

networks for accurate and fast optimization based on Generalized Anscombe Trans-

formation (GAT) [8]. In contrast, we proposed a Poisson-Gaussian noise estimation

method using natural scene statistics with gradient-descent-based optimization.

2.3 Preliminary: Noise Modeling

In a digital camera, an image sensor converts light into a digital signal (or a raw

image), and an image signal processor (ISP) converts it into a human-readable RGB

image. We regard that the noise of RGB images originates from the image sensor

and is transformed by the ISP. Thus, we model the noise distribution of raw images

and the RAW2RGB conversion including ISPs.

Raw Image: Poisson-Gaussian (P-G) Noise. A common noise model for raw

images follows the Poisson-Gaussian distribution [34], defined as:

x ∼ N (z, β21z + β22), (2.1)

which is a heteroscedastic Gaussian where z is the true signal, x is a raw noisy

image observed on real image sensors, and β1, β2 ≥ 0 are signal-dependent and

signal-independent noise parameters. Real cameras provide x as well as β1 and β2 in

metadata. However, the noise parameters in the metadata are often inaccurate [130].

Section 2.6.1 discusses the noise distribution of raw images and the noise parameters

in metadata further.
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RGB Image: Transformed Noise. ISPs transform raw images into RGB images

using nonlinear functions, such as demosaicing, white balancing, color correction, and

tone mapping. The transformation changes the noise distribution, such as breaking

the i.i.d property in (2.1). Moreover, users can retouch image tones and colors,

altering the noise distribution further. We define such RAW2RGB conversion (T )

as a function of the image style (s),

y ≡ T (x; s), (2.2)

where x is a raw noisy image obtained from real image sensors and y is the RGB

noisy image with custom tones and colors. The real noise datasets [2, 93] used a

simple and open-source ISP for the entire dataset without any image retouching

processes. However, modern smartphones and digital cameras use custom ISPs with

hidden internal functions. They provide multiple image styles depending on the

scenes with user edits.

The following section provides a general framework to estimate P-G noise pa-

rameters (β1, β2), the RAW2RGB conversion (T ), and the image style (s) using

only noisy images (x, y).

2.4 Proposed Method

2.4.1 Overview

For a given noisy pair of raw (x) and RGB (y) images, the proposed method com-

poses three steps to restore the clean RGB image without auxiliary training data.

First, we estimate noise parameters (β1, β2) from x (Section 2.4.3). Second, we learn
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Figure 2.2: The ranked curve for the difference of pixel variances through downscaling on images
from SIDD validation set and the visualization of noise levels.

the conversion from x to y while disentangling the image style s (Section 2.4.4).

Third, we synthesize diverse pairs of noisy-clean images to train arbitrary RGB

denoisers with a general supervised-learning framework (Section 2.4.5).

2.4.2 Observation

We first illustrate our observation on raw noisy images with downscaling. Specifically,

we investigate the statistical characteristics variances of 256×256 images in SIDD

validation dataset [2]. To evaluate their noise levels, we downscale all raw images for

each color channel with the scaling factor of 2, and rank these images according to

the differences of pixel variances through downscaling. As visualized in Figure 2.2, we

show these values in a blue curve and separate them into three levels –low, medium,

high. It is observed that the images with high differences are very noisy, while the

images with low differences present clean textures. This phenomenon indicates that

the true signal z is robust to the pixel variances through downscaling than real

noises. That is why we propose the following method, which uses downscaled images

and pixel variances to estimate the noise parameters of original images.
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Figure 2.3: Noise estimation from a raw noisy image with a reparametrization trick.

2.4.3 Poisson-Gaussian Noise Estimation

We aim to estimate noise for x without any information other than x. For this, we

find an additive noise (N) for the downscaled image (xd) by solving the following

optimization problem,

min
N

|V ar(x)− V ar(xd +N)|, (2.3)

where N ∼ N (0, β21x
d + β22) is the Poisson-Gaussian noise discussed in (2.1) and

V ar(·) denotes a function that outputs the pixel variance of the input image. We

can approximate β1 and β2 as the noise parameters for x, given that downscaling

reduces noise levels and that the pixel variance of an image is correlated with the

variance of the noise distribution, as discussed in Section 2.4.2. Section 2.6.2 analyzes

the downscaling effect further. However, (2.3) is difficult to optimize due to the non-

differentiable process of noise sampling. To alleviate this problem, we introduce a

reparameterization trick that separates the noise sampling into learnable parameters

and the sampling from the normal distribution. Formally, we reformulate (2.3) as

min
β

|V ar(x)− V ar(xd + PG(β,xd)× n)|, (2.4)
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Figure 2.4: RAW2RGB conversion estimation from a pair of raw-RGB noisy images with style
disentanglement.

where PG(β,xd) = (β21x
d + β22)

0.5 denotes the Poisson-Gaussian converter and

n ∼ N (0, 1) is the additive noise with the normal distribution. Given that the

only learnable parameters in (2.4) are β1 and β2, a gradient-descent optimizer (e.g.,

Adam [64]) easily finds the noise parameters. Figure 2.3 visualizes the optimization

problem used as noise estimation for x.

We are surprised that such a simple optimization problem estimates accurate

noise parameters, while downscaled images can contain remaining noise or over-

smoothing textures. This result is because the well-designed optimizer learns the

characteristics of signal-dependent and signal-independent noises over the entire

image content.

So far we have discussed noise estimation and synthesis on raw images. For

more practical applications, the following section describes RGB noise synthesis by

estimating RAW2RGB conversion.

2.4.4 RAW2RGB Conversion Estimation

We aim to learn a RAW2RGB conversion from x to y. However, a nàıve network

training from x to y can easily overfit to the image contents. Moreover, to generate

multiple styles of RGB images, training a neural network for each style is resource
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intensive. For this, we disentangle the styles from RGB images, allowing a network

to learn multiple-style generation.

Specifically, our RAW2RGB conversion estimation composes two networks, the

style encoder (E) and the RAW2RGB converter (T ) (Figure 2.4). E identifies the

image style as a style parameter (s) from the raw noisy image (x) and the RGB

noisy image (y) while T uses x and s as input to generate an RGB image (ŷ). Then,

we can recall the equation (2.2) as

ŷ = T (x;E(x,y)), (2.5)

where s = E(x,y) while training E and T to minimize the L1 difference between ŷ

and y. E composes 6 residual blocks, global pooling, and a fully connected layer and

T composes 4 residual blocks and ISP functions of digital gain, white balance, color

correction, gamma correction, and tone mapping. We use the residual blocks of two

convolutional layers and one ReLU activation with 64 filters and 3×3 kernels. The

output of E is channel attention coefficients of residual features and the parameters

of ISP functions in T . The training data can compose a single pair or multiple pairs

of raw-RGB noisy images. To avoid learning identity mapping from the input y to

the output ŷ, we first adopt image scale augmentation (SA) that changes the image

resolution. Each scaling factor transforms the noise of x and y while SA randomly

samples the scaling factor to prevent the encoder from learning noises. Formally, we

redefine the style parameter (s) as follows,

s ≡ E(SA(x,y)). (2.6)
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Second, we design a bottleneck structure that lowers the dimension of s to avoid

encoding of information about image contents. E reduces channels and resolutions

of s (s ∈ R3×1×1 in this chapter). s conditions T by channel attention and ISP

parameter generation via fully connected layers.

2.4.5 Denoiser Training

We synthesize noisy-clean RGB image pairs at low-resolution to train general RGB

denoisers. The noisy/clean images are the downscaled raw image (xd) with/without

additive noise N transformed to RGB space using T . Formally, the denoiser (D)

training minimizes the following objective function,

min
D

|T (xd; s)−D(T (xd +N); s))|, (2.7)

where s is the style parameter in (2.6). Our denoising framework allows rich augmen-

tation for data synthesis. First, scaling and intensity augmentation (SIA) increases

the content diversity by changing the image resolution and pixel values from 0.5×

to 1.5×. Second, we randomly scale the noise parameters, β1 and β2, from 0.5×

to 1.5×. This augmentation alleviates the noise estimation error in Section 2.4.3.

Lastly, when multiple noisy images are given, we can augment the noise parameters

and the style parameters across different images. Overall, the objective function of

our denoiser training (2.7) becomes

min
D

|T (SIA(xd); s′)−D(T (SIA(xd) +N ′; s′))|, (2.8)
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where SIA is the scale and intensity augmentation, s′ is the augmented style pa-

rameter, and N ′ is the additive noise with augmented noise parameters. At testing,

the denoiser takes the RGB noisy image (y) as input, just like the conventional

CNN-based approaches.

2.5 Experiments

2.5.1 Implementation Details

Downscaling. We downscale a raw image x to xd by bicubic interpolation after

asymmetric 2D Gaussian blurring with the kernel size of 21×21. We randomly select

the standard deviation of the Gaussian blur from 0.25 × ds to 0.75 × ds for each

dimension, where ds denotes the downscaling factor randomly selected in the range

of [1.5, 2.5]. We use the same hyper-parameters for noise estimation, RAW2RGB

conversion estimation, and denoiser training unless otherwise specified.

Optimization. We use Adam [64], 128×128 image patches, and a batch size of

64 for all experiments. Noise estimation adopts 2.5 × e4 iterations with the initial

learning rate of 1×e−4 which becomes a tenth part in every 5×e3 iterations. We use

the same initial learning rates for RAW2RGB conversion estimation and denoiser

training for 5× e5 iterations without the learning rate decay.

Denoiser. We use two simple networks as denoiser to present the generalizability

of the proposed training scheme. Specifically, NERDS+DnCNN uses DnCNN [127]

and NERDS+D uses a ResNet-style architecture, composing a global skip connection

and 32 residual blocks. Each block has two convolutional layers and one ReLU

activation with 64 filters and 3×3 kernels.
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Dataset. We use BSD68 [85] which consists of 68 gray-scale images to evaluate

the performance of noise estimation. For real image denoising, we use raw noisy and

RGB noisy images on SIDD [2], DND [93], and MIT-Adobe FiveK [15]. SIDD [2]

consists of training, validation, and benchmark datasets. We use 1,280 256×256

patches from 40 noisy images on the benchmark for denoiser training. In the setting

of extra images, we use 50 noisy images on the training dataset with low ISO levels

of 100 and downscale the noisy images with the scaling factor from 1.1 to 1.2. For

DND [93], we use 1,000 512×512 patches from 50 noisy images on the benchmark. We

evaluate the denoising performances on the benchmarks by submitting the results to

the public websites for SIDD and DND. MIT-Adobe FiveK [15] consists of 5,000 raw

images and paired RGB images retouched by 5 photographers. Each RGB image has

its own RAW2RGB conversion using Adobe Lightroom while the raw image contains

real camera noises. We demonstrate an extreme scenario where only 5 noisy images

are available for denoiser training.

2.5.2 Results for Noise Estimation and Synthesis

We first validate our noise estimation on additive Poisson-Gaussian noise to images

on BSD68 [85], and then visualize the noise synthesis at low-resolution from noisy

images on MIT-Adobe FiveK [15].

Poisson-Gaussian noise estimation. We demonstrate the effectiveness of our

noise estimation on Poisson-Gaussian noises (NERDS-raw) by comparing with Foi

et al. [34], Liu et al. [81], and PGE-Net [16] which enable Poisson-Gaussian noise

estimation from noisy images. Table 2.1 presents the average of the estimated values

of (β1, β2) in four different noise levels. In most cases, NERDS-raw estimates the

most accurate noise parameters.
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Table 2.1: Performance comparison of Poisson-Gaussian noise estimation. The reported scores are
average values of (β̂1, β̂2) estimated from BSD68 with additive Poisson-Gaussian noise level of (β1,
β2). Bold denotes the best result.

Noise level Foi et al. [34] Liu et al. [81] PGE-Net [16] NERDS-raw (Ours)

(β1, β2) (β̂1, β̂2) (β̂1, β̂2) (β̂1, β̂2) (β̂1, β̂2)

(0.100, 0.0200) (0.096, 0.042) (0.072, 0.045) (0.098, 0.0030) (0.100, 0.0229)
(0.100, 0.0002) (0.097, 0.035) (0.071, 0.044) (0.095, 0.0001) (0.101, 0.0001)
(0.050, 0.0200) (0.049, 0.031) (0.040, 0.040) (0.052, 0.0001) (0.051, 0.0245)
(0.050, 0.0002) (0.051, 0.018) (0.039, 0.034) (0.051, 0.0001) (0.052, 0.0002)

Real Image NERDS-noisy NERDS-clean Real Image NERDS-noisy NERDS-clean
Figure 2.5: Noise synthesis results using NERDS. NERDS can synthesize noisy-clean RGB image
pairs at low-resolution from single noisy images. NERDS-noisy and NERDS-clean denote synthetic
RGB images with and without noises. This example uses the downscaling factor of 2. (Zooming-in
for the best view.)

Noisy-clean RGB image synthesis. Figure 2.5 shows noise synthesis results

using NERDS. Each real image from MIT-Adobe FiveK has its own RAW2RGB

conversion. NERDS-noisy contains realistic noises specialized to each real image,

such as blue/dark noises in dark areas with none i.i.d characteristics. To the best

of our knowledge, NERDS is the first work to generate the realistic noisy images

and the paired clean images for the unknown RAW2RGB conversions (or ISPs) by

using only raw-RGB noisy image pairs. Existing works for noise synthesis [12, 126,

123, 1, 67] require real noisy-clean image pairs, metadata, and ISPs. Thus, nàıve

comparisons between NERDS and the existing methods are unfair, but we present

them in Section 2.6.4.1.
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Table 2.2: Performance comparison with SotA denoising methods. The reported scores are PSNR
(dB)/SSIM on RGB images from the SIDD and DND benchmarks. Bold denotes the best result.
✓denotes accessible types of images at training. Extra images denote that images other than the
noisy images of the benchmark are used for training.

Dataset GAT+BM3D N2V AP-BSN FBI-D C2N+DIDN SCUNet NERDS+DnCNN NERDS+D

Clean images - - - - ✓ ✓ - - -
Extra images - - - ✓ ✓ ✓ - - ✓
Synthetic pairs - - - - ✓ ✓ ✓ ✓ ✓

SIDD 34.61/0.879 32.85/0.847 36.91/0.931 38.07/0.942 35.35/0.937 22.89/0.797 36.42/0.923 37.40/0.941 38.28/0.949
DND 37.98/0.920 35.82/0.902 38.09/0.937 38.98/0.945 37.28/0.924 - 38.21/0.941 39.34/0.950 -

2.5.3 Comparisons to the SotA Denoising Methods

Results on benchmarks. Given that NERDS trains denoisers without clean im-

ages, we compare our denoisers with the SotA denoising methods that do not use

the pairs of real noisy-clean images. Specifically, we compare GAT+BM3D [28],

N2V [68], AP-BSN [72], FBI-D [16], C2N+DIDN [54], and SCUNet [126] on SIDD

and DND benchmarks. Table 2.2 presents the effectiveness of the proposed denoisers,

NERDS+DnCNN and NERDS+D. C2N+DIDN [54] synthesizes realistic noises us-

ing unpaired noisy-clean images, while our NERDS+DnCNN outperforms it with the

simpler denoiser (DIDN vs. DnCNN). SCUNet [126] synthesizes realistic noises us-

ing high-quality clean images and the predetermined noise models including specific

noise levels and ISP pipelines. The other works require only noisy images via prior-

based filtering [28], self-supervised learning [68, 72, 109], and noise estimation [16].

The works without clean images perform denoising in raw image space and received

the results in RGB image space by submitting the denoised raw images to the public

websites [2, 93]. They often fail to remove noises in RGB image space, given that

they assume strong noise characteristics such as Poisson-Gaussian distributions and

the i.i.d property that do not hold in the RGB image space. Section 2.6.3 presents a

generalization test for NERDS+D with latency analysis to denoise a test image from

scratch. Section 2.6.4.2 provides the comparisons with the noise synthesis methods
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Table 2.3: Ablation study on data augmentation to train NERDS+D. PSNR (dB)/SSIM on RGB
images from SIDD validation.

Augmentation (1) (2) (3) (4) (5) (6)

Image scale - ✓ ✓ ✓ ✓ ✓
Image intensity - - ✓ ✓ ✓ ✓
Noise parameter - - - ✓ ✓ ✓
Style parameter - - - - ✓ ✓
Extra images - - - - - ✓

SIDD 35.63/0.897 36.79/0.928 37.16/0.935 37.84/0.944 38.02/0.946 38.51/0.950

which use the pairs of real noisy-clean images. Figure 2.10, 2.11, and 2.12 visualize

more denoising results on SIDD validation, DND, and MIT-Adobe FiveK.

Ablation Study. Our NERDS enables rich and effective augmentation for de-

noiser training. Table 2.3 demonstrates the ablation study on the data augmen-

tation. The setting without image scale augmentation (Table 2.3(1)) uses a fixed

downscaling factor of 2. Each component improves the restoration performances. In

particular, noise parameter augmentation improves over than 0.6 dB, given that it

can alleviate noise estimation error. The extra images enable high-quality clean im-

age synthesis by downscaling images with low noise levels and small scaling factors.

Results on MIT-Above FiveK. We evaluate CycleISP [123], SCUNet [126],

and NERDS+D on retouched images from MIT-Adobe FiveK [15]. CycleISP [123]

employs supervised learning on SIDD training dataset with additional synthetic data

using the predetermined noise levels and ISP pipeline. Nevertheless, CycleISP fails

to denoise the retouched image as visualized in Figure 2.6. SCUNet [126] is trained

on high-quality images with practically designed additive noise, but SCUNet often

oversmooths textures. These results are due to different noise distributions between

the training images and the test images. In contrast, NERDS+D removes severe

noise while maintaining image details. Figure 2.12 presents more qualitative results.
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Real Image CycleISP NERDS+D (Ours) Real Image SCUNet NERDS+D (Ours)
Figure 2.6: Qualitative comparisons of denoising results on MIT-Adobe FiveK [15]. Pink arrows
indicate the remaining noise of CycleISP and the oversmooth textures of SCUNet while our denoiser
generates crisp images. (Zooming-in for the best view.)

2.6 Discussions

2.6.1 Noise Distribution of Raw Images

Our NERDS assumes that the raw images have the noise that follows the Poisson-

Gaussian (P-G) distribution. However, the image sensor of a smartphone or a digital

camera is a black box. We do not know what kind of post-processing has been

applied to the raw images, or whether the noise level (parameters) in the metadata

represent the proper parameters of Poisson-Gaussian distribution. For instance, one

of the noise levels in the metadata of Galaxy S6 (β2 in Figure 2.7) equals zero for all

images, which is theoretically impossible for both shot and read noise parameters

of the Poisson-Gaussian model. Nonetheless, Figure 2.7 presents a similar tendency

between the noise levels in the metadata (β1, β2) and the estimated noise parameters

(β̂1, β̂2). Thus, we approximate the noise distribution in raw images as P-G noise.

To show the effectiveness of accurate P-G noise parameter estimation, Table 2.4

presents an ablation study of the values of P-G noise parameters. NERDS-raw,

Metadata, and Random represent the restoration performance of an RGB image
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ISO

Figure 2.7: Noise distribution of images from Galaxy S6. β1 and β2 are the noise levels of metadata,
while β̂1 and β̂2 are the estimated noise parameters for Poisson-Gaussian distribution using NERDS-
raw. While (β1, β2) have specific values at each ISO level, the radius of the circles for β̂1 and β̂2

represents the standard deviation of the estimated values for each image on SIDD training dataset.

Table 2.4: Ablation study of P-G noise parameters to train denoisers. Each method provides different
values of noise parameters for the same denoiser architecture, augmentation techniques, and training
schemes. The reported scores indicate restoration performances on RGB images from the SIDD
validation. NERDS-raw achieves the best PSNR score.

Metadata Random NERDS-raw (Ours)

PSNR (dB)/SSIM 37.56/0.937 37.92/0.941 38.51/0.950

denoiser trained with the noise parameters from each method. NERDS-raw indicates

the model in Table 2.3(6), Metadata uses the noise levels from the metadata, and

Random uniformly samples noise parameters between the maximum and minimum

values in NERDS-raw. Metadata and Random use the same denoiser architecture

(D), augmentation techniques, and training schemes with NERDS-raw except the

values of noise parameters for a fair comparison.

2.6.2 Clean Image via Downscaling

The optimal clean image via downscaling is a noise-free low-resolution image that

has the same statistics as the true signal (clean high-resolution image). Empiri-

cally, we regard the raw images downscaled after burring (low-pass filtering) as raw

pseudo-clean images. However, blurring images breaks the optimal setting when im-
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ISO

downscaling scaling factor downscaling scaling factor
(a) w/oBlur (BSD68) (b) w/Blur (BSD68)

downscaling scaling factordownscaling scaling factordownscaling scaling factor
(c) w/oBlur (SIDD) (d) w/Blur (SIDD) (e) w/LargeBlur (SSID)
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Figure 2.8: Standard deviation (std) of downscaled images. Blue lines denote the std of clean images
while the others denote the std of noisy images. Downscaling without pre-blurring maintains the std
values through scaling on both BSD68 ((a)) and SIDD ((c)). In contrast, blurring before downscaling
reduces the std values of noisy images drastically than clean images ((b) and (d)). (e) Large blur
kernels (2× larger than the kernels used in NERDS-raw) reduce the std values more steeply.

Table 2.5: DKL comparison for ablation study of NERDS-raw with the different sizes of blur kernels.
NERDS-raw w/Blur, which is the original NERDS-raw, achieves the best performance.

NERDS-raw w/oBlur w/Blur (Ours) w/LargeBlur

DKL 0.1710 0.0344 0.0535

age structures are too small (e.g., 1-pixel dots) or the noise is too severe compared

to the size of the blur. Figure 2.8 shows the evidence and limitations of the utility

of pseudo-clean images used in NERDS-raw. First, the images downscaled without

pre-blurring have similar statistics to those of the images before downscaling. This

indicates that image scaling can be regarded as capturing an image at different dis-

tances between an object and a camera. Second, the blurring operation reduces the

std values of noisy images drastically more than clean images. This is why we use

downscaled images as pseudo-clean images. However, blurring also reduces the std

values of clean images, making it challenging to find optimal clean images. To alle-

viate this difficulty, NERDS estimates noise by gradient-descent-based optimization
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Table 2.6: Latency analysis of the processes for NERDS and NERDS+D.

Noise Estimation ISP Estimation Denoiser Training Denoiser Testing

Latency 30 m 1 h 6 h 0.1 s

Table 2.7: Generalization test for NERDS+D on different training datasets without clean images.
The reported scores are PSNR (dB)/SSIM on RGB images from the SIDD validation and the DND
benchmark. Bold denotes the best result.

NERDS+D
Taining

SIDD DND

Testing
SIDD 38.51/0.950 36.26/0.923
DND 39.14/0.949 39.34/0.950

and adopts augmentation of noise parameter scaling.

We further analyze the effectiveness of blur kernels by measuring KL divergence

between synthesized noisy images and real noisy images. The lower value, the bet-

ter. Table 2.5 visualizes an ablation study on the size of blur kernels on the SIDD

dataset. NERDS-raw w/Blur achieves the best performance compared to both cases

of w/oBlur and w/LargeBlur. These results indicate that the downscaled images

work as clean images well with the proper size of blur kernels.

2.6.3 Efficient Inference at Test Time

The proposed method composes three steps (noise estimation, ISP estimation, and

denoiser training) and an additional step of denoiser testing. Each step described

above has the latency described in Table 2.6. We use GeForce RTX 2080 Ti GPU

and an HD image for testing.

The noise estimation, ISP estimation, and denoiser training using noisy test

images are time-consuming. To skip the processes at test time, Table 2.7 presents a

generalization test for NERDS+D trained on different datasets. NERDS+D trained

on DND has accurate restoration performance on DND but performs 2 dB lower

PSNR on SIDD than the model trained on SIDD. In contrast, NERDS+D trained

on SIDD performs accurate restoration on both datasets. This phenomenon indicates
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Table 2.8: DKL comparison with SotA noise synthesis methods. NERDS-raw w/clean image out-
performs all compared methods.

Calibrated P-G [130] Noise Flow [1] Camera-Aware [21] NERDS-raw (Ours)

Clean data ✓ ✓ ✓ ✓
DKL 1.5147 0.0481 0.0144 0.0079 0.0344

that SIDD contains noise distributions similar to DND and that well-designed noisy

images enable generalized denoiser training. For instance, camera manufacturers can

collect training datasets of only noisy images concerning the image sensor, ISP, and

expected image retouching.

2.6.4 Comparisons to Noise Synthesis Methods using Real Image Pairs

The recently proposed methods [1, 21, 130, 67] synthesize noisy images with novel

noise models. These methods use noise/clean image pairs and metadata that are not

accessible at test time, such as the DND dataset. Although the proposed method

is a general framework for denoising training without a clean image, we present

comparisons with these methods by evaluating the noise estimation results with

denoising performance and KL divergence.

2.6.4.1 Results for Noise Estimation and Synthesis

Table 2.8 presents the comparisons of KL divergence (DKL) between synthesized

noisy images and real noisy images. The lower values, the better. The proposed

method outperforms all compared methods when using clean images. We could not

reproduce the results of RGB Noise Flow [67] since the source code was not available.

The score reported in the paper is 0.044 for RGB Noise Flow, where Noise Flow

scores 0.198. The scores of KL divergence are dependent on hyperparameters.
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Table 2.9: Raw image denoising comparison with SotA noise synthesis methods on the SIDD bench-
mark. NERDS-raw achieves the best PSNR score. We use DnCNN as a denoiser for NERDS-raw.

Gaussian Noise Flow [1] Camera-Aware [21] NERDS-raw (Ours)

PSNR (dB)/SSIM 43.63/0.968 48.52/0.992 48.71/0.993 48.93/0.985

Table 2.10: RGB image denoising comparison with SotA noise synthesis methods on the SIDD
benchmark. NERDS achieves the best PSNR/SSIM scores. All methods use DnCNN as the denoiser.

Gaussian Noise Flow [1] C2N [54] RGB Noise Flow [67] NERDS (Ours)

PSNR (dB)/SSIM 32.72/0.873 33.81/0.894 33.76/0.901 34.74/0.912 36.42/0.923

2.6.4.2 Results for Raw/RGB Image Denoising

Table 2.9 and 2.10 present denoising performances for raw/RGB images on the

SIDD benchmark, where NERDS-raw and all methods for RGB images use DnCNN

as a denoiser. Although NERDS-raw and NERDS do not use clean images for noise

estimation, noise synthesis, and denoiser training, NERDS-raw and NERDS achieve

the best PSNR scores in each table. When converting the denoised raw images using

NERDS to RGB images, the PSNR is 35.74 dB which is lower than RGB image

denoising (36.42 dB).

2.7 Additional Ablation Study

Ablation Study for Noise Estimation (NERDS-raw). For noise estimation

(NERDS-raw), we design ablation studies on blurring strengths and downscaling

factors on BSD68 in Table 2.11 and 2.12. The setting of w/LargeBlur uses two

times larger blur kernels than NERDS-raw. The settings of w/Blur and DF 1.5∼2.5,

which indicates NERDS-raw in Table 2.1, present better performance than compared

settings. The settings of w/oBlur or DF 1 perform worse than those of w/LargeBlur

or DF 2.5∼4.5. These ablation studies show the effectiveness of image downscaling

after blurring for NERDS-raw.
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Table 2.11: Ablation study for noise estimation on blurring strengths.

Noise level w/oBlur w/Blur (Ours) w/LargeBlur

(β1, β2) (β̂1, β̂2) (β̂1, β̂2) (β̂1, β̂2)

(0.100, 0.0200) (0.080, 0.144) (0.100, 0.0229) (0.119, 0.0220)

Table 2.12: Ablation study for noise estimation on downscaling factors (DF).

Noise level DF 1 DF 1.5∼2.5 (Ours) DF 2.5∼4.5
(β1, β2) (β̂1, β̂2) (β̂1, β̂2) (β̂1, β̂2)

(0.100, 0.0200) (0.065, 0.0085) (0.100, 0.0229) (0.100, 0.0279)

Table 2.13: Ablation study for denoiser training on blurring strengths.

w/oBlur w/Blur (Ours) w/LargeBlur

PSNR (dB)/SSIM 26.99/0.642 38.02/0.946 38.01/0.944

Table 2.14: Ablation study for denoiser training on blurring strengths.

DF 1 DF 1.5∼2.5 (Ours) DF 2.5∼4.5

PSNR (dB)/SSIM 37.66/0.942 38.02/0.946 37.89/0.943

Ablation Study for Denoiser Training (NERDS+D). Table 2.13 and 2.14

present ablation studies on blurring strengths and downscaling factors for denoiser

training on the SIDD validation. This experiment uses SIDD validation to visual-

ize the effectiveness of downscaling and blurring to noisy images. The setting of

w/LargeBlur uses two times larger blur kernels than NERDS+D. Results show that

our settings for NERDS+D perform the best accuracy at the diverse DFs and blur-

ring strengths. The setting of w/oBlur performs poor PSNR/SSIM given that the

downscaled images still constrain severe noise as demonstrated in Figure 2.8(c). In-

stead, the comparable results between w/Blur and w/LargeBlur indicate that the

denoiser training is robust to blurring strengths. The settings for diverse DFs per-

form similar results given that blurring transforms noise from the P-G distribution.

The transformed noise can be regarded as high-frequency textures that allow de-

noisers training for P-G noise.



36 CHAPTER 2. ADAPTIVE DATA SYNTHESIS

2.8 Additional Qualitative Results

Synthesized Noisy-Clean Image Pairs. Figure 2.9 visualizes noise synthesis

results using NERDS. NERDS-clean contains low-level noise while NERDS-noisy

presents severe noise similar to the real noisy images. We have empirically found

that denoisers do not learn to remove noise in NERDS-clean. This phenomenon is

because the blurring and downscaling process in NERDS distorts the noise of raw

images while denoisers learn to remove Poisson-Gaussian noise in the raw images.

Moreover, given that NERDS does not require any clean data, NERDS successfully

synthesizes noisy-clean image pairs on DND and MIT-Adobe FiveK datasets which

are not available to access clean images.

Denoised Images. We present more images denoised by NERDS+D on SIDD

(Figure 2.10), DND (Figure 2.11), and MIT-Adove FiveK (Figure 2.12). While AP-

BSN [72], FBI-D [16], SCUNet [126], C2N [54]+DIDN [119], and CycleISP [123]

often fail to restore image patterns in GT, NERDS+D successfully recover the orig-

inal structures. AP-BSN uses pixel shuffle for self-supervised learning to decorrelate

spatially but also loses spatial information for denoising. FBI-D learns raw image

denoising for Poisson-Gaussian noise, but denoising raw images is an indirect ap-

proach for the human visual system (or RGB space). SCUNet over-smooth or over-

sharpen images. This restoration style helps to generate readable characters, but it

can distort the patterns in GT (See Figure 2.10). C2N+DIDN is the denoiser trained

by generating noisy images from clean images using both noisy and clean images on

SIDD datasets. For DND benchmarks, C2N+DIDN sometimes generates artifacts or

noise that significantly drops the restoration accuracy (See Figure 2.11). In contrast,

NERDS+D uses only noisy images on DND benchmarks to generate noisy-clean im-
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age pairs for accurate denoiser training. CycleISP is the denoiser trained by paired

noisy-clean images on SIDD datasets and paired images synthesized by the metadata

of DND benchmarks. CycleISP performs the highest PSNR and SSIM on both SIDD

and DND benchmarks compared to the methods in Table 2.2. However, CycleISP

fails to remove the noise on MIT-Adobe FiveK (See Figure 2.12). This failure comes

from the noise distribution of RGB images mismatched between MIT-Adobe FiveK

and SIDD (or DND) datasets.

2.9 Conclusion

We present a general framework to train denoisers from noisy images, called NERDS.

The framework composes noise estimation, RAW2RGB conversion estimation, and

denoiser training. For noise synthesis, we estimate Poisson-Gaussian noise in raw

images and ISP (or RAW2RGB conversion) for each RGB image. NERDS allows

rich data augmentation for accurate denoiser training. Experimental results show

the state-of-the-art restoration accuracy on real noise benchmarks.
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Noisy Image

nv2 ap-BSN D-BSN FBI-D  C2N+DIDN CycleISP SCUNet NERDS+D

sidd v x o o v x o o

sidd b x v o v x o o

dnd x o o v o o v o

fivek v o v o o o

nv2 ap-BSN D-BSN FBI-D  C2N+DIDN CycleISP SCUNet NERDS+D

sidd v - o - o v x o o

sidd b - - - - v - - o

dnd - o - o o - - o

fivek - - o v o o o

Clean Image NERDS-noisy NERDS-clean

Not Available

Not Available

Figure 2.9: Examples of noisy synthesis results using NERDS. We upscale NERDS-noisy, NERDS-
clean, and green boxes with a scaling factor of 2 for visualization.
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Input

Real Image

nv2 ap-BSN D-BSN FBI-D  C2N+DIDN CycleISP SCUNet NERDS+D

sidd v x o o v x o o

sidd b x v o v x o o

dnd x o o v o o v o

fivek v o v o o o

nv2 ap-BSN D-BSN FBI-D  C2N+DIDN CycleISP SCUNet NERDS+D

sidd v - o - o v x o o

sidd b - - - - v - - o

dnd - o - o o - - o

fivek - - o v o o o

30.71/0.844320.08/0.624129.50/0.804628.72/-∞/1.000PSNR/SSIM

30.41/- 32.77/0.9889 15.62/0.8136 33.77/0.9914∞/1.000PSNR/SSIM

39.56/0.979726.82/0.964335.50/0.953436.95/-∞/1.000PSNR/SSIM

31.22/0.911126.98/0.672329.92/0.868426.90/-∞/1.000PSNR/SSIM

30.76/0.917821.96/0.738928.29/0.849126.49/-∞/1.000PSNR/SSIM

GT AP-BSN [36] FBI-D [8] SCUNet [43] NERDS+D (Ours)

validation_08_05_psnr_24.92_ssim
_0.8555

validation_08_05_psnr_36.67_ssim
_0.9399_output

validation_08_05_psnr_38.24_ssim
_0.9587_output

validation_15_05_psnr_23.28_ssim
_0.8905

validation_15_09_psnr_22.15_ssim
_0.8702

validation_15_09_psnr_40.06_ssim
_0.9699_output

validation_15_09_psnr_40.69_ssim
_0.9761_output

validation_16_13_psnr_13.72_ssim
_0.7435

validation_16_13_psnr_40.01_ssim
_0.994_output

validation_16_13_psnr_40.93_ssim
_0.9954_output

validation_20_02_psnr_29.28_ssim
_0.9623 validation_20_02_psnr_42.77_ssim

_0.9735_output validation_20_02_psnr_43.48_ssim
_0.978_output

validation_21_02_psnr_18.38_ssim
_0.918

validation_21_02_psnr_39.73_ssim
_0.9884_output

validation_21_02_psnr_40.12_ssim
_0.9898_output

validation_30_06_psnr_16.55_ssim
_0.925 validation_30_06_psnr_40.21_ssim

_0.9939_output

validation_30_06_psnr_40.89_ssim
_0.995_output

38.56/0.977823.28/0.890536.73/0.964536.37/-∞/1.000PSNR/SSIM

40.89/0.995016.55/0.925040.21/0.993938.62/-∞/1.000PSNR/SSIM

Figure 2.10: Qualitative denoising results and PSNR (dB)/SSIM on the SIDD validation.
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Input

nv2 ap-BSN D-BSN FBI-D  C2N+DIDN CycleISP SCUNet NERDS+D

sidd v x o o v x o o

sidd b x v o v x o o
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30.76/0.917821.96/0.738928.29/0.849126.49/-∞/1.000PSNR/SSIM

GT

AP-BSN [36]

FBI-D [8]

C2N [19]+DIDN [39] NERDS+D (Ours)

PSNR sRGB: 30.26

SSIM sRGB: 0.9480

PSNR sRGB: 33.20

SSIM sRGB: 0.9306

PSNR sRGB: 31.99

SSIM sRGB: 0.8907

PSNR sRGB: 30.71

SSIM sRGB: 0.9042

PSNR sRGB: 28.18

SSIM sRGB: 0.9089

PSNR sRGB: 32.04

SSIM sRGB: 0.9164

PSNR sRGB: 28.52

SSIM sRGB: 0.9202

PSNR sRGB: 33.41

SSIM sRGB: 0.9354

PSNR sRGB: 31.59

SSIM sRGB: 0.9631

32.94/0.8889 29.20/0.7933 34.21/0.9197

36.41/0.9539 33.62/0.9432 37.42/0.9616

35.87/0.9789 35.95/0.9811 36.44/0.9833

Figure 2.11: Qualitative denoising results and PSNR (dB)/SSIM on the DND benchmark.
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Figure 2.12: Qualitative results on MIT-Adobe FiveK. CycleISP often fails to remove noise, while
FBI-D and SCUNet over-smooth or over-sharpen images. Note that NERDS+D uses only 5 test
noisy images and estimated noise parameters from them for training. (Zooming-in for the best view.)
We use T of NERDS to convert raw images denoised by FBI-D to RGB images.



42 CHAPTER 2. ADAPTIVE DATA SYNTHESIS



Chapter 3

Adaptive Neural Architecture Search

for Controllable Image Restoration

3.1 Introduction

Restoration of real-world corrupted images is a challenging problem since the types

and the severity (or level) of degradation are unknown. Previous works on blind

image super-resolution [10, 96] or blind deblurring [114, 37, 4] tackle this problem by

learning to predict the unknown degradation kernel, and then using the predicted

kernel to restore clean images. Recently, controllable image restoration has been

gaining increased attention as alternative approaches. In this scenario, instead of

accepting a single restored image given by the final model, users can control the

output restoration to generate multiple images and choose the output image that

best fits their preferences.

Early works on controllable image restoration (CIR) [42, 97, 106, 107] mostly

consider a single type of degradation and modulate the levels of restoration. For

instance, the denoising model from [42] allows continuous modulation of denoising a

43
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(a) CResMD [43] (b) TASNet (Ours)

Figure 3.1: An example of controllable image restoration. Our model generates visually more pleasing
outputs while adjusting restoration levels with 3 times faster GPU latency and 95.7% reduced
FLOPs compared to CResMD [43].

Gaussian noise with σ = 15 ∼ 75. More recently, CResMD [43] proposed an extended

framework that learns multiple types of degradation (Gaussian blur, Gaussian noise,

and JPEG compression) jointly with a single network, so that users can interactively

adjust not only the level but also the type of degradation. However, as more flexible

control is enabled, two new challenges arise for the practical application of CIR

models: 1) the high computation cost of generating multiple images to choose from,

and 2) the difficulty of finding the true types and the levels of degradation, in which

failing to do so may lead to significantly deteriorated outputs.

To alleviate these limitations, we present TASNet, a novel deep-learning-based

CIR model that is optimized to achieve better visual quality and substantially re-

duced computational complexity. Figure 3.1 demonstrates a sample result. Our TAS-

Net consists of two parts: task-agnostic layers and task-specific layers, where we de-

note “task” as a restoration problem w.r.t. a combination of degradation types and

levels. The task-agnostic part is composed of the early layers of the baseline super-
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(a) CResMD [43] (b) TASNet (Ours)

Figure 3.2: The overview of our efficient architecture for controllable image restoration. (a)
CResMD [43] has a fixed network across all tasks and requires separate inference through the
full model whenever the target restoration task becomes different. (b) Our task-agnostic and task-
specific network (TASNet) shares the early layers to facilitate feature reuse. When we perform
inference for multiple tasks, the task-agnostic part requires only a single computation, of which
the output feature can be reused multiple times as the input for the task-specific network. The
architecture of the task-specific network is adaptively adjusted for each given task. The width and
the height of boxes represent the number of layers and channels of neural networks, respectively.
In this example, two popular restoration tasks of denoising and deblurring are visualized, where
different colors represent the corresponding inference path.

network, where the parameters of the layers are shared across all tasks. Sharing the

early layers greatly improves the efficiency of CIR model, since we do not need to re-

compute the output of the shared layers each time a user changes the task (the type

or the level of degradation). On the other hand, the remaining layers that consist

of the task-specific parts are differently adjusted for each task. The main concept

is summarized in Figure 3.2. However, deciding the architectural hyperparameters

that balances the efficiency and the performance is still a very challenging problem.

To this end, we propose a new supernetwork-based neural architecture search

(NAS) algorithm that can automatically search for the task-agnostic and task-

specific architectures on the efficiency-accuracy trade-off curve. Since we need to

consider a large number of tasks for continuously varying levels of restoration, the

search space of our algorithm should be able to represent a diverse set of architec-

tures. This is why our algorithm allows channel-level selection for each layer as well

as layer-wise decision of whether to share its parameters or not. Specifically, the pro-
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posed NAS algorithm selects: 1) the number of layers to share (task-agnostic part),

2) the important channels for the shared layers, and 3) the important channels for

each task-specific layer, where these task-specific channel selection is adaptive for

each task. We also formulate the overall learning objective to be differentiable for

efficient end-to-end training of our searching framework, which results in the final

TASNet. Moreover, we propose a new data sampling strategy to reduce the visual

artifacts, which is empirically shown to be effective for cases when the task given by

the user is very different from the true degradation of an input image.

Experimental results show that TASNet runs 3.7 times faster than the state-of-

the-art CIR model on modern high-end GPUs with 95.7% FLOPs reduction when

generating 4K images with 27 modulations. Also, the visual quality of the gener-

ated restoration using TASNet is much better than the previous approaches with

significantly less artifacts.

Overall, our contributions can be summarized as follows:

• We present a novel neural network, named TASNet, for controllable image

restoration (CIR) that remarkably improves the model efficiency and output

image quality.

• We propose a supernetwork-based NAS algorithm that finds efficient CIR net-

works in a differentiable manner.

• We introduce a new data sampling strategy to improve the generated image

quality in CIR problems.

• The proposed TASNet outperforms the state-of-the-art models in image qual-

ity and computation costs of FLOPs and CPU/GPU latency.
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3.2 Related Work

3.2.1 Image Restoration

Image restoration, including denoising, deblurring, super-resolution, and compres-

sion artifact removal, is a classical topic in computer vision that aims at restoring

the original image from its degraded versions. Deep-learning-based image restora-

tion networks [29, 30, 31, 62, 71, 76, 128, 131, 57] have achieved breakthroughs in

restoring accurate image details. While the conventional approaches specialize in

dealing with a single degradation type, general image restoration aims to restore

the corrupted image with multiple types of degradation. Notable approaches in-

clude learning a policy to determine a specialized restoration network for the input

image [117, 118], or using an operation-wise attention module to produce the spe-

cialized feature maps w.r.t. each degradation type [100]. However, these approaches

cannot control the diverse restoration levels for the input images, and sometimes

generate overly smooth or sharpened outputs.

On the other hand, controllable image restoration is recently gaining interests

from the computer vision research community, to control the output restoration

of an image corrupted by unknown degradation. Existing works learn to control

restoration levels for a single type of degradation [42, 97, 106, 107]. In particular,

AdaFM [42], CFSNet [106], and Dynamic-Net [97] design their network architectures

with tuning modules, which modulate the feature maps layer-wise [42] or block-

wise [106, 97] with respect to the tasks of interest at test time. Instead, DNI [107]

interpolates all parameters of the differently trained networks for modulation. For

the general controllable image restoration, CResMD [43] controls restoration levels in

multiple types of degradation with a block-wise tuning module. While the prior works
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may have provided good performance to control the restoration levels, they have

solely focused on the image quality and do not consider computational efficiency. By

contrast, using CResMD as the baseline, the proposed TASNet significantly reduces

the computations and running time.

3.2.2 Efficient CNNs for Image Restoration

To make the image restoration models efficient with less computation cost, sev-

eral novel architectures have been developed for diverse restoration tasks. The early

works downscale the spatial resolution of the input image to reduce the computa-

tion costs of the convolution operations for denoising [129] and super-resolution [31].

More recently, CARN [6] presents a cascading residual block with multiple skip con-

nections, leading to a fast and light-weight super-resolution network. For deblurring,

a method using spatially variant deconvolution is proposed in [120] to achieve ac-

curate performance with its efficient backbone network. Meanwhile, FALSR [26],

ESRN [98], and FGNAS [59] adopt neural architecture search (NAS) algorithms

for efficient super-resolution networks. Path-Restore [118] and AdaDSR [79] save

computation costs via adaptive inference for general image restoration and super-

resolution, respectively. Prior works also employ network quantization [27, 112] or

pruning [35, 74, 82, 103, 124], but they are not task-adaptive.

On the other hand, we study the network acceleration approaches for control-

lable image restoration for the first time, especially when it requires a large number

of inference passes per image. A neural architecture accelerated by our algorithm

can be considered as a special instance of multi-task learning [19, 132], a network

design paradigm that uses a shared network for multiple tasks or optimization. The

main difference from the previous multi-task learning approaches is employing NAS
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Figure 3.3: The neural architecture search process for each layer of TASNet. Our algorithm au-
tomatically determines the number of shared layers and channels in each feature map from the
supernetwork. Task-specific (TS) part (ϕn = 0) adaptively selects channels based on the given task
(blue arrow). By contrast, task-agnostic (TA) part (ϕn = 1) selects fixed channels across tasks
(red arrow). A feature map is determined to be shared if the channel importance is similar among
tasks and the previous feature map is shared. All processes are differentiable via a straight-through
estimator (g). During the inference, ϕ, za, and thus task-agnostic (TA) part are fixed.

for continuously varying tasks from an input image. Our search algorithm is a vari-

ant of supernetwork-based NAS methods [59, 78], which aim to find an efficient or

performance-wise optimal network by pruning from a supernetwork. Our search pro-

cess is performed over a search space of channels and shared layers across tasks, each

combination of which provides a candidate network derived from a supernetwork.

3.3 Method

Controllable image restoration (or modulation) aims to control the restoration levels

of a corrupted image. Following the CResMD setting, we formulate multi-dimensional

restoration levels to be controllable. Formally, given D number of degradation types,

t ∈ RD denotes a task vector, where td ∈ [0, 1] encodes the restoration level for the d-

th degradation type. For instance, a task vector of (1,0,0) for three degradation types

(e.g., blur, noise, JPEG compression) indicates that the task requires the maximum

level of deblurring but no denoising or compression artifact removal. During train-
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ing, a training image pair (input and target) determines the corresponding values of

the task vector, which are controlled by users at inference time.

3.3.1 Efficient Architecture Design

Unknown degradation of real images demands interactive image restoration with

adjustable restoration levels. In this scenario, a network for image modulation com-

putes its operations multiple times for a single input image with different task vec-

tors. Formally, the total computation cost for M times of inferences is given by,

Rtotal(f,x, t) =
M∑
m=1

R(f,x, tm), (3.1)

where R(f,x, tm) denotes FLOPs or latency to generate an output with the network

architecture f , the input image x, and the m-th task vector tm. Architectures used

in CResMD and other previous works [42, 97, 106, 107] follow the computation cost

of Eq. (3.1), as outlined in Figure 3.2(a).

Our goal is to design a network architecture which is efficient under the aforemen-

tioned multiple -inference scenario. To this end, we propose TASNet that shares

the feature map of early layers with the remaining task-specific architecture, as de-

scribed in Figure 3.2(b). The task-agnostic shared layers facilitate feature reuse for

repeated inferences from a single image. On the other hand, our task-specific archi-

tecture adaptively transforms itself to be efficient as it is difficult to find a single

fixed network that is efficient for continuously varying restoration levels.

For TASNet, we reformulate Eq. (3.1) and divide the network f into the early
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layers fa and the remaining layers f s. Then, the total computation cost becomes:

Rtotal(f,x, t) =
M∑
m=1

[R(fa,x) +R(f s, x̃, tm)]

≥ R(fa,x) +
M∑
m=1

R(fsm, x̃, tm),

(3.2)

where x̃ = fa(x) and R(fa,x) is the computation cost of a single inference for

fa(x), and fm denotes the transformed task-specific architecture. Although Eq. (3.2)

should theoretically reduce the computational redundancy, designing efficient archi-

tectures (fa and f sm) is still an open problem.

3.3.2 Search Formulation

Overview. In order to find efficient TASNet architectures, we propose a supernetwork-

based neural architecture search algorithm. Our search algorithm determines 1) the

number of early layers that are shared across tasks, 2) the important channels for

task-agnostic layers, and 3) the important channels for each task-specific layer, where

the channels are selected from the supernetwork CResMD [43]. TASNet aims to min-

imize both restoration error and computation cost of Eq. (3.2) via following rules,

as illustrated in Figure 3.3 (Please also see Figure 3.12 for architecture details):

• Learn task-specific channel importance (zsm).

• Learn task-agnostic channel importance (za).

• Share a feature map across tasks (ϕn = 1), when important channels are

similar across tasks (ηn = 1) and the feature map of its previous layer is

shared (ϕn−1 = 1).
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• Maximize the number of shared layers (Eq. (3.10)).

• Prune unimportant channels across tasks (g(zan,c) = 0) in shared feature maps

(ϕn = 1).

• Adaptively select important channels (g(zsm,n,c) = 1) to the task tm in non-

shared feature maps (ϕn = 0).

Channel selection. Variants of straight-through estimator [11] have been widely

used for differentiable NAS approaches [108, 17]. To select or de-select each channel

from the supernetwork, channel selection virtually multiplies a binary value to the

channel. Our straight-through estimator enables this process differentiable, given by,

g(z) =


I [z > 0] if forward

sigmoid(z) if backward,

(3.3)

where z ∈ R, and I [·] is an indicator function that returns 1 when its input is true

(and 0 otherwise). We introduce two types of z which determine task-specific and

task-agnostic channels, respectively, in the following.

Task-specific channel importance. To learn channel importance for a given

task tm, we introduce architecture controller h, formally given by,

zsm,n ≡ hn(tm), (3.4)

where zsm,n,c ∈ R denotes the importance of c-th channel to the task vector tm in the

n-th feature map of the supernetwork. hn is the architecture controller, composed

of few fully connected layers, for the n-th feature map.
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Task-agnostic channel importance. To learn general channel importance across

tasks, we simply average the values of the task-specific channel importance as:

zan,c ≡
1

M
·
M∑
m=1

zsm,n,c, (3.5)

where zan,c ∈ R denotes the task-agnostic channel importance and M is a large

enough number of inference. Empirically, we adopt exponential moving average over

iterations with the small mini-batch size.

Channel importance similarity across tasks. To determine whether a feature

map should be shared across tasks, we compute the agreement criterion via the

similarity between selected channels from za and zs as follows:

1

M
·
M∑
m=1

C∑
c=1

g(zsm,n,c) · g(zan,c) > γ ·
C∑
c=1

g(zan,c), (3.6)

where γ is a threshold hyperparameter. Whether Eq. (3.6) holds is represented by a

boolean variable ηn. If the equation holds (ηn = 1), a large number of tasks have an

agreement on the channel importance for a given layer, and thus this layer is likely

to be shared across all tasks.

Recursive layer sharing. To facilitate feature reuse across tasks, the shared

layers need to be located together at the initial stage of the network. To this end,

the n-th feature map is shared if the n-th and all previous feature maps satisfy the

agreement criterion on the position of pruning across tasks (ηi = 1), formally,

ϕn =


1 if ηi = 1,∀i = 1, 2, ..., n

0 otherwise,

(3.7)
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where ϕ ∈ ZN2 denotes a decision variable, in which the n-th element ϕn is 1 if the

n-th feature map is task-agnostic.

Objective function. By using all equations above, we can formulate the objec-

tive function with differentiable resource regularization terms. Let L(·, ·) denote a

standard ℓ1 loss function for image restoration tasks. The overall objective function

is formally given by,

min
θ,ψ

L(θ, ψ) + λ1 · R1(ψ) + λ2 · R2(ψ), (3.8)

where θ and ψ are learnable parameters in the supernetwork and architecture con-

troller, respectively. The first resource regularizerR1(·) penalizes FLOPs of currently

searched architectures by de-selecting channels, formally defined as:

R1(ψ) = RFLOPs(f
a,x) +

M∑
m=1

RFLOPs(f
s, x̃, tm)

= 2
N∑
n=1

K2
nHnWn · [ϕn ·

C∑
c=1

g(zan,c) ·
C∑
c=1

g(zan−1,c)

+ (1− ϕn) ·
M∑
m=1

{
C∑
c=1

g(zsm,n,c) ·
C∑
c=1

g(zsm,n−1,c)}],

(3.9)

where Kn is the kernel size of convolution operation to generate the n-th feature

map, Hn and Wn are the height and the width of the n-th feature map, respectively,

and za0,c and zsm,0,c the channel of input images and are fixed to be 1. The second

regularizer R2 enforces the network to maximize the number of the early shared

layers by penalizing the disagreement of selected channels across tasks as follows:

R2(ψ) =
N∑
n=1

ϕn−1 ·
C∑
c=1

M∑
m=1

∥∥g(zsm,n,c)− g(zan,c)
∥∥
1
, (3.10)
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Figure 3.4: Absolute ground truth vs. relative ground truth. (a) Mapping from all degraded versions
to its original image. (b) Mapping from degraded versions to relatively higher-quality images.

where layer at n = 0 denotes an input image and ϕ0 ≡ 1 since the input image is

fixed over tasks. The hyperparameters λ1 and λ2 balance three terms.

3.3.3 Data Sampling Strategy

Degradation level vs. restoration level. Previous works train a network to

restore the original image from the degraded images with arbitrary degradation

level (see Figure 3.4(a)). However, CIR algorithms should be able to restore images

to various extents to facilitate better user interaction experience. Thus, we redefine

a restoration level as a mapping from more degraded images (input) to less degraded

images (relative GT) (see Figure 3.4(b)).

Task vector with relative GT. A task vector t is a model input that encodes

restoration levels. In training, an input-GT image pair (sampled with two different

multi-dimensional degradation levels) determines its task vector as follows:

td ≡ lind − lgtd , (3.11)
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where lind ∈ [0, 1] and lgtd ∈ [0, 1] denote the levels of d-th degradation type for the

input and GT images, respectively. We assume GT images are less degraded than

input (lind ≥ lgtd ). Each image pair randomly selects the number of degradation types

(single or multiple) and the granularity of degradation levels (continuous or binary).

3.4 Experiments

In this section, we present the experimental results and comparisons between TAS-

Net and CResMD in terms of network computation cost and output image quality.

Then, we thoroughly analyze the effectiveness of our proposed algorithm with the

ablation studies. Implementation details are described in Section 3.5.

3.4.1 Dataset

In this work, we use DIV2K [5] dataset for training and CBSD68 [85] dataset for

testing, unless specified otherwise. DIV2K consists of 800 clean 2K-resolution train-

ing images and 100 validation images while CBSD68 consists of 68 clean HVGA-

resolution test images. Following the degradation setting in CResMD [43], to create

degraded images, we use three types of degradation: Gaussian blur, Gaussian noise,

and JPEG compression. Each degradation is sequentially applied to the clean im-

ages. For Gaussian blur, we use the kernel size of 21 × 21 with the radius r ∈ [0, 4].

The covariance for the Gaussian noise is denoted as σ ∈ [0, 50]. The JPEG compres-

sion quality factor is denoted as q ∈ [10, 100] (We also include images with no JPEG

compression as in CResMD). The training dataset is constructed by applying the

degradation levels with a stride of 0.1, 1, and 2 for r, σ, and q, respectively.
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Table 3.1: The average computation cost comparison. TASNet outperforms CResMD [43] w.r.t. all
measures and resolutions.

Cost metric Resolution CResMD TASNet

HD 1,124.3 G 45.2 G
FLOPs↓ 2K 2,698.4 G 108.4 G

4K 10,119.2 G 406.7 G

HD 22.8 s 5.5 s
CPU latency (single)↓ 2K 55.6 s 13.5 s

4K 209.3 s 55.5 s

HD 5.1 s 1.7 s
CPU latency (multi)↓ 2K 11.7 s 4.2 s

4K 40.6 s 13.1 s

HD 144.4 ms 68.4 ms
GPU latency↓ 2K 280.8 ms 99.2 ms

4K 930.0 ms 250.7 ms

Table 3.2: Quantitative image quality comparison for non-blind restoration on CBSD68.

Method PSNR↑ SSIM↑ NIQE↓ BRISQUE↓ FLOPs↓

CResMD 25.86 dB 0.8194 6.7165 54.13 189.1 G
TASNet 25.64 dB 0.8137 6.6301 50.60 7.5 G

3.4.2 Computation Cost Comparison

Latency and FLOPs reduction. Table 3.1 presents the average computation

cost of TASNet (ours) and the state-of-the-art network, CResMD [43], across diverse

image resolutions and devices. The experiments are performed for the controllable

image restoration setting, in which a multiple number (M = 27) of inferences are per-

formed for each input image. While displaying similar image restoration performance

(as described in the next section), TASNet manages to reduce 95.7% FLOPs from

CResMD and shows faster speed on all reported devices: ×3.8 on a single-core CPU,

×3.1 on a multi-core CPU, and ×3.7 on a GPU, when generating 4K (3840×2160)

images, compared with CResMD. Notably, TASNet only requires 0.07s to restore

an HD (1280×720) image. We also observe that the latency difference between two

models becomes small in the case of low-resolution images. As the input resolu-

tion decreases, the size of each feature map also decreases, reducing the benefit of

selecting channels or shared layers to some extent.
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Figure 3.5: Qualitative image quality comparison for non-blind restoration. TASNet produces
sharper images with better NIQE scores than CResMD.

3.4.3 Image Quality Comparison

Non-blind setting. Table 3.2 illustrates the quantitative image quality compar-

isons in a non-blind image restoration setting, where the degradation type and level

of input images are known. This setting allows models to generate their best results

with a single inference. The results demonstrate that the images restored by TAS-

Net have lower PSNR than the images generated by CResMD but better NIQE,

which means that TASNet in general restores sharper image details, as illustrated

in Figure 3.5.

Blind setting. Controllable image restoration (CIR) algorithms aim to tackle a

blind setting, in which the types and levels of degradation are unknown. CResMD [43]

struggles to handle such challenging scenario, generating images with artifact (Fig-

ure 3.6) or over-smoothing effect (Figure 3.7) and restoring images unevenly across

continuously varying restoration levels (Figure 3.8). Figure 3.6 presents images re-
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Figure 3.6: Blind setting (artifact). CResMD often produces significant artifacts when deburring
images that are corrupted with noise or compression artifacts. By contrast, TASNet successfully
reduces the blur in input images.

Figure 3.7: Blind setting (over-smoothing). When denoise levels are higher than the actual noise
levels of input images, CResMD over-smoothes images whereas TASNet noticeably removes noise.

Figure 3.8: Blind setting (uneven modulation). CResMD restores blurred images negligibly or dras-
tically by deblur level changes, while TASNet gradually modulates outputs.
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Figure 3.9: Restoration from real images. A task vector (·,·,·) denotes the levels of (deblur, denoise,
dejpeg). Compared to TASNet, CResMD generates more artifacts or over-smoothed images.

stored by algorithms that modulate an input image using different levels of deblur-

ring when the input image is corrupted with a mixture of blur, noise, and com-

pression degradation. Images restored by TASNet are shown to be less blurry (in

fact, the outputs become sharper as deblurring level becomes higher), compared to

CResMD that generates critical artifacts. An interesting observation is that other

degradations (noise and JPEG artifact) still remain in images deblurred by TASNet,

implying that our algorithm manages to learn a disentangled restoration process for

each restoration type and level. As observed in Figure 3.7, denoising by CResMD
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Table 3.3: Ablation study of näıve shared networks. We modify CResMD by sharing its early layers.
TASNet-A achieves 9 times FLOPs reduction than CResMD with 62% shared layers.

Method #Shared Layer PSNR↑ NIQE↓ FLOPs↓

CResMD

0 % 25.86 dB 6.7165 189.1 G
31 % 25.82 dB 6.8035 132.0 G
62 % 25.78 dB 6.8205 69.5 G
99 % 25.34 dB 6.9109 7.0 G

TASNet-A 62 % 25.75 dB 6.7982 7.5 G

results in over-smooth images while TASNet maintains the overall contents and

structures of input images. Figure 3.8 illustrates the restored images when varying

the restoration (deblurring in this case) levels for identical degradation and restora-

tion types. With the same amount of change in restoration levels, CResMD restores

the degradation unevenly (the restoration quality changes negligibly or drastically),

whereas TASNet generates images with smoothly-varying restoration quality.

Restoration on real images. Figure 3.9 displays the output images restored

from real images with unknown degradation (downloaded from the internet). Sim-

ilar to the synthetic examples, CResMD generates images with over-smooth effect

or significant artifacts while TASNet successfully reduces the degradation of input

images. For more restored output images, please refer to Section 3.6.

3.4.4 Ablation Study

Comparison to näıve shared networks. Table 3.3 shows the comparisons be-

tween the variations of CResMD with a different number of early shared layers that

is manually determined. For fair comparisons in terms of performance, all models in

the table are trained with absolute GT. TASNet-A has the same network architecture

as TASNet, but is trained with absolute GT. TASNet-A reduces the computation

cost of CResMD to 1
9 by sharing 62% of the layers with a similar PSNR.
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Table 3.4: Ablation study for the effectiveness of shared layers. TA and TS, respectively, denote
task-agnostic layers and task-specific layers. TSNet is our searched model without forcibly sharing
layers. Image quality is measured on CBSD68 using the non-blind setting.

Method TA TS PSNR↑ NIQE↓ FLOPs↓

CResMD - - 25.86 dB 6.7165 189.1 G

TSNet - ✓ 25.59 dB 6.6332 39.6 G
TASNet ✓ ✓ 25.64 dB 6.6301 7.5 G
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Figure 3.10: Computation cost comparisons across restoration levels. The higher restoration levels
demand more computation costs for TS layers. TASNet is efficient for multiple inferences, as a
result of reusing the feature map of TA layers across tasks. Each graph presents computation costs
of removing blur (left), noise (middle), and joint degradation of blur and noise (right). A task vector
(·,·,·) denotes the levels of (deblur, denoise, dejpeg).

The effectiveness of sharing layers in TASNet. Table 3.4 studies the impor-

tance of task-agnostic layers in TASNet. In particular, we examine how the per-

formance and computation cost change after disabling layer sharing, the resulting

network from which is denoted as TSNet in the table. TASNet is observed to save

the computation costs of TSNet by more than 5 times, owing to its shared layers

that allow feature reuse and thus reducing the redundant computation for multiple

inferences. Regardless, TSNet greatly reduces the computation cost of CResMD,

suggesting the effectiveness of the task-specific layers that adaptively select impor-

tant channels. In stark contrast, conventional channel pruning approaches do not

change their architectures w.r.t. the task.

To further emphasize the effectiveness of TASNet, Figure 3.10 shows the com-

putation cost of TSNet and TASNet across various tasks with multiple numbers

(4) of inferences for each image of HVGA resolution (481×321). Task-specific layers

tend to require more channels for higher restoration levels, which translate to more
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Blur level: 1.0

Blur+Noise+Jpeg level: 0.5
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Blur level: 0.5, Noise level: 0.5, Comp. level: 0.5

Noise level: 0.3
Blur level: 1.0

Blur level: 1.0

Blur level: 0.5, Noise level: 0.5, Comp. level: 0.5

Noise level: 0.3

CResMD

TASNet

Absolute GT

Relative GT

(a) Artifact generation (b) Uneven modulation (c) Over-smoothing outputs

Figure 3.11: Ablation study for three image modulation problems in the blind setting. Models
trained by relative GT reduce (a) network artifact generation when deblurring images corrupted by
a mixture of degradation types and (b) uneven image modulation across deblurring levels. Further,
task-agnostic feature maps from TASNet prevent (c) over-smoothing outputs.

difficult restoration problems. Task-agnostic layers are computed only once for each

input image and hence require a substantially smaller amount of computation from

the second pass. Although TASNet requires a higher computation cost than TSNet

for the first inference, the overhead becomes negligible during multiple inferences.

Image restoration quality analysis. To study the effectiveness of the proposed

data sampling strategy and the TASNet architecture, Figure 3.11 presents the quan-

titative restoration performance of three major failure cases in CIR when the con-

trolled restoration levels differ from the actual types and levels of degradation in an

input image. CResMD trained with relative GT generates less artifacts and evenly

modulated outputs, validating the capability of the proposed data sampling to im-

prove image restoration quality. Also, TASNet achieves higher PSNR (over 3 dB com-

pared to CResMD) in denoising without over-smoothing (Figure 3.7 and 3.11(c)),

alluding to the effectiveness of the shared layers in providing better image quality.

3.5 Implementation Details

Supernetwork architecture. We use the network architecture of CResMD as

the supernetwork in the proposed search algorithm. Our supernetwork consists of
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A. Implementation details
Supernetwork architecture. We use the network architecture of CResMD as the supernetwork in the proposed search
algorithm. Our supernetwork consists of 32 enhanced residual blocks which have a ReLU activation layer between two
convolution layers with 64 filters of the kernel size 3×3. The first convolution layer with a stride of 2 downscales the input
images, and the last upsampling module consists of PixelShuffle layer, two convolution layers, and a ReLU activation layer.
Global skip connection adds the input image to the output of the upscaling module. A task vector scales the residual feature map
in the location of 32 local connections and 1 global connection by a 1×1 convolution layer with channel-wise multiplication.

TASNet architecture. The proposed algorithm determines the number of shared layers and selects the channels of each
shared or non-shared layer. Figure A(a) illustrates the TASNet architecture. For the shared layers (task-agnostic part), the
channels that are not selected at the end of training are pruned in the final model. On the other hand, the non-shared layers
(task-specific part) adaptively select their channels w.r.t the input task vector. During the training, the channels are virtually
selected by channel-wise multiplication to the binary vectors, as described in Figure A(b). Our channel selection modules
are located at all feature maps after the initial PixelShuffle layer of CResMD. The architecture controller consists of 3 fully-
connected layers with ReLU activation function, as described in Figure A(c). In the task-agnostic part of the supernetwork, the
residual scaling modules are removed to make the feature maps independent to specific tasks.
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(b) Channel selection in the n-th feature map

(a) Overview of TASNet architecture (c) Architecture controller in the n-th feature map

Figure A: TASNet architecture. (a) During searching for the number of shared early layers (task-agnostic part) in the supernetwork, za

determines where to prune in the task-agnostic part. By contrast, zs
m selects channels in the remaining layers (task-specific part) specialized

in the m-th task-vector tm (the control factor of restoration levels). We omit the notations for the feature map index n and the channel index
c for simplicity. (b) In the network training phase, channel-wise multiplication between a binary vector and a feature map operates as virtual
channel selection (CS) for the differentiable neural architecture search process. (c) Architecture controller consists of fully connected layers
and predicts task-specific channel importance from the task vector.

Hyperparameters for the search algorithm. TASNet sets the hyperparameters α, γ,M , λ1, and λ2 as 0.9, 0.9, 64, 5×e−11,
and 1× e−2, respectively. The mini-batch consists of 64 image patches with 64×64 resolution. The initial learning rate is
1× 10−4. TASNet is trained for 1× 106 iterations using Adam optimizer [45] with the learning rate decay of ×0.5 after the
first half of training.

Image quality measure. In this work, we utilize three widely used image quality measures, PSNR, SSIM, NIQE [44], and
BRISQUE [46] to evaluate the quality of images produced by models. PSNR and SSIM are full-reference measures in that
the restored images are compared with the original clean images. On the other hand, NIQE and BRISQUE are no-reference
evaluation metrics, in which the restored image quality is measured without referring to the original image. Images with higher

Figure 3.12: TASNet architecture. (a) During searching for the number of shared early layers (task-
agnostic part) in the supernetwork, za determines where to prune in the task-agnostic part. By
contrast, zs

m selects channels in the remaining layers (task-specific part) specialized in the m-th
task-vector tm (the control factor of restoration levels). We omit the notations for the feature map
index n and the channel index c for simplicity. (b) In the network training phase, channel-wise
multiplication between a binary vector and a feature map operates as virtual channel selection (CS)
for the differentiable neural architecture search process. (c) Architecture controller consists of fully
connected layers and predicts task-specific channel importance from the task vector.

32 enhanced residual blocks which have a ReLU activation layer between two con-

volution layers with 64 filters of the kernel size 3×3. The first convolution layer with

a stride of 2 downscales the input images, and the last upsampling module consists

of PixelShuffle layer, two convolution layers, and a ReLU activation layer. Global

skip connection adds the input image to the output of the upscaling module. A task

vector scales the residual feature map in the location of 32 local connections and 1

global connection by a 1×1 convolution layer with channel-wise multiplication.

TASNet architecture. The proposed algorithm determines the number of shared

layers and selects the channels of each shared or non-shared layer. Figure 3.12(a)

illustrates the TASNet architecture. For the shared layers (task-agnostic part), the

channels that are not selected at the end of training are pruned in the final model.

On the other hand, the non-shared layers (task-specific part) adaptively select their

channels w.r.t the input task vector. During the training, the channels are virtually

selected by channel-wise multiplication to the binary vectors, as described in Fig-
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ure 3.12(b). Our channel selection modules are located at all feature maps after the

initial PixelShuffle layer of CResMD. The architecture controller consists of 3 fully-

connected layers with ReLU activation function, as described in Figure 3.12(c). In

the task-agnostic part of the supernetwork, the residual scaling modules are removed

to make the feature maps independent to specific tasks.

Hyperparameters for the search algorithm. TASNet sets the hyperparame-

ters α, γ, M , λ1, and λ2 as 0.9, 0.9, 64, 5 × e−11, and 1 × e−2, respectively. The

mini-batch consists of 64 image patches with 64×64 resolution. The initial learning

rate is 1× 10−4. TASNet is trained for 1× 106 iterations using Adam optimizer [64]

with the learning rate decay of ×0.5 after the first half of training.

Image quality measure. In this work, we utilize three widely used image quality

measures, PSNR, SSIM, NIQE [7], and BRISQUE [86] to evaluate the quality of

images produced by models. PSNR and SSIM are full-reference measures in that the

restored images are compared with the original clean images. On the other hand,

NIQE and BRISQUE are no-reference evaluation metrics, in which the restored

image quality is measured without referring to the original image. Images with higher

PSNR, higher SSIM, lower NIQE, and lower BRISQUE scores are considered to have

better quality. However, measuring image quality during adjusting restoration levels

has not been studied thoroughly. Thus, we visualize extensive qualitative results in

Section 3.4.3 and 3.6.

Degradation in non-blind test images. For fair comparisons in a non-blind

setting, we construct CBSD68 with the combinations of three levels and three types

of degradation; Gaussian blur with r ∈ {0, 2, 4}, Gaussian noise with σ ∈ {0, 25, 50},
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Table 3.5: Ablation study of hyperparameters λ1 and λ2 on CBSD68.

Ex.# λ1 λ2 #Shared layer PSNR
FLOPs

Single inference Multiple inferences

1○ 1× 10−3 18 % 25.67 dB 35.2 G 23.1 G
2○ 5× 10−11 1× 10−2 62 % 25.75 dB 52.9 G 7.5 G
3○ 1× 10−1 99 % 25.48 dB 125.5 G 4.8 G

4○ 5× 10−12 99 % 25.46 dB 154.6 G 6.0 G
5○ 5× 10−11 1× 10−2 62 % 25.75 dB 52.9 G 7.5 G
6○ 5× 10−10 16 % 25.50 dB 15.4 G 1.9 G

and JPEG compression with q ∈ {None, 60, 10}. Among the 27 combinations of

degradation, we omit (r, σ, q) = (0, 0, None) which generates identical images to the

original. PSNR, SSIM, NIQE, and BRISQUE in all tables of this paper report the

average scores on CBSD68 with the 26 combinations of degradation.

Computation cost metric. We measure the computation costs of the networks

in FLOPs and latency. FLOPs is a classical device-agnostic metric and exponentially

increases by image resolution. Since latency is device-dependent, we measure latency

on CPU with single-core (CPU latency (single)), CPU with multi-core (CPU latency

(multi)), and GPU (GPU latency). We use Intel i7-5960X CPU which has 16 cores

and GeForce RTX 2080 Ti GPU. The computation costs reported in this paper

are average scores to generate images with 27 restoration levels unless otherwise

mentioned, where td ∈ {0, 0.5, 1} for t ∈ R3.

3.6 Additional Experiments

Balancing the hyperparameters. Table 3.5 presents the ablation study of hy-

perparameters λ1 and λ2 which balance the trade-off between the network compu-

tation cost and the number of shared layers while minimizing Eq. (3.8) of the main

paper. The models trained with small λ1 and large λ2 have large portions of shared
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Figure 3.13: Comparisons between NERDS+D and TASNet.

layers, and thus they are efficient in generating multiple (27) images ( 2○ vs. 3○ and

5○ vs. 4○). In contrast, the models trained with the opposite balance between λ1

and λ2 are efficient for a single inference ( 2○ vs. 1○ and 5○ vs. 6○).

Comparisons to NERDS+D. Chapter 2 presents a camera denoiser (NERDS+D)

for Poisson-Gaussian noise while TASNet is able to remove Gaussian noise, Gaussian

blur, and JPEG compression artifact. Figure 3.13 visualizes two examples for com-

parisons between NERDS+D and TASNet on real noisy images from the SIDD [2]

validation. In the first row, NERDS+D achieves a high PSNR score of which the

result is closely similar to the reference image (GT). Instead, TASNet-Denoising

suffers low PSNR scores due to the inaccurate noise model (Gaussian). However,

some outputs from TASNet-Denoising have better BRISQUE scores than the out-

put from NERDS+D, where BRISQUE measures image naturalness without refer-

ence images. The second row demonstrates another example of the joint restoration

of NERDS+D and TASNet-Deblurring. Despite the input image being assumed to
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contain only noise, the alphabet ‘A’ in GT looks blurry. While NERDS+D and

TASNet-Denoising remove noise with better scores in different image quality mea-

sures, NERDS+D&TASNet-Deblurring outputs sharper images than GT. TASNet

allows users to choose the preferred output for their preferences in such cases.

Extra qualitative results. We present more qualitative comparisons between

CResMD and TASNet in the blind setting where users have to generate diverse

restored images by controlling the restoration levels (task vectors) for unknown

degradation of an input image. Recall that CResMD incurs three problems in this

scenario: artifacts in the generated images, over-smoothed outputs, and uneven mod-

ulation across the task vectors. Figure 3.14 and 3.15 show that CResMD produces

output images with undesired and visually unpleasing artifacts. Figure 3.16 presents

less artifacts in the outputs of CResMD, but the outputs are over-smoothed com-

pared to the outputs of TASNet even for the true task vector. Figure 3.17 also

shows over-smoothed outputs for CResMD when restoring the input images with

high restoration levels for denoising and dejpeg. By contrast, TASNet maintains the

sharp textural details of the input image and removes visually unpleasing noise and

compression artifacts of the input. Figure 3.18 exemplifies the problem of uneven

modulation for CResMD. While CResMD produces images with negligible changes

for lower values of deblurring level, it exhibits drastic changes for higher levels. In

contrast to CResMD, TASNet demonstrates more even modulation across the differ-

ent task vectors and generates smoothly-varying images. Figure 3.19, 3.20, and 3.21

presents modulation scenarios for a real-word image with unknown degradation, in

which modulations with various task vectors are inevitable to find the visually pleas-

ing images. These results demonstrate that CResMD sometimes generates severely
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destructive artifacts (especially in Figure 3.19) and overly-smooth outputs (espe-

cially in Figure 3.20) during the modulation process whereas TASNet generates

plausible images for various task vectors.

3.7 Conclusion

We propose a novel neural architecture search algorithm to find efficient networks

for controllable image restoration (or image modulation). In particular, the proposed

algorithm searches for a network with task-agnostic and task-specific layers, referred

to as TASNet, by determining the number of layers and channels to share across

tasks and adaptively selecting channels in non-shared feature maps. We formulate

all learning objectives in a differentiable manner and perform the architecture search

in an end-to-end manner. The shared layers facilitate feature reuse that pushes the

network efficiency further for controllable image restoration that requires a several

number of inferences. Together with the proposed new data sampling strategy, not

only does TASNet reduce the network computation costs of the state-of-the-art

network greatly but also provides the better image quality.
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Input Task vector CResMD TASNet (Ours)

(0.1,0,0)

(0.2,0,0)

Synthetic

(0.3,0,0)
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=
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(0.5,0,0)

Figure B: Deblur modulation examples to the image with blur, noise, and jpeg compression. Our TASNet generates diverse images
with respect to the given restoration levels (task vectors). TASNet generates less auxiliary visual artifacts. The values of task vector denote
restoration levels of (deblur, denoise, dejpeg), respectively.

Figure 3.14: Deblur modulation examples to the image with blur, noise, and JPEG compression.
Our TASNet generates diverse images with respect to the given restoration levels (task vectors).
TASNet generates less auxiliary visual artifacts. The values of task vector denote restoration levels
of (deblur, denoise, dejpeg), respectively.
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Input Task vector CResMD TASNet (Ours)
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Figure C: Deblur and dejpeg modulation examples to the image with blur, noise, and jpeg compression. Our TASNet generates diverse
images with respect to the given restoration levels (task vectors). TASNet generates less auxiliary visual artifacts. The values of task vector
denote restoration levels of (deblur, denoise, dejpeg), respectively.

Figure 3.15: Deblur and dejpeg modulation examples to the image with blur, noise, and JPEG
compression. Our TASNet generates diverse images with respect to the given restoration levels
(task vectors). TASNet generates less auxiliary visual artifacts. The values of task vector denote
restoration levels of (deblur, denoise, dejpeg), respectively.
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Input Task vector CResMD TASNet (Ours)

(0.1,0.1,0.1)
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Figure D: Deblur, denoise, and dejpeg modulation examples to the image with blur, noise, and jpeg compression. Our TASNet generates
diverse images with respect to the given restoration levels (task vectors). TASNet generates less auxiliary visual artifacts and over-smoothed
textures. The values of task vector denote restoration levels of (deblur, denoise, dejpeg), respectively.

Figure 3.16: Deblur, denoise, and dejpeg modulation examples to the image with blur, noise, and
JPEG compression. Our TASNet generates diverse images with respect to the given restoration
levels (task vectors). TASNet generates less auxiliary visual artifacts and over-smoothed textures.
The values of task vector denote restoration levels of (deblur, denoise, dejpeg), respectively.
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Figure E: Denoise and dejpeg modulation examples to the image with noise and jpeg compression. Our TASNet generates less
over-smoothed textures. The values of task vector denote restoration levels of (deblur, denoise, dejpeg), respectively.
Figure 3.17: Denoise and dejpeg modulation examples to the image with noise and JPEG com-
pression. Our TASNet generates less over-smoothed textures. The values of task vector denote
restoration levels of (deblur, denoise, dejpeg), respectively.
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Input Task vector CResMD TASNet (Ours)
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Figure F: Deblur modulation examples to the image with blur. Our TASNet generates evenly modulated images with respect to the given
restoration level changes. The values of task vector denote restoration levels of (deblur, denoise, dejpeg), respectively.
Figure 3.18: Our TASNet generates evenly modulated images with respect to the given restoration
level changes. The values of task vector denote restoration levels of (deblur, denoise, dejpeg), re-
spectively.
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Figure G: Deblur modulation examples to the real world image on the Internet. Our TASNet generates diverse images with respect to
the given restoration levels (task vectors). TASNet generates less auxiliary visual artifacts. The values of task vector denote restoration levels
of (deblur, denoise, dejpeg), respectively.
Figure 3.19: Deblur modulation examples to the real world image on the Internet. Our TASNet
generates diverse images with respect to the given restoration levels (task vectors). TASNet gen-
erates less auxiliary visual artifacts. The values of task vector denote restoration levels of (deblur,
denoise, dejpeg), respectively.



76 CHAPTER 3. ADAPTIVE NEURAL ARCHITECTURE SEARCH
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Figure H: Denoise modulation examples to the real world image on the Internet. Our TASNet generates diverse images with respect to
the given restoration levels (task vectors). TASNet generates less over-smoothed textures. The values of task vector denote restoration levels
of (deblur, denoise, dejpeg), respectively.
Figure 3.20: Denoise modulation examples to the real world image on the Internet. Our TASNet
generates diverse images with respect to the given restoration levels (task vectors). TASNet gen-
erates less over-smoothed textures. The values of task vector denote restoration levels of (deblur,
denoise, dejpeg), respectively.
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Figure I: Deblur, denoise, and dejpeg modulation examples to the real world image on the Internet. Our TASNet generates diverse
images with respect to the given restoration levels (task vectors). TASNet generates less auxiliary visual artifacts and over-smoothed textures.
The values of task vector denote restoration levels of (deblur, denoise, dejpeg), respectively.
Figure 3.21: Deblur, denoise, and dejpeg modulation examples to the real world image on the
Internet. Our TASNet generates diverse images with respect to the given restoration levels (task
vectors). TASNet generates less auxiliary visual artifacts and over-smoothed textures. The values
of task vector denote restoration levels of (deblur, denoise, dejpeg), respectively.
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Chapter 4

Adaptive ISP Parameter Estimation

for Controllable Image Enhancement

4.1 Introduction

Most people enjoy taking pictures of precious moments with smartphones. How-

ever, turning a flat-looking mobile photo into a stunning image requires skill and

time. Even adjusting contrast and brightness is a challenge given that it depends on

the image contents. To leverage supervised machine learning for this problem, By-

chkovsky et al. provided a large-scale, high-quality dataset [15]. They hired trained

photographers to retouch each photo manually. The photographers used professional

image editing tools to achieve attractive expressions, including tone, color, contrast,

and brightness. The result is a collection of 5,000 low-quality (LQ) images with high-

quality (HQ) versions retouched by photographers. On this dataset, image enhance-

ment aims to convert LQ images into HQ images (LQ2HQ image transformation).

Many machine learning approaches for image enhancement have focused on learn-

ing retouching preferences. The works in [24, 104, 88, 105, 75] learned the prefer-
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Figure 4.1: Overview of the Image Signal Processor (ISP) for image enhancement. (a) Conventional
ISPs have predetermined functions with fixed parameters, generating a single output for an image
input. (b) Our ContRollable ISP (CRISP) produces diverse styles of high-quality images by adjust-
ing the parameters of the ISP (ϕ). CRISP represents high-quality image styles into low-dimensional
codes (style representation) through an autoencoder and decodes a selected code (s) to the ISP
parameters using a neural network (g).

ences of a particular photographer. They trained neural networks with the images

retouched by a particular photographer to estimate the photographer’s adjustments

for arbitrary images. More works [56, 18, 61, 99] learned the retouching preferences

that can change on the basis of each user. The user selects preferred images from the

dataset, and the neural networks aim to transform a test image into a style similar to

the selected images. However, the concept of retouching preference learning confuses

machines about what to learn because the retouching preferences of users can vary

depending on many factors; the preferred styles change every so often depending on

the user’s mood, environment, or personal experience.

Recently, a few works have alleviated the preference-learning problem by provid-

ing multiple outputs. Zero-DCE [40] adjusts the brightness of low-light images with

multiple levels. CSRNet [44] generates intermediate styles between two different im-

age styles. Users can select the desired image from the multiple outputs or adjust

some factors to explore the style of the output images. However, all these methods

are limited in generating diverse expressions or styles that can satisfy users.

Another issue of deep-learning-based image enhancement methods is the model

efficiency. When a neural network performs pixel-to-pixel mapping [24] or pixel-wise

transformation from input to output [36, 116, 104], it requires many computations
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(FLOPs) for high-resolution images. Thus, instead of using original input images,

existing methods often utilize downscaled images with predefined efficient functions.

For instance, reinforcement-learning-based methods [91, 48, 66] take mapping curves

for global enhancement [15, 115], and 3DLUT [125] utilizes trilinear interpolation

with 3D look-up tables. The neural networks adapt the mapping curves or 3D look-

up tables to the input downscaled image. However, these works still have limitations

in real-world applications. Reinforcement learning-based methods sacrifice efficiency

by interactively enhancing the input images. 3DLUT also uses many parameters for

3D look-up tables, and efficient trilinear interpolation must be realized with custom

implementation for each computing device.

To address the limitations of existing methods on style diversity and model

efficiency, we introduce a new method on the basis of the Image Signal Processor

(ISP). Our method is motivated by camera image pipeline [95], where some functions

in ISPs are specialized in adjusting image expressions, i.e., enhancement, such as

color correction, tone mapping, and gamma correction. ISPs have been widely used in

real-world digital cameras or smartphones given that they have a few parameters and

computations. Camera manufacturers carefully define the functions of ISPs and tune

their parameters based on the principles of an image sensor and human perception

of colors. Once manually tuned, the ISP is fixed and generates a single style of

output for a given input image (Fig. 4.1(a)). As a result, conventional ISPs suffer

from limited styles of output images.

Thus, we propose a ContRollable Image Signal Processor (CRISP) that users

can easily control to generate various HQ image styles for a given image while

leveraging the practical benefits of ISPs. CRISP employs an efficient ISP backbone

for global image enhancement (style generation) and predicts its desired parameters
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via a neural network (Fig. 4.1(b)). Users can select the output styles from the style

representation (style vectors), which an autoencoder learns into a low-dimensional

latent code for easy and fast adjustments. The ISP comprises differentiable functions

so that the autoencoder can still be trained end-to-end through gradient-descent-

based optimization. In testing, for style adjustment, users can find the desired style

representation in several ways, including 1) a style predicted from downscaled LQ

images, as done in previous works, 2) a style frequently used in the training datasets,

and 3) a style determined by user interaction. We do not focus on a specific scenario

for style adjustments but on how easy it is to generate diverse image styles. Thus,

we evaluate CRISP with several practical scenarios for real-world applications.

We present comprehensive experiments on MIT-Adobe FiveK [15] to show the

diversity and controllability of output styles. We show that: 1) CRISP generates

diverse image styles for users that are learned from different photographers, whereas

the counterpart conventional fixed ISP often fails to generate the desired results.

2) The latent style vector in CRISP encodes insensitive and distinct trends in each

dimension for ISP parameters and output image styles. 3) CRISP achieves better

image quality with less computational costs and parameters than previous works.

Our contributions are summarized as follows,

• To the best of our knowledge, we are the first to learn a controllable ISP

using an autoencoder for image enhancement. More importantly, our proposed

model (CRISP) easily produces various high-quality image styles by adjusting

the parameters of the ISP.

• CRISP incorporates a highly efficient plug-and-play ISP for practical applica-

tions, comprising 19 parameters and requiring less than 100 FLOPs per pixel.
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• CRISP easily controls output image styles with several practical scenarios for

style adjustments by encoding the styles into low-dimensional latent codes.

• CRISP outperforms previous works for image enhancement in image quality

(MOS, PSNR) and model efficiency (FLOPs, parameters).

4.2 Related Works

4.2.1 Image Enhancement

Image enhancement has a long and rich research history. Professional image editing

tools (e.g., Photoshop) offer a wide range of control and flexibility to adjust image

expressions, such as tone, color, contrast, and brightness, but they require skill and

time. Research in this area aims to automate the adjustment of image expressions.

We categorize image enhancement algorithms on the basis of the degree of au-

tomation. The first category includes early rule-based approaches for one-size-fits-all

enhancement. These approaches produce a single result for everyone to adjust image

contrast using histogram equalization [92], gamma correction [49], or retinex algo-

rithms [70]. However, they often generate unacceptable results given that the style

adjustment must consider image contents.

Thereafter, MIT-Adobe FiveK [15] proposed a large-scale dataset for image en-

hancement. In the dataset, five human experts (or photographers) retouched flat-

looking (i.e., low-quality) images into the images with different stunning expres-

sions (i.e., high-quality) using a professional image editing tool (Lightroom). This

dataset not only allows data-driven approaches to consider image contents for en-

hancement but also derives the second category, learning the retouching prefer-

ences of a particular expert. Early approaches [51, 15, 115] and deep-learning-based
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approaches [24, 88, 104, 58, 60] train their models using the LQ-HQ image pairs

from a particular expert and estimate the images retouched by the expert. Recent

works [75, 105, 44] focused on improving the efficiency of neural networks due to

their high computational costs. However, given that they produce the results of a

particular expert’s preference, they do not satisfy the needs of general users.

Third, the line of works [56, 55, 46, 18, 61, 99] aim to provide personalized

enhancement. They allow users to select preferred images first and then retouch

the input image with the styles similar to those of the selected ones. For instance,

PieNet [61] identifies the user preferences with 512 parameters which are generated

by 20 images selected in 500 images. Similarly, StarEnhancer [99] fine-tunes output

styles on the basis of the selected images. Recently, Google proposed Real Tone

which more accurately highlights personalized skin tones on smartphones. However,

satisfying users with a single image remains a challenge.

The fourth and last category allows users to adjust image outputs interactively.

Although works in this area also reduce the time and effort of using image editing

tools, they have attracted less attention. Lischinski et al. [77] presented a local tone

adjustment for the regions selected by users. Xiao et al. [110] proposed histogram-

based algorithms to control brightness and contrast. Zero-DCE [40] estimates light-

enhancement curves that allow users to adjust the brightness of low-light images.

LTMNet [133] enables editing tone curves for local image enhancement. However,

these approaches cover only a fraction of image expressions.

Recently, CSRNet [44] presented a deep network for the second category and an

image interpolation method for user interaction. CSRNet generates an image output

that estimates the style of an expert and then produces intermediate styles between

the input and output images using image interpolation. Users can adjust the interpo-
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lation coefficient to obtain the desired results. However, the interpolated images have

limited expression diversity. In contrast, the proposed algorithm (CRISP) generates

high-quality (HQ) images with various styles easily and efficiently.

4.3 Proposed Method

4.3.1 Overview

We propose a novel algorithm, CRISP (ContRollable ISP) that aims to generate

multiple high-quality (HQ) images with various attractive expressions (styles) for a

given low-quality (LQ) input image. We learn CRISP using an autoencoder, includ-

ing an ISP as a decoder as visualized in Fig. 4.2. The autoencoder represents the HQ

image style in a low dimension (3 in this chapter), allowing fast and easy exploration

of the style space. During testing, various scenarios are possible for users to provide

the latent code (or style vector) of the style they want without using the encoder.

For instance, users can adjust the style vectors interactively or use a predetermined

set of style vectors.

Formally, our CRISP (denoted by a function CRISP) is a style-autoencoder

with a style-adaptive ISP (denoted by a function ISP) as a controllable decoder

with parameters ϕ. The encoder (f) encodes the HQ image styles in aD-dimensional

latent code using the LQ image (x) and the paired HQ image (x̂) as inputs. The

style decoder (g) predicts the parameters (ϕ) of the ISP from the latent code. The

ISP predicts the estimated HQ image (x̃) from the LQ image (x) as follows,

x̃ = CRISP(x;ϕ) =


ISP(x; g(f(x, x̂)) if training

ISP(x; g(s)) if testing,

(4.1)
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Figure 4.2: Proposed learning framework for CRISP. CRISP learns the representation of HQ image
styles through an autoencoder. Our encoder (f) accepts concatenated LQ/HQ images as input and
represents the styles in latent codes named style vectors (s). Our decoder consists of two parts: the
style decoder (g) and the style-adaptive ISP (ISP). g produces the ISP parameters (ϕ) from s and
ISP with ϕ estimates the HQ image from the paired LQ image. Eq. (4.2)∼(4.6) are differentiable
functions that enable end-to-end training by gradient-descent methods. Conv is a convolution layer,
where (·,·,·) denote the number of filters, the kernel size, and the stride size, respectively. Avg pooling
and Max pooling reduce the feature resolution to 1×1 and concatenate both output features. FC (·)
is a fully connected layer, where (·) is the number of filters denoted at the top of the boxes.

where the style vector s ∈ RD denotes the latent codes (or style representation),

which determines the styles of output images. The style vector (s) in Eq. (4.1)(if

testing) enables multiple style generation and can easily obtain the desired results

through k-means clustering or greedy search algorithms (Fig. 4.12).

4.3.2 Learning framework

Conventional autoencoders, such as VAE [65], encode the image input into a latent

code by reconstructing the input from the code. Here, we propose a style-autoencoder

for image style encoding by removing image content information in the autoencoder

framework (Eq. (4.1)(if training)). The style-autoencoder uses an HQ image as input

and reconstructs it similarly to the VAE, but the encoder and the decoder also take

the paired LQ image as input. Our decoder comprises two steps, estimating the

parameters of ISP and transforming LQ images to HQ images using the ISP.

ISP is specialized in image expression and cannot change image contents. Thus,

the style-autoencoder is forced to encode image styles only.
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Fig. 4.2 presents the architecture of the style-autoencoder. A resnet-style ar-

chitecture is used for the encoder (f), comprising 12 convolution layers with 64

channels and concatenated LQ and HQ images as input. The style vector (s) is the

D-dimensional non-negative vector of which values determine the styles of final out-

put images. The style decoder (g) comprises 5 fully connected layers with 64 channels

that predict the residuals to the initial ISP parameters (ϕinit). The residual learning

enables stable training by estimating the parameters of ISP within effective ranges

to adjust image expressions. The style decoder (g) is computationally efficient given

that it has a spatial resolution of 1×1 and can be computed independently to the

test image. The next section describes the functions constituting ISP.

4.3.3 ISP Functions

Our ISP module performs a global style adjustment with digital gain, white bal-

ance, color correction, gamma correction, and tone mapping (see Fig. 4.2 (ISP)).

The style-adaptive parameters (ϕ) determine an exact function of image transfor-

mation applied to all pixels of an LQ image. The constraint of global adjustment has

the advantage of preventing the image content from being distorted by the trans-

formation. The functions of ISP are differentiable for end-to-end training. This

section describes each function of our ISP module with exact formulations and

output styles (or expressions).

4.3.3.1 Digital Gain

Digital cameras commonly apply a global scaling to all pixel values for intensity

adjustment, where the exposure time determines the scaling factor. Similarly, pho-

tographers brighten or darken an image for different styles. We set the global scaling
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factor ϕdg as an ISP parameter,

gain(x;ϕ) = ϕdg · x, (4.2)

where x ∈ [0, 1] is a normalized pixel value of each red, green, and blue channel for

an input image. The range of ϕdg is [0.85, 2.17] in test images.

4.3.3.2 White Balance

The illumination color changes the color of the objects captured by a camera. White

balance conventionally aims to visualize the ‘true’ color of an object or adjust it to

different light conditions. Conversely, photographers often change the light condi-

tions to capture visually pleasing colors. We reinterpret white balance as illumination

color control by per-channel scaling functions for red and blue colors,

WB



xr

xg

xb

 ;ϕ

 =


ϕr · xr

xg

ϕb · xb

 , (4.3)

where xr, xg, and xb represent the pixel values of red, green, and blue, respectively,

of which ranges are [0,1]. In the test dataset, ϕr has a smaller variation of [0.73,

1.07] than ϕb of [0.80, 2.41]. This result is reasonable since the human visual system

is more sensitive to red than blue.

4.3.3.3 Color Correction

In general, the color filters of an image sensor have their own RGB spectra. Using

a color correction matrix (CCM), an ISP converts the ‘camera space’ RGB color to
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Figure 4.3: Example results of different CCMs in Eq. (4.4).

the standard sRGB color. We assume that the photographer’s adjustment includes

the color space conversion. We use the CCM which consists of 3×4 ISP parameters:

CCM



xr

xg

xb

 ;ϕ

 =


ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33



xr

xg

xb

+


ϕo1

ϕo2

ϕo3

 , (4.4)

where ϕoi denotes the color offset for the i-th row in the matrix. We follow a general

constraint of CCM as
∑

j ϕij = 1 where i ∈ {1, 2, 3}. Fig. 4.3 presents the color

space conversion by the CCM used for the test dataset.

4.3.3.4 Gamma Correction

Human eyes perceive the gradations of color in the dark area better. Gamma cor-

rection is a function that displays the low-intensity pixels with more bits. While a

conventional ISP has fixed parameters, we adapt the parameters for each style in

the following gamma correction function:

Γ(x;ϕ) = max(x, ϵ)ϕγ , (4.5)
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(a) Gamma correction (b) Tone mapping

Figure 4.4: Example results of (a) gamma correction curves in Eq. (4.5), and (b) tone mapping
curves in Eq. (4.6).

where ϵ = 10−8 to prevent negative values in output pixels for the stable training

and x ∈ [0, 1] is a pixel value of each red, green, and blue channel for an input

image. Fig. 4.4(a) displays the gamma curves in the test dataset. Most values of ϕγ

are smaller than 1 to increase low-intensity values.

4.3.3.5 Tone Mapping

When visualizing high dynamic range images (or high-bit images) in 24-bit RGB

format, tone mapping curves often adopt S-shape that allocates more bits for mid-

intensity values. Similar to gamma correction, we adopt a simple function that can

shape S-curves with parameter tuning,

T (x;ϕ) = ϕs ·max(x, ϵ)ϕp1 − (ϕs − 1) ·max(x, ϵ)ϕp2 , (4.6)

where ϵ = 10−8 and x is the pixel value of each red, green, and blue channel for

an input image, scaled to [0,1] for a general expression for various bit-widths. ϕs,

ϕp1, and ϕp2 determine the shapes of S-curves, passing through (0,0) and (1,1)

regardless of the parameter values. Fig. 4.4(b) presents the examples of our tone

mapping curves with various S-shapes.
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4.3.3.6 Parameter Initialization

We initialize the parameters of ISP, ϕinit to avoid indirect solutions of image trans-

formation (e.g., digital gain with a negative value). Specifically, ϕdg is set to 1.2, the

parameters of WB and CCM are set to ensure the identity mapping that generates

the same output image as the input, ϕγ is set to 1
2.2 , and ϕs, ϕp1, and ϕp2 are set

to 3, 2 and 3, respectively. The style decoder (g) learns the residual parameters of

ISP, denoted as ϕ− ϕinit.

4.4 Experiments

4.4.1 Dataset

We train and evaluate our method on the MIT-Adobe FiveK dataset [15] that con-

sists of 5,000 camera raw images and paired sRGB images retouched by five pro-

fessional photographers, denoted as Expert-A, Expert-B, Expert-C, Expert-D, and

Expert-E. We use images retouched by Expert-C unless otherwise specified. State-

of-the-art methods on this dataset commonly downscale the raw and sRGB images

and preprocess the raw images to low-quality (LQ) sRGB images. For fair compar-

isons, we follow two settings for downscaling and preprocessing in CSRNet [44] and

3DLUT [125] by using Lightroom1 and downloading the released dataset2, respec-

tively. Specifically, CSRNet downscales images to 500 pixels for the long edge, and

3DLUT downscales the images to 480 pixels for the short edge. The numbers of test

images are 500 and 498 for CSRNet and 3DLUT. We use the remaining for training.

1https://github.com/yuanming-hu/exposure/wiki/Preparing-data-for-the-MITAdobe-FiveK-
Dataset-with-Lightroom

2https://github.com/HuiZeng/Image-Adaptive-3DLUT
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4.4.2 Implementation Details

Training. We set the latent style code s as a non-negative 3D vector (D = 3).

We adopt an MSE loss between the outputs and the ground truth HQ images to

train the style-autoencoder with Adam optimizer [64]. We randomly crop images to

200×200 pixels and flip and rotate the patches for augmentation. We set the batch

size to 16 and the initial learning rate to 1 × 10−4. During 1.6 × 105 iterations, we

halve the learning rate for every quarter of training.

Testing. We measure the quality of enhanced images and the model efficiency. We

assess the image quality with non-reference-based measures (qualitative results and

MOS) and reference-based measures (PSNR and SSIM). We use images retouched

by Expert-C as the reference images for PSNR and SSIM unless otherwise specified.

We compare model parameters, floating-point operations (FLOPs), and the number

of inferences to find final outputs for model efficiency. The number of inferences

indicates how easily and fast users can obtain the results they prefer by an algorithm.

We select the style vectors with multiple scenarios using random sampling, an image-

adaptive encoder, k-means clustering, and greedy search algorithms.

4.4.3 Models for Comparisons

We compare the enhanced results of our method (CRISP) with 9 state-of-the-art

(SotA) methods including DAR [91], White-Box [48], Pix2Pix [53], HDRNet [36],

DPED [52], DeepLPF [88], 3DLUT [125], SA3DLUT [105], and CSRNet [44]. For

a given LQ image, most existing methods produce a single enhanced image, while

CRISP can generate multiple output images with different styles. The ’Expert (A-

E)’ represents HQ images enhanced by 5 human experts in the MIT-Adobe FiveK
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dataset [15]. We summarize the main characteristics and difference between our

CRISP and the most recent models, CSRNet, 3DLUT, and SA3DLUT as follows:

• CSRNet [44] adopts fully connected layers for image processing and convolu-

tion layers for feature modulation. The output of convolution layers transforms

the features of fully connected layers adaptively to the image contents.

• 3DLUT [125] uses image-adaptive trilinear interpolation for image process-

ing. Trilinear interpolation allows FLOPs-efficient inference but requires a rel-

atively large number of parameters for lookup tables.

• SA3DLUT [105] adopts spatially adaptive 3DLUT that requires more FLOPs

and parameters for spatially varying image adjustment.

• CRISP (Ours) uses an ISP for image processing and fully connected layers

to adjust the parameters of the ISP.

4.4.4 Results of Multiple Style Generation

Visual comparisons. Our CRISP generates diverse realistic styles with natural

and vivid colors like the human experts (Expert (A-E)) as visualized in Fig. 4.5. We

randomly select the output images of CRISP on each LQ image for style diversity.

The LQ images from the MIT-Adobe FiveK dataset generally have low pixel values to

avoid saturation. DAR, White-Box, and HDRNet brighten the input LQ image but

change its natural color. Pix2Pix generates a natural-colored image but it contains

checkerboard artifacts. DPED, DeepLPF, 3DLUT, and SA3DLUT output realistic

images but their colors are generally dark. CSRNet generates the output images (the

right-most images in Fig. 4.5) and the intermediate styles between the LQ image and

the output. CSRNet often produces too bright images, and the intermediate results
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LQ image DAR [91] White-Box [48] Pix2Pix [53] HDRNet [36]

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− CSRNet [44] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− CRISP (Ours) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Expert (A-E) [15] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

LQ image DPED [52] DeepLPF [88] 3DLUT [125] SA3DLUT [105]

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− CSRNet [44] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− CRISP (Ours) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Expert (A-E) [15] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 4.5: Qualitative style comparison with SotA models. We visualize five enhanced images with
different styles for our method (CRISP), CSRNet, and the five Experts (A-E) [15]. The single
enhanced image for each LQ image is visualized for the other methods.
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Figure 4.6: User study results of mean opinion score (MOS) on MIT-Adobe FiveK. For each method
1200 samples (40 images × 30 participants) were assessed. MOS scores (red blocks) are along the
right axis and the numbers of votes for each rating (the other color blocks) are along the left axis. (a)
Participants rate the image quality of a single enhanced output for each LQ image. (b) Participants
rate the image quality of the output they prefer the most out of five styles for each LQ image.
CRISP in (b) outperforms all other methods including Expert (A-E) (3.93 vs. 3.88).

adjust image intensity where style diversity is limited. Fig. 4.15 and 4.16 provide

more empirical comparisons.

User study. To quantify the effectiveness of multiple style generation, we con-

ducted two types of user study with 30 participants and 40 LQ images. The par-

ticipants are asked to rate the image quality from 1 (bad quality) to 5 (excellent

quality) to the enhanced images. In the first type of user study, called single-style

MOS (Mean Opinion Score), the participants rate the quality of the single-style

outputs from 3DLUT, CSRNet, CRISP, and an Expert. We regard a style as the

outputs of 3DLUT and CSRNet, a randomly selected result of CRISP, and the image

of Expert-C. In the second type of user study, called multiple-style MOS, the partic-

ipants first select the most preferred image among five different styles from CSRNet,

CRISP, and the Expert (A-E) and then rate the quality of the selected images. We

use intermediate images between the input and the output for CSRNet, randomly

selected images for CRISP, and images enhanced by five experts for Expert (A-E)

(see Fig. 4.5) as the five styles. Fig. 4.6 visualizes the results of the user studies. In
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Table 4.1: Reference-based image quality (PSNR) comparisons for multiple style generation on
MIT-Adobe FiveK. Each row presents PSNR (dB) with the images retouched by each expert as
the reference images. We find the most similar output of each model to the reference image. Each
column presents the model performances with specified training data. CSRNet can train the model
with a single HQ image (e.g., the image retouched by Expert-C) for an LQ image. CRISP allows
model training with multiple HQ images for an LQ image so that Expert (A-E) for training data
denotes the model training using the images retouched by five experts for an LQ image.

Method CSRNet [44] CRISP (Ours)

Training data Expert-C Expert-C Expert (A-E)

Expert-A 24.15 28.29 29.98
Expert-B 24.95 30.60 32.06
Expert-C 24.98 29.62 29.11
Expert-D 22.73 29.28 30.73
Expert-E 21.74 29.69 29.65

single-style MOS, CSRNet has the lowest score since it often generates too bright

images. All methods including Expert-C often fail to satisfy users as rating scores

of 1 and 2. By contrast, multiple-style MOS results of CSRNet, CRISP, and Expert

(A-E) outperform their scores for single-style MOS by a large margin. CRISP has

the most significant number of votes for 5 (excellent quality) and the highest MOS

compared to all other methods, including Expert (A-E). Fig. 4.15 and 4.16 provide

more images for user studies.

Reference-based image quality comparisons. Each expert retouched an im-

age in different styles (see Fig. 4.7(a)). To measure the ability to generate diverse

styles, we choose the most similar output to each expert (or each reference im-

age) for comparison. While CSRNet changes only image intensity for different styles

(Fig. 4.7(b)), CRISP adjusts diverse image expressions such as colors, tones, con-

trast, and brightness, to match the reference images (Fig. 4.7(c)). Table 4.1 presents

PSNR between the reference image retouched by each expert and the most similar

model output. CRISP achieves 4∼7 dB higher PSNR than CSRNet for all experts.

Moreover, training CRISP using multiple HQ images for a single LQ image is pos-

sible. Thus, by training CRISP with multiple HQ images of all five experts, we can



4.4. EXPERIMENTS 97

Reference Image A (GT) α = 0.00 s = (2.2, 8.7, 21.4)

Reference Image B (GT) α = 0.68 s = (0.9, 4.1, 7.9)

Reference Image C (GT) α = 0.89 s = (0.3, 3.1, 5.6)

Reference Image D (GT) α = 1.00 s = (1.2, 3.8, 2.6)

Reference Image E (GT) α = 1.00 s = (2.7, 5.6, 5.6)
(a) Expert (A-E) (b) CSRNet [44] (c) CRISP (Ours)

Figure 4.7: Qualitative comparisons of output images which are most similar to the images retouched
by Expert (A-E).
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improve the performance of CRISP further as presented in Table 4.1 (Expert-All).

For CSRNet, we vary interpolation coefficient α with the step size of 0.01 between

0.00 and 1.00 and select the image with the highest PSNR for each expert. For

CRISP, we use a GSA (Algorithm 1) to adjust the non-negative values of style vec-

tors (s) and select the output with the lowest MSE. The GSA is a proxy of user

behavior in obtaining desired results with quantitative measures. Initial style vector

(sinit), step size (t), and stop condition (K) represent the propensity of user be-

haviors (meticulous or hasty) that affect the output image quality and the number

of inferences. We use sinit, t, and K are (0.0,0.0,0.0), 0.1, and 100, representing a

meticulous user to obtain HQ images, unless otherwise specified. sd denotes the d-th

element of s and s+ t denotes adding t to all elements of s. The trend of the output

style along each dimension of the style vector is visualized in Fig. 4.11.

Algorithm 1 Greedy Search Algorithm (GSA)

Require: Initial style vector sinit ∈ RD, Step size t, Stop condition K
Require: Input LQ image x, Reference image x̂

e← inf, s← sinit, d← 1, i← 0, k ← 0
while k ≤ K do

ϕ← g(s)
if e < MSE(CRISP(x;ϕ), x̂) then

sd ← sd − t, d← (d mod D) + 1, i← i+ 1, k ← k + 1
if i = D then

s← s+ t, d← 1, i← 0

else
e← MSE(CRISP(x;ϕ), x̂), i← 0, k ← 0

sd ← sd + t

4.4.5 Model Efficiency Comparisons

We compare CRISP with SotA methods in PSNR, SSIM, model parameters, FLOPs,

and the number of inferences to find the desired results. We set the desired results

(or reference images) to the images retouched by Expert-C as in the previous works.
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Table 4.2: Model efficiency comparisons on MIT-Adobe FiveK.

Method PSNR SSIM Params FLOPs Inferences

White-Box [48] 18.59 0.797 8.56×106 - -
DAR [91] 19.54 0.800 2.59×108 - -

HDRNet [36] 22.65 0.880 4.82×105 - 1
Pix2Pix [53] 22.05 0.788 1.14×107 5.68×1010 1
CSRNet [44] 23.69 0.895 3.65×104 2.17×109 1
CRISP w/IA (Ours) 23.34 0.881 4.58×105 1.39×108 1

CRISP w/KMC (Ours) 25.70 0.887 1.37×104 1.29×107 27
CRISP w/GSA (Ours) 29.62 0.920 1.37×104 1.29×107 311

DPE [24] 23.76 0.881 3.34×106 - 1
DPED [52] 24.06 0.856 - - 1
LPTN [75] 22.14 0.854 4.03×105 5.08×109 1
CSRNet [44] 24.23 0.900 3.65×104 4.49×109 1
DeepLPF [88] 25.29 0.899 8.00×108 - 1
3DLUT [125] 25.24 0.886 5.93×105 2.06×108 1
SA3DLUT [105] 25.50 0.890 4.52×106 1.11×109 1
CRISP w/IA (Ours) 24.38 0.880 4.58×105 1.52×108 1

CRISP w/KMC (Ours) 28.12 0.902 1.37×104 2.66×107 27
CRISP w/GSA (Ours) 30.99 0.924 1.37×104 2.66×107 654

Table 4.2 presents the results on the MIT-Adobe FiveK dataset with two differ-

ent settings described in Section 4.4.1. We replicate PSNR and SSIM scores of the

compared methods from CSRNet [44] and SA3DLUT [105]. We reproduce missing

scores in two papers for fair comparisons. We measure FLOPs with the average of

a single inference on each dataset. White-Box and DAR are reinforcement-based

methods where the agents determine the number of adjustment steps (inferences)

for each LQ image, whereas the other compared methods produce the output image

with a single inference. CRISP adjusts image styles through three scenarios using

image-adaptation (IA), k-means clustering (KMC), and a greedy search algorithm

(GSA). CRISP w/IA redefines an encoder that takes an LQ image only as the input

for the test setup; HQ images are not accessible. The encoder downsamples the LQ

images as 64 × 64 and predicts 64D style vectors. CRISP w/IA requires a single

inference for each LQ image like other methods and achieves similar PSNR and

SSIM with fewer parameters and FLOPs. CRISP w/KMC uses k-means clustering

of style vectors on the training dataset. The centers of the 27 clusters are used as

a predetermined set of style vectors. Thus, in this case, the number of inferences
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Inferences

PS
N

R
 (d

B
)

3DLUT SA3DLUT

CSRNet

LPTN

CRISP w/IA (Ours)

CRISP w/GSA (Ours)

CRISP w/KMC (Ours)

Figure 4.8: PSNR vs. Inferences. CRISP w/KMC and CRISP w/GSA generate multiple output
styles with different scenarios for style adjustments. They estimate closer styles to the references
(high PSNR) by increasing the number of output styles (high inferences). The inferences for the
other methods denote the FLOPs multiplier to CRISP for visualization.

indicates the number of clusters visited. CRISP w/KMC achieves higher PSNR and

SSIM than the existing methods with the smallest parameters and FLOPs by remov-

ing the encoder. Meanwhile, 27 inferences of CRISP w/KMC still require smaller

FLOPs than CSRNet given that CRISP w/KMC has 160 times reduced FLOPs

than CSRNet. CRISP w/GSA finds the most similar output images to the reference

images using the greedy search algorithm. CRISP w/GSA achieves over 5 dB higher

PSNR than the existing methods. CRISP w/GSA requires 311 inferences to obtain

the desired result, but the FLOPs for all inferences are only twice that of CSRNet.

CRISP w/GSA gives higher PSNR (29.62 dB vs. 29.61 dB) than CRISP with the

encoder (f), using the reference (GT) images as the input.

For more comparisons between the multiple-style generation models (CRISP w/KMC

and CRISP w/GSA) and the single-style generation models, Fig. 4.8 exhibits the

trade-off between PSNR and the number of inferences. We use different numbers

of clusters for CRISP w/KMC and different hyper-parameters of Algorithm 1 for

CRISP w/GSA to change the number of inferences. Given that GSA is a proxy
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(a) LQ image (b) Fixed ISP (c) Image-adaptive ISP (d) CRISP (e) Upper-bound (f) Expert

Figure 4.9: Qualitative style comparison with different types of the ISP.

Table 4.3: Quantitative style comparison with different types of the ISP.

Type PSNR SSIM

Fixed ISP 19.98 0.826
Image-adaptive ISP 22.72 0.866
CRISP 29.61 0.920

Upper-bound 34.95 0.950

of the user behavior, each blue dot in Fig. 4.8 represents a distinct user behavior.

CRISP w/KMC outperforms the PSNR of 3DLUT with seven inferences, whereas

CRISP w/GSA outperforms it with five inferences with sinit = (3, 3, 3), t = 3,

and K = 4. Both models require fewer FLOPs than a single inference of 3DLUT.

This efficiency comes from the fact that CRISP does not employ any convolution

or fully connected layers. This leads to less than 100 FLOPs for individual pixels,

which is much less than that of trilinear interpolation in 3DLUT and SA3DLUT.

CRISP w/GSA performs lower than that CRISP w/KMC when the number of infer-

ences is small, but outperforms significantly as the number of inferences increases.

4.4.6 Analysis

CRISP requires multiple inferences to generate multiple styles for better image qual-

ity. We analyze the image quality improvement and the controllability of CRISP.

Style-adaptation. To evaluate the effectiveness of the style-adaptation, we set the

following types of models which share the ISP functions described in Section 4.3.3:
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• Fixed ISP. Without using the encoder and the style decoder, the ISP param-

eters ϕ are directly optimized in training and fixed during testing.

• Image-adaptive ISP. We modify the encoder to use only LQ images as the

input for training and testing. The input LQ images adapt the ISP parameters.

• CRISP. We use the training encoder in testing to present the effectiveness of

the style-adaptation. The only difference from the image-adaptive ISP is that

CRISP takes HQ images as the input of the encoder.

• Upper-bound. We directly optimize the ISP parameters for each test image

to maximize the enhancing performance of the style-adaptive ISP.

Fig. 4.9 and Table 4.3 show the qualitative and quantitative results of the test mod-

els. The upper bound achieves outstanding performance on all reference-based image

quality measures and qualitative results. This indicates that our style-adaptive ISP

model has huge potential for image enhancement while consisting of only 19 param-

eters and performing the global adjustment. By contrast, the fixed ISP performs a

15 dB lower in PSNR than the upper-bound with the wrong white balance under the

colored illumination (see Fig. 4.9(b)). The poor performances are mainly because

the fixed ISP produces a single style for all test images. The image-adaptive ISP

improves the expression for the illumination and some objects (e.g., the outer wall

in Fig. 4.9(c)) by the styles that consider the image contents. However, these outputs

are far from the styles of the reference images, resulting in a significant low PSNR.

The results of CRISP are qualitatively (Fig. 4.9(d)) and quantitatively (Table 4.3)

closer to the upper-bound than others. The performance improvement indicates that

a style should consider the target HQ image given that there exist various versions

of HQ images for an LQ image. CRISP uses HQ images as input of the encoder for
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0        10 0        10 0        10 0        10

0        10 0        10 0        10 0        10

0        10 0        10 0        10 0        10

0       10 0       10 0       10

0       10 0       10

0       10 0       10

Figure 4.10: Graphs of the style-adaptive ISP parameters (ϕ) in CRISP. Each graph visualizes each
ISP parameter vs. the style vector. Each colored line changes the style vector in different dimensions
denoted by z and exhibits distinct and insensitive trends in ISP parameters.

LQ image s = (0, 0, 0) s = (3, 0, 0) s = (6, 0, 0) LQ image s = (0, 0, 0) s = (3, 0, 0) s = (6, 0, 0)

s = (0, 3, 0) s = (0, 6, 0) s = (0, 9, 0) s = (0, 3, 0) s = (0, 6, 0) s = (0, 9, 0)

s = (0, 0, 3) s = (0, 0, 6) s = (0, 0, 9) s = (0, 0, 3) s = (0, 0, 6) s = (0, 0, 9)

Figure 4.11: Examples for consistent style generation. CRISP generates consistent image styles over
LQ images for the same style vectors.

analysis, but in practice, the predetermined style vectors and user interaction allow

to obtain the desired results without HQ images.

ISP parameters. Although CRISP automatically encodes the image styles (or

the ISP parameters) into the style vectors, each dimension of the style vector has a

reasonable trend to change image expressions. Fig. 4.10 visualizes the values of ISP

parameters for style vectors. Each colored line presents an insensitive and distinct

trend, where each color indicates a different dimension in style vectors. The visualized
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(a) K-means clustering (b) Greedy search algorithm

✓

s = (3.3, 3.8, 4.6) s = (4.0, 4.2, 8.0) s = (0, 0, 0) s = (3, 0, 0) s = (6, 0, 0) s = (9, 0, 0)

✓

s = (5.9, 6.2, 11.5) s = (6.9, 7.6, 5.3) s = (6, 3, 0) s = (6, 6, 0) s = (6, 9, 0) s = (6, 12, 0)

✓

s = (7.5, 8.2, 18.5) s = (12.3, 3.8, 6.8) s = (6, 9, 3) s = (6, 9, 6) s = (6, 9, 9) s = (6, 9, 12)

Figure 4.12: Example scenarios for style adjustments. (a) CRISP can generate images with the style
vectors (s) predetermined as cluster centers in k-means clustering. This example visualizes the
enhanced test images using 6 cluster centers of style vectors on the training dataset. (b) CRISP can
also generate images with user interaction to adjust style vectors (s). In this example, the greedy
search algorithm indicates that users increase the value of style vectors to obtain the desired results
in each dimension from the first (first row) to the last (third row). The check mark (✓) denotes the
most preferred image in each row.

range of z (0∼10) is appropriate to present the trends, because most style vectors

from the training data are in this range.

Generalization test. CRISP determines the output image styles independently

to the input LQ image. Fig. 4.11 illustrates the results from the same style vectors for

two different LQ images. Although the LQ images have different contents and pixel

values, the output styles are similar for the same style vectors. The first dimension

emphasizes blue colors, and the second dimension highlights the yellow and red

colors while brightening images. The last dimension darkens images while increasing

contrast. The image styles that change predictably according to style vectors ease

to obtain desired results.

Control examples. CRISP can have various scenarios for style adjustments,

which is how to select the style vector (s) for the desired results. Fig. 4.12 demon-

strates the example of the k-means clustering and the greedy search algorithm (or
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Table 4.4: Quantitative style comparison with CRISP trained by unpaired images.

Type PSNR SSIM

CRISP 29.61 0.920
CRISP w/UnpairedImage 29.74 0.921

user interaction). In this example, we do not use the reference image to measure im-

age quality and assume that users can choose any images they prefer in each stage.

In Fig. 4.12(a), the k-means clustering provides 6 cluster centers of style vectors

on the training dataset, and we visualize the results from the cluster centers. All

results have different styles, which some users may prefer. We can set the higher

number of clusters to generate more styles. In Fig. 4.12(b), we visualize the style

adjustment with the user interaction on the basis of a greedy search algorithm. A

user adjusts the value of each dimension of the style vector with a step size of 3 until

finding the preferred image in a sequential manner. Once the preferred value of the

current dimension is determined, the user fixes it and then adjusts the values of the

next dimension of the style vector. The user repeats this adjustment process until

obtaining a satisfying result. In practice, the step size and the number of dimension

switching depend on user behaviors. Algorithm 1 approximates the user interaction

with hyper-parameters.

Network training with unpaired images. Unpaired images for style encoder

can alleviate overfitting to the training LQ-HQ image pairs. However, CRISP can

not use a random image as a style image due to the style mismatch between the

random and HQ images. To this end, CRISP w/UnpairedImage flips and rotates the

input HQ images of the style encoder. The augmented HQ images share the styles

of the originals but have spatially different contents. Table 4.4 presents that CRISP

w/UnpairedImage slightly outperforms our original model (CRISP).
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Figure 4.13: Style generation results with style images.
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Figure 4.14: Ablation study on the number of control dimensions (D).

Style generation with style images. CRISP generates various image styles by

directly adjusting the values of the style vector. Here, we present a conventional

approach that adjusts output styles similar to a style image. We simply use the

style encoder at test time and use the style images as the input of the style encoder

after image scaling. Figure 4.13 presents that CRISP and CRISP w/UnpariedImage

successfully generate styles similar to the style images.

Control dimension. The style diversity of CRISP is highly dependent on the

dimension of the style vector (or the latent code in the autoencoder). Table 4.14

presents an ablation study to the number of control dimensions (D) of s. Although a

single control dimension (D=1) improves only marginal PSNR than image-adaptive

ISP (23.12 dB vs. 22.72 dB), the models with high numbers of D achieve better
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Table 4.5: Ablation study on ISP parameter initialization with additive white Gaussian noise.

σ 0 0.1 1 2 5

PSNR (dB) 29.62 29.45 28.22 24.20 6.58

PSNR, where D = 3 can be Pareto efficiency. Interestingly, the model with a higher

D (e.g., D = 64) than the number of ISP parameters (19) still performs lower PSNR

than the upper-bound (31.47 dB vs. 34.95 dB). This performance gap indicates room

for improvement in our style-autoencoder to enhance the representation.

Parameter initialization. CRISP is robust to the initial ISP parameters, al-

though the style decoder learns the residual of the initial parameters. Table 4.5

presents PSNR of CRISP with randomly generated initial parameters, where σ in-

dicates the standard deviation of an additive white Gaussian noise. Although ϕγ

works in the range of 0 < ϕγ ≤ 1 to visualize the dark area better, CRISP with the

noise with σ = 2 outperforms CSRNet (24.20 dB vs. 23.69 dB). CRISP does not

explicitly limit the values of the parameter ϕ, whereas the style vector generates the

values via the style decoder.

4.5 Conclusion

We present a controllable ISP, called CRISP, for image enhancement. CRISP learns

the representations of image styles through a lightweight autoencoder and adaptively

changes ISP parameters on the basis of the output style. Experiments demonstrate

that CRISP achieves better image quality and computational efficiency than SotA

methods, and even outperforms the human experts in MOS. We also provide various

analyses of the effectiveness and controllability of CRISP.
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LQ image 3DLUT [125] CSRNet [44] CRISP (Ours) Expert [15]

Figure 4.15: Example images for user study of single-style MOS.
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←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− CSRNet [44] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− CRISP (Ours) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Expert [15] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− CSRNet [44] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− CRISP (Ours) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Expert [15] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 4.16: Example images for user study of multiple-style MOS.
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Chapter 5

Conclusion

This dissertation presents Deep Neural Network (DNN)-based algorithms that facil-

itate adaptive Image Signal Processors (ISPs) by data synthesis for camera image

denoising, neural architecture search for controllable image restoration, and ISP pa-

rameter estimation for controllable image enhancement. Each proposed algorithm

tackles current challenges associated with low-level computer vision, taking one step

further to enjoying daily life through degradation-free and high-quality photographs

captured by smartphone/mobile cameras.

Chapter 2 addresses the challenge of camera image denoising, which is hard to

obtain noisy-clean image pairs for denoiser training. The proposed method, named

NERDS, mitigates this challenge by generating pseudo-training data from noisy im-

ages. The difference of pixel variances through downscaling a noisy raw-sensor image

can measure image quality degraded by noise. Based on this finding, NERDS esti-

mates noise parameters for Poisson-Gaussian distribution via an optimization prob-

lem and adopts a gradient-descent-based optimization through a novel reparametriza-

tion trick. Moreover, NERDS estimates the RAW2RGB conversion for a given raw-

111
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RGB noisy image pair to generate training data in RGB space. NERDS regards the

downscaled raw image as a pseudo-clean raw image and augments pseudo-training

data for image contents, noise levels, and image styles. Experiments present that

NERDS estimates accurate noise and image styles for data synthesis and enables

accurate denoiser training for camera noise benchmarks and real noisy images.

Cahpter 3 covers improving model efficiency and output image quality for con-

trollable image restoration. While DNN-based approaches improve the accuracy of

many image restoration tasks, they require many computations and parameters,

which are obstacles for resource-limited devices. Moreover, ISPs perform composite

restoration tasks in which users determine the task of interest for each image with

unknown degradations. The proposed method, named TASNet, has an efficient CNN

architecture by sharing early layers across tasks and adopting the remaining layers

for each task. When modulating restoration tasks for an image, TASNet reuses the

features from task-agnostic layers to reduce computations. TASNet also introduces a

data sampling approach that prevents artifact generation for modulating restoration

levels. Experiments present that TASNet significantly improves the model efficiency.

Chapter 4 introduces the challenges for image enhancement: different user pref-

erences for image styles and model efficiency for style generation. The proposed

method, named CRISP, alleviates these challenges by learning style representation to

improve output image style diversity and adapting ISP parameters to each style. An

encoder-decoder framework enables the representation of high-quality image styles

in low dimensions. CRISP uses plug-and-play ISP functions for style generation,

which have a few parameters and computations. Users can find the preferred style

by selecting styles in the representation through K-means clustering or user inter-

action. Experiments show the effectiveness of CRISP by comparing single/multiple
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style generation methods in various qualitative and quantitative measures.

In conclusion, this dissertation has introduced three adaptive ISP algorithms

that have made substantial advancements in the capabilities of smartphone/mobile

cameras. However, there is still a long way to go in order to fully achieve or sur-

pass human-level visual perception. The proposed algorithms tackle three practical

applications, but there are many advanced challenges faced by smartphone users in

adverse environments such as low-light conditions, underwater scenes, camera shake,

fast-moving objects, and close/far objects, which result in raw images with complex

degradations that must be effectively addressed. The restoration and enhancement

of videos and spatially-varying adaptation also require specialized improvement with

domain expertise. As the number of applications expands, an integrated model to

control the increasing number of factors is a potential research area. Finally, ISP al-

gorithms for futuristic hardware, including space telescopes, metalenses, 360-degree

cameras, and AR/VR devices, hold promise for future work.
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국문초록

현대인에게 카메라는 삶을 기록할 뿐 아니라 소셜 네트워크 서비스와 화상 회의,

개인 방송을 위해 없어서는 안 될 존재가 되었다. 스마트폰 제조사(예: 삼성, 애플)

는 스마트폰 시장 점유율에서 카메라의 성능이 중요한 역할을 수행함에 따라, 차세대

스마트폰에 더 많고 더 큰 카메라 랜즈를 사용하고 있다. 디지털 카메라의 이미지 파이

프라인에서 이미지 센서는 빛을 원시 이미지라고 하는 디지털 신호로 변환하고 이미지

시그널 프로세서(ISP)는 원시 이미지를 사람이 읽을 수 있는 RGB 이미지로 변환한다.

이러한 ISP는 카메라 하드웨어의 제약과 소프트웨어적 변형으로 인해 손상된 이미지

를 복구하는 과정(이미지 복원)과 이미지를 매력적인 스타일로 보정하는 과정(이미지

개선)에 관련된 다양한 영상 처리 과제를 수행한다.

ISP의 도전 과제는 모든 이미지 손상 또는 모든 이미지 스타일에 대한 일반적인

모델을 설계하고 구현하는 것이다. 특히 이미지는 노이즈, 블러, 압축과 같은 다양한

요인으로 인해 이미지의 세부 정보가 손실된다. 모든 손상을 복원하는 일반적인 모델

은 충분히 많은 수의 모델 파라미터를 필요하며 각 손상에 대해 최적의 결과도 얻지

못한다. 그뿐만 아니라, 매력적인 이미지 스타일은 주관적이어서, 개인적 경험이나 분

위기, 기분과 같은 다양한 요소에 의해 달라진다. 대부분의 최신 인공신경망 모델들은

입력 이미지에 대해 단일 스타일 이미지를 생성하는데, 이는 사용자를 만족시키기에

제한적이다.

전술한 도전 과제를 해결하기 위해 본 학위 논문은 심층 신경망을 사용하여 실용

적인 애플리케이션에 대한 적응형 ISP를 제안한다. 구체적으로, 제안하는 세 가지 알
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고리즘과 애플리케이션은 각각: (1) 카메라 이미지의 잡음 제거를 위한 적응형 데이터

합성, (2) 조작 가능한 이미지 복원을 위한 적응형 신경망 구조 탐색, (3) 조작 가능한

이미지 개선을 위한 적응형 ISP 매개변수 추정이다. 첫 번째로, 카메라 이미지 잡음

제거에서는 지도 학습을 위해서 잡음이 있는 이미지와 깨끗한 이미지의 쌍을 얻기가

어렵다. 제안 방법은 잡음이 있는 시험 이미지만으로 지도 학습을 가능하게 하는 모조

학습 데이터를 생성하여 일반적인 CNN 기반 잡음 제거기를 시험 이미지에 적합하게

학습시킨다.두번째로,조작가능한이미지복원은알수없는손상에대해미리정해진

복수의 복원 작업의 결과를 생성하고 사용자가 원하는 결과를 선택하는 새로운 이미지

복원 애플리케이션이다. 제안 방법은 이러한 복수의 이미지 복원 결과를 생성하는데

효율적인 CNN 구조를 자동으로 찾는다. 찾아진 CNN은 앞선 계층을 공유하고, 남은

계층을 과제에 맞게 조정한다. 세 번째로, 제안하는 방법은 주관적인 사용자 선호도를

만족시키기 위해 다수의 고품질 이미지 스타일 생성 방법을 학습한다. 사용자는 학습된

잠재표현에서스타일을선택하고신경망은스타일을 ISP매개변수로변환한다.이미지

스타일에 대한 주관적인 평가를 위해 제안 방법은 고품질의 다양한 스타일을 생성한다.

스타일 생성은 플러그 앤드 플레이 ISP를 사용하여서 효율적이다.

제안 방법들은 각각의 컴퓨터 비전 과제에서 유의미한 성능 향상을 얻을 수 있었

으며, 면밀한 실험적 분석과 구성 요소별 분석을 통해 유효성을 검증하였다. 또한 각

과제에서 널리 사용되는 벤치마크에서 탁월한 화질 개선 능력과 모델의 효율성을 보였

으며, 실제 영상에서도 유의미한 성능을 확인했다.

주요어: 이미지 시그널 프로세서, 이미지 복원, 이미지 개선, 심층 학습, 데이터 합성,

신경망 구조 탐색, ISP 매개변수 추정

학번: 2017-27265
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