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Abstract 

 

Magnetic Resonance Imaging (MRI) has provided unprecedented 

methodologies for non-invasive in-vivo assessment of 3-dimensional brain 

structure for several decades. With the flexibility of generating various contrasts 

with high resolution, MRI provides the most effective way to diagnose brain 

disorders. However, despite the exquisite anatomic details provided by the 

multiple routinely acquired contrast-weighted images, currently MRI is mainly 

utilized as means of differential diagnosis for neurodegenerative diseases. This 

is because the structural changes such as atrophy occurs long time after the 

onset of the disease.  

In recent years, several advanced MRI techniques that is sensitive to early 

stage of neurodegenerative diseases have been developed, demonstrating 

promising results for non-invasive diagnoses and study of the pathophysiology 

of diseases using MRI. In particular, neuromelanin-weighted MRI and 

susceptibility imaging have revealed great potentials. While these advanced 

MRI for neurodegenerative diseases bear great potential to substitute the current 

PET-based diagnosis with radiation exposure, widespread application of the 

advanced methods is hindered due to the additional scan time needed and the 

generalization limitations of each methods. 

In this work, a novel advanced MRI protocol is developed by 1) 

developing a new MRI data acquisition sequence which reduces the imaging 

time of clinical contrast-weighted images, which are routinely acquired for 

differential diagnosis with other diseases such as tumor, 2) overcoming the 
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generalization limitation of neuromelanin-weighted MRI to scanner differences, 

and 3) by overcoming the generalization limitation of deep learning-based 

quantitative susceptibility mapping to different resolution data. The novel 

neuromelanin-weighted MRI and quantitative susceptibility mapping data can 

be acquired within the clinical limit of scan time thanks to the reduction of 

routine image scan time by 1).  

The proposed protocol may provide a cornerstone for MRI based non-

invasive diagnosis of early stage neurodegenerative diseases. This may have a 

large clinical implication since the current image-based diagnosis of 

neurodegenerative diseases relies on PET with radiation exposure. 
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Chapter 1. Introduction 

 

1.1. MRI basics 

1.1.1. Overview of MRI physics 

Magnetic Resonance Imaging (MRI) is a powerful neuro-imaging device 

that has provided unprecedented methodologies for non-invasive in-vivo 

assessment of 3-dimensional brain structure for several decades. With the 

flexibility of providing various information of the tissue with high resolution of 

sub-millimeter scale, MRI provides one of the most effective means to diagnose 

brain disorders. 

The basic principal of MRI lies in the magnetic resonance of the nuclear 

spins. Each spin has a small magnetic moment, which can be considered as a 

small magnet. Because hydrogen atom is the most common nuclei in the human 

body, MRI is mainly developed focused on the magnetic resonance of the 

hydrogen proton (H1), although methods that rely on the magnetic resonance of 

different atoms, such as sodium, are emerging. Hereafter, the MR-relevant 

nucleuses are referred to as ‘spins.’ 

For the generation of MR signals, two kinds of magnetic fields are 

applied: A static main magnetic field (B0), and a radiofrequency (RF) field (B1). 

When the spins are in thermal equilibrium, they are randomly oriented, resulting 

in zero net magnetic momentum. When B0 is applied to the spins, they align 

with the B0 direction, or the longitudinal direction, resulting in a non-zero net 

magnetization. The net magnetization is proportional to the strength of the B0 
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field. Inside the main magnetic field, the spins resonate at a frequency 

proportional to the B0 field, known as the Larmor frequency: 

ω = γB0.                  [Eq. 1.1] 

where ω  is the Larmor frequency, and γ  is the gyromagnetic ratio of the 

nuclei. Each nucleus has a different gyromagnetic ratio. For instance, the 

gyromagnetic ratio of the hydrogen proton is 267.5×106 rad/s∙T, and that of the 

sodium proton is 70.8×106 rad/s∙T. When the B1 field is applied perpendicular 

to the B0 field and near the Larmor frequency, the spins absorb energy, resulting 

in gradual tipping of the net magnetization with respect to the B0 direction. This 

phenomenon is referred to as spin excitation. The excited spins start to precess 

around the B0 field direction at the Larmor frequency. The precession of the net 

magnetization induces electric current in the nearby RF coils by the Faraday’s 

law of magnetic induction; This mechanism is the signal source of Magnetic 

Resonance Imaging. Because the net magnetization, which induces the signal, 

is proportional to the B0 field strength, the signal strength is proportional to B0, 

resulting in higher SNR with higher B0. 

As shown in Fig. 1.1, the spin behavior in a fixed coordinate, called the 

laboratory frame, when B1 field is applied can be easily understood by 

demodulating the spin dynamics to its rotational frequency. B1 field tuned to 

the Larmor frequency rotates the spins around the B0 field, tilting them towards 

the transverse plane. If the rotation around the B0 direction is demodulated (i.e. 

observation from a rotating frame), the trajectory of the spin can be simply 

described as a tilt of the magnetization towards the transverse plane. Hereafter, 
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all spin dynamics are described in terms of a rotating frame. After the typically 

brief B1 magnetic field, which lasts for a few milliseconds, is turned off, the 

transverse component of the rotating magnetization induces a current in the 

receiving RF coil and the signal can be measured. 

 

 

Figure 1.1. Spin excitation induced by B1 field from a) laboratory frame and b) 

rotating frame 

 

 The signal measured using an RF coil is volume-integrated. Therefore, 

additional spatial encoding is needed in order to recover the signal into 

anatomical images, which enables the non-invasive observation of structural 

changes. For this purpose, additional linear gradient fields, 𝐺𝑥,𝑦 𝑜𝑟 𝑧 , are 

introduced. The 𝐺  fields have same direction as the 𝐵0  field, and have 

linearly varying amplitudes according to their spatial position x, y, or z. When 

a linear gradient field is applied to the imaging volume, the spins precess at 

different frequencies according to their spatial location. For example, when a 

linear field is applied at the x direction (i.e., 𝐺𝑥), the precession frequency at 
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location x0 can be denoted as follows: 

ω(x = 𝑥0) = γ𝐵0  +  γ𝐺𝑥𝑥0 .                 [Eq. 1.2] 

The spatial information, 𝑥0, is now encoded into the precession frequency, ω. 

In a similar manner, when the linear gradient field is applied in two directions, 

the 2-dimensional location can be encoded into the precession frequency: 

ω(𝑥 = 𝑥0, 𝑦 = 𝑦0) = γ𝐵0  +  γ(𝐺𝑥𝑥0 + 𝐺𝑦𝑦0) .      [Eq. 1.3] 

The volume integrated signal with spatial encoding can now be written as 

the following equation:  

s(𝑡𝑥, 𝑡𝑦) =  ∫ ∫ 𝑚(𝑥, 𝑦)𝑒−𝑖𝛾(𝐺𝑥𝑥𝑡𝑥+𝐺𝑦𝑥𝑡𝑦)𝑑𝑥𝑑𝑦
 

𝑦

 

𝑥
        [Eq. 1.4] 

where 𝑡𝑥  and 𝑡𝑦 are the amount of time the gradient field is applied in each 

direction,  s(𝑡𝑥 , 𝑡𝑦)  is the signal, and 𝑚(𝑥, 𝑦)  is the desired spin 

magnetization at location 𝑥, 𝑦. Carefully observing the signal equation, one can 

see that the signal s(𝑡𝑥, 𝑡𝑦) is a data point of 2D spatial-frequency domain, or 

k-space, of 𝑚(𝑥, 𝑦). The signal equation can be re-written: 

 s(𝑡𝑥, 𝑡𝑦)  = |𝐹2𝐷{𝑚(𝑥, 𝑦)}|(𝑘𝑥,𝑘𝑦)=(𝐺𝑥𝑡𝑥/γ,𝐺𝑥𝑡𝑥/γ).     [Eq. 1.5] 

By adjusting 𝐺𝑥 and 𝐺𝑦 along with 𝑡𝑥 , 𝑡𝑦, we can fill the 2D k-space 

data points, and reconstruct the image 𝑚(𝑥, 𝑦) by inverse-Fourier transform 

of the k-space data.  

 

1.1.2 Bloch Equation 

Inside the main magnetic field 𝐵0 , the magnetization of each spin, 

𝑴 = (𝑀𝑥 , 𝑀𝑦, 𝑀𝑧), has the lowest energy when the magnetization vector is 
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aligned to the 𝐵0  field direction. Therefore, the spin excited onto the 

transverse plane by the 𝐵1 field undergoes relaxation and returns back to its 

equilibrium state. Two relaxation time constants are involved in the 

relaxation process: T1 constant for relaxation on the longitudinal axis (z axis), 

and T2 constant for relaxation in the transversal plane (x-y plane). The 

following Bloch equation explains the relaxation of magnetization when 

external field is applied [2]: 

𝑑𝑴

𝑑𝑡
= 𝑴 × γ𝑩 −

𝑀𝑥�̂�+𝑀𝑦�̂�

𝑇2
−

(𝑀𝑧−𝑀0)�̂�

𝑇1
.          [Eq. 1.6] 

𝑀0 is the magnetization at equilibrium. By different physical mechanisms, 

the T1 relaxation recovers the longitudinal component and T2 relaxation 

decays the transversal component of the magnetization, gradually relaxing 

the magnetization back to equilibrium, 𝑀0�̂�.  

 

1.1.3. MRI pulse sequence 

Because each anatomical tissue has different properties, one may weight 

the image to these properties such as T1 and T2 relaxation time to delineate the 

anatomic structures from one another. These weighting are achieved by 

applying multiple RF pulses and Gradient pulses at carefully designed timing. 

These sequence of pulses that provide a set of images with particular contrast 

between tissues are called the MRI pulse sequences. Each pulse sequence 

provides contrast-weighted images with distinct characteristics that can be 

utilized to examine the soft tissue of the human body, which gives great 

diagnostic abilities.  
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1.1.4. MRI acceleration  

The advantage of diverse MRI contrasts comes at an expense of long 

scan times, which is a factor of the high cost of MRI. The total scan time of 

clinical routine MRI protocols typically exceeds 15 min. Moreover, if motion 

occurs during the scan, severe artifacts known as “motion artifacts” are 

introduced to the resulting images. The damaged images must be reacquired; as 

a result, scan time is prolonged to an average of 30 min. This long scan time 

limits the number of patient scans, there by inflating the cost. 

Methods such as parallel imaging and compressed sensing have been 

investigated to accelerate the MRI scan. Majority of the methods are based on 

under-sampling the data in k-space domain in order to reduce scan time, and 

recovering the not-sampled data using additional information such as the coil 

sensitivity of each receiver coil (Figure 1.2), or signal sparsity of MR images. 

However, the extent of acceleration is typically limited to less than factor of 3 

for the conventional reconstruction methods such as GRAPPA. Higher 

acceleration factors tend to result in remaining aliased artifacts or blurry 

reconstruction results. 
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Figure 1.2. Schematic diagram of reconstruction of k-space under-sampled data 

using coil sensitivity. Uniform under-sampling in k-space results in aliased 

images. The images can be recovered to the full sampled images by using 

additional information that comes from the coil sensitivity information of each 

receiver coils. 

 

Recently, deep learning has been widely utilized in MRI [3]–[8] and 

applied for parallel imaging [9]–[13] and compressed sensing reconstruction 

[14]–[17], demonstrating potentials of using higher acceleration factors than 

conventional methods. Several approaches have been proposed to embed the 

physical model of parallel imaging in neural networks [10]–[13], [18], 

providing high quality reconstruction results.  

 

 

1.2. Advanced MRI for neurodegenerative diseases 

Despite the exquisite anatomic details provided by the multiple routinely 

acquired contrast-weighted images, currently MRI is mainly utilized as means 
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of differential diagnosis for neurodegenerative diseases. This is because the 

structural changes such as atrophy occurs a long time after the onset of the 

disease. In recent years, several advanced MRI techniques that is sensitive to 

early stage of neurodegenerative diseases have been developed, demonstrating 

promising results for non-invasive diagnoses and study of the pathophysiology 

of diseases using MRI. While widespread application of the advanced methods 

is hindered due to the additional scan time needed and the generalization 

limitations of each methods, these advanced MRI bear great potential.  

 

1.2.1. Neuromelanin-weighted MRI 

Neuromelanin (NM) is a dark pigment found in catecholaminergic cells 

of substantia nigra pars compacta (SNc) and locus coeruleus (LC). The pigment 

is known to accumulate during aging [19], [20]. NM abnormality has long been 

associated with Parkinson’s disease (PD) because of the selective death of NM 

containing cells in PD patients [21], which results in a visible loss of the 

pigment in SNc and LC [22], [23].  

NM-sensitive MRI or NM-MRI [24]–[26] is a non-invasive proxy 

measure of NM in the human brain, which may provide valuable information 

about PD [27]–[30] and other neurological disorders [31]–[35]. In particular, 

NM-MRI has displayed the ability to discriminate between healthy control and 

PD patients [36], [37], and between PD and other neurological diseases such as 

idiopathic PD and Alzheimer’s disease (AD) [32], [33], [38]. It has also shown 

correlation with PD progression [36], [39]–[42], revealing its potential as a 

biomarker of PD. 
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While NM-MRI is a promising method for neurodegenerative diseases 

related to the dopaminergic function, the current methods suffer from 

generalization across scanners. The magnetization transfer pulses that are used 

for NM contrast largely differ by the manufacturer of the particular scanner, 

which results in highly varying images with different scanners. Because 

multiple vendor MRIs may exist even in a single hospital, this is problematic. 

 

1.2.2. Quantitative susceptibility mapping  

Quantitative susceptibility mapping (QSM) enables measurement 

magnetic susceptibility distribution in the human soft tissue from the phase of 

the MRI data [43]–[45]. Two of the main susceptibility sources in the human 

brain are iron and myelin [46]. Changes in the amount of iron and myelin in the 

brain are related to pathogenesis of several neurodegenerative diseases such as 

PD, AD, and multiple sclerosis. Therefore, QSM has been investigated for 

diagnosis or pathogenesis of several neurodegenerative diseases [47]–[49]. 

Since the resonance frequency of the spins relates to an external magnetic 

field, an MR signal is highly dependent on susceptibility sources. In particular, 

susceptibility sources in the soft tissue make dipole patterned perturbations in 

the B0 field. This local B0 perturbation, which is a convolution between the 

susceptibility distribution and a dipole kernel, are encoded in the phase signal 

of the MRI data. Therefore, susceptibility distribution can be estimated by first 

extracting the local B0 field from MRI phase data, and de-convolving the dipole 

kernel (Fig. 1.3a). The reconstruction of QSM from local field map can be 
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denoted as follows: 

argmin
𝜒

‖𝑊(𝑑 ∗ 𝜒 − ∆𝑓)‖2
2 + 𝑅(𝜒)            [Eq. 1.7] 

where ∆𝑓 is the measured field perturbation (i.e., ∆𝑓(𝑟)  =  
𝛾

2𝜋
𝑏(𝑟)), 𝑑 is the 

dipole kernel, 𝜒  is the susceptibility map, and 𝑅(𝜒)  is an additional 

regularization term. Dipole de-convolution or dipole inversion is an ill-posed 

inverse problem, because the dipole kernel is a non-invertible system, which 

can be seen as the zero cone in the k-space representation of the dipole kernel 

(Fig. 1.3b). Therefore, when QSM is reconstructed without any regularization, 

streaking artifacts are noticed in the resulting map (Fig. 1.3c). Regularization 

terms, 𝑅(𝜒) , utilize prior information about 𝜒  in order to enhance the 

condition of the reconstruction problem. For instance, the coherence between 

the edge information of the magnitude image and the 𝜒 map can be utilized as 

regularization term. [50] 
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Figure 1.3. a) Simplified reconstruction process of quantitative susceptibility 

mapping (QSM), b) zero cone in the k-space representation of a dipole kernel, 

c) streaking artifact in QSM induced by the ill-posedness of the dipole inversion 

problem. 

 

Another way to overcome the ill-posedness of the dipole inversion 

problem is to utilize deep-learning. In recent years, deep learning algorithms 

for QSM have demonstrated great potentials. [4], [51]–[54] However, it has 

been reported that the deep learning methods fail to reconstruct data with 

resolution different from that of the training resolution. [55] Although 1 mm3 

isotropic voxel size is recommended for QSM data acquisition, data with 

anisotropic voxel size are commonly acquired in clinical practice due to 

practical constraints such as the need for high in-plane resolution, scan time, or 

image SNR. Because it is not convenient to train different networks for every 

different resolution data, improving the generalization ability to different voxel 

size is vital for deep learning-based QSM methods to be widely applied. 

 

 

1.3. Outline 

In this work, I propose to develop an MRI protocol for neurodegenerative 

diseases by reducing the scan time for routinely acquired clinical contrast-

weighted images, and using the spared time to acquire two advanced MRI, NM- 

MRI and QSM, that provide complementary information of neurodegenerative 

diseases. To achieve this, a novel MRI imaging sequence, Quadcontrast, is 
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developed to reduce the scan time of routine images from 13 minutes to 6 

minutes, which is further reduced to 2 min 50 sec aided by a deep learning-

based reconstruction. Furthermore, a novel NM-MRI method, sandwichNM, is 

developed to provide reliable NM-MRI and nigral hyperintensity information 

across MRI scanners from different vendors. Finally, for high-quality QSM 

reconstruction of arbitrary resolution data, a pipeline to reconstruct QSM at 

multiple different resolution using a QSM network trained at a single resolution, 

without loss of high frequency information is developed.   
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Chapter 2. Quadcontrast 

 

2.1. Introduction 

A great advantage of magnetic resonance imaging (MRI) is its ability to 

provide multiple contrast-weighted images by adjusting sequence parameters 

such as repetition time (TR) and echo time (TE) and/or adding a preparation 

radiofrequency (RF) pulse. The multiple contrast-weighted images provide 

diagnostically valuable information at the cost of an extended scan time. 

Typical MRI scan protocols take a few tens of minutes and this long exam time 

is considered as a major limitation of MRI.  

As an effort to reduce scan time, methods have been proposed to acquire 

multiple contrast-weighted images in one sequence. For example, a modified 

turbo spin echo (TSE) sequence for dual-contrast or triple-contrast has been 

developed by sharing k-space data for different T2 contrasts [56], [57]. Also, a 

fluid-attenuated scan combined with interleaved non-attenuation 

(FASCINATE) was suggested to simultaneously acquire T2-weighted and fluid 

attenuated inversion recovery (FLAIR) images at the cost of increased specific 

absorption rate [58]. Furthermore, more efficient data acquisition methods 

including gradient-echo [59] and echo-planar imaging (EPI) [60], [61] have 

been developed. Recently, a 1-minute MR exam using EPI was proposed 

acquiring six contrast-weighted images [62], [63]. 

As an alternative approach to acquire multiple images in a reduced scan 

time, a synthetic method referred to as multi-dynamics multi-echo (MDME) 
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was demonstrated to synthesize multiple contrast-weighted images from 

parametric maps quantified using data from a single scan [64], [65]. In this 

method, however, lesion-like artifacts have been reported in the synthesized 

images, requiring a careful evaluation to avoid misinterpretation of the images 

[66], [67]. Recently, deep learning has been widely utilized in MRI [3]–[8] and 

applied for parallel imaging [9]–[13] and compressed sensing reconstruction 

[14]–[17], demonstrating potentials of using higher acceleration factors than 

conventional methods. Several approaches have been proposed to embed the 

physical model of parallel imaging in neural networks [10]–[13], [18]. One of 

them, which is referred to as a variational network, formulated the parallel 

imaging reconstruction problem as an unrolled gradient descent problem where 

the physical model was enforced while regularizers were trained from the data 

[13]. In another study, this approach was adapted to jointly reconstruct multiple 

contrast-weighted images, improving reconstruction quality [12]. 

In this study, we propose a novel pulse sequence, referred to as quad-

contrast imaging, that enables rapid and simultaneous acquisition of four 

contrast-weighted images: proton density (PD)-weighted, T2-weighted, PD-

FLAIR, and T2-FLAIR images. The total scan time of this sequence is only 6 

min. We further demonstrate that the scan time is reduced to 2 min 50 s when 

applying the joint variational network for high acceleration factor datasets. 

Additionally, we report to create a synthesized T1-weighted image, and T1- and 

T2-maps from the four images, providing a total of five contrast-weighted 

images and two quantitative maps (Fig. 2.1).  We demonstrate the 
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effectiveness of our approach for both retrospectively undersampled data and 

prospectively accelerated data in in-vivo subjects.  

 

Figure 2.1. Schematic diagram of the output images and maps of the quad-

contrast sequence. The four contrast-weighted images, PD-weighted, T2-

weighted, PD-FLAIR, and T2-FLAIR images, are natively acquired from the 

quad-contrast sequence. From these images, the T1-weighted images and T1- 

and T2-maps are synthesized and quantified. 

 

2.2. Methods 

Pulse sequence design 

The schematic diagram of the quad-contrast sequence is displayed in Fig. 

2.2. The sequence consists of three components: inversion pulses, acquisition 

blocks for non-IR-prepped contrasts (orange colored boxes), and acquisition 

blocks for IR-prepped contrasts (green colored boxes). For multi-slice imaging, 
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a concatenation factor of two, which divides the acquisition into two slice 

groups (odd slices vs. even slices) and acquires the first group fully then obtains 

the second group, (Fig. 2.2a; shown for 1st concatenation acquiring odd slices) 

is utilized with an interleaved acquisition scheme, in which slice 4n+1 and 4n+3 

are acquired in one TR (yellow dashed box) (Fig. 2.2b). The acquisition of slice 

4n+1 starts with an inversion pulse, acquiring the IR-prepped contrasts (PD-

FLAIR and T2-FLAIR) after TI. Then we wait for the recovery time of Trec1 to 

obtain non-IR-prepped contrasts (PD-weighted and T2-weighted), which is 

followed by the second recovery time of Trec2 (= TR – TI – Trec1). For slice 4n+3, 

the timing is shifted by TR/2 relative to slice 4n+1, acquiring the non-IR-

prepped contrasts during TI of slice 4n+1.  

To further enhance time efficiency, a view-shared double-echo turbo 

spin-echo acquisition is incorporated (Fig. 2.2c) [56]. The effective echo train 

length (ETL) for each contrast is 8 while 4 echoes are shared between the two 

contrasts, leaving 12 echoes instead of 16. Out of the 12 echoes, which have an 

echo spacing of 9.4 ms, the first 4 echoes (echo 1-4) are used to encode the 

central k-space of PD-weighted or PD-FLAIR contrasts (center-out with 

increasing echo numbers); echo 7-10 are used to encode the central k-space of 

T2-weighted or T2-FLAIR contrasts (towards k-space center with increasing 

echo numbers); and echo 5, 6, 11, and 12 are shared for the two contrasts, 

encoding the peripheral k-space (see Discussion). Hence, the effective TEs of 

PD-weighted and PD-FLAIR contrasts (TE1eff), and T2-weighted and T2-

FLAIR contrasts (TE2eff) are 9.4 ms and 94 ms, respectively.  
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Figure 2.2. a) Schematic diagram of the quad-contrast sequence. One TR from 

the first concatenation, in which the odd slices are acquired, is depicted. b) 

Detailed timing diagram of the quad-contrast sequence. c) Acquisition scheme 

of the view-shared double-echo turbo-spin-echo readout for the non-IR-prepped 

and IR-prepped acquisitions. RF and GPE stand for radiofrequency pulse and 

phase encoding gradient, respectively. 
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Figure 2.3. Network architecture of the joint variational network. The 

variational network structure utilized in this study consists of 10 gradient 

descent steps. Each step contains a convolutional filter, 𝒌𝒕, which mixes the 

four complex-valued input contrasts and generates 24 feature channels. The 24 

feature channels are then passed through non-linear activation 𝝓𝒕 , and then 

reduced to the number of input contrasts by the transposed filter �̅�𝒕. The data 

fidelity term, 𝐴𝑐
𝐻(𝐴𝑐𝑢𝑐

𝑡 − 𝑓𝑐), multiplied by a learnable data term weight, 𝜆𝑐
𝑡 , 

is computed separately for each of the contrast-weighted images. Here, 𝐴𝑐 is 

the parallel imaging encoding matrix, 𝑢𝑐
𝑡  is the current reconstructed image, 

and 𝑓𝑐 is the measured data of contrast c. The network was trained for 1000 

epochs using the IPALM optimizer with a mean squared error loss function, and 

a batch size of 5.  
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For all acquisition blocks, fat-saturation is applied. Each of the non-IR-

prepped acquisition blocks contains a driven equilibrium Fourier transform 

(DEFT) pulse pair to enhance the signal recovery for the IR-prepped contrasts 

(Fig. 2.2c, red arrow; see Discussion for details) [68]. At the beginning of each 

concatenation, a half-TR dummy scan is introduced for the magnetizations to 

reach a steady state prior to signal acquisition.  

The sequence timing is subject to three parameters: TR, TI, and Trec1. 

Among these, TI is heuristically determined to achieve a native FLAIR image 

whereas TR and Trec1 can be set flexibly. In our study, TR and Trec1 are chosen 

to be 9500 ms and 3400 ms, respectively, which lead to TI of 2400 ms. 

 

Data acquisition 

A total of 25 healthy subjects (17 males, age range 22-48 years old (27 

± 6.6 years)) were scanned using a 3T scanner and a 32-channel head coil 

(Siemens, Magnetom Tim Trio). The study was approved by the local 

institutional review board. Three types of data were acquired: reference quad-

contrast datasets (all subjects); prospectively accelerated quad-contrast datasets 

(all subjects); and conventional sequence datasets (5 subjects). Out of the 25 

subjects, data from 20 subjects were used for network training (1888 slices in 

total), whereas the remaining five subjects were utilized for the evaluation of 

the network and comparison with the conventional sequence results. The 5 test 

subjects were separated from the 20 training subjects without overlap. 

The scan parameters for the quad-contrast datasets were as follows: FOV 

= 256 × 256 mm2, voxel size = 1 × 1 mm2, slice thickness = 4 mm, slice gap = 



 

 20 

25%, and TR/TI/Trec1/TE1eff/TE2eff = 9500/2400/3400/9.4/94 ms. The reference 

quad-contrast datasets were acquired using acceleration factor 2 with 32 

autocalibration signal (ACS) lines (effective acceleration factor: 1.78; scan time: 

6 min). For all four contrast-weighted images, the same k-space lines were 

acquired (see Discussion and Conclusions for details). The number of slices 

ranged from 20 to 28. The datasets were generalized autocalibrating partially 

parallel acquisitions (GRAPPA)-reconstructed [69] using a customized Matlab 

code (Mathworks Inc., Natick, MA), and used as the reference quad-contrast 

image sets (QuadContref). From this reference dataset, retrospectively 

accelerated quad-contrast datasets were generated by undersampling the 

datasets by a factor of 6 with 26 ACS lines. The prospectively accelerated quad-

contrast datasets were acquired using an acceleration factor of 6 with 26 ACS 

lines (effective acceleration factor: 3.98; scan time: 2 min 50 s). The number of 

slices was fixed to 32 except for one subject from whom 24 slices were acquired 

to satisfy the specific absorption rate (SAR) limitation.  

For comparison, PD-weighted, T2-weighted, FLAIR, and T1-weighted 

contrasts were obtained using conventional sequences. Sequence parameters 

were from a routine clinical protocol. The following parameters were common 

for all acquisitions: FOV = 256 × 256 mm2, voxel size = 1 × 1 mm2, slice 

thickness = 4 mm, slice gap = 25%. The remaining sequence parameters were 

as listed below:  

- PD-weighted: TSE readout, ETL = 8, TR/TE = 9500/9.4 ms, concatenation 

= 1, and scan time = 3 min 2 s;  
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- T2-weighted: TSE readout, ETL = 8, TR/TE = 9500/94 ms, concatenation 

= 1, and scan time = 3 min 2 s;  

- FLAIR: TSE readout, ETL = 8, TR/TE/TI = 9500/94/2557 ms, 

concatenation = 2, and scan time = 6 min 3 s;  

- T1-weighted: gradient recalled echo (GRE) readout, TR/TE = 250/2.5 ms, 

flip angle = 70°, concatenation = 1, and scan time = 1 min 12 s. 

All the conventional sequences were acquired with acceleration factor 2 and 

32 ACS lines (effective acceleration factor ×1.78). The total scan time for the 

conventional sequences was 13 min 19 s. 

 

Deep neural network for image reconstruction 

 

Figure 2.4. Schematic diagram of the datasets associated in the acquisition and 

deep learning-based reconstruction of the quad-contrast imaging sequence. Two 
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data each with acceleration factor of 6 and 2 are acquired from the MRI scanner. 

Each data is reconstructed using a conventional GRAPPA reconstruction. The 

GRAPPA-reconstructed factor 2 data is used as the reference (QuadContref). 

Because misalignment exist between the data acquired with acceleration factor 

2 and 6, the data acquired using acceleration factor 2 is retrospectively 

undersampled to an acceleration factor of 6, and GRAPPAreconstructed in 

order to generate the input for training the network (QuadContGRAPPA-retro). For 

quantitative evaluation of the network performance, the retrospectively 

undersampled data is reconstructed using the network (QuadContDL-retro). 

Finally, for qualitative evaluation of the prospectively undersampled data, the 

data acquired using acceleration factor 6 (QuadContGRAPPA-pro) is input into the 

network, generating QuadContDL-pro. 

 

For parallel imaging reconstruction, a recently proposed joint variational 

network  [12], which is an extension of the variational network [13], was 

utilized. This network formulates the parallel imaging reconstruction problem 

as an unrolled gradient descent optimization problem, in which the physical 

model of the parallel imaging is embedded in the reconstruction and the 

regularizers are learned from the training data (see Fig. 2.3. for details). In 

particular, the joint variational network takes advantage of the sharable 

anatomical information of multiple clinical contrasts to jointly reconstruct the 

undersampled data of multiple contrast-weighted images. This approach fits 

perfectly to the proposed sequence because all the four contrast-weighted 

images are obtained simultaneously, providing naturally aligned images. 
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An overall view of the datasets for the acquisition and reconstruction of 

the quad-contrast imaging are summarized in Fig. 2.4. For the training of the 

network, the retrospectively accelerated QuadCont datasets (acceleration factor 

6) were GRAPPA-reconstructed (QuadContGRAPPA-retro) and used as inputs 

(complex-valued images; all channels). For labels, the QuadContref image sets 

were applied. For the input and label set, the four contrast-weighted images 

were concatenated in the channel dimension of the network. The input and label 

images were normalized by dividing the images with the root mean squared 

value of the input image. The network was trained for 1000 epochs using the 

IPALM optimizer [70] with a mean squared error loss function, and a batch size 

of 5. TensorFlow library [71] was used for programming. 

After training, the network was utilized to infer the datasets of the five 

test subjects (retrospectively accelerated dataset: QuadContDL-retro; 

prospectively accelerated dataset: QuadContDL-pro; Fig. 4). When feeding into 

the network, the input images were GRAPPA-reconstructed and normalized as 

mentioned above. 

   For quantitative evaluation, two quantitative metrics, normalized root 

mean squared error (NRMSE) and structural similarity (SSIM), were measured 

for QuadContDL-retro and QuadContGRAPPA-retro with respect to QuadContref. The 

metrics were calculated over all slices for each subject. Prior to the calculation 

of the metrics, the low signal intensity region outside the brain was masked out. 

The mean and standard deviation of the two metrics were computed across the 

five subject datasets.  
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T1-weighted image synthesis and quantitative mapping 

Using the PD-FLAIR and PD-weighted images, T1-weighted images 

were synthesized via the following equation, which is analogous to the 

magnetization prepared 2 rapid acquisition gradient echoes (MP2RAGE) [72]:  

T1-weighted = 
real(PD-FLAIR*conj(PD-weighted))

|PD-FLAIR|
2

+|PD-weighted|
2         [Eq. 2.1] 

where PD-FLAIR and PD-weighted are the complex-valued images from the 

quad-contrast reconstruction.   

For quantitative T1- and T2-maps, a voxel-wise non-linear least-square 

fitting is applied using the following models, incorporating the DEFT pulse:  

SPD-weighted =  A(1 − e−Trec1/T1)e−TE1eff /T2 ,  

ST2-weighted =  A(1 − e−Trec1/T1)e−TE2eff/T2 ,  

SPD-FLAIR = [A{1 − 2e−TI/T1 + e−(TI+Trec2)/T1)} −

                      ST2-weightede−3∆TE/T2e−(TI+Trec2)/T1)]e−TE1eff /T2 ,  

ST2-FLAIR = [A{1 − 2e−TI/T1 + e−(TI+Trec2)/T1)} −

                      ST2-weightede−3∆TE/T2e−(TI+Trec2)/T1)]e−TE2eff /T2 ,  

 [Eq. 2.2]  

where SPD-weighted, T2-weighted, PD-FLAIR, T2-FLAIR denote signals from the subscripted 

contrast, A is a constant proportional to PD, Trec1 is the recovery time between 

IR-prepped-acquisition and the non-IR-prepped acquisition, Trec2 is the 

recovery time between non-IR-prepped-acquisition and the inversion pulse, and 

∆TE is the echo spacing (Fig. 2.2b).  

The derivation of the signal models is as follows: The DEFT pulse is 

inserted after every acquisition of non-IR-prepped contrasts, which are PD-
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weighted and T2-weighted images. Because the DEFT pulse is not inserted after 

the IR-prepped contrasts acquisition, we may assume that the longitudinal 

magnetization of a voxel is 0 after the acquisition of FLAIR contrasts. Thus, the 

longitudinal magnetization right before the acquisition block of non-IR-prepped 

contrasts is as follows:  

M𝑧,before non−IR−prepped acquisition = M0(1 − 𝑒−𝑇𝑟𝑒𝑐1/𝑇1). 

Therefore, the PD-weighted and T2-weighted signals are modeled as  

𝑆𝑃𝐷 =  M0(1 − 𝑒−𝑇𝑟𝑒𝑐1/𝑇1)𝑒−𝑇𝐸1𝑒𝑓𝑓 /𝑇2, 

𝑆𝑇2
=  M0(1 − 𝑒−𝑇𝑟𝑒𝑐1/𝑇1)𝑒−𝑇𝐸2𝑒𝑓𝑓/𝑇2 , 

assuming that the T2 contrasts are determined by the effective TE. Because the 

effective echo of the T2-weighted image is at the 10th out of 12 echoes, and the 

DEFT pulse is consisted of a 180 refocusing pulse and a -90 flip-back pulse, 

the transverse signal before the DEFT pulse (and the longitudinal signal after 

the DEFT pulse) is 

M𝑥𝑦,𝑏𝑒𝑓𝑜𝑟𝑒 𝐷𝐸𝐹𝑇 = M𝑧,𝑎𝑓𝑡𝑒𝑟 𝐷𝐸𝐹𝑇 = 𝑆𝑇2
𝑒−3∆𝑇𝐸/𝑇2 , 

where ∆TE is the echo spacing. The longitudinal magnetization recovers for 

Trec2 until the inversion pulse: 

𝑀𝑧,𝑏𝑒𝑓𝑜𝑟𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑀0 − (𝑀0 − 𝑆𝑇2
𝑒−3∆𝑇𝐸/𝑇2)𝑒−𝑇𝑟𝑒𝑐2/𝑇1 . 

Assuming perfect inversion, the longitudinal magnetization after the inversion 

pulse is: 

𝑀𝑧,after  𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = −𝑀0 + (𝑀0 − 𝑆𝑇2
𝑒−3∆𝑇𝐸/𝑇2)𝑒−𝑇𝑟𝑒𝑐2/𝑇1 . 

The longitudinal magnetization recovers during TI, leading to: 
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𝑀𝑧,before IR−prepped acquisition = 𝑀0 − [𝑀0 + {𝑀0 − (𝑀0 −

𝑆𝑇2
𝑒−3∆𝑇𝐸/𝑇2)𝑒−𝑇𝑟𝑒𝑐2/𝑇1}]𝑒−𝑇𝐼/𝑇1. 

With some effort, the upper equation can be simplified as the following 

equation: 

𝑀𝑧,before IR−prepped acquisition 

= 𝑀0{1 − 2𝑒−𝑇𝐼/𝑇1 + 𝑒−(𝑇𝐼+𝑇𝑟𝑒𝑐2)/𝑇1} − 𝑆𝑇2
𝑒−3∆𝑇𝐸/𝑇2𝑒−(𝑇𝐼+𝑇𝑟𝑒𝑐2)/𝑇1). 

Therefore, the PD-FLAIR and T2-FLAIR signals are modeled as follows: 

𝑆𝑃𝐷-𝐹𝐿𝐴𝐼𝑅 = [𝑀0{1 − 2𝑒−𝑇𝐼/𝑇1 + 𝑒−(𝑇𝐼+𝑇𝑟𝑒𝑐2)/𝑇1)}

− 𝑆𝑇2
𝑒−3∆𝑇𝐸/𝑇2𝑒−(𝑇𝐼+𝑇𝑟𝑒𝑐2)/𝑇1)]𝑒−𝑇𝐸1𝑒𝑓𝑓 /𝑇2 , 

𝑆𝑇2-𝐹𝐿𝐴𝐼𝑅 = [𝑀0{1 − 2𝑒−𝑇𝐼/𝑇1 + 𝑒−(𝑇𝐼+𝑇𝑟𝑒𝑐2)/𝑇1)}

− 𝑆𝑇2
𝑒−3∆𝑇𝐸/𝑇2𝑒−(𝑇𝐼+𝑇𝑟𝑒𝑐2)/𝑇1)]𝑒−𝑇𝐸2𝑒𝑓𝑓 /𝑇2 . 

 

One can also synthesize T1-weighted or FLAIR images from this 

quantification. For comparison with the natively acquired FLAIR image from 

the proposed sequence, a synthetic FLAIR image was generated using the 

parameter maps (TR/TI/TE = 9500/2400/94 ms). 

 

All displayed images were corrected for B1 inhomogeneity using bias 

fields estimated by an automated segmentation tool [73]. The estimated field 

was extrapolated by fitting a 2nd order polynomial model to the field inside the 

brain mask. The same bias field map calculated from the PD-weighted image 

was used to correct for all the contrast-weighted images from the same dataset.  
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2.3. Results 

The five contrast-weighted images (PD-weighted, T2-weighted, PD-

FLAIR, T2-FLAIR, and synthesized T1-weighted images) of QuadContref and 

QuadContDL-pro are displayed in Fig. 2.5 along with the images from the 

conventional methods (PD-weighted, T2-weighted, T2-FLAIR, and T1-weighted 

images). Overall, the images from QuadContref (Fig. 2.5, second row) and 

QuadContDL-pro (Fig. 2.5, third row) show similar contrasts and quality to those 

from the conventional scans (Fig. 2.5, first row). No noticeable ghosting from 

k-space discontinuities in the TSE acquisition was observed. When zoomed-in 

for details, the QuadContref images are slightly noisier than the images from the 

conventional methods whereas the QuadContDL-pro images  
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Figure 2.5. Comparison between the images from the conventional scans, 

reference quad-contrast images (QuadContref), and prospectively-accelerated 

and deep learning-reconstructed quad-contrast images (QuadContDL-pro). 

Compared with the conventional images (first row), the QuadContref (second 

row) and QuadContDL-pro images (third row) show similar contrasts. The 

QuadCont images are slightly noisier than the conventional images when 

zoomed-in for details. The QuadCont T1-weighted images show a bland 

contrast compared to the conventional T1-weighted image. Note that there was 

a slight motion between the conventional scans and QuadCont scans. 
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are blurrier than the other images. Additionally, cerebrospinal fluid (CSF) 

intensity in the PD- and T2-weighted images of QuadContref and QuadContDL-

pro is to some extent lower than that in the conventional results. No partial 

volume-originating artifact, which is common in synthetic images [66], is 

observed in the PD-weighted, T2-weighted, PD-FLAIR, and T2-FLAIR images 

of the QuadCont methods because these images are natively acquired. Only T1-

weighted images, which are generated by the combination of the PD-weighted 

and PD-FLAIR images, show partial volume artifacts and have a bland contrast 

compared to the conventional T1-weighted image. Additionally, the synthesized 

T1-weighted images display hyperintensities in several venous structures such 

as superior sagittal sinus and straight sinus (see Discussion), which are different 

from the conventional T1-weighted images. Similar artifacts are also witnessed 

in a conventional synthetic MRI method [67]. The total scan time of 

QuadContDL-pro was only 2 min 50 s using the deep learning reconstruction with 

acceleration factor 6 whereas the scan time of the conventional methods was 13 

min 19 s using the GRAPPA reconstruction with acceleration factor 2 and 

QuadContref 6 min using the GRAPPA reconstruction with acceleration factor 

2. 

Fig. 2.6 demonstrates the large spatial coverage of QuadContDL-pro, 

displaying 7 slices out of 32 slices. The four native images show no conspicuous 

artifact. 
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Figure 2.6. Prospectively-accelerated and deep learning-reconstructed quad-

contrast images (QuadContDL-pro) are displayed for seven slices out of 32 slices, 

demonstrating the large brain coverage. The scan time is only 2 min 50 s. 
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When the deep learning reconstruction is evaluated using retrospectively 

undersampled data (acceleration factor 6), the images (QuadContDL-retro) show 

superior quality to those of the GRAPPA-reconstructed images 

(QuadContGRAPPA-retro) (Fig. 2.7). The absolute difference images, which are 

referenced by the QuadContref images and displayed in ten times smaller ranges, 

reveal substantially reduced noises in the QuadContDL-retro images, 

demonstrating the advantage of the deep learning reconstruction in the heavily 

undersampled data. The quantitative metrics agree with the observations (Table 

2.1). When averaged among the four natively-acquired contrast-weighted 

images, the mean and standard deviation of NRMSE of the QuadContDL-retro 

images is 4.36 ± 1.55% while that of QuadContGRAPPA-retro is 10.54 ± 5.30%, 

consolidating sthat the deep learning reconstruction substantially outperformed 

the GRAPPA reconstruction. The SSIM value averaged among the four 

contrasts also reconfirms the advantage of the deep learning reconstruction, 

reporting 0.990 ±  0.004 for QuadContDL-retro and 0.953 ±  0.022 for 

QuadContGRAPPA-retro. 
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Fig. 2 . 7. Comparison of the retrospectively-accelerated and reconstructed 

images to the reference quad-contrast images. a) Reference quad-contrast 

images (QuadContref), b) retrospectively-accelerated and GRAPPA-

reconstructed images (QuadContGRAPPA-retro), c) absolute difference between 

QuadContref and QuadContGRAPPA-retro, d) retrospectively-accelerated and deep 

learning-reconstructed images (QuadContDL-retro), and e) absolute difference 

between QuadContref and QuadContDL-retro. The difference images are multiplied 

by 10 for visualization. The QuadContGRAPPA-retro images display high errors 

with respect to the QuadContref images, whereas the QuadContDL-retro images 

display substantially reduced errors. 
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A selected slice of the T1- and T2-maps quantified using the QuadContref 

image set (Fig. 2. 8, first row) and the QuadContDL-pro image set (Fig. 2.8, 

second row) display maps of good quality.  

 

Figure 2.8. T1- and T2-maps calculated using the QuadContref image set and the 

QuadContDL-pro image set are displayed. The quantitative maps are of good 

quality for both results. 
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In Fig. 2.9, a natively-acquired FLAIR image in QuadContDL-pro is 

compared to a synthesized FLAIR image using the T1- and T2-maps from 

QuadContDL-pro. The magnified images in the red and orange boxes suggest that 

the synthetic FLAIR image contains hyperintensity at the boundaries of CSF 

and brain parenchyma (arrows in Fig. 2.9c), which is not present in our natively-

acquired QuadContDL-pro image (arrows in Fig. 2.9b). This artifact is similar to 

that reported in the synthetic FLAIR images of a synthetic imaging method [65], 

[66]. The absolute difference image in Fig. 2.9e reveals that the artifact is 

prevalent in CSF boundaries across the brain. 

 

2.4. Discussion  

In this article, we proposed the quad-contrast sequence and the post-

processing method that enable the simultaneous acquisition of the four contrast-

weighted images (PD-weighted, T2-weighted, PD-FLAIR, and T2-FLAIR 

images), and the synthesis of the T1-weighted images, and two quantitative 

maps (T1- and T2-maps). The whole brain is covered in 6 min of scan time 

(acceleration factor 2), which is further reduced to 2 min 50 s via deep learning 

reconstruction (acceleration factor 6). The rapidly acquired high quality images 

can be useful for a routine brain evaluation. 

In our method, the FLAIR contrast is natively acquired rather than 

synthesized from quantitative maps. Therefore, the FLAIR images do not suffer 

from hyperintensity at the boundary of CSF and brain parenchyma, which has 

been reported in synthetic multi-contrast imaging and was misinterpreted as 

lesions [66], [74], [75]. This is an important advantage because FLAIR images 
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are widely utilized for clinical diagnosis. Another advantage of the proposed 

method is that the contrast-weighted images are naturally aligned. This enables 

the joint reconstruction of the multiple contrast-weighted images in deep 

learning, which enhances the reconstructed image quality. Additionally, the 

images are not prone to geometric distortion because the sequence is based on 

TSE readout, differentiating our method from EPI-based multi-contrast 

methods [62], [63].  

In the current reconstruction, the same undersampling pattern is used for 

all contrasts. Recently, shifted undersampling patterns for different contrasts 

have been shown to enhance reconstruction quality [12], [76]. This approach 

may be applied for our method to further improve the deep learning 

reconstruction results.  

During the development, various k-space orderings were simulated and 

tested. The current scheme showed the least ghosting artifact and was chosen 

as the final design. It has a small discontinuity in the central k-space (echo 1, 2, 

3, and 4, and echo 10, 9, 8, and 7 for PD- and T2- contrasts, respectively), while 

leaving larger discontinuity at the periphery of the k-space (echo 5, 6, 11, and 

12). Because the peripheral k-space primarily contributes to the high frequency 

details of an image rather than contrast, the current k-space ordering is a good 

compromise between acquisition efficiency vs. image quality and contrast. 

In the retrospectively reconstructed images, the noises are substantially 

reduced compared to the GRAPPA reconstructed images, but the noise 

distribution appears to be nonuniform. Additionally, the T2-weighted and T2-

FLAIR images tend to have larger reconstruction errors than the PD-weighted 



 

 38 

and PD-FLAIR contrasts, regardless of the reconstruction methods. This may 

originate from lower signal-to-noise ratios (SNRs) of the T2-weighted and T2-

FLAIR images than the other two images.  

Different from the natively acquired QuadCont images, which show 

good image quality, the synthesized T1-weighted images appear noisier and 

rather bland compared to the conventional T1-weighted image. This is primarily 

due to the long TI, resulting in reduced contrasts between PD-weighted and PD-

FLAIR images in the brain tissue. For improved T1 sensitivity, a shorter TI 

value can be used at the cost of a modified FLAIR contrast. Another noticeable 

difference of the T1-weighted images is hyperintensities at several venous 

structures. The artifacts may originate from flow which was reported to 

generate similar artifacts in a synthetic MRI method [67]. 

In this work, we used Eq. 2.1 to synthesize T1-weighted images.  It is 

also possible to generate T1-weighted images using the quantitative maps [64]. 

When compared, the quality of T1-weighted images generated from quantitative 

maps is poorer than those generated using Eq. 2.1 (data not shown), which may 

be explained by quantification errors that propagate into the synthesized images.  

The sequence contained a DEFT pulse pair after the non-IR-prepped 

acquisition block to enhance the SNR of the IR-prepped contrasts via increased 

TI. On the other hand, no DEFT pulse is utilized after the IR-prepped 

acquisition block because the SNR improvement of the non-IR-prepped 

contrasts is small due to the long Trec1 while additional DEFT pulses will 

increase SAR.  
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In a few subjects, the number of slices was reduced due to SAR 

limitations. A lower refocusing flip angle (e.g., 150°) and/or RF pulses tailored 

for SAR reduction [77] may be used to decrease SAR without compromising 

the number of slices. 

  The short scan time and high-quality images may help our method to be 

utilized for a routine brain evaluation. In particular, the natively acquired 

FLAIR contrast, which is widely used for lesion detection, will be beneficial 

for diagnosis.  
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Chapter 3. SandwichNM 

3.1. Introduction 

Neuromelanin (NM) is a dark insoluble pigment found abundantly in 

catecholaminergic cells of substantia nigra pars compacta (SNc) and locus 

coeruleus (LC), and the pigment is known to accumulate during normal aging 

[19], [20] . NM abnormality has long been associated with Parkinson’s disease 

(PD) because of the selective death of NM containing cells in PD patients [21], 

which results in a visible loss of the pigment in SNc and LC [22], [23].  

NM-sensitive MRI or NM-MRI [24]–[26] is a non-invasive proxy 

measure of NM in the human brain, which may provide valuable information 

about PD [27]–[30] and other neurological disorders [31]–[35]. In particular, 

NM-MRI has displayed the ability to discriminate between healthy control and 

PD patients [36], [37], and between PD and other neurological diseases such as 

idiopathic PD and Alzheimer’s disease [32], [33], [38]. It has also shown 

correlation with PD progression [36], [39]–[42], revealing its potential as a 

biomarker of PD.  

To generate NM-sensitive MRI images, magnetization transfer (MT) 

imaging with T1-weighting is commonly used [26], [39], [78], [79]. This 

combination of the contrasts can be explained as follows: For T1-weighting, 

NM exists in the form of a paramagnetic NM-iron complex, which leads to a 

shortened T1 of NM containing voxels [29]. For MT, the NM-abundant tissues, 

which have relatively low macromolecular content due to the large dopamine 

cell bodies, are surrounded by a tissue with high macromolecular content (e.g., 
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crus cerebri or CC), which leads to a suppressed signal when MT pulses are 

applied. Therefore, MT imaging with T1-weighting highlights T1-shortened 

NM-containing voxels while suppressing the surrounding tissues [26], [80], 

[81]. So far, several MT-prepared TSE and GRE protocols have been proposed, 

delineating NM [26], [78], [79].  

While the option of applying an MT pulse is available in all vendors, it 

is well-known that the MT pulse parameters such as pulse shape, flip angle, 

duration, and offset frequency, which govern saturation efficiency, are often 

fixed in product sequences and substantially different across vendors and 

sequences. For example, a previous study reported a difference between the 

Siemens and Philips off-resonance MT pulses (e.g., flip angle of 500° and 220° 

for Siemens and Philips, respectively) and the resulting inter-site bias between 

semi-quantitative MT maps [82]. Furthermore, the mechanism of the MT 

saturation may also differ by vendor or sequence (e.g., off-resonance vs. on-

resonance). These MT parameter differences between vendors limit direct 

comparisons between images. An alternative option is to develop a custom-

designed MT sequence for all vendors, but this requires substantial efforts for 

programming sequences for each software version and upgrade, making this 

solution less attractive for clinical use. 

In this study, we propose a new NM imaging method, sandwichNM, 

which uses the incidental MT effects of spatial saturation pulses for MT-

weighting [83]. The spatial saturation pulse, which is available in the product 

sequences of all vendors, is controllable because the amount of MT effects can 

be modified by the number of pulses deployed and the offset-frequency can be 
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changed by the location and thickness of the pulses, giving freedom and 

usability with no effort for sequence programming. In sandwichNM, the 

saturation bands are placed both inferior and superior to the imaging volume, 

like a sandwich, balancing MT weighting across slices (Figure 3.1). Here, we 

assess and optimize the effects of the sandwich saturation pulses on the NM 

contrast using computer simulations and in-vivo experiments. Then, in-vivo 

images are compared with those of conventional MT-prepared 3D GRE (MT-

GRE) and 2D TSE (MT-TSE) methods using a vendor-supplied MT pulse. 

Finally, multi-vendor experiments are conducted to emphasize the effectiveness 

and usability of sandwichNM imaging. 

 

3.2. Theory 

Position dependent MT effects of a spatial saturation pulse 

 

Figure 3.1. (a) Illustration of sandwichNM imaging and (b) offset-frequency of 

a single spatial saturation pulse. SandwichNM imaging uses spatial saturation 

pulses for magnetization transfer (MT) weighting; an even number of saturation 
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pulses are alternately applied inferior and superior to the imaging volume for 

symmetric MT effects across slices. The offset-frequency of the saturation RF 

(Freqoffset) is determined as shown in the equation (Eq. 3.1). In sandwichNM 

imaging, this position dependent offset-frequency, which leads to a position 

dependent MT effect, is compensated by the same RF pulse at the opposite side 

of the imaging slab, generating position independent MT-weighting. 

 

In this section, we analyze the position dependent MT effects of a spatial 

saturation pulse. A schematic drawing of the proposed method and the slice 

location-dependent offset-frequency of a spatial saturation RF pulse are 

depicted in Figure 1. The spatial saturation pulse is applied with a slice selection 

gradient. Therefore, the offset-frequency (Freqoffset) is defined as follows: 

Freqoffset = (Distsat + Locslice) ×
BWsat

Thicksat
    [Eq. 3.1] 

where Distsat is the center-to-center distance between the saturation region and 

the imaging slab, Locslice is the location of the slice of interest with respect to 

the center of the imaging slab, BWsat is the bandwidth of the saturation RF pulse, 

and Thicksat is the thickness of the spatial saturation. Distsat is determined by 

Thicksat, the saturation gap (Gapsat), and the imaging slab thickness (Thickslab) 

as follows:  

Distsat = 0.5 Thicksat + Gapsat + 0.5 Thickslab            [Eq. 3.2] 

Combining the two equations, the offset-frequency is proportional to Gapsat and 

inversely proportional to Thicksat for fixed Thickslab and BWsat. Therefore, using 

a smaller Gapsat and larger Thicksat would increase MT saturation. However, this 
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would inevitably increase the amount of direct saturation [84] and decrease the 

image signal to noise ratio (SNR). 

As shown in Eq. 3.1, the offset-frequency is related to Locslice. This 

implies that the application of single-sided spatial saturation results in 

asymmetric MT effects across slices. To avoid this asymmetry, we propose to 

apply spatial saturation pulses both inferior and superior to the imaging slab 

with the same distance from the imaging volume (Figure 3.1a). Hence, an even 

number of flow saturation pulses (e.g., 2, 4, 6) are applied, with a pair of pulses 

applied superior and inferior to the imaging volume. This application of spatial 

saturation is hereafter referred to as sandwich saturation.  

 

3.3. Materials and Methods 

Simulation of MT effects of spatial saturation pulses 

To assess the effect of spatial saturation pulses on the image contrast, the 

signal intensity of SNc and a reference region (CC) at the slice position (Locslice) 

was simulated numerically by solving the Bloch equation for free water and 

macromolecular populations [84]:  

 

 
 

[Eq. 3.3] 

where superscript f (or m) denotes the free water (or macromolecular) pool, 

respectively, R1 (or 2) denotes the relaxation rates, kfm (or mf) is the exchange rate 
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from free to macromolecular (or macromolecular to free) pool, Mx (or y or z) is the 

x (or y, or z) magnetization, M0 is the initial magnetization, 𝜔1(𝑡) is the time-

varying amplitude of the flow saturation pulse, and W(t) =

 𝜋𝜔1
2(𝑡)𝑔(∆(𝑑𝑆), 𝑅2

𝑚) is the saturation rate of the macromolecular pool. The 

line shape of the macromolecular pool, 𝑔(∆(𝑑𝑆), 𝑅2
𝑚), was chosen to be super-

Lorentzian [85]. The simulation parameters for SNc and CC were summarized 

in Table 3.1, which were adapted from a previous study [86]. M0
f of SNc and 

CC are set to be 1 and 0.86, respectively based on our observations of lower 

proton density in CC compared to SNc (Figure 3.2).  

 

 

Table 3.1. Pool size ratios and T1 values of SN and CC adapted from [86] 
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Figure 3.2. Proton density maps of the midbrain acquired (IRB approved; 

single subject) using the method in Oros-Peusquens et al. [1]. The CC region 

displays lower proton density compared to SN (0.67 vs. 0.81).  

 

The parameters of RF pulses were matched to those in the experiments 

using Siemens 3T MRI (Trio, Siemens, Erlangen, Germany). The duration of 

the spatial saturation pulse and the excitation pulse for the simulation were 3.84 

ms and 1 ms, respectively. The flip angle (FA) of the spatial saturation pulse 

was set to 90° and the time bandwidth product was 8.33, resulting in an RF 

bandwidth of 2.17 kHz. There was a 3 ms gap between consecutive spatial 

saturation pulses despite the gap between the last spatial saturation pulse and 

the excitation pulse having been set to 1.97 ms. The imaging slab thickness was 

40 mm, and the signals of SNc and CC were simulated using 1600 spins 

uniformly distributed throughout the slab. The imaging slab was divided into 

16 slices; the SNc and CC signals of 100 spins located in each slice were 

averaged. Finally, the contrast ratio (CR) between SNc and CC was calculated 

for each slice [24]: 

CR (%) =
(𝐼𝑆𝑁 − 𝐼𝐶𝐶)

𝐼𝐶𝐶
× 100,   [Eq. 3.4] 

where 𝐼𝑆𝑁 and 𝐼𝐶𝐶 are the signals of SNc and CC, respectively.  

Several conditions and parameters were tested with the default 

parameters of Nsat = 4, Gapsat = 10 mm, and Thicksat = 80 mm. First, the 

sandwich saturation scheme was compared to the single-sided saturation 

scheme in order to assess the uniformity of the MT effects across the imaging 
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slab. Then, the effects of Gapsat and Thicksat were assessed by changing Gapsat 

from 0 to 100 mm with a 10 mm interval, and Thicksat from 20 to 110 mm with 

a 10 mm interval. The number of spatial saturations (Nsat) was also tested for 2 

and 4. For Nsat of 4, TR was 60 ms and FA was 20° (TR and FA adapted from 

Liu et al. [79]). For Nsat of 2, TR and FA were adjusted to 30 ms and 14° , 

respectively.  

 

MRI experiments  

Three experiments, one to determine the spatial saturation parameters, 

another to compare sandwichNM with conventional NM methods, and the third 

to evaluate multi-vendor performances, were conducted. The study was 

approved by IRB and a total of eight subject, who provided written consent, 

were scanned (three for the first experiment, one for the second experiment, and 

four for the last experiment). In the first two experiments, data were collected 

using 3T MRI from Siemens (Trio, Siemens, Erlangen, Germany), whereas in 

the multi-vendor experiment, scans were performed using 3T MRI systems 

from three different vendors (Skyra, Siemens, Erlangen, Germany; Ingenia CX, 

Philips, Best, Netherlands; Discovery750, GE, Milwaukee, WI) in three 

different MRI centers (Samsung Medical Center, Seoul, Korea; Severance 

Hospital, Seoul, Korea; Konkuk University Hospital, Seoul, Korea).   
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[Optimization for spatial saturation parameters] The default sequence 

parameters for sandwichNM were as follows: FOV = 230 × 230 × 40 mm3, 

voxel size = 0.5 × 0.5 × 2.5 mm3, TR/TE = 60/3.86 ms, FA = 20° , readout 

bandwidth = 170 Hz/pixel, Nsat = 4, Gapsat = 10 mm, Thicksat = 80 mm, and 

acquisition time = 5 min 30 s. The imaging slab was oriented perpendicular to 

the 4th ventricle, and the center of the imaging volume was located tangent to 

the top of the pons. 

To compare the results with those of the computer simulation and also to 

determine the sequence parameters that provide the best NM contrast, four tests 

were conducted. First, to evaluate the uniformity of the MT effects, the 

sandwich saturation scheme and the single-sided saturation scheme were 

acquired and compared (one subject). Then, to measure the effects of Gapsat, the 

sandwichNM acquisition was repeated with Gapsat = 0, 10, 50, and 100 mm (one 

subject). After that, the effects of Thicksat were assessed by changing Thicksat 

(20, 50, 80, and 110 mm; one subject). Finally, the two different settings of Nsat, 

one with Nsat = 2, TR = 30 ms, and FA = 14°, and the other with Nsat = 4, TR = 

60 ms, and FA = 20°, were compared. The last experiment was conducted using 

the data of the multi-vendor experiment (see multi-vendor experiment). 

For each experiment, regions of interest (ROIs) were manually drawn for 

SNc and CC using MATLAB (Mathworks Inc., Natick, MA), and CR between 

the mean signal intensities of SNc and CC was calculated. The SNR of SNc was 

also calculated to account for the signal drop resulting from the MT effects. 
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[Comparison with conventional NM imaging methods] Two conventional 

NM-sensitive images, MT-GRE and MT-TSE, were acquired, and the results 

were compared with that of the sandwichNM. The parameters for the MT pulse 

were offset-frequency = 1200 Hz, FA = 500°, and RF bandwidth = 230 Hz. The 

3D GRE sequence parameters were matched to the sandwichNM parameters, 

while 2D TSE images were acquired with FOV = 230 × 230 mm2, slice 

thickness = 2.5 mm, voxel size = 0.5 × 0.5 mm2, TR = 910 ms, TE = 14 ms, 

turbo factor = 6, concatenation = 2, number of averages = 2, readout bandwidth 

= 120 Hz/pixel, and acquisition time = 4 min 36 s (adapted from Pyatigorskay 

et al. [87]). The SNR and CR were calculated for all three methods in three 

slices containing the largest SNc volume.  

 

[Multi-vendor experiment] At each scanner, sandwichNM and MT-GRE 

images were acquired using product sequences with no modification. The scan 

protocol parameters are summarized in Table 3.2. The protocols with Nsat = 2 

and 4 were both acquired for comparison. Note that a different FOV was used 

for the GE scanner because there was no option available for elliptical scanning 

or slice oversampling.  

For analysis, the sandwichNM and MT-GRE images that were acquired 

using the Siemens and GE scanners were rigidly registered to the sandwichNM 

image acquired from the Philips scanner using the FMRIB's Linear Image 

Registration Tool (FSL FLIRT) [88]. The ROIs of SNc and CC were drawn on 

the sandwichNM images acquired from the Philips scanner. Then the CR 

between SNc and CC were calculated as defined in Eq. 3.4. 
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3.4. Results 

The simulation results of the sandwich saturation scheme and the single-

sided saturation scheme are displayed in Figure 3.3a. In the single-sided scheme, 

CR predominantly decreases towards the superior slices due to the asymmetric 

MT effects of the spatial saturation pulses (Figure 3.3a: red line). In the 

sandwich saturation scheme, however, CR is almost uniform across the slices, 

demonstrating the advantage of the approach (Figure 3.3a: blue line). The 

simulation results are partially supported by the experimental results shown in 

Figure 3.3b where CR in a relatively superior slice (slice 12) is higher in the 

sandwich saturation (25.5 ± 5.4%) than in the single-sided saturation (21.9 ± 

5.4%), agreeing with the simulation results. 

 

 

Figure 3.3. (a) Simulation results and (b) experimental results of the single-

sided scheme and the sandwich saturation scheme. When the spatial saturation 

pulses are applied inferior to the imaging slab, CR decreases toward the superior 

end of the imaging slab (red line). On the other hand, the sandwich saturation 
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scheme shows a flat CR across the imaging slab (blue line). In the experiment, 

the slice above the center of the slab (slice 12) reports a lower CR (21.9 ± 5.4%) 

in the single-sided scheme than that (25.5 ± 5.4%) in the sandwich saturation 

scheme. 

 

 

Figure 3.4. (a) Images with Gapsat = 0, 10, 50, and 100 mm displayed for a 

representative slice. (b) CRs and (c) signal intensities and SNRs plotted over 

Gapsat. The simulation results are displayed in black dashed lines while the 

experimental results are displayed in red solid lines. Error bars indicate standard 

deviations. Both simulated and experimental CRs decrease with Gapsat whereas 

both simulated signal intensity and experimental SNRs increase with Gapsat. 

 

When the CR and signal intensity of SNc are simulated for various Gapsat, 

CR decreases and signal intensity increases as Gapsat increases (Figures 3.4b, c; 

black dashed lines). These results are in agreements with the experimental 
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results of CR and SNR (Figure 3.4b, c; red solid lines).  

 

 

Figure 3.5. (a) Images with Thicksat = 20, 50, 80, and 110 mm displayed for a 

representative slice. (b) CRs and (c) signal intensities and SNRs plotted over 

Thicksat. The simulation results are displayed in black dashed lines while the 

experimental results are displayed in red solid lines. Error bars indicate standard 

deviations. Both simulated and experimental CRs increase with Thicksat, 

whereas both simulated signal intensity and experimental SNRs decrease with 

Thicksat. 

 

When the CR and signal intensity of SNc are simulated for various 

Thicksat, CR increases and signal intensity decreases as Thicksat increases 

(Figure 3.5b, c; black dashed lines), supporting the experimental results (Figure 

3.5b, c; red solid lines). 
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The simulated CR of Nsat = 2 is 22.7 %, and is comparable to that of Nsat 

= 4 (22.4 %). These comparable CR values are confirmed by the experiments 

(28.1 ± 6.7% when Nsat = 2 vs. 27.2 ± 5.7% when Nsat = 4; Figure 3.6 and Table 

3.3). Additionally, SNRs of SN using the two parameters are also similar (224 

± 12 when Nsat = 2 vs. 249 ± 11 when Nsat = 4). Because setting two saturation 

bands is more convenient during scanning, the final parameters for 

sandwichNM are Nsat = 2, TR = 30 ms, FA = 14°, Gapsat = 10 mm, and Thicksat 

= 80 mm where the last two parameters are chosen to balance between SNR 

and CR.  

 

 

Table 3.3. CRs calculated from the sandwichNM results with Nsat = 2 and Nsat = 

4. The values are calculated across the four subjects from the multi-vendor study. 

 

 

Figure 3.6. Comparison between sandwichNM results acquired using Nsat = 2 



 

 55 

with TR = 30 ms vs. Nsat = 4 with TR = 60 ms. Both parameters report 

comparable CRs (28.1 ± 6.7% when Nsat = 2 vs. 27.2 ± 5.7% when Nsat = 4) and 

SNRs (224 ± 12 when Nsat = 2 vs. 249 ± 11 when Nsat = 4). 

 

When this sandwichNM acquisition is compared with the conventional 

methods, the results show the highest CR in the sandwichNM images (23.6 ± 

5.4%) followed by MT-TSE (20.6 ± 7.4%) and MT-GRE (17.4 ± 6.0%) (Figure 

3.7). The SNR of sandwichNM (121 ± 5) is slightly lower than that of MT-GRE 

(135 ± 7), but higher than that of MT-TSE (98 ± 6). The results were consistent 

when ROIs were drawn on the images from the conventional sequences. 

Furthermore, the MT-GRE images suffer from flow artifacts whereas the 

proposed method does not because of the saturation bands. Hence, the overall 

results of sandwichNM are superior to those of the conventional methods. 

 

Figure 3.7. Comparison between sandwichNM and conventional NM methods. 

SandwichNM images display the highest CR (23.6 ± 5.4%), followed by those 

of MT-TSE (20.6 ± 7.4%) and MT-GRE (17.4 ± 6.0%). While the SNR of the 
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sandwichNM images (121 ± 5) is slightly lower than that of MT-GRE (135 ± 7) 

but it is higher than that of MT-TSE (98 ± 6). 

 

The results of the multi-vendor study are displayed in Figure 3.8 and 

Figure 3.9 for Nsat = 2 and 4, respectively. The sandwichNM images provide 

high and consistent contrasts across the scanners (Figure 3.8a and 3.9a) while 

the MT-GRE images suffer from flow artifacts and contrast variations (Figure 

3.8b and 3.9b). The mean CRs of the sandwichNM images across all subjects 

are higher than those of MT-GRE images in all three vendors (Figure 3.8c: 28.4 

± 1.5% vs. 24.4 ± 2.8%, 27.2 ± 1.0% vs. 13.3 ± 1.3%, and 27.3 ± 0.7% vs. 20.1 

± 0.9% for Philips, GE, and Siemens, respectively). When the mean CRs are 

calculated for each subject across vendors, the sandwichNM images display 

higher means and lower standard deviations compared to those of the MT-GRE 

images (Figure 3.7c: 28.6 ± 1.5% vs. 20.1 ± 8.1%, 27.1 ± 1.1% vs. 19.4 ± 5.1%, 

27.6 ± 0.9% vs. 18.0 ± 4.0%, and 27.2 ± 1.1% vs. 19.5 ± 5.3%, for subjects 1, 

2, 3, and 4, respectively). These lower standard deviations suggest lower 

variability across vendors. 

 

 



 

 57 

 

Figure 3.8. Multi-vendor study results of (a) sandwichNM (Nsat = 2) vs. (b) 

MT-GRE NM, displaying images from two subjects. When averaged across all 

four subjects, the sandwichNM results report higher CR values and lower 

standard deviations than those of conventional NM in all three vendors. 

Furthermore, when the mean CRs are calculated for each subject across vendors, 

the sandwichNM images yield higher means and lower standard deviations 

compared to those of the MT-GRE images, suggesting lower variability across 
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vendors. 

 

 

Figure 3.9. Comparison between (a) sandwichNM with Nsat = 4 and (b) 

conventional NM in the multi-vendor study. The sandwichNM images display 

consistently higher CRs and lower variations across the scanners. 
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3.5. Discussion 

In this study, we proposed a new NM imaging method, sandwichNM, 

which provides consistent and high-quality images across scanners from 

different vendors.  

The computer simulated CR values deviated from the experimental CR 

values (simulated CR: 22.7% vs. experimental CR: 27.3 ± 0.7 % for the default 

parameters using Nsat = 2). This difference may be explained by the sensitivity 

of CR to the tissue parameters, particularly the pool size ratio. In our simulation, 

the parameters were adopted from Trujillo et al. [86]. When the simulation was 

repeated with another parameters within one standard deviations from the mean 

values of the pool size ratio, CR became 28.7%, revealing a better agreement 

with the experimental value.  

In this study, we suggested two protocols of sandwichNM imaging: Nsat 

= 2 with TR = 30 ms and Nsat = 4 with TR = 60 ms, both of which demonstrated 

comparable CRs and SNRs (Figure 3.6, Table 3.3). Practically, applying the two 

saturation bands (i.e., Nsat = 2) is preferable in a clinical setting because the 

majority of MRI scanners provide options to automatically apply two parallel 

saturation bands superior and inferior to the imaging volume. Hence, the 

protocol setting during scanning is easier and can be consistent in all subjects. 

The consistent positioning of the saturation bands is important because it 

influences the NM contrast (Figures 3.4 and 3.5). On the other hand, the Nsat = 

4 setting can acquire four to five echo data with no cost in acquisition time. 

These multi-echo data may be utilized for susceptibility-based nigral 

hyperintensity imaging [89], [90]. Alternatively, one may increase Nsat from 4 
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to 6 in the case of TR = 60 ms, further increasing MT weighting. But this change 

may decease SNR and induce a higher specific absorption rate (SAR), hitting 

the SAR limit. In our experiments, SandwichNM was tested for two different 

resolutions: one with a high in-plane resolution (0.5 × 0.5 mm2) and a thick slice 

(2.5 mm); and the other with a moderate in-plane resolution (0.8 × 0.8 mm2) 

and a thin slice (1.2 mm). These options resulted in differences in image quality 

and SNR (Figures 3.6 vs. 3.7). They may have different applications. For 

instance, the protocol using the high in-plane resolution may better visualize 

LC, which is known to have a thin cylindrical structure of 2-2.5 mm thickness 

[91] (Figure 3.10). Our imaging volume is large enough to cover both SN and 

LC when it is appropriately located. In this study, however, we focused on 

optimizing the method for the SN structure, and therefore the performance of 

sandwichNM on LC imaging is the subject of a future study. 

 

 

Figure 3.10. Examples of LC images using sandwichNM with the resolutions 

of 0.5 × 0.5 × 2.5 mm3 (left) and 0.8 × 0.8 × 1.2 mm3 (right). The setting 

with the higher in-plane resolution visualizes LC better than that with the lower 

in-plane resolution. 
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The sandwichNM CR values reported in our parameter optimization 

experiments were somewhat different from those in the multi-vendor 

experiments (e.g., 23.6% in Figure 3.7 vs. 28.1% in subject 3 of Figure 3.8c). 

This difference may be explained by the well-known age effects of the NM 

contrast (age of 24 for the subject in Figure 6 vs. age of 30 for the subject 3 in 

Figure 7c) [92]. 

SandwichNM displayed relatively consistent contrasts across scanners. 

However, we must note that TE was different from one vendor to another (4, 2, 

and 3.62 ms for Philips, GE, and Siemens, respectively). This difference may 

have influenced the NM contrasts because the iron in SN may induce different 

T2* decays for different TEs although the effects can be limited due to the short 

TEs. Additionally, the saturation pulse type or shape applied in each vendor or 

each software or hardware version of scanners was not considered. For example, 

the saturation pulse parameters of Siemens had duration = 3.84 ms and 

bandwidth = 2.18 kHz while those of GE had duration = 4 ms and bandwidth = 

1.23 kHz. Despite these differences, our multi-vendor study results suggest that 

sandwichNM reports much more consistent outcomes than those of the 

conventional NM results, suggesting the advantage of the method.  

Despite the correlation between NM concentration and MRI NM contrast 

[26], the later is expected to have contributions from other factors (e.g., myelin 

concentration in surrounding white matter). Furthremore, the portion of NM 

and non-NM factors is not well studied and may vary among acquisition 

methods. Therefore, one has to be cautious in interpreting the contrast and also 

exploration for NM specificity is necessary. 
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The scan time and voxel size of the conventional NM-MRI methods were 

matched to those of sandwichNM for fair comparison between methods. 

Therefore, the sequence parameters such as voxel size or number of averages 

are different from previously published methods. For example, in a study by 

Pyatigorskaya et al. [87], TSE was acquired with the voxel size of 0.4 × 0.4 × 

3 mm3 and three averages. This would result in a higher SNR at the cost of a 

longer scan time. Another study proposed to use a 2D MT-GRE sequence with 

a customized MT pulse [93], showing high quality SN images. But the approach 

was not compared with our method because it requires a customized sequence. 

Manually drawn ROIs were utilized for CR and SNR calculation in this 

study. Using automated methods such as deep-learning based segmentation [94], 

[95] or atlas-based ROIs [96] may enhance anatomical targeting. 

The large deviations of the MT-GRE results may originate from the MT 

pulse differences across vendors. The Philips MT-GRE images, which utilized 

an on-resonance MT pulse, reported larger CRs (24.4 ± 2.8%) than those from 

GE and Siemens, which utilized off-resonance MT pulses (13.3 ± 1.3% for GE 

and 20.1 ± 0.9% for Siemens). Furthermore, although vendor-supplied MT 

pulses from Siemens and GE both applied off-resonance pulses, parameters 

such as pulse shape, duration, FA, and offset frequency were substantially 

different (Siemens: Gaussian pulse, 10 ms, 500°, 1.2 kHz; GE: Fermi pulse, 8 

ms, subject dependent variable, 2.4 kHz), resulting in significantly different MT 

effects.   
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Chapter 4. Resolution Generalization of  

deep-learning based QSM network 

 

4.1. Introduction 

In recent years, deep learning algorithms for QSM have demonstrated 

great potentials. [4], [51]–[54] However, it was reported that the deep learning 

methods fail to reconstruct data with resolution different from that of the 

training resolution. [55] Although 1 mm3 isotropic voxel size is recommended 

for QSM data acquisition, data with anisotropic voxel size are commonly 

acquired in clinical practice due to practical constraints such as the need for 

high in-plane resolution, scan time, or image SNR. Because it is not convenient 

to train different networks for every different resolution data, improving the 

generalization ability to different voxel size is vital for deep learning-based 

QSM methods to be widely applied. 

To overcome this pitfall, several methods proposed to revise the network 

architecture to enhance adaptability to different resolution data, to incorporate 

resolution information as network input, to use the physical model of QSM to 

refine the network, or to utilize a physical model-based un-supervised network. 

While these methods provide better generalizability to data resolution 

compared to networks trained to reconstruct QSM at a single resolution, the 

problem is not completely solved. 

In this work, we propose a pipeline to reconstruct multiple resolution 

QSM data using QSMnet trained at a single resolution. The local field map is 
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re-sampled multiple times in different spatial locations, and the re-sampled 

local field maps are used to reconstruct QSM maps at training data resolution. 

The reconstructed maps are then combined, and corrected for using a procedure 

named “dipole compensation”. We demonstrate the effectiveness of the 

proposed pipeline by comparing with two scenarios, interpolation and naïve 

input, that reconstruct different resolution data using network trained at a single 

resolution, the proposed pipeline demonstrated the best performance both 

qualitatively and quantitatively with respect to the COSMOS reconstruction. 

 

4.2. Methods 

The proposed pipeline consists of four steps. Overview of the proposed 

method is displayed in Figure 4.1 for the case where input data is at a higher 

resolution (resol input = 0.5 mm3) compared to that of the network training 

resolution (resoltrain = 1.0 mm3). While the diagrams are represented in 1D for 

simplification, extension to 3D is straightforward. 

 

[Step 1: re-sampling of local field map] First, the local field maps ar

e re-sampled to the training resolution at multiple spatial locations (Figu

re 4.1b). This is analogous to multiplying comb functions with different 

shifts in the image space, which results in k-space aliasing with differe

nt linear phase for each sampling case.  
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[Step 2: network inference] The re-sampled field maps are now at the same 

resolution as the training data used to train the network. Therefore, the re-

sampled field maps can be input into the network. We assume the network 

performs a dipole de-convolution in the image space; and a dipole division in 

the k-space, which is a pointwise operation in k-space (Figure 4.1c).  

 

[Step 3: assembling] By assembling QSM maps of every different sampling 

cases, an erroneous QSM can be reconstructed (Figure 4.1d). Because we 

assumed that network inference is a pointwise division in the k-space, the 

resulting erroneous QSM is the k-space of the original local field map (L(k𝑥)) 

divided by the replicated dipole kernel of 1.0 mm3 resolution (𝐷1.0 𝑖𝑠𝑜(𝑘𝑥)). 

 

[Step 4: dipole compensation] The k-space of the desired QSM is L(k𝑥) 

divided by the dipole kernel of 0.5 mm3 resolution (𝐷0.5 𝑖𝑠𝑜(𝑘𝑥)). Because 

𝐷1.0 𝑖𝑠𝑜(𝑘𝑥) and 𝐷0.5 𝑖𝑠𝑜(𝑘𝑥) are same at the center, this difference can be 

compensated by multiplying 𝐷1.0 𝑖𝑠𝑜(𝑘𝑥)/𝐷0.5 𝑖𝑠𝑜(𝑘𝑥) at the edge of the k-

space. We call this procedure the dipole compensation (Figure 4.1e). 

 

The method can be extended to non-integer resolution difference case by 

viewing the re-sampling of local field map as image shift and re-sampling 

(Figure 4.2). In the red sampling case, the local field map is directly 

undersampled, resulting in k-space aliasing: 
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𝐿1(𝑘𝑥) =  
𝐿(𝑘𝑥)+𝐿(𝑘𝑥+𝑀𝑡𝑟𝑎𝑖𝑛)

𝑁
 

where 𝐿1(𝑘𝑥) is the k-space of the undersampled local field map and Mtrain is 

the matrix size of the data re-sampled to training resolution. The blue 

undersampling case can be seen as a combination of shifting and undersampling. 

Shift in image space is multiplying linear phase in k-space; Assuming sub-voxel 

shift in the training resolution (
𝑛

𝑁
× resol𝑡𝑟𝑎𝑖𝑛, where n = 0,1, … N-1), each line 

of k-space is multiplied by a linear phase ∅(𝑘𝑥) =  exp(
𝑖2𝜋𝑛𝑘𝑥

𝑁×𝑀𝑡𝑟𝑎𝑖𝑛
)  before 

being aliased. 

𝐿𝑛(𝑘𝑥) =  
(𝐿(𝑘𝑥)×exp (

𝑖2𝜋𝑛𝑘𝑥
𝑁×𝑀𝑡𝑟𝑎𝑖𝑛

)+𝐿(𝑘𝑥+𝑀𝑡𝑟𝑎𝑖𝑛)×exp (
𝑖2𝜋𝑛(𝑘𝑥+𝑀𝑡𝑟𝑎𝑖𝑛)

𝑁×𝑀𝑡𝑟𝑎𝑖𝑛
))

𝑁
  

After network inference, QSM from the blue sampling case is shifted 

back to the original position by multiplying an inverse linear phase ∅(𝑘𝑥) =

 exp(
−𝑖2𝜋𝑛𝑘𝑥

𝑁×𝑀𝑡𝑟𝑎𝑖𝑛
) in k-space. 

𝑄𝑆𝑀𝑛(𝑘𝑥) =  𝐿𝑛(𝑘𝑥) ×
−𝑖2𝜋𝑛𝑘𝑥

𝑁×𝑀𝑡𝑟𝑎𝑖𝑛
=  

𝐿(𝑘𝑥)+𝐿(𝑘𝑥+𝑀𝑡𝑟𝑎𝑖𝑛)×𝑒𝑥𝑝(
𝑖2𝜋𝑛

𝑁
)

𝑁×𝐷𝑟𝑒𝑠𝑜𝑙𝑡𝑟𝑎𝑖𝑛
(𝑘𝑥)

  

Therefore, the aliased k-space lines cancel out when summed over the 

number of shift (N), leaving the erroneous QSM map subject to dipole 

compensation. 

∑ 𝑄𝑆𝑀𝑛(𝑘𝑥) =
𝐿(𝑘𝑥)

𝐷𝑟𝑒𝑠𝑜𝑙𝑡𝑟𝑎𝑖𝑛

  𝑁−1
𝑛=0   
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Figure 4 . 2. Extension of the method to non-integer resolution difference 

between input and training data. Re-sampling of the local field map can be seen 

as the combination of image shift, which is linear phase multiplication in k-

space, and undersampling, which is aliasing in k-space. After network inference, 

the QSM map of the blue sampling case is shifted back to its original position 

by multiplying an inverse linear phase. Assuming the amount of shift is sub-

voxel shift in the training resolution, the aliased k-space lines are canceled out 

by summing the shifted QSM images. 

 

[MRI data acquisition and processing] Data was acquired from 12 healthy 

volunteers (6 males; age: 27 ± 2.8 years) with local IRB approval (9 subjects 

using Tim Trio; 3 subjects using MAGNETOM Skyra, Siemens, Erlangen). 3D 
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GRE data was acquired with 5 different head orientations for each subject with 

the following scan parameters: TR = 33 ms, TE = 25 ms, flip angle = 15°,  

FOV = 256 × 224 × 176 mm3 (224 × 224 × 176 mm3 at Skyra), voxel 

size = 1 × 1 × 1 mm3, bandwidth = 100 Hz/pixel, acceleration factor  =  2 × 2, 

and total acquisition time = 5 min 46 s.  

Each of the GRE magnitude data was used to generate brain masks using 

BET (FSL, FMRIB, Oxford, UK) [73], and phase data was unwrapped using 

Laplacian phase unwrapping [97], and background field was removed using V-

SHARP [98]. The local field maps of five different orientation was registered 

using FLIRT (FSL, FMRIB, Oxford, UK) [73], and a QSM map was generated 

using the COSMOS algorithm [99]. Using the rotation information used to 

register the local field maps, the QSM map was rotated back to the original 

orientation of each of the local field maps, resulting in five pairs of local field 

map and QSM map with the same orientation for each subject. 

For representative reconstruction of higher resolution data, two 3D 

multi-echo GRE data were acquired (IRB approved): one from a 7T scanner 

(Magnetom Terra, Siemens, Erlangen, Germany) and one from a 3T scanner 

(Tim Trio, Siemens, Erlangen, Germany). The scan parameters for the 7T scan 

were: TR = 38 ms, TE = 9.3:8.7:26.7 ms, FOV: 185×228×106 mm3, voxel size: 

0.6×0.6×0.6 mm3, phase partial Fourier = 6/8, slice partial Fourier = 6/8, and 

acquisition time = 21 min 11 s. The scan parameters for the 3T scan were: TR 

= 40 ms, TE = 4.5:6.1:28.9 ms, FOV: 152×180×146 mm3, voxel size: 

0.7×0.7×0.7 mm3, and acquisition time = 23 min 34 s. 
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[Network Training] Seven subject datasets were utilized for training the 

network. For quantitative evaluation of the proposed pipeline, we need to have 

COSMOS data at the testing resolution, and a network trained at a lower 

resolution. Therefore, we resized the local field map and QSM map pairs by 

cropping the k-space, resulting in 1.5 mm3 isotropic resolution for training. 

QSMnet [4] was trained using this dataset (QSMnet1.5iso) 

For comparison with the proposed pipeline, another QSMnet was trained 

using 1.0mm3 isotropic data of the same subjects (QSMnet1.0iso). 

 

[Evaluation] The remaining five subject datasets were utilized for testing the 

proposed reconstruction pipeline for two different resolutions: 1 mm3 isotropic 

resolution and 1×1×3 mm3 resolution. To test the reconstruction of 1×1×3 mm3 

resolution data, the local field map and QSM map pairs were re-sized to 1×1×3 

mm3 by cropping the k-space. 

The proposed pipeline was compared with two scenarios: interpolation 

and naïve input. In the interpolation scenario, the local field map was resized to 

1.5 mm3 isotropic resolution by cropping the k-space, and inferenced using 

QSMnet1.5iso. The resulting QSM map was then interpolated to 1 mm3 isotropic 

resolution (or 1×1×3 mm3). In case of naïve input, the local field map at 1 mm3 

isotropic resolution (or 1×1×3 mm3) was naïvely input into the QSMnet without 

considering the resolution difference. The images were compared with 

COSMOS and QSMnet1.0iso results both visually and quantitatively (NRMSE, 

SSIM, PSNR, HFEN). COSMOS and QSMnet1.0iso results were resized to 

1×1×3 mm3 resolution for evaluation of 1×1×3 mm3 data reconstruction. 
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[Ablation study: effect of noise level on the reconstruction process] Because 

the local field maps are re-sampled, the noise property changes compared to the 

original acquired data. In particular, when the local field map is undersampled 

by re-sampling, the SNR is degraded compared to the case where the local field 

map is undersampled by k-space cropping. This means that the proposed 

pipeline may be more sensitive to low SNR data compared to the interpolation 

scenario. To investigate the effect of SNR on the proposed pipeline, simulated 

gaussian noise with 6 different noise levels were added to the local field maps, 

and QSM maps were reconstructed using the proposed pipeline and the 

interpolation scenario. The four quantitative metrics (NRMSE, SSIM, PSNR, 

HFEN) were calculated with respect to the COSMOS for each scenario, and the 

results were compared among the scenarios. 

 

4.3. Results 

In the result of 1 mm3 isotropic data inference using QSMnet1.5 iso, the 

proposed method provided the best reconstruction quality out of the three tested 

scenarios (Figure 4.3). In particular, in the zoomed-in images, small structures 

are diminished in the interpolation scenario (yellow arrowheads), while the 

white matter structures are flattened in the naïve input results (red arrowheads). 

These results are further supported by the quantitative results where the 

proposed method provided the best metrics compared to both COSMOS and 

QSMnet1.0iso. The metrics computed with respect to QSMnet1.0iso displays higher 

performance compared to that calculated with respect to COSMOS. This is 

because the performance of the proposed method depends on the network 
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performance.  

The results of the anisotropic data reconstruction agree with the 1mm3 

isotropic data reconstruction results (Figure 4.4). In the zoomed-in images, 

small structures are smoothed out in the interpolation scenario, while the 

proposed method successfully reconstructs the detailed structures (yellow 

arrowheads). The naïve input scenario also fails to reconstruct the small 

structures due to highly damaged contrast (red arrowheads). 

 

 

Figure 4.3. Reconstruction of 1 mm3 isotropic data using QSMnet trained at 
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1.5 mm3 isotropic resolution. The proposed method successfully reconstructs 

the small structures while the interpolation scenario smooths out the structures 

(yellow arrowheads). The white matter structures are flattened in the naïve input 

results (red arrowheads). The quantitative display the best metrics in the 

proposed scenario. Metrics computed with respect to QSMnet1.0 iso displays 

higher performance compared to that of COSMOS because the performance 

depends on the network performance. 
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Figure 4.4. Reconstruction of 1 x 1 x 3 mm3 data using QSMnet trained at 1.5 

mm3 isotropic resolution. The proposed method successfully reconstructs the 

small structures while the interpolation scenario smooths out the structures 

(yellow arrowheads). The white matter structures are flattened in the naïve input 

results (red arrowheads). The quantitative display the best metrics in the 

proposed scenario.  

 

The effect of dipole compensation on the reconstructed QSM map is 

shown in Figure 4.5. Checkered artifacts are noticed before dipole 

compensation, whereas these artifacts disappear after dipole compensation. 

 

 

Figure 4.5. Effect of dipole compensation on the reconstructed QSM. The 

checkered artifacts that is visible in the erroneous QSM before dipole 

compensation disappears after dipole compensation. 

 

When the effect of noise level on the reconstruction results of the 
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proposed pipeline and the interpolation scenario is compared, the performance 

degradation of the proposed method as the noise level increases is steeper than 

that of the interpolation scenario for all four quantitative metrics (Figure 4.6a). 

However, the proposed pipeline outperforms the interpolation scenario even at 

every noise level. Furthermore, the highest and the second highest noise level 

where the performance degradation is noticeable, is unrealistic (Figure 4.6b, 

first and second map) compared to the third highest noise level (Figure 4.6b, 

third map), where the performance degradation is less noticeable.  
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Figure 4.6. a) Comparison of quantitative reconstruction results between 

proposed and interpolation scenario with simulated noise. The performance 

degradation that results from increased noise level is steeper for the proposed 

reconstruction scenario, although the proposed scenario outperforms the 

interpolation scenario in every noise level. b) Example slices of the local field map 

with highest (left), second highest (middle), and third highest noise level (right). 

The highest and second highest noise level, where quantitative performance 

degradation is noticeable, display unrealistically low signal to noise ratio 
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compared to the third highest noise level, where performance degradation is less 

noticeable. 

 

4.4. Discussion 

The proposed method enables successful QSM reconstruction of two 

different resolution data using QSMnet trained at a single resolution. The 

resulting QSM maps preserve high-frequency details, and the quantitative 

metrics demonstrate high quality. In practice, trained QSMnet+ available online 

can be used to reconstruct QSM with multiple different resolution. However, 

the voxel size of the data should be larger than half of the voxel size of the 

training data; Smaller voxel size may result in checkered artifacts, so care must 

be taken. 

Out of the four quantitative metrics, SSIM displayed a rather small 

improvement between the proposed and the interpolation scenario compared to 

the other three metrics. This may result from the intrinsic property of SSIM, 

which is calculated based on three different metrics which are luminance, 

contrast and structure. Because the difference between the results of the two 

scenarios is mainly the actual resolution, luminance and contrast are similar, 

which results as the relatively small improvement in SSIM. 
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Chapter 5. Conclusion 

In this work, an advanced MRI protocol for neurodegenerative diseases 

is developed. The protocol consists of three parts: First is Quadcontrast imaging 

for routine clinical contrast-weighted images; second is SandwichNM for 

reliable neuromelanin imaging across different scanners; and third is high 

quality QSM and SMWI enabled by high quality QSM reconstruction of 

arbitrary resolution using QSM network trained at a single resolution. 

First, a novel MRI imaging sequence, Quadcontrast, is developed to 

reduce the scan time of routine images from 13 minutes to 6 minutes, which 

was further reduced to 2 min 50 sec aided by a deep learning-based 

reconstruction.  

Utilizing the spared scan time, two complementary advanced MRI (NM-

MRI and QSM) for neurodegenerative diseases are acquired. The newly-

proposed sandwichNM method provides a higher contrast between NM-

containing tissue and surrounding area than the conventional NM methods. 

Moreover, the method produces a consistent contrast across multiple vendor 

scanners, facilitating the use of sandwichNM for multi-site studies. Because the 

method is based on product sequences, requiring no effort for sequence 

programming. 

Lastly, we proposed a pipeline that enables resolution-free QSM 

reconstruction using QSMnet trained at a single resolution. The resulting QSM 

maps preserve high-frequency details, and the quantitative metrics demonstrate 

high quality. This pipeline can be incorporated not only to reconstruct QSM but 
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also to generate susceptibility map weighted images, which has shown to have 

great diagnostic potentials for early stage PD. 

The proposed protocol may provide a basis for MRI-based noninvasive 

diagnosis of early-stage neurodegenerative diseases. This could have great 

clinical implications, as current image-based diagnosis of neurodegenerative 

diseases relies on PET with radiation exposure. 
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초록 

신경퇴행성 뇌질환을 위한  

고도화된 뇌영상 프로토콜 개발 

 

지 수 연(Sooyeon Ji) 

전기정보공학부(Electrical and Computer Engineering) 

The Graduate School 

Seoul National University 
 

   자기 공명 영상 (MRI)은 수십 년 동안 3 차원 뇌 구조의 비 침

습적인 생체 내 평가를 위한 전례 없는 방법론을 제공하였다. 고해

상도로 다양한 대비를 생성할 수 있는 유연성을 갖춘 MRI는 뇌 장

애를 진단하는 가장 효과적인 방법을 제공한다. 그러나, 다수의 명

암 강조 이미지에 의해 제공되는 정교한 해부학적 세부 사항에도 불

구 하 고, 신경 퇴행성 질환에서 현재 MRI는 주로 감별 진단의 수

단으로 사용되고 있다. 이것은 위축과 같은 구조 변화가 발병 후 장

기간에 걸쳐 발생하기 때문이다. 

최근 몇 년 동안 신경 퇴행성 질환의 초기 단계에 민감한 고급 

MRI 기술이 개발되었으며 MRI를 사용한 비 침습적 진단과 질병의 

병태 생리학 연구에 유망한 결과가 나타나고 있다. 특히 뉴로멜라닌 

강조 MRI와 자화율 이미징은 큰 가능성을 보이고 있다. 신경 퇴행

성 질환에 대한 이러한 고급 MRI는 방사능 노출의 위험이 있는 현

재의 PET 기반 진단을 대체할 수 있는 잠재력이 많지만, 필요한 추

가 스캔 시간과 각 방법의 일반화 제한으로 인해 광범위한 적용이 

제한되어 있는 상황이다. 
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이 논문 에서는 신경퇴행성질환을 위한 새로운 고급 MRI 프로

토콜을 개발하기 위해 다음과 같은 과정을 거친다. 1) 종양과 같은 

다른 질병과의 감별 진단을 위해 일상적으로 얻는 임상적 명암 강조 

영상의 이미징 시간을 단축하는 새로운 MRI 데이터 획득 시퀀스를 

개발한다. 2) 뉴로멜라닌 강조 MRI의 스캐너 간 차이에 대 한 일반

화를 위한 영상법 개발한다. 마지막으로 3) 학습 기반 정량적 자화

율 매핑의 다른 해상도 데이터에 대한 일반화의 제한을 극복하는 재

구성 파이프라인을 개발한다. 새로운 뉴로멜라닌 강조 MRI 및 정량

적 자화율 매핑 데이터는 1)에서 감별진단을 위해 얻는 영상의 스

캔 시간을 단축하였기 때문에 스캔 시간의 임상 한계 내에서 얻을 

수 있다. 

제안된 프로토콜은 초기 단계의 신경 퇴행성 질환의 MRI 기반 비 

침습적 진단의 기초를 제공할 가능성이 있다. 신경 퇴행성 질환의 

현재 이미지 기반 진단은 방사선 노출과 함께 PET에 의존하기 때

문에 이는 큰 임상적 의미를 가질 수 있다. 

 

Keywords : 자기공명영상법, 신경퇴행성 질병, 파킨슨씨 병, 뉴로멜

라닌, 정량적자화율 매핑  
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