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Abstract

Magnetic Resonance Imaging (MRI) has provided unprecedented
methodologies for non-invasive in-vivo assessment of 3-dimensional brain
structure for several decades. With the flexibility of generating various contrasts
with high resolution, MRI provides the most effective way to diagnose brain
disorders. However, despite the exquisite anatomic details provided by the
multiple routinely acquired contrast-weighted images, currently MRI is mainly
utilized as means of differential diagnosis for neurodegenerative diseases. This
is because the structural changes such as atrophy occurs long time after the
onset of the disease.

In recent years, several advanced MRI techniques that is sensitive to early
stage of neurodegenerative diseases have been developed, demonstrating
promising results for non-invasive diagnoses and study of the pathophysiology
of diseases using MRI. In particular, neuromelanin-weighted MRI and
susceptibility imaging have revealed great potentials. While these advanced
MRI for neurodegenerative diseases bear great potential to substitute the current
PET-based diagnosis with radiation exposure, widespread application of the
advanced methods is hindered due to the additional scan time needed and the
generalization limitations of each methods.

In this work, a novel advanced MRI protocol is developed by 1)
developing a new MRI data acquisition sequence which reduces the imaging
time of clinical contrast-weighted images, which are routinely acquired for

differential diagnosis with other diseases such as tumor, 2) overcoming the



generalization limitation of neuromelanin-weighted MRI to scanner differences,
and 3) by overcoming the generalization limitation of deep learning-based
quantitative susceptibility mapping to different resolution data. The novel
neuromelanin-weighted MRI and quantitative susceptibility mapping data can
be acquired within the clinical limit of scan time thanks to the reduction of
routine image scan time by 1).

The proposed protocol may provide a cornerstone for MRI based non-
invasive diagnosis of early stage neurodegenerative diseases. This may have a
large clinical implication since the current image-based diagnosis of

neurodegenerative diseases relies on PET with radiation exposure.

Keywords : Magnetic Resonance Imaging (MRI), Neurodegenerative,
Parkinson’s Disease (PD), Neuromelanin (NM), Quantitative susceptibility
mapping (QSM)
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Chapter 1. Introduction

1.1. MRI basics

1.1.1. Overview of MRI physics

Magnetic Resonance Imaging (MRI) is a powerful neuro-imaging device
that has provided unprecedented methodologies for non-invasive in-vivo
assessment of 3-dimensional brain structure for several decades. With the
flexibility of providing various information of the tissue with high resolution of
sub-millimeter scale, MRI provides one of the most effective means to diagnose
brain disorders.

The basic principal of MRI lies in the magnetic resonance of the nuclear
spins. Each spin has a small magnetic moment, which can be considered as a
small magnet. Because hydrogen atom is the most common nuclei in the human
body, MRI is mainly developed focused on the magnetic resonance of the
hydrogen proton (H'), although methods that rely on the magnetic resonance of
different atoms, such as sodium, are emerging. Hereafter, the MR-relevant
nucleuses are referred to as ‘spins.’

For the generation of MR signals, two kinds of magnetic fields are
applied: A static main magnetic field (Bo), and a radiofrequency (RF) field (B:).
When the spins are in thermal equilibrium, they are randomly oriented, resulting
in zero net magnetic momentum. When By is applied to the spins, they align
with the By direction, or the longitudinal direction, resulting in a non-zero net

magnetization. The net magnetization is proportional to the strength of the By
1 ¥



field. Inside the main magnetic field, the spins resonate at a frequency
proportional to the By field, known as the Larmor frequency:

w = YBy. [Eq. 1.1]
where w is the Larmor frequency, and y is the gyromagnetic ratio of the
nuclei. Each nucleus has a different gyromagnetic ratio. For instance, the

gyromagnetic ratio of the hydrogen proton is 267.5 X 10° rad/sT, and that of the
sodium proton is 70.8 X 10° rad/s'T. When the B, field is applied perpendicular

to the By field and near the Larmor frequency, the spins absorb energy, resulting
in gradual tipping of the net magnetization with respect to the B direction. This
phenomenon is referred to as spin excitation. The excited spins start to precess
around the By field direction at the Larmor frequency. The precession of the net
magnetization induces electric current in the nearby RF coils by the Faraday’s
law of magnetic induction; This mechanism is the signal source of Magnetic
Resonance Imaging. Because the net magnetization, which induces the signal,
is proportional to the By field strength, the signal strength is proportional to Bo,
resulting in higher SNR with higher Bo.

As shown in Fig. 1.1, the spin behavior in a fixed coordinate, called the
laboratory frame, when B1 field is applied can be easily understood by
demodulating the spin dynamics to its rotational frequency. B1 field tuned to
the Larmor frequency rotates the spins around the BO field, tilting them towards
the transverse plane. If the rotation around the B0 direction is demodulated (i.e.
observation from a rotating frame), the trajectory of the spin can be simply

described as a tilt of the magnetization towards the transverse plane. Hereafter,



all spin dynamics are described in terms of a rotating frame. After the typically
brief B1 magnetic field, which lasts for a few milliseconds, is turned off, the
transverse component of the rotating magnetization induces a current in the

receiving RF coil and the signal can be measured.

a) Laboratory frame b) Rotating frame at Larmor frequency
Radiofrequency field Radiofrequency field
(B, field) (B, field)
at Larmor frequency at Larmor frequency

Figure 1.1. Spin excitation induced by B; field from a) laboratory frame and b)

rotating frame

The signal measured using an RF coil is volume-integrated. Therefore,
additional spatial encoding is needed in order to recover the signal into
anatomical images, which enables the non-invasive observation of structural
changes. For this purpose, additional linear gradient fields, Gy, or,, are
introduced. The G fields have same direction as the B, field, and have
linearly varying amplitudes according to their spatial position X,y, or z. When
a linear gradient field is applied to the imaging volume, the spins precess at
different frequencies according to their spatial location. For example, when a

linear field is applied at the x direction (i.e., G,), the precession frequency at

N



location X, can be denoted as follows:
w(xX =xy) =YBy + YGyxg . [Eq. 1.2]
The spatial information, x, is now encoded into the precession frequency, w.
In a similar manner, when the linear gradient field is applied in two directions,
the 2-dimensional location can be encoded into the precession frequency:
w(x =x0,y = ¥o) =YBy + v(Gxxo + Gy¥o) - [Eq. 1.3]
The volume integrated signal with spatial encoding can now be written as

the following equation:

s(twty) = [, fy m(x,y)e ¥ (CxXtatGyXty) gy [Eq. 1.4]
where ty and t, are the amount of time the gradient field is applied in each
direction, s(tx, ty) is the signal, and m(x,y) is the desired spin
magnetization at location x,y. Carefully observing the signal equation, one can
see that the signal s(tx, ty) is a data point of 2D spatial-frequency domain, or

k-space, of m(x,y). The signal equation can be re-written:
s(tx ty) = 1Fap{m6 )} ey =(Gxta/v,Gxtrv)- [Eq. 1.5]
By adjusting G, and G, along with t,,t,, we can fill the 2D k-space

data points, and reconstruct the image m(x,y) by inverse-Fourier transform

of the k-space data.

1.1.2 Bloch Equation

Inside the main magnetic field By, the magnetization of each spin,

M = (My, My, M), has the lowest energy when the magnetization vector is



aligned to the B, field direction. Therefore, the spin excited onto the
transverse plane by the B; field undergoes relaxation and returns back to its
equilibrium state. Two relaxation time constants are involved in the
relaxation process: T constant for relaxation on the longitudinal axis (z axis),
and T, constant for relaxation in the transversal plane (x-y plane). The
following Bloch equation explains the relaxation of magnetization when

external field is applied [2]:

dM MyX+M,y M,—My)z
—:MXYB— X Yy _(z 0).
dt T, Ty

[Eq. 1.6]
M, is the magnetization at equilibrium. By different physical mechanisms,
the T1 relaxation recovers the longitudinal component and T2 relaxation

decays the transversal component of the magnetization, gradually relaxing

the magnetization back to equilibrium, M,Z2.

1.1.3. MRI pulse sequence

Because each anatomical tissue has different properties, one may weight
the image to these properties such as T1 and T2 relaxation time to delineate the
anatomic structures from one another. These weighting are achieved by
applying multiple RF pulses and Gradient pulses at carefully designed timing.
These sequence of pulses that provide a set of images with particular contrast
between tissues are called the MRI pulse sequences. Each pulse sequence
provides contrast-weighted images with distinct characteristics that can be
utilized to examine the soft tissue of the human body, which gives great

diagnostic abilities.



1.1.4. MRI acceleration

The advantage of diverse MRI contrasts comes at an expense of long
scan times, which is a factor of the high cost of MRI. The total scan time of
clinical routine MRI protocols typically exceeds 15 min. Moreover, if motion
occurs during the scan, severe artifacts known as “motion artifacts” are
introduced to the resulting images. The damaged images must be reacquired; as
a result, scan time is prolonged to an average of 30 min. This long scan time
limits the number of patient scans, there by inflating the cost.

Methods such as parallel imaging and compressed sensing have been
investigated to accelerate the MRI scan. Majority of the methods are based on
under-sampling the data in k-space domain in order to reduce scan time, and
recovering the not-sampled data using additional information such as the coil
sensitivity of each receiver coil (Figure 1.2), or signal sparsity of MR images.
However, the extent of acceleration is typically limited to less than factor of 3
for the conventional reconstruction methods such as GRAPPA. Higher
acceleration factors tend to result in remaining aliased artifacts or blurry

reconstruction results.



low-resolution

reference data for each coils
for spatial information

(coil sensitivity)

Figure 1.2. Schematic diagram of reconstruction of k-space under-sampled data

using coil sensitivity. Uniform under-sampling in k-space results in aliased
images. The images can be recovered to the full sampled images by using
additional information that comes from the coil sensitivity information of each

receiver coils.

Recently, deep learning has been widely utilized in MRI [3]-[8] and
applied for parallel imaging [9]-[13] and compressed sensing reconstruction
[14]-{17], demonstrating potentials of using higher acceleration factors than
conventional methods. Several approaches have been proposed to embed the
physical model of parallel imaging in neural networks [10]-[13], [18],

providing high quality reconstruction results.

1.2. Advanced MRI for neurodegenerative diseases

Despite the exquisite anatomic details provided by the multiple routinely

acquired contrast-weighted images, currently MRI is mainly utilized as means
7



of differential diagnosis for neurodegenerative diseases. This is because the
structural changes such as atrophy occurs a long time after the onset of the
disease. In recent years, several advanced MRI techniques that is sensitive to
early stage of neurodegenerative diseases have been developed, demonstrating
promising results for non-invasive diagnoses and study of the pathophysiology
of diseases using MRI. While widespread application of the advanced methods
is hindered due to the additional scan time needed and the generalization

limitations of each methods, these advanced MRI bear great potential.

1.2.1. Neuromelanin-weighted MRI

Neuromelanin (NM) is a dark pigment found in catecholaminergic cells
of substantia nigra pars compacta (SNc) and locus coeruleus (LC). The pigment
is known to accumulate during aging [19], [20]. NM abnormality has long been
associated with Parkinson’s disease (PD) because of the selective death of NM
containing cells in PD patients [21], which results in a visible loss of the
pigment in SNc and LC [22], [23].

NM-sensitive MRI or NM-MRI [24]-[26] is a non-invasive proxy
measure of NM in the human brain, which may provide valuable information
about PD [27]-[30] and other neurological disorders [31]-[35]. In particular,
NM-MRI has displayed the ability to discriminate between healthy control and
PD patients [36], [37], and between PD and other neurological diseases such as
idiopathic PD and Alzheimer’s disease (AD) [32], [33], [38]. It has also shown
correlation with PD progression [36], [39]-[42], revealing its potential as a

biomarker of PD.



While NM-MRI is a promising method for neurodegenerative diseases
related to the dopaminergic function, the current methods suffer from
generalization across scanners. The magnetization transfer pulses that are used
for NM contrast largely differ by the manufacturer of the particular scanner,
which results in highly varying images with different scanners. Because

multiple vendor MRIs may exist even in a single hospital, this is problematic.

1.2.2. Quantitative susceptibility mapping

Quantitative susceptibility mapping (QSM) enables measurement
magnetic susceptibility distribution in the human soft tissue from the phase of
the MRI data [43]-[45]. Two of the main susceptibility sources in the human
brain are iron and myelin [46]. Changes in the amount of iron and myelin in the
brain are related to pathogenesis of several neurodegenerative diseases such as
PD, AD, and multiple sclerosis. Therefore, QSM has been investigated for
diagnosis or pathogenesis of several neurodegenerative diseases [47]—{49].

Since the resonance frequency of the spins relates to an external magnetic
field, an MR signal is highly dependent on susceptibility sources. In particular,
susceptibility sources in the soft tissue make dipole patterned perturbations in
the By field. This local By perturbation, which is a convolution between the
susceptibility distribution and a dipole kernel, are encoded in the phase signal
of the MRI data. Therefore, susceptibility distribution can be estimated by first
extracting the local By field from MRI phase data, and de-convolving the dipole

kernel (Fig. 1.3a). The reconstruction of QSM from local field map can be



denoted as follows:

argmin||W (d * y — Af)|I3 + R(x) [Eq. 1.7]
X

where Af is the measured field perturbation (i.e., Af(r) = % b(r)), d isthe

dipole kernel, y is the susceptibility map, and R(y) is an additional
regularization term. Dipole de-convolution or dipole inversion is an ill-posed
inverse problem, because the dipole kernel is a non-invertible system, which
can be seen as the zero cone in the k-space representation of the dipole kernel
(Fig. 1.3b). Therefore, when QSM is reconstructed without any regularization,
streaking artifacts are noticed in the resulting map (Fig. 1.3c). Regularization
terms, R(y), utilize prior information about y in order to enhance the
condition of the reconstruction problem. For instance, the coherence between
the edge information of the magnitude image and the y map can be utilized as

regularization term. [50]

: Quantitative
a) MRI phse data i Local field map susceptibility map |

Ill-posed inverse problem

b) Zero cone in dipole kernel c) Streaking artifactin QSM

w

10



Figure 1.3. a) Simplified reconstruction process of quantitative susceptibility
mapping (QSM), b) zero cone in the k-space representation of a dipole kernel,
c) streaking artifact in QSM induced by the ill-posedness of the dipole inversion

problem.

Another way to overcome the ill-posedness of the dipole inversion
problem is to utilize deep-learning. In recent years, deep learning algorithms
for QSM have demonstrated great potentials. [4], [S1]-[54] However, it has
been reported that the deep learning methods fail to reconstruct data with
resolution different from that of the training resolution. [55] Although 1 mm?®
isotropic voxel size is recommended for QSM data acquisition, data with
anisotropic voxel size are commonly acquired in clinical practice due to
practical constraints such as the need for high in-plane resolution, scan time, or
image SNR. Because it is not convenient to train different networks for every
different resolution data, improving the generalization ability to different voxel

size is vital for deep learning-based QSM methods to be widely applied.

1.3. Outline

In this work, I propose to develop an MRI protocol for neurodegenerative
diseases by reducing the scan time for routinely acquired clinical contrast-
weighted images, and using the spared time to acquire two advanced MRI, NM-
MRI and QSM, that provide complementary information of neurodegenerative

diseases. To achieve this, a novel MRI imaging sequence, Quadcontrast, is

11
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developed to reduce the scan time of routine images from 13 minutes to 6
minutes, which is further reduced to 2 min 50 sec aided by a deep learning-
based reconstruction. Furthermore, a novel NM-MRI method, sandwichNM, is
developed to provide reliable NM-MRI and nigral hyperintensity information
across MRI scanners from different vendors. Finally, for high-quality QSM
reconstruction of arbitrary resolution data, a pipeline to reconstruct QSM at
multiple different resolution using a QSM network trained at a single resolution,

without loss of high frequency information is developed.
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Chapter 2. Quadcontrast

2.1. Introduction

A great advantage of magnetic resonance imaging (MRI) is its ability to
provide multiple contrast-weighted images by adjusting sequence parameters
such as repetition time (TR) and echo time (TE) and/or adding a preparation
radiofrequency (RF) pulse. The multiple contrast-weighted images provide
diagnostically valuable information at the cost of an extended scan time.
Typical MRI scan protocols take a few tens of minutes and this long exam time
is considered as a major limitation of MRI.

As an effort to reduce scan time, methods have been proposed to acquire
multiple contrast-weighted images in one sequence. For example, a modified
turbo spin echo (TSE) sequence for dual-contrast or triple-contrast has been
developed by sharing k-space data for different T contrasts [56], [57]. Also, a
fluid-attenuated scan combined with interleaved  non-attenuation
(FASCINATE) was suggested to simultaneously acquire T»-weighted and fluid
attenuated inversion recovery (FLAIR) images at the cost of increased specific
absorption rate [58]. Furthermore, more efficient data acquisition methods
including gradient-echo [59] and echo-planar imaging (EPI) [60], [61] have
been developed. Recently, a 1-minute MR exam using EPI was proposed
acquiring six contrast-weighted images [62], [63].

As an alternative approach to acquire multiple images in a reduced scan

time, a synthetic method referred to as multi-dynamics multi-echo (MDME)
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was demonstrated to synthesize multiple contrast-weighted images from
parametric maps quantified using data from a single scan [64], [65]. In this
method, however, lesion-like artifacts have been reported in the synthesized
images, requiring a careful evaluation to avoid misinterpretation of the images
[66], [67]. Recently, deep learning has been widely utilized in MRI [3]-[8] and
applied for parallel imaging [9]-[13] and compressed sensing reconstruction
[14]-[17], demonstrating potentials of using higher acceleration factors than
conventional methods. Several approaches have been proposed to embed the
physical model of parallel imaging in neural networks [10]-[13], [18]. One of
them, which is referred to as a variational network, formulated the parallel
imaging reconstruction problem as an unrolled gradient descent problem where
the physical model was enforced while regularizers were trained from the data
[13]. In another study, this approach was adapted to jointly reconstruct multiple
contrast-weighted images, improving reconstruction quality [12].

In this study, we propose a novel pulse sequence, referred to as quad-
contrast imaging, that enables rapid and simultaneous acquisition of four
contrast-weighted images: proton density (PD)-weighted, T.-weighted, PD-
FLAIR, and T»-FLAIR images. The total scan time of this sequence is only 6
min. We further demonstrate that the scan time is reduced to 2 min 50 s when
applying the joint variational network for high acceleration factor datasets.
Additionally, we report to create a synthesized Ti-weighted image, and T:- and
To-maps from the four images, providing a total of five contrast-weighted

images and two quantitative maps (Fig. 2.1). We demonstrate the
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effectiveness of our approach for both retrospectively undersampled data and

prospectively accelerated data in in-vivo subjects.

Non-IR-prepped contrasts IR-prepped contrasts

Natively
acquired
PD-weighted T,-weighted PD-FLAIR T,-FLAIR
EI | %l I
- Signal model
PD-FLAIR/PD—welghted‘E ¥ iting

Synthesized
or quantified

T,-weighted T, map

Figure 2.1. Schematic diagram of the output images and maps of the quad-
contrast sequence. The four contrast-weighted images, PD-weighted, T»-
weighted, PD-FLAIR, and T»-FLAIR images, are natively acquired from the
quad-contrast sequence. From these images, the T;-weighted images and Ti-

and T»-maps are synthesized and quantified.

2.2. Methods

Pulse sequence design

The schematic diagram of the quad-contrast sequence is displayed in Fig.
2.2. The sequence consists of three components: inversion pulses, acquisition
blocks for non-IR-prepped contrasts (orange colored boxes), and acquisition

blocks for IR-prepped contrasts (green colored boxes). For multi-slice imaging,
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a concatenation factor of two, which divides the acquisition into two slice
groups (odd slices vs. even slices) and acquires the first group fully then obtains
the second group, (Fig. 2.2a; shown for 1% concatenation acquiring odd slices)
is utilized with an interleaved acquisition scheme, in which slice 4n+1 and 4n+3
are acquired in one TR (yellow dashed box) (Fig. 2.2b). The acquisition of slice
4n+1 starts with an inversion pulse, acquiring the IR-prepped contrasts (PD-
FLAIR and T,-FLAIR) after TI. Then we wait for the recovery time of Tec: to
obtain non-IR-prepped contrasts (PD-weighted and Tz-weighted), which is
followed by the second recovery time of Trec2 (= TR — T1— Trec1). For slice 4n+3,
the timing is shifted by TR/2 relative to slice 4n+1, acquiring the non-IR-
prepped contrasts during TI of slice 4n+1.

To further enhance time efficiency, a view-shared double-echo turbo
spin-echo acquisition is incorporated (Fig. 2.2c) [56]. The effective echo train
length (ETL) for each contrast is 8 while 4 echoes are shared between the two
contrasts, leaving 12 echoes instead of 16. Out of the 12 echoes, which have an
echo spacing of 9.4 ms, the first 4 echoes (echo 1-4) are used to encode the
central k-space of PD-weighted or PD-FLAIR contrasts (center-out with
increasing echo numbers); echo 7-10 are used to encode the central k-space of
To-weighted or T.-FLAIR contrasts (towards k-space center with increasing
echo numbers); and echo 5, 6, 11, and 12 are shared for the two contrasts,
encoding the peripheral k-space (see Discussion). Hence, the effective TEs of
PD-weighted and PD-FLAIR contrasts (TElew), and Tr-weighted and T»-

FLAIR contrasts (TE2e) are 9.4 ms and 94 ms, respectively.
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Figure 2.2. a) Schematic diagram of the quad-contrast sequence. One TR from
the first concatenation, in which the odd slices are acquired, is depicted. b)
Detailed timing diagram of the quad-contrast sequence. c) Acquisition scheme
of the view-shared double-echo turbo-spin-echo readout for the non-IR-prepped
and IR-prepped acquisitions. RF and Gpg stand for radiofrequency pulse and
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Figure 2.3. Network architecture of the joint variational network. The
variational network structure utilized in this study consists of 10 gradient
descent steps. Each step contains a convolutional filter, k¢, which mixes the
four complex-valued input contrasts and generates 24 feature channels. The 24
feature channels are then passed through non-linear activation ¢*, and then
reduced to the number of input contrasts by the transposed filter k. The data
fidelity term, A¥ (A ut — f.), multiplied by a learnable data term weight, A%,
is computed separately for each of the contrast-weighted images. Here, A, is
the parallel imaging encoding matrix, uf is the current reconstructed image,
and f, is the measured data of contrast c. The network was trained for 1000
epochs using the IPALM optimizer with a mean squared error loss function, and

a batch size of 5.
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For all acquisition blocks, fat-saturation is applied. Each of the non-IR-
prepped acquisition blocks contains a driven equilibrium Fourier transform
(DEFT) pulse pair to enhance the signal recovery for the IR-prepped contrasts
(Fig. 2.2c, red arrow; see Discussion for details) [68]. At the beginning of each
concatenation, a half-TR dummy scan is introduced for the magnetizations to
reach a steady state prior to signal acquisition.

The sequence timing is subject to three parameters: TR, TI, and Trec.
Among these, Tl is heuristically determined to achieve a native FLAIR image
whereas TR and Trec1 can be set flexibly. In our study, TR and Trec1 are chosen

to be 9500 ms and 3400 ms, respectively, which lead to T1 of 2400 ms.

Data acquisition

A total of 25 healthy subjects (17 males, age range 22-48 years old (27
+ 6.6 years)) were scanned using a 3T scanner and a 32-channel head coil
(Siemens, Magnetom Tim Trio). The study was approved by the local
institutional review board. Three types of data were acquired: reference quad-
contrast datasets (all subjects); prospectively accelerated quad-contrast datasets
(all subjects); and conventional sequence datasets (5 subjects). Out of the 25
subjects, data from 20 subjects were used for network training (1888 slices in
total), whereas the remaining five subjects were utilized for the evaluation of
the network and comparison with the conventional sequence results. The 5 test
subjects were separated from the 20 training subjects without overlap.

The scan parameters for the quad-contrast datasets were as follows: FOV
= 256 x 256 mm?, voxel size = 1 x 1 mm?, slice thickness = 4 mm, slice gap =

19
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25%, and TR/T I/ Trect/ TE Lt/ TE2e1s = 9500/2400/3400/9.4/94 ms. The reference
quad-contrast datasets were acquired using acceleration factor 2 with 32
autocalibration signal (ACS) lines (effective acceleration factor: 1.78; scan time:
6 min). For all four contrast-weighted images, the same k-space lines were
acquired (see Discussion and Conclusions for details). The number of slices
ranged from 20 to 28. The datasets were generalized autocalibrating partially
parallel acquisitions (GRAPPA)-reconstructed [69] using a customized Matlab
code (Mathworks Inc., Natick, MA), and used as the reference quad-contrast
image sets (QuadConter). From this reference dataset, retrospectively
accelerated quad-contrast datasets were generated by undersampling the
datasets by a factor of 6 with 26 ACS lines. The prospectively accelerated quad-
contrast datasets were acquired using an acceleration factor of 6 with 26 ACS
lines (effective acceleration factor: 3.98; scan time: 2 min 50 s). The number of
slices was fixed to 32 except for one subject from whom 24 slices were acquired
to satisfy the specific absorption rate (SAR) limitation.

For comparison, PD-weighted, T.-weighted, FLAIR, and Ti.weighted
contrasts were obtained using conventional sequences. Sequence parameters
were from a routine clinical protocol. The following parameters were common
for all acquisitions: FOV = 256 x 256 mm?, voxel size = 1 x 1 mm?, slice
thickness = 4 mm, slice gap = 25%. The remaining sequence parameters were
as listed below:

- PD-weighted: TSE readout, ETL = 8, TR/TE = 9500/9.4 ms, concatenation

=1,andscantime =3 min2s;
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=1,andscantime =3 min2s;

FLAIR: TSE readout,

concatenation = 2, and scan time =6 min 3 s;

flip angle = 70°, concatenation = 1, and scan time = 1 min 12 s.

To-weighted: TSE readout, ETL = 8, TR/TE = 9500/94 ms, concatenation

ETL = 8, TR/TE/TI = 9500/94/2557 m:s,

T1-weighted: gradient recalled echo (GRE) readout, TR/TE = 250/2.5 ms,

All the conventional sequences were acquired with acceleration factor 2 and

32 ACS lines (effective acceleration factor x1.78). The total scan time for the

conventional sequences was 13 min 19 s.
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Figure 2.4. Schematic diagram of the datasets associated in the acquisition and

deep learning-based reconstruction of the quad-contrast imaging sequence. Two
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data each with acceleration factor of 6 and 2 are acquired from the MRI scanner.
Each data is reconstructed using a conventional GRAPPA reconstruction. The
GRAPPA-reconstructed factor 2 data is used as the reference (QuadCont;er).
Because misalignment exist between the data acquired with acceleration factor
2 and 6, the data acquired using acceleration factor 2 is retrospectively
undersampled to an acceleration factor of 6, and GRAPPAreconstructed in
order to generate the input for training the network (QuadContgrappa-rero). FOr
quantitative evaluation of the network performance, the retrospectively
undersampled data is reconstructed using the network (QuadContpr.-retro).
Finally, for qualitative evaluation of the prospectively undersampled data, the
data acquired using acceleration factor 6 (QuadContgraprpa-pro) 1S input into the

network, generating QuadContpi -pro.

For parallel imaging reconstruction, a recently proposed joint variational
network [12], which is an extension of the variational network [13], was
utilized. This network formulates the parallel imaging reconstruction problem
as an unrolled gradient descent optimization problem, in which the physical
model of the parallel imaging is embedded in the reconstruction and the
regularizers are learned from the training data (see Fig. 2.3. for details). In
particular, the joint variational network takes advantage of the sharable
anatomical information of multiple clinical contrasts to jointly reconstruct the
undersampled data of multiple contrast-weighted images. This approach fits
perfectly to the proposed sequence because all the four contrast-weighted

images are obtained simultaneously, providing naturally aligned images.
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An overall view of the datasets for the acquisition and reconstruction of
the quad-contrast imaging are summarized in Fig. 2.4. For the training of the
network, the retrospectively accelerated QuadCont datasets (acceleration factor
6) were GRAPPA-reconstructed (QuadContcrarpa-rero) and used as inputs
(complex-valued images; all channels). For labels, the QuadCont. image sets
were applied. For the input and label set, the four contrast-weighted images
were concatenated in the channel dimension of the network. The input and label
images were normalized by dividing the images with the root mean squared
value of the input image. The network was trained for 1000 epochs using the
IPALM optimizer [70] with a mean squared error loss function, and a batch size
of 5. TensorFlow library [71] was used for programming.

After training, the network was utilized to infer the datasets of the five
test subjects (retrospectively accelerated dataset: QuadContpy-retro;
prospectively accelerated dataset: QuadContpLpro; Fig. 4). When feeding into
the network, the input images were GRAPPA-reconstructed and normalized as
mentioned above.

For quantitative evaluation, two quantitative metrics, normalized root
mean squared error (NRMSE) and structural similarity (SSIM), were measured
for QuadContp.-rero and QuadConterarpa-rero With respect to QuadContrr. The
metrics were calculated over all slices for each subject. Prior to the calculation
of the metrics, the low signal intensity region outside the brain was masked out.
The mean and standard deviation of the two metrics were computed across the

five subject datasets.
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Ti-weighted image synthesis and quantitative mapping
Using the PD-FLAIR and PD-weighted images, Ti-weighted images
were synthesized via the following equation, which is analogous to the

magnetization prepared 2 rapid acquisition gradient echoes (MP2RAGE) [72]:

real(PD-FLAIR *conj(PD-weighted))
IPD-FLAIR|*+PD-weighted|?

Ti-weighted = [Eq. 2.1]

where PD-FLAIR and PD-weighted are the complex-valued images from the
quad-contrast reconstruction.
For quantitative T1- and T»-maps, a voxel-wise non-linear least-square
fitting is applied using the following models, incorporating the DEFT pulse:
SpD-weighted = A(1 — e Tree1/Tr)e=TElerr /T2,
STyweighted = A(1 — @7 Trect/T1)e~TE2ert/ Tz,
Sep-pLar = [A{1 — 2~ TV/T1 4 o= (T4 Trec2)/ T} —

~3ATE/T; o—(TI+Trec2)/T1) ] a—TE e /T
STz-weightede /T2g~( rec2)/ 1)]e eff / 2

STz-FLAIR = [A{l — 2" TU/Ty + e_(TI+Trec2)/T1)} _

—3ATE/T, o—(TI+T T —TE2 T
STz-weightede /T2g~( rec2)/ 1)]e eff / 2

[Eq. 2.2]
where Spp.weighted, T2-weighted, PD-FLAIR, T2-FLAIR denote signals from the subscripted
contrast, A is a constant proportional to PD, Trec is the recovery time between
IR-prepped-acquisition and the non-IR-prepped acquisition, T iS the
recovery time between non-IR-prepped-acquisition and the inversion pulse, and
ATE is the echo spacing (Fig. 2.2b).

The derivation of the signal models is as follows: The DEFT pulse is

inserted after every acquisition of non-IR-prepped contrasts, which are PD-
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weighted and T.-weighted images. Because the DEFT pulse is not inserted after
the IR-prepped contrasts acquisition, we may assume that the longitudinal
magnetization of a voxel is 0 after the acquisition of FLAIR contrasts. Thus, the
longitudinal magnetization right before the acquisition block of non-IR-prepped
contrasts is as follows:

— =T, T,
Mz,before non—IR—-prepped acquisition — MO(1 —e rect/ 1)-

Therefore, the PD-weighted and T2-weighted signals are modeled as

Spp = Mo(l _ e—Trm/Tl)e—Tmeff /T2

Sr, = Mo(l _ e—Trecl/Tl)e—TEzeff/Tz’
assuming that the T, contrasts are determined by the effective TE. Because the
effective echo of the T2-weighted image is at the 10" out of 12 echoes, and the
DEFT pulse is consisted of a 180 refocusing pulse and a -90 flip-back pulse,

the transverse signal before the DEFT pulse (and the longitudinal signal after

the DEFT pulse) is

— — —3ATE/T;
Mxy,before DEFT — Mz,after DEFT — STze / Z,

where ATE is the echo spacing. The longitudinal magnetization recovers for
Trecz until the inversion pulse:

M before inversion = Mo — (Mg — Sg,e38TE/T2 ) e ~Treca/ T,
Assuming perfect inversion, the longitudinal magnetization after the inversion
pulse is:

M ater inversion = —Mo + (Mo — Sz, e 734TE/T2 )¢ ~Treca/Ta,

The longitudinal magnetization recovers during TI, leading to:
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Mz,beforeIR—prepped acquisition — MO - [MO + {MO - (MO -
St e—3ATE/T2)e—Trecz/T1}]e—T1/T1.
2
With some effort, the upper equation can be simplified as the following
equation:
Mz,before IR—prepped acquisition
= MO{l — Ze_TI/Tl + e_(TI"'Trecz)/Tl} — ST e_3ATE/T2e_(TI"'Trecz)/Tl).
2
Therefore, the PD-FLAIR and T,-FLAIR signals are modeled as follows:
Spp.FLAIR = [Mo{l —2eTH/T 4 e_(TI+Trecz)/T1)}

_ ST e—SATE/Tze_(TI"'TrecZ)/Tl)]e_TEleff /T2
2 7

STZ—FLAIR = [Mo{l - Ze_TI/Tl + e_(TI+Trec2)/T1)}

— Sy, @™ 30TE/Ts =TI+ Treca)/T) | o ~TB2es IT:.
2

One can also synthesize Ti-weighted or FLAIR images from this
quantification. For comparison with the natively acquired FLAIR image from
the proposed sequence, a synthetic FLAIR image was generated using the

parameter maps (TR/TI/TE = 9500/2400/94 ms).

All displayed images were corrected for B1 inhomogeneity using bias
fields estimated by an automated segmentation tool [73]. The estimated field
was extrapolated by fitting a 2" order polynomial model to the field inside the
brain mask. The same bias field map calculated from the PD-weighted image

was used to correct for all the contrast-weighted images from the same dataset.
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2.3. Results

The five contrast-weighted images (PD-weighted, T.-weighted, PD-
FLAIR, T.-FLAIR, and synthesized Ti-weighted images) of QuadConts and
QuadContpL.pro are displayed in Fig. 2.5 along with the images from the
conventional methods (PD-weighted, T»-weighted, To-FLAIR, and T:-weighted
images). Overall, the images from QuadCont.s (Fig. 2.5, second row) and
QuadContpy-pro (Fig. 2.5, third row) show similar contrasts and quality to those
from the conventional scans (Fig. 2.5, first row). No noticeable ghosting from
k-space discontinuities in the TSE acquisition was observed. When zoomed-in
for details, the QuadCont.s images are slightly noisier than the images from the

conventional methods whereas the QuadContp-pro iMmages
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Figure 2.5. Comparison between the images from the conventional scans,
reference quad-contrast images (QuadCont.r), and prospectively-accelerated
and deep learning-reconstructed quad-contrast images (QuadContpi-pro).
Compared with the conventional images (first row), the QuadContr (second
row) and QuadContprpro images (third row) show similar contrasts. The
QuadCont images are slightly noisier than the conventional images when
zoomed-in for details. The QuadCont T;-weighted images show a bland
contrast compared to the conventional T-weighted image. Note that there was

a slight motion between the conventional scans and QuadCont scans.
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are blurrier than the other images. Additionally, cerebrospinal fluid (CSF)
intensity in the PD- and T.-weighted images of QuadCont.s and QuadContp,.-
pro 1S 10 some extent lower than that in the conventional results. No partial
volume-originating artifact, which is common in synthetic images [66], is
observed in the PD-weighted, T.-weighted, PD-FLAIR, and T.-FLAIR images
of the QuadCont methods because these images are natively acquired. Only T;-
weighted images, which are generated by the combination of the PD-weighted
and PD-FLAIR images, show partial volume artifacts and have a bland contrast
compared to the conventional Ti-weighted image. Additionally, the synthesized
T1-weighted images display hyperintensities in several venous structures such
as superior sagittal sinus and straight sinus (see Discussion), which are different
from the conventional Ti-weighted images. Similar artifacts are also witnessed
in a conventional synthetic MRI method [67]. The total scan time of
QuadContpi-pro Was only 2 min 50 s using the deep learning reconstruction with
acceleration factor 6 whereas the scan time of the conventional methods was 13
min 19 s using the GRAPPA reconstruction with acceleration factor 2 and
QuadContrr 6 min using the GRAPPA reconstruction with acceleration factor
2.

Fig. 2.6 demonstrates the large spatial coverage of QuadContpipro,
displaying 7 slices out of 32 slices. The four native images show no conspicuous

artifact.
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Figure 2.6. Prospectively-accelerated and deep learning-reconstructed quad-
contrast images (QuadContprpro) are displayed for seven slices out of 32 slices,
demonstrating the large brain coverage. The scan time is only 2 min 50 s.
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When the deep learning reconstruction is evaluated using retrospectively
undersampled data (acceleration factor 6), the images (QuadContpy -retr0) ShOW
superior quality to those of the GRAPPA-reconstructed images
(QuadContgrarra-retro) (Fig. 2.7). The absolute difference images, which are
referenced by the QuadConts images and displayed in ten times smaller ranges,
reveal substantially reduced noises in the QuadContpi-rero iMmages,
demonstrating the advantage of the deep learning reconstruction in the heavily
undersampled data. The quantitative metrics agree with the observations (Table
2.1). When averaged among the four natively-acquired contrast-weighted
images, the mean and standard deviation of NRMSE of the QuadContpy-retro
images is 4.36 + 1.55% while that of QuadContcrappa-retro IS 10.54 + 5.30%,
consolidating sthat the deep learning reconstruction substantially outperformed
the GRAPPA reconstruction. The SSIM value averaged among the four
contrasts also reconfirms the advantage of the deep learning reconstruction,
reporting 0.990 + 0.004 for QuadContp-ero and 0.953 + 0.022 for

QuadConterarpa-retro.
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Fig. 2.7. Comparison of the retrospectively-accelerated and reconstructed
images to the reference quad-contrast images. a) Reference quad-contrast
images (QuadCont.f), b) retrospectively-accelerated and GRAPPA-
reconstructed images (QuadContgrappa-reto), C) absolute difference between
QuadContr and QuadContcrappa-retro, d) retrospectively-accelerated and deep
learning-reconstructed images (QuadContpreiro), and e) absolute difference
between QuadCont,.rand QuadContpr.reiro- The difference images are multiplied
by 10 for visualization. The QuadContcrappa-rero images display high errors
with respect to the QuadCont,.r images, whereas the QuadContpyrero iImMmages

display substantially reduced errors.
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A selected slice of the T1- and T,-maps quantified using the QuadCont;es
image set (Fig. 2. 8, first row) and the QuadContp.pro image set (Fig. 2.8,

second row) display maps of good quality.
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Figure 2.8. T:- and T>-maps calculated using the QuadCont..r image set and the
QuadContprpro image set are displayed. The quantitative maps are of good

quality for both results.
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In Fig. 2.9, a natively-acquired FLAIR image in QuadContpLpro iS
compared to a synthesized FLAIR image using the Ti- and T,-maps from
QuadContpi-pro. The magnified images in the red and orange boxes suggest that
the synthetic FLAIR image contains hyperintensity at the boundaries of CSF
and brain parenchyma (arrows in Fig. 2.9c), which is not present in our natively-
acquired QuadContpipro image (arrows in Fig. 2.9b). This artifact is similar to
that reported in the synthetic FLAIR images of a synthetic imaging method [65],
[66]. The absolute difference image in Fig. 2.9e reveals that the artifact is

prevalent in CSF boundaries across the brain.

2.4. Discussion

In this article, we proposed the quad-contrast sequence and the post-
processing method that enable the simultaneous acquisition of the four contrast-
weighted images (PD-weighted, T.-weighted, PD-FLAIR, and T,-FLAIR
images), and the synthesis of the Ti-weighted images, and two quantitative
maps (Ti- and T-maps). The whole brain is covered in 6 min of scan time
(acceleration factor 2), which is further reduced to 2 min 50 s via deep learning
reconstruction (acceleration factor 6). The rapidly acquired high quality images
can be useful for a routine brain evaluation.

In our method, the FLAIR contrast is natively acquired rather than
synthesized from quantitative maps. Therefore, the FLAIR images do not suffer
from hyperintensity at the boundary of CSF and brain parenchyma, which has
been reported in synthetic multi-contrast imaging and was misinterpreted as

lesions [66], [74], [75]. This is an important advantage because FLAIR images
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are widely utilized for clinical diagnosis. Another advantage of the proposed
method is that the contrast-weighted images are naturally aligned. This enables
the joint reconstruction of the multiple contrast-weighted images in deep
learning, which enhances the reconstructed image quality. Additionally, the
images are not prone to geometric distortion because the sequence is based on
TSE readout, differentiating our method from EPI-based multi-contrast
methods [62], [63].

In the current reconstruction, the same undersampling pattern is used for
all contrasts. Recently, shifted undersampling patterns for different contrasts
have been shown to enhance reconstruction quality [12], [76]. This approach
may be applied for our method to further improve the deep learning
reconstruction results.

During the development, various k-space orderings were simulated and
tested. The current scheme showed the least ghosting artifact and was chosen
as the final design. It has a small discontinuity in the central k-space (echo 1, 2,
3,and 4, and echo 10, 9, 8, and 7 for PD- and T»- contrasts, respectively), while
leaving larger discontinuity at the periphery of the k-space (echo 5, 6, 11, and
12). Because the peripheral k-space primarily contributes to the high frequency
details of an image rather than contrast, the current k-space ordering is a good
compromise between acquisition efficiency vs. image quality and contrast.

In the retrospectively reconstructed images, the noises are substantially
reduced compared to the GRAPPA reconstructed images, but the noise
distribution appears to be nonuniform. Additionally, the T,-weighted and T»-
FLAIR images tend to have larger reconstruction errors than the PD-weighted
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and PD-FLAIR contrasts, regardless of the reconstruction methods. This may
originate from lower signal-to-noise ratios (SNRs) of the T,-weighted and T»-
FLAIR images than the other two images.

Different from the natively acquired QuadCont images, which show
good image quality, the synthesized Ti-weighted images appear noisier and
rather bland compared to the conventional T1-weighted image. This is primarily
due to the long T, resulting in reduced contrasts between PD-weighted and PD-
FLAIR images in the brain tissue. For improved T sensitivity, a shorter Tl
value can be used at the cost of a modified FLAIR contrast. Another noticeable
difference of the Ti-weighted images is hyperintensities at several venous
structures. The artifacts may originate from flow which was reported to
generate similar artifacts in a synthetic MRI method [67].

In this work, we used Eg. 2.1 to synthesize Ti-weighted images. It is
also possible to generate Ti-weighted images using the quantitative maps [64].
When compared, the quality of T1-weighted images generated from quantitative
maps is poorer than those generated using Eq. 2.1 (data not shown), which may
be explained by quantification errors that propagate into the synthesized images.

The sequence contained a DEFT pulse pair after the non-IR-prepped
acquisition block to enhance the SNR of the IR-prepped contrasts via increased
Tl. On the other hand, no DEFT pulse is utilized after the IR-prepped
acquisition block because the SNR improvement of the non-IR-prepped
contrasts is small due to the long Trc1 While additional DEFT pulses will

increase SAR.
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In a few subjects, the number of slices was reduced due to SAR
limitations. A lower refocusing flip angle (e.g., 150°) and/or RF pulses tailored
for SAR reduction [77] may be used to decrease SAR without compromising
the number of slices.

The short scan time and high-quality images may help our method to be
utilized for a routine brain evaluation. In particular, the natively acquired
FLAIR contrast, which is widely used for lesion detection, will be beneficial

for diagnosis.
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Chapter 3. SandwichNM

3.1. Introduction

Neuromelanin (NM) is a dark insoluble pigment found abundantly in
catecholaminergic cells of substantia nigra pars compacta (SNc) and locus
coeruleus (LC), and the pigment is known to accumulate during normal aging
[19], [20] . NM abnormality has long been associated with Parkinson’s disease
(PD) because of the selective death of NM containing cells in PD patients [21],
which results in a visible loss of the pigment in SN¢ and LC [22], [23].

NM-sensitive MRI or NM-MRI [24]-[26] is a non-invasive proxy
measure of NM in the human brain, which may provide valuable information
about PD [27]-[30] and other neurological disorders [31]-[35]. In particular,
NM-MRI has displayed the ability to discriminate between healthy control and
PD patients [36], [37], and between PD and other neurological diseases such as
idiopathic PD and Alzheimer’s disease [32], [33], [38]. It has also shown
correlation with PD progression [36], [39]-[42], revealing its potential as a
biomarker of PD.

To generate NM-sensitive MRI images, magnetization transfer (MT)
imaging with T1-weighting is commonly used [26], [39], [78], [79]. This
combination of the contrasts can be explained as follows: For T1-weighting,
NM exists in the form of a paramagnetic NM-iron complex, which leads to a
shortened T1 of NM containing voxels [29]. For MT, the NM-abundant tissues,
which have relatively low macromolecular content due to the large dopamine

cell bodies, are surrounded by a tissue with high macromolecular content (e.g.,

40 :



crus cerebri or CC), which leads to a suppressed signal when MT pulses are
applied. Therefore, MT imaging with T1-weighting highlights T1-shortened
NM-containing voxels while suppressing the surrounding tissues [26], [80],
[81]. So far, several MT-prepared TSE and GRE protocols have been proposed,
delineating NM [26], [78], [79].

While the option of applying an MT pulse is available in all vendors, it
is well-known that the MT pulse parameters such as pulse shape, flip angle,
duration, and offset frequency, which govern saturation efficiency, are often
fixed in product sequences and substantially different across vendors and
sequences. For example, a previous study reported a difference between the
Siemens and Philips off-resonance MT pulses (e.g., flip angle of 500° and 220°
for Siemens and Philips, respectively) and the resulting inter-site bias between
semi-quantitative MT maps [82]. Furthermore, the mechanism of the MT
saturation may also differ by vendor or sequence (e.g., off-resonance vs. on-
resonance). These MT parameter differences between vendors limit direct
comparisons between images. An alternative option is to develop a custom-
designed MT sequence for all vendors, but this requires substantial efforts for
programming sequences for each software version and upgrade, making this
solution less attractive for clinical use.

In this study, we propose a new NM imaging method, sandwichNM,
which uses the incidental MT effects of spatial saturation pulses for MT-
weighting [83]. The spatial saturation pulse, which is available in the product
sequences of all vendors, is controllable because the amount of MT effects can

be modified by the number of pulses deployed and the offset-frequency can be
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changed by the location and thickness of the pulses, giving freedom and
usability with no effort for sequence programming. In sandwichNM, the
saturation bands are placed both inferior and superior to the imaging volume,
like a sandwich, balancing MT weighting across slices (Figure 3.1). Here, we
assess and optimize the effects of the sandwich saturation pulses on the NM
contrast using computer simulations and in-vivo experiments. Then, in-vivo
images are compared with those of conventional MT-prepared 3D GRE (MT-
GRE) and 2D TSE (MT-TSE) methods using a vendor-supplied MT pulse.
Finally, multi-vendor experiments are conducted to emphasize the effectiveness

and usability of sandwichNM imaging.

3.2. Theory

Position dependent MT effects of a spatial saturation pulse
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Figure 3.1. (a) [llustration of sandwichNM imaging and (b) offset-frequency of
a single spatial saturation pulse. SandwichNM imaging uses spatial saturation

pulses for magnetization transfer (MT) weighting; an even number of saturation
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pulses are alternately applied inferior and superior to the imaging volume for
symmetric MT effects across slices. The offset-frequency of the saturation RF
(Freqommet) 1s determined as shown in the equation (Eq. 3.1). In sandwichNM
imaging, this position dependent offset-frequency, which leads to a position
dependent MT effect, is compensated by the same RF pulse at the opposite side

of the imaging slab, generating position independent MT-weighting.

In this section, we analyze the position dependent MT effects of a spatial
saturation pulse. A schematic drawing of the proposed method and the slice
location-dependent offset-frequency of a spatial saturation RF pulse are
depicted in Figure 1. The spatial saturation pulse is applied with a slice selection

gradient. Therefore, the offset-frequency (Freqome) is defined as follows:

. BW,,
Freqofiet = (Distsae + LOCstice) X m [Eq. 3.1]

where Dists, i the center-to-center distance between the saturation region and
the imaging slab, Locsic. is the location of the slice of interest with respect to
the center of the imaging slab, BW is the bandwidth of the saturation RF pulse,
and Thicks. is the thickness of the spatial saturation. Distg: is determined by
Thicksa, the saturation gap (Gapsa), and the imaging slab thickness (Thicksiab)
as follows:

Distsat = 0.5 Thicks + Gapsa + 0.5 Thicksian [Eq. 3.2]
Combining the two equations, the offset-frequency is proportional to Gapsa and
inversely proportional to Thicks,: for fixed Thicksia, and BWs,. Therefore, using

a smaller Gaps, and larger Thicks, would increase MT saturation. However, this
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would inevitably increase the amount of direct saturation [84] and decrease the
image signal to noise ratio (SNR).

As shown in Eq. 3.1, the offset-frequency is related to Locsice. This
implies that the application of single-sided spatial saturation results in
asymmetric MT effects across slices. To avoid this asymmetry, we propose to
apply spatial saturation pulses both inferior and superior to the imaging slab
with the same distance from the imaging volume (Figure 3.1a). Hence, an even
number of flow saturation pulses (e.g., 2, 4, 6) are applied, with a pair of pulses
applied superior and inferior to the imaging volume. This application of spatial

saturation is hereafter referred to as sandwich saturation.

3.3. Materials and Methods

Simulation of MT effects of spatial saturation pulses

To assess the effect of spatial saturation pulses on the image contrast, the
signal intensity of SNc and a reference region (CC) at the slice position (Locsiice)
was simulated numerically by solving the Bloch equation for free water and

macromolecular populations [84]:

_Rg —Freqofrset (LOCsiice) 0 0 M;{ 0
aM _ _FTEqufs'-’f(Locslice) _sz —en® 0 MJ‘: + fO I
dt f RiM
0 w4 (t) — (R +kpm) ks sz R%M?ﬂ
0 0 0 —(R{"+kpp + W () [LM7? 1o
[Eq. 3.3]

where superscript f (or m) denotes the free water (or macromolecular) pool,

respectively, Ri or2) denotes the relaxation rates, Kem or mf) 1S the exchange rate
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from free to macromolecular (or macromolecular to free) pool, Mx (oryor ) 18 the
x (or y, or z) magnetization, My is the initial magnetization, w,(t) is the time-
varying amplitude of the flow saturation pulse, and W(t) =
w?(t)g(A(dS), RY") is the saturation rate of the macromolecular pool. The
line shape of the macromolecular pool, g(A(dS), RJ"), was chosen to be super-
Lorentzian [85]. The simulation parameters for SN¢ and CC were summarized
in Table 3.1, which were adapted from a previous study [86]. M, of SN¢ and
CC are set to be 1 and 0.86, respectively based on our observations of lower

proton density in CC compared to SNc (Figure 3.2).

pool size ratio T, (s)

Substantia

. 0.115 + 0.013 1.268 + 0.181
Nigra

Crus Cerebri 0.204 £ 0.027 1.136 £ 0.180

Table 3.1. Pool size ratios and T1 values of SN and CC adapted from [86]

slice 7 slice 8




Figure 3.2. Proton density maps of the midbrain acquired (IRB approved,
single subject) using the method in Oros-Peusquens et al. [1]. The CC region

displays lower proton density compared to SN (0.67 vs. 0.81).

The parameters of RF pulses were matched to those in the experiments
using Siemens 3T MRI (Trio, Siemens, Erlangen, Germany). The duration of
the spatial saturation pulse and the excitation pulse for the simulation were 3.84
ms and 1 ms, respectively. The flip angle (FA) of the spatial saturation pulse
was set to 90° and the time bandwidth product was 8.33, resulting in an RF
bandwidth of 2.17 kHz. There was a 3 ms gap between consecutive spatial
saturation pulses despite the gap between the last spatial saturation pulse and
the excitation pulse having been set to 1.97 ms. The imaging slab thickness was
40 mm, and the signals of SNc and CC were simulated using 1600 spins
uniformly distributed throughout the slab. The imaging slab was divided into
16 slices; the SNc and CC signals of 100 spins located in each slice were
averaged. Finally, the contrast ratio (CR) between SN¢ and CC was calculated

for each slice [24]:
o,y =Usn ~Icc)
CR (%) = - x 100, [Eq. 3.4]
cc

where Iy and I are the signals of SNc and CC, respectively.

Several conditions and parameters were tested with the default
parameters of Ng: = 4, Gapse = 10 mm, and Thicks,e = 80 mm. First, the
sandwich saturation scheme was compared to the single-sided saturation

scheme in order to assess the uniformity of the MT effects across the imaging
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slab. Then, the effects of Gapsa and Thicks. were assessed by changing Gapsat
from 0 to 100 mm with a 10 mm interval, and Thicke: from 20 to 110 mm with
a 10 mm interval. The number of spatial saturations (Nsa) was also tested for 2
and 4. For Ng,: of 4, TR was 60 ms and FA was 20° (TR and FA adapted from
Liu et al. [79]). For Ng of 2, TR and FA were adjusted to 30 ms and 14°,

respectively.

MRI experiments

Three experiments, one to determine the spatial saturation parameters,
another to compare sandwichNM with conventional NM methods, and the third
to evaluate multi-vendor performances, were conducted. The study was
approved by IRB and a total of eight subject, who provided written consent,
were scanned (three for the first experiment, one for the second experiment, and
four for the last experiment). In the first two experiments, data were collected
using 3T MRI from Siemens (Trio, Siemens, Erlangen, Germany), whereas in
the multi-vendor experiment, scans were performed using 3T MRI systems
from three different vendors (Skyra, Siemens, Erlangen, Germany; Ingenia CX,
Philips, Best, Netherlands; Discovery750, GE, Milwaukee, WI) in three
different MRI centers (Samsung Medical Center, Seoul, Korea; Severance

Hospital, Seoul, Korea; Konkuk University Hospital, Seoul, Korea).
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[Optimization for spatial saturation parameters] The default sequence
parameters for sandwichNM were as follows: FOV = 230 x 230 x 40 mm?,
voxel size = 0.5 x 0.5 x 2.5 mm?, TR/TE = 60/3.86 ms, FA = 20°, readout
bandwidth = 170 Hz/pixel, Ne = 4, Gapsa = 10 mm, Thicks, = 80 mm, and
acquisition time = 5 min 30 s. The imaging slab was oriented perpendicular to
the 4th ventricle, and the center of the imaging volume was located tangent to

the top of the pons.

To compare the results with those of the computer simulation and also to
determine the sequence parameters that provide the best NM contrast, four tests
were conducted. First, to evaluate the uniformity of the MT effects, the
sandwich saturation scheme and the single-sided saturation scheme were
acquired and compared (one subject). Then, to measure the effects of Gapsa, the
sandwichNM acquisition was repeated with Gaps, =0, 10, 50, and 100 mm (one
subject). After that, the effects of Thicks. were assessed by changing Thickga
(20, 50, 80, and 110 mm; one subject). Finally, the two different settings of N,
one with Ng = 2, TR = 30 ms, and FA = 14°, and the other with Ny =4, TR =
60 ms, and FA = 20°, were compared. The last experiment was conducted using

the data of the multi-vendor experiment (see multi-vendor experiment).

For each experiment, regions of interest (ROIs) were manually drawn for
SNc and CC using MATLAB (Mathworks Inc., Natick, MA), and CR between
the mean signal intensities of SNc and CC was calculated. The SNR of SNc¢ was

also calculated to account for the signal drop resulting from the MT effects.
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[Comparison with conventional NM imaging methods] Two conventional
NM-sensitive images, MT-GRE and MT-TSE, were acquired, and the results
were compared with that of the sandwichNM. The parameters for the MT pulse
were offset-frequency = 1200 Hz, FA = 500°, and RF bandwidth = 230 Hz. The
3D GRE sequence parameters were matched to the sandwichNM parameters,
while 2D TSE images were acquired with FOV = 230 x 230 mm?, slice
thickness = 2.5 mm, voxel size = 0.5 x 0.5 mm?, TR = 910 ms, TE = 14 ms,
turbo factor = 6, concatenation = 2, number of averages = 2, readout bandwidth
= 120 Hz/pixel, and acquisition time = 4 min 36 s (adapted from Pyatigorskay
et al. [87]). The SNR and CR were calculated for all three methods in three

slices containing the largest SN¢ volume.

[Multi-vendor experiment] At each scanner, sandwichNM and MT-GRE
images were acquired using product sequences with no modification. The scan
protocol parameters are summarized in Table 3.2. The protocols with Ng = 2
and 4 were both acquired for comparison. Note that a different FOV was used
for the GE scanner because there was no option available for elliptical scanning
or slice oversampling.

For analysis, the sandwichNM and MT-GRE images that were acquired
using the Siemens and GE scanners were rigidly registered to the sandwichNM
image acquired from the Philips scanner using the FMRIB's Linear Image
Registration Tool (FSL FLIRT) [88]. The ROIs of SN¢ and CC were drawn on
the sandwichNM images acquired from the Philips scanner. Then the CR

between SNc and CC were calculated as defined in Eq. 3.4.
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3.4. Results

The simulation results of the sandwich saturation scheme and the single-
sided saturation scheme are displayed in Figure 3.3a. In the single-sided scheme,
CR predominantly decreases towards the superior slices due to the asymmetric
MT effects of the spatial saturation pulses (Figure 3.3a: red line). In the
sandwich saturation scheme, however, CR is almost uniform across the slices,
demonstrating the advantage of the approach (Figure 3.3a: blue line). The
simulation results are partially supported by the experimental results shown in
Figure 3.3b where CR in a relatively superior slice (slice 12) is higher in the
sandwich saturation (25.5 + 5.4%) than in the single-sided saturation (21.9 +

5.4%), agreeing with the simulation results.

a) b) Saturation .
24 r z - orientation Slice 12
—4 single-sided saturation
—4 sandwich saturation E c 1 N
! 2 » RO
23 I E ® = ﬁé .
3 ] 9 3 R R 4
s l g8 gy l%
(3) @ CR:21.9 +.5.4
22 |
I :
Slice 12 £ S § 1
. g YN
21 : : 5 S R,
-20 -10 0 10 20 5 = . 4
Distance from imaging slab center (mm) @ CR:25.5 +.5.4%
— —_—
Inferior Superior

Figure 3.3. (a) Simulation results and (b) experimental results of the single-
sided scheme and the sandwich saturation scheme. When the spatial saturation
pulses are applied inferior to the imaging slab, CR decreases toward the superior

end of the imaging slab (red line). On the other hand, the sandwich saturation
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scheme shows a flat CR across the imaging slab (blue line). In the experiment,
the slice above the center of the slab (slice 12) reports a lower CR (21.9 £+ 5.4%)

in the single-sided scheme than that (25.5 + 5.4%) in the sandwich saturation

scheme.
a)
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Figure 3.4. (a) Images with Gaps. = 0, 10, 50, and 100 mm displayed for a
representative slice. (b) CRs and (c) signal intensities and SNRs plotted over
Gapsa. The simulation results are displayed in black dashed lines while the
experimental results are displayed in red solid lines. Error bars indicate standard
deviations. Both simulated and experimental CRs decrease with Gaps. whereas

both simulated signal intensity and experimental SNRs increase with Gapsa:.

When the CR and signal intensity of SNc are simulated for various Gapsas,
CR decreases and signal intensity increases as Gapsa: increases (Figures 3.4b, c;

black dashed lines). These results are in agreements with the experimental
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results of CR and SNR (Figure 3.4b, c; red solid lines).
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Figure 3.5. (a) Images with Thicks = 20, 50, 80, and 110 mm displayed for a
representative slice. (b) CRs and (c) signal intensities and SNRs plotted over
Thicks. The simulation results are displayed in black dashed lines while the
experimental results are displayed in red solid lines. Error bars indicate standard
deviations. Both simulated and experimental CRs increase with Thicksas,

whereas both simulated signal intensity and experimental SNRs decrease with

Thl Cksat .

When the CR and signal intensity of SNc are simulated for various
Thicks, CR increases and signal intensity decreases as Thicks,: increases

(Figure 3.5b, c; black dashed lines), supporting the experimental results (Figure

3.5b, c; red solid lines).
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The simulated CR of Ny = 2 is 22.7 %, and is comparable to that of N
=4 (22.4 %). These comparable CR values are confirmed by the experiments
(28.1 £ 6.7% when Nyt = 2 vs. 27.2 £ 5.7% when Ny = 4; Figure 3.6 and Table
3.3). Additionally, SNRs of SN using the two parameters are also similar (224
+ 12 when Ny =2 vs. 249 + 11 when Ng, = 4). Because setting two saturation
bands is more convenient during scanning, the final parameters for
sandwichNM are N = 2, TR = 30 ms, FA = 14°, Gaps = 10 mm, and Thicksa

= 80 mm where the last two parameters are chosen to balance between SNR

and CR.
Philips GE Siemens
SandwichNM 28.4 + 1.5% 27.2 + 1.0% 273 £ 0.7%
(Nsat = 2)
SandwichNM 275 +1.9% 26.2 + 1.1% 271 +1.0%
(Nsat = 4)

calculated across 4 subjects

Table 3.3. CRs calculated from the sandwichNM results with N, = 2 and Nt =

4. The values are calculated across the four subjects from the multi-vendor study.

Slice 17 Slice 18 Slice 19 Slice 20 Slice 21 Sllce 22
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Figure 3.6. Comparison between sandwichNM results acquired using Ng = 2
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with TR = 30 ms vs. Ngt = 4 with TR = 60 ms. Both parameters report
comparable CRs (28.1 + 6.7% when Ny =2 vs. 27.2 £ 5.7% when Ny, = 4) and

SNRs (224 + 12 when Ngat = 2 vs. 249 & 11 when Nga = 4).

When this sandwichNM acquisition is compared with the conventional
methods, the results show the highest CR in the sandwichNM images (23.6 +
5.4%) followed by MT-TSE (20.6 &+ 7.4%) and MT-GRE (17.4 + 6.0%) (Figure
3.7). The SNR of sandwichNM (121 + 5) is slightly lower than that of MT-GRE
(135 + 7), but higher than that of MT-TSE (98 + 6). The results were consistent
when ROIs were drawn on the images from the conventional sequences.
Furthermore, the MT-GRE images suffer from flow artifacts whereas the
proposed method does not because of the saturation bands. Hence, the overall
results of sandwichNM are superior to those of the conventional methods.

slice 11 slice 12 slice 13
g 3 =

!

¢ ey

f o . 2
L 5

CR; 23.6 £5.4%
SNR:121 + 5

SandwichNM

o N s Ll
& - g
00 DI ks

T
1 F

w
o
9
[
b=

R:,17.4"£6.0%
ESNR: 135717 w6
e g it
il
G i 3 _
R: 206 510 % 4 § 8 4
NR: 98 L R

I

Figure 3.7. Comparison between sandwichNM and conventional NM methods.
SandwichNM images display the highest CR (23.6 £ 5.4%), followed by those
of MT-TSE (20.6 + 7.4%) and MT-GRE (17.4 + 6.0%). While the SNR of the
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sandwichNM images (121 £ 5) is slightly lower than that of MT-GRE (135 £ 7)

but it is higher than that of MT-TSE (98 + 6).

The results of the multi-vendor study are displayed in Figure 3.8 and
Figure 3.9 for Nsat = 2 and 4, respectively. The sandwichNM images provide
high and consistent contrasts across the scanners (Figure 3.8a and 3.9a) while
the MT-GRE images suffer from flow artifacts and contrast variations (Figure
3.8b and 3.9b). The mean CRs of the sandwichNM images across all subjects
are higher than those of MT-GRE images in all three vendors (Figure 3.8c: 28.4
+1.5% vs. 24.4 +2.8%, 27.2 £ 1.0% vs. 13.3 + 1.3%, and 27.3 + 0.7% vs. 20.1
+ 0.9% for Philips, GE, and Siemens, respectively). When the mean CRs are
calculated for each subject across vendors, the sandwichNM images display
higher means and lower standard deviations compared to those of the MT-GRE
images (Figure 3.7c: 28.6 + 1.5% vs. 20.1 £8.1%, 27.1 £ 1.1% vs. 19.4 £ 5.1%,
27.6 £0.9% vs. 18.0 £ 4.0%, and 27.2 + 1.1% vs. 19.5 + 5.3%, for subjects 1,
2, 3, and 4, respectively). These lower standard deviations suggest lower

variability across vendors.
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Figure 3.8. Multi-vendor study results of (a) sandwichNM (Nsa = 2) vs. (b)
MT-GRE NM, displaying images from two subjects. When averaged across all
four subjects, the sandwichNM results report higher CR values and lower
standard deviations than those of conventional NM in all three vendors.
Furthermore, when the mean CRs are calculated for each subject across vendors,
the sandwichNM images yield higher means and lower standard deviations

compared to those of the MT-GRE images, suggesting lower variability across
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vendors.
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Figure 3.9. Comparison between (a) sandwichNM with Ng = 4 and (b)
conventional NM in the multi-vendor study. The sandwichNM images display

consistently higher CRs and lower variations across the scanners.
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3.5. Discussion

In this study, we proposed a new NM imaging method, sandwichNM,
which provides consistent and high-quality images across scanners from
different vendors.

The computer simulated CR values deviated from the experimental CR
values (simulated CR: 22.7% vs. experimental CR: 27.3 + 0.7 % for the default
parameters using N, = 2). This difference may be explained by the sensitivity
of CR to the tissue parameters, particularly the pool size ratio. In our simulation,
the parameters were adopted from Trujillo et al. [86]. When the simulation was
repeated with another parameters within one standard deviations from the mean
values of the pool size ratio, CR became 28.7%, revealing a better agreement
with the experimental value.

In this study, we suggested two protocols of sandwichNM imaging: N
=2 with TR = 30 ms and N = 4 with TR = 60 ms, both of which demonstrated
comparable CRs and SNRs (Figure 3.6, Table 3.3). Practically, applying the two
saturation bands (i.e., Nsa = 2) is preferable in a clinical setting because the
majority of MRI scanners provide options to automatically apply two parallel
saturation bands superior and inferior to the imaging volume. Hence, the
protocol setting during scanning is easier and can be consistent in all subjects.
The consistent positioning of the saturation bands is important because it
influences the NM contrast (Figures 3.4 and 3.5). On the other hand, the Ny =
4 setting can acquire four to five echo data with no cost in acquisition time.
These multi-echo data may be utilized for susceptibility-based nigral

hyperintensity imaging [89], [90]. Alternatively, one may increase Ng from 4
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to 6 in the case of TR = 60 ms, further increasing MT weighting. But this change
may decease SNR and induce a higher specific absorption rate (SAR), hitting
the SAR limit. In our experiments, SandwichNM was tested for two different
resolutions: one with a high in-plane resolution (0.5 x 0.5 mm?) and a thick slice
(2.5 mm); and the other with a moderate in-plane resolution (0.8 x 0.8 mm?)
and a thin slice (1.2 mm). These options resulted in differences in image quality
and SNR (Figures 3.6 vs. 3.7). They may have different applications. For
instance, the protocol using the high in-plane resolution may better visualize
LC, which is known to have a thin cylindrical structure of 2-2.5 mm thickness
[91] (Figure 3.10). Our imaging volume is large enough to cover both SN and
LC when it is appropriately located. In this study, however, we focused on
optimizing the method for the SN structure, and therefore the performance of

sandwichNM on LC imaging is the subject of a future study.

slice. ' = slice 13 slice 15

resolution=0.5 X 0.5 X 2.5 mm3 resolution=0.8 X 0.8 X 1.2 mm?3

Figure 3.10. Examples of LC images using sandwichNM with the resolutions
of 0.5 X 0.5 x 2.5 mm?’ (left)and 0.8 x 0.8 X 1.2 mm’ (right). The setting
with the higher in-plane resolution visualizes LC better than that with the lower

in-plane resolution.
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The sandwichNM CR values reported in our parameter optimization
experiments were somewhat different from those in the multi-vendor
experiments (e.g., 23.6% in Figure 3.7 vs. 28.1% in subject 3 of Figure 3.8c).
This difference may be explained by the well-known age effects of the NM
contrast (age of 24 for the subject in Figure 6 vs. age of 30 for the subject 3 in
Figure 7¢) [92].

SandwichNM displayed relatively consistent contrasts across scanners.
However, we must note that TE was different from one vendor to another (4, 2,
and 3.62 ms for Philips, GE, and Siemens, respectively). This difference may
have influenced the NM contrasts because the iron in SN may induce different
T>* decays for different TEs although the effects can be limited due to the short
TEs. Additionally, the saturation pulse type or shape applied in each vendor or
each software or hardware version of scanners was not considered. For example,
the saturation pulse parameters of Siemens had duration = 3.84 ms and
bandwidth = 2.18 kHz while those of GE had duration = 4 ms and bandwidth =
1.23 kHz. Despite these differences, our multi-vendor study results suggest that
sandwichNM reports much more consistent outcomes than those of the
conventional NM results, suggesting the advantage of the method.

Despite the correlation between NM concentration and MRI NM contrast
[26], the later is expected to have contributions from other factors (e.g., myelin
concentration in surrounding white matter). Furthremore, the portion of NM
and non-NM factors is not well studied and may vary among acquisition
methods. Therefore, one has to be cautious in interpreting the contrast and also

exploration for NM specificity is necessary.
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The scan time and voxel size of the conventional NM-MRI methods were
matched to those of sandwichNM for fair comparison between methods.
Therefore, the sequence parameters such as voxel size or number of averages
are different from previously published methods. For example, in a study by
Pyatigorskaya et al. [87], TSE was acquired with the voxel size of 0.4 x 0.4 x
3 mm?® and three averages. This would result in a higher SNR at the cost of a
longer scan time. Another study proposed to use a 2D MT-GRE sequence with
a customized MT pulse [93], showing high quality SN images. But the approach
was not compared with our method because it requires a customized sequence.

Manually drawn ROIs were utilized for CR and SNR calculation in this
study. Using automated methods such as deep-learning based segmentation [94],
[95] or atlas-based ROIs [96] may enhance anatomical targeting.

The large deviations of the MT-GRE results may originate from the MT
pulse differences across vendors. The Philips MT-GRE images, which utilized
an on-resonance MT pulse, reported larger CRs (24.4 = 2.8%) than those from
GE and Siemens, which utilized off-resonance MT pulses (13.3 £ 1.3% for GE
and 20.1 £ 0.9% for Siemens). Furthermore, although vendor-supplied MT
pulses from Siemens and GE both applied off-resonance pulses, parameters
such as pulse shape, duration, FA, and offset frequency were substantially
different (Siemens: Gaussian pulse, 10 ms, 500°, 1.2 kHz; GE: Fermi pulse, 8
ms, subject dependent variable, 2.4 kHz), resulting in significantly different MT

effects.
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Chapter 4. Resolution Generalization of

deep-learning based QSM network

4.1. Introduction

In recent years, deep learning algorithms for QSM have demonstrated
great potentials. [4], [S1]-[54] However, it was reported that the deep learning
methods fail to reconstruct data with resolution different from that of the
training resolution. [55] Although 1 mm?® isotropic voxel size is recommended
for QSM data acquisition, data with anisotropic voxel size are commonly
acquired in clinical practice due to practical constraints such as the need for
high in-plane resolution, scan time, or image SNR. Because it is not convenient
to train different networks for every different resolution data, improving the
generalization ability to different voxel size is vital for deep learning-based
QSM methods to be widely applied.

To overcome this pitfall, several methods proposed to revise the network
architecture to enhance adaptability to different resolution data, to incorporate
resolution information as network input, to use the physical model of QSM to
refine the network, or to utilize a physical model-based un-supervised network.
While these methods provide better generalizability to data resolution
compared to networks trained to reconstruct QSM at a single resolution, the
problem is not completely solved.

In this work, we propose a pipeline to reconstruct multiple resolution

QSM data using QSMnet trained at a single resolution. The local field map is
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re-sampled multiple times in different spatial locations, and the re-sampled
local field maps are used to reconstruct QSM maps at training data resolution.
The reconstructed maps are then combined, and corrected for using a procedure
named “dipole compensation”. We demonstrate the effectiveness of the
proposed pipeline by comparing with two scenarios, interpolation and naive
input, that reconstruct different resolution data using network trained at a single
resolution, the proposed pipeline demonstrated the best performance both

qualitatively and quantitatively with respect to the COSMOS reconstruction.

4.2. Methods

The proposed pipeline consists of four steps. Overview of the proposed
method is displayed in Figure 4.1 for the case where input data is at a higher
resolution (resolinput = 0.5 mm?®) compared to that of the network training
resolution (resolusin = 1.0 mm?®). While the diagrams are represented in 1D for

simplification, extension to 3D is straightforward.

[Step 1: re-sampling of local field map] First, the local field maps ar
e re-sampled to the training resolution at multiple spatial locations (Figu
re 4.1b). This is analogous to multiplying comb functions with different
shifts in the image space, which results in k-space aliasing with differe

nt linear phase for each sampling case.
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[Step 2: network inference] The re-sampled field maps are now at the same
resolution as the training data used to train the network. Therefore, the re-
sampled field maps can be input into the network. We assume the network
performs a dipole de-convolution in the image space; and a dipole division in

the k-space, which is a pointwise operation in k-space (Figure 4.1c).

[Step 3: assembling] By assembling QSM maps of every different sampling
cases, an erroneous QSM can be reconstructed (Figure 4.1d). Because we
assumed that network inference is a pointwise division in the k-space, the
resulting erroneous QSM is the k-space of the original local field map (L(k,))

divided by the replicated dipole kernel of 1.0 mm?® resolution (D ¢ jso (Ky))-

[Step 4: dipole compensation] The k-space of the desired QSM is L(k,)
divided by the dipole kernel of 0.5 mm?® resolution (Dg s s, (k,)). Because
D1 0iso(ky) and Dy iso(k,) are same at the center, this difference can be
compensated by multiplying Dy ¢ is0(kyx)/Dosiso (k) at the edge of the k-

space. We call this procedure the dipole compensation (Figure 4.1e).

The method can be extended to non-integer resolution difference case by
viewing the re-sampling of local field map as image shift and re-sampling
(Figure 4.2). In the red sampling case, the local field map is directly

undersampled, resulting in k-space aliasing:
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L(ky)+L(kx+M¢rain)
N

Li(ky) =
where L, (k,) is the k-space of the undersampled local field map and Main is
the matrix size of the data re-sampled to training resolution. The blue
undersampling case can be seen as a combination of shifting and undersampling.
Shiftin image space is multiplying linear phase in k-space; Assuming sub-voxel

shift in the training resolution (% X 1esolyyqin, Wheren=0,1, ... N-1), each line

of k-space is multiplied by a linear phase @(k,) = exp(NijZI—"k") before
train
being aliased.
i2nnky ) i2nn(kx+Mprgin)
Ln(kx) _ (L(kx)XEXP(NxMtrain)+L(kx+Mtraln)XeXp( NXMrqin )

N

After network inference, QSM from the blue sampling case is shifted

back to the original position by multiplying an inverse linear phase @(k,) =

—i27Tnky -
eXp(NXthin) in k-space.
—i2nnk L(kx)+L(kx+Mtrain)X€xp(i2nn)
QSMy(kx) = Ln(ky) X £ = N
NXMrqin NXDresoltrain(kx)

Therefore, the aliased k-space lines cancel out when summed over the
number of shift (N), leaving the erroneous QSM map subject to dipole

compensation.

SN2 QSM,, (ky) = —

Dres"ltrain
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Figure 4.2. Extension of the method to non-integer resolution difference
between input and training data. Re-sampling of the local field map can be seen
as the combination of image shift, which is linear phase multiplication in k-
space, and undersampling, which is aliasing in k-space. After network inference,
the QSM map of the blue sampling case is shifted back to its original position
by multiplying an inverse linear phase. Assuming the amount of shift is sub-
voxel shift in the training resolution, the aliased k-space lines are canceled out

by summing the shifted QSM images.

[MRI data acquisition and processing] Data was acquired from 12 healthy
volunteers (6 males; age: 27 + 2.8 years) with local IRB approval (9 subjects

using Tim Trio; 3 subjects using MAGNETOM Skyra, Siemens, Erlangen). 3D
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GRE data was acquired with 5 different head orientations for each subject with
the following scan parameters: TR =33 ms, TE=25ms, flip angle=15°,
FOV =256 x224 x 176 mm> (224 x224x 176 mm® at Skyra), voxel
size=1x 1 x 1 mm®, bandwidth =100 Hz/pixel, acceleration factor = 2 x2,
and total acquisition time =5 min 46 s.

Each of the GRE magnitude data was used to generate brain masks using
BET (FSL, FMRIB, Oxford, UK) [73], and phase data was unwrapped using
Laplacian phase unwrapping [97], and background field was removed using V-
SHARP [98]. The local field maps of five different orientation was registered
using FLIRT (FSL, FMRIB, Oxford, UK) [73], and a QSM map was generated
using the COSMOS algorithm [99]. Using the rotation information used to
register the local field maps, the QSM map was rotated back to the original
orientation of each of the local field maps, resulting in five pairs of local field
map and QSM map with the same orientation for each subject.

For representative reconstruction of higher resolution data, two 3D
multi-echo GRE data were acquired (IRB approved): one from a 7T scanner
(Magnetom Terra, Siemens, Erlangen, Germany) and one from a 3T scanner
(Tim Trio, Siemens, Erlangen, Germany). The scan parameters for the 7T scan
were: TR =38 ms, TE =9.3:8.7:26.7 ms, FOV: 185x228x106 mm?3, voxel size:
0.6x0.6x0.6 mm3, phase partial Fourier = 6/8, slice partial Fourier = 6/8, and
acquisition time = 21 min 11 s. The scan parameters for the 3T scan were: TR
= 40 ms, TE = 4.5:6.1:28.9 ms, FOV: 152x180x146 mm3, voxel size:

0.7x0.7x0.7 mm3, and acquisition time = 23 min 34 s.
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[Network Training] Seven subject datasets were utilized for training the
network. For quantitative evaluation of the proposed pipeline, we need to have
COSMOS data at the testing resolution, and a network trained at a lower
resolution. Therefore, we resized the local field map and QSM map pairs by
cropping the k-space, resulting in 1.5 mm?® isotropic resolution for training.
QSMnet [4] was trained using this dataset (QSMnet siso)

For comparison with the proposed pipeline, another QSMnet was trained

using 1.0mm? isotropic data of the same subjects (QSMnet; giso).

[Evaluation] The remaining five subject datasets were utilized for testing the
proposed reconstruction pipeline for two different resolutions: 1 mm? isotropic
resolution and 1x1x3 mm? resolution. To test the reconstruction of 1x1x3 mm?
resolution data, the local field map and QSM map pairs were re-sized to 1x1x3
mm?® by cropping the k-space.

The proposed pipeline was compared with two scenarios: interpolation
and naive input. In the interpolation scenario, the local field map was resized to
1.5 mm? isotropic resolution by cropping the k-space, and inferenced using
QSMnet; siso. The resulting QSM map was then interpolated to 1 mm? isotropic
resolution (or 1x1x3 mm?). In case of naive input, the local field map at 1 mm?
isotropic resolution (or 1x1x3 mm?) was naively input into the QSMnet without
considering the resolution difference. The images were compared with
COSMOS and QSMnet, giso results both visually and quantitatively (NRMSE,
SSIM, PSNR, HFEN). COSMOS and QSMnet,; o results were resized to

1x1x3 mm? resolution for evaluation of 1x1x3 mm? data reconstruction.
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[Ablation study: effect of noise level on the reconstruction process] Because
the local field maps are re-sampled, the noise property changes compared to the
original acquired data. In particular, when the local field map is undersampled
by re-sampling, the SNR is degraded compared to the case where the local field
map is undersampled by k-space cropping. This means that the proposed
pipeline may be more sensitive to low SNR data compared to the interpolation
scenario. To investigate the effect of SNR on the proposed pipeline, simulated
gaussian noise with 6 different noise levels were added to the local field maps,
and QSM maps were reconstructed using the proposed pipeline and the
interpolation scenario. The four quantitative metrics (NRMSE, SSIM, PSNR,
HFEN) were calculated with respect to the COSMOS for each scenario, and the

results were compared among the scenarios.

4.3. Results

In the result of 1 mm? isotropic data inference using QSMnet; s iso, the
proposed method provided the best reconstruction quality out of the three tested
scenarios (Figure 4.3). In particular, in the zoomed-in images, small structures
are diminished in the interpolation scenario (yellow arrowheads), while the
white matter structures are flattened in the naive input results (red arrowheads).
These results are further supported by the quantitative results where the
proposed method provided the best metrics compared to both COSMOS and
QSMnet; giso. The metrics computed with respect to QSMnet, oiso displays higher
performance compared to that calculated with respect to COSMOS. This is

because the performance of the proposed method depends on the network
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performance.

The results of the anisotropic data reconstruction agree with the 1mm?
isotropic data reconstruction results (Figure 4.4). In the zoomed-in images,
small structures are smoothed out in the interpolation scenario, while the
proposed method successfully reconstructs the detailed structures (yellow
arrowheads). The naive input scenario also fails to reconstruct the small

structures due to highly damaged contrast (red arrowheads).

a) Inference of 1 mm? isotropic local field map using QSMnet, 5 s,

Reference Reference Proposed Interpolation Naive input
COSMOS QSMnet4 g iso pipeline scenario scenario

Image

Zoomed-in

Error

NRMSE 50.2+3.5 54.7+3.2 58.1+2.8
with respect to SSIM 0.945+0.006 0.94+0.005 0.928+0.006
COSMOS PSNR 41.4+0.4 40.7+0.3 40.1+0.5

HFEN 46.2+4 47.2+3.8 53.2+2.8
NRMSE 39.5+1.8 45.2+2.3 52.6+1.2
with respect to SSIM 0.960+0.003 0.954+0.004 0.933+0.005
QSMnet4 g jso PSNR 43+0.6 41.9+0.6 40.610.7
HFEN 40.5+2.1 42.5+2.2 48.4+1

Figure 4.3. Reconstruction of 1 mm? isotropic data using QSMnet trained at
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1.5 mm? isotropic resolution. The proposed method successfully reconstructs
the small structures while the interpolation scenario smooths out the structures
(yellow arrowheads). The white matter structures are flattened in the naive input
results (red arrowheads). The quantitative display the best metrics in the
proposed scenario. Metrics computed with respect to QSMnet, o iso displays
higher performance compared to that of COSMOS because the performance

depends on the network performance.

b) Inference of 1 x 1 x 3 mm? local field map using QSMnet, ¢ .,

Reference Reference Proposed Interpolation Naive input
COSMOS QSMnet4 g iso pipeline scenario scenario

Image

Zoomed-in

Error

NRMSE 44.5+3.5 48.5+3.3 86.2+1.3
with respect to SSIM 0.954+0.005  0.95+0.004 0.872+0.004
COSMOS PSNR 42.110.7 41.3+0.7 36.3+0.9

romized HFEN 38.9:+4.6 39.7+4.6 86.1+2.1
NRMSE 36.1+1.7 41.9+2.2 84.6+1.5
with respect to SSIM 0.964+0.004 0.957+0.004 0.865+0.007
QSMnet;é; iso PSNR 42.9+0.7 41.6+0.7 35.5+0.7
restz HFEN 324124 33.7+24 84.8+22
74

.I e
.

5 A=l o

L



Figure 4.4. Reconstruction of 1 x 1 x 3 mm?® data using QSMnet trained at 1.5
mm?® isotropic resolution. The proposed method successfully reconstructs the
small structures while the interpolation scenario smooths out the structures
(yellow arrowheads). The white matter structures are flattened in the naive input
results (red arrowheads). The quantitative display the best metrics in the

proposed scenario.

The effect of dipole compensation on the reconstructed QSM map is
shown in Figure 4.5. Checkered artifacts are noticed before dipole

compensation, whereas these artifacts disappear after dipole compensation.

Before dipole compensation After dipole compensation

Figure 4.5. Effect of dipole compensation on the reconstructed QSM. The
checkered artifacts that is visible in the erroneous QSM before dipole

compensation disappears after dipole compensation.

When the effect of noise level on the reconstruction results of the
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proposed pipeline and the interpolation scenario is compared, the performance
degradation of the proposed method as the noise level increases is steeper than
that of the interpolation scenario for all four quantitative metrics (Figure 4.6a).
However, the proposed pipeline outperforms the interpolation scenario even at
every noise level. Furthermore, the highest and the second highest noise level
where the performance degradation is noticeable, is unrealistic (Figure 4.6b,
first and second map) compared to the third highest noise level (Figure 4.6Db,

third map), where the performance degradation is less noticeable.
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Figure 4.6. a) Comparison of quantitative reconstruction results between
proposed and interpolation scenario with simulated noise. The performance
degradation that results from increased noise level is steeper for the proposed
reconstruction scenario, although the proposed scenario outperforms the
interpolation scenario in every noise level. b) Example slices of the local field map
with highest (left), second highest (middle), and third highest noise level (right).
The highest and second highest noise level, where quantitative performance
degradation is noticeable, display unrealistically low signal to noise ratio
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compared to the third highest noise level, where performance degradation is less

noticeable.

4.4. Discussion

The proposed method enables successful QSM reconstruction of two
different resolution data using QSMnet trained at a single resolution. The
resulting QSM maps preserve high-frequency details, and the quantitative
metrics demonstrate high quality. In practice, trained QSMnet+ available online
can be used to reconstruct QSM with multiple different resolution. However,
the voxel size of the data should be larger than half of the voxel size of the
training data; Smaller voxel size may result in checkered artifacts, so care must
be taken.

Out of the four quantitative metrics, SSIM displayed a rather small
improvement between the proposed and the interpolation scenario compared to
the other three metrics. This may result from the intrinsic property of SSIM,
which is calculated based on three different metrics which are luminance,
contrast and structure. Because the difference between the results of the two
scenarios is mainly the actual resolution, luminance and contrast are similar,

which results as the relatively small improvement in SSIM.
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Chapter 5. Conclusion

In this work, an advanced MRI protocol for neurodegenerative diseases
is developed. The protocol consists of three parts: First is Quadcontrast imaging
for routine clinical contrast-weighted images; second is SandwichNM for
reliable neuromelanin imaging across different scanners; and third is high
quality QSM and SMWI enabled by high quality QSM reconstruction of
arbitrary resolution using QSM network trained at a single resolution.

First, a novel MRI imaging sequence, Quadcontrast, is developed to
reduce the scan time of routine images from 13 minutes to 6 minutes, which
was further reduced to 2 min 50 sec aided by a deep learning-based
reconstruction.

Utilizing the spared scan time, two complementary advanced MRI (NM-
MRI and QSM) for neurodegenerative diseases are acquired. The newly-
proposed sandwichNM method provides a higher contrast between NM-
containing tissue and surrounding area than the conventional NM methods.
Moreover, the method produces a consistent contrast across multiple vendor
scanners, facilitating the use of sandwichNM for multi-site studies. Because the
method is based on product sequences, requiring no effort for sequence
programming.

Lastly, we proposed a pipeline that enables resolution-free QSM
reconstruction using QSMnet trained at a single resolution. The resulting QSM
maps preserve high-frequency details, and the quantitative metrics demonstrate

high quality. This pipeline can be incorporated not only to reconstruct QSM but
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also to generate susceptibility map weighted images, which has shown to have
great diagnostic potentials for early stage PD.

The proposed protocol may provide a basis for MRI-based noninvasive
diagnosis of early-stage neurodegenerative diseases. This could have great
clinical implications, as current image-based diagnosis of neurodegenerative

diseases relies on PET with radiation exposure.
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