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ABSTRACT

Design of Distributed Algorithms
via Discrete-time Blended Dynamics Theorem

by

Jeong Woo Kim

Department of Electrical and Computer Engineering

College of Engineering

Seoul National University

February 2023

In this thesis, a discrete-time version of the blended dynamics theorem is de-

veloped for the use of designing distributed computation algorithms. The blended

dynamics theorem enables to predict the behavior of heterogeneous multi-agent

systems. Therefore, once we get a blended dynamics for a particular computa-

tional task, design idea of node dynamics for individual heterogeneous agents can

easily occur. In the continuous-time case, prediction by blended dynamics was en-

abled by high coupling gain among neighboring agents. In the discrete-time case,

we propose an equivalent action, which we call multi-step coupling in this thesis.

The discrete-time approach maintains the advantages of the continuous-time case,

such as the plug-and-play operation, and that the individual node dynamics need

not be stable as long as the blended dynamics is stable.

Compared to the continuous-time case, the discrete-time blended dynam-

ics can have more variety depending on the coupling matrix. This benefit is
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demonstrated with applications including distributed PageRank estimation prob-

lem where each node estimates its relative importance in a network which is pos-

sibly agent-wise different. In particular, the proposed algorithm does not require

an initialization process, while most of other distributed PageRank algorithms

have assumed.

Furthermore, the previous result of the discrete-time version of the blended

dynamics theorem is extended to a heterogeneous multi-agent system under the

limited exchange of state information (we call this as rank-deficient coupling). To

achieve this, a coordinate change which separates the system into vanishing and

non-vanishing dynamics as each agent repeats the coupling dynamics for multiple

times is presented. Based on the non-vanishing part, the blended dynamics for

the rank-deficient coupling is derived, which could predict the behavior of the

heterogeneous network.

Again to emphasize the practical utility of the blended dynamics, the extended

result is applied to a distributed state estimation problem where numerous sensors

monitor a target plant with partial measurements. The distributed state observer

is designed such that the local observer of each agent estimates the plant state on

its detectable part while compensating the lacking information on undetectable

space through the network communication. Even though the previous blended

dynamics results only guarantee the approximate convergence, it is shown that

the proposed observer guarantees the asymptotic performance.

Keywords: discrete-time heterogeneous multi-agent system, multi-step coupling,

blended dynamics, multi-time scale, open multi-agent system

Student Number: 2015–22779
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Chapter 1

Introduction

1.1 Research Background

For a multi-agent system or networked system where multiple agents are inter-

connected through the network, a centralized algorithm to control the overall net-

work or solve a specific computation problem which requires a global information

might cause many problems including heavy load in the computation and commu-

nication of the centralized unit and difficulties in maintenance. Moreover, since

the network has been expanded for various subjects with a recent advances in

communication technologies, these problems become critical issue as the com-

plexity and dimension of the network increases.

To overcome this issue, a distributed algorithm has been proposed, which has

the following benefits:

• Computational burden of one node is lessened as the burden is distributed

over many nodes in the network.

• Reliability against faults is improved as a fault on one node can be compen-

sated by redundancy of many other nodes.

• Privacy of each node is preserved as the private information need not be

transferred to a central node for computation.

Based on these benefits, many distributed algorithms have been actively stud-

ied with a wide range of application over the last decades. One of the major ap-

plications of the distributed algorithms are about synchronization where the state
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or output information of every agent in a network is synchronized through the

exchange of the information among neighboring agents. For example, the appli-

cation of synchronization includes formation control [OPA15, Sak17], distributed

state estimation [KLS19, MS18, MS16], and so on (further details on the synchro-

nization can be found on [Wie10, RBA05]). Other examples of the distributed

algorithms are distributed optimization [NO09, NL18] and distributed computa-

tion of PageRank [IT10, ITB12].

Nevertheless, constructive design methods for general distributed algorithms

are not well developed yet, except the distributed optimization. In the distributed

optimization, each agent minimizes a global cost function which is given by a sum

of local cost functions. Initially, [NO09] combines a synchronization algorithm

with the classical gradient descent method and this work was diversely extended

with such as the fixed step size or gradient tracking method [SLWY15, YLY16,

QL17]. Recently, the above studies were unified by [Jak18, AS20] which proposed

a common framework to analyze different variations of the distributed algorithm

and improved by utilizing an accelerated methods in [QL19]. However, most of

the distributed optimization algorithms commonly require the convexity of each

local cost function or a specific initialization.

One potential approach towards the constructive design is the blended dynam-

ics approach [LS20], which is motivated by [KYS+16, PL17]. In the approach,

the following multi-agent system is considered

ẋi = fi(t, xi) + κ
∑
j∈Ni

(xj − xi), i ∈ N , (1.1.1)

where N := {1, · · · , N} is the set of node indices, Ni is the index set of nodes

that send information to node i, and fi(t, xi) represents the heterogeneity of each

agent. Under the assumption that the communication graph is undirected and

connected, if the blended dynamics is incrementally stable, then every agent in

(1.1.1) behaves like the blended dynamics defined as

ṡ(t) =
1

N

N∑
i=1

fi(t, s(t)) (1.1.2)
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Figure 1.1: Literature survey on synchronization of heterogeneous multi-
agent system in discrete-time domain

for a sufficiently large coupling gain κ. More precisely, for any ϵ > 0, there exists

κmin such that, if κ > κmin,

lim sup
t→∞

|xi(t)− s(t)| ≤ ϵ, ∀i ∈ N . (1.1.3)

Further details on the blended dynamics approach will be reviewed in Chapter 3.

As seen in (1.1.3), the blended dynamics approach provides a way to analyze

the synchronized behavior of the heterogeneous multi-agent system. In fact, initial

studies on the synchronization consider a homogeneous multi-agent system due

to its simplicity, but the attention has soon shifted to the heterogeneous multi-

agent system which could handle uncertainty, disturbance, noise, and agent-wise

different input. Compared to the homogeneous case, achieving an asymptotic

synchronization in the heterogeneous network is challenging unless every agent

embeds a common internal model [KSS11, WSA11]. This difficulty naturally leads

to studies on a practical synchronization (or approximate synchronization) as an

alternative and one of the solution is suggested by the above blended dynamics

approach.

In parallel to the studies in the continuous-time domain, discrete-time syn-

chronization in a heterogeneous multi-agent system has also attracted attention

due to the practical utility. For instance, the leader-following synchronization of a

heterogeneous network is studied in [ZLF18] and an output synchronization prob-

lem of the heterogeneous system is addressed with uncertainty and disturbance

[LFLG15] or switching network and time delay [XLF17] under the common in-
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ternal model assumption. Similarly, an autonomous synchronization is proposed

for a heterogeneous network of simultaneous stabilizable agents in [YCM20], such

that the heterogeneity among the agent dynamics vanishes. However, all of the

discrete-time studies mentioned so far handles only a linear system. Furthermore,

most of the previous results on the synchronization of leaderless multi-agent sys-

tem commonly assume a common internal model or simultaneous stabilizability

as shown in Figure 1.1.

It should be emphasized that the blended dynamics is a simple average of the

heterogeneous function of each agent. This could be usefully utilized as a design

tool for many distributed algorithms, i.e., the designer firstly designs a desired

algorithm as the blended dynamics (1.1.2), and then, splits it into fi of (1.1.1).

Indeed, this philosophy has been successfully employed in many applications such

as distributed economic power dispatch problem [YSA19], distributed state esti-

mator [KLS19], secure estimation by distributed median computation [LKS20],

distributed least square solver [LS19], distributed optimization without convexity

of each node [LS22], and decentralized controller design [KLS20]. See [LS21] for

more comprehensive summary of these applications.

On the contrary, since all the above results are in the continuous-time domain,

it is necessary to implement the designed algorithm in the discrete-time domain so

that it could operate on digital devices in practice. Recalling that the arbitrarily

small error in xi and s in (1.1.3) can be guaranteed by increasing the coupling

gain κ (i.e., strong coupling), this however prohibits using common discretization

methods such as forward difference. This is because increasing κ unboundedly

yields instability of the overall system unless its sampling time is decreased with

the same ratio. As a result, this inspire the development of the discrete-time

version of the blended dynamics approach which is main result of this dissertation.

1.2 Outline and Contributions of Dissertation

The following overview provides the outline of this thesis and briefly summa-

rizes its contributions.
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Chapter 2. Preliminaries

In this chapter, we review basic definitions of graph theory and related results.

We also classify a non-negative matrix into special classes and present useful

properties of each class. Based on these, by associating a non-negative matrix to

the concept of directed graph, we characterize the matrix properties in the graph

theoretical viewpoint. Finally, a definition of Kronecker product operation and

its properties are provided which will be used in the dissertation. This chapter

summarizes the followings:

• We review preliminary results from algebraic graph theory and matrix anal-

ysis which will be used in the dissertation.

• We provide a technical tool to handle more various communication protocols

including the static diffusive type coupling for general directed graph.

Chapter 3. Behavior of Continuous-time Heterogeneous Multi-agent

System under Strong Coupling

In this chapter, we review an initial studies on practical synchronization of

heterogeneous multi-agent system by strong coupling. We define a virtual dynam-

ics called blended dynamics whose solution could approximate an overall behav-

ior of the system when the coupling gain among agents is sufficiently large. The

contents of this chapter are contained on [KYS+16, KLLS22] and we provide the

followings in this chapter:

• We recall an analysis tool for the synchronized behavior of the heterogeneous

network under the strong coupling.

• We review that the practical synchronization is achieved even unstable

agents are included in the network as long as the blended dynamics is as-

sumed to be stable.

• We demonstrate the utility of the blended dynamics approach in the sense

that the blended dynamics has been widely employed in designing various

distributed algorithms.
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• We explain that the implementation of the designed algorithms in the discrete-

time domain is required to operate on digital devices in practice, but not

trivial because the high-gain concept in the strong coupling causes an in-

stability of the overall system.

Chapter 4. Behavior of Discrete-time Heterogeneous Multi-agent Sys-

tem under Multi-step Coupling

In this chapter, we develop a discrete-time version of the blended dynamics

approach as a counter part of the results in the previous chapter. In particular,

we propose a multi-step coupling concept where each agent repeats a weighted

averaging action among its neighbors for many times before progressing through

the heterogeneous individual node dynamics. The contents of this work are based

in [KLLS22] and the main contributions of this work are listed as follows:

• We propose the multi-step coupling concept which corresponds to the strong

coupling in the continuous-time blended dynamics approach.

• We define the discrete-time blended dynamics in a way the behavior of the

multi-agent system can be predicted by its solution.

• We maintain the advantages of the continuous-time case including the plug-

and-play operation and stability assumption of the blended dynamics, not

individual node dynamics, in the discrete-time case.

• We demonstrate that the discrete-time approach can handle more diverse

communication protocols comparing to the continuous-time case by provid-

ing three applications.

Chapter 5. Application to Initialization-free Distributed PageRank

Estimation for Network of Web-pages

In this chapter, we apply the main result in the previous chapter to a dis-

tributed PageRank estimation problem. PageRank score represents the relative

importance of each node in a network so that it has widely utilized in diverse

areas. The contribution of this chapter is as follows:
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• We show the benefit of the discrete-time approach that can have more va-

riety than synchronization by proposing a distributed algorithm for each

node to estimate its relative importance so that overall network is not syn-

chronized.

• We propose an initialization-free distributed algorithm, while most of other

distributed PageRank algorithms require the initialization process which is

hard to be achieved in a distributed manner.

• The initialization-free benefit allows the algorithm to adopt plug-and-play

feature, i.e., some nodes and their associate link can join or leave the network

during the operation of the algorithm.

• We verify the advantage of the proposed scheme by simulation for real web-

data of large scale.

Chapter 6. Behavior of Discrete-time Heterogeneous Multi-agent Sys-

tem under Rank-deficient Coupling

In this chapter, the result of Chapter 4 has been extended for rank-deficient

coupling where only a partial information of communication affects the update of

every agent. The main contributions of this work are:

• We derive a coordinate transformation to separate the system into vanish-

ing and non-vanishing dynamics with respect to the repeating number of

coupling dynamics.

• We introduce the blended dynamics based on the derived coordinate trans-

formation, which approximates the overall behavior of the network under

rank-deficient coupling.

Chapter 7. Application to Distributed State Estimation

In order to emphasize the practical utility of the result in Chapter 6, we pro-

pose a distributed state estimation algorithm based on the rank-deficient multi-

step coupling framework. The distributed state estimation problem considers a
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discrete-time linear time-invariant plant whose partial measurements are mon-

itored by numerous sensors. It is supposed that no sensor can recover whole

state information so that each sensor should compensate the lacking information

through the network communication. The contribution of this work is:

• We formulate the distributed state estimation problem into multi-step cou-

pling framework under rank-deficient coupling.

• We show that the proposed observer guarantees the asymptotic performance

even though the result in the previous chapter only guarantees the approx-

imate convergence.



Chapter 2

Preliminaries

2.1 Graph Theory

Graph theory has been widely utilized for modeling the interaction among

agents in the network. In general, each agent corresponds to a node and the

information flow from one agent to another agent is represented by an edge in the

graph theory. In this section, we introduce the basic definitions and useful results

in the graph theory, which will be used throughout the dissertation. For more

details, refer to [GR01, Bul19].

2.1.1 Basic Definitions in Graph Theory

In this part, we introduce the weighted directed graph and other related con-

cepts.

Definition 2.1.1. A weighted directed graph G := (N , E) consisting of a nonempty

finite set of nodes N := {1, . . . , N}, an edge set of ordered pairs of nodes E ⊆
N×N , and a weighted adjacency matrix A ∈ RN×N whose element αij is positive

if an edge (j, i) is contained in E and αij = 0 otherwise. We exclude the multiple

edges, but consider the self-loop in the graph. ♢

Using the previous definition, the interconnection between agents is repre-

sented as a graph as the following convention: if the j-th agent sends information

to the i-th agent or equivalently the i-th agent receives information from the j-th

9
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agent, then the information flow is modeled as an edge (j, i) ∈ E . From this, the

following special classes of graphs can be derived.

Definition 2.1.2. We define the following special graphs.

1. A graph G is unweighted if αij ∈ {0, 1} for all i, j ∈ N . In this case, its

adjacency matrix is denoted as binary adjacency matrix A ∈ RN×N .

2. A graph G is undirected if (j, i) ∈ E implies (i, j) ∈ E . ♢

2.1.2 Connectivity and Periodicity of the Graph

The concepts of connectivity and periodicity of a graph are presented in this

part. Before introducing them, we first define two types of neighbors for each

node as follows.

Definition 2.1.3. Consider a directed graph G = (N , E).

1. In-neighbors of the i-th node is a set defined as Ni := {j ∈ N | (j, i) ∈ E}
and out-neighbors of the i-th node is a set defined as N out

i := {j ∈ N |
(i, j) ∈ E}.

2. In-degree and out-degree of the i-th node is defined as di := |Ni| and dout
i :=

|N out
i |, respectively. ♢

From the convention of the previous part, every agent which sends information

to the i-th agent is included in Ni and every agent which receives information

from the i-th agent is included in N out
i . Thus, di and dout

i represent the number

of agents which sends information to the i-th agent and the number of agents

which receives information from the i-th agent, respectively. The sequence of

neighboring pair of nodes yields the concept of the directed path.

Definition 2.1.4. A directed path from the i-th node to the j-th node is a

sequence (i0, i1, . . . , iL) such that i0 = i, iL = j, (il, il+1) ∈ E for any l ∈
{0, . . . , L − 1}, and every il is distinct. Here, the length of the directed path

is L. ♢
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Through the directed path from the i-th node to the j-th node, an information

of the i-th agent can be propagated to the j-th agent.

Now, we can define the connectivity of the graph using the definition of the

directed path as follows.

Definition 2.1.5. A directed graph G = (N , E ,A) is said to be strongly con-

nected if there exists a direct path from any node to any other node. When G is

undirected, we simply say connected. ♢

Meanwhile, we introduce a special directed path which starts and ends at the

same node as follows.

Definition 2.1.6. A cycle is a directed path that starts and ends at the same

node and any node does not appear more than once in it. ♢

Based on the definition of the directed path, a cycle of length L can be represented

by (i0, i1, . . . , iL−1, i0) for some node i0.

From the concept of the cycle, the following special class of the strongly con-

nected graph is of interest.

Definition 2.1.7. A strongly connected directed graph is said to be periodic if

there exists P > 1, called the period, that divides the length of every cycle in the

graph, otherwise the graph is said to be aperiodic. ♢

If a strongly connected directed graph includes at least one self-loop, i.e., there

exist i ∈ N such that (i, i) ∈ E , then the graph is aperiodic because any self-loop

is the cycle whose length is one.

2.1.3 Laplacian Matrix and Its Properties

The Laplacian matrix of a directed graph is defined as follows.

Definition 2.1.8. Given a directed graph G = (N , E ,A), the Laplacian matrix

L := [lij ] ∈ RN×N is defined as

lij =

−αij , i ̸= j,∑N
j=1,j ̸=i αij , i = j.

♢
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By its definition, every row-sum of the Laplacian matrix L is 0, i.e., L1N = 0N ,

so that the Laplacian matrix has a zero eigenvalue with corresponding eigenvector

of 1N . Let λi(L) for i ∈ N be the eigenvalues of the Laplacian matrix L, then it

is well-known that all the eigenvalues of L has negative real part as stated below.

Lemma 2.1.1. All the eigenvalues of the Laplacian matrix L lie on the closed

right-half complex plane, i.e., Re (λi(L)) ≥ 0 for all i ∈ N . ♢

Proof. Proof directly follows by applying Geršgorin disc theorem [HJ19, Theo-

rem 6.1.1]. □

The strong connectivity of a directed graph can be characterized by the fol-

lowing lemma [MRC15, Lemma 2.1].

Lemma 2.1.2. Let G be a strongly connected directed graph with N nodes and

L be the associated Laplacian matrix. Then, the following statements hold.

1. The Laplacian matrix L has a simple zero eigenvalue and all other eigenval-

ues have positive real parts.

2. There exists a positive vector Θ = [Θ1, · · · ,ΘN ]⊤, i.e., Θi > 0 for all i =

1, . . . , N such that
∑N

i=1Θi = 1 and Θ⊤L = 0 hold. ♢

2.2 Matrix Analysis

This section presents special classes of matrix as well as their useful properties.

Based on this, we associate a matrix to weighted directed graph and characterize

the matrix properties with the graph’s connectivity and related concepts through

the sufficient and necessary conditions. More details can be found in [Bul19].

2.2.1 Stochastic Matrix

In this part, we are interested in the special classes of a non-negative square

matrix, i.e., every component of the matrix is non-negative.

Definition 2.2.1. Consider a non-negative square matrix M ∈ RN×N .
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1. M is row-stochastic if M1N = 1N .

2. M is column-stochastic if M⊤1N = 1N .

3. M is doubly-stochastic if it is row-stochastic and column-stochastic. ♢

By its construction, a row-stochastic matrix M ∈ RN×N has an eigenvalue of

1 with a right eigenvector of 1N . Similarly, if M is a column-stochastic matrix, it

has an eigenvalue of 1 with a left eigenvector of 1N and, for the doubly-stochastic

matrix, 1N is both right and left eigenvector for the eigenvalue 1. It is well

known that the spectrum and the spectral radius of any stochastic matrix hold

the following lemma by adopting the Lemma 2.9 of [Bul19].

Lemma 2.2.1. Consider any stochastic matrix M ∈ RN×N .

1. The spectrum of M is contained in the unit disk centered at the origin in

the complex plane, i.e., spec(M) ⊂ {z ∈ C : ∥z∥ ≤ 1}.

2. The spectral radius of M is 1, i.e., ρ(M) = 1. ♢

2.2.2 Irreducible and Primitive Matrix

In this part, we have interest in two groups of non-negative matrices as follows.

Definition 2.2.2. Consider a non-negative matrix M ∈ RN×N .

1. M is irreducible if
∑N−1

n=0 M
n is positive matrix, i.e., every component of∑N−1

n=0 M
n is positive.

2. M is primitive if there exist n ∈ N such that Mn is positive matrix. ♢

From the definitions, it is clear that any primitive matrix is irreducible.

The following result, which is well known as Perron-Frobenius theorem, char-

acterizes the properties of the spectral radius and its corresponding eigenvectors

of a non-negative matrix based on the aforementioned classification. The proof

can be found in [Bul19, Theorem 2.12].

Lemma 2.2.2. For a non-negative matrix M ∈ RN×N , the following statements

hold.
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1. There exist a real eigenvalue λ ≥ |σ| ≥ 0 for any other eigenvalue σ of M ,

2. The right and left eigenvectors of λ can be selected non-negative.

If M is irreducible, the following statements hold.

1. The eigenvalue λ is strictly positive and simple,

2. The right and left eigenvectors of λ are positive.

If M is primitive, the following statement holds.

1. The eigenvalue λ satisfies λ > |σ| for any other eigenvalue σ of M . ♢

Here, the eigenvalue λ of M is denoted as Perron-Frobenius eigenvalue, dominant

eigenvalue, or simply Perron root.

2.2.3 Graph Theoretical Characterization

In this part, we introduce some results which relate the aforementioned classes

of a non-negative matrix with the graph theoretical characterizations.

A directed graph can be associated from a non-negative square matrix as

stated below.

Definition 2.2.3. Given a non-negative square matrix M = [mij ] ∈ RN×N ,

the associated graph GM of M is defined as the weighted directed graph whose

adjacency matrix is M , i.e., GM = (NM , EM ,AM ) such that NM = {1, · · · , N},
AM =M , and (j, i) ∈ EM if mij > 0. ♢

Using this concept, the irreducible or primitive property of a non-negative

square matrix can be verified by the following results [Bul19, Theorem 4.3, The-

orem 4.7].

Lemma 2.2.3. Given a non-negative square matrixM and its associated weighted

graph GM , the following statements are equivalent:

1. M is irreducible.

2. GM is strongly connected. ♢
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Lemma 2.2.4. Given a non-negative square matrixM and its associated weighted

graph GM , the following statements are equivalent:

1. M is primitive.

2. GM is strongly connected and aperiodic. ♢

2.3 Kronecker Product

Kronecker product is a useful tool for representing an overall networked sys-

tem. In this section, the basic definition of the Kronecker product and useful

properties are discussed in this section.

Basic definition of the Kronecker product is introduced as follows.

Definition 2.3.1. For A = [aij ] ∈ Rm×n and B = [bij ] ∈ Rp×q, the Kronecker

product A⊗B is defined as

A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 ∈ Rpm×qn. ♢

Through the dissertation, the following properties of the Kronecker product

will be used. More general properties for the Kronecker product can be found in

[Ber09].

Proposition 2.3.1. Consider real matrices A,B,C and D of appropriate dimen-

sions for each item.

1. (A⊗B)(C ⊗D) = (AC)⊗ (BD)

2. ∥A⊗B∥ = ∥A∥∥B∥

3. Let λ1(A), . . . , λn(A) be the eigenvalues of A ∈ Rn×n and λ1(B), . . . , λm(B)

be the eigenvalues ofB ∈ Rm×m, then the eigenvalues ofA⊗B are λi(A)λj(B)

for i = 1, . . . , n and j = 1, . . . ,m. ♢





Chapter 3

Behavior of Continuous-time
Heterogeneous Multi-agent System
under Strong Coupling

3.1 Problem Formulation

In this chapter, an initial study on synchronization of heterogeneous multi-

agent systems is introduced. Unlike homogeneous multi-agent systems, achieving

an asymptotic synchronization in the heterogeneous multi-agent systems is diffi-

cult unless a common internal model is embedded in each heterogeneous agent

[WSA11, KSS11]. This challenge naturally lead to studies on a practical synchro-

nization (or approximate synchronization) as an alternative.

One potential approach to achieve the practical synchronization is utilizing

a strong coupling such as [KYS+16]. This paper considers a continuous-time

heterogeneous multi-agent system whose individual dynamics is given as

ẋi = fi(t, xi) + ui, i ∈ N := {1, . . . , N} (3.1.1)

where xi ∈ R is the state, ui ∈ R is the input, t is the continuous-time index, N

is the number of agents in the network, and fi : [0,∞) × R → R is continuously

differentiable with respect to xi, globally Lipschitz with respect to xi uniformly in

t, and uniformly bounded in t. Note that the heterogeneous vector field fi could

include parametric variations or uncertainties such as disturbances and noises as

17
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well as an external inputs which are possibly agent-wise different. Suppose that

all agents are interconnected by static diffusive-type coupling

ui = κ
∑
j∈Ni

αij(xj − xi) (3.1.2)

where κ represents the coupling gain, Ni is the in-neighbors of the i-th agent, and

αij is the (i, j)-th entry of the adjacency matrix of the given network.

In the paper, the blended dynamics is proposed in order to handle the hetero-

geneity of the network, whose dynamics is an average of the vector fields of all

agents as follows:

ṡ(t) =
1

N

N∑
i=1

fi(t, s(t)) =: f̄(t, s(t)). (3.1.3)

It will be reviewed in Section 3.2 that, as long as the blended dynamics (3.1.3) is

stable, every solution xi(t) satisfies

lim sup
t→∞

|xi(t)− s(t)| ≤ β

(
1

κ

)
, ∀κ > κmin, ∀i ∈ N (3.1.4)

where κmin is a threshold and β is a class K function1. It should be emphasized

that the stability of the blended dynamics does not necessarily implies the sta-

bility of each agents. Rather it allows unstable agents if their instabilities are

compensated by other stable agents so that overall average is stable.

Recently, this blended dynamics approach is extended to the multi-agent sys-

tems whose coupling matrices are possibly all different and singular [LS20]. For

the related discussion, we refer to Chapter 6.

3.2 Synchronization of Multi-agent System due to Strong

Coupling

In this section, we assume the following for heterogeneous function fi.

1A continuous function β : [0, b) → [0,∞) for some positive constant b is class K function if
it is strictly increasing and β(0) = 0 [Kha02].



3.2. Synchronization of Multi-agent System due to Strong Coupling 19

Assumption 3.2.1. There exist a constant L > 0 and a non-decreasing contin-

uous function M : R≥0 → R≥0 such that, ∀xi ∈ R, t ≥ 0, i ∈ N ,∣∣∣∣ ∂fi∂xi
(t, xi)

∣∣∣∣ ≤ L, |fi(t, xi)| ≤ M(|xi|). ♢

In addition, we assume the network connectivity as follows.

Assumption 3.2.2. The communication network induced by the adjacency ele-

ment αij is undirected and connected. ♢

Now, the stability of the blended dynamics (3.1.3) is assumed in the following

way.

Assumption 3.2.3. There exists a constant p > 0 such that, for all s ∈ R and

t ≥ 0,

∂ f̄

∂s
(t, s) =

1

N

N∑
i=1

∂fi
∂xi

(t, s) ≤ −p. ♢

From the stability of the blended dynamics, the ultimate boundedness of its so-

lution s(t) can be shown as the following lemma.

Lemma 3.2.1. [KYS+16, Lemma 1] For a scalar system ṡ = F(t, s) with C1

function F satisfying (∂F)/(∂s) ≤ −p < 0 for all s and t ≥ 0,

lim sup
t→∞

|s(t)| ≤ lim supt→∞ |F (t, 0)|
p

. ♢

Let x := col (x1, · · · , xN ), then the dynamics of the overall system (3.1.1) and

(3.1.2) is written by

ẋ = −κLx+ f(t, x)

where L is the Laplacian matrix and f(t, x) := col (f1(t, x1), · · · , fN (t, xN )). Since

the Laplacian L is symmetric, all the eigenvalues are real and the zero eigenvalue

of L is simple by Lemma 2.1.2. Thus, without loss of generality, let λi(L) for

i ∈ N be the eigenvalues of L such that 0 = λ1(L) < λ2(L) ≤ . . . ≤ λN (L).
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Now, the following proposition shows that the strong coupling among agents

makes the trajectories of all the agents remain in an arbitrarily small neighborhood

of the trajectory of the blended dynamics.

Proposition 3.2.2. [KYS+16, Theorem 1] Under Assumptions 3.2.1, 3.2.2 and

3.2.3, there exists a class K function Γ such that the solutions of the overall

system, composed of (3.1.1) and (3.1.2), with arbitrary initial conditions, and the

solution s(t) to the blended dynamics (3.1.3) with s(0) =
∑N

i=1 xi(0)/N satisfy

lim sup
t→∞

|xi(t)− s(t)| ≤ Γ

(
1

κλ2(L)− L

)
, ∀κ > κmin (3.2.1)

for all i = 1, . . . , N , where

κmin =
3L2

pλ2(L)
+

L

λ2(L)
.

In particular, the function Γ is defined on [0, p/(3L2)) and given by

Γ(χ) = M

(
M(0)

p

)√
N
√

r(χ) (3.2.2)

in which

r(χ) =


0, if χ = 0

4χ
p−3L2χ

, if 0 < χ ≤ 4p
p2+20L2

(p2+8L2)χ2

(p−3L2χ)2
, if 4p

p2+20L2
< χ < p

3L2
.

♢

Remark 3.2.1. [KYS+16, Remark 2] It should be noted that the function Γ and

the value of κmin are affected by the number N . The former is obvious due to

the appearance of
√
N in (3.2.2), but the latter is indirect through the value of

λ2(L). The second smallest eigenvalue λ2(L) of the Laplacian matrix is called

the algebraic connectivity (or, density) of a graph G, which indicates how well

connected the graph is. It depends both on the topology of the graph and the

number N of the nodes. For the all- to-all network (with unit weights), λ2(L)
is the same as the number N , but for the ring network, increasing N decreases
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λ2(L) (because λ2(L) = 2(1 − cos(2π/N))). We refer to [Fie73] for more details

on their relation. ♢

Remark 3.2.2. [KYS+16, Remark 3] Remark 3.2.1 implies that, in order to

maintain the same level of error while the number N increases, the coupling

strength κ may need to be increased. In fact, the ultimate error bound is given

in (3.2.1) and it can be seen that

Γ

(
1

κλ2(L)− L

)
= O

(√
N/κλ2(L)

)
2

when κ is large enough (so that χ is small enough). Therefore, for the ring network

where λ2(L) = 2(1− cos(2π/N)), we have

Γ

(
1

κλ2(L)− L

)
= O

(√
N3/κ

)
,

and for the same level of error, κ should be increased when N is increased. On

the other hand, for the all-to-all network, the error bound is given by

Γ

(
1

κλ2(L)− L

)
= O

(√
1/κ
)

since λ2(L) = N . ♢

3.3 Utility of the Blended Dynamics Theory

Since the blended dynamics is a simple average of individual node dynamics,

it has been utilized as a design tool for many distributed algorithms; that is, one

designs a desired algorithm as the blended dynamics (3.1.3) first, and then, splits

it into different node dynamics (3.1.1) with the diffusive coupling (3.1.2).

This philosophy has been successfully employed in many applications such

as distributed economic power dispatch problem [YSA19], distributed state esti-

mator [KLS19], secure estimation by distributed median computation [LKS20],

distributed least square solver [LS19], distributed optimization without convexity
2For real valued function f and g, f(x) = O(g(x)) if there exists a positive real number M

and a real number x0 such that |f(x)| ≤ Mg(x) for all x ≥ x0 [Bla08].
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of each node [LS22], and decentralized controller design [KLS20]. See [LS21] for

more comprehensive summary of these applications.

The distributed algorithms designed by the blended dynamics theorem does

not require each node dynamics to be stable, as long as their average (i.e., the

blended dynamics) is contractive3, which yields flexibility of the design. Moreover,

as long as the blended dynamics remains contractive, a new node can join the

network or an existing node can leave the network during the operation, which

is called as a plug-and-play feature. This is because the designed distributed

algorithms are initialization-free [LS20].

3.4 Necessity of Discrete-time Blended Dynamics The-

ory

While all the above results are in the continuous-time domain, it is however

required to implement the designed algorithm in the discrete-time domain so

that it operates on digital devices in practice. A naive idea is to use simple

discretization methods such as forward difference. For example, a discretized

model of the overall dynamics composed of (3.1.1) and (3.1.2) becomes

xi(t+∆t) = xi(t) + ∆tfi(t, xi(t)) + κ∆t

∑
j∈Ni

(xj(t)− xi(t)), (3.4.1)

where ∆t is the sampling time.

In the continuous-time case, we recall that arbitrarily small error between xi

and s in (3.1.4) can be obtained by increasing the coupling gain κ, so that an

emergent behavior of the multi-agent system arises with strong coupling. How-

ever, in the discrete-time case of (3.4.1), increasing κ unboundedly yields insta-

bility of the network unless ∆t is decreased with the same ratio. One can verify

it with the following example.

3A system ẋ = f(t, x) is contractive if there exist a positive definite matrix Hc and a positive
constant λc such that Hc(∂f/∂x)(t, x) + (∂f/∂x)⊤(t, x)Hc ≤ −λcHc for all x ∈ Rm and t ≥ 0

[PWN05].
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Let the heterogeneous function fi(t, xi) = −xi, then (3.4.1) is rewritten as

x(t+∆t) = {(1−∆t)I − κ∆tL} x(t)

where x = col (x1, · · · , xN ) and L is the Laplacian matrix of a connected graph.

With κ sufficiently large, some eigenvalues of the system matrix lie outside of

the unit circle unless κ∆t remains small. Therefore, the discrete-time algorithm

(3.4.1) cannot be a discrete-time version of the blended dynamics approach.





Chapter 4

Behavior of Discrete-time
Heterogeneous Multi-agent System
under Multi-step Coupling

4.1 Problem Formulation

This chapter proposes a new form of a multi-agent system, which is given by

(4.2.1) in Section 4.2. We note that the meaning of using a large coupling gain κ

in the continuous-time case of (3.1.2) is that synchronization is taken more care

of than the progress through the node dynamics. Based on the observation, and

motivated by [WLMA19], the proposed form repeats a weighted averaging action

many times before progressing through the node dynamics, which we call ‘multi-

step coupling.’

This approach maintains the advantages of the continuous-time case, such as

the plug-and-play operation, and that the individual node dynamics need not be

stable as long as the blended dynamics is stable, which we do not repeat in this

paper but refer the reader to [KYS+16, LS20, KLS20].

Moreover, while the continuous-time approach predicted collective synchro-

nization behavior of the multi-agent system in [KYS+16, LS20], this discrete-

time approach estimates not only emergent but also individually scaled behavior,

i.e., each agent behaves similarly to the solution of the blended dynamics with

an agent-wise scaling factor. For example, in Chapter 5, we will introduce an

application example where each node estimates its relative importance which is

25
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possibly agent-wise different so that overall nodes are not synchronized in the

network.

This chapter is organized as follows. In Section 4.2, the behavior of discrete-

time heterogeneous multi-agent system under the multi-step coupling is studied.

Section 4.3 is devoted to demonstrate the utility of the proposed approach. In

particular, we specifies some special couplings which are frequently utilized in

other studies, analyzes a behavior of each multi-step coupling system using the

results in Section 4.2, and introduces practical examples of application.

4.2 Prediction on Emergent Behavior under Multi-step

Coupling

For a discrete-time version of the blended dynamics theorem, we propose the

following discrete-time algorithm: for each agent i ∈ N ,

xi[tk+1] =


fi(tk, xi[tk]), if k = 0, (4.2.1a)∑
j∈Ni∪{i}

wijxj [tk], if k = 1, . . . ,K − 1, (4.2.1b)

where xi ∈ Rn is the state, the function fi : Z×Rn → Rn is continuously differen-

tiable and represents the time-varying heterogeneous node dynamics (4.2.1a), and

the coefficient wij , called coupling weight, determines the behavior of the coupling

dynamics (4.2.1b). Here, tk is the symbol defined by

tk = t+
k

K
, (4.2.2)

where K ∈ N, and we call tk by fractional discrete-time index. In particular, we

call t ∈ Z as integer count and k ∈ N as fraction count. The fraction count k varies

from 0 to K− 1. Keeping in mind that tK = t+K/K = (t+1)+0/K = (t+1)0,

we see that the fractional discrete-time tk advances as 00, 01, · · · , 0K−1, 10, 11, · · · .
The time t0 will often be written as t for convenience. The fractional discrete-time

has nothing to do with real time, and can be implemented in practice just as a

sequential order in an algorithm.

We will choose K sufficiently large, which determines how many times the
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coupling dynamics (4.2.1b) is executed before the next node dynamics (4.2.1a)

is executed. It will be shown that, in this way, the effect of strong coupling κ

in the continuous-time blended dynamics theorem can be similarly reflected in

discrete-time. To emphasize the difference, we call this type of coupling in (4.2.1)

by multi-step coupling.

The coupling weights wij in (4.2.1b) have the property:

wij

> 0, j ∈ Ni ∪ {i},

= 0, otherwise.
(4.2.3)

Now, we assume that the matrix W := [wij ] ∈ RN×N , which we call a weight

matrix, satisfies the following.

Assumption 4.2.1. The spectral radius of W is 1. ♢

Note that the communication protocols in many discrete-time multi-agent

systems in the literature have the form of linear combination like in (4.2.1b) and

their weight matrices satisfy Assumption 4.2.1. Examples include [IT10, ITB12,

LC14, OSFM07, RB05], in which the weight matrices are given by stochastic

matrices whose spectral radius is 1.

Meanwhile, the communication network under consideration is represented

by the directed graph G, which does not have self-connection at any node by

definition, and we assume the following.

Assumption 4.2.2. The network G is strongly connected. ♢

Then, under Assumptions 4.2.1 and 4.2.2, the following is well-known (but we

put its proof for readers’ convenience).

Lemma 4.2.1. Let λi(W ), i ∈ N , be the eigenvalues of W such that |λ1(W )| ≥
|λ2(W )| ≥ . . . ≥ |λN (W )|. Under Assumptions 4.2.1 and 4.2.2, λ1 = 1, λ1(W ) >

|λj(W )| for all j = 2, . . . , N , and there exist positive vectors p, q ∈ RN such that

Wp = p, q⊤W = q⊤, q⊤p = 1. (4.2.4)
♢
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Proof. From (4.2.3), the associated graph of W not only contains all edges of G
but also has a self-connection for every node because all diagonal entries of W are

positive. Thus, the associated graph is aperiodic as well as strongly connected.

This implies that W is primitive by Lemma 2.2.4, and, by Assumption 4.2.1 and

Lemma 2.2.2, W has the simple Perron-Frobenius eigenvalue 1, i.e., λ1(W ) = 1

and λ1(W ) > |λj(W )| for all j = 2, . . . , N , with positive right and left eigenvectors

p and q, respectively. Scaling p and q yields that q⊤p = 1. □

With p and q from Lemma 4.2.1 at hand, we now introduce discrete-time

blended dynamics, which is defined as a weighted average of node dynamics:

s[t+ 1] =
N∑
i=1

qifi(t, pis[t]) =: fs(t, s[t]) ∈ Rn (4.2.5)

where t is the integer count of the fractional time (i.e., t = t0). In particular, we

assume the blended dynamics is stable in the sense of [LS98, TRK18] as follows.

Assumption 4.2.3. The blended dynamics (4.2.5) is contractive; i.e., there exist

a (symmetric) positive definite matrix H ∈ Rn×n and a positive constant γ < 1

such that
∂fs
∂s

(t, s)⊤H2∂fs
∂s

(t, s) ≤ γH2, ∀s ∈ Rn, t ∈ Z.

Remark 4.2.1. Assumption 4.2.3 does not ask each node dynamics xi[t + 1] =

fi(t, xi[t]) to be stable. Rather it allows unstable node dynamics whose instability

can be compensated by other node dynamics so that the blended dynamics be-

comes stable in the sense of Assumption 4.2.3. For example, when there are four

agents with f1(t, x) = f2(t, x) = 0.1x and f3(t, x) = f4(t, x) = 1.5x, the agents 1

and 2 have stable node dynamics while the agents 3 and 4 have unstable ones. If

the weight matrix has the vectors p = 14 and q = 14/4, then Assumption 4.2.3

holds because fs(s) = 0.8s. ♢

We will see that the blended dynamics (4.2.5) allows to predict the behavior

of (4.2.1) when K is large. To make the prediction effective from any initial

conditions globally in the state-space, we impose the following assumption.
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Assumption 4.2.4. The function fi(t, x) is uniformly bounded in t and globally

Lipschitz with respect to x uniformly in t: i.e., ∃ a non-decreasing continuous

function Mf : R → R and a constant Lf ≥ 0 such that, ∀x, y ∈ Rn, t ∈ Z, and

i ∈ N ,

∥fi(t, x)∥ ≤Mf (∥x∥) ,

∥fi(t, x)− fi(t, y)∥ ≤ Lf∥x− y∥. ♢

Theorem 4.2.2. Under Assumptions 4.2.1, 4.2.2, 4.2.3, and 4.2.4, for any ϵ > 0,

there exists Kmin such that, for all K > Kmin, the solution xi of (4.2.1) and the

solution s of (4.2.5) with arbitrary initial conditions satisfy

lim sup
t→∞

∥∥xi[t]− pis[t]
∥∥ ≤ ϵ, ∀i ∈ N . (4.2.6)

In addition, for each k ∈ {1, 2, . . . ,K − 1} and i ∈ N ,

lim sup
t→∞

∥∥xi[tk]− pis[t+ 1]
∥∥ ≤ ϵ

2

(
1 +

1

|λN (W )|K−k

)
. (4.2.7)

♢

Theorem 4.2.2 states that, with sufficiently large number of steps for the

coupling (4.2.1b), the behavior of node dynamics (4.2.1a), which is represented by

the state xi at the integer count t, can be approximately predicted by the solution

s of the blended dynamics with the scaling factor pi, and the approximation error

can be made arbitrarily small by increasing K. Moreover, the behavior of xi over

the fraction counts is also bounded with respect to the scaled trajectory of s.

Remark 4.2.2. Selection of the eigenvectors p and q as (4.2.4) is not unique,

but the result of Theorem 4.2.2 remains the same. To see this, we note that

different selection of p′ and q′ from p and q, respectively, should satisfy p′ = cp

and q′ = (1/c)q for some c > 0 because of the Perron-Frobenius theorem (Lemma

2.2.2). In addition, we note that the new blended dynamics becomes s′[t + 1] =

(1/c)
∑N

i=1 qifi(t, cpis
′[t]) =: fs′(t, s

′[t]). Comparing it with (4.2.5), it is seen that

s′[t] = (1/c)s[t], and thus, we have ∥xi[t] − p′is
′[t]∥ = ∥xi[t] − cpi(1/c)s[t]∥ =

∥xi[t] − pis[t]∥. Finally, it is also seen that the new blended dynamics satisfies
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Assumption 4.2.3 because (∂fs′/∂s
′)(t, s′) = (∂fs/∂s)(t, s) with s = cs′. ♢

Remark 4.2.3. In (4.2.7), the state xi[tk] is compared not with s[t] but with

s[t + 1]. One may find this is natural considering the behavior of the overall

system. At each integer time t = t0, each xi obeys the heterogeneous node

dynamics (4.2.1a), which potentially updates xi[t1] in different directions from

the updated pis[t+1] (even if xi[t0] is close to pis[t]). Instead, repeated execution

of (4.2.1b) drives xi[tk] to pis[t+ 1], which is well reflected in (4.2.7). ♢

We now present intuitive explanations for Theorem 4.2.2 before providing a

rigorous proof. For simplicity, define x̄ := col (x1, · · · , xN ) ∈ RnN . Then, (4.2.1)

is simply written as

x̄[tk] =W k−1
⊗n


f1(t0, x1[t0])

...

fN (t0, xN [t0])

 =:W k−1
⊗n F (t0, x̄[t0]), (4.2.8)

for k = 1, . . . ,K − 1 and t ∈ Z, where W⊗n =W ⊗ In, and, since tK = (t+1)0 =

t+ 1, we have

x̄[t+ 1] =WK−1
⊗n F (t, x̄[t]). (4.2.9)

Similar to (4.2.9), the blended dynamics (4.2.5) is written as

s[t+ 1] =

N∑
i=1

qifi(t, pis[t]) = q⊤⊗nF (t, p⊗ns[t]). (4.2.10)

By Lemma 4.2.1, there exist P,Q ∈ RN×(N−1) such that

W =
[
p P

] [1 0

0 Λ

][
q⊤

Q⊤

]
, (4.2.11)

Q⊤P =IN−1, and Q⊤p = P⊤q = 0N−1, (4.2.12)

where Λ ∈ R(N−1)×(N−1) is a matrix whose eigenvalues are λ2(W ), . . . , λN (W ).
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With them, we consider the coordinate transformation

ξ =

[
ξ1

ξ̃

]
=

[
q⊤⊗n

Q⊤
⊗n

]
x̄ (4.2.13)

whose inverse is

x̄ = p⊗nξ1 + P⊗nξ̃.

The overall dynamics (4.2.9) at each integer time t becomes

ξ1[t+ 1] = q⊤⊗nW
K−1
⊗n F (t, p⊗nξ1[t] + P⊗nξ̃[t])

= q⊤⊗nF (t, p⊗nξ1[t] + P⊗nξ̃[t]),

ξ̃[t+ 1] = Q⊤
⊗nW

K−1
⊗n F (t, p⊗nξ1[t] + P⊗nξ̃[t])

= (ΛK−1Q⊤)⊗nF (t, p⊗nξ1[t] + P⊗nξ̃[t]).

(4.2.14)

Define the error variable e := ξ1 − s. Then the above dynamics is rewritten by

e[t+ 1] = q⊤⊗nF (t, p⊗n(e[t] + s[t]) + P⊗nξ̃[t])

− q⊤⊗nF (t, p⊗ns[t]),

ξ̃[t+ 1] = (ΛK−1Q⊤)⊗nF (t, p⊗n(e[t] + s[t])

+ P⊗nξ̃[t]).

Since the spectral radius ρ(Λ) = |λ2(W )| < 1, it may be inferred that ∥ξ̃∥ gets

small if K is sufficiently large. On the other hand, if ξ̃ happens to be identically

zero, then e[t] converges to zero as t tends to infinity, which follows from the

following lemma.

Lemma 4.2.3. Under Assumption 4.2.3,

∥H{fs(t, s2)− fs(t, s1)}∥ ≤ √
γ∥H(s2 − s1)∥

for all t ∈ Z and s1, s2 ∈ Rn. ♢

Proof. Before proving Lemma 4.2.3, we first claim that, for each t ∈ Z and s1, s2 ∈
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Rn, there exists s̃ ∈ Rn in the line connecting s1 and s2 such that

{fs(t, s2)− fs(t, s1)}⊤H2{fs(t, s2)− fs(t, s1)}

≤ (s2 − s1)
⊤∂fs
∂s

(t, s̃)⊤H2∂fs
∂s

(t, s̃)(s2 − s1).
(4.2.15)

It can be proved by the mean-value theorem with a trick. Let the left-hand side

of the equality (4.2.15) as ∆(t, s1, s2) for convenience. With a variable c ∈ R,

define

gt,s1,s2(c) := {fs(t, s2)− fs(t, s1)}⊤H2{fs(t, cs2 + (1− c)s1)− fs(t, s1)}.

Since the function gt,s1,s2 : R → R is continuously differentiable, by the mean-

value theorem, there exists c̃ ∈ [0, 1] such that gt,s1,s2(1)−gt,s1,s2(0) = g′t,s1,s2(c̃)(1−
0), which is equivalent to

∆(t, s1, s2) = {fs(t, s2)− fs(t, s1)}⊤H2∂fs
∂s

(t, s̃)(s2 − s1) (4.2.16)

where s̃ = c̃s2 + (1− c̃)s1. Using this, we have

∆(t, s1, s2) = ∥H{fs(t, s2)− fs(t, s1)}∥2

≤ ∥H{fs(t, s2)− fs(t, s1)}∥
∥∥∥∥H∂fs

∂s
(t, s̃)(s2 − s1)

∥∥∥∥,
which in turn implies ∥H{fs(t, s2)−fs(t, s1)}∥ ≤ ∥H(∂fs/∂s)(t, s̃)(s2−s1)∥. From

this, the claim (4.2.15) is justified. Finally, it follows from Assumption 4.2.3 that

∥H{fs(t, s2)− fs(t, s1)}∥2 = ∆(t, s1, s2)

≤ (s2 − s1)
⊤∂fs
∂s

(t, s̃)⊤H2∂fs
∂s

(t, s̃)(s2 − s1)

≤ γ(s2 − s1)
⊤H2(s2 − s1)

= γ∥H(s2 − s1)∥2,

which proves Lemma 4.2.3. □
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In fact, if ξ̃ ≡ 0n(N−1), then,

∥∥He[t+ 1]
∥∥ = ∥H{q⊤⊗nF (t, p⊗n(e[t] + s[t]))− q⊤⊗nF (t, p⊗ns[t])}∥

= ∥H{fs(t, e[t] + s[t])− fs(t, s[t])}∥

≤ √
γ∥He[t]∥.

This implies that ξ1 and s tend to get closer as time goes on. When this happens,

x̄ = p⊗nξ1 + P⊗nξ̃ tends to p⊗ns, which motivates Theorem 4.2.2.

However, ξ̃ does not become identically zero in general, and the above argu-

ments need rigorous analysis with a Lyapunov function as follows. Before provid-

ing the proof of Theorem 4.2.2, we first claim that the solution s[t] of the blended

dynamics is bounded by Assumptions 4.2.3 and 4.2.4 as follows.

Lemma 4.2.4. Under Assumption 4.2.3, the solutions of the blended dynamics

(4.2.5), initiated at time t = t0, are bounded as

∥Hs[t]∥ ≤ √
γt−t0∥Hs[t0]∥+

supτ≥t0 ∥Hfs(τ,0n)∥
1−√

γ
. (4.2.17)

Additionally, with Assumption 4.2.4, we have

lim sup
t→∞

∥s[t]∥ ≤
√
N∥q∥∥H−1∥∥H∥Mf (0)

1−√
γ

=:Ms (4.2.18)
♢

Proof. We prove (4.2.17) by showing that

∥Hs[t]∥ ≤ w[t], ∀t ≥ t0 (4.2.19)

where w ∈ R is the solution of

w[t+ 1] =
√
γw[t] + ∥Hfs(t,0n)∥, w[t0] = ∥Hs[t0]∥. (4.2.20)

Indeed, since ∥Hs[t0]∥ ≤ w[t0], let us suppose ∥Hs[τ ]∥ ≤ w[τ ] for some integer

τ ≥ t0. Then,

∥Hs[τ + 1]∥ = ∥H{fs(τ, s[τ ])− fs(τ,0n) + fs(τ,0n)}∥
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≤ ∥H{fs(τ, s[τ ])− fs(τ,0n)}∥

+ ∥Hfs(τ,0n)∥

≤ √
γ∥Hs[τ ]∥+ ∥Hfs(τ,0n)∥

≤ √
γw[τ ] + ∥Hfs(τ,0n)∥

= w[τ + 1],

where the second inequality comes from Lemma 4.2.3. This justifies (4.2.19).

Meanwhile, the solution w of (4.2.20) is given by

w[t] =
√
γt−t0w[t0] +

t−1∑
τ=t0

√
γt−τ−1∥Hfs(τ,0n)∥,

which yields (4.2.17).

Now, with Assumption 4.2.4, it follows from (4.2.17) that

lim sup
t→∞

∥s[t]∥ ≤ ∥H−1∥ lim sup
t→∞

∥Hs[t]∥

≤ ∥H−1∥∥H∥
supτ≥t0 ∥q⊤⊗nF (t, p⊗n0n)∥

1−√
γ

≤ ∥H−1∥∥H∥
∥q∥

√
NMf (0)

1−√
γ

which completes the proof. □

Based on the aforementioned observations, now we can prove Theorem 4.2.2

in the following way.

Proof. We analyze the behavior of (4.2.14) with (4.2.10), which describes the

evolution of the overall system at every integer time t. For this, we introduce a

Lyapunov function

V = ∥H(ξ1 − s)∥+ η∥ξ̃∥

where η > Lf∥q∥∥P∥∥H∥/√γ. Then,

V [t+ 1] = ∥H(ξ1[t+ 1]− s[t+ 1])∥+ η∥ξ̃[t+ 1]∥

=
∥∥H{q⊤⊗nF (t, p⊗nξ1[t])− q⊤⊗nF (t, p⊗ns[t])
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+ q⊤⊗nF (t, p⊗nξ1[t] + P⊗nξ̃[t])− q⊤⊗nF (t, p⊗nξ1[t])}
∥∥

+ η
∥∥(ΛK−1Q⊤)⊗n{F (t, p⊗ns[t])

+ F (t, p⊗nξ1[t])− F (t, p⊗ns[t])

+ F (t, p⊗nξ1[t] + P⊗nξ̃[t])− F (t, p⊗nξ1[t])}
∥∥

≤
∥∥H{q⊤⊗nF (t, p⊗nξ1[t])− q⊤⊗nF (t, p⊗ns[t])}

∥∥
+
∥∥Hq⊤⊗n{F (t, p⊗nξ1[t] + P⊗nξ̃[t])− F (t, p⊗nξ1[t])}

∥∥
+ |λ2(W )|K−1η

{
∥Q⊤

⊗n{F (t, p⊗nξ1[t])− F (t, p⊗ns[t])}∥

+ ∥Q⊤
⊗n{F (t, p⊗nξ1[t] + P⊗nξ̃[t])− F (t, p⊗nξ1[t])}∥

+ ∥Q⊤
⊗nF (t, p⊗ns[t])∥

}
.

The above inequality can be simplified by the following properties:

• by Lemma 4.2.3,

∥H{q⊤⊗nF (t, p⊗nξ1[t])− q⊤⊗nF (t, p⊗ns[t])}∥

= ∥H{fs(t, ξ1[t])− fs(t, s[t])}∥

≤ √
γ∥H(ξ1[t]− s[t])∥

• by Assumption 4.2.4,

∥F (t, p⊗nξ1[t] + P⊗nξ̃[t])− F (t, p⊗nξ1[t])∥

≤

(
N∑
i=1

∥fi(t, piξ1[t] + (Pi ⊗ In)ξ̃[t])− fi(t, piξ1[t])∥2
)1/2

≤

(
N∑
i=1

L2
f∥(Pi ⊗ In)ξ̃[t]∥2

)1/2

= Lf∥P⊗nξ̃[t]∥ ≤ Lf∥P∥∥ξ̃[t]∥,

where Pi is the i-th row of P , and similarly

∥F (t, p⊗nξ1[t])− F (t, p⊗ns[t])∥

≤ Lf∥p∥∥ξ1[t]− s[t]∥
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= Lf∥p∥∥H−1H(ξ1[t]− s[t])∥

≤ Lf∥p∥∥H−1∥∥H(ξ1[t]− s[t])∥.

Using the above three inequalities, we have that

V [t+ 1] ≤ √
γ∥H(ξ1[t]− s[t])∥+ ∥H∥∥q∥Lf∥P∥∥ξ̃[t]∥

+ |λ2(W )|K−1η∥Q∥Lf∥p∥∥H−1∥∥H(ξ1[t]− s[t])∥

+ |λ2(W )|K−1η∥Q∥Lf∥P∥∥ξ̃[t]∥

+ |λ2(W )|K−1η∥Q∥∥F (t, p⊗ns[t])∥

≤ √
γV [t] + |λ2(W )|K−1ηLf∥Q∥M1V [t]

+ |λ2(W )|K−1η∥Q∥∥F (t, p⊗ns[t])∥,

where M1 := max{∥p∥∥H−1∥, ∥P∥/η}.

For the given ϵ, let Kmin be a positive integer such that

|λ2(W )|Kmin
ηLfM1∥Q∥ ≤

1−√
γ

2
(4.2.21)

|λ2(W )|Kmin 2ηM1Mf (∥p∥Ms)
√
N∥Q∥

1−√
γ

≤ ϵ

2
. (4.2.22)

Then, for all K > Kmin,

V [t + 1] − V [t] ≤ −
(1−√

γ)

2
V [t] + |λ2(W )|K−1η∥Q∥∥F (t, p⊗ns[t])∥. (4.2.23)

By Assumption 4.2.4 and by Lemma 4.2.4,

lim sup
t→∞

∥F (t, p⊗ns[t])∥ ≤
√
NMf (∥p∥ lim sup

t→∞
∥s[t]∥)

≤
√
NMf (∥p∥Ms)

Using this and (4.2.23), the ultimate bound of V is obtained as

lim sup
t→∞

V [t] ≤ |λ2(W )|K−1 2η∥Q∥
1−√

γ

√
NMf (∥p∥Ms). (4.2.24)
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Therefore, for each agent i ∈ N and K > Kmin,

lim sup
t→∞

∥xi[t]− pis[t]∥ = lim sup
t→∞

∥∥∥pi(ξ1[t]− s[t]) + (Pi ⊗ In)ξ̃[t]
∥∥∥

≤ max

{
∥p∥∥H−1∥, ∥P∥

η

}
lim sup
t→∞

V [t]

≤ |λ2(W )|K−1 2η∥Q∥
1−√

γ

√
NMf (∥p∥Ms)M1

≤ ϵ

where we used x̄ = p⊗nξ1 + P⊗nξ̃. This completes the proof for (4.2.6) of Theo-

rem 4.2.2.

Now, in order to inspect the behavior of the system over the fractional time, let

us apply the transformation of (4.2.13) to (4.2.8), which yields, for k = 1, · · · ,K−
1,

ξ1[tk] = q⊤⊗nW
k−1
⊗n F (t0, x̄[t0])

= q⊤⊗nF (t0, x̄[t0]) = q⊤⊗nx̄[(t+ 1)0]

= ξ1[(t+ 1)0]

(4.2.25)

in which, the third equality can also be seen from (4.2.9). Similarly, for k =

1, · · · ,K − 1,

ξ̃[tk] = Q⊤
⊗nW

k−1
⊗n F (t0, x̄[t0])

= (Λk−1Q⊤)⊗nF (t0, x̄[t0])

= Λk−K
⊗n (ΛK−1Q⊤)⊗nF (t0, x̄[t0])

= Λk−K
⊗n Q⊤

⊗nW
K−1
⊗n F (t0, x̄[t0])

= (Λ−1)K−k
⊗n ξ̃[(t+ 1)0].

Hence,

∥ξ̃[tk]∥ ≤ ∥ξ̃[(t+ 1)0]∥
|λN (W )|K−k

(4.2.26)

for each k = 1, · · · ,K − 1.
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On the other hand, by (4.2.24) and (4.2.22), we have

lim sup
t→∞

max{∥H(ξ1[t]− s[t])∥, η∥ξ̃[t]∥} ≤ lim sup
t→∞

V [t]

≤ ϵ

2M1
.

Therefore, for each k = 1, · · · ,K − 1,

lim sup
t→∞

∥xi[tk]− pis[t+ 1]∥

= lim sup
t→∞

∥pi(ξ1[tk]− s[t+ 1]) + (Pi ⊗ In)ξ̃[tk]∥

≤ lim sup
t→∞

∥p∥∥H−1∥∥H(ξ1[tk]− s[t+ 1])∥

+
∥P∥
η
η∥ξ̃[tk]∥

≤ lim sup
t→∞

∥p∥∥H−1∥∥H(ξ1[t+ 1]− s[t+ 1])∥

+
∥P∥
η

η∥ξ̃[t+ 1]∥
|λN (W )|K−k

≤ ∥p∥∥H−1∥
M1

ϵ

2
+

∥P∥/η
M1

ϵ

2|λN (W )|K−k

≤ ϵ

2

(
1 +

1

|λN (W )|K−k

)
,

which completes the proof. □

Remark 4.2.4. From (4.2.21) and (4.2.22), Kmin can be explicitly defined as the

smallest integer such that

Kmin ≥ log|λ2(W )|

(
1−√

γ

2η∥Q∥M1
max

{
1

Lf
,

ϵ

2Mf (∥p∥Ms)
√
N

})

= log|λ2(W )|

(
1−√

γ

2η∥Q∥M1

)
+ log|λ2(W )|

(
max

{
1

Lf
,

ϵ

2Mf (∥p∥Ms)
√
N

})
.

This yields a reasonable interpretation that Kmin increases as the second largest

eigenvalue λ2(W ) of the weight matrix W approaches to 1, the performance index

ϵ decreases, or the Lipschitz constant Lf and the network size N get larger, while

it decreases as the degree of stability (1 − √
γ) of the blended dynamics gets
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larger. ♢

In Theorem 4.2.2, the approximation of xi[t] by pis[t] is stated in an asymp-

totic format, i.e., using lim sup. If one questions when the approximation becomes

effective, the following corollary assures that it can be very early ifK is sufficiently

large. In particular, if the initial conditions of xi are in a known compact set,

then Kmin can be computed.

Corollary 4.2.5. Under Assumptions 4.2.1, 4.2.2, 4.2.3, and 4.2.4, for any ϵ > 0

and compact set C ⊂ Rn, there exists Kmin > 0 such that, for all K > Kmin,

the solution xi of (4.2.1) with xi[0] ∈ C, and the solution s of (4.2.5) with

s[1] =
∑N

i=1 qifi(0, xi[0]) satisfy

∥∥xi[t]− pis[t]
∥∥ ≤ ϵ, ∀t ≥ 1, i ∈ N . (4.2.27)

In addition, for all k ∈ {1, 2, . . . ,K − 1}, i ∈ N , and t ≥ 1,

∥∥xi[tk]− pis[t+ 1]
∥∥ ≤ ϵ

2

(
1 +

1

|λN (W )|K−k

)
. (4.2.28)

♢

Proof. In this proof, we show that, after K − 1 times execution of (4.2.1b), the

solution of the overall system from the initial condition enters a positively invari-

ant set, in which (4.2.27) holds. For this, let us first construct a few sets as

Cs
1 = {q⊤⊗nF (0, x̄) : xi ∈ C, i ∈ N} ⊂ Rn,

Cs
t+1 = {q⊤⊗nF (t, p⊗ns) : s ∈ Cs

t } ⊂ Rn, ∀t ≥ 1,

Cs
∞ =

∞⋃
t=1

Cs
t ⊂ Rn,

in which, Cs
t is the set of all possible s[t] for each t ≥ 1, which is bounded. The

set Cs
∞ is also bounded by Lemma 4.2.4. Now, for the overall state x̄, consider

two more sets:

C ′ = {x̄ : ∥H(ξ1 − s)∥ ≤ ϵ0, s ∈ Cs
∞, ∥ξ̃∥ ≤ δ} ∪ CN ⊂ RnN ,

C̄ = {(x̄, s) ∈ C ′ × Cs
∞ : ∥H(ξ1 − s)∥ ≤ ϵ0, ∥ξ̃∥ ≤ δ} ⊂ RnN × Rn,
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where CN is N -ary Cartesian power of C, i.e., CN = C × C × · · · × C︸ ︷︷ ︸
N -times

and

ϵ0 :=
ϵ

2max{∥p∥∥H−1∥, ∥P∥}
,

δ := min

{
1,

1−√
γ

Lf∥q∥∥P∥∥H∥

}
ϵ0.

Now, pick Kmin such that

|λ2(W )|Kmin∥Q∥ sup
x̄∈C′

∥F (t, x̄)∥ ≤ δ, ∀t ≥ 0.

We claim that the set C̄ is positively invariant for any K > Kmin. To see this,

suppose that, for any τ ≥ 1, s[τ ] ∈ Cs
τ ⊂ Cs

∞, ∥ξ̃[τ ]∥ ≤ δ, and ∥H(ξ1[τ ]− s[τ ])∥ ≤
ϵ0, so that (x̄[τ ], s[τ ]) ∈ C̄. Then, it follows that

s[τ + 1] ∈ Cs
τ+1 ⊂ Cs

∞

∥ξ̃[τ + 1]∥ ≤ |λ2(W )|K−1∥Q∥∥F (τ, x̄[τ ])∥∥

≤ δ,

and

∥H(ξ1[τ + 1]− s[τ + 1])∥ ≤ ∥H{ξ1[τ + 1]− q⊤⊗nF (τ, p⊗nξ1[τ ])}∥

+ ∥H{q⊤⊗nF (τ, p⊗nξ1[τ ])− s[τ + 1])}∥

≤ Lf∥q∥∥P∥∥H∥δ + ∥H{fs(τ, ξ1[τ ])− fs(τ, s[τ ])}∥

≤ Lf∥q∥∥P∥∥H∥δ +√
γ∥H(ξ1[τ ]− s[τ ])∥

≤ ϵ0

in which, we used

∥ξ1[τ + 1]− q⊤⊗nF (τ, p⊗nξ1[τ ])∥

= ∥q⊤⊗n{F (τ, p⊗nξ1[τ ] + P⊗nξ̃[τ ])− F (τ, p⊗nξ1[τ ])}∥

≤ Lf∥q∥∥P∥∥ξ̃[τ ]∥ ≤ Lf∥q∥∥P∥δ.
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On the other hand, the set C̄ is reached within K − 1 executions of (4.2.1b) from

the initial time 00. Indeed,

s[1] = q⊤⊗nF (0, x̄[0]) ∈ Cs
1 ⊂ Cs

∞

∥ξ̃[1]∥ = ∥(ΛK−1Q⊤)⊗nF (0, x̄[0])∥

≤ |λ2(W )|K−1∥Q∥∥F (0, x̄[0])∥

≤ δ

∥H(ξ1[1]− s[1])∥ = ∥H{q⊤⊗nW
K−1
⊗n F (0, x̄[0])− q⊤⊗nF (0, x̄[0])}∥

= 0.

Therefore, (x̄[t], s[t]) remains in C̄ for all t ≥ 1.

Finally, it is seen that, in the set C̄,

∥xi[t]− pis[t]∥ = ∥pi(ξ1[t]− s[t]) + (Pi ⊗ In)ξ̃[t]∥

≤ max
{
∥p∥∥H−1∥, ∥P∥

}
(∥H(ξ1[t]− s[t])∥+ ∥ξ̃[t]∥)

≤ ϵ,

which completes the proof of (4.2.27).

To show (4.2.28), we note that (4.2.25) and (4.2.26) still hold. Therefore, for

all k = 1, · · · ,K − 1, i ∈ N , and t ≥ 1,

∥xi[tk]− pis[t+ 1]∥ = ∥pi(ξ1[tk]− s[t+ 1]) + (Pi ⊗ In)ξ̃[tk]∥

≤ max
{
∥p∥∥H−1∥, ∥P∥

}
(∥H(ξ1[tk]− s[t+ 1])∥+ ∥ξ̃[tk]∥)

≤ max
{
∥p∥∥H−1∥, ∥P∥

}
× (∥H(ξ1[t+ 1]− s[t+ 1])∥+ ∥ξ̃[t+ 1]∥/|λN (W )|K−k)

≤ max
{
∥p∥∥H−1∥, ∥P∥

}(
ϵ0 +

δ

|λN (W )|K−k

)
≤ ϵ

2

(
1 +

1

|λN (W )|K−k

)
,

which completes the proof of (4.2.28). □

Remark 4.2.5. In Corollary 4.2.5, the solution s[t] of the blended dynamics is
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initiated not at t = 0 but at t = 1. One may find this is natural because the state

s′[1] = fs(0, s
′[0]) with s′[0] =

∑N
i=1 qixi[0], i.e., s′[1] =

∑N
i=1 qifi(0, pi

∑N
i=1 qixi[0]),

can be very different from the considered state s[1] =
∑N

i=1 qifi(0, xi[0]). In fact,

the states xj [01], j ∈ N , may be very different from each other, but they converge

with sufficiently large K towards
∑N

i=1 qixi[01] with the scaling factor pj , which

is s[1] (not s′[1]). ♢

4.3 Network Synthesis with Examples

As mentioned before, the proposed approach is useful as a design method for

distributed algorithms by first designing a suitable blended dynamics such that

it behaves as desired and then synthesizing each heterogeneity of the multi-agent

system such that it has the pre-designed blended dynamics. Moreover, comparing

with the continuous-time approach, the discrete-time version handles more general

protocols as long as the spectral radius of its weight matrix is 1. In fact, many

studies on discrete-time multi-agent system including PageRank [IT10, ITB12,

LC14] or synchronization [OSFM07, RB05] have used the communication protocol

which can be represented as a linear combination of agents’ state information like

(4.2.1b) with the weight matrix of unit spectral radius. Thus, in this section, some

of the protocols are chosen to be considered as the coupling dynamics (4.2.1b)

and the behaviors of corresponding multi-step coupling systems are illustrated

using the results in previous section. Based on this, the design process for each

application example is also provided.

4.3.1 Distributed Estimation of the Number of Agents in Network

In this subsection, we assume that the network is undirected and connected,

and consider the following Metropolis-Hastings coupling weight wMH
ij in [SHM14]:

wMH
ij :=



1− µMH

max {di, dj}
, (j, i) ∈ E and i ̸= j,

0, (j, i) /∈ E and i ̸= j,

1−
∑
l ̸=i

wMH
il , i = j,

(4.3.1)
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where µMH ∈ (0, 1). Note that wMH
ij depends on both di and dj , so that each agent

should additionally exchange its degree information with neighbors to update its

coupling weights online, and this will enable the plug-and-play operation to the

multi-step coupling framework.

It can be easily seen that wMH
ij satisfies (4.2.3) and Assumption 4.2.1 holds

for WMH := [wMH
ij ] because it is doubly-stochastic. Hence, we can choose p = 1N

and q = (1/N)1N from Lemma 4.2.1. Then, the blended dynamics is obtained as

a simple average of fis as follows:

s[t+ 1] =
1

N

N∑
i=1

fi(t, s[t]). (4.3.2)

Since all pis are chosen evenly as 1, by Theorem 4.2.2 or Corollary 4.2.5, the

behavior of every trajectory xi[t] is approximately synchronized to the solution

s of the blended dynamics (4.3.2). It should be emphasized that this collective

synchronized behavior comes from p = 1N and this choice of p is always possible

for any row-stochastic (not necessarily to be doubly-stochastic) weight matrices.

In Section 4.3.3, we will consider the row-stochastic weight matrix whose column-

sums are not 1.

As an application example for the Metropolis-Hastings coupling, we can design

a distributed algorithm for network size estimation as follows. In fact, many

distributed algorithms such as [ITB12, NO09] are often assumed to know the

network size N . The insight of the proposed algorithm is to make its blended

dynamics converge to N . For example, if the blended dynamics is designed as the

following scalar dynamics

s[t+ 1] =

(
1− 1

N

)
s[t] + 1, (4.3.3)

such that it has the stable equilibrium point at N , then each state xi[t] will also

approach to N under the Metropolis-Hastings coupling. Thus, by increasing K

until the synchronization error ϵ in (4.2.6) or (4.2.27) gets smaller than 0.5, each

agent can find the exact network size through the round-off to the nearest integer.

One idea to design the heterogeneous dynamics fis whose average becomes
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(4.3.3) comes from

1

N

{(
1

)
+

( N∑
i=2

(s[t] + 1)

)}
=

(
1− 1

N

)
s[t] + 1,

this is, one agent has fi = 1 and all others have fi(s) = s + 1. For this, we

intentionally add one specific node which does not leave the network during the

operation of the algorithm. Without loss of generality, let an index of this node

be 1 and it runs the following dynamics:

x1[tk+1] =

 1, if k = 0,∑
j∈N1∪{1}w

MH
1j xj [tk], otherwise.

(4.3.4)

On the other hand, all the other nodes of i = 2, . . . , N run the following dynamics:

xi[tk+1] =

 xi[tk] + 1, if k = 0,∑
j∈Ni∪{i}w

MH
ij xj [tk], otherwise.

(4.3.5)

Note that, even though the individual dynamics of (N −1) nodes for i = 2, . . . , N

are (marginally) unstable, the overall networked system becomes stable and the

trajectories of individual agent approach close to N (less than the distance of 0.5

with sufficiently large K). In addition, this distributed algorithm can be applied

even when some agents might join or leave the network during the process of the

algorithm, because it does not rely on the initial condition of agents. This idea is

motivated by [LLKS18] which proposed continuous-time distributed network size

estimation algorithm.

Example 4.3.1. To verify the performance of the proposed algorithm (4.3.4) and

(4.3.5), we consider a network where the number of the agents varies during the

process of the algorithm as shown in Figure 4.1. Initially, there are 5 agents in

the network, but, after an advance of 50 integer count t, the agent 2 leaves the

network so that the number of agents, N , changes to 4.

The simulation result of the proposed algorithm (4.3.4) and (4.3.5) is given

in Figure 4.2. Here, we use a parameter µMH = 0.1 in the Metropolis-Hastings
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Figure 4.1: Time-varying network considered in Example 4.3.1

coupling weight (4.3.2). Moreover, the coupling dynamics is repeated for 5 times

for each integer count (i.e., K = 6) in the algorithm so that the synchronization

error (which is denoted as ϵ in Theorem 4.2.2) is less than 0.5. From this, each

agent can estimate the exact network size N through the round-off to the closest

integer. Moreover, even though all agents are arbitrarily initialized with 0 in the

simulation, the algorithm could eventually estimate the network size N regardless

of the initial conditions and the network change. This result confirms the plug-

and-play feature of the proposed algorithm. ♢

4.3.2 Initialization-free Distributed PageRank Estimation for Strongly

Connected Network

Now, we turn our attention to a different type of the weight matrix whose

column-sums are all one. In this subsection, we consider the multi-step coupling

framework whose coupling dynamics is the following iterative power method of

PageRank [BP98]:

xi[tk+1] = θPRxi[tk] + (1− θPR)
∑
j∈Ni

xj [tk]

dout
j

, (4.3.6)

where xi ∈ R is the state, θPR ∈ (0, 1) is the constant parameter, Ni is the

in-neighbors of node i, and dout
j is the out-degree of node j. In fact, PageRank

score provides an information on relative importance of each node in the network,

so it has been widely utilized in diverse areas such as informatics [CXMR07],

bibliometrics [LBNVdS05], and biology [ZBE12].
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Figure 4.2: Simulation result for distributed network size estimation: Dashed
line and solid lines represent the network size N and the estimate
of each agent, respectively.

Then, the coupling weight wPR
ij is given by

wPR
ij =


θPR, i = j,

(1− θPR)
aij
dout
j

, i ̸= j,

where aij is the ij-th element of the binary adjacency matrix A. It can be easily

seen that wPR
ij satisfies (4.2.3) and its weight matrix WPR := [wPR

ij ] is obtained

as

WPR = θPRI + (1− θPR)AD−1
out,

where Dout is a diagonal matrix whose diagonal components are dout
1 , · · · , dout

N in

sequence. Since WPR is column-stochastic, it has the spectral radius of 1 with the

left eigenvector q = 1N . By Lemma 4.2.1, there exists a positive right eigenvector
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p ∈ RN for the eigenvalue 1 such that

WPRp = p, 1⊤
Np = 1.

Here, each element pi of p is called as PageRank score of node i in the strongly

connected network and it represents the relative importance of each node in the

network [BP98]. From this, the blended dynamics under PageRank coupling

(4.3.6) is written as, with s ∈ R,

s[t+ 1] = 1⊤
NF (t, ps[t]) =

N∑
i=1

fi (t, pis[t]) . (4.3.7)

By Theorem 4.2.2, the i-th agent’s trajectory over the integer count t is ap-

proximated by pis[t], i.e., PageRank-scaled solution s of the blended dynamics

(4.3.7). Therefore, if one is interested in solving the PageRank score of each

node, then the blended dynamics can be designed to have a stable equilibrium of

1.

In fact, when the network has a large number of agents, these PageRank

scores are not easy to be computed in a centralized manner. Thus, the distributed

PageRank algorithms have been proposed in [IT10, ITB12, LC14]. Unfortunately,

most of them commonly assume an initialization. However, when nodes are added

to or removed from the network during the process of the algorithm, the whole

algorithm must be re-initialized whenever a change occurs in the network, and

this is not easy to be achieved in a distributed manner.

On the contrary, we can design an initialization-free distributed PageRank

estimation algorithm by employing the proposed multi-step coupling framework.

It can be easily inferred that, if the solution of the blended dynamics simply

converges to 1, then every sampled state xi[t] will approach to its PageRank score

pi under the multi-step coupling of (4.3.6). Thus, we first design the blended

dynamics which has a stable equilibrium point at 1 as

s[t+ 1] = νs[t] + (1− ν), (4.3.8)
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where ν ∈ (0, 1) is a design parameter. Since

νs[t] + (1− ν) =
N∑
i=1

{νpis[t] + (1− ν)/N} ,

we can divide (4.3.8) to each node by proposing the following algorithm

xi[tk+1] =


νxi[tk] +

1− ν

N
, if k = 0,

θPRxi[tk] + (1− θPR)
∑
j∈Ni

xj [tk]

dout
j

, otherwise.
(4.3.9)

Indeed, the proposed algorithm has the blended dynamics of (4.3.8). As stated in

Theorem 4.2.2 or Corollary 4.2.5, the proposed distributed algorithm does not rely

on a particular initialization. The algorithm (4.3.9) uses a global information ofN ,

but it can be distributively estimated by the result in Section 4.3.1. Note that the

proposed algorithm (4.3.9) could estimate the PageRank scores in the strongly

connected network as Assumption 4.2.2. If the connectivity of the network is

not guaranteed such as in a hyperlinked network of web-pages, then we need

a new definition of the PageRank scores and modified algorithm, which will be

introduced in Chapter 5.

4.3.3 Distributed Estimation of Degree Sequence of Network

Average consensus protocol has been widely utilized in many discrete-time

synchronization problems including [OSFM07, RB05]. Thus, in this subsection,

we consider a multi-step coupling framework whose coupling dynamics (4.2.1b) is

the following average consensus protocol

xi[tk+1] = θavgxi[tk] +
1− θavg

|Ni|
∑
j∈Ni

xj [tk],

where θavg ∈ (0, 1) is a parameter which represents weight between its own state

and the average of the neighbors.
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Then, the coupling weight wavg
ij is obtained as

wavg
ij =


θavg, i = j,

(1− θavg)
aij
di
, otherwise,

and the weight matrix W avg := [wavg
ij ] is given by

W avg = θavgI + (1− θavg)D−1A,

where D is the diagonal matrix whose diagonal components are d1, . . . , dN se-

quentially. Note that wavg
ij satisfies (4.2.3) and Assumption 4.2.1 holds because

W avg is row-stochastic matrix. Thus, we can choose p = 1N and find a positive

vector q by Lemma 4.2.1 such that

q⊤W avg = q⊤, q⊤1N = 1.

Now, the blended dynamics is given by

s[t+ 1] =

N∑
i=1

qifi(t, s[t]). (4.3.10)

Meanwhile, if the network under consideration is undirected, q is easily obtained as

q = (1/dsum)d for p = 1N where dsum :=
∑N

j=1 dj and d = col (d1, · · · , dN ) ∈ RN

because d⊤D−1A = 1⊤
NA = [dout

1 , . . . , dout
N ] = [d1, . . . , dN ] = d⊤. From this, the

blended dynamics (4.3.10) is rewritten as

s[t+ 1] =
1

dsum

N∑
i=1

difi(t, s[t]). (4.3.11)

Similarly with Section 4.3.1, the overall trajectories of xi[t] are approximately

synchronized to the solution of blended dynamics (4.3.10) (or (4.3.11)) for suffi-

ciently large K. The difference between the doubly-stochastic and row-stochastic

weight matrix is that the former has the blended dynamics as the simple average

of fis like (4.3.2), while the latter has the blended dynamics as the weighted av-
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erage like (4.3.10) whose weights qis are uneven in general.

For undirected graphs, a non-increasing sequence of all degrees is called as

degree sequence [Die17]. Since the degree sequence does not uniquely identify a

graph, there has been much attention to obtain information of the graph struc-

ture from the given degree sequence. For example, [VL05] realized the given de-

gree sequence by a simple graph (realization problem) and [HP14] estimated the

number of graphs with the given degree sequence (graph enumeration). If each

agent can predict possible structures of the network with the degree sequence,

it could obtain global information such as the algebraic connectivity. To achieve

this, a distributed algorithm to estimate the degree sequence is required, and we

proposed one implementation by employing the proposed framework as follows.

In the proposed algorithm, we additionally assume that each agent knows the

network size N and has its unique id. Again, N can be distributively estimated

using the application example in Section 4.3.1. Moreover, the assumption on the

unique id for each agent is quite natural in the sense that, in practice, every

communication device has its own identifier such as mac address. Let Xi ∈ Z be

the id of the agent i and suppose 1 < Xi for all i ∈ N without loss of generality.

Under the above assumptions, an arbitrary i-th agent runs the following dy-

namics

xi[tk+1] =

 (1− 1/di)xi[tk] +NXi , if k = 0,∑
j∈Ni∪{i}w

avg
ij xj [tk], otherwise,

where xi ∈ R is the state. From (4.3.11), the blended dynamics is obtained as

s[t+ 1] =
1

dsum

{
N∑
i=1

di

(
1− 1

di

)
s[t] +

N∑
i=1

diN
Xi

}

=

(
1− N

dsum

)
s[t] +

1

dsum

N∑
i=1

diN
Xi .

For any connected network, dsum ≥ N , and this guarantees the contraction sta-

bility of the above blended dynamics. In addition, its equilibrium point s∗ is
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obtained as

s∗ =
1

N

N∑
i=1

diN
Xi

=
N∑
i=1

diN
Xi−1.

Meanwhile, it is easily seen that di < N for all i ∈ N because the network

has no self-connection. Thus, the number s∗ can be regarded as a representation

of the numeral system with the base N :

[
s∗
]
N

=
[
δ(B−1) δ(B−2) · · · δ1 δ0

]
N
, (4.3.12)

where B = maxi∈N Xi and δb represents the (b+ 1)-th right-most digit such that

δb = di if b = Xi − 1 and δb = 0 otherwise.

As a result, since every state at each integer count, xi[t], is approximately

synchronized to s∗ of (4.3.12), every agent can estimate the degree sequence by

removing zero digits in theN -base numeral representation of its state and ordering

the rest digits in a non-increasing order. Here, we suppose that K is properly

chosen such that the synchronization error ϵ < 1 because this guarantees that the

error does not affect even in the right-most digit δ0.





Chapter 5

Application to Initialization-free
Distributed PageRank Estimation for
Network of Web-pages

5.1 Problem Formulation

PageRank is an algorithm used in the Google’s search engine to rank numer-

ous web-pages [BP98]. It assigns numerous values, called PageRank scores, to all

web-pages in a hyperlinked network, which represents the relative importance or

popularity of each web-pages. This concept of the PageRank has attracted a lot

of attention in diverse areas where there are multiple objects and their intercon-

nections. For example, the PageRank algorithm has widely utilized in informatics

[CXMR07], bibliometrics [LBNVdS05], biology [ZBE12], sports [Rad11] and other

fields [Gle15].

The PageRank score is designed such that it has larger value as it receives

more citations from other web-pages and as the citing pages have larger PageRank

scores. To compute the scores, a challenge is that it requires significant compu-

tational loads due to the large dimension of the network. To overcome this prob-

lem, there have been extensive studies regarding distributed PageRank algorithms

which operate only by local information for each page. Distributed randomized

algorithms are proposed, for example, in [IT10, ITB12, LC14] where each page

builds its distributed hyperlink matrix using only its outgoing information and

computes the PageRank score through a time average or a stochastic approxi-

53
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mation. Recently, [SI19] extended this randomization approach to a determinis-

tic update algorithm for multiple pages. In [LZD17], an optimization based dis-

tributed algorithm where the sum of the state values of all pages remains constant

was proposed.

However, most of prior studies are commonly assume an initialization. A

necessity of this initialization limits the algorithm’s utility only for the time-

invariant network. In other words, as pages or their hyperlinks are added or

removed in the network during the operation of the algorithm (we call this plug-

and-play operation), the algorithm must be re-initialized for each change in the

network and this is hard to be achieved in a distributed manner.

In addition, many algorithms are designed assuming that every page knows

the total number of pages N in the network. For example, the number of N is

utilized as a parameter or the dimension of state variables. Not only the network

size is a global information, but also using the number of N in the algorithm

leads to challenge for plug-and-play operation. Although there has been various

studies on distributed estimation of the network size in a multi-agent system

[LLKS18, SCHJ12, BAMJ11], most of them cannot be applied for the PageRank

problem. This is because the network in PageRank problem is different from other

networks in the sense that the network of web-pages is not connected digraph in

general.

To overcome this issue, [YTQ16] reformulated the PageRank problem as Least

Square problem to distributively compute PageRank scores without specific ini-

tialization and the information of N . Nonetheless, the algorithm assumes that

the time-varying network is strongly connected with the constant network size

and there exists a global index for each page. Furthermore, to design of a random

process for determining which pages are selected, a bidirectional communication

is required in the directed graph structure.

In this chapter, we propose a distribute PageRank algorithm which does not

require both the initialization and the information of the network size N . By

forgetting an effect of initial conditions, the proposed algorithm enables the plug-

and-play operation without any connectivity condition in the network or regard-

less of the network size. The trade-off of not employing N in the algorithm is
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that each page estimates scaled PageRank scores which are rescaled by the net-

work size N . However, since the relative ranking is not affected by the positive

rescaling, an important information about PageRank scores is still retained. In

addition, it is possible for each page to find the exact PageRank score if N is

known.

This chapter is organized as follows. Section 5.2 introduces the basic defini-

tions of PageRank and the iterative method to compute PageRank scores. In Sec-

tion 5.3, the initialization-free distributed PageRank algorithm is proposed with

the rigorous proof. In order to confirm aforementioned advantages of the pro-

posed algorithm, Section 5.4 provides simulation results for a large dimensional

real data on web-pages composed of more than 30,000 links and 3,700 pages.

5.2 Basic Definitions of PageRank for Teleportation Model

For a directed network G with N pages, the PageRank score pi ≥ 0 for a page

i is defined by

pi =
∑
j∈Ni

pj
dout
j

and
N∑
i=1

pi = 1 (5.2.1)

where Ni is the index set of the pages that have outgoing link to page i (i.e., the

in-neighbors of the node i) and dout
j is the number of outgoing links from page j

(i.e., the out-degree of the node j).

By stacking all the scores in a column vector p := col (p1, · · · , pN ) ∈ RN

(we call this as PageRank vector), the definition of the PageRank (5.2.1) can be

rewritten as

p =


a11/d

out
1 a12/d

out
2 · · · a1N/d

out
N

a21/d
out
1 a22/d

out
2 · · · a2N/d

out
N

...
...

. . .
...

aN1/d
out
1 aN2/d

out
2 · · · aNN/d

out
N

 p = AD−1
outp and 1⊤

Np = 1,

where A is the binary adjacency matrix of the network G and Dout ∈ RN×N is

a diagonal matrix whose diagonal components are dout
1 , . . . , dout

N . Since dout
j =
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∑N
i=1 aij , it should be emphasized that the matrix AD−1

out is column-stochastic so

that 1⊤
N is a left eigenvector of AD−1

out corresponding to the eigenvalue 1. This

implies that the PageRank vector p can be considered as a scaled right eigenvector

of AD−1
out corresponding to the eigenvalue 1.

If the network G is strongly connected and aperiodic, then we can guarantee

that AD−1
out has a unique p by Lemma 2.2.2 and Lemma 2.2.4. Based on this

observation, we already proposed an initialization-free distributed estimation al-

gorithm for PageRank scores for the strongly connected network in Chapter 4.3.2.

However, asking the network of web-pages to be strongly connected is not re-

alistic because there can be the pages that are isolated or have only outgoing/in-

coming hyperlinks. Therefore, we adopt a modified definition of the PageRank

vector p as the solution to the following teleportation model [IT14]’:

p =
[
(1−m)AD−1

out +
m

N
1N1⊤

N

]
p =:Mp, 1⊤

Np = 1. (5.2.2)

where m ∈ (0, 1) is a parameter whose typical value is 0.15 [BP98]. More details

related to this teleportation model can be found in [IT14]. It is clear that the

associated graph of M is now strongly connected because each node is connected

to every other node in the graph. Since M is a convex combination of two column-

stochastic matrices, it is also column-stochastic matrix and ρ(M) = 1. Moreover,

it can be easily seen that M is primitive for any graph topology of the network

G by Lemma 2.2.4 because its associated graph is a complete digraph with a

self-loop for each node. Using Lemma 2.2.2, this guarantees the uniqueness of

the PageRank vector p as the scaled right eigenvector of M corresponding to the

eigenvalue 1.

On the other hand, solving the linear equation (5.2.2) consumes significant

computational power when the dimension of the network is large. One idea to

overcome this problem is using a power method to iterate the following PageRank

dynamics:

z[k + 1] =Mz[k], 1⊤
Nz[0] = 1. (5.2.3)

where z = col (z1, · · · , zN ) ∈ RN is the state which estimates the PageRank vector
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p. The state z asymptotically converges to the PageRank vector p because M is

primitive.

Indeed, by Lemma 2.2.2, the matrix M has a simple eigenvalue 1 which is

strictly larger than the absolute value of any other eigenvalues. Without loss of

generality, we can denote the eigenvalues of M as λi(M) for i ∈ N such that

1 = λ1(M) > |λ2(M)| ≥ · · · ≥ |λN (M)|. Moreover, there exist R,Z ∈ RN×(N−1)

such that

M =
[
p R

] [1 0

0 Λ

][
1⊤
N

Z⊤

]
, (5.2.4)

Z⊤R = IN−1, and R⊤1N = Z⊤p = 0N−1, where Λ ∈ R(N−1)×(N−1) is a matrix

whose eigenvalues are λ2(M), . . . , λN (M). Therefore, we have

lim
k→∞

z[k] =Mkz[0]

= lim
k→∞

[
p R

] [1 0

0 Λk

][
1⊤
N

Z⊤

]
z[0]

= 1⊤
Nz[0]p = p,

(5.2.5)

where the last equality follows from
∑N

i=1 zi[0] = 1. Thus, this initialization is

essential for each state zi to converge to its PageRank score pi.

When the network is time-invariant, the sum of all the states is kept as 1

as long as the iterative method is initialized because 1⊤
Nz[k] = 1⊤

NM
kz[0] =

1⊤
Nx[0] = 1 for all k > 0. However, whenever some pages join or leave the network

during the iteration of (5.2.3), the sum might vary from 1 by the amount of the

joining/leaving state so that the convergence to the PageRank vector p in (5.2.5)

is not guaranteed in general. This implies the power method (5.2.3) requires the

re-initialization process for each plug-and-play operation, which is difficult to be

achieved in a distributed manner.
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5.3 Distributed PageRank Estimation without Initial-

ization

In this section, we propose an initialization-free distributed PageRank algo-

rithm, where each page estimates a scaled PageRank score Npi (rather than pi).

There are several reasons why we aim to estimate N -times scaled PageRank scores

instead of exact PageRank scores. Firstly, this positive rescaling does not affect

the relative ranking among all pages. Next, this enables the algorithm not to

contain a global information such as N so that its implementation becomes fully

distributed. Finally, even if the network varies over time, each pages can estimate

the exact PageRank score in the proposed algorithm only if N is known, while

the power method (5.2.3) cannot.

In the proposed algorithm, an individual dynamics of an arbitrary page i is

given by adopting the multi-step coupling framework (4.2.1) as follows:

xi[tk+1] =


νxi[tk] + (1− ν) =: fPR

i (tk, xi[tk]), if k = 0, (5.3.1a)

(1−m)
∑
j∈Ni

xj [tk]

dout
j

+m, if k = 1, . . . ,K − 1, (5.3.1b)

where xi ∈ R is the state, ν ∈ (0, 1) is constant as a design parameter, and tk is

the fractional time-index in (4.2.2).

The underlying insight behind the proposed algorithm is motivated by the

(discrete-time) blended dynamics approach in Chapter 4. However, unlike the

coupling dynamics (4.2.1b) where each state is updated by a weighted average of

neighbors’ state, i.e., a linear combination of agents’ state information, (5.3.1b)

in the proposed algorithm cannot be represented as the linear combination form

due to a constant term m.

So, it is required to modify the previous discrete-time blended dynamics (4.2.5)

to predict the behavior of (5.3.1) and we insist that the discrete-time blended
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dynamics for (5.3.1) can be defined as follows:

s[t+ 1] = (1−m)K−1
N∑
i=1

fPR
i (t, pis[t]) +N(1− (1−m)K−1)

= (1−m)K−1

{
ν

N∑
i=1

pis[t] +N(1− ν)

}
+N(1− (1−m)K−1)

= ν(1−m)K−1(s[t]−N) +N,

(5.3.2)

where t is the integer count and p = [p1, · · · , pN ]⊤ is the PageRank vector defined

in (5.2.2). It should be emphasized that (5.3.2) has a unique stable equilibrium

point at N and its convergence rate ν(1 − m)K−1 can be arbitrarily small by

increasing K. Then, we can infer from Theorem 4.2.2 that, if the new blended

dynamics (5.3.2) is stable, then, for any initial conditions xi[0] and s[0], every

solution xi at each integer count t can be approximately predicted by the pi-

times scaled solution s, i.e., Npi for all i ∈ N .

Indeed, the following main result of this chapter states that the proposed

algorithm approximately estimates each scaled PageRank score for any initial

condition. In particular, the proposed algorithm does not rely on initial conditions

so that it enables the plug-and-play operation and the precision of the algorithm

gets higher as K increases.

Theorem 5.3.1. For any ϵ > 0, there exists Kmin such that, for each K >

Kmin, the solution xi of (5.3.1) and the solution s of (5.3.2) with arbitrary initial

conditions satisfy

lim sup
t→∞

∣∣xi[t]−Npi
∣∣ ≤ ϵ, ∀i ∈ N . ♢

Proof. For convenience, let x̄ := col (x̄1, · · · , x̄N ) and define

H(x̄) = (1−m)AD−1
outx̄+m1N ,

Hk(x̄) = H ◦ · · · ◦H︸ ︷︷ ︸
k times

(x̄),

F (x̄) = νx̄+ (1− ν)1N .
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Then, the evolution of the proposed algorithm (5.3.1) at each integer count t is

rewritten as

x̄[t+ 1] = HK−1(F (x̄[t])). (5.3.3)

Based on the decomposition of M in (5.2.4), we consider the following coor-

dinate transformation

ζ =

[
ζ1

ζ̃

]
=

[
1⊤
N

Z⊤

]
x̄

whose inverse is

x̄ = pζ1 +Rζ̃.

Along the overall dynamics (5.3.3), the dynamics of ζ1 at each integer count

t is given by

ζ1[t+ 1] = 1⊤
NH

K−1(F (pζ1[t] +Rζ̃[t]))

= (1−m)K−11⊤
NF (pζ1[t] +Rζ̃[t]) +Nm

K−2∑
l=0

(1−m)l

= (1−m)K−1{νζ1[t] +N(1− ν)}+N
{
1− (1−m)K−1

}
= (1−m)K−1ν(ζ1[t]−N) +N,

where we used 1⊤
Np = 1 and 1⊤

NR = 0. This implies that ζ1[t] converges to N as

t goes to ∞ from any initial condition.

On the other hand, the ζ̃ dynamics at each integer count t is obtained as

ζ̃[t+ 1] = Z⊤HK−1(F (pζ1[t] +Rζ̃[t]))

= Z⊤ ((1−m)AD−1
out
)K−1

(F (pζ1[t] +Rζ̃[t])−Np),

= Z⊤ ((1−m)AD−1
out
)K−1

{
ν(pζ1[t] +Rζ̃[t]) + (1− ν)1N −Np

}
,

because, for any vector v ∈ CN ,

Z⊤H(v) = Z⊤
{(
M − m

N
1N1⊤

N

)
v +m1N

}
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= ΛZ⊤(v −Np)− m

N
Z⊤1N1⊤

N (v −Np)

= Z⊤
(
M − m

N
1N1⊤

N

)
(v −Np),

where we use Z⊤M = ΛZ⊤, Z⊤p = 0N−1 and 1⊤
Np = 1 for the second equality,

and

H(v)−Np =
(
M − m

N
1N1⊤

N

)
v +m1N −Np

=M(v −Np)− m

N
1N1⊤

N (v −Np)

=
(
M − m

N
1N1⊤

N

)
(v −Np),

where the second equality comes from Mp = p and 1⊤
Np = 1, so that, for example,

Z⊤H2(v) = Z⊤(M − (m/N)1N1⊤
N )(H(v)−Np)

= Z⊤(M − (m/N)1N1⊤
N )2(v −Np).

As a result, by letting e := ζ1 −N , the system (5.3.3) is transformed into

e[t+ 1] = (1−m)K−1νe[t],

ζ̃[t+ 1] = Z⊤ ((1−m)AD−1
out
)K−1

×
{
νpe[t] + νRζ̃[t] + (1− ν)(1N −Np)

}
.

(5.3.4)

Now, we define a Lyapunov function V = |e|+ ∥ζ̃∥. Then, its time difference

along (5.3.4) is

V [t+ 1]− V [t]

= |e[t+ 1]|+ ∥ζ̃[t+ 1]∥ − |e[t]| − ∥ζ̃[t]∥

≤ −(1− (1−m)K−1ν)|e[t]| − ∥ζ̃[t]∥

+ ∥Z⊤ ((1−m)AD−1
out
)K−1

× {νpe[t] + νRζ̃[t] + (1− ν)(1N −Np)}∥

(5.3.5)
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Since ρ((1−m)AD−1
out) = 1−m,

∥Z⊤ ((1−m)AD−1
out
)K−1

× {νpe[t] + νRζ̃[t] + (1− ν)(1N −Np)}∥

≤ (1−m)K−1ν∥Z∥(∥pe[t]∥+ ∥Rζ̃[t]∥)

+ (1−m)K−1(1− ν)∥Z∥∥1N −Np∥

≤ (1−m)K−1ν∥Z∥(|e[t]|+ ∥R∥∥ζ̃[t]∥)

+ 2(1−m)K−1(1− ν)N∥Z∥,

(5.3.6)

where the last inequality comes from ∥p∥ ≤ 1 and ∥1N −Np∥ ≤ ∥1N∥+N∥p∥ ≤
2N .

Substituting (5.3.6) into (5.3.5), it is obtained

V [t+ 1]− V [t] ≤ −(1− (1−m)K−1ν)|e[t]| − ∥ζ̃[t]∥

+ (1−m)K−1ν∥Z∥(|e[t]|+ ∥R∥∥ζ̃[t]∥)

+ 2(1−m)K−1(1− ν)N∥Z∥

≤ −(1− (1−m)K−1ν)V [t]

+ (1−m)K−1ν∥Z∥max {1, ∥R∥}V [t]

+ 2(1−m)K−1(1− ν)N∥Z∥.

(5.3.7)

For given ϵ, let Kmin be a positive integer such that

(1−m)K
min
ν {1 + ∥Z∥max{1, ∥R∥}} ≤ 1

2
(5.3.8)

4(1−m)K
min

(1− ν)N max {1, ∥R∥} ∥Z∥ ≤ ϵ (5.3.9)

Then, it follows from (5.3.7) by (5.3.8) that, for every K > Kmin,

V [t+ 1]− V [t] ≤ −1

2
V [t] + 2(1−m)K−1(1− ν)N∥Z∥.

From this, the ultimate bound of V is obtained as

lim sup
t→∞

V [t] ≤ 4(1−m)K−1(1− ν)N∥Z∥.
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Therefore, for each agent i ∈ N and K > Kmin,

lim sup
t→∞

|xi[t]−Npi| ≤ lim sup
t→∞

|piζ1[t] +Riζ̃[t]−Npi|

≤ lim sup
t→∞

{pi|e[t]|+ ∥R∥∥ζ̃[t]∥}

≤ max {1, ∥R∥} lim sup
t→∞

V [t]

≤ max {1, ∥R∥} 4(1−m)K−1(1− ν)N∥Z∥

≤ ϵ,

(5.3.10)

where Ri is the ith row of R and the last inequality comes from (5.3.9). This

completes the proof. □

5.4 Simulation Results

For simulation, we use real data on web-pages of Lincoln university in New

Zealand, as in [IT14]. This web consists of 31,718 links and 3,756 pages including

two pages without any incoming link. Since the two pages do not play any role

in PageRank, they were removed in the data. Most of the rest pages do not

have an outgoing link, which are called as dangling node. In order to make the

matrix AD−1
out stochastic, for all dangling node i, an outgoing link (i, j) was added

whenever (j, i) is an incoming link. As a result, the resulting network has 3,764

pages with 40,646 links. More details on the data can be found in [IT14].

In order to confirm the performance of the proposed algorithm for the plug-

and-play feature, the network is supposed to be varying twice during the opera-

tion of the proposed algorithm. In particular, two pages whose indices are 2308

and 2310, respectively, and all their associated incoming and outgoing links are

removed at t = 3. Again, other two pages whose indices are 323 and 2306, respec-

tively, and all their links are removed at t = 6. The varying distributions of the

PageRank scores in the network are depicted in Figure 5.1. After two changes in

the network, the two largest PageRank scores around 500 and 2500 are notably

increased, while others are slightly altered.

The proposed algorithm is simulated for two different parameters K = 20
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Figure 5.1: Distributions of PageRank scores for the original network (top)
and changed networks (middle, bottom).

and K = 40 with the same initial condition. The initial conditions are set to be

arbitrary for every agent. The parameters ν and m in (6) are set to be 0.1 and

0.15, respectively. Simulation results are represented in Figure 5.2. Trajectories

of estimated PageRank scores in the proposed algorithm are depicted as colored

solid curves, and true PageRank scores are given as black dashed lines.

The simulation result shows that the proposed algorithm estimates the true

scaled PageRank scores for arbitrary initial condition, even for the plug-and-play

operation. In addition, by comparing two results of K = 20 and K = 40, it can

be seen that the level of error gets smaller by increasing K.
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Figure 5.2: Estimated PageRank scores of the proposed algorithm with dif-
ferent parameters K = 20 (top) and K = 40 (bottom): Col-
ored solid curves represent the estimation of each algorithm while
black dashed lines represent true PageRank scores.





Chapter 6

Behavior of Discrete-time
Heterogeneous Multi-agent System
under Rank-deficient Coupling

6.1 Problem Formulation

This chapter studies the behavior of a discrete-time heterogeneous multi-agent

system whose individual agent dynamics is given by

xi[tk+1] =


fi(tk, xi[tk]), if k = 0, (6.1.1a)

(In −Bi)xi[tk] +Bi

∑
j∈Ni∪{i}

wijxj [tk], if k = 1, . . . ,K − 1, (6.1.1b)

where xi ∈ Rn is the state, tk is the fractional disrete-time index defined by

(4.2.2), and fi : Z×Rn → Rn is continuously differentiable function representing

the time-varying heterogeneous node dynamics (6.1.1a). The coefficient wij is the

coupling weight which satisfies the property (4.2.3). We assume the followings for

the weight matrix W := [wij ].

Assumption 6.1.1. The weight matrix W is a stochastic matrix. ♢

Note that many studies on a discrete-time multi-agent system used a communica-

tion protocol whose weight matrix is a stochastic matrix such as in [IT10, ITB12,

LC14, OSFM07, RB05]. In particular, if the weight matrix W is a row-stochastic

67
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matrix, then the system (6.1.1) can be rewritten as

xi[tk+1] =


fi(tk, xi[tk]), if k = 0, (6.1.2a)

xi[tk] +Bi

∑
j∈Ni

wij(xj [tk]− xi[tk]), if k = 1, . . . ,K − 1. (6.1.2b)

so that the agents in the network are interconnected by the diffusive-type coupling

[Hal97]. This type of the communication protocol has been frequently utilized in

many synchronization problems [OSFM07, RB05, YSA19, LS22].

Here, Bi is supposed to be a symmetric positive semi-definite matrix so that

only a partial information of the communication affects the update of xi. Thus,

we call this by rank-deficient coupling. Moreover, it is supposed that the spectral

radius of every Bi is not larger than 1, i.e., ρ(Bi) ≤ 1 for all i ∈ N .

In fact, this work is closely related to [LS20] which extends the continuous-

time blended dynamics approach, introduced in Chapter 3, to the systems whose

coupling matrices are possibly all different and singular. In particular, this pa-

per considers the heterogeneous multi-agent system whose individual dynamics is

given by

ẋi = fi(t, xi) + κBi

∑
j∈Ni

αij(xj − xi), (6.1.3)

where xi ∈ Rn is the state, κ is the coupling gain, αij is the ij-th element of the

adjacency matrix A, and fi : R × Rn → Rn is twice continuously differentiable

with respect to their arguments, locally Lipschitz with respect to xi uniformly in

t, and fi(t, 0) is bounded. In this problem, it is also supposed that every Bi is

positive semi-definite so that only a part of the integration of xi is affected by

other agents for all i ∈ N .

Compared with Bi of (6.1.3), Bi is supposed to be not only a positive-semi

definite matrix but also a stable matrix in the discrete-time sense (i.e., ρ(Bi) ≤
1, ∀i ∈ N ). To see the difference between the continuous-time rank-deficient

coupling and the discrete-time rank-deficient coupling, let x̄ := col(x1, . . . , xN ).
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Figure 6.1: Possible locations of an eigenvalue of diag(Bi)(W − IN )⊗n (top)
and InN +diag(Bi)(W − IN )⊗n (bottom): The colored area rep-
resents the possible location of all eigenvalues of the correspond-
ing matrices and the dotted area represents the unit circle in the
complex plane.

Then the overall system (6.1.1) at each integer count t is given by

x̄[t+ 1] =
(
{InN − diag(Bi)}+ diag(Bi)(W ⊗ In)

)K−1


f1(t, x1[t])

...

fN (t, xN [t])



=
(
InN + diag(Bi){(W − IN )⊗ In}

)K−1


f1(t, x1[t])

...

fN (t, xN [t])


=:
(
InN + B̊(W − IN )⊗n

)K−1
F (t, x̄[t]).

(6.1.4)

In order to guarantee the stability of the overall system (6.1.4), it is necessarily
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required that the spectral radius of InN + diag(Bi)(W − IN )⊗n is not larger

than 1, i.e., ρ(InN + diag(Bi)(W − IN )⊗n) ≤ 1. Equivalently, all eigenvalues of

diag(Bi)(W −IN )⊗n should be contained in the unit circle whose center is located

at (−1, 0) in the complex plane. It is easily known that every eigenvalue of Bi

is real because Bi is symmetric for all i ∈ N . In addition, every eigenvalue of

(W − IN )⊗n is located in the unit circle whose center is located at (−1, 0) on the

complex plane because W is a stochastic matrix. If some eigenvalues of Bi are

larger than 1 or negative, then some eigenvalues of InN+diag(Bi)(W−IN )⊗n could

be located in the outside of the unit circle in the complex plane (see Figure 6.1).

This observation justifies ρ(Bi) ≤ 1 for all i ∈ N .

In this chapter, our interest is to analyze the behavior of the multi-agent

system (6.1.1) under rank-deficient coupling when K is sufficiently large. To

achieve this, similarly with Chapter 4, we introduce the discrete-time blended

dynamics for rank-deficient coupling, which enables to predict the behavior of

(6.1.1).

This chapter is organized as follows. Section 6.2 proposes the coordinate

change for the multi-agent system under rank-deficient coupling, (6.1.1). In par-

ticular, by the proposed coordinate change, the system is separated into non-

vanishing and vanishing dynamics with respect to the parameter K. Based on

the observations, the blended dynamics for the rank-deficient coupling is intro-

duced and this allows to predict an emergent behavior of the heterogeneous multi-

agent system in Section 6.3.

6.2 Coordinate Change

Recalling (4.2.13) and (4.2.14) in Chapter 4, we propose the coordinate change

which enables to separate the system into non-vanishing and vanishing parts as

K gets larger. This allows to construct the blended dynamics which predicts the

behavior of overall system for large K. Likewise, in this section, we introduce a

linear coordinate change for (6.1.1) to separate the non-vanishing and vanishing

dynamics with respect to the parameterK. In fact, a similar work is demonstrated

in [LS20] for an undirected connected network in continuous-time domain. This
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section introduces the coordinate change for a strongly connected directed network

in discrete-time domain and this work is achieved with the aid of Jin Gyu Lee,

lead author of [LS20].

The main result of this chapter is stated under the following assumptions.

Assumption 6.2.1. The function fi(t, x) is uniformly bounded in t and globally

Lipschitz with respect to x uniformly in t.

Assumption 6.2.2. The communication network G is strongly connected. ♢

Under Assumption 6.2.2, by using Lemma 4.2.1, there exist positive eigenvec-

tors p, q ∈ RN such that

Wp = p, q⊤W = q⊤, q⊤p = 1. (6.2.1)

Since W is a stochastic matrix, either p or q can be chosen as 1N .

Before changing the coordinates of the system, a few matrices which consist

of the transformation are introduced as follows:

1. For every positive semi-definite matrix Bi in (6.1.1), there exist Ri ∈ Rn×ri ,

Zi ∈ Rn×(n−ri) and a positive definite matrix Λi ∈ Rri×ri , where ri is the

rank of Bi, such that
[
Ri Zi

]
is orthonormal matrix and

Bi =
[
Ri Zi

] [Λ2
i 0

0 0

][
R⊤

i

Z⊤
i

]
.

It should be noted that the spectral radius of Λi is not greater than 1, i.e.,

ρ(Λi) ≤ 1 because ρ(Bi) ≤ 1 for all i ∈ N . Let us define each block diagonal

matrix of Ri, Zi, and Λi for future use as follows:

R̊ := diag(R1, · · · , RN )

Z̊ := diag(Z1, · · · , ZN )

Λ̊ := diag(Λ1, · · · ,ΛN ).
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2. With r̄ :=
∑N

i=1 ri, there exists V ∈ Rr̄×r0 such that the columns of V are

orthonormal vectors which satisfies

(W − IN )⊗nR̊Λ̊ΞV = OnN×r0 (6.2.2)

where r0 be the nullity of (W − IN )⊗nR̊Λ̊Ξ and

Ξ = diag(Ξ1, · · · ,ΞN ) = diag

(√
pi
qi
Iri

)
∈ Rr̄×r̄.

Let Vi ∈ Rri×r0 for i ∈ N such that V = col(V1, · · · , VN ).

3. There exists V̄ ∈ Rr̄×(r̄−r0) such that
[
V V̄

]
is an orthonormal matrix.

Based on aforementioned matrices, the following proposition can be shown.

Proposition 6.2.1.

(W⊤ − IN )⊗nR̊Λ̊Ξ
−1V = OnN×r0 (6.2.3)

♢

Proof. Since ker(W − IN ) = im(p), it follows

ker((W − IN )⊗nR̊Λ̊Ξ) = {v ∈ Rr̄ : R̊Λ̊Ξv ∈ im(p⊗ In)}

=

{
col(v1, · · · , vN ) ∈ Rr̄ :

R1Λ1Ξ1v1
p1

= · · · = RNΛNΞNvN
pN

}
=

{
col(v1, · · · , vN ) ∈ Rr̄ :

R1Λ1v1√
p1q1

= · · · = RNΛNvN√
pNqN

}

where the last equality comes from Ξi =
√
pi/qiIri for all i ∈ N . This implies

that, for any col(v1, · · · , vN ) ∈ ker((W − IN )⊗nR̊Λ̊Ξ), there exists w ∈ Rn such

that

RiΛivi =
√
piqiw, i ∈ N . (6.2.4)
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Meanwhile, by letting v = col(v1, · · · , vN ) ∈ ker((W − IN )⊗nR̊Λ̊Ξ), it follows

R̊Λ̊Ξ−1v =


√

q1
p1
R1Λ1v1
...√

qN
pN
RNΛNvN



=


q1w

...

qNw

 ∈ im(q ⊗ In),

where the last equality comes from (6.2.4).

Since ker(W⊤ − IN ) = im(q), we finally have

(W⊤ − IN )⊗nR̊Λ̊Ξ
−1V = OnN×r0 ,

which completes the proof. □

Now, we consider the following coordinate transformation
z

r

r̃

 =


Z̊⊤

V ⊤Ξ−1Λ̊−1R̊⊤

S−1V̄ ⊤Ξ−1Λ̊−1R̊⊤(W − IN )⊗n

 x̄ =: T x̄ (6.2.5)

where z ∈ RnN−r̄, r ∈ Rr0 , r̃ ∈ Rr̄−r0 and

S := V̄ ⊤Ξ−1Λ̊R̊⊤(W − IN )⊗nR̊Λ̊ΞV̄ ∈ R(r̄−r0)×(r̄−r0). (6.2.6)

With (6.2.5), we claim that

T −1 =
[
Z̊ − R̊Λ̊ΞL R̊Λ̊ΞV R̊Λ̊ΞV̄

]
(6.2.7)

where

L := V̄ S−1V̄ ⊤ΞΛ̊R̊⊤(W − IN )⊗nZ̊.

Indeed, this claim can be easily proved by T T −1 = InN using Z̊⊤R̊ = O, Z̊⊤Z̊ =

I, R̊⊤R̊ = I, V ⊤V = I, V̄ ⊤V̄ = I, and V ⊤V̄ = O (here, we omit the dimension of
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identity matrices or the zero matrices for convenience). In particular, the (3, 1)-th

block component of T T −1 is obtained by

S−1V̄ ⊤Ξ−1Λ̊−1R̊⊤(W − IN )⊗n × (Z̊ − R̊Λ̊ΞL)

= S−1V̄ ⊤Ξ−1Λ̊−1R̊⊤(W − IN )⊗nZ̊

− S−1 V̄ ⊤Ξ−1Λ̊−1R̊⊤(W − IN )⊗nR̊Λ̊ΞV̄︸ ︷︷ ︸
=S

S−1V̄ ⊤ΞΛ̊R̊⊤(W − IN )⊗nZ̊

= O,

and, the (3, 2)-th block component is obtained from (6.2.2) as

S−1V̄ ⊤Ξ−1Λ̊−1R̊⊤(W − IN )⊗nR̊Λ̊ΞV = O.

Before applying coordinate transformation (6.2.5) for the system (6.1.4), we

first confirm that

Z̊⊤
(
InN + B̊(W − IN )⊗n

)
= Z̊

V ⊤Ξ−1Λ̊−1R̊⊤
(
InN + B̊(W − IN )⊗n

)
= V ⊤Ξ−1Λ̊−1R̊⊤

+ V ⊤Ξ−1Λ̊R̊⊤(W − IN )⊗n

= V ⊤Ξ−1Λ̊−1R̊⊤

where we use, for all i ∈ N , Z⊤
i Bi = 0, R⊤

i Bi = Λ2
iRi, and (W⊤−IN )⊗nR̊Λ̊Ξ

−1V =

O from Proposition 6.2.1, and

S−1V̄ ⊤Ξ−1Λ̊−1R̊⊤(W − IN )⊗n

(
InN + B̊(W − IN )⊗n

)
= S−1V̄ ⊤Ξ−1Λ̊−1R̊⊤(W − IN )⊗n

+ S−1V̄ ⊤Ξ−1Λ̊R̊⊤(W − IN )⊗nR̊Λ̊Ξ(V V
⊤ + V̄ V̄ ⊤)Ξ−1Λ̊R̊⊤(W − IN )⊗n

= S−1V̄ ⊤Ξ−1Λ̊−1R̊⊤(W − IN )⊗n

+ S−1 V̄ ⊤Ξ−1Λ̊R̊⊤(W − IN )⊗nR̊Λ̊ΞV̄︸ ︷︷ ︸
=S

V̄ ⊤Ξ−1Λ̊R̊⊤(W − IN )⊗n

= (I + S)S−1V̄ ⊤Ξ−1Λ̊−1R̊⊤(W − IN )⊗n



6.2. Coordinate Change 75

where the first equality comes from

B̊ = R̊Λ̊2R̊⊤

= R̊Λ̊ΞΞ−1Λ̊R̊⊤

= R̊Λ̊Ξ(V V ⊤ + V̄ V̄ ⊤)Ξ−1Λ̊R̊⊤.

Using above equalities, by the coordinate change (6.2.5), the system (6.1.4) is

transformed into

z[t+ 1] = Z̊⊤F (t, Z̊z[t]− R̊Λ̊ΞLz[t] + R̊Λ̊ΞV r[t] + R̊Λ̊ΞV̄ r̃[t]),

r[t+ 1] = V ⊤Ξ−1Λ̊−1R̊⊤F (t, Z̊z[t]− R̊Λ̊ΞLz[t] + R̊Λ̊ΞV r[t] + R̊Λ̊ΞV̄ r̃[t])

=
N∑
i=1

V ⊤
i Ξ−1

i Λ−1
i R⊤

i

× fi(Zizi[t] +RiΛiΞiLz[t] +RiΛiΞiVir[t] +RiΛiΞiV̄ir̃[t]),

r̃[t+ 1] = (I + S)K−1S−1V̄ ⊤Ξ−1Λ̊−1R̊⊤(W − IN )⊗n

× F (t, Z̊z[t]− R̊Λ̊ΞLz[t] + R̊Λ̊ΞV r[t] + R̊Λ̊ΞV̄ r̃[t]).

(6.2.8)

If the spectral radius of (I + S) is less than 1 (i.e., ρ(I + S) < 1), it is clear

that r̃ becomes almost zero for sufficiently large K. Indeed, the following results

show that the spectral radius of (I +S) is less than 1 for a row-stochastic matrix

(Proposition 6.2.2) and a column-stochastic matrix (Corollary 6.2.4).

Proposition 6.2.2. For a row-stochastic matrix W and positive vector q ∈ RN

satisfying W⊤q = q and 1⊤
Nq = 1, let Πq = diag(qi) ∈ RN and

G1 := V̄ ⊤ΞR̊⊤Πq
⊗nR̊ΞV̄.

Then,

∆G1 := (I + S)⊤G1(I + S)−G1 < 0. (6.2.9)
♢

It should be noted that (6.2.9) implies that the asymptotic stability of a linear
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system w[t+1] = (I+S)w[t] can be shown by the discrete-time Lyapunov function

w⊤Gw, which is equivalent to ρ(I + S) < 1.

Before proving Proposition 6.2.2, we first introduce the following lemma which

will be used for the proof.

Lemma 6.2.3. [WLMA19, Lemma 1] Consider a row-stochastic matrix W .

1. LW := Πq −W⊤ΠqW is positive semi-definite and LW1N = 0N .

2. If every Wii > 0 for all i ∈ N , then the kernel of LW is one-dimensional. ♢

Now, the proof of Proposition 6.2.2 can be shown as follows.

Proof. From (6.2.6), I + S can be rewritten as

I + S = Ir̄−r0 + V̄ ⊤Ξ−1Λ̊R̊⊤(W − IN )⊗nR̊Λ̊ΞV̄

= V̄ ⊤Ξ−1{Ir̄ + Λ̊R̊⊤(W − IN )⊗nR̊Λ̊}ΞV̄.
(6.2.10)

Substituting (6.2.10) into (6.2.9), it is obtained

∆G1 =
(
V̄ ⊤Ξ{Ir̄ + Λ̊R̊⊤(W⊤ − IN )⊗nR̊Λ̊}Ξ−1V̄

)(
V̄ ⊤ΞR̊⊤Πq

⊗nR̊ΞV̄
)

×
(
V̄ ⊤Ξ−1{Ir̄ + Λ̊R̊⊤(W − IN )⊗nR̊Λ̊}ΞV̄ )

− V̄ ⊤ΞR̊⊤Πq
⊗nR̊ΞV̄

= V̄ ⊤Ξ{Ir̄ + Λ̊R̊⊤(W⊤ − IN )⊗nR̊Λ̊}Ξ−1(Ir̄ − V V ⊤)ΞR̊⊤Πq
⊗nR̊Ξ

× (Ir̄ − V V ⊤)Ξ−1{Ir̄ + Λ̊R̊⊤(W − IN )⊗nR̊Λ̊}ΞV̄ − V̄ ⊤ΞR̊⊤Πq
⊗nR̊ΞV̄

where we use V̄ V̄ ⊤ = Ir̄ − V V ⊤. Then, we have

∆G1 = V̄ ⊤(Ir̄ − V V ⊤)ΞR̊⊤Πq
⊗nR̊Ξ(Ir̄ − V V ⊤)V̄

+ V̄ ⊤(Ir̄ − V V ⊤)ΞR̊⊤Πq
⊗nR̊Ξ(Ir̄ − V V ⊤)Ξ−1Λ̊R̊⊤(W − IN )⊗nR̊Λ̊ΞV̄

+ V̄ ⊤ΞΛ̊R̊⊤(W⊤ − IN )⊗nR̊Λ̊Ξ
−1(Ir̄ − V V ⊤)ΞR̊⊤Πq

⊗nR̊Ξ(Ir̄ − V V ⊤)V̄

+ V̄ ⊤ΞΛ̊R̊⊤(W⊤ − IN )⊗nR̊Λ̊Ξ
−1(Ir̄ − V V ⊤)ΞR̊⊤Πq

⊗nR̊Ξ

× (Ir̄ − V V ⊤)Ξ−1Λ̊R̊⊤(W − IN )⊗nR̊Λ̊ΞV̄

− V̄ ⊤ΞR̊⊤Πq
⊗nR̊ΞV̄
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= V̄ ⊤ΞR̊⊤Πq
⊗nR̊ΞV̄

+ V̄ ⊤ΞR̊⊤Πq
⊗nR̊Ξ(Ir̄ − V V ⊤)Ξ−1Λ̊R̊⊤(W − IN )⊗nR̊Λ̊ΞV̄

+ V̄ ⊤ΞΛ̊R̊⊤(W⊤ − IN )⊗nR̊Λ̊Ξ
−1(Ir̄ − V V ⊤)ΞR̊⊤Πq

⊗nR̊ΞV̄

+ V̄ ⊤ΞΛ̊R̊⊤(W⊤ − IN )⊗nR̊Λ̊Ξ
−1(Ir̄ − V V ⊤)ΞR̊⊤Πq

⊗nR̊Ξ

× (Ir̄ − V V ⊤)Ξ−1Λ̊R̊⊤(W − IN )⊗nR̊Λ̊ΞV̄

− V̄ ⊤ΞR̊⊤Πq
⊗nR̊ΞV̄

where we use V̄ ⊤V = O in the last equality.

The above equality can be simplified by the following properties:

• From Proposition 6.2.1,

(W⊤ − IN )⊗nR̊Λ̊Ξ
−1V V ⊤ = O,

or V V ⊤Ξ−1Λ̊R̊(W − IN )⊗n = O.

• Since both Πq
⊗n and R̊Λ̊R̊⊤ are block diagonal matrices with corresponding

diagonal blocks of the same dimension, they commute. This yields

R̊⊤Πq
⊗nR̊Λ̊R̊

⊤ = R̊⊤R̊Λ̊R̊⊤Πq
⊗n

= Λ̊R̊⊤Πq
⊗n

where the second inequality comes from R̊⊤R̊ = I. Similarly,

R̊Λ̊R̊⊤Πq
⊗nR̊ = Πq

⊗nR̊Λ̊R̊
⊤R̊

= Πq
⊗nR̊Λ̊.

• Since Πq is positive semi-definite, there exists
√
Πq ∈ RN×N such that

Πq =
√
Πq

√
Πq. Moreover,

√
Πq also commutes with R̊Λ̊R̊⊤. From this, it

follows that

R̊Λ̊R̊⊤Πq
⊗nR̊Λ̊R̊

⊤ = (R̊Λ̊R̊⊤)
√
Πq⊗n

√
Πq⊗n(R̊Λ̊R̊

⊤)

=
√
Πq⊗n(R̊Λ̊R̊

⊤)(R̊Λ̊R̊⊤)
√
Πq⊗n



78 Chap. 6. Discrete-time Heterogeneous MAS under Rank-deficient Coupling

=
√
Πq⊗nR̊Λ̊Λ̊R̊

⊤√Πq⊗n

≤
√
Πq⊗nR̊R̊

⊤√Πq⊗n

≤
√
Πq⊗n

√
Πq⊗n = Πq

⊗n

where the first and the second inequalities come from ρ(Λi) ≤ 1 and RiR
⊤
i

is an orthogonal projection matrix so that RiR
⊤
i ≤ In for all i ∈ N , respec-

tively.

Using above properties, we have

∆G1 ≤ V̄ ⊤Ξ{Λ̊R̊⊤Πq
⊗n(W − IN )⊗nR̊Λ̊ + Λ̊R̊⊤(W⊤ − IN )⊗nΠ

q
⊗nR̊Λ̊

+ Λ̊R̊⊤(W⊤ − IN )⊗nΠ
q
⊗n(W − IN )⊗nR̊Λ̊}ΞV̄

= −V̄ ⊤ΞΛ̊R̊⊤{Πq
⊗n −W⊤

⊗nΠ
q
⊗nW⊗n}R̊Λ̊ΞV̄

= −V̄ ⊤ΞΛ̊R̊⊤LW
⊗nR̊Λ̊ΞV̄

From this, it is enough to show that V̄ ⊤ΞΛ̊R̊⊤LW
⊗nR̊Λ̊ΞV̄ is positive definite to

complete the proof.

Since LW
⊗n is positive semi-definite from Lemma 6.2.3, so is V̄ ⊤ΞΛ̊R̊⊤LW

⊗nR̊Λ̊ΞV̄ .

To show V̄ ⊤ΞΛ̊R̊⊤LW
⊗nR̊Λ̊ΞV̄ is positive definite, consider ζ = col(ζ1, . . . , ζN ) ∈

Rr̄−r0 such that

ζ⊤V̄ ⊤ΞΛ̊R̊⊤LW
⊗nR̊Λ̊ΞV̄ ζ = 0.

It can be easily shown that, if ζ⊤V̄ ⊤ΞΛ̊R̊⊤LW
⊗nR̊Λ̊ΞV̄ ζ = 0, then LW

⊗nR̊Λ̊ΞV̄ ζ =

0. Since the kernel of LW is same with the kernel of (W − IN ) as im(1N ) by

Lemma 6.2.3, it follows that

(W − IN )⊗nR̊Λ̊ΞV̄ ζ = 0nN .

Note that the columns of V spans the kernel of (W − IN )⊗nR̊Λ̊Ξ. Thus, we have

V̄ ζ ∈ im(V ) which implies ζ = 0r̄−r0 . □

IfW is a column-stochastic matrix, then it can be easily shown that ρ(I+S) <

1 by the following corollary.
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Corollary 6.2.4. For a column-stochastic matrix W and positive vector p ∈ RN

satisfying Wp = p and 1⊤
Np = 1, let Πp = diag(pi) ∈ RN and

G2 := V̄ ⊤Ξ−1R̊⊤Πp
⊗nR̊Ξ

−1V̄.

Then,

∆G2 := (I + S⊤)⊤G2(I + S⊤)−G2 < 0. (6.2.11)
♢

Similarly with Proposition 6.2.2, Corollary 6.2.4 guarantees the asymptotic sta-

bility of w[t + 1] = (I + S⊤)w[t] using the Lyapunov function w⊤G2w, i.e.,

ρ(I + S⊤) < 1. Since ρ(I + S⊤) = ρ((I + S)⊤) = ρ(I + S), Corollary 6.2.4

shows ρ(I + S) < 1 for any column-stochastic matrix W .

The key idea of the proof for Corollary 6.2.4 is to replace the column-stochastic

matrix W to the row-stochastic matrix W⊤ in the proof of Proposition 6.2.2. The

detail of the proof is as follows.

Proof. Since I + S⊤ can be written as

I + S⊤ = Ir̄−r0 + V̄ ⊤ΞΛ̊R̊⊤(W⊤ − IN )⊗nR̊Λ̊Ξ
−1V̄

= V̄ ⊤Ξ{Ir̄ + Λ̊R̊⊤(W⊤ − IN )⊗nR̊Λ̊}Ξ−1V̄,

with the similar procedure in the proof of Proposition 6.2.2, we have

∆G2 ≤ V̄ ⊤Ξ−1{Λ̊R̊⊤Πp
⊗n(W

⊤ − IN )⊗nR̊Λ̊

+ Λ̊R̊⊤(W − IN )⊗nΠ
q
⊗nR̊Λ̊

+ Λ̊R̊⊤(W − IN )⊗nΠ
q
⊗n(W

⊤ − IN )⊗nR̊Λ̊}Ξ−1V̄

= −V̄ ⊤Ξ−1Λ̊R̊⊤{Πp
⊗n −W⊗nΠ

p
⊗nW

⊤
⊗n}R̊Λ̊Ξ−1V̄

= −V̄ ⊤Ξ−1Λ̊R̊⊤LW⊤
⊗n R̊Λ̊Ξ

−1V̄

where LW⊤
⊗n = Πp −WΠpW⊤.

By applying Lemma 6.2.3 to W⊤ which is row-stochastic, LW⊤ is a positive

semi-definite matrix. So V̄ ⊤Ξ−1Λ̊R̊⊤LW⊤
⊗n R̊Λ̊Ξ

−1V̄ is also positive semi-definite.
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To show V̄ ⊤Ξ1Λ̊R̊⊤LW⊤
⊗n R̊Λ̊Ξ

1V̄ is positive definite, let ζ = col(ζ1, . . . , ζN ) ∈
Rr̄−r0 such that

ζ⊤V̄ ⊤Ξ1Λ̊R̊⊤LW⊤
⊗n R̊Λ̊Ξ

1V̄ ζ = 0.

It follows that LW⊤
⊗n R̊Λ̊Ξ

−1V̄ ζ = 0. By Lemma 6.2.3, the kernel of LW⊤ is im(1N )

because every diagonal entry of W⊤ is positive. This yields

(W − IN )⊗nR̊Λ̊ΞV̄ ζ = 0.

Since the columns of V are basis of the kernel of (W − IN )⊗nR̊Λ̊Ξ, it follows that

V̄ ζ ∈ im(V ). From the orthogonality of V and V̄ , we have ζ = 0 and this implies

that V̄ ⊤Ξ1Λ̊R̊⊤LW⊤
⊗n R̊Λ̊Ξ

1V̄ is positive definite. □

6.3 Prediction on Emergent Behavior under Rank-deficient

Coupling

In the previous section, it is proved that the spectral radius of I + S for any

stochastic matrix W is less than 1. By recalling the transformed system (6.2.8),

the r̃ dynamics vanishes as K gets larger. Based on this observation, we introduce

the blended dynamics for (6.1.1) as

ẑi[t+ 1] = Z⊤
i fi(t, Ziẑi[t]−RiΛiΞiLiẑ[t] +RiΛiΞiVir̂[t]) ∈ RnN−r̄,

r̂[t+ 1] =

N∑
i=1

V ⊤
i Ξ−1

i Λ−1
i R⊤

i

× fi(t, Ziẑi[t]−RiΛiΞiLiẑ[t] +RiΛiΞiVir̂[t]) ∈ Rr0 ,

(6.3.1)

where ẑ ∈ RnN−r̄ and r̂ ∈ Rr0 , for all i ∈ N .

Now, we can state the main result of this chapter where the system state xi[t]

at integer count t can be approximated by the solution of the blended dynamics

(6.3.1) for sufficiently large number of steps for the rank-deficient coupling in

(6.1.1).

Theorem 6.3.1. Under assumptions 6.1.1, 6.2.1, and 6.2.2, assume the blended
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dynamics (6.3.1) is contractive1, then, for any ϵ > 0, there exists Kmin such that,

for all K > Kmin, the solution xi of (6.1.1) and the solution of (6.3.1) with

arbitrary initial conditions satisfy

lim sup
t→∞

∥∥xi[t]− (Ziẑi[t]−RiΛiΞiLiẑ[t] +RiΛiΞiVir̂[t])
∥∥ < ϵ, ∀i ∈ N . (6.3.2)

♢

Proof. For convenience, let ξ := col(z1, . . . , zN , r) and ξ̃ := r̃. Then, the system

(6.2.8) can be written as

ξ[t+ 1] = h(t, ξ[t], ξ̃[t])

ξ̃[t+ 1] = (I + S)K−1g(t, ξ[t], ξ̃[t])
(6.3.3)

where ξ ∈ Rm, ξ̃ ∈ RnN−m, and h and g are defined by (6.2.8), which are contin-

uously differentiable with ξ and ξ̃, globally Lipschitz with respect to ξ and ξ̃, and

uniformly bounded in t. In other words, there exist a non-decreasing continuous

function Mh : R → R, Mg : R → R and a constant Lh,ξ, Lh,ξ̃, Lg,ξ, Lg,ξ̃ ≥ 0 such

that, ∀ξ1, ξ2 ∈ Rm, ξ̃1, ξ̃2 ∈ RnN−m, t ∈ Z, and i ∈ N ,

∥h(t, ξ, ξ̃)∥ ≤Mh(∥col(ξ, ξ̃)∥),

∥g(t, ξ, ξ̃)∥ ≤Mg(∥col(ξ, ξ̃)∥),

∥h(t, ξ1, ξ̃)− h(t, ξ2, ξ̃)∥ ≤ Lh,ξ∥ξ1 − ξ2∥,

∥h(t, ξ, ξ̃1)− h(t, ξ, ξ̃2)∥ ≤ Lh,ξ̃∥ξ̃1 − ξ̃2∥,

∥g(t, ξ1, ξ̃)− g(t, ξ2, ξ̃)∥ ≤ Lg,ξ∥ξ1 − ξ2∥,

∥g(t, ξ, ξ̃1)− g(t, ξ, ξ̃2)∥ ≤ Lg,ξ̃∥ξ̃1 − ξ̃2∥.

(6.3.4)

1The system x[t + 1] = f(t, x[t]) ∈ Rn, where f is continuously differentiable, is said to be
contractive [LS98, TRK18] if there exist a positive definite matrix H ∈ Rn×n and a positive
constant γ < 1 such that

∂f

∂x
(t, x)⊤H2 ∂f

∂x
(t, x) ≤ γH2, ∀x ∈ Rn, t ∈ Z.
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Meanwhile, the blended dynamics 6.3.1 can be written as

ξ̂[t+ 1] = h(t, ξ̂[t], 0nN−m) (6.3.5)

where ξ̂ ∈ Rm. Since the blended dynamics (6.3.1) is contractive, there exist a

(symmetric) positive definite matrix H ∈ Rn×n and a positive constant γ < 1

such that

∂h

∂s
(t, ξ̂,0nN−m)⊤H2∂h

∂s
(t, ξ̂,0nN−m) ≤ γH2, ∀ξ̂ ∈ Rm, t ∈ Z.

Note that, since the blended dynamics (6.3.1) is contractive, by Lemma 4.2.3, the

following inequality holds

∥H{h(t, ξ̂2,0nN−m)− h(t, ξ̂2,0nN−m)}∥ ≤ √
γ∥H(ξ̂2 − ξ̂1)∥ (6.3.6)

for all t ∈ Z and ξ̂1, ξ̂2 ∈ Rm.

Before proving Theorem 6.3.1, we claim the solution of the blended dynamics

(6.3.1) is bounded. In particular, the boundedness of the solution of the blended

dynamics can be shown by

∥Hξ̂[t]∥ ≤ wξ[t], ∀t ≥ 0 (6.3.7)

where wξ ∈ R is the solution of

wξ[t+ 1] =
√
γwξ[t] + ∥Hh(t,0m,0nN−m)∥, wξ[0] = ∥Hξ̂[0]∥. (6.3.8)

It is clear that ∥Hξ̂[τ ]∥ ≤ wξ[τ ] for τ = 0. Let us suppose ∥Hξ̂[τ ]∥ ≤ wξ[τ ] for

some integer τ ≥ 0, then

∥Hξ̂[τ + 1]∥ = ∥H{h(τ, ξ̂[τ ], 0nN−m)− h(τ,0m,0nN−m) + h(τ,0m,0nN−m)}∥

≤ ∥H{h(τ, ξ̂[τ ], 0nN−m)− h(τ,0m,0nN−m)}∥

+ ∥Hh(τ,0m,0nN−m)∥

≤ √
γ∥Hξ̂[τ ]∥+ ∥Hh(τ,0m,0nN−m)∥

≤ √
γwξ[τ ] + ∥Hh(τ,0m, 0nN−m)∥
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= wξ[τ + 1],

where the second inequality comes from (6.3.6). By mathematical induction, this

proves (6.3.7).

Meanwhile, the solution wξ of (6.3.8) is obtained as

wξ[t] =
√
γtwξ[0] +

t−1∑
τ=0

√
γt−τ−1∥Hh(τ,0m, 0nN−m)∥.

From the uniformly bounded assumption of h in (6.3.4), i.e., ∥h(t, ξ, ξ̃)∥ ≤Mh(∥col(ξ, ξ̃)∥)
, it follows that

lim sup
t→∞

∥ξ̂[t]∥ ≤ ∥H−1∥ lim sup
t→∞

∥Hξ̂[t]∥

≤ ∥H−1∥ lim sup
t→∞

{
√
γt∥Hξ̂[0]∥+

supτ≥0 ∥Hh(τ,0m,0nN−m)∥
1−√

γ

}
≤ ∥H−1∥∥H∥

supτ≥0 ∥h(τ,0m,0nN−m)∥
1−√

γ

≤ ∥H−1∥∥H∥ Mh(0)

1−√
γ
=:Mĥ

(6.3.9)

which justifies the claim.

Now, the behavior of the network under the rank-deficient coupling (6.3.3), or

equivalently (6.2.8), is studied with the blended dynamics (6.3.5), or equivalently

(6.3.1), which describes the evolution of the overall system at every integer time

t. For this, we introduce a Lyapunov function

V =
∥∥H(ξ − ξ̂)

∥∥+ η
∥∥ξ̃∥∥

where η > Lh,ξ̃∥H∥/√γ. Then, we have

V [t+ 1] =
∥∥H(ξ[t+ 1]− ξ̂[t+ 1])

∥∥+ η
∥∥ξ̃[t+ 1]

∥∥
=
∥∥H{h(t, ξ[t],0nN−m)− h(t, ξ̂[t], 0nN−m)

+ h(t, ξ[t], ξ̃[t])− h(t, ξ[t],0nN−m)}
∥∥
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+ η
∥∥(I + S)K−1{g(t, ξ̂[t],0nN−m)

+ g(t, ξ[t],0nN−m)− g(t, ξ̂[t],0nN−m)

+ g(t, ξ[t], ξ̃[t])− g(t, ξ[t], 0nN−m)}
∥∥

≤
∥∥H{h(t, ξ[t],0nN−m)− h(t, ξ̂[t], 0nN−m)}

∥∥
+
∥∥H{h(t, ξ[t], ξ̃[t])− h(t, ξ[t],0nN−m)}

∥∥
+ ρ(I + S)K−1η

{
∥g(t, ξ[t],0nN−m)− g(t, ξ̂[t], 0nN−m)∥

+ ∥g(t, ξ[t], ξ̃[t])− g(t, ξ[t],0nN−m)∥

+ ∥g(t, ξ̂[t], 0nN−m)∥
}
.

The above inequality can be simplified by the following properties:

• by (6.3.6),

∥∥H{h(t, ξ[t],0nN−m)− h(t, ξ̃[t], 0nN−m)}
∥∥ ≤ √

γ
∥∥H(ξ[t]− ξ̂[t])

∥∥

• by (6.3.4),

∥∥h(t, ξ[t], ξ̃[t])− h(t, ξ[t], 0nN−m)
∥∥ ≤ Lh,ξ̃∥ξ̃[t]∥∥∥g(t, ξ[t], ξ̃[t])− g(t, ξ[t], 0nN−m)
∥∥ ≤ Lg,ξ̃∥ξ̃[t]∥,

and similarly

∥∥g(t, ξ[t],0nN−m)− g(t, ξ̂[t],0nN−m)
∥∥ ≤ Lg,ξ

∥∥ξ[t]− ξ̂[t]
∥∥

≤ Lg,ξ

∥∥H−1
∥∥∥∥H{ξ[t]− ξ̂[t]}

∥∥
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Using the above inequalities, it is obtained that

V [t+ 1] ≤ √
γ
∥∥H(ξ[t]− ξ̂[t])

∥∥+ Lh,ξ̃

∥∥H∥∥∥ξ̃[t]∥
+ ρ(I + S)K−1ηLg,ξ∥H−1∥∥H(ξ[t]− ξ̂[t])∥

+ ρ(I + S)K−1ηLg,ξ̃∥ξ̃[t]∥

+ ρ(I + S)K−1η∥g(t, ξ̂[t],0nN−m)∥

≤ √
γV [t] + ρ(I + S)K−1ηM1V [t]

+ ρ(I + S)K−1η∥g(t, ξ̂[t],0nN−m)∥,

(6.3.10)

where M1 := max{Lg,ξ∥H−1∥, Lg,ξ̃/η}.

For the given ϵ, let Kmin be a positive integer such that

ρ(I + S)K
min
ηM1 ≤

1−√
γ

2
(6.3.11)

ρ(I + S)K
min∥∥T −1

∥∥max

{∥∥H−1
∥∥, 1
η

}
2η

1−√
γ
Mg(Mĥ) ≤ ϵ (6.3.12)

Then the following inequality is obtained by substituting (6.3.11) into (6.3.10),

V [t+ 1]− V [t] ≤ −
(1−√

γ)

2
V [t]

+ ρ(I + S)K−1η∥g(t, ξ̂[t], 0nN−m)∥
(6.3.13)

for all K > Kmin. By (6.3.4) and (6.3.9),

lim sup
t→∞

∥g(t, ξ̂[t], 0nN−m)∥ ≤Mg(lim sup
t→∞

∥ξ̂[t]∥)

≤Mg

(
Mĥ

)
Using this and (6.3.13), the ultimate bound of V is obtained as

lim sup
t→∞

V [t] ≤ ρ(I + S)K−1 2η

1−√
γ
Mg(Mĥ). (6.3.14)
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Therefore, for each agent i ∈ N and K > Kmin,

lim sup
t→∞

∥∥xi[t]− (Ziẑi[t]−RiΛiΞiLiẑ[t] +RiΛiΞiVir̂[t])
∥∥

= lim sup
t→∞

∥∥∥∥∥T −1

[
ξ[t]

ξ̃[t]

]
− T −1

[
ξ̂[t]

0nN−m

]∥∥∥∥∥
≤
∥∥T −1

∥∥ lim sup
t→∞

∥∥∥∥∥
[
ξ[t]

ξ̃[t]

]
−

[
ξ̂[t]

0nN−m

]∥∥∥∥∥
≤
∥∥T −1

∥∥ lim sup
t→∞

{
∥∥H−1

∥∥∥∥H(ξ[t]− ξ̂[t])
∥∥+ ∥∥ξ̃[t]∥∥}

≤
∥∥T −1

∥∥max

{∥∥H−1
∥∥, 1
η

}
V [t]

≤ ρ(I + S)K−1
∥∥T −1

∥∥max

{∥∥H−1
∥∥, 1
η

}
2η

1−√
γ
Mg(Mĥ)

≤ ϵ,

where the last inequality comes from (6.3.12). This completes the proof for (6.3.2)

of Theorem 6.3.1. □

6.3.1 Approximation by Blended Dynamics for Simplified Cases

6.3.1.1 Case 1: Every Bi is non-identical and positive definite

If every Bi is positive definite (but not necessarily to be identical), then ri = n

so that Bi = RiΛ
2
iR

⊤
i , and Zi and L become null for all i ∈ N . In addition,

V ∈ RnN×n because r0 = n. Without loss of generality, we can define Ri = In

and Λi =
√
Bi and it follows

ker
(
(W − IN )⊗nR̊Λ̊Ξ

)
= ker

(
(W − IN )⊗ndiag(

√
Bi)Ξ

)
= {v ∈ RnN : diag(

√
Bi)Ξv ∈ im(p⊗ In)}

=

{
col(v1, · · · , vN ) ∈ RnN :

√
B1Ξ1v1
p1

= · · · =
√
BNΞNvN
pN

}
=

{
col(v1, · · · , vN ) ∈ RnN :

√
B1v1√
p1q1

= · · · =
√
BNvN√
pNqN

}
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where the last equality comes from Ξi =
√
pi/qiIn. This implies that there

exists a square matrix V0 ∈ Rn×n such that, for V = col(V1, · · · , VN ) ∈ RnN ,

Vi =
√
piqi

√
Bi

−1
V0 for all i ∈ N . Since every column of V is orthonormal, we

have

V ⊤V =

N∑
i=1

V ⊤
i Vi

=
N∑
i=1

piqiV0
⊤
√
Bi

−1√
Bi

−1
V0

= V0
⊤
( N∑

i=1

Bi
−1
)
V0

= In.

By letting V0 =
√

(
∑N

i=1B
−1
i )−1, we define a new variable ŝ = V0r̂ so the

blended dynamics (6.3.1) is transformed into

ŝ[t+ 1] = V0

N∑
i=1

√
piqi

√
qi
pi
V ⊤
0

√
Bi

−1√
Bi

−1

× fi

(
t,

√
pi
qi

√
piqi
√
Bi

√
Bi

−1
ŝ[t]
)

=
( N∑

i=1

B−1
i

)−1
N∑
i=1

qiB
−1
i fi(t, piŝ[t]).

With sufficiently large K, we can approximate xi[t] from (6.2.7) by

RiΛiΞiVir̂ =

√
pi
qi

√
piqi
√
Bi

√
Bi

−1
V0r̂[t]

= piŝ[t].

6.3.1.2 Case 2: Every Bi is identical and positive semi-definite

If every Bi is identical to some positive semi-definite matrix B0 for all i ∈ N ,

then R1 = . . . = RN =: R0, Z1 = . . . = ZN =: Z0, and Λ1 = . . . = ΛN =: Λ0.

This yields B̊ = IN ⊗ B0, R̊ = IN ⊗ R0, B̊ = IN ⊗ Z0, and Λ̊ = IN ⊗ Λ0. From
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these,

L = V̄ S−1V̄ ⊤ΞΛ̊R̊⊤(W − IN )⊗nZ̊

= V̄ S−1V̄ ⊤Ξ(IN ⊗ Λ0)(IN ⊗R0)
⊤(W − IN )⊗n(IN ⊗ Z0)

= V̄ S−1V̄ ⊤Ξ{(W − IN )⊗R⊤
0 Z0} = Or̄×(nN−r̄)

where the last equality comes from R⊤
0 Z0 = Or̄×(nN−r̄).

In addition, it is obtained that

(W − IN )⊗nR̊Λ̊ΞV = (W − IN )⊗n(IN ⊗B0)(IN ⊗ Λ0)ΞV

= {(W − IN )⊗ (R0Λ0)}ΞV.

Then, we can define V ∈ RNr0×r0 such that its columns are orthonormal basis of

ker
(
(W − IN )⊗nR̊Λ̊Ξ

)
= ker

(
(W − IN )⊗ (R0Λ0)Ξ

)
= {v ∈ Rr̄ : (IN ⊗ (R0Λ0))Ξv ∈ im(p⊗ In)}

=

{
col(v1, · · · , vN ) ∈ Rr̄ :

R0Λ0Ξ1v1
p1

= · · · = R0Λ0ΞNvN
pN

}
=

{
col(v1, · · · , vN ) ∈ Rr̄ :

R0Λ0v1√
p1q1

= · · · = R0Λ0vN√
pNqN

}
.

This implies that V can be choosen as V = col(
√
p1q1, · · · ,

√
pNqN )⊗V0 ∈ RNr0×r0

for any square matrix V0 ∈ Rr0×r0 such that the columns of V are orthonormal.

This yields V ⊤V =
∑N

i=1 piqiV0
⊤V0 = V0

⊤V0 = Ir̄, which also implies V0V0⊤ = Ir̄.

Based on the aforementioned observations, with a coordinate change ŝ :=

Λ0V0r̂, the blended dynamics (6.3.1) can be rewritten as

ẑi[t+ 1] = Z⊤
0 fi(t, Z0ẑi[t] +R0ŝ[t]) ∈ Rn−r0 ,

ŝ[t+ 1] =

N∑
i=1

qiR
⊤
0 fi (t, Z0ẑi[t] + piR0ŝ[t]) ∈ Rr0 ,

(6.3.15)

because both Ξi and Λ0 is block diagonal matrices so that they commute and

V0V
⊤
i Ξ−1

i =
√
piqiV0V0

⊤Ξ−1
i



6.3. Prediction on Emergent Behavior under Rank-deficient Coupling 89

=
√
piqi ×

√
qi
pi
V0V0

⊤

= qiIr0 ,

R0Λ0ΞiVir̂ =

√
qi
pi
R0Λ0 ×

√
piqiV0r̂

= piR0ŝ.

As a result, the system state xi[t] at each integer count t can be approximated

by

Z0ẑi[t] + piR0ŝ[t].

6.3.1.3 Case 3: Every Bi is identical and positive definite

If every Bi is identical to some positive definite matrix B0, then Z0 becomes

null and R0 = In so that the blended dynamics (6.3.15) can be rewritten by

ŝ[t+ 1] =
N∑
i=1

qifi (t, piŝ[t]) ∈ Rn. (6.3.16)

From this, the behavior of each agent, xi[t], at each integer count t can be esti-

mated by piŝ[t]. This is exactly corresponds to the result of [KLLS22], which is

introduced in Chapter 4.





Chapter 7

Application to Distributed State
Estimation

7.1 Problem Formulation

In this chapter, a distributed state estimation algorithm is proposed based

on the blended dynamics approach for the rank-deficient coupling, which is intro-

duced in Chapter 6. The proposed algorithm allows every agent to estimate the

full state information of the target plant using only its partial output informa-

tion. Comparing to the classic state estimation problem, the proposed algorithm

overcomes the limitations through the inter-agent communication.

We consider a discrete-time linear time-invariant system

χ[t+ 1] = Aχ[t] ∈ Rn,

y[t] = Cχ[t] ∈ Rm,
(7.1.1)

where χ is the state and y is the output. Here, we assume that (C,A) pair is

detectable so that there exists an asymptotic observer [TSH12]. It is supposed

that the output y of the system (7.1.1) is monitored by a network of N agents (or

sensors) such that an arbitrary agent i can measure the partial output information

yi ∈ Rmi which is given by

yi = Ciχ ∈ Rmi , i ∈ N , (7.1.2)

where C = col(C1, · · · , CN ) ∈ Rm, with
∑N

i=1mi = m. It should be emphasized

91
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that each (Ci, A) is not necessarily detectable, while (C,A) pair is detectable.

In order to utilize the entire output information in the network, we assume the

connectivity of the communication network as the following way.

Assumption 7.1.1. The communication network G is strongly connected. ♢

Our goal is to design a distributed observer for the system (7.1.1) and (7.1.2)

with the communication network G composed of N agents, such that the state

estimation χ̂i[t] of each i-th local observer converges to the plant state χ[t], i.e.,

lim
t→∞

∥∥χ̂i[t]− χ[t]
∥∥ = 0, i ∈ N . (7.1.3)

In particular, the proposed local observer in the every agent is designed to satisfy

the following properties:

• distributed operation: each local observer communicates with only its neigh-

bors

• local measurement: each local observer utilizes only its local measurement

yi

This chapter is organized as follows. Section 7.2 is composed of the follow-

ing two subsections. Subsection 7.2.1 introduces the detectability decomposition

which is an extension of the Kalman decomposition. Based on this decomposition,

a distributed state observer is proposed and its asymptotic performance is shown

in Subsection 7.2.2. To verify the performance of the proposed observer, a toy

example and its simulation results are illustrated in Section 7.3.

7.2 Distributed Observer for State Estimation

7.2.1 Detectability Decomposition

Recall that each (Ci, A) pair is not necessarily detectable, while (C,A) pair is

detectable. Let us denote Ui as the undetectable subspace of (Ci, A) pair. From

this, the following lemma introduces the detectability decomposition, which is an

extension of the Kalman decomposition.
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Lemma 7.2.1. [KLS19] Denote ri be the dimension of Ui, the undetectable sub-

space of (Ci, A) and let Ui ∈ Rn×ri and Di ∈ Rn×(n−ri) such that the columns of

Ui are orthonormal vectors which are bases of Ui and Ti :=
[
Di Ui

]
∈ Rn×n be

an orthonormal matrix. Then, Ti satisfies that

T ⊤
i ATi =

[
Aid O

Air Aiu

]
, CiTi =

[
Cid O

]
, (7.2.1)

where Aid ∈ R(n−ri)×(n−ri), Air ∈ Rri×(n−ri), Aiu ∈ Rri×ri , and Cid ∈ Rri×(n−ri).

Moreover, the pair (Cid, Aid) is detectable and the matrix Aiu is unstable, i.e.,

ρ(Aiu) > 1. ♢

It can be shown that there exists Hid ∈ R(n−ri)×ri such that Aid − HidCid is

stable in the discrete-time sense, i.e., ρ(Aid − HidCid) < 1 because (Cid, Aid) is

detectable.

In addition, the following lemma states that the undetectable subspace of

(col(C1, · · · , CN ), A) pair can be described by Ui, the undetectable subspace of

(Ci, A), for i ∈ N .

Lemma 7.2.2. [KLS19] The undetectable subspace of (col(C1, · · · , CN ), A) is

∩N
i=1Ui. Thus, the (C,A) pair is detectable if and only if ∩N

i=1Ui = {0}. ♢

7.2.2 Distributed Observer Design

From the previous section, the plant state is decomposed into the detectable

part and the undetectable part. Since each agent could solely estimate the in-

formation on the detectable part at most, the information on the undetectable

part should be obtained from other agents via the network communication. To

maximally utilize the communication information on the undetectable subspace,

we adopt the multi-step coupling framework in Chapter 6, i.e., every agent ex-

changes the information with its neighbors for each fraction count k, while the

system updates its state and output at the integer count t.

Let us propose a distributed state observer for the system (7.1.1) and (7.1.2)
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whose arbitrary i-th local observer is given by

χ̂i[tk+1] =


Aχ̂i[tk] +Hi(yi[t]− Ciχ̂i[tk]), if k = 0, (7.2.2a)

χ̂i[tk] + UiU
⊤
i

∑
j∈Ni

wij(χj [tk]− χi[tk]), if k = 1, . . . ,K − 1, (7.2.2b)

where χ̂i ∈ Rn is the estimation for χ of the i-th local observer, wij is the coupling

weight, and Hi ∈ Rn×ri is the injection gain matrix which is designed by

Hi :=
[
Di Ui

] [Hid

0

]
,

whereHid is the stabilizing gain for (Cid, Aid) pair, i.e., ρ(Aid−HidCid) < 1. Here,

(7.2.2a) is a typical state observer composed of the system copy term and the error

correction term. Moreover, the coupling dynamics (7.2.2b) can be rewritten as

χ̂i[tk+1] = χ̂i[tk] + UiU
⊤
i

∑
j∈Ni

wij(χj [tk]− χi[tk])

= (I − Pi)χ̂i[tk] + Pi

∑
j∈Ni

wijχj [tk],

where Pi := UiU
⊤
i is the projection matrix into Ui, the undetectable space of

(Ci, A) pair. This implies that the coupling dynamics (7.2.2b) makes each local

observer compensates the lacking information on the undetectable part through

the network communication while retaining the state estimation on detectable

part.

The coupling weight wij is chosen such that the weight matrix W = [wij ] is

a row-stochastic matrix to synchronize all agents. For example, the Metropolis-

Hastings coupling weight wMH
ij in Section 4.3.1 or the average coupling weight

wavg
ij for the average consensus protocol in Section 4.3.3 can be adopted for the

coupling weight wij of (7.2.2). Indeed, [WLMA19] proposed a two-time scaled

distributed observer for a discrete-time linear system using the average coupling

weigh wavg
ij .

Let the estimation error variable xi := χ̂i−χi of the i-th observer. Then, the
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error dynamics of xi is written by

xi[tk+1] =


(A−HiCi)xi[tk], if k = 0,

xi[tk] + UiU
⊤
i

∑
j∈Ni

wij(xj [tk]− xi[tk]), if k = 1, . . . ,K − 1.

(7.2.3)

It should be emphasized that (7.2.3) has the form of multi-step coupling frame-

work under rank-deficient coupling, i.e., (6.1.1). In particular, the rank-deficient

coupling matrix Bi becomes UiU
⊤
i in the problem of the distributed observer so

that Ri = Ui, Zi = Di, and Λi = I for all i ∈ N .

In order to predict the behavior of the network of (7.2.3), the blended dy-

namics (6.3.1) can be useful tool. First, let us consider V whose columns are the

orthonormal bases for the kernel of (W − IN )⊗nŮΞ, where Ů = diag(Ui) and

Ξ = diag(q
−1/2
i Iri) with ri = rank(UiU

⊤
i ). Since ker

(
(W − IN )⊗n

)
= im(1N ⊗ In)

for row-stochastic W , it follows

ker
(
(W − IN )⊗nŮΞ

)
= {v ∈ Rr̄ : ŮΞv ∈ im(1N ⊗ In)}

= {col(v1, · · · , vN ) ∈ Rr̄ : q
−1/2
1 U1v1 = · · · = q

−1/2
N UNvN}

= {v ∈ Rr̄ : ŮΞv = 1N ⊗ c for some c ∈ ∩N
i=1im(Ui)},

where r̄ =
∑N

i=1 ri. From this, the dimension of ker
(
(W − IN )⊗nR̊Ξ

)
(i.e., r0) is

given by

r0 = dimker
(
(W − IN )⊗nŮΞ

)
= dim ∩N

i=1 im(Ui)

= 0

where the last equality comes from Lemma 7.2.2, i.e., ∩N
i=1im(Ui) = 0 because

(C,A) pair is detectable. This implies that V is null, and thus, V̄ can be chosen

as the identity matrix.

Based on the aforementioned observations, the blended dynamics for (7.2.3)
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is given by, with the state r̂ being null,

ẑi[t+ 1] = D⊤
i (A−HiCi)(Diẑi[t]− UiΞiLiẑ[t])

= D⊤
i

[
Di Ui

]{[Aid 0

Air Aiu

]
−

[
Hid

0

] [
Cid 0

]}[D⊤
i

U⊤
i

]
× (Diẑi[t]− UiΞiLiẑ[t])

= (Aid −HidCid)ẑi[t],

for all i ∈ N . The last equality comes from D⊤
i Ui = O. It should be em-

phasized that ẑi asymptotic converges to 0 because Lid is chosen such that

ρ(Aid −HidCid) < 1.

Now, by applying Theorem 6.3.1 in the previous chapter, the performance of

the proposed observer (7.2.2) is given as follows.

Corollary 7.2.3. For any ϵ > 0, there exists a Kmin such that for all K > Kmin,

lim sup
t→∞

∥∥χ̂i[t]− χ[t]
∥∥ < ϵ, ∀i ∈ N . ♢

Corollary 7.2.3 guarantees the performance of the proposed observer by the arbi-

trary ϵ error level by choosing sufficiently large K. However, it does not guaran-

tees the asymptotic performance of the proposed observer as (7.1.3).

Nevertheless, we can guarantee the asymptotic performance of the proposed

observer in the following theorem.

Theorem 7.2.4. For any ϵ > 0, there exists a Kmin such that for all K > Kmin,

lim
t→∞

∥∥χ̂[t]− χ[t]
∥∥ = 0, ∀i ∈ N . ♢

Proof. In the distributed state observer problem, recall that V is null so that V̄

can be chosen as the identity matrix, Ri = Ui, Zi = Di, and Λi = I for all i ∈ N .



7.2. Distributed Observer for State Estimation 97

From this, the coordinate change proposed in Section 6.2 is written by[
z

r̃

]
=

[
D̊⊤

S−1Ξ−1Ů⊤(W − IN )⊗n

]
x̄

x̄ =
[
D̊ − ŮΞL ŮΞ

] [z
r̃

] (7.2.4)

where z ∈ RnN−r̄, r̃ ∈ Rr̄, D̊ := diag(Di), Ů := diag(Ui), and

S = Ξ−1Ů⊤(W − IN )⊗nŮΞ,

L = S−1ΞŮ⊤(W − IN )⊗nD̊.

Similarly with (6.2.8), by the coordinate change (7.2.4), the error dynamics

of xi, (7.2.3), is transformed into

zi[t+ 1] = D⊤
i (A−HiCi)(Dizi[t]− UiΞiLiz[t] + UiΞir̃[t])

= D⊤
i

[
Di Ui

]{[Aid 0

Air Aiu

]
−

[
Hid

0

] [
Cid 0

]}[D⊤
i

U⊤
i

]
× (Dizi[t]− UiΞiLiz[t] + UiΞir̃[t])

= (Aid −HidCid)zi[t],

r̃[t+ 1] = (I + S)K−1S−1Ξ−1Ů⊤(W − IN )⊗n

× (Å− H̊C̊)(D̊z[t]− ŮΞLz[t] + ŮΞr̃[t]),

(7.2.5)

where Å := diag(Ai), H̊ := diag(Hi), and C̊ := diag(Ci). It should be emphasized

that r̃ term does not appear in the zi dynamics in (7.2.5) because D⊤
i Ui = O.

This yields that zi converges to 0 and we can adjust the convergence rate of zi by

choosing appropriate injection gainHi (orHid). Moreover, the convergence rate of

r̃ could be arbitrarily chosen by getting sufficiently large K because ρ(I +S) < 1

by Lemma 7.2.1 and 7.2.2. This implies that, if we choose K such that the

convergence rate of r̃ is faster than the convergence rate of z, then the error state
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Figure 7.1: Three-inertia system considered in Section 7.3

xi given by

xi = Dizi − UiΞiLiz + UiΞiV̄ir̃,

also converges to 0 with the convergence rate dominated by the convergence rate

of (Aid −HidCid), for i ∈ N . In other wors, this allows

lim
t→∞

∥∥χ̂[t]− χ[t]
∥∥ = 0,

which complete the proof of Theorem 7.2.4. □

7.3 Simulation Results

For simulation, we consider a three-inertia system in Figure 7.1, which is mon-

itored by three sensors. Each load has same inertia of J and they are connected

by flexible connectors whose stiffness coefficient is K. In particular, by denoting

the angles of the three inertia as ϕ, θ, and ψ, respectively, the sensors measure

the outputs y1 = ϕ− θ, y2 = θ, and y3 = θ−ψ. In addition, we assume that each

sensor (or agent) is inter-connected by the structure of network which is shown

in Figure 7.2. Note that the network is strongly connected by the ring network

structure.
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Figure 7.2: Communication network considered in Section 7.3

Let χ =
[
ϕ ϕ̇ θ θ̇ ψ ψ̇

]
, then the system dynamics is given by

χ̇ = A0χ,

y = Cχ,

where

A0 :=



0 1 0 0 0 0

−K
J 0 K

J 0 0 0

0 0 0 1 0 0

K
J 0 −2K

J 0 K
J 0

0 0 0 0 0 1

0 0 K
J 0 −K

J 0



C =


C1

C2

C3

 =


1 0 −1 0 0 0

0 0 1 0 0 0

0 0 1 0 −1 0


This system can be discretized with the forward difference method as follows:

χ[t+ 1] = (I +∆tA0)χ[t]

=: Aχ[t],

where ∆t is the sampling time.

It should be emphasized that any pair of (Ci, A) is not detectable, but the

pair of (C,A) is detectable. In addition, each Ui whose columns are bases of the
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undetectable subspace Ui for i ∈ N can be obtained as

U1 = U3 =
1√
3



1 0

0 1

1 0

0 1

1 0

0 1


, U2 =

1√
2



1 0

0 1

0 0

0 0

−1 0

0 −1


.

From these, we can take D1, D2, and D3 such that
[
Di Ui

]
, i ∈ N is an

orthonormal matrix which satisfies (7.2.1) as follows:

D1 = D3 =



1/
√
2 1/

√
6 0 0

0 0 1/
√
2 1/

√
6

−1/
√
2 1/

√
6 0 0

0 0 −1/
√
2 1/

√
6

0 −2/
√
6 0 0

0 0 0 −2/
√
6


,

D2 =



0 0 1/
√
2 0

0 0 0 1/
√
2

1 0 0 0

0 1 0 0

0 0 1/
√
2 0

0 0 0 1/
√
2


.

In addition, the submatrices of the undetectable part, i.e., Aiu for i ∈ N , are

given by

A1u = A3u =

[
1 ∆t

0 1

]
,

A2u =

[
1 ∆t

−∆tK/J 1

]
.

With K = 1, J = 1, and ∆t = 0.1, we choose the design parameter K as 2 in
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the simulation. In addition, the injection gains L1, L2, and L3 are chosen such

that, with Li = DiLid, the eigenvalues of Aid − LidCid are 0.85, 0.8, 0.75, and

0.7 for all i ∈ N . The simulation results are shown in Figure 7.3. It shows that

the estimation of every agent (or local observer) asymptotically converges to the

plant state.
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Figure 7.3: State estimation by the local observer (7.2.2) of each agent for
the three-inertia system (7.1.1): Black dashed curves represent
the true states of the plant and colored solid curves represent
their estimations.



Chapter 8

Conclusions and Further Issues

8.1 Conclusions

The main objective of this dissertation is to provide a distributed design

methodology by utilizing the discrete-time blended dynamics which predicts the

behavior of a discrete-time heterogeneous multi-agent system under the multi-step

coupling. The details are listed as follows.

i) In Chapter 3, we have reviewed an initial studies on synchronization of hetero-

geneous multi-agent system. Strong coupling can be considered as an alter-

native to achieve practical synchronization among the heterogeneous multi-

agent system. Based on this observation, the continuous-time blended dy-

namics is proposed, which allows to predict an overall behavior of the net-

work. In the sense that this blended dynamics approach only requires the

stability of the blended dynamics, unstable agents are allowed as long as their

instability is compensated by other agents’ stability. In particular, since the

blended dynamics is a simple average of individual node dynamics, it has

been successfully employed as a design tool for many distributed algorithms

by designing a desired algorithm as the blended dynamics first, and then,

splitting it into different node dynamics with the diffusive coupling. How-

ever, while all the results are in the continuous-time domain, it is required

to implement the designed algorithm in the discrete-time domain so that it

operates on digital devices in practice. A naive idea such as using simple dis-

103
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cretization methods (e.g., forward difference) cannot be employed for the im-

plementation of the blended dynamics approach because increasing coupling

gain yields instability of the network unless the sampling time is decreased.

This motivates the development of the discrete-time version of the blended

dynamics approach which is introduced in the next chapter.

ii) In Chapter 4, we have considered a discrete-time heterogeneous multi-agent

system where a weighted averaging action is repeated for many times before

progressing through the heterogeneous individual node dynamics (i.e., multi-

step coupling). This multi-step coupling concept corresponds to the strong

coupling in the sense that the synchronization is taken more care of than the

progress through the node dynamics. Moreover, by proposing the discrete-

time blended dynamics, we have illustrated the behavior of the multi-agent

system can be approximated by the the solution of the blended dynamics.

This approach maintains the advantages of the continuous-time case, such

as the plug-and-play operation, and that the individual node dynamics need

not be stable as long as the blended dynamics is stable. Moreover, while the

continuous-time approach predicted collective synchronization behavior of

the multi-agent system, this discrete-time approach estimates not only emer-

gent but also individually scaled behavior, i.e., each agent behaves similarly

to the solution of the blended dynamics with an agent-wise scaling factor.

iii) In Chapter 5, to emphasize the benefit of the discrete-time blended dynamics

approach where the blended dynamics can have more variety depending on

the coupling matrix, we have proposed a distributed algorithm for estimation

of PageRank scores by employing the multi-step coupling framework intro-

duced in Chapter 4. In the proposed algorithm, each node estimates its rel-

ative importance which is possibly agent-wise different so that overall nodes

are not synchronized in the network. Moreover, the proposed algorithm has

an initialization-free benefit while most of distributed PageRank algorithms

have assumed the initialization process. This also allows the algorithm to

adopt plug-and-play feature, i.e., some nodes and their associate link can

join or leave the network during the operation of the algorithm. Finally, we
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have verified the aforementioned advantages of the proposed algorithm by

simulation for a real data with large scale.

iv) In Chapter 6, the result of Chapter 4 has been extended. We have considered

a heterogeneous multi-agent system under rank-deficient multi-step coupling

and stated that its behavior can be approximated by the solution obtained

from the proposed blended dynamics for the rank-deficient coupling. In par-

ticular, based on the analysis in Chapter 4, various properties of the proposed

approach are also discussed. In addition, we have illustrated the blended dy-

namics for simple cases in the formulation of the problem.

v) In Chapter 7, in order to emphasize the practical utility of the proposed ap-

proach in Chapter 6, we have proposed a distributed state estimation algo-

rithm for a linear time-invariant discrete-time plant whose partial measure-

ments are monitored by sensors based on the rank-deficient multi-step cou-

pling framework. We have designed the local observer for each agent such

that it estimates the plant state on its detectable part while compensating

the lacking information on undetectable space by network communication.

Even though the result in Chapter 6 only guarantees the practical conver-

gence among all agents in the network, it has been shown that the proposed

observer guarantees the asymptotic performance. Finally, the performance

of the proposed observer has been verified by the simulation of toy example.

8.2 Further Issues

So far we have proposed the discrete-time version of the blended dynamics as

a design method for distributed algorithms as well as its numerous applications.

However, the results of this dissertation might open up many questions for future

research.

8.2.1 Extension to Asynchronous Communication

A distributed algorithm should operate in a distributed manner, i.e., each

agent utilizes its local measurement only, and communicates with its neighboring
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Figure 8.1: Comparison between synchronous operation and asynchronous
operation for the multi-step coupling framework

agents. In addition, the design process of the algorithm should be decentralized

in a way that the parameters of the algorithm are computed using the local

knowledge accessible by each agent. This might yields an asynchronous operation

of the communication protocol in the distributed algorithm because each agent

could not be synchronized to a common clock shared by all other agents. For

example, [FA05] studies a synchronization problem for the asynchronous multi-

agent system where the order in which states of agents are updated is not fixed

and the selection of previous values of the states used in the updates is also not

fixed.

Recall that a weighted averaging coupling action (or communication) is re-

peated for multiple times for each progress of the node dynamics in the multi-step

coupling framework. In the asynchronous setting, the communication failure or

delay among agents could occur in the network, which is depicted as middle figure

in Figure 8.1. Furthermore, an asynchronous update of the node dynamics for

each agent is possible, i.e., some agents progress their node dynamics while other

agents progress their coupling dynamics at the same fraction discrete-time index
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tk (shown in bottom of Figure 8.1).

Compared to results of the synchronous synchronization, [FA05] claims that,

under bounded communication delay and an infinitely often updated agent, the

overall network still achieves asymptotic synchronization while the communica-

tion delay or stochastic update progress varies where the agent converges. This

makes challenging to predict the behavior of each agent by iterating asynchronous

coupling dynamics. Moreover, the asynchronous update of the node dynamics and

the coupling dynamics makes difficult to approximate the behavior of the network

by the discrete-time blended dynamics so that it might require a modified blended

dynamics.

8.2.2 Generalization of Multi-step Approach

In the continuous-time blended dynamics approach, [LS20] transformed a

strongly coupled heterogeneous multi-agent system into the standard singularly

perturbed form [Kha02]. The slow dynamics is a reduced-order multi-agent sys-

tem consisting of a weighted average of the vector fields of all agents and some

sub-dynamics of agents, which is defined as the blended dynamics.

Meanwhile, the multi-step coupled multi-agent system is proposed in this

dissertation as a counterpart of the strongly coupled multi-agent system. In the

sense that the strong coupling implies the communication by the synchronization

protocol is much more taken care than the progress of node dynamics, the key

idea to implement the strong coupling in the discreet-time domain is repeating

the coupling progress for the multiple times for each progress of node dynamics.

Indeed, by utilizing a similar multi-time scale approach, [WLMA19] proposed

a discrete-time distributed state observer which is motivated by a continuous-

time distributed observer designed through the continuous-time blended dynamics

approach in [KLS19].

This observation might pave a road to develop a discrete-time approach for the

singular perturbation theory. In particular, by adopting the fractional discrete-

time index tk in the multi-step coupling, it is expected that both fast and slow

dynamics can be handled as the former and the latter proceed with the time-index

based on the fraction count k and the integer count t, respectively.



108 Chap. 8. Conclusions and Further Issues

Since the high-gain observer is a representative application example of the

singular perturbation theory, the multi-step approach can be adopted to imple-

ment the high-gain observer in the discrete-time domain. For example, consider

the following continuous-time plant

ẋ1 = x2 ∈ R,

ẋ2 = −x1 − 2x2 + ax21x2 + b sin 2t ∈ R,

y = x1,

(8.2.1)

where x1 and x2 are states of the plant, a and b are uncertain parameters, and y

is output. It is well-known that the high-gain observer which robustly estimates

the plant state can be designed as follows [Kha15]:

˙̂x1 = x̂2 +
2

ϵ
(y − x̂1) ∈ R,

˙̂x2 = −x̂1 − 2x̂2 + âx̂21x̂2 + b̂ sin 2t+
1

ϵ2
(y − x̂1)

=: f̂(t, x̂) +
1

ϵ2
(y − x̂1) ∈ R,

where x̂1 and x̂2 are estimations, â and b̂ are nominal values for a and b, and

ϵ≪ 1 is a design parameter.

We claim that the multi-step approach can be utilized to implement the

discrete-time observer which robustly estimates the plant state. In specific, by

assuming that ϵ is chosen as such that Kϵ := 1/ϵ is an integer, the observer can

be designed as follows:

x̂1[tk+1] =


x̂1[tk] + ∆tx̂2[tk], if k = 0,

x̂1[tk] + 2∆t(y[t]− x̂1[tk]), if mod(k,Kϵ) = 0,

x̂1[tk], otherwise,

x̂2[tk+1] =

 x̂2[tk] + ∆tf̂(tk, x̂[tk]), if k = 0,

x̂2[tk] + ∆t(y[t]− x̂1[tk]), otherwise.

(8.2.2)

where ∆t is the sampling time which is chosen as sufficiently small and the frac-
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Figure 8.2: State estimation by the proposed observer (8.2.2) for the uncer-
tain plant (8.2.1): Black dashed curve represents the true states
of the plant and colored solid curves represent the estimations.

tional discrete-time index tk is defined as

tk = t+
k

K2
ϵ + 1

with the fraction count k varying from 0 to K2
ϵ , e.g., tk advances 00, 01, . . ., 0K2

ϵ
,

10, 11, . . .. Note that plant updates its state and output for each integer count t

so that they are fixed for the fraction count k = 1, 2, . . . ,K2
ϵ .

The simulation results for the proposed observer is shown in Figure 8.2. The

proposed observer is designed for two distinct Kϵ = 10 and Kϵ = 100. The results

show that, as Kϵ increases, an estimation speed gets faster while its transient

behavior exhibits a larger peak (“peaking phenomenon”).

The proposed observer has benefit in a way that it could operate with low

power by repeating an error correction into the multiple steps. While [AM15,

AMT16] also proposed the low power high-gain observer in the continuous-time
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domain, the proposed observer is designed in the discrete-time so that it could

be useful to be implemented in practice. However, this work has a limitation

of which, as Kϵ increases, reducing the sampling time ∆t with the same ratio is

required in the proposed observer.

8.2.3 Extension to Nonlinear Coupling

In the multi-step coupling framework, a weighted averaging action is repeated

before the progress by an individual node dynamics. In the sense that this disser-

tation only handles a linear coupling, it seems that nonlinear couplings including

Kuramoto model [ABV+05] might be a natural next step. One possible approach

to extend the discrete-time blended dynamics theorems to the nonlinear couplings

might come from [LS17] which studies a practical synchronization of the network

under a nonlinear coupling called “funnel coupling”. In particular, it could be

useful material in the sense that it contains comparison between the result of the

funnel coupling and the strong diffusive coupling.
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국문초록

Design of Distributed Algorithms
via Discrete-time

Blended Dynamics Theorem

이산시간 혼합 동역학 정리를 통한 분산 알고리즘의 설계

본 논문에서는 다양한 분산 알고리즘을 설계하는데 사용할 수 있는 이산시간에서

동작하는 혼합 동역학(blended dynamics) 이론을 개발한다. 혼합 동역학 이론은 이

기종 다개체 시스템의 행동을 예측할 수 있다. 따라서, 만약 특정한 연산을 수행하는

혼합 동역학이 주어진다면, 이기종 개체의 개별 동역학을 설계하는 방법을 쉽게 얻을

수있다. 연속시간이론의경우,혼합동역학에의한예측은이웃한개체들사이의높은

결합 이득(high coupling gain)에 의해서 가능했다. 본 논문의 이산시간 이론에서는

이와 상응하는 개념으로서 다단계 결합(multi-step coupling)을 제안한다. 이러한 이

산시간 접근법은 플러그 앤 플레이(plug-and-play) 연산이 가능하거나 혼합 동역학이

안정하다면 개별 동역학이 안정하지 않아도 된다는 연속시간 이론의 장점들을 그대로

가진다.

한편, 연속시간 이론과 비교했을 때, 이산시간 혼합 동역학은 결합 행렬(coupling

matrix)에 따라 더 많은 변형을 가질 수 있다. 이러한 장점은 네트워크 안에서 개별

노드의 상대적 중요도를 추정하는 PageRank를 분산적으로 추정하는 문제 등의 예제

들을 통해 보여된다. 특히, 대부분의 다른 PageRank 분산 알고리즘들이 초기화 과정

(initialization process)을 가정하는 반면에, 다단계 결합 접근법을 기반으로 제안된

알고리즘은 초기화 과정이 필요없다는 장점을 가진다.

더 나아가, 앞선 이산시간 혼합 동역학 이론의 결과를 상태정보의 교환이 제한된

환경(이러한결합을랭크부족결합(rank-deficient coupling)이라고부른다)에서의이

기종 다개체 시스템에 대하여 확장한다. 이를 위해서, 다개체 시스템을 각 개체가 결

합 동역학(coupling dynamics)을 다수 반복할수록 사라지는 동역학과 사라지지 않는

동역학을 분리하는 좌표 변환이 소개된다. 이러한 사라지지 않는 동역학을 기반으로

랭크 부족 결합에 대한 혼합 동역학을 유도하여 이기종 네트워크의 행동을 예측할 수

있다.

다시 한번 혼합 동역학의 실용적인 유용성을 강조하기 위하여, 다수의 센서가 부

분적인 관측치를 통해 대상 플랜트의 상태변수를 분산적으로 추정하는 문제에 앞서
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소개된확장결과를적용한다. 분산관측기(distributed observer)는각개체가측정가

능한(detectable) 영역에서의 상태정보를 추정하되 측정가능하지 않은(undetectable)

영역의부족한정보는네트워크통신을통해보완하도록설계된다. 앞선혼합동역학의

결과가 오직 근사적 수렴만을 보장하지만, 제안된 관측기는 점근적인 성능을 보장함을

보인다.

주요어: 이산시간 이기종 다개체 시스템, 혼합 동역학, 다단계 결합, 다시간 척도, 열린

다개체 시스템

학 번: 2015–22779


	1 Introduction
	1.1 Research Background
	1.2 Outline and Contributions of Dissertation

	2. Preliminaries
	2.1 Graph Theory
	2.1.1 Basic Definitions in Graph Theory
	2.1.2 Connectivity and Periodicity of the Graph
	2.1.3 Laplacian Matrix and Its Properties

	2.2 Matrix Analysis
	2.2.1 Stochastic Matrix
	2.2.2 Irreducible and Primitive Matrix
	2.2.3 Graph Theoretical Characterization

	2.3 Kronecker Product

	3 Behavior of Continuous-time Heterogeneous Multi-agent System under Strong Coupling
	3.1 Problem Formulation
	3.2 Synchronization of Multi-agent System due to Strong Coupling
	3.3 Utility of the Blended Dynamics Theory
	3.4 Necessity of Discrete-time Blended Dynamics Theory

	4 Behavior of Discrete-time Heterogeneous Multi-agent System under Multi-step Coupling
	4.1 Problem Formulation
	4.2 Prediction on Emergent Behavior under Multi-step Coupling
	4.3 Network Synthesis with Examples
	4.3.1 Distributed Estimation of the Number of Agents in Network
	4.3.2 Initialization-free Distributed PageRank Estimation for Strongly Connected Network
	4.3.3 Distributed Estimation of Degree Sequence of Network


	5 Application to Initialization-free Distributed PageRank Estimation for Network of Web-pages
	5.1 Problem Formulation
	5.2 Basic Definitions of PageRank for Teleportation Model
	5.3 Distributed PageRank Estimation without Initialization
	5.4 Simulation Results

	6 Behavior of Discrete-time Heterogeneous Multi-agent System under Rank-deficient Coupling
	6.1 Problem Formulation
	6.2 Coordinate Change
	6.3 Prediction on Emergent Behavior under Rank-deficient Coupling
	6.3.1 Approximation by Blended Dynamics for Simplified Cases


	7. Application to Distributed State Estimation
	7.1 Problem Formulation
	7.2 Distributed Observer for State Estimation
	7.2.1 Detectability Decomposition
	7.2.2 Distributed Observer Design

	7.3 Simulation Results

	8 Conclusions and Further Issues
	8.1 Conclusions
	8.2 Further Issues
	8.2.1 Extension to Asynchronous Communication
	8.2.2 Generalization of Multi-step Approach
	8.2.3 Extension to Nonlinear Coupling




<startpage>20
1 Introduction 1
 1.1 Research Background 1
 1.2 Outline and Contributions of Dissertation 4
2. Preliminaries 9
 2.1 Graph Theory 9
  2.1.1 Basic Definitions in Graph Theory 9
  2.1.2 Connectivity and Periodicity of the Graph 10
  2.1.3 Laplacian Matrix and Its Properties 11
 2.2 Matrix Analysis 12
  2.2.1 Stochastic Matrix 12
  2.2.2 Irreducible and Primitive Matrix 13
  2.2.3 Graph Theoretical Characterization 14
 2.3 Kronecker Product 15
3 Behavior of Continuous-time Heterogeneous Multi-agent System under Strong Coupling 17
 3.1 Problem Formulation 17
 3.2 Synchronization of Multi-agent System due to Strong Coupling 18
 3.3 Utility of the Blended Dynamics Theory 21
 3.4 Necessity of Discrete-time Blended Dynamics Theory 22
4 Behavior of Discrete-time Heterogeneous Multi-agent System under Multi-step Coupling 25
 4.1 Problem Formulation 25
 4.2 Prediction on Emergent Behavior under Multi-step Coupling 26
 4.3 Network Synthesis with Examples 42
  4.3.1 Distributed Estimation of the Number of Agents in Network 42
  4.3.2 Initialization-free Distributed PageRank Estimation for Strongly Connected Network 45
  4.3.3 Distributed Estimation of Degree Sequence of Network 48
5 Application to Initialization-free Distributed PageRank Estimation for Network of Web-pages 53
 5.1 Problem Formulation 53
 5.2 Basic Definitions of PageRank for Teleportation Model 55
 5.3 Distributed PageRank Estimation without Initialization 58
 5.4 Simulation Results 63
6 Behavior of Discrete-time Heterogeneous Multi-agent System under Rank-deficient Coupling 67
 6.1 Problem Formulation 67
 6.2 Coordinate Change 70
 6.3 Prediction on Emergent Behavior under Rank-deficient Coupling 80
  6.3.1 Approximation by Blended Dynamics for Simplified Cases 86
7. Application to Distributed State Estimation 91
 7.1 Problem Formulation 91
 7.2 Distributed Observer for State Estimation 92
  7.2.1 Detectability Decomposition 92
  7.2.2 Distributed Observer Design 93
 7.3 Simulation Results 98
8 Conclusions and Further Issues 103
 8.1 Conclusions 103
 8.2 Further Issues 105
  8.2.1 Extension to Asynchronous Communication 105
  8.2.2 Generalization of Multi-step Approach 107
  8.2.3 Extension to Nonlinear Coupling 110
</body>

